COLOR STANDARDS

AND

COLOR NOMENCLATURE

RIDGWAY

Fifty-Three Colored Plates
0

COLOR STANDARDS

AND
 COLOR NOMENCLATURE

BY

ROBERT RIDGWAY, M.S., C.M.Z.S., ETC.
Gurator of the Division of Birds, U'mited sitatem National Museum.

With Fifty-three Colored Plates and

> Eleven Hundred and Fifteen Named Colors.

WASHINGTON, D. C.
1912.

Published by the Author.

Copyright, 1912
by
Robert Ridgway

то
 Señor Don JOSÉ C. ZELEDÓN

OF
San José, Costa Rica
True and steadfast friend for more than two-score years; host, guide, and companion on excursions among the glorious forests, magnificent mountains, and lovely plains of his native land; whose encouragement made possible the completion of a seemingly hopeiess task, this book is affectionately and gratefully dedicated.

PREFACE

THE motive of this work is THE STANDARDIZATION OF COLORS AND COLOR NAMES.

The terminology of Science, the Arts, and various Industries has been a most important factor in the development of their present high efficiency. Measurements, weights, mathematical and chemical formulæ, and terms which clearly designate practically every variation of form and structure have long been standardized; but the nomenclature of colors remains vague and, for practical purposes, meaningless, thereby seriously impeding progress in almost every branch of industry and research.

Many works on the subject of color have been published, but most of them are purely technical, and pertain to the physics of color, the painter's needs, or to some particular art or industry alone, or in other ways are unsuited for the use of the zoologist, the botanist, the pathologist, or the mineralogist ; and the comparatively few works on color intended specially for naturalists have all failed to meet the requirements, either because of an insufficient number of color samples, lack of names or other means of easy identification or designation, or faulty selection and classification of the colors chosen for illustration. More than twenty years ago the author of the present work attempted to supply the deficiency by the publication of a book* containing 186 samples of named

[^0]
PREFACE

colors, but the effort was successful only to the extent that it was an improvement on its predecessors; and, although still the standard of color nomenclature among zoologists and many other naturalists, it nevertheless is seriously defective in the altogether inadequate number of colors represented, and in their unscientific arrangement. Fully realizing his failure, the author, some two or three years later, began to devise plans, gather materials, and acquire special knowledge of the subject, in the hope that he might some day be able to prepare a new work which would fully meet the needs of all who have use for it. Unfortunately, his time has been so fully occupied with other matters that progress has necessarily been slow; but after more than twenty years of sporadic effort it has at last been completed.

Acknowledgments are due to so many friends for helpful suggestions that it is hardly possible to name them all, or to specify the extent or kind of help which each has rendered; but special mention should be made of Mr. Lewis E. Jeweli, of Johns Hopkins University; Dr. R. M. Strong, of the University of Chicago; Prof. W. J. Spillman, of the U. S. Department of Agriculture; Mr. Williams Welch, of the U. S. Signal Service; Mr. Milton Bradley, of Springfield, Mass.; Dr. P. G. Nutring, of the U.S. Bureau of Standards; Mr. P. L. Ricker, of the Bureau of Plant Industry, U. S. Department of Agriculture; and Mr. J. L. Ridgway, of the U. S. Geological Survey. The late Professor S. P. Langley, then Secretary of the Smithsonian Institution, was good enough to take a kindly interest in this undertaking and gave the author assistance for which he is glad to make acknowledgment. More than to all others, however, is the author deeply indebted to Mr. John E. Thayer, of Lancaster, Mass., and Señor Don José C. Zeledón, of San José, Costa Rica, for aid so indispensible that without it the work could not have been completed.

To Dr. G. Grübler \& Co., of Leipzig, Germany, the author is under obligations for the gift of a nearly complete set of their celebrated coal-tar dyes, which have proven quite necessary to the work, especially in the coloring of the Maxwell disks on which the color scheme is based.

The reprorluction of the plates has been a difficult matter, involving not only expensive experimentation, but more than three
years of unremitting labor. Vastly different from the ordinary lines of commercial color work, the correct copying of each one of the 1115 colors of the original plates developed many perplexing and often discouraging problems, which were finally solved through Mr. A. B. Hoen's expert knowledge of chemistry and pigments; the skill, industry, and patience of the firm's head colorist, Mr. Frane Portugal, and the personal interest of both these gentlemen. It is, therefore, with the greatest pleasure that the author's grateful acknowledgment is made to the firm of A. HoEn \& Company for the satisfactory manner in which they have fulfilled their contract.

CONTENTS

PAGE
Prefface i
Prologue 1
Plan 1
Color Names 9
Color Terms 15
Table of percentages of Component Colors in Spectrum Hues. 21
Table of percentages of White and Black in Tone Scales. 23
Table of percentages of Neutral Gray in Broken Colors 25
Table of percentages of Black and White in tones of Carbon Gray 25
Dyes and Pigments used in Coloring of Maxwell Disks 26
Alphabetical List of Colors represented on Plates 29
Colors of old edition Not Represented on Plates 41
List of Useful Books on Color 42

PROLOGUE

As stated in the Preface, the purpose of this work is the standardization of colors and color nomenclature, so that naturalists or others who may have occasion to write or speak of colors may do so with the certainty that there need be no question as to what particular tint, shade, or degree of grayness, of any color or hue is meant. Therefore, it is unnecessary to treat of the subject from any other point of view ; it will be sufficient to say that this work is based on a thorough study of the subject from every standpoint, and that practically all authoritative works on the subject of color have been carefully consulted.*

Plan.-The scientific arrangement of colors in this work is based essentially on the suggestions of Professor J. H. Pillsbury for a scheme of color standards, \uparrow which have also been the basis of several other efforts toward the same end, as the plates in Milton Bradley's "Elementary Color" and educational colored papers, Prang's charts of standard colors, Klinkseick and Valette's "Code des Couleurs," etc.; but while all these present a scientifically arranged color-scheme and more or less adequate

[^1]number of colors they all fail to supply a ready or convenient means of identifying and designating the colors-the principal utility of a work of this kind. It is in the latter respect that the present work is believed to meet, more nearly than any other at least, this essential requirement, and in this consists whatever originality may be claimed for it.

The "key" to the classification or arrangement herewith presented is, of course, the solar spectrum, with its six fundamental colors and intermediate hues, augmented by the series of hues connecting violet with red, which the spectrum fails to show. If, with the red-violets and violet-reds thus added to the spectrum hues, the band forming this scale be joined end to end a circle is formed in which there is continuously a gradual change of hue, step by step, from red through orange-red and red-orange to orange ; orange through yellow-orange and orangeyellow to yellow; yellow through green-yellow and yellowgreen to green; green through blue-green and green-blue to blue; blue through violet-blue and blue-violet to violet; and violet through red-violet and violet-red to red-the starting-point-with intermediate connecting hues. In the solar spectrum, both prismatic and grating, but especially the former, the spaces between the adjoining distinct colors are very unequal; therefore for the present purpose an ideal scale must be constructed, so that an approximately equal number of equally distinct connecting hues shall be shown. Distinctions of hue appreciable to the normal eye are so numerous* that the criterion of convenience or practicaty must determine the number of segments into which the ideal chromatic scale or circle may be divided in order to best serve the purpose in view. Careful experiment seems to have

[^2]demonstrated that thirty-six is the practicable limit, and accordingly that number has been adopted.* If the number of intermediate hues were equal in all cases there would, in this scheme, be five between each two adjacent fundamental colors of the spectrum; but a greater number of recognizably distinct hues is obviously necessary in some cases than in others; for example, spectrum orange is decidedly nearer in hue to red than to yellow, and therefore the number of intermediates required on each side of the orange is different, being in the proportion of four for the red-orange series to five for the orange-yellow, and similarly six are required for the violet-red series, while four suffice for the blue-violet hues.

There is no known means by which we can measure the proportion of two or more pigments in any given mixture, "because color-effect cannot be measured by the pint of mixed paint or the ounce of dry pigment; " \dagger but, fortunately, we have a very exact method, in the color-wheel and Maxwell disks, by which the relative proportions of two or more colors in any mixture may be precisely measured. This method has been used in the painting of every one of the 1115 colors of the present work, by means of one disk to represent each one of the thirty-six colors (both pure and "broken"), together with a black, a white, and a neutral gray disk, the last being a match in color to the gray resulting from the mixture of red, green and violet on the color-wheel $; \ddagger$ the neutral gray disk, however, being used only for the making of disks for the broken series of colors (', ", "', "'", and '"'") and for the scale of neutral grays (Plate

[^3]LIII.) These colored disks are slit on one side from center to circumference, and therefore by interlocking two or more they may be adjusted so that either occupies any desired percentage of the whole area, which may be very precisely determined by a scale of 100 segments shown on the outer edge of a larger disk on which the colored disks are superimposed. When connected with the color-wheel and adjusted as may be desired, and then rapidly revolved, the two or more distinct colors resolve themselves into a single uniform composite color, whose elements are shown, in their relative proportion, by the scale surrounding the disks.*

The scales (both horizontal and vertical) of the present work are all prepared directly from definite color-wheel formulæ, based on carefully calculated curves; the thirty-six pure spectrum hues, represented

[^4]| Spectrum Color. | | Complementary Color, | | Equivalent GRAY. | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name. | Per Cent. | Per Ceut. | Composition. | Black. | White. |
| Red | 44 | 56 | Blue 41 + Green 59. | 72.5 | $\because 7.5$ |
| Orange. | 28.5 | 71.5 | Blue 51.5 + Green 48.5. | 69 | 31 |
| Yellow | 33 | 67 | Blue 60.5 + Violet 39.5. | 64 | 36 |
| Green | 51 | 49 | Red 57.5 + Violet 42.5. | 73 | 27 |
| Blue | 64 | 36 | Yellow $82+$ Orange 18. | 62 | 37 |
| Violet. | 62.5 | 37.5 | Yellow 69 + Green 31. | 61.5 | 38.5 |

by the middle horizontal line of color-squares on Plates I-XII (together with an equal number of intermediates represented by blank spaces), requiring a separate curve and consequently different relative proportions of the two component colors for each series of hues-that is, the series from red to orange, orange to yellow, yellow to green, green to blue, blue to violet, and violet to red, respectively; but the progressive increments of white in the scales of tints, black in those of shades, and neutral gray in the several series of broken colors are exactly the same in every case. The first series of Plates (I-XII) shows the pure, full spectrum colors and intermediate hues (middle horizontal line, nos. 1-72), * each with its vertical scale of tints (upward, $a-g$) and shades (downward, $h-n$), the increments of white for the tints being $9 . \overline{5}, 22 . \overline{5}$, and 4.5 per cent., respectively, those of black in the shades being $45,70.5$, and 87.5 per cent. The remaining Plates show these same thirty-six colors or hues in exactly the same order and similarly modified (vertically) by precisely the same progressive increments of white (upward) and black (downward), but all the colors are dulled by admixture of neutral gray; the first series ($1^{\prime}-72^{\prime}$, Plates XIII-XXVI) containing 32 per cent. of neutral gray, the second ($1^{\prime \prime}-72^{\prime \prime}$, Plates XXVII-XXXVIII) 58 per cent., the third ($1^{\prime \prime \prime}-72^{\prime \prime \prime}$, Plates XXXIX-XLIV) 77 per cent., and the fourth ($1^{\prime \prime \prime \prime}$ $72^{\prime \prime \prime \prime}$, Plates XLV-L) 90 per cent. The last three Plates (LI- LIII) show the six spectrum colors \dagger (also purple, the intermediate between violet and red) still further dulled by admixture of 95.5 per cent. of neutral

[^5]gray, these being in reality colored grays; to which are added a scale of neutral gray and one of carbon gray, the former being the gray resulting from miixture of the three primary colors (red 32 , green 42, violet 26 per cent., which in relative darkness equals black 79.5, white 20.5 per cent.); the latter being the gray produced by mixture of lamp black and Chinese white, and the scale a reproduction of that in the author's first "Nomenclature of Colors" (1886, Plate II, nos. 2-10). It should be emphasized that in all cases except the scale of carbon grays, only the disks representing the middle horizontal series of colors (both pure and broken) have been used, in combination with a black and a white disk, respectively, to make the colors of the vertical scales of tints and shades.

The coloring of a satisfactory set of disks to represent the thirty-six pure spectrum colors and hues was a matter of extreme difficulty, many hundreds having been painted and discarded before the desired result was achieved. Several serious problems were involved, the matter of change of hue through chemical reaction of the combined pigments or dyes* (especially the latter) being almost as troublesome as that of securing the proper degree of difference between each adjoining pair of hues. The method by which satisfactory results were finally secured was as follows: First, six disks were colored to represent each of the fundamental spectrum colors,

[^6]according to the author's conception of them.* These six disks were then placed against a suitable background (a neutral gray), in spectrum sequence, with wide intervals for the accommodation of connecting series of disks, which were then colored so as to represent an apparently even transition from one to the other. When this very difficult task had been done as well as the eye alone could judge, each intermediate was then measured on the color-wheel and the relative proportions (in percentages) of its two component colors recorded. After this had been done for all the intermedite hues each series (the red-orange, orange-yellow, yellow-green, greenblue, blue-violet, and violet-red) was taken separately and a curve constructed on cross-section paper from the recorded ratios. These curves were found to be in all cases more or less irregular or unsymmetrical, but nevertheless were sufficiently near correct to serve as a basis for a symmetrical curve; and after the points out of

[^7]| | This work. | Average of 9-12 authorities. | Extremes of 9-12 authorities. | $\begin{gathered} \text { Mean of } \\ 9-12 \\ \text { authorities. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Red | 644 | 6770 | 6440-7028 | 6734 (10) |
| Orange | 598 ± 2 | 6074 | 5892-6300 | 6096 (9) |
| Yellow. | 577 ± 1 | 5786 | 5640-5850 | 5745 (ro) |
| Green. . | 520 ± 10 | 5235 | 5050-5335 | 5193 (11) |
| Blue. | 473 ± 3 | 4738 | 4520-4861 | 4680 (12) |
| Violet | 410 | 4176 | 4050-4330 | 4190 (10) |

[^8]proper line were suitably relocated the two component colors were correspondingly readjusted on the colorwheel and each faulty disk corrected (or a new one painted) until it exactly matched the required combination. The scales representing the tints and shades of each color, and also the gray or broken colors were similarly determined by corrected curves.*

By the method adopted of running each of the thirtysix spectrum hues through a scale of tints and shades, and repeating the combination through several series modified by increasing increments of neutral gray, practically the entire possible range of color variation is covered, \dagger rendering it an easy matter to locate in the plates, either among the colors actually shown or in an intermediate space, any color which it is desired to match; and where short distinctive names have not been found (their place being, tentatively, supplied by compound names), as, necessarily, must often be the case, any color or intermediate between any two colors, either as to hue, tint, or shade, may be readily designated by the very simple system of symbols (numerals and letters) employed. \ddagger

In order to designate any color for which a satisfactory name cannot be found, or one not represented on the plates, it is only necessary to proceed as follows: Suppose the color in question is nearest 1 on Plate I; say, for example, is intermediate in hue between 1 (spectrum red) and 3 (scarlet-red), or in other words if represented in color its position would be in the uncol-

[^9]ored space designated as no. 2 ; and in tone between the full color (middle horizontal line) and tint b. Its designation, therefore, is $2 a$. Exactly the same method applies to any of the other blank spaces, as well as to the colors themselves, except that in case of the broken colors the "primes' (', ", "', "'", or "'"'") are to be affixed to the hue number. First locate the hue, designated by number, then the tone, designated by lower case letter, the full, pure colors of the middle horizontal row being designated by number alone.

Color Nimes.-While it is true that the naming of colors as usually employed has so little to do with the purely technical aspects of chromatology or color-physics that, as Von Bezold remarks* "we are in reality dealing with the peculiarities of language," it is equally true that a collection of color standards designed expressly for the purpose of identifying and designating particular colors can best attain this object by the use of a carefully selected nomenclature. In other words, the prime necessity is to standardize both colors and color names, by elimination of the element of "personal equation" in the matter. In no other way can agreement be reached as to the distinction between "violet" and "purple," two color names quite generally used interchangeably or synonymously but in reality belonging to quite distinct hues, or that any other color name can be definitely fixed. Various methods of handling the matter of color in zoological and botanical descriptions, etc., by the avoidance of color names and substitution therefor of symbols, numerals, or mechanical contrivances (as colorwheel and spectrum analyses, color-spheres, etc.) have been devised but all have been found impracticable or unsatisfactory. The author has taken the trouble to get an expression of opinion in this matter from many

[^10]naturalists and others, and the preference for colornames very greatly predominates; consequently, whenever it has been possible to find a name which seems suitable for avy color in this work it has been done, leaving as few as possible unnamed, and for these some other means must be devised for their designation. (See page 8). The selection of appropriate names for the colors depicted on the Plates has been in some cases a matter of considerable difficulty. With regard to certain ones it may appear that the names adopted are not entirely satisfactory; but, to forestall such criticism, it may be explained that the purpose of these Plates is not to show the color of the particular objects or substances which the names suggest, but to provide appropriate, or at least approximately appropriate, names for the colors which it has seemed desirable to represent. In other words, certain colors are selected for illustration, for which names must be provided; and when names that are exclusively pertinent or otherwise entirely satisfactory are not at hand, they must be looked up or invented. It should also be borne in mind that almost any object or substance varies more or less in color; and that therefore if the "orange," "lemon," "chestnut" or "1ilac" of the Plates does not exactly match in color the particular orange, lemon, chestnut or lilac which one may compare it with, it may (in fact does) correspond with other specimens. Without standardization, even if arbitrary, color nomenclature must, necessarily, remain in its present condition of absolute chaos. Even the standard pigments are not constant in color, practically every one of them being subject to more or less variation in hue or tone, different samples from the same manufacturer sometimes varying to the extent of several tomes or hues of the present work; indeed, in every case where two or more samples of the same color have beenicom-
pared it has been found that no two are exactly alike, the difference often being very great. For example: Of five samples of "vandyke brown" only two are approximately similar, each of the other three being widely different, not only from one another but from the other two, one being a blackish brown, another reddish brown, the third a yellowish orange-brown. Of eleven samples of "olive" no two are closely similar, the color ranging from a shade of dull (grayish) blue-green to orangebrown, dark brownish gray, and light yellowish olive; and the same or nearly the same degree of variation is seen in absolutely every color examined, showing very clearly the utter worthlessness of color names unless fixed or standardized.

In order to obtain as many color names as possible for standardization it has been necessary to draw from all available sources. Several thousand samples of named colors have therefore been collected, and for convenience of reference and comparison gummed to card catalogue cards, with the name, source, and other data thereon. These include the colors from many standard works, among them Werner's "Nomenclature of Colours" (Syme's edition, 1821), Hay's "Nomenclature of Colours" (1846), Ridgway's 'Nomenclature of Colors" (1886), Saccardo's "Chromataxia" (1891), Mathews' "Chart of Correct Colors of Flowers" (American Florist, 1891), Willson and Calkins' "Familiar Colors," Oberthur and Dauthenay's "Repertoire des Couleurs" (1905), Leidel's "Hints on Tints" (1893), "Lefévré's Matieres Colorantes Artificiales" (1896), the Standard Dictionary chart of "typical colors," the educational colored papers of Milton Bradley and Prang, and many others; and besides these practically all of the artists' oil, water, and dry colors, manufactured by Winsor and Newton, F. Schoenfeld and Co., Charles Roberson and Co.,

George Rowney and Co., Madderton and Co., R. Ackermann and Co., Bourgeois, Binant, Chenal, Le Franc, Devoe, Raynolds, Osborne, Bradley, Hatfield and others; also the coal-tar or aniline dyes of Dr. G. Grübler \& Co., Continental Color and Chemical Co., and Henry Heil Chemical Co., and the well known Diamond Dyes; chromo-lithographic inks, embroidery silks, etc., etc.

The material from which to select suitable color names was greatly atrgmented, almost at the last moment, from two sources, as follows: (1) A very large collection of color-samples (unfortunately mostly unnamed) collected and mounted on cards by Mr. Frederick A. Wampole, a talented young artist, to whom was delegated, by a Committee of the American Mycological Society, the task of preparing a nomenclature of colors based upon spectroscopic determinations, but which, unfortunately, the untimely death of Mr. Wampole prevented from progressing beyond the accumulation of this collection. For the use of this material I am indebted to the courtesy of Dr. Frederick V Coville, Botanist of the U. S. Department of Agriculture, and Mr. P. L. Ricker, Assistant Botanist, Bureau of Plant Industry, in the same Department. (2) A splendid collection of colored Japanese silks, taffetas, velvets, and other dress goods, kindly sent me by Mr. C. H. Hospital, of the silk department of the firm of Woodward and Lothrop, Washington, D. C. The very large number of colors represented in this collection are all named and have afforded a considerable number of the names adopted in the present work.

For obvious reasons it has, of course, been necessary to ignore many trade names, through which the popular nomenclature of colors has become involved in really chaotic confusion rendered more confounded by the continual coinage of new names, many of them synonymous
and most of them vague and variable in their application. Most of them are invented, apparently without care or judgment, by the dyer or manufacturer of fabrics, and are as capricious in their meaning as in their origin; for example: Such fanciful names as "zulu,"' 'serpent green," "'baby blue," "new old rose," '"London smoke," etc., and such nonsensical names as "ashes of roses" and "elephant's breath." An inspection of the sample books of manufacturers of fancy goods (such as embroidery silks and crewels, ribbons, velvets, and other dress- and upholstery-goods) is sufficient not only to illustrate the above observations, but to show also the absolute want of system or classification and the general unavailability of these trade names for adoption in a practical color nomenclature. This is very unfortunate, since many of these trade names have the merit of brevity and euphony and lack only the quality of stability

It has been difficult for the author to decide whether the standards of his original "Nomenclature of Colors" (1886) should be retained in the present work. Some of them are admittedly wrong (indeed, certain ones are not as they were intended to be); besides, owing to the method of reproducing the originals (hand stenciling) there is considerable variation in different copies of the book, one or more reprints, necessitating new mixtures of pigments, adding to this lack of uniformity.* Many persons, however, have urged the retention of the d standards, on the ground that they have been used by so many zoologists and botanists in their writings during the last twenty-five years that they have become estab-

[^11]lished through common usage. This very important consideration has induced the author to retain such of the old standards as can be matched in the present work, even though some of them do not agree strictly with either his own or the ustual conception of the colors in question. An asterisk (*) preceding a color name indicates that the name in question is adopted from the older work, the variation between different copies of the work requiring the selection, in the new one, of a color representing as nearly as possible an average of the former.

In any systematically arranged scheme, unless the number of colors shown is practically unlimited, it will, necessarily, be impossible to find represented thereon a certain proportion of colors comprised among even a very limited number selected at random, or only roughly classified. Hence many (thirty-six, or more than five per cent.) of the colors shown in the old "Nomenclature of Colors' fall into the blank intervals of the present work, being intermediate either in hue or tone, or chroma, sometimes all. It is necessary of course to provide some means for the correlation of these with the present scheme, which is done by the list on page 41 , where the positiou of each is shown.

The question of giving representations of metallic colors in this work was at one time considered; but the idea was abandoned for the reason that these are in reality only ordinary colors reflected from a metallic or burnished surface, or appearing as if so reflected; the actual hue is precisely the same, though often changeable according to angle of impact of the light rays, and relative position of the eye, this changeableness being sometimes due to interference.* Colors again vary, without actual difference of hue, in regard to quality of texture or surface; that is to say, the color may be quite

[^12]lustreless, appearing on a dull, sometimes velvety surface, while again it may be more or less glossy, even to the degree of appearing as if varnished. To deal with these variations, however, requires simply the use of suitable adjectives. For example: To indicate a color which has no lustre or brightness, the adjective matt (or mat) may be used, in preference to dull, which implies reduction in purity or chroma; other adjectives, appropriate in special cases, being velvety, glossy, burnished metallic, matt-metallic, etc.

Color Teris.-No other person has presented so forcibly the urgent need for reform in popular nomenclature nor stated so clearly and concisely its shortcomings and the simple remedy, as Mr. Milton Bradley, from one of whose educational pamphlets on the subject* the following is quoted: "The list of words now employed to express qualities or degrees of color is very small, in fact a half dozen comprise the more common terms, and these are pressed into service on all occasions, and in such raried relations that they not only fail to express anything definite but constantly contradict themselves . . . Tint, Hue and Shade are employed so loosely by the public generally, even by those people who claim to use English correctly, that neither word has a very definite meaning, although each is capable of being as accurately used as any other word in our every day vocabulary" . . .

Certainly one would expect that men of learning, at least, would employ the broader color terms correctly; but some of the highest autorities on color-physics habitually use them interchangeably, as if they were quite synonymous; and even the dictionaries, with few exceptions, give incorrect or "hazy" definitions of these

[^13]terms. It is not strictly correct to say a "dark tint" or "light shade" of any color, because a tint implies a color paler than the full color, while a shade means exactly the opposite; and to say an "orange shade (or tint) of red," a "greenish shade (or tint) of blue," a "bluish shade (or tint) of violet," etc., is an absurdity, for the term hue, which specifically and alone refers to relative position in the spectrum scale, without reference to lightness or darkness, is the only one which can correctly be used in such cases.

Indeed the standardization of color terms is almost if not quite as important, in the interest of educational progress, as that of the colors themselves and their names; therefore, to make easy a clear understanding of the specific meaning of each, the following definitions are given:-

Color.-The term of widest application, being the only one which can be used to cover the entire range of chromatic manifestation; that is to say, the spectrum colors (together with those between violet and red, not shown in the spectrum) with all their innumerable variations of luminosity, mixture, etc. In a more restricted sense, applied to the six distinct spectrum colors (red, orange, yellow, green, blue, and violet), which are sometimes distinguished as fundamental colors or spectrum colors.

Hue.-While often used interchangeably or synonymously with color, the term hue is more properly restricted by special application to those lying between any contiguous pair of spectrum colors (also between violet and purple and between purple and red); as an orange hue (not shade or tint, as so often incorrectly said) of red; a yellow hue of orange ; a greenish hue of yellow, a bluish hue of green; a violet hue of blue, etc.

Tint.-Any color (pure or broken) weakened by high illumination or (in the case of pigments) by ad-
mixture of white, or (in the case of dyes or washes) by excess of aqueous or other liquid medium; as, a deep, medium, light, pale or delicate (pallid) tint of red. The term cannot correctly be used in any other sense.

Shade.-Any color (pure or broken) darkened by shadow or (in the case of pigments) by admixture of black; exactly the opposite of tint; as a medium, dark, or very dark (dusky) shade of red.

Tone.-"Each step in a color scale is a tone of that color."'* The term tone cannot, however, be properly applied to a step in the spectrum scale, in which each contiguous pair of the six distinct spectrum or "fundamental'' colors are connected by hues. Hence tone \dagger is exclusively applicable to the steps in a scale of a single color or hue, comprising the full color (in the center) and graduated tints and shades leading off therefrom in opposite directions; or of neutral gray similarly graduated in tone from the darkest shade to the palest tint. Each one of the colored blocks in the vertical scales of the plates in this work represents a separate tone of that color.

Scale.-A linear series of colors showing a gradual transition from one to another, or a similar series of tones of one color. The first is a chromatic scale \ddagger (or scale of colors and hues) and in the plates of this work is represented by each horizontal series; the second is a

[^14]tone scale, on the plates running vertically, growing from the full color, in the center, to a pale tint (at the top) and a dark shade (at the bottom). For clearer comprehension of these two distinct scales, each plate of this work may be compared to a sheet of woven fabric; the chromatic scale (horizontal) representing the warp, the luminosity or tone scale (vertical) the woof. A third kind of color scale is represented by adding progressive increments of neutral gray to any color. This is shown by the several series of Plates, of which the first (Plates I-XII, with colors numbered 1-71) represents each step in the spectrum scale unmixed with gray, followed by five other series in which the same colors* are shown dulled by gradually increasing increments of neutral gray, the first (Plates XIII-XXVI, colors 1'-71') containing 32 per cent., the second (Plates XXVIIXXXVIII, colors $1^{\prime \prime}-71^{\prime \prime}$) 58 per cent., the third (Plates XXXIX-XLIV, colors $\left.1^{\prime \prime \prime}-69^{\prime \prime \prime}\right) 77$ per cent., the fourth (Plates XLV-L, colors $1^{\prime \prime \prime \prime}-69^{\prime \prime \prime \prime}$) 90 per cent., and the fifth (Plates LI-LIII, colors $1^{\prime \prime \prime \prime \prime}, 15^{\prime \prime \prime \prime \prime}, 23^{\prime \prime \prime \prime \prime}, 35^{\prime \prime \prime \prime \prime}$, $49^{\prime \prime \prime \prime \prime}, 59^{\prime \prime \prime \prime}$ and $\left.67^{\prime \prime \prime \prime \prime}\right) 95.5$ per cent. of gray, the last being in reality colored grays. Finally scales are shown (on Plate LIII) of neutral gray (in which all trace of color is wanting), and of carbon gray, a simple mixture of lamp-black and chinese white. It is not easy to find a suitable name for these scales of reduced or "broken" colors, but they may, for present convenience, be termed reduced or broken scales.

Full Color.-A color corresponding in intensity with its manifestation in the solar spectrum.

[^15]Pure Color.-A color corresponding in purity with (or, in the case of material colors, closely a pproximating to) one of the spectrum colors.

Broken Color.-Any one of the spectrum colors or hues dulled or reduced in purity by admixture (in any proportion) of neutral gray, or varying relative proportions of both black and white; also produced by admixture of certain spectrum colors, as red with green, orange with blue, yellow with violet, etc. These broken colors are far more numerous in Nature than the pure spectrum colors, and include the almost infinite variations of brown, russet, citrine, olive, drab, etc. They are often called dull or neutral colors.

Fundamental Colors.-The six psychologically distinct colors of the solar spectrum ; Red, Orange, Yellow, Green, Blue and Violet.

Primar' Colors.-Theoretically, any of the spectrum colors which cannot be made by mixture of two other colors. According to the generally accepted YoungHelmholtz theory, the primary colors are red, green, and violet ; orange and yellow resulting from a mixture of red and green, and blue from a mixture of green and violet. There is considerable difference of opinion, however, as to this question, and further investigation of the subject seems to be required; at any rate, authorities fail to explain why red may be exactly reproduced (except as to the degree of luminosity) by a mixture of orange and violet, exactly as yellow results from mixture of red and green or blue from green or violet, green being, in fact, the only spectrum color that cannot be made by mixture of other colors.*

[^16]Chroma. - Degree of freedom from white light; purity, intensity or fullness of color.

Luminosity.-Degree of brightness or clearness. The relative luminosity of the spectrum colors is as follows: [Yellow (brightest) ?], orange yellow; orange; greenishyellow, yellow-green, and green ; orange-red; red and blue (equal); violet-blue, blue-violet, violet.*

Warm Colors.-The colors nearer the red end of the spectrum or those of longer wave-lengths (red, orange, and yellow, and connecting hues) 'and combinations in which they predominate." \dagger

Cool, or Cold, Colors.-The colors nearer the violet end of the spectrum or those of shorter wave-length, especially blue and green-blue. '"But it is, perhaps, questionable whether green and violet may be termed either warm or cool.'"

Complementary' Color.-"As white light is the sum of all color, if we take from white light a given color the remaining color is the complement of the given color." When any two colors or hues which when combined in proper proportion on the color-wheel produce, by rotation, neutral gray, these two colors each represent the complementary of the other.

Constants of Color.-The constants of color are numbers which measure (1) the wave-length, (2) the chroma, and (3) the luminosity.

In addition to the terms defined above there are many others, for which the reader is referred to the chapter on "Color Definitions" on pages 2.3-30 of Milton Bradley's excellent and most useful book "Elementary Color."

[^17]TABLE OF PERCENTAGES OF COMPONENT COLORS IN THE CONNECTING HUES OF THE CHROMATIC SCALE.
The following table shows the relative percentages, in color-wheel measurement, of the two components in each of the hues connecting adjacent pairs of the six spectrum colors as represented on the original Plates of this work; together with an equal number of exact intermediates (not shown on the Plates), the latter in lowercase type and not indicated by symbols.

Number.	Color.	Red.	Orange.	Yellow.	Green.	Blue.	Violet.	Wavelength.
1	Red	100						644
2		90	10					
3	O-R	80	20					
4		70	30					
5	OO-R	60	40					
6		50	50					
7	R-O	40	60					
8		30	70					
9	OR-O	20	80				\cdots	
10		10	90					
11	Orange		100					598
12			96	4				
13	OY-O		91	9				
14			86	14				
15	Y. 0		80	20				
16			73.5	26.5				
17	O.Y		65	35				
18			56.5	43.5				
19	YO.Y		47	53				
20			36.5	63.5				
21	O-YY		25	75			
22			13.5	86.5				
23	Yellow			100				577
24				87	13			
25	YG-Y			75	25			
26			64	36			
27	G.Y			55	45			
28				46	54			
29	GG-Y			39	61			
30				31	69		..	

1 As determined by Dr. P. G. Nutting, Associate Physicist, U. S. Bureau of Standards.

22 Color Standards and Nomenclature. TABLE OF PERCENTAGES--Continued.

$\underset{\text { ber }}{\substack{\text { nump- }}}$	Color.	Red,	Orange.	Yellow.	Green.	Blue.	Violet.	$\begin{gathered} \text { Wave- } \\ \text { length }, \text { I } \end{gathered}$
31	Y.G		24	76			
32				17	83			
33	GY-G			11	89		...	
34				6	94			
35	Green				100		\ldots	520
36					96.5	3.5		
37	GB-G				93	7	
38					90	10		
39	B.G				85	15	
40					81	19		
41	BB.G				75	25	
42,					69	31		
43	G-B			61	39	
44					54	46		
45	BG-B				45	55	
46					36	64		
47	C-BB				25	75	.	
48					13	87		
49	Blue					100		473
50						84	16	
51	BV-B		\ldots			72	28	
52						64	36	
53	V-B				\ldots	54	46	
54						47	53	
55	B.V				40	60	
56					32	68	
57	VB-V				22	78	
58						12	88	
59	Violet						100	410
60		3					97	
61	VR-V	7					93	
62		11				89	
63	R.V	18					82	
64		24					76	
65	RR-V	33				67	
66		41					59	
67	V-R	52				48	
68		64					36	
69	RV-R	74					26	
70		83					17	
71	V-RR	90					10	
72	95.5	\|	4.51	

[^18]
TABLE SHOWING PERCENTAGE OF WHITE AND BLACK, RESPECTIVELY, IN EACH TONE OF THE TONE OR LUMINOSITY SCALES.

All of the vertical scales in the original Plates of this work (the scale of carbon grays alone excepted) contain the following percentages by color-wheel measurement :

One of the most serious difficulties encountered in the preparation of the Plates of this work was the apparent impracticability of reproducing satisfactory shades of pure colors. This originated in the fact that there seems to be no substance (pigment, dye, or fabric) which represents a true black, all reflecting more or less of white light, and consequently producing shades which are dull
or broken. The difficulty is increased by the additional fact that any black pigment mixed with almost any color falls short of even the color-wheel mixture in purity of hue in the resulting shades, owing to the very considerable amount of gray in all black pigments. Chromolithography can be made to produce clearer and better shades of the pure colors, but is distinctly objectionable for the purpose of a work of this kind owing to eventual oxidation of the oil or varnish with which the pigments are combined in lithographic inks, causing a change of hue; reds becoming more orange, blues more greenish, etc., in course of time.

While the absence (in large part) of pure chromatic shades is much to be regretted, the defect is not so serious, from the standpoint of utility, as might appear at first sight; for while saturated or darkened pure colors are not uncommon in the animal, vegetable, and mineral kingdoms, more or less broken dark colors are infinitely more so; and since the latter are greatly increased in number by the defect mentioned the actual result is rather an advantage than otherwise.

It will doubtless be noticed that there is a conspicuous difference in relative darkness between shades of yellow and contiguous hues on the one hand and corresponding ones of violet and adjacent hues on the other, as if the percentage of black in each were very different. This, however, is entirely the result of difference of luminosity of the two sets of colors, that of yellow being between 70 JO and 8000 while that of violet is only about 1.i;* for the percentage of black in corresponding tones of the vertical scales is precisely the same for each color throughout the chromatic scale of this work.

[^19]TABLE SHOWING PERCENTAGES OF NEUTRAL GRAY IN THE BROKEN COLOR SCALES.
Every Plate in each series of broken colors ('to "'"') contains exactly the same percentage of neutral gray in each color, the relative amount increasing progressively in the several series, as shown in the followiug table. The percentages of white in the tints and of black in the shades of the tone scales are in all cases exactly the same as in the tone scales of pure colors.

Serieg.	Percentages.	
	Color.	Neutral Gray
Pure Colors	100	
(')	68	32
(')	42	58
('"')	23	77
('"')	10	90
('"'")	4.5	95.5
Neutral Gray	100

TABLE OF PERCENTAGE OF BLACK AND WHITE IN THE DIFFERENT TONES OF CARBON GRAY.

	Percentages.	
	Tone Nomber.	Black.
1	White.	
1	100	$\ldots \ldots$.
2	98	2
3	94.5	5.5
4	89.5	10.5
5	83	17
6	75	25
7	67.5	32.5
8	58.5	41.5
9	47	53
10	30	70

Note.-The percentages given in the preceding tables may not in all cases be precisely those actually contained in the colors on the Plates, since absolute precision in reproduction is hardly possible. All that can be claimed is a reasonably close approximation to the ideal.

DYES AND PIGMENTS USED IN THE PREPARATION OF THE MAXWELL DISKS, REPRESENTING THE THIRTYSIX COLORS OF THE PURE SPECTRUM SCALE, FORMING THE BASIS OF THE COLORSCHEME OF THIS WORK.*

Red.-Devoe's geranium lake (dry), its orange hue neutralized by a wash of rhodamin b. (Crocein scarlet b. washed with rhodamin b. produces practically the same fine red.)

Hues between red and orange. - Crocein scarlet b. with gold orange.

Orange.-Gold orange with orange g.
Hues between orange and yellow.-Orange g. with auramin.
Yellow.-Auramin, rather dilute. (The best substitute among pigments is a fine quality of zinc yelloa', as Hatfield's.)

Hues between yellow and green.-Auramin washed with light green.

Green.-Auramin (very dilute) washed with light green. (The auramin should be applied first, because it "sets" or becomes fast quickly, while the light green does not, but is largely removed by overwashes of the yellow, thus rendering it very difficult to get the desired hue.)

Hues between green and blue.-Methyl green; the same washed with light blue (Diamond Dye); for the hues nearer blue, light blue washed with Winsor and Newton's permanent blue or new blue (the least violet-hued of the artificial ultramarines).

Blue.-Light blue washed with permanent blue or new blue. (Although the color is nearer that of the artificial ultramarines named, it is useless to apply the latter first,

[^20]Dyes and Pigmpnts for Manwell Disks. 27
for overwashes of the light blue merely sink through and darken the color without improving the hue. A moderately saturated solution of the light blue should be applied first, and when this is dry covered with one or more rather thin washes of the permanent blue or new blue).

Hues between blue and violet.-Winsor and Newton's permaneut blue and some of the more violet-hued artificial ultramarines, the hues nearer violet washed with crystal violet or gentian violet.

Violet.-Crystal violet.
Hiues between violet and red.-Methyl violet 16 . washed with rhodamin b.; for hues nearer red, rhodamin b. with Devoe's geranium red (dry) or crocein scarlet b.

While more or less similar in hue to rhodamin b., several other aniline dyes, as acid fuchsin, rubin s., rosein, magenta, etc., do not combine satisfactorily with the violets, the mixture soon becoming dark or dull and none of them are quite as pure a purple or red-violet.

It is most important to remember that disks thus colored must be carefully protected from light when not in actual use and never exposed to direct sunlight. The artificial ultramarines are, of course, permanent. and so, practically, are crocein scarlet, gold orange, orange g., and auramin-that is to say, are not materially affected by the action of light except after very prolonged exposure, though the last named undergoes a change of hue: but the green and violet aniline dyes are all very evanescent, rapidly fading and eventually disappearing; light blue and rhodamin, while sensitive to light, are far less so than the greens and violets.

ALPHABETICAL LIST OF COLORS REPRESENTED ON PLATES OF THIS WORK

COLOR NAME.	$\frac{\dot{\Psi}}{\frac{\mathbf{m}}{\mathbf{L}}}$		$\begin{aligned} & \text { ㄹ } \\ & \text { 듣 } \end{aligned}$	COLOR NAME.	$\frac{\underset{N}{\mathbf{N}}}{\frac{\pi}{\alpha}}$		$\stackrel{\circ}{\circ}$
Absinthe Green.	XXXI	29'	-	Benzo Brown.	XLVI	$13^{\prime \prime \prime \prime}$	i
Acajou Red	XIII	1^{\prime}	i	Benzol Green	VII	41	
Acetin Blue	XXXV	49"	k	*Berlin Blue.	VIII	47	m
Ackermann's Green	XVII	35'	k	Beryl Blue	VIII	43	f
Aconite Violet.	XXXVII	63'	-	*Beryl Green	XIX	41'	b
Ageratum Violet	XXXVII	63"	b	* Bice Green	XVII	29^{\prime}	k
Alice Blue	XXXIV	45'	b	Biscay Green	XXXI	$27^{\prime \prime}$	i
Alizarine Blue	XXI	51'	m	Bishop's Purple	XXXVII	65"	-
Alizarine Pink.	XIII	$1{ }^{\prime}$	a	*Bister	XXIX	$15^{\prime \prime}$	m
Amaranth Pink	XII	69	a	Bittersweet Orange.	11	9	b
Amaranth Purple	XII	69	i	Bittersweet Pink.	11	9	d
Amber Brown	III	13	k	*Black...	LIII	-	(1)
Amber Yellow	XVI	21'	b	Blackish Brown (1)	XLV	$1^{\prime \prime \prime \prime}$	${ }^{m}$
American Green	XLI	$33^{\prime \prime \prime}$	i	Blackish Brown (2)	XLV	$5^{\prime \prime \prime \prime}$	m
Amethyst Violet.	XI	61	-	Blackish Brown (3).	XLV	$9^{\prime \prime \prime \prime}$	m
Amparo Blue	IX	51	b	Blackish Green-Blue.	VIII	43	${ }^{m}$
Amparo Purple	XI	63	6	Blackish Green-Gray.	LII	$35^{\prime \prime \prime \prime \prime}$	m
Andover Green	XLVII	25""\%	i	Blackish Mouse Gray.	LI	15\%"'m	,
Aniline Black.	L	$69^{\prime \prime \prime}$	m	Blackish Plumbeous.	LII	49 ${ }^{\prime \prime \prime \prime \prime \prime \prime}$, k
Aniline Lilac.	XXXV	$53 \prime$	d	Blackish Purple.	XI	65	m
Aniline Yellow	IV	19	i	Blackish Red-Purple	XII	67	m
Anthracene Green	VII	39	m	*Blackish Slate..	LIII		m(3)
Anthracene Purple	XLIV	$69^{\prime \prime \prime}$	k	Blackish Violet	X	59	${ }^{m}$
Anthracene Violet.	XXV	61^{\prime}	k	Blackish Violet-Gray	LII	$59^{\prime \prime \prime \prime \prime}$	m
Antimony Yellow	XV	17^{\prime}	b	Blanc's Blue......	XX	47^{\prime}	k
Antique Brown.	111	17	k	Blanc's Violet	XXIII	59^{\prime}	k
Antique Green.	VI	33	m	Blue-Violet	X	55	-
*Antwerp Blue.	VIII	45	k	Blue-Violet Black	XLIX	$57^{\prime \prime \prime \prime}$	m
*Apple Green..	XVII	29^{\prime}	-	Bluish Black.	XLIX	$49^{\prime \prime \prime \prime}$	m
Apricot Buff	XIV	11'	b	Bluish Glaucous.	XLII	$37 \times$	f
Apricot Orange	XIV	11'	-	Bluish Gray-Green.	XLII	$41^{\prime \prime \prime}$	-
Apricot Yellow.	IV	19	b	Bluish Lavender...	XXXVI	$57^{\prime \prime}$	d
Argus Brown.	111	13	m	Bluish Slate-Black.	XLVIII	$45^{\prime \prime \prime}$	m
Argyle Purple.	XXXVII	65'	b	Bluish Violet.	X	57	-
Army Brown ..	XL	13'"	i	Bone Brown	XL	$13^{\prime \prime \prime}$	n
Artemisia Green	XLVII	$33^{\prime \prime \prime \prime}$	-	Bordeaux	XII	71	k
Asphodel Green.	XLI	29"'	-	*Bottle Green.	XIX	37	L
*Aster Purple.	XII	67	i	Bradley's Blue.	IX	51	-
Auburn	II	11	m	Bradley's Violet	XXIII	59^{\prime}	
*Auricula Purple.	XXVI	69'	k	Brazil Red...	1	5	i
Avellaneous.	XL	$17^{\prime \prime \prime}$	b	Bremen Blue.	XX	43^{\prime}	b
Azurite Blue.	$1 \times$	53	m	*Brick Red..	XIII	5^{\prime}	k
Barium Yellow.	XVI	23'	a	Bright Chalcedony Yellow.	XVII	25^{\prime}	-
Baryta Yellow.	IV	21	f	Bright Green-Yellow.	\checkmark	9	-
*Bay..	II	7	m	Brownish Drab	XLV	$9^{\prime \prime \prime}$	-
Begonia Rose.	1	1	b	Brownish Olive.	XXX	$19^{\prime \prime}$	m

COLOR NAME.			$\begin{aligned} & \text { ভ் } \\ & \stackrel{\circ}{\circ} \end{aligned}$	COLOR NAME.	$\begin{aligned} & \stackrel{0}{\mathbf{N}} \\ & \frac{\pi}{\square} \end{aligned}$		$\stackrel{\odot}{\text { ® }}$
Brownish Vinaceous	XXXIX	$5^{\prime \prime \prime}$	b	*China Blue.	XX	45^{\prime}	i
Brussels Brown	III	15	m	Chinese Violet.	XXV	65^{\prime}	b
Buckthorn Brown.	XV	17^{\prime}	i	*Chocolate.	XXVIII	$7{ }^{\prime \prime}$	m
*Buff-Pink	XXVIII	11"	${ }^{1}$	* Chromium Green.	XXXII	$31^{\prime \prime}$	i
Buffy Brown.	XL	$17^{\prime \prime \prime}$	i	Chrysolite Green.	XXXI	$27^{\prime \prime}$	b
Buffy Citrine	XVI	19^{\prime}	k	Chrysopraise Green.	VII	37	b
Buffy Olive	XXX	21"	1	*Cinereous.	LII	$45^{\prime \prime \prime \prime}$	d
*Buff-Yellow.	IV	21	d	*Cinnamon	XXXI	15'	-
Burn Blue	XXXIV	$47^{\prime \prime}$	f	Cinnamon-Brown	XV	15^{\prime}	k
Burnt Lake.	XII	71	m	Cinnamon-Buff	XXIX	15'	d
*Burnt Sienna	11	9	k	Cinnamon-Drab	XLVI	$13^{\prime \prime \prime}$	-
*Burnt Umber	XXVIII	$9^{\prime \prime}$	m	*Cinnamon-Rufous	XIV	11'	i
Cacao Brown	XXVIII	$9^{\prime \prime}$	i	Citrine	IV	21	k
Cadet Blue	XXI	49'	i	Citrine-Drab	XL	19"'	i
Cadet Gray	XLII	45"'	b	Citron Green	XXXI	25"	b
*Cadmium Orange	111	13	-	*Citron Yellow	XVI	23^{\prime}	b
*Cadmium Yellow.	III	17	-	Civette Green.	XVIII	31'	k
Calamine Blue.	VIII	43	d	*Claret Brown.	1	5	m
Calla Green	V	25	m	*Clay Color.	XXIX	17"	-
Calliste Green.	VI	31	i	Clear Cadet Blue	XXI	49'	-
Cameo Brown	XXVIII	$7 \prime$	k	Clear Dull Green Yellow	XVII	25^{\prime}	b
Cameo Pink.	XXVI	71^{\prime}	t	Clear Fluorite Green.	XXXII	$33^{\prime \prime}$	b
*Campanula Blue.	XXIV	57	b	Clear Blue-Green Gray.	XLVIII	$45^{\prime \prime \prime}$	d
Capri Blue.	XX	43^{\prime}	i	Clear Payne's Gray.	XLIX	$49^{\prime \prime \prime \prime}$	b
Capucine Buff.	111	13	f	Clear Windsor Blue.	XXXV	$49^{\prime \prime}$	-
Capucine Orange.	111	13	d	Clear Yellow-Green.	VI	31	b
Capucine Yellow.	111	15	${ }^{1}$	*Clove Brown.	XL	$17^{\prime \prime \prime}$	m
*Carmine	1	1	i	Cobalt Green.	XIX	37^{\prime}	b
Carnetian Red	XIV	$7{ }^{\prime}$	-	Colonial Buff.	XXX	$21^{\prime \prime}$	a
Carob Brown	XIV	$9 '$	m	Columbia Blue.	xxxiv	$47^{\prime \prime}$	b
Carrot Red.	XIV	$7{ }^{\prime}$	b	Commelina Blue	XXI	51'	-
Cartridge Buff.	XXX	19"	f	Congo Pink.	XXVIII	$7^{\prime \prime}$	b
Castor Gray.	LII	$35^{\prime \prime \prime \prime \prime}$	i	Coral Pink.	XIII	5^{\prime}	d
Cedar Green	VI	31	m	*Coral Red.	XIII	$5 '$	-
Celandine Gree	XLVII	33'"'	b	Corinthian Pink.	XXVII	$3^{\prime \prime}$	d
Cendre Blue	VIII	43	b	Corinthian Purple..	XXXVIII	$69^{\prime \prime}$	k
Cendre Green	VI	35	b	Corinthian Red	XXVII	$3^{\prime \prime}$	-
Cerro Green .	V	27	m	Cornflower Blue	XXI	53^{\prime}	-
*Cerulean Blue.	VIII	45	-	Corydalis Green.	XLI	29'1'	d
Chaetura Black.	XLVI	$17^{\prime \prime \prime \prime}$	m	Cossack Green.	VI	33	m
Chaetura Drab	XLVI	$17^{\prime \prime \prime}$	1	Cosse Green...	\checkmark	29	i
Chalcedony Yellow.	XVII	25'	-	Cotinga Purole.	XI	63	k
Chamois	XXX	19'	b	Courge Green..	XVII	25^{\prime}	
Chapman's Blue	XXII	49*	i	Court Gray.	XLVII	$29^{\prime \prime \prime \prime}$	f
Chartreuse Yellow	XXXI	25"	a	*Cream-Buff.	XXX	$19^{\prime \prime}$	d
Chatenay Pink.	XIII	3^{\prime}	1	*Cream Color	XVI	19^{\prime}	f
Chessylite Blue.	XX	45'	k	Cress Green	XXXI	29'	k
*Chestnut	11	9	m	*Cyanine Blue.	IX	51	m
Chestnut-Brown	XIV	11'	m	Dahlia Carmine.	XXVI	71^{\prime}	k
Chicory Blue......	XXIV	59*	d	*Dahlia Purple.	XII	67	k

COLOR NAME.	$\begin{aligned} & \text { 凹i } \\ & \frac{\pi}{01} \end{aligned}$		$\begin{gathered} \dot{(}) \\ \stackrel{\circ}{\circ} \end{gathered}$	COLOR NAME.	$\begin{aligned} & \underline{\#} \\ & \frac{\pi}{Q} \end{aligned}$	$\begin{aligned} & \text { د } \\ & \text { ᄃ } \\ & \text { 응 } \\ & \text { 응 } \\ & \text { O } \end{aligned}$)
Danube Green	XXXII	35'	m	Dark Mouse Gray	LI	15"7\%	k
Daphne Pink	XXXVIII	69'1	b	Dark Naphthalene Violet.	XXXVII	$61^{\prime \prime}$	m
Daphne Red	XXXVIII	69'	-	Dark Neutral Gray.	LIII	-	k
Dark American Green	XLI	29 ${ }^{\prime \prime \prime}$	k	Dark Nigrosin Violet.	XXV	65'	m
Dark Aniline Blue	x	55	m	Dark Olive.	XL	$21^{\prime \prime \prime}$	m
Dark Anthracene Violet	XXV	61'	m	Dark Olive-Buff.	XL	21"'	
Dark Bluish Glaucous....	XLII	$37^{\prime \prime \prime}$	b	Dark Olive-Gray	LI	23 $3^{\prime \prime \prime \prime \prime}$	i
Dark Bluish Gray-Green...	XLII	41"'	k	Dark Orient Blue	XXXIV	45"	k
Dark Bluish Violet.	χ	57	m	Dark Payne's Gray	XLIX	49'"\%	k
Dark Cadet Blue	XXI	49^{\prime}	m	Dark Perilla Purple.	XXXVVII	65"	m
Dark Chessylite Blue	XX	45'	m	Dark Plumbago Blue	XLIII	$53^{\prime \prime \prime}$	b
Dark Cinnabar Green	XIX	39^{\prime}	k	Dark Plumbago Gray.	L	$61^{\prime \prime \prime \prime}$	-
Dark Citrine	IV	21	m	Dark Plumbago Slate	L	$61^{\prime \prime \prime \prime}$	k
Dark Corinthian Purpl	XXXIX	$69^{\prime \prime}$	' 7	Dark Plumbeous.....	LII	49'"\%	i
Dark Cress Green	XXXI	29 ${ }^{\prime \prime}$	m	Dark Porcelain Gre	XXXIII	39'1	k
Dark Delft Blue	XLII	$45^{\prime \prime \prime}$	m	Dark Purple-Drab	XLV	$1^{\prime \prime \prime \prime}$	'i
Dark Diva Blue	XXI	51	k	Dark Purplish Gray	LIII	$67^{\prime \prime \prime \prime \prime}$	1
Dark Duli Blue-Viol	XXXVI	55'	k	Dark Quaker Drab	LI	1'"',	k
Dark Dull Bluish Violet (1).	XXIV	57*	k	Dark Russian Gree	XLII	37'''	k
Dark Dull Bluish Violet (2).	XxxV	51"	k	Dark Slate-Purdl	XLIV	65'"'	k
Dark Dull Bluish Violet (3).	XXXVI	$57^{\prime \prime}$	k	Dark Slate-Violet (1)	XLIII	57'"'	k
Dark Dull Violet-Blue......	XXIV	53*	k	Dark Slate-Violet (2)	XLIV	61"'	k
Dark Dull Yellow-Green	XXXII	31"	m	Dark Soft Blue-Violet.	XXIII	55'	k
Dark Glaucous-Gray.	XLVIII	$37^{\prime \prime \prime \prime}$	b	Dark Soft Bluish Violet	XXIII	57^{\prime}	k
Dark Gobelin Blue	xxxiv	43"	k	Dark Sulphate Green	XIX	39^{\prime}	i
Dark Grayish Blue-Green.	XLVIII	$37^{\prime \prime \prime}$	k	Dark Terre Verte	XXXIII	41"	k
Dark Grayish Blue-Violet.	XXIV	55*	k	Dark Tyrian Blue	XXXXIV	47"	k
Dark Grayish Brown..	XLV	$5^{\prime \prime \prime}$	$\stackrel{1}{ }$	Dark Varley's Gray	XLIX	57'"'	k
Dark Grayish Lavender....	XLIII	$57^{\prime \prime \prime}$	b	Dark Vinaceous.	XXVII	$1^{\prime \prime}$	
Dark Grayish Olive.	XLVI	21""	k	Dark Vinaceous-Brown	XXXIX	$5^{\prime \prime \prime}$	k
Dark Green.	XVIII	35^{\prime}	m	Dark Vinaceous-Drab	XLV	$5^{\prime \prime \prime \prime}$	i
Dark Green-Blue Gray	XLVIII	45 ${ }^{\prime \prime \prime}$	-	Dark Vinaceous-Gray.	L	$69^{\prime \prime \prime \prime}$	-
Dark Green-Blue Slate....	XLVIII	45"'丷	k	Dark Vinaceous-Purple	XXXVIII	67 '	1
Dark Greenish Glaucous.	XLI	29"'	b	Dark Violet	X	59	k
Dark Greenish Olive.....	XXX	$23^{\prime \prime}$	m	Dark Violet-Gray	LII	$59^{\prime \prime \prime \prime}$	1
Dark Gull Gray...	LIII	-	(6)	Dark Violet-Slate	XLIX	$53^{\prime \prime \prime \prime}$	k
Darki Helrotrope Gray....	L	$65^{\prime \prime \prime \prime}$	-	Dark Viridian Green	VII	37	k
Dark Heliotrope Slate.	L	$65^{\prime \prime \prime \prime}$	k	Dark Yellowish Gree	XVIII	33^{\prime}	n'
Dark Hyssop Violet.	XXXVVI	59'	k	Dark Yvette Violet	XXXVI	55'	m
Dark Indian Red..	XXVII	$3^{\prime \prime}$	m	Dark Zinc Green.	XIX	37'	k
Dark Ivy Green	XLVI	$25^{\prime \prime \prime \prime}$	k	Dauphin's Violet	XXIII	59^{\prime}	
Dark Lavender.	XLIV	61"'	b	Dawn Gray..............	LII	35 ${ }^{\prime \prime \prime \prime}$	a
Dark Livid Brown.	XXXIX	$1^{\prime \prime \prime}$	k	Deep Aniline Lilac.......	XXXV	$53^{\prime \prime}$	b
Dark Livid Purple.	. XXXVII	$63^{\prime \prime}$	m	Deep Blue-Violet.	X	55	
Dark Livid Red.	XXXIX	$1^{\prime \prime}$	k	Deep Bluish Glaucous....	. XLIII	37''	a
Dark Madder Blue	XLIII	$53^{\prime \prime \prime}$	k	Deep Bluish Gray-Green...	. XLIII	41'"'	
Dark Madder Violet	XXV	63^{\prime}	m	Deep Brownish Drab.......	- XLV	$9^{\prime \prime \prime \prime}$	
Dark Maroon Purple.	. XXVI	71^{\prime}	m	Deep Brownish Vinaceous.	. XXXIX	$5^{\prime \prime \prime}$	
Dark Medici Blue.	XLVIII	$41^{\prime \prime \prime \prime}$	i	Deep Cadet Blue..	XXI	49'	k
Dark Mineral Red	XXVII	$1^{\prime \prime}$	" 1	Deep Chicory Blue..	XXIV	57*	b

COLOR NAME.	$\begin{aligned} & \stackrel{(1}{\tilde{N}} \\ & \frac{\pi}{2} \end{aligned}$		$\stackrel{\square}{\square}$	COLOR NAME.	$\frac{\stackrel{y}{5}}{\frac{\pi}{\alpha}}$		-
*Deep Chrom	111	17	${ }^{1}$	Deep Slate-Green	XLVII	$33^{\prime \prime \prime \prime}$	k
Deep Chrysolite Green	XXXI	$27^{\prime \prime}$	-	Deep Slate-Olive	XLVI	29'"''	k
Deep Colonial Buff	XXX	$21^{\prime \prime}$	b	Deep Slate-Violet	XLIV	61 '"'	
Deep Corinthian Red.	XXVII	$3^{\prime \prime}$	i	Deep Slaty Brown.	L	$69^{\prime \prime \prime}$	\%
Deep Delft Blue.	XLII	45'"	1	Deep Soft Blue-Violet	XXIII	55'	
Deep Dull Bluish Violet (1)	XXIV	57*	i	Deep Soft Bluish Violet.	XXIII	57	i
Deep Dull Bluish Violet (2)	XXXV	51"	i	Deep Turtle Green	XXXII	$31^{\prime \prime}$	
Deep Dull Bluish Violet (3)	XXXVI	$57^{\prime \prime}$	i	Deep Varley's Gray	XLIX	$57^{\prime \prime \prime}$	
Deep Dull Lavender	XLIV	$61^{\prime \prime \prime \prime}$	d	Deep Vinaceous	XXVII	$1^{\prime \prime}$	b
Deep Dull Violaceous Blue.	XXII	51*	k	Deep Vinaceous-Gray	1	69'"'	b
Deep Dull Violet-Blue.	XXXV	$53^{\prime \prime}$	i	Deep Vinaceous-Lavender	XLIV	65'"	d
Deep Dull Yellow-Green (1)	XXXII	31"	1.	Deep Violet-Gray	LII	59'."',	
Deep Dull Yellow-Green (2)	XXXII	33''	$1:$	Deep Violet-Plumbeous	XLIX	$53^{\prime \prime \prime \prime}$.	-
Deep Dutch Blue.........	XLIII	49'"	-	Deep Wedgewood Blue.	XXI	51'	d
Deep Glaucous-Gray.	XLVIII	37''',	d	Delft Blue	XLII	45',	i
Deep Glaucous-Green	XXXII	39"	b	Diamin-Azo Blue	XXXV	51'	m
Deep Grape Green.	XLI	25"'	i	Diamine Brown	XIII	$3{ }^{\prime}$	m
Deep Grayish Blue-Green.	XLVIII	37'"'	i	Diamine Gree	VII	37	"
Deep Grayish Lavender....	XLIII	57'"	${ }^{\prime}$	Diva Blue	xxı	51'	i
Deep Grayish Olive...	XLVI	21"'"	i	* Drab	XLVI	$17^{\prime \prime \prime \prime}$	
Deep Green-Blue Gray.	XLVIII	45 ${ }^{\prime \prime \prime}$	b	* Drab-Gray	XLVI	$17^{\prime \prime \prime}$	d
Deep Greenish Glaucous . .	XLI	29''	d	*Dragons-blood Red	XIII	5'	i
Deep Gull Gray.	LIII	- 1	1 (a)	Dresden Brown.	XV	17^{\prime}	k
Deep Heliotrope Gray	L	$65^{\prime \prime \prime \prime}$	b	Duck Green	XIX	39^{\prime}	\%
Deep Hellebore Red.	XXXVIII	71"	i	Dull Blackish Green	XLI	29'"	"'t
Deep Hyssop Violet	XXXVI	59"	i	Dull Blue-Green Black	XLVIII	41'"'	/1
Deep Lavender	XXXV1	59'1	d	Dull Blue-Violet (1)	XXIV	55*	
Deep Lavender-Blue	XXI	53^{\prime}	${ }^{6}$	Dull Blue-Violet (2)	XXXVI	55"	i
Deep Lichen Green	XXXIII	37'	a	Dull Bluish Violet (1)	XXIV	57*	
Deep Livid Brown.	XXXIX	$1^{\prime \prime \prime}$	i	Dull Bluish Violet (2)	XXXV	51"	-
Deep Livid Purple	XXXVII	63'	k	Dull Bluish Violet (3)	XXXVVI	57'	
Deep Madder Blue	XLIII	53'"'	2	Dull Citrine.	XVI	21'	k
Deep Malachite Green	XXXII	35'	-	Dull Dark Purpl	XxVI	67'	k
Deep Medici Blue.	XLVIII	$41^{\prime \prime \prime \prime}$	-	Dull Dusky Purple	XXVI	67^{\prime}	m
Deep Mouse Gray.	LI	$15^{\prime \prime \prime \prime}$	i	Dull Greenish Black (1)	XLVII	29'"',	"
Deep Neutral Gray	LIII	-	i	Dull Greenish Black (2)	XLVII	33'"'	m
Deep Olive	XL	$21^{\prime \prime \prime}$	1	Dull Green-Yellow	XVIH	27 '	-
Deep Olive-Buff	XL	21"'	b	Dull Indian Purp	XLIV	69''	i
Deep Olive-Gray	LI	$23^{\prime \prime \prime \prime}$	-	Dull Lavender.	XLIV	$61^{\prime \prime \prime}$	f
Deep Orient Blue..........	XXXIV	45'	i	Dull Magenta Purple	XXVI	67	i
Deep Payne's Gray	XLIX	49 ${ }^{\prime \prime}$ ',	,	Dull Opaline Green.	XIX	37	f
Deep Plumbago Blue......	XLIH	$53^{\prime \prime \prime}$	${ }^{\prime}$	Dull Purplish Black	L	65\%"'	
Deep Plumbago Gray......	L	61',',	b	Dull Slate-Violet	XLIII	$57^{\prime \prime}$	i
Deep Plumbeous.	LII	$49^{\prime \prime \prime \prime \prime}$	-	Dull Violet-Black (1)	XLIV	$61^{\prime \prime \prime}$	"
Deep Purplish Gray........	LIII	67'"',	-	Dull Violet-Black (2)	XLIX	$53{ }^{\prime \prime \prime}$	"
Deep Purplish Vinaceous.	XLIV	69''	-	Dull Violet-Black (3)	L	61"'"	${ }^{\prime \prime}$
Deep Quaker Drab	LI	1"'"'	i	Dull Violaceous Blue	XXII	51*	
Deep Rose-Pink	XII	71	،	Dull Violet-Blue.	XXXV	$53^{\prime \prime}$	
Deep Seafoam Green......	XXXI	27"	$1{ }^{1}$	Dusky Auricula Purple..	XXVI	69^{\prime}	m
Deep Slate-Blue	XLIII	49''	1	Dusky Blue.......	XXII	49*	m

COLOR NAME.	$\frac{\stackrel{y y}{0}}{\frac{\pi}{2}}$		$\begin{gathered} \stackrel{0}{\Sigma} \\ \stackrel{\circ}{\circ} \end{gathered}$	COLOR NAME.			$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\circ}}$
Dusky Blue-Green	XxxIII	$39^{\prime \prime}$	m	Fluorite Violet.	XI	61	m
Dusky Bluish Green.	XXXIII	41"	\ldots	Forest Green	XVII	29^{\prime}	n
Dusky Blue-Violet (1)	XXIII	57^{\prime}	m	Forget-me-not Blue.	XXII	51*	b
Dusky Blue-Violet (2)	XXIV	55*	m	*French Gray	LII	49 ${ }^{\prime \prime \prime \prime \prime}$	f
Dusky Brown	XLV	$1^{\prime \prime \prime \prime}$	k	*French Green	xxx!I	35'	i
Dusky Drab.	XLV	9'"'	k	Fuscous	XLVI	$13^{\prime \prime \prime \prime}$	k
Dusky Dull Bluish Green.	XLII	41'"	m	Fuscous-Black	XLVI	$13^{\prime \prime \prime \prime}$	m
Dusky Dull Green	XLII	37'"	m	Garnet Brown	1	3	k
Dusky Dull Violet (1)	XXXVI	$57^{\prime \prime}$	m	Gendarme Blue	XXII	47*	k
Dusky Dull Violet (2)	XXXVI	59"'	m	Gentian Blue	XXI	53^{\prime}	
Dusky Dull Violet-Blue.	XXXV	$53^{\prime \prime}$	m	*Geranium Pink.	1	3	a
Dusky Green	XXXXIII	37'1	m	Glass Green	XXXI	$29^{\prime \prime}$	a
Dusky Green-8lue (1)..	XX	43^{\prime}	m	Glaucous	XLI	29'"	f
Dusky Green-Blue (2)	XXXIV	$43^{\prime \prime}$	m	*Glaucous-Blue.	XXXIV	43'	b
Dusky Green-Gray..	LII	$35^{\prime \prime \prime \prime}$	k	Glaucous-Gray	XLVIH	$37^{\prime \prime \prime}$	f
Dusky Greenish Blue	XX	47'	m	*Glaucous-Green	XXXIII	39'	a
Dusky Neutral Gray.	LIII	-	m	Gnaphalium Green	XLVII	29'"'	a
Dusky Olive-Green	XLI	$25^{\prime \prime}$	m	Gobelin Blue	XXXIV	43"	i
Dusky Orient Blue..	XxXIV	45'	m	Grape Green	XLI	25'"	-
Dusky Purplish Gray	LIII	$67^{\prime \prime \prime \prime}$	m	* Grass Green	VI	33	k
Dusky Slate-Blue	XLIII	49'"	m	Grayish Blue-Green.	XLVIII	$37^{\prime \prime \prime}$	-
Dusky Slate-Violet.	XLIII	$57^{\prime \prime \prime}$	m	Grayish Blue-Violet (1)	XXIV	55*	i
Dusky Violet	XXIII	59^{\prime}	m	Grayish Blue-Violet (2).	XXXV	$51^{\prime \prime}$	b
Dusky Violet-Blue (1)	XXIII	55'	m	Grayish Lavender	XLIII	$57^{\prime \prime \prime}$	1
Dusky Violet-Blue (2)	XLIII	$53^{\prime \prime}$	m	Grayish Olive	XLVI	21"'"	
Dusky Yellowish Green.	XLI	27'''	m	Grayish Violaceous Blue...	XXII	$51 *$	i
Dutch Blue	XLIII	49'"	b	Grayish Violet-Blue.	XXIV	53*	
*Ecru-Drab	XLVI	$13^{\prime \prime \prime \prime}$	d	Green-Blue Slate	XLVIII	45'"'	i
Ecru-Olive	XXX	21"	i	Green-Yellow	v	27	b
Elm Green	XVII	27^{\prime}	m	Greenish Glaucous.	XLI	$33^{\prime \prime}$	f
*Emerald Green.	VI	35	-	Greenish Glaucous-Blue .	XLII	41'"'	b
Empire Green.	XXXII	$33^{\prime \prime}$	m	Greenish Slate-Black.	XLVIII	$37^{\prime \prime \prime \prime}$	m
Empire Yellow..	IV	21	b	Greenish Yellow.	\checkmark	25	
Endive Blue.	XLIII	49''	a	Grenadine.	11	7	b
English Red	II	7	,	Grenadine Pink.	11	7	d
Eosine Pink.	1	1	${ }^{\prime}$	Grenadine Red.	11	7	
Etain Blue.	XX	43^{\prime}	f	Guinea Green	VII	39	i
Ethyl Green	VII	41	i	Gufl Gray.......	LIII	-	(1) (s)
Eton Blue.	XXII	49*	k	Haematite Red	XXVII	$5^{\prime \prime}$	m
Etruscan Red	XXVII	$5^{\prime \prime}$	-	Haematoxylin Violet.	XXV	61^{\prime}	i
Eugenia Red.	XIII	1^{\prime}	-	*Hair Brown.	XLVI	$17^{\prime \prime \prime}$	$\stackrel{i}{ }$
Eupatorium Purple.	XXXV1II	$67^{\prime \prime}$	-	Hathi Gray.	LII	$35^{\prime \prime \prime \prime}$	b
*Fawn Color	XL	$13^{\prime \prime}$	-	Hay's Blue.	IX	53	k
*Ferruginous.	XIV	$9{ }^{\prime}$	i	Hay's Brown	XXXIX	$9^{\prime \prime \prime}$	k
*Flame Scarlet	11	9	-	Hay's Green	XVIII	33'	k
*Flax-flower Blue.	XXI	51'	b	Hay's Lilac.	XXXVII	$63^{\prime \prime}$	a
*Flesh Color.	XIV	$7{ }^{\prime}$	a	Hay's Maroon.	XIII	$1{ }^{\prime}$	m
Flesh Ocher.	XIV	9	$1)$	Hay's Russet.	XIV	$7{ }^{\prime}$	k
Flesh Pink..	XIII	$5{ }^{\prime}$	1	*Hazel....	XIV	11'	\ldots
Fluorite Green.	XXXII	$33^{\prime \prime}$	-	Heliotrope-Gray	L	$65^{\prime \prime \prime \prime}$	${ }^{\prime}$

COLOR NAME.	$\begin{aligned} & \frac{9}{0} \\ & \frac{\pi}{\alpha 1} \end{aligned}$		$\begin{aligned} & \text { © } \\ & \text { ᄃㅡㅇ } \end{aligned}$	COLOR NAME.	$\begin{aligned} & \pm \\ & \frac{\mathbf{N}}{\mathbf{0}} \end{aligned}$		-
Heliotrope-Slate	L	65 ${ }^{\prime \prime \prime}$	i	Light Alice Blue	XXXIV	45"	d
Hellebore Green	XVII	25'	m	Light Amparo Blue	IX	51	d
Hellebore Red.	XXXVIII	71"	-	Light Amparo Purple.	XI	63	l
Helvetia Blue.	$1 \times$	51	k	Light Bice Green.	XVII	29^{\prime}	i
Hermosa Pink.	1	1	f	Light Blue-Green.	VII	39	d
Hessian Brown	XIII	5'	m	Light Blue-Violet.	x	55	b
Honey Yellow	XXX	19"	-	Light Bluish Violet	X	57	b
Hortense Blue	XXII	47*	m	Light Brownish Drab	XLV	$9^{\prime \prime \prime \prime}$,
Hortense Violet.	XI	61	b	Light Brownish Olive......	XXX	19'	,
*Hyacinth Blue..	X	55	k	Light Brownish Vinaceous..	XXXIX	$5^{\prime \prime \prime}$	l
Hyacinth Violet	XI	61	i	Light Buff.	XV	17^{\prime}	f
Hydrangea Pink.	XXVII	$5^{\prime \prime}$	f	Light Cadet Blue.	XXI	49^{\prime}	b
Hydrangea Red.	XXVII	1"	i	Light Cadmium.	IV	19	-
Hyssop Violet.	XXXVI	59'	-	Light Campanula Blue....	XXIV	55*	d
Indian Lake.	XXVI	71'	i	Light Celandine Green.	XLVII	$33^{\prime \prime \prime \prime}$	d
*Indian Purple.	xXXVIII	67"	m	Light Cendre Green.	VI	35	d
Indian Red.	XXVII	$3 \prime$	k	Light Cerulean Blue.	VIII	45	b
*Indigo Blue.	XXXIV	47''	m	Light Chalcedony Yellow...	XVII	25^{\prime}	d
Indulin Blue.	XXII	51*	m	Light Chicory Blue.........	XXIV	57*	f
Invisible Green.	XIX	41'	m	Light Cinnamon-Drab	XLVI	$13^{\prime \prime \prime}$	b
Iron Gray	LI	$23^{\prime \prime \prime \prime \prime}$	k	Light Columbia Blue.	XXXIV	47'	a
* Isabella Color.	XXX	19"	i	Light Congo Pink.	XXVIII	$7{ }^{\prime \prime}$	d
Italian Blue	VIII	43	-	Light Coral Red..	XIII	5	b
Ivory Yellow	XXX	21"	f	Light Corinthian Red	XXVII	$3^{\prime \prime}$	b
Ivy Green	XXXI	25"	m	Light Cress Green.	XXXI	$29^{\prime \prime}$	i
Jade Green	XXXI	$27^{\prime \prime}$	k	Light Danube Green.......	XXXII	35"	k
Japan Rose	XXVIII	9'1	b	Light Drab.	XLVI	$17^{\prime \prime \prime}$	b
Jasper Green	XXXIII	37'	i	Light Dull Bluish Violet.	XXXVI	$57^{\prime \prime}$	b
Jasper Pink.	XIII	$3 \prime$	a	Light Dull Green-Yellow...	XVII	27^{\prime}	d
Jasper Red	XIII	3^{\prime}	-	Light Elm Green.	XVII	27^{\prime}	i
Javel Green	V	27	i	Light Fluorite Green	XXXII	33'	d
Jay Blue.	XXII	47*	i	Light Forget-me-not Blue. .	XXII	51*	a
Jovence Blue	XX	43'	k	Light Glaucous-Blue.	XXXIV	43'	a
Kaiser Brown	XIV	$9 '$	k	Light Dull Glaucous-Blue. .	XLII	$41^{\prime \prime \prime}$	d
Kildare Green.	XXXI	29"	b	Light Grape Green........	XLI	25'"	b
Killarney Green	XVIII.	35^{\prime}	i	Light Grayish Blue-Violet..	XXXV	$51^{\prime \prime}$	a
King's Blue.	XXIII	47*	b	Light Grayish Olive........	XLVI	21"''	b
Kronberg's Green	XXXI	25"	k	Light Grayish Vinaceous...	XXXIX	$9^{\prime \prime \prime}$	d
Laelia Pink.	XXXVIII	$67 \prime$	d	Light Grayish Violet-Blue. .	XXIV	53*	b
La France Pink.	1	3	f	Light Greenish Yellow.....	V	25	b
*Lavender	XXXVI	$59^{\prime \prime}$	f	Light Green-Yellow.........	V	27	d
Lavender-Blue.	XXI	53^{\prime}	a	Light Gull Gray............	LIII		$f(9)$
*Lavender-Gray	XLIII	49'"	f	Light Heliotrope-Gray......	L	$65^{\prime \prime \prime}$	f
Lavender-Violet	XXV	61'	b	Light Hellebore Green.....	XVII	25^{\prime}	k
Leaf Green.	XLI	29'"	k	Light Hortense Violet......	XI	61	d
Leitch's Blue	VIII	47	i	Light Hyssop Violet.	XXXVVI	59'	b
Lemon Chrome.	IV	21	-	Light Jasper Red..........	XIII	3^{\prime}	b
Lemon Yellow.	IV	23	-	Light King's Blue..........	XXII	47	d
Lettuce Green..	V	29	k	Light Lavender-Blue......	XXI	53^{\prime}	f
Lichen Green.	XXXIII	37'	f	Light Lavender-Violet....	XXV	61^{\prime}	d

COLOR NAME.	$\begin{aligned} & \text { 凹゙ } \\ & \frac{\pi}{2} \end{aligned}$		$\begin{gathered} \dot{(0} \\ \stackrel{\circ}{\circ} \end{gathered}$	COLOR NAME.	$\begin{aligned} & \pm \\ & \frac{ \pm}{\alpha} \end{aligned}$		$\stackrel{\stackrel{\text { ® }}{\circ}}{\stackrel{\text { ® }}{ }}$
Light Lobelia Violet	XXXVII	61"	d	Light Viridine Green.	VI	33	f
Light Lumiere Gree	XVII	29'	a	Light Viridine Yellow.	V	29	1
Light Mallow Purple.	XII	67	d	Light Windsor Blue.	XXXV	49"	b
Light Mauve.	XXV	63'	d	Light Wistaria Blue.	XXIII	$57{ }^{\prime}$	d
Light Medicı Blue	XLVIII	$41^{\prime \prime \prime \prime}$	d	Light Wistaria Violet.	XXIII	59^{\prime}	d
Light Methyl Blue.	VIII	47	${ }^{6}$	Light Yellow-Green	VI	31	d
Light Mineral Gray.	XLVII	25'"'	f	Light Yellowish Olive	XXX	$23^{\prime \prime}$;
Light Mouse Gray.	LI	$15^{\prime \prime \prime \prime \prime}$	b	*Lilac.	XXV	65'	d
Light Neropalin Blue.	XXII	49*	1	*Lilac-Gray	LII	$59^{\prime \prime \prime \prime}$	f
Light Neutral Gray..	LIII	-	b	Lily Green	XLVII	33'"'	i
Light Niagara Green	XXXIII	41"	d	Lime Green	XXXI	25"	-
Light Ochraceous-Buff.....	XV	15^{\prime}	${ }^{\text {d }}$	Lincoln Green	XLI	25"'	\%
Light Ochraceous-Salmon..	XV	13^{\prime}	d	Liseran Purple	XXVI	67'	1
Light Olive-Gray	LI	23"'m	d	Litho Purple.	XXV	63 '	i
Light Orange-Yellow.	111	17	d	*Liver Brown	XIV	$7{ }^{\prime}$	m
Light Oriental Green	XVIII	33^{\prime}	b	Livid Brown.	XXXIX	$1^{\prime \prime \prime}$	-
Light Paris Green	XVIII	35^{\prime}	d	Livid Pink.	XXVII	3'	f
Light Payne's Gray.	XLIX	49'"',	\checkmark	Livid Purple	XXXVII	$63^{\prime \prime}$	i
Light Perilla Purple	XXXVII	65"	i	Livid Violet	XXXVII	61"	i
Light Phlox Purple.	XI	65	d	Lobelia Violet	XXXVII	$61^{\prime \prime}$	b
Light Pinkish Cinnamon...	XXIX	15"	d	Lumiere Blue	XX	43^{\prime}	d
Light Pinkish Lilac.	XXXVII	65'	i	Lumiere Green	XVII	29^{\prime}	1
Light Plumbago Gray.	L	61"',	i	Lyons Blue	IX	51	i
Light Porcelain Green	XXXIII	39'	-	Madder Blue	XLI! 1	$53^{\prime \prime}$	-
Light Purple-Drab	XLV	$1^{\prime \prime \prime}$	b	*Madder Brown	XIII	3^{\prime}	k
Light Purplish Gray.	LIII	$67^{\prime \prime \prime \prime \prime}$	b	Madder Violet	XXV	63^{\prime}	\%
Light Purplish Vinaceous.	XXXIX	1 '"	a	* Magenta	XXVI	67^{\prime}	-
Light Quaker Drab.........	LI	$1^{\prime \prime \prime}$ ''	b	Mahogany Red	11	7	k
Light Rosolane Purple.	XXVI	69^{\prime}	b	*Maize Yellow.	111	19	f
Light Russet-Vinaceous.	XXXIX	$9^{\prime \prime \prime}$	b	*Malachite Green	XXXII	35'	b
Light Salmon-Orange.	11	11	d	Mallow Pink.	XII	67	t
Light Seal Brown.	XXXIX	$9^{\prime \prime \prime}$	m	Mallow Purple.	XII	67	'
Light Sky Blue.	XX	47^{\prime}	f	Manganese Violet.	XXV	63'	
Light Soft Blue-Violet	XXIII	55'	b	Marguerite Yellow	XXX	$23^{\prime \prime}$,
Light Squill Blue.	XX	45'	a	*Marine Blue	VIII	45	\%
Light Sulphate Green.	XIX	39^{\prime}	b	*Maroon	1	3	m
Light Terre Verte.	XXXIII	41"	-	*Mars Brown	XV	$13{ }^{\prime}$	m
Light Turtle Green.	XXXIII	$31^{\prime \prime}$	${ }^{\text {d }}$	Mars Orange	II	9	
Light Tyrian Blue.	XXXIV	47'1	-	Mars Violet	.XXXVIII	$71^{\prime \prime}$	m
Light Varley's Gray	XLIX	$57^{\prime \prime \prime \prime}$	b	Mars Yellow	111	15	
Light Vinaceous-Cinnamon	XXIX	$13^{\prime \prime}$	d	Martius Yellow.	111	23	
Light Vinaceous-Drab.....	XLV	$5^{\prime \prime \prime}$	b	Massicot Yellow	. XVI	21'	
Light Vinaceous-Fawn	XL	$13^{\prime \prime \prime}$	a	Mathews' Blue.	XX	45'	
Light Vinaceous-Gray.	L	69'/"	f	Mathews' Purple.	XXV	65'	
Light Vinaceous-Lilac..	XLIV	69''	a	*Mauve.	XXV	63^{\prime}	b
Light Vinaceous-Purple.	XLIV	$65^{\prime \prime}$	b	Mauvette	XXV	65^{\prime}	
Light Violet.	X	59	b	Mazarine Blue	IX	49	d
Light Violet-Blue..	IX	53	b	Meadow Green.	VI	35	k
Light Violet-Gray	LII	$59^{\prime \prime \prime \prime}$	b	Medal Bronze.	111	19	m
Light Violet-Plumbeous...	XLIX	$53^{\prime \prime \prime}$	d	Medici Blue	XLVIII	$41^{\prime \prime \prime \prime}$	b

COLOR NAME.	$\frac{\dot{y y}}{\frac{\mathbb{0}}{2}}$		$\begin{gathered} \dot{\oplus} \\ \stackrel{\circ}{\circ} \end{gathered}$	COLOR NAME.	$\frac{ \pm}{\frac{\pi}{a}}$		$\stackrel{\text { - }}{\stackrel{\text { ¢ }}{\text { - }}}$
Methyl Blue	VIII	47	-	*Olive-Buff	XL	$21^{\prime \prime \prime}$	a
Methyl Green.	XIX	41'	-	Olive-Citrine	XVI	21'	m
Microcline Green	XIX	39'	1	*Olive-Gray.	LI	$23^{\prime \prime \prime \prime}$	b
Mignonette Green	XXXI	25"	i	*Olive-Green	IV	23	m
Mikado Brown.	XXIX	$13^{\prime \prime}$	i	Olive Lake.	XVI	21'	i
Mikado Orange	111	13	b	Olive-Ocher	XXX	$21^{\prime \prime}$	-
Mineral Gray.	XLVII	25 ${ }^{\prime \prime \prime}$	d	*Olive-Yellow.	XXX	$23^{\prime \prime}$	-
Mineral Green	XVIII	31'	-	Olivine.	XXXII	35"	d
Mineral Red	XXVII	$1^{\prime \prime}$	k	Olympic Blue.	XX	47^{\prime}	-
Montpellier Green	XXXIII	37'	-	Onion-skin Pink.	XXVIII	11"	b
Morocco Red	1	5	k	Ontario Violet.	XXXVVI	$55^{\prime \prime}$	b
Motmot Blue	XX	43^{\prime}	-	Opaline Green	VII	37	j
Motmot Green	XVIII	35'	-	*Orange..	11	15	-
* Mouse Gray.	LI	15 ${ }^{\prime \prime \prime \prime}$	-	*Orange-Buff.	III	15	d
*Mummy Brown	XV	17'	'1'	*Orange Chrome	11	11	-
Mulberry Purple	$\times 1$	61	k	Orange-Cinnamon	XXIX	$13^{\prime \prime}$	-
Mustard Yellow	XVI	19^{\prime}	b	Orange-Citrine	IV	19	k
Mytho Green	XLI	29'"	b	Orange-Pink	11	11	f
*Myrtle Green.	VII	41	"'t	*Orange-Rufous	11	11	
Naphthalene Violet.	XXXVII	61"	k	Orange-Vinaceous	XXVII	5"	${ }^{\prime}$
Naphthalene Yellow	XVI	23	t	Oriental Green	XVIII	33^{\prime}	-
*Naples Yellow	XVI	19^{\prime}	d	Orient Blue.	XXXIV	45"	-
Natal Brown.	XL	$13^{\prime \prime}$	k	Orient Pink	II	9	f
Navy Blue	XXI	53^{\prime}	m	Oural Green	XVIII	35^{\prime}	r
Neropalin Blue	XXII	49*	b	Ox-blood Red	1	1	k
Neutral Gray.	LIII	-	-	Oxide Blue.	VIII	45	
Neutral Red	XXXVII!	71"	k	Pale Amaranth Pink.	XII	69	i
Neuvider Green.	VII	37	a	Pale Amparo Blue	1 X	51	t
Neva Green	V	29	-	Pale Amparo Purple.	XI	63	f
Niagara Green	XXXIII	41"	1	Pale Aniline Lilac	XXXV	$53^{\prime \prime}$	1
Nickel Green	XXXIII	37'	k	*Pale Blue (Ethyl Blue)	VIII	45	t
Night Green	VI	33	-	Pale Blue-Green.	VII	39	i
Nigrosin Blue.	XXXV	49"	m	Pale Blue-Violet	X	55	d
Nigrosin Violet.	XXV	65'	,	Pale Bluish Lavender	XXXVI	$57^{\prime \prime}$	i
*Nile Blue.	XIX	41'	a	Pale Bluish Violet	X	57	${ }^{\prime}$
Nopal Red...	1	3	i	Pale Brownish Drab.	XLV	5	${ }^{1}$
*Ochraceous-Buff.	XV	15'	b	Pale Brownish Vinaceous..	XXXIX	$3^{\prime \prime \prime}$	t
Ochraceous-Orange	XV	15'	-	Pale Cadet Blue.	XXI	49^{\prime}	1
Ochraceous-Salmon	XV	13^{\prime}	b	Pale Campanula Blue	XXIV	57*	/
Ochraceous-Tawny	XV	15'	i	Pale Cendre Green.	VI	35	1
Ocher Red.	XXVII	$5^{\prime \prime}$	$\stackrel{ }{3}$	Pale Cerulean Blue.	VIII	45	'
*Oii Green.	\checkmark	27	h	Pale Chalcedony Yellow.	XVII	25^{\prime}	i
Oil Yellow	V	25	i	Pale Cinnamon-Pink.....	XXIX	13"	t
Old Gold.	XVI	19'	i	Pale Congo Pink.	XXVIII	$7 \prime$	t
Old Rose	XIII	1 '	b	Pale Drab-Gray.	XLVI	$17^{\prime \prime}$	i
Olivaceous Black (1)	XLVI	$21^{\prime \prime \prime \prime}$	'''	Pale Dull Glaucous-Blue..	XLII	$43^{\prime \prime}$	1
Olivaceous Black (2)	XLVII	25"'"	m	Pale Dull Green-Yellow	XVII	27^{\prime}	i
Olivaceous Black (3)	LI	$23^{\prime \prime \prime \prime \prime}$	\cdots	Pale Ecru-Drab.	XLVI	$13^{\prime \prime \prime}$	i
*Olive.	XXX	21"	m	Pale Flesh Color.	XIV	$7{ }^{\prime}$	f
Olive-Brown	XL	17'"	i.1	Pale Fluorite Green	xxxII	$33^{\prime \prime}$	1

COLOR NAME.	$\begin{aligned} & \dot{\oplus} \\ & \frac{\oplus}{\mathbf{0}} \end{aligned}$		$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$	COLOR NAME.			$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$
Pale Forget-me-not Blue...	XXII	51*	f	Pale Sulphate Green	XIX	39^{\prime}	${ }^{1}$
Pale Glass Gre	XXXI	29"	f	Pale Tiber Green	XVIII	33^{\prime}	f
Pale Glaucous-Blue	XXXIV	43'	f	Pale Turquoise Green	VII	41	f
Pale Glaucous-Gree	XXXIII	39"	f	Pale Turtle Green	XXXII	31"	f
Pale Grayish Blue.	XXI	49'	r	Pale Varley's Gray	XLIX	$57^{\prime \prime \prime \prime}$	d
Pale Grayish Blue-Violet.	XXXV	$51^{\prime \prime}$	f	Pale Verbena Violet	XXXVI	55"	j
Pale Grayish Vinaceous.	XXXXIX	$5^{\prime \prime \prime}$	f	Pale Veronese Green	XVIII	31^{\prime}	j
Pale Grayish Violet-Blue...	XXIV	53*	a	Pale Vinaceous.	XXVII	$1^{\prime \prime}$	f
Pale Greenish Yellow.	V	25	d	Pale Vinaceous-Drab	XLV	$3^{\prime \prime \prime \prime}$	'
Pale Green-Blue Gray	XLVIII	$43^{\prime \prime \prime}$	f	Pale Vinaceous-Fawn	XL	$13^{\prime \prime \prime}$	f
Pale Green-Yellow.	V	27	f	Pale Vinaceous-Lilac.	XLIV	$69^{\prime \prime \prime}$	-
Pale Gull Gray.	LIII	- ((10)	Pale Vinaceous-Pink	XXVIII	$9 \prime$	f
Pale Hortense Violet	XI	61	f	Pale Violet.	X	59	d
Pale King's Blue	XXII	47^{*}	f	Pale Violet-Blue.	IX	53	d
Pale Laelia Pink.	XXXVIII	$67^{\prime \prime}$	f	Pale Violet-Gray.	LII	$59^{\prime \prime \prime \prime \prime}$	'
Pale Lavender-Viole	XXV	61^{\prime}	f	Pale Violet-Plumbeou	XLIX	$53^{\prime \prime \prime}$	f
Pale Lemon Yellow	IV	23	b	Pale Viridine Yellow	V	29	f
Pale Lilac.	XXXVII	$63^{\prime \prime}$	f	Pale Windsor Blue	XXXV	49'	"
Pale Lobelia Viole	XXXVII	61"	f	Pale Wistaria Blue.	XXIII	57^{\prime}	7
Pale Lumiere Green	XVII	29^{\prime}	f	Pale Wistaria Violet	XXIII	59^{\prime}	f
Pale Mauve	XXV	63^{\prime}	f	Pale Yellow-Green.	VI	31	f
Pale Mazarine Blue	IX	49	f	Pale Yellow-Orange	III	15	i
Pale Medici Blue.	XLVIII	$41^{\prime \prime \prime \prime}$,	Pallid Blue-Violet.	X	55	1
Pale Methyl Blue	VIII	47	d	Pallid Bluish Violet	X	57	f
Pale Mouse Gray	LI	$15^{\prime \prime \prime \prime \prime}$	a	Pallid Brownish Drab	XLV	$5^{\prime \prime \prime \prime}$	f
Pale Neropalin Blue	XXII	49*	f	Pallid Grayish Violet-Bl	XXIV	53*	f
Pale Neutral Gray	LIII	-	d	Pallid Methyl Blue.	VIII	47	j
Pale Niagara Green	XXXIII	$41^{\prime \prime}$	f	Pallid Mouse Gray..	LI	$15^{\prime \prime \prime \prime}$	f
Pale Nile Blue.	XIX	41'	f	Palid Neutral Gray.	LIII		f
Pale Ochraceous-Buff.	XV	15^{\prime}	f	Pallid Purple-Drab.	XLV	$1^{\prime \prime \prime}$	f
Pale Ochraceous-Salmon	XV	13^{\prime}	f	Pallid Purplish Gray	LIII	$67 \times$	f
Pale Olive-Buff.....	XL	$21^{\prime \prime \prime}$	f	Pallid Quaker Drab.	4	$1^{\prime \prime \prime}$	f
Pale Olive-Gray	LI	$23^{\prime \prime \prime \prime \prime}$	$\xrightarrow{\prime}$	Pallid Soft Blue-Violet	XXIII	55^{\prime}	f
Pale Olivine....	XXXII	$35^{\prime \prime}$	f	Pallid Vinaceous-Drab.	XLV	$3^{\prime \prime}$	f
Pale Orange-Yellow.	111	17	f	Pallid Violet.	x	59	f
Pale Payne's Gray..	XLIX	$49^{\prime \prime \prime \prime}$	f	Pallid Violet-Blue.	IX	53	f
Pale Persian Lilac.	.XXXVIII	69'	f	*Pansy Purple.	XII	69	k
Pale Pinkish Buff.	XXIX	17"	f	Pansy Violet	XI	63	i
Pale Pinkish Cinnamon	XXIX	15"	f	*Paris Blue..	VIII	47	k
Pale Purple-Drab.....	XLV	$1^{\prime \prime \prime \prime}$	${ }^{\prime}$	*Paris Green	XVIII	35^{\prime}	b
Pale Purplish Gray......	LIII	$67^{\prime \prime \prime \prime \prime}$		*Parrot Green.	VI	31	k
Pale Purplish Vinaceous..	. XXXIX	$1^{\prime \prime \prime}$	f	Parula Blue	XLII	$43^{\prime \prime \prime}$	-
Pale Quaker Drab.....	LI	$1^{\prime \prime \prime \prime \prime}$, d	Patent Blue.	VIII	43	/
Pale Rhodonite Pink..	.xXXVIII	$71^{\prime \prime}$	r	Payne's Gray.	XLIX	49	b
Pale Rose-Purple	XXVI	67	f	Peach Red.	1	5	b
Pale Rosolane Purple.	XXVI	69^{\prime}	d	Peacock Blue.	VIIT	43	
Pale Russian Blue.	. XLII	$43^{\prime \prime \prime}$	f	Peacock Green	VI	35	
Pale Salmon Color.	XIV	9^{\prime}	j	*Pea Green.	XLVII	$29^{\prime \prime \prime \prime}$	b
Pale Smoke Gray.	XLVI	$21^{\prime \prime \prime}$	f	*Pearl Blue.	XXXV	$49^{\prime \prime}$	
Pale Soft Blue-Violet. XXIII	55'	d	*Pearl Gray.	LII	$35^{\prime \prime \prime \prime}$, f

COLOR NAME.	$\frac{\tilde{5}}{\frac{\pi}{0 .}}$		$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$	COLOR NAME.	$\frac{\stackrel{y}{6}}{\frac{\pi}{C}}$		$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$
Pecan Brown.	XXVIII	11"	i	Rhodonite Pink..	xxxVIII	$71^{\prime \prime}$	d
Perilla Purple	XXXVII	$65^{\prime \prime}$	k	Rinnemann's Green.	XVIII	31'	i
Persian Blue.	XX	45'	f	Rivage Green .	XVIII	31'	b
Persian Lilac	XXXVIII	69"	d	Rocellin Purple.	. XXXVIII	71"	b
Petunia Violet	XXV	65'	i	Roman Green	XVI	23'	m
Phenyl Blue.	IX	53	-	Rood's Blue.	IX	49	k
Phlox Pink.	XI	65	f	Rood's Brown	XXVIII	$11^{\prime \prime}$	k
*Phlox Purple.	XI	65	b	Rood's Lavender	XLIX	$57^{\prime \prime \prime}$	r
Picric Yellow.	IV	23	d	Rood's Violet.	XI	65	i
Pinard Yellow.	IV	21	d	Rose Color.	XII	71	b
*Pinkish Buff.	Xxix	17"	d	Rose Doree	1	3	b
Pinkish Cinnamon.	XXIX	15"	b	*Rose Pink	XII	71	f
*Pinkish Vinaceous.	XXVII	5"	d	*Rose-Purple.	XXVI	67^{\prime}	a
Pistachio Green.	XLI	$33^{\prime \prime \prime}$	-	*Rose Red.	XII	71	-
Pleroma Violet.	XXV	61'	-	Rosolane Pink.	XXVI	69'	f
Plumbago Blue.	XLIII	53'17	f	Rosolane Purple.	XXVI	69^{\prime}	
Plumbago Gray.	L	$61^{\prime \prime \prime}$	a	Roslyn Blue.	X	57	k
Plumbago Slate..	L	$61^{\prime \prime \prime \prime}$	i	*Royal Purple.	X	59	i
*Plumbeous..	LII	$49^{\prime \prime \prime \prime \prime}$	b	*Rufous	XIV	$9 \prime$	-
Plumbeous-Black	LII	49\%"'m	m	*Russet	XV	13^{\prime}	k
Plum Purple.	XXIV	57	m	Russet-Vinaceous	XXXIX	$9^{\prime \prime \prime}$	-
Pois Green	XLI	29"'	i	Russian Blue	XLII	45'"	a
*Pomegranate Purple.	XII	71	i	Russian Green.	XLII	37'"	i
Porcelain Blue.	XXXIV	43"	-	Saccardo's Olive	XVI	19^{\prime}	m
Porcelain Green.	XXXIII	39'	i	Saccardo's Slate.	XLVIII	$41^{\prime \prime \prime}$	k
Pompeian Red...	XIII	3'	i	Saccardo's Umber.	XXIX	17'	k
*Primrose Yellow.	XXX	23"	d	Saccardo's Violet.	XXXVII	$61^{\prime \prime}$	-
Primuline Yellow	XVI	19^{\prime}	-	Safrano Pink.	11	7	j
*Prout's Brown	XV	15'	m	* Sage Green.	XLVII	29'"'	
*Prune Purple.	XI	63	m	Sailor Blue	XXI	53'	k
Prussian Blue.	IX	49	m	*Salmon-Buff.	XIV	11'	${ }^{\prime}$
Prussian Green	XIX	41'	k	*Salmon Color.	XIV	$9 '$	d
Prussian Red.	XXVII	5'	k	Salmon-Orange	11	11	${ }^{6}$
Puritan Gray.	XLVII	$33^{\prime \prime \prime}$	i	Salvia Blue.	IX	49	b
Purple (true)	XI	65	-	Sanford's Brown	11	11	k
Purple-Drab.	XLV	$1{ }^{\prime \prime \prime}$	-	Sayal Brown.	XXIX	15'	-
Purplish Gray..	LIII	$67^{\prime \prime \prime \prime}$	-	*Scarlet.	. 1	5	-
Purplish Lilac.	XXXVII	65'	a	Scarlet-Red	1	3	-
Purplish Vinaceous.	XXXIX	$1^{\prime \prime \prime}$	b	Scheele's Green.	VI	33	1
Pyrite Yellow..	IV	23	i	Schoenfeld's Purple	XXVI	69^{\prime}	i
Quaker Drab.	LI	$1^{\prime \prime \prime}$	-	Seafoam Green.	XXXI	27"	t
Rainette Green.	XXXI	27'	i	Seafoam Yellow.	XXXI	25'	j
Ramier Blue.	XLIII	57'"	-	*Sea Green.	XIX	41'	J
Raisin Black.	XLIV	65'"	m	*Seal Brown.	XXXIX	$5^{\prime \prime}$	m
Raisin Purple.	XI	65	k	Seashell Pink.	XIV	11^{\prime}	,
*Raw Sienna.	III	17	i	*Sepia . . .	XXIX	$17^{\prime \prime}$	'"
*Raw Umber..	III	17	m	Serpentine Green.	XVI	23'	k
Reed Yellow.	XXX	$23^{\prime \prime}$	b	Shamrock Green..	XXXII	33'	i
Rejane Green..	XXXIII	37'	b	Shell Pink..	XXVIII	11'	1
Rhodamine Purple...	XII	67	-	Shrimp Pink.	1	5	j

COLOR NAME.	$\frac{\stackrel{ \pm}{0}}{\frac{\pi}{a 1}}$		$\stackrel{ \pm}{\circ}$	COLOR NAME.	$\frac{\stackrel{y}{0}}{\frac{0}{\alpha}}$		-
Skobeloff Green.	VII	39	-	Tyrian Rose.	XII	69	-
Sky Blue.	XX	47'	a	Tyrolite Green.	VII	39	b
Sky Gray.	XXXIV	45'	f	Ultramarine Ash.	XXII	49*	-
*Slate-Black	LIII	-	(2)	*Ultramarine Blue.	IX	49	i
Slate-Blue	XLIII	49''	i	Urania Blue	XXIV	53*	m
*Slate Color	LIII	-	$k(4)$	Vanderpoel's Blue.	XX	47'	i
*Slate-Gray	LIII	-	$i(5)$	Vanderpoel's Green.	VI	33	b
State-Olive	XLVII	$29^{\prime \prime \prime \prime}$	i	Vanderpoel's Violet.	XXXVI	$55^{\prime \prime}$	-
Slate-Purple.	XLIV	65'"	i	*Vandyke Brown.	XXVIII	11"	m
Slate-Violet (1)	XLIII	57'''	i	Vandyke Red..	XIII	$1^{\prime \prime}$	k
Slate-Violet (2)	XLIV	$61^{\prime \prime}$	-	Variscite Green	XIX	37	a
*Smalt Blue.	IX	53	i	Varley's Gray.	XLIX	$57^{\prime \prime \prime \prime}$	-
*Smoke Gray	XLVI	$21^{\prime \prime \prime}$	a	Varley's Green.	XVIII	31^{\prime}	m
Snuff Brown	XXIX	15'	k	Venetian Blue	XXII	47*	-
Soft Blue-Violet.	XXIII	55^{\prime}	k	Venetian Pink.	XIII	1^{\prime}	f
Soft Bluish Violet.	XXIII	57'	-	Venice Green	VII	41	b
Sooty Black.	LI	$1^{\prime \prime \prime \prime}$	m	Verbena Violet.	XXXVI	$55^{\prime \prime}$	a
Sorghum Brown	XXXIX	$9^{\prime \prime \prime}$	i	*Verdigris Green.	XIX	37^{\prime}	-
Sorrento Green.	VII	41	k	Vernonia Purple	XXVIII	69''	i
Spectrum Blue	IX	49	-	Verona Brown.	XXIX	$13^{\prime \prime}$	k
Spectrum Red.	I	1	-	Veronese Green.	XVIII	31'	a
Spectrum Violet.	x	59	-	Vetiver Green.	XLVII	$25^{\prime \prime \prime}$	-
Spinach Green	v	29	m	Victoria Lake	1	1	n
Spinel Pink.	XXVI	71	b	*Vinaceous ..	XXVII	1"	a
Spinel Red.	XXVI	71^{\prime}	-	Vinaceous-Brown	XXXIX	$5^{\prime \prime \prime}$	i
Squill Blue	XX	45^{\prime}	b	*Vinaceous-Buff.	XL	17'"	a
Stone Green	XLII	$37^{\prime \prime \prime}$	-	*Vinaceous-Cinnamon	XXIX	$13^{\prime \prime}$	b
Storm Gray	LII	$35^{\prime \prime \prime \prime}$	-	Vinaceous-Drab	XLV	$5^{\prime \prime \prime \prime}$	-
Strawberry Pink.	1	5	a	Vinaceous-Fawn	XL	$13^{\prime \prime \prime}$	b
*Straw Yellow..	XVI	21'	d	Vinaceous-Gray .	. L	$69^{\prime \prime \prime \prime}$	d
Strontian Yellow.	XVI	23^{\prime}	-	Vinaceous-Lavender	XLIV	$65^{\prime \prime \prime}$	f
Sudan Brown.	111	15	k	Vinaceous-Lilac	XLIV	69'"	b
Sulphate Green.	XIX	39^{\prime}	-	*Vinaceous-Pink	XXVIII	$9^{\prime \prime}$	d
Sulphin Yellow.	IV	21	i	Vinaceous-Purple (1)	XXXVIII	$67^{\prime \prime}$	i
*Sulphur Yellow	V	25	f	Vinaceous-Purple (2)	XLIV	65'"	-
Taupe Brown	XLIV	$69^{\prime \prime}$	m	*Vinaceous-Rufous	XIV	$7{ }^{\prime \prime}$	i
*Tawny.	XV	13 '	i	Vinaceous-Russet	XXVIII	$7{ }^{\prime \prime}$	-
*Tawny-Olive	XXXIX	$17^{\prime \prime}$	i	Vinaceous-Slate	L	$69^{\prime \prime \prime \prime}$	i
Tea Green.	XLVII	25'"'	b	Vinaceous-Tawny.	XXVIII	11"	-
Terra Cotta	XXVIII	$7{ }^{\prime \prime}$	-	Violet Carmine.	XII	69	/1
*Terre Verte	XXXIII	41"	i	Violet-Gray.	LII	$59^{\prime \prime \prime \prime}$	-
Testaceous.	XXVIII	$9^{\prime \prime}$	-	Violet-Plumbeous	XLIX	$53^{\prime \prime \prime \prime}$	b
Thulite Pink	XXVI	71^{\prime}	a	Violet-Purple	XI	63	-
Tiber Green.	XVIII	33^{\prime}	d	Violet-Slate.	XLIX	$53^{\prime \prime \prime \prime}$	i
Tilleul Buff.	XL	$17^{\prime \prime}$	f	Violet Ultramarine	X	57	i
Tourmaline Pink.	XXXVIII	67'	b	*Viridian Green.	VII	37	i
Turquoise Green.	VII	41	${ }^{\text {d }}$	Viridine Green.	VI	33	d
Turtle Green.	XXXII	$31^{\prime \prime}$	b	Viridine Yellow	V	29	b
Tyrian Blue.	XXXIV	47"	i	Vivid Green.	VII	37	-
Tyrian Pink.	XII	69	b	Wall Green..	VII	39	k

COLOR NANE.			$\stackrel{\text { ¢ }}{\stackrel{\text { j }}{0}}$	COLOR NAME.	+		-
*Walnut Brown.	XXVIII	$9^{\prime \prime}$	k	*Wood Brown.	XL	$17^{\prime \prime \prime}$	-
Warbler Green. .	IV	23	k	Xanthine Orange.	III	13	t
Warm Blackish Brown..	XXXIX	$1^{\prime \prime \prime}$	m	Yale Blue..	XX	47'	b
Warm Buff..	XV	17 '	${ }^{\prime}$	Yellow-Green	VI	31	-
Warm Sepia.	XXIX	$13^{\prime \prime}$	m	Yellowish Citrine.	XVI	23^{\prime}	\imath
Water Green.	XLI	25'"	d	Yellowish Glaucous.	XLI	25"'	f
*Wax Yellow..	XVI	21'	-	Yellowish Oil Green.	V	25	k
Wedgewood Blue	XXI	51'	f	Yellowish Olive..	xxx	23"	k
White...	LIII \ddagger	-	-	Yellow Ocher	XV	17^{\prime}	-
Windsor Blue.	XXXV	49'	i	Yew Green.	XXXI	$27^{\prime \prime}$	m
Winter Green.	XVIII	33'	i	Yvette Violet.	XXXVI	55'	k
Wistaria Blue.	XXIII	57'	b	Zinc Green..	XIX	37'	i
Wistaria Violet..	XXIII	59^{\prime}	b	Zinc Orange.	XV	13'	-

\ddagger Also the trip horizontal row on all the other plates.

THE FOLLOWINt; COLORS REPRESENTED IN THE OLD "NOMENCLATURE OF (OLORS" (1886) CANNOT BE MATCHED BY COLORS IN THE PRESENT WORK. THEY ARE INTERMEDLATES, EITHER AS TO HUE OR TONE (SOMETIMES BOTH), AND WOULD FALL IN UNCOLORED SPACES, AS INDICATED BY THE NUMERALS AND LETTERS APPENDED TO EACH:-

A:wre Blue $=48$ ((see Plates VIII and $\mid X$).
Broccoli Brown: Between $17^{\prime \prime \prime} k$ and $17^{\prime \prime \prime \prime} i$ (see Plates XL and XLVI).
$B u f f^{\prime}=18^{\prime \prime} d$ (see Plates III and IV).
Burnt Carmine=71i (Plate XII).
Canary Yellow: Between $23 b$ and $21^{\prime} b$ (see Plates IV and XVI).
Chinese Orange $=12 h$ (see Plates II and III).
Chrome rilluw $=20$ a (Plate IV).
Cobalt Blue $=48$ slightly dull (see Plates VIII and IX).
Crimson=1 j (Plate I).
Fiench Blue $=52 h$ (Plate IX).
Gallstone Yellow $=19^{\prime} h$ (Plate XVI).
Gamboge Yehow $=20$, slightly dull, or 21, slightly dull (Plate IV).
Geranium Red=3" (Plate).
Hehofiople Pump: Between $65^{\prime \prime \prime} b$ and $65^{\prime \prime \prime \prime} b$ (see Plates XLIV and L).
Indian Iellow $=184$ or 18 slightly dull (Plate III). This color and Saffron Yellow are practically identical in many copies of the old "Nomenclature."
Lake $\mathrm{I}^{\prime \prime \prime} \mathrm{l}=72$ h (Plate XII).
Marom Purple $=72$ ' ((Plate XXVI).
Ochraceuas $=16^{\prime} h$ (Plate XV).
Ochrur oqus-R"fows=12' h (see Plates XIV and XV).
Ochre Yellou =18' (see Plates XV and XVI).
Orange-th himeens = 16 h (Plate III).
Ortatif Vermilion=4, dull (Plate I).
Orpiment Ortage $=11 h$ (Plate II).
Peach-blossom Pink=1 e (Plate 1).
Poppy Rrd: between 3 and $5 h$ (Plate 1).
Saffron Yellow=18 (see Plates III and IV).
Saturn Red $=11 a$ (Plate II).
Scarlet [ymilion=4, dull (Plate 1).
Seves Blue $=46 h$ (Plate VIII).
Solferino $=67$ / (Plate XII).
Tawny-Ochucuous=14' $\%$ (Plate XV).
Turquois: Blwe $=44$ l (Plate XX)
Verditer Blue: Between 43^{\prime} and $43^{\prime \prime} b$ (see Plates XX and XXXIV).
Vermilion: Between 3 and 3^{\prime} (see Plates I and XIII).
T'iolet=61 h (Plate XI).
Wine $J^{\prime \prime} \prime^{\prime} H^{\prime}=70 h$ (Plate XXVI).

A FEW OF THE MODERN BOOKS ON THE SUBJECT
 OF COLOR WHICH THE AUTHOR OF THIS
 WORK HAS FOUND MOST USEFUL,

Bradley, Milton, author of "Color in the Schoolroom" and "Color in the Kindergarden." - Elementary Color. With an Introduction by Henry Lafavour, Ph. D., Professor of Physics, Williams College. Milton Bradley and Co., Springfield, Mass. [1895]. Small 8vo., pp. [i]-iv, [1]-128; colored frontispiece ('miniature color charts made from the Bradley educational colored papers," showing 126 unnamed colors) and numerous figures in text.

The present writer frankly and gratefully acknowledges that he has learned more, and learned it more easily, from this little book, which is a model of conciseness and perspicuity, than from careful study of more elaborate and authoritative works on the subject. It is therefore most heartily recommended to the student as a preliminary, at least, to the study of more technical works on color.

Bradley, Milton.-The Evolution of a Practical System of Color Education based on Spectrum Standards. Milton Bradley Co., Springfield, Mass. Pamphlet, 8vo., pp. 8.

Bradley, Milton.-A Few Practical Suggestions relating to Color Standards and the Present Status of Elementary Color Instruction in the United States. Milton Bradley Co., Springfield, Mass. Pamphlet, small 8vo., pp. 16.

Bradley, Milton. - Some Criticisms of Popular Color Definitions, and Suggestions for a Better Color Nomenclature. Milton Bradley Co., Springfield, Mass., 1898. Pamphlet, 12mo., pp. 15.

Bradley, Milton. - The Bradley Color Scheme, with Suggestions to Teachers. Milton Bradley Co., Springfield, Mass. Pamphlet, 12 mo., pp. 45.

Church, A. H., F. R. S., etc., Professor of Chemistry in the Royal Academy of Arts in London. - The Chemistry of Paints and Painting. Third edition, revised and enlarged. London : Seeley and Co. Small 8vo., pp. [i-vii] viii-xx, 1-355. An invaluable work which should be consulted by every painter.

Hurst, George H., F. C. S., etc. - Colour: A Handbook of the Theory of Colour. With ten coloured plates and seventy-two illustrations. London: Scott, Greenwood \& Co., 1900., Svo., 160 pp .

Rood, Ogden N.-Students' Text-book of Color; or Modern Chromatics, with applications to Art and Industry. New York: D. Appleton and Company, 1903. Small 8vo., pp. [i-v] vi-viii, [9] $10-329 ; 1$ colored plate (frontispiece) and 130 original illustrations.
(One of the best technical works on the physics of color.)
Vanderpoel, Emily Noyes. - Color Problems. A Practical Manual for the Lay Student of Color. With one hundred and seventeen colored plates. Longmans, Green and Co., New York, London and Bombay. 1903. Small 8vo., pp., [i-vi] vii-xv, [1-2] 3-137.

The colored plates of this excellent work illustrate the physics and psychology of color, color harmonies, and kindred subjects, but have no relation to color nomenclature.

Jorgensen, Charles Julius. -The Mastery of Color. A simple and perfect color system, based upon the spectral colors, for educational and practical use in the Arts and Crafts. Published by the Author. Milwaukee, 1906. 8vo., 2 vols., one of text, the other of 22 loose colored plates contained in double box.

An exceedingly useful work for artists and decorators, but not adapted to the needs of science. The technical execution of the plates is exquisite and the colors very fine.

CAUTION!!!

Do Not Expose These Plates to the light for a Longer Time Than Is Necessary.

THE pigments used in the preparation of these Plates are the most durable known, those which have been proven unstable having been, as far as possible, discarded. The latter include carmine and other cochineal lakes, colors of vegetable origin (as gamboge, violet carmine, indigo, etc.), and most of the aniline or coal tar dyes, though among the last are a considerable number which are really more permanent than several colors habitually used by artists. Certain colors in this work could not, however, possibly be reproduced except by the employment of pigments which are more or less sensitive to prolonged exposure to light, and hence this caution not to expose the plates unnecessarily.
($e \mathrm{e}$ r", urch: "The Chomistry of Paint, and Paintinn," third edition, payes 2.7.-4.3.)

Plate 1

1. RED

Begonia Rose

Spectrum Red

*Carmine

Ox-blood Red

3. $0-R$.

La France Pink
*Geranium Pink

Rose Doree

Scarlet-Red

Napal Red

Garnet Brown

*Maroon

5. $00-\mathrm{R}$.

Shrimp Pink

Strawbery $=$ Pink

Peach Red

*Scarlet

Brazil Red

Morocco Red

- Claret Brown

Plate $1 I$
7. R-O.
9. OR-O.
11. ORANGE

Orient Pink

Grenadine Red

English Red

Mahogany Red
m

Bittersweet Pink

Bittersweet Orange
*Flame Scarlet

*Burnt Sienna

Light Saimon-Orange

Salmon-Orange
*Orange Chrome

Sanford's Brown

13. OY-O.

Capucine Buff

Capucine Orange

b

Mikado Orange

Cadmium Orange

Xanthine Orange

Amber Brown

Argus Brown

15. Y-O.

Pale Yellow-Orange

*Orange-Buff

Capucine Yellow

* Orange

Mars Yellow

Sudan Brown

Brussels Brown

17. O.Y.

Pale Orange-Yellow

Light Orange-Yellow
*Deep Chrome
*Raw Sienna

Antique Brown

*Raw Umber

Plate IV
19. YO-Y.

21. O-YY.

Baryta Yellow

Pinard Yellow

Empire Yellow

Lemon Chrome

Sulphine Yellow

Dark Citrine

23. YELLOW

Martius Yellow

Pieric Yellow

Pale Lemon Yellow

*Lemon Yellow

Pyrite Yellow

Warbler Green

*Olive-Green
25. YG-Y

*Sulphur Yellow
d

Pale, Greenish Yellow
b
Light Greenish Yellow

Greenish Yellow

Yellowish oil Green

27. G-Y.
29. GG-Y.

Pale Viridine Yellow

Light Viridine Yellow

Viridine Yellow

Neva Green

Javel Green

*Oil Green

Cerro Green
Spinach Green

31. Y-G.

Pale Yellow-Green

Light Yellow-Green

Clear Yellow-Green

Yellow-Green

Calliste Green

*Parrot Green

Cedar Green

33. GY-G.

Light Viridine Green

Viridine Green

Vanderpoel's Green

Night Green

Scheele's Green

*Grass Green

Cossack Green

35. GREEN

Pale Cendre Green

Light Cendre Green

Cendre Green
*Emerald Green

Peacock Green

Meadow Green

Antique Green
37. GB-G.

Opaline Green

Neuviden Green

Vivid Green

Dark Viridian Green
m

Diamine Green

39. B-G.

Pale Blue-Green

41. BB-G

Pale Turquoise Green

Turquoise Green

Tyrolite Green

Skobeloff Green
Benzol Green

Ethyl Green

Sorrento Green

*Myrtle Green
43. G-B.

Beryl Blue

Calamine Blue

Cendre Blue

Peacock Blue

Patent Blue

Blackish-Green-Blue
45. BG-B.

-Pale Blue. (Ethyl Blue)
47. G-BB

Pallid Methyl Blue

Pale Methyl Blue

Light MethyI Blue

Methyl Blue

Leitch's Blue

*Paris Blue

*Berlin Blue

49. BLUE

Pale Mazarine Blue
d

Spectrum Blue

*Ultramarine Blue

Rood's Blue

Prussian"Blue

51. BV-B.

Pale Amparo Blue
53. V.B.

Pallid Violet-Blue

Light Ampara Blue

Bradley's Blue

Lyons Blue

Helvetia Blue

*Cyanine Blue

55. B-V.

Blue-Violet

*Hyacinth Blue

Dark Aniline Blue
57. VB-V.

Pallid Bluish Violet

Pale Bluish Violet

Light Bluish Violet

Bluish Violet

Violet Uitramarine

Roslyn Blue

Dark Bluish Violet

59. VIOLET

Pallid Violet

Pale Violet

Light Violet

Spectrum Violet

${ }^{*}$ Royal Purple

Dark Violet

Blackish Violet

61. VR-V.

Pale Hortense Violet
d

Light Hortense Violet

Amethyst Violet

Hyacinth Violet

Mulberry Purple

Fluorite Violet

63. R-V.

Pale Amparo Purple
65. RR-V.

Phlox Pink

Light Phlox Purple
*Phlox Purple

Purple. (True)

Rood's Violet

Raisin Purple

Blackish Purple

67. $V-R$.

Mallow Pink

Rhodamine Purple

69. RV-R.

Pale Amaranth Pink
\square
Arnaranth Pink

Tyrian Pink

Tyrian Rose

*Pansy Purple

Violet Carmine

71. V-RR.

*Rose Pink

1. RED

Venetian Pink

Alizarine Pink

Old Rose

Eugenia Red

Acajou Red

Vandyke Red

Hay's Maroon

3': O-R.

Chatenay Pink

Jasper Pink

Light Jasper Red

Jasper Red

Pompeian Red

*Madder Brown

Diamine Brown

5. 00-R.

Flesh-Pink

Coral Pink

Light Coral Red

*Coral Red

*Brick Red

Hessian Brown

7. R-O.

Pale Flesh Color
d

Flesh Color

Carrof Red

Carnelian Red

Hay's Russet

*Liver Browń

9. OR-O

Pale Salmon Color
11. ORANGE

Seashell Pink
*Salmon-Buff

Apricot Buff

Apricot Orange
*Cinnamon-Rufous

*Hazel

Chestnut-Brown

13:. OY-O

Pale Ochraceous-Salmon

Light Ochraceous-Salmon

6

Ochraceous-Salmon

Zinc Orange

*Tawny

*Russet
*Mars Brown

15. Y-O.

Pale Ochraceous-Buff

Light Ochraceous-Buff
17. O.Y.

Light Buff

Warm Buff

Antimony Yellow
17. O.Y.

Ochraceous-Orange

Ochraceous-Tawny

Cinnamon-Brown

*Prout's Brown

Yellow Ocher

Buckthorn Brown

*Mummy Brown

19' YO.Y.

* Cream Color

*Naples Yellow

Mustard Yellow

Primuline Yellow

Old Gold

Buffy Citrine

Saccardo's Olive
21. O-YY.

Massicot Yellow

*Straw Yellow

Amber Yellow

Wax Yellow

Olive Lake

Dull Citrine

Chive-Citrine

23. YELLOW

Naphthalene Yellow

Barium Yellow

* Citron Yellow
\square
Strontian Yellow

Yellowish Gitrine

Roman Green

25'. YG-Y.
27. G-Y.

Pale'Dull Green-Vellow

Light Dull Green-Yellow

Dull Green-Yellow

Biscay Green

Light Elm Green

Elm Green
29. GG-Y.

Pale Lumiere Green

Lumiere Green
*Apple Green

Light Bice Green

*Bice Green

Forest Green

31, Y-G.

Pale Veronese Green

Veronese Green

Rivage Green

Minerat Green

Rinnemann's Green

Civette Green
m

Varley's Green

33., GY-G.

Pale Tiber Green

Light Oriental Green
*Paris Green

Winter Green

Hay's Green

Dark Yellowish Green

35). GREEN

Killarney Green

Ackermann's Green

37: GB-G.

Dull Opaline Green

Variscite Green

6

Cobalt Green

*Verdigris Green

Zinc Green

Dark-Zinc Green

*Bottle Green

39'. B-G.

Microcline Green

Pale Sulphate Green
h. ha

Light Sulphate Green

Sulphate Green

Dark Sulphate Green

Dark Cinnabar Green

Duck Green

41'. BB-G.

9

Pale Nile Blue
*Nile Blue
*Beryl Green

Methyl Green

*Sea Green

Prussian Green

Invisible Green

55. B-V.

Pale Soft Blue-Violat

Soft Blue-Violet

57. VB-V.

Pale Wistaria Blue

Wistaria Blue

Soft Bluish Violet

Deep Soft Bluish Violet

Dark Soft Bluish Violet

59\%. VIOLET

Pale Wistaria Violet

Wistaria Violet

Bradley's Violet

Dauphin's Violet

Blanc's Violet

Dusky Violet

53*, V-B.

d

Pale Grayish Violet-Blue

8

Light Grayish Violet-Blue

Dull Violet-Blue

Grayish Violet-Blue

Dark Dull Violet-Blue

Urania Blue

55*, B-V.

Pale Campanula Blue

Light Campanula Blue
*Campanula Blue

Dark Grayish Blue-Violet

57^{*}. VB-V.

Light Chicory Blue

Chicory Blue

Deep Chicory Blue

Dull Bluish Violet (1)

Dark Dull Bluish Violet (1)

*Plum Purple

61 ', VR-V.

Pale Lavender-Violet

Pleroma Violet

Haematoxylin Violet

Anthracene Violet

Dark Anthracene Violet

63, R-V

Pale Mauve

Light Mauve
*Mauve

Manganese Violet

Litho Purple

Madder Violet

Dark Madder Violet

65'. RR-V.

Mauvette
${ }^{2}$ Lilac

Chinese Violet

Mathews' Purple

Petunia Violet

Nigrosin Violet

Dark Nigrosin Violet

67. V-R.

Pale Rose-Purple

*Magenta

Duil Magenta Purple

Dull Dark Purple

Dull Dusky Purple

69. RV-R.

Rosolane Pink
Pale Rosolane Purple

Plate XXVI
71. V-RR.

Indian Lake

Dahlia Carmine

Pale Vinaceous
*Vinaceous

Dark Vinaceous
i

Hydrangea Red

Mineral Red

Dark Mineral Red
年员

Livid Pink

Corinthian Pink

Corinthian Red

Deep Gorinthian Red

Indian Red

Dark Indian Red

Hydrangea Bink
$7^{\prime \prime}, \mathrm{R}-0$.

Pale Congo Pink

Light Congo Pink

6

Congo Pink

Terra Cotta

Vinaceous-Russet

Cameo Brown

*Chocolate

$9^{\prime \prime}$. OR-O.

Pale Vinaceous.Pink

Vinaceous-Pink

Japan Rose

Testaceous

Cacao Brown

*Walnut Brown

*Burnt Umber

11". ORANGE

Shell Pink
*Buff-Pink

Onion-skin Pink

Vinaceous-Tawny

Pecan Brown

Rood's Brown

Vandyke Brown

13". OY-O.

Pale Cinnamen Pink
d

Light Vinaceous-Cinnamon
b
*Vinaceous-Cinnamon

Orange-Cinnamon

Mikado Brown

Verona Brown
pi

Warm Sepia

15". Y-0.

Pale Pinkish Cinnamon

Pinkish Cinnamon

*Cinnamon

Sayal Brown

Snuff Brown

*Bister

Pale Pinkish Buff
*Pinkish Buff

Cinnamon-Buff
*Clay Color

*Tawny-Olive

Saccardo's Umber

*Sepia

25". YG-Y.

Sea-foam Yellow

Chartreuse Yellow

Citron Green

Mignonette Green

Kronberg's Green

4
Ivy Green

27", G-Y.

Sea-foam Green

Deep Sea-foam Green

29\%. GG.Y

Pale Glass Green

Glass Green

Kildare Green

Absinthe Green

Light Cress Green

Cress Green

Dark Cress Green

31". Y-G.

Pale Turtle Green

Light Turtle Green

Turtle Green

Deep Tartle Green

Dark Dull Yelfow-Green

33". GY-G.

Pale Fluorite Green

Light Fluorite Green

Fluorite Green

35". GREEN

Pale Olivine

Olivine

Deep Malachite Green
${ }^{*}$ French Green

Plate XXXIV
$43 "$ G-B.

Pale Glaucous-Blue
d

Light Glaucous-Blue
*Glaucous-Blue

Porcelain Blue

Dark Gobelin Blue
m

Dusky Green Blue (2)

45'. BG-B.

Sky Gray.

Light Alice Blue

Alice Blue

Orient Blue

Deep Orient Blue

Dark Orient Blue

Dusky Orient Blue
$47^{\prime \prime}$ G-BB

Burn Blue

Light Columbia Blue

Columbia Blue

Light Tyrian Blue

Tyrian Blue

Dark Tyrian Blue

*Indigo Blue

49". BLUE

*Pearl Blue

Light Windsor Blue

Clear Windsor Blue

Windsor Blue

Acetin Blue

Nigrosin Blue

$51^{\prime \prime}$. BV-B

Pale Grayish Blue-Violet

61 VR-V.

d

Light Lobelia Violet
b

Lobelia Violet

Saccardo'siviolet

Naphthalene Violet

63\%.R-V.

Pale Lilac
$65^{\prime \prime}$, RR-V.

Light Pinkish Lilac

Purplish Lilac

Argyle Purple

Bishop's Purple

Perilla Purple

Dark Perilla Purple

1 m . RED

Pále Purplish Vinaceous
d
Light Purplish Vinaceous
b
Purplish Vinaceous

Livid Brown

Dark Livid Brown

Warm Blackish Brown

$5^{\prime \prime}: 00-R$.

Pale Brownish Vinaceous Light Brownish Vinaceous

Light Brownish Vinaceous

N

Browish Vinaceous

Deep Brownish Vinaceous

Dark Vinaceous-Brown

*Seal Brown

9N. OR.O.

Pale Grayish Vinaceous

Light Grayish Vinaceous

Light Russet-Vinaceous

Russet-Vinaceous

Hay's Brown

Light Seal Brown

37\%. GB-G.

Bluish Glaucous

Deep Bluish Glaucous
δ

Dark Bluish Glaucous

Stone Green

Russian Green

Dark Russian Green

Dusky Dull Green

41". BB-G.

Pale Dull Glaucous-Blue

Light Dull Glaucous-Blue

as

Greenish Glaucous-Blue

Bluish Gray-Green

Deep Delft Blue

Dark Delft Blue

49%. BLUE
$53^{\prime \prime \prime}$. V-B.

Plumbago Blue

Deep Plumbago Blue

57% ". VB-V

Grayish Lavender

Deep Grayish Lavender

Dark Grayish Lavender

Ramier Blue

Slate-Vlolet (1)

Dark Slate-Violet (J)

Dusky Slate-Violet

1 mm RED

Pallid Purple-Drab
d

Pale Purple-Drab

Light Purple -Drab

Dark Purple-Drab

Dusky Brown

Blackish Brown (1)

Sm $\quad 00-\mathrm{R}$.

Pallid Vinaceous-Drab

Pale Vinaceous-Drab
gen. OR-O.

Pale Brownish Drab

Ught Vinaceous-Drab

Vinaceous-Drab

Dark Vinaceous-Drab

Dark Grayish Brown

Blackish Brown (2)

Pallid Brownish Drab

Light Brownish Drab

Brownish Drab

Deep Brownish Drab

Dusky Drab

Blackish Brown (3)

Plate XI VII
$25^{\prime \prime \prime}$. YG-Y.

Vetiver Green

Andover Green

Dark lvy Green

Olivaceous Black (2)

297\%. GG-Y

Court Gray

Gnaphalium Green
${ }^{*}$ Pea Green

*Sage Green

Slate-Olive

Deep Slate-Olive

Dull Greenish Black (1)
$33^{\prime \prime}$. GY-G.

Puritan Gray

Celandine Green

Artemisia Green

Lily Green

Deep Slate-Green

Qull Greenish Black (2)

Plate XLVIII
$37 \mathrm{~cm} . \mathrm{GB}-\mathrm{G}$.

Glaucous-Gray
d

Deep Glaucous-Gray
b

Dark Glaucous-Gray

Grayish Blue-Green

Deep Grayish Blue-Green

Dark Grayish Blue-Green

Greenish Slate-Black

41 "'". BB-G.
\square
Pale Medici Blue

Light Medici Blue

Medici Blue

Deep Medici Blue

Dark Medici Blue

Saccardo's Slate

Dull Blue-Green Black

$45^{\prime \prime \prime}: B G-B$

Dark Green-Blue Gray

Green-Blue Slate

Dark Green-Blue Slate

Bluish Slate-Black

61^{cm}. VR-V

Light Plumbago Gray

Deep Plumbago Gray

Dark Plumbago Gray

Plumbago-Slate

Dark Plumbago-Slate

Dull Violet-Black

$65^{\prime \prime \prime}$ RR-V

Light Heliotrope Gray
$69 \mathrm{mi} . \mathrm{RV}=\mathrm{R}$

Light Vinaceous-Gray

1 1 … RED

Pallid Quaker Drab
d

Pale Quaker Drab
b

Light Quaker Drab

Quaker Drab
i

Deep Quaker Drab

Dark Quaker Drab

Sooty Black

15/mes. Y-O

Pallid Mouse Gray

Pale Mouse Gray

*Mouse Gray

Deep Mouse Gray

Dark Mouse Gray

Blackish Mouse Gray
$23^{\prime \prime}$
VELLOW

Pale Olive-Gray

Light Olive-Gray:

OHive-Gray

Deep Olive-Gray

Dark Olive-Gray

Jron Gray

Olivaceous Black (3)

67IM. V-R.

Pallid Purplish Gray

Pale Purplish Gray

Purplish Gray

Deep Purplish Gray

Dark Purplish Gray

Dusky Purplish Gray

Black

NEUTRAL GRAY

Pallid Neutral Gray

Pale Neutral Gray

Light Neutral Gray

Neutral Gray

Deep Neutral Gray

Dark Neutral Gray

Dusky Neutral Gray

*1. Black

CARBON GRAY
10. Gray. (Pale Gull Gray)
*9. Gray. (Light Gull Gray)

7. Gray. (Deep Gull Gray)

*6. Gray. (Dark Gull Gray)

*5. Slate-Gray

*4. Slate Color

*3. Blackish Slate

*2. Slate-Black

[^0]: *A | Nomenclature of Colors | for Naturalists, | and | Compendium of Useful Knowledge | for Ornithologists. | By | Robert Ridgway, | Curator, Department of Birls, United States National Museum. | With teu colored plates and seven plates | of outline illustrations. | Boston:|Little, Brown, and Company.| 1886.| (12mo., pp. 129, pls. 17.)

 The subject of color and color nomenclature discussed on pages $15-58$. Plates i-x, inclusive, represent 186 named colors, hand-painted (stencilled).

[^1]: *Titles of several books on the subject which are especially recornmended to the lay student of chromatology are given at the end of this text.
 †See Science, June 9, 1893, and Nuture, Vol. LII, No. 1347, Aug. 22, 1895, J少. 390-392.

[^2]: *. 1 .ourding to Aubert more than 1000 hues are distinguishable in the spectrum, though anoug them all the hues letweeen violet and red are wanting.

[^3]: *That is to say, the practical limit for pictorial representation of the colors in their various modifications.
 \dagger Milton Bradley: Elementary Color, p. 18.
 thee colored figure on frontispiece.

[^4]: *See the colored figure on the frontispiece of this work, which clearly illustrates this method of color measurement. Larger disks of spectrum red, green, and violet are interlocked and adjusted so that they present, respectively, 32,42 , and 26 per cent. of the circumference; superimposed on these is a single smaller disk of neutral gray, and on this two still smaller disks of black and white, the former occupying 79, the latter 21, per cent. of the area. The result of this combination of colors, when the disks are rapidly revolved, is that the entire surface becomes a uniform neutral gray precisely like the middle disk, which blends so completely with the color inside and outside its limits that no trace of division can be detected. Hence, neutral gray equals a combination of red 32 , green 42 , and violet 26 per cent., and also equals a combination of black 79 and white 21 per cent. As further illustrating the point, it may be mentioned that not only does the above-mentioned combination of the three primary colors equal neutral gray but so also does the combination of any color ("secondary" or "tertiary" as well as primary) with its complementary, though the darkness or lightness of the gray varies somewhat, as the following table shows:

[^5]: *The number is doubled so that every other one represents an intermediate hue not shown in color.

 Howing to the circumstance that spectrum orange does not, at least when mixed with gray, fairly represent a medium hue between red and orange, being much nearer the former, a hue much near to yellow (yellow-orange, No. 1.5) has been selected.

[^6]: *For satisfactory color-wheel work it is necessary to discard practically all the so-called artists' colors, as heing much too dull to even approximately represent the colors of the suectrum, and to substitute carefully selected aniline or coal-tar lyes, of which, fortunately, there is a very large number of remarkahle purity of hue. Indeed, the work of most color-physicists is vitiated hy their use of such crude colors as vermilion, carmin, scarlet-lake, chrome yellow, emerald green, Prussian blue, etc. (For a list of dyes and pigments used in preparing the Maxwell disks representing the thirty-six colors of the chromatic scale, see pages 20.27.)

[^7]: *In fixing the exact position or wave-length of the spectrum colors considerable latitude is allowable, the element of "personal equation"-that is, difference in the conception of different persons as to just where the reddest red, greenest green, etc., are located, accounting for the considerable disagreement among chromatologists as to the wave-lengths. The following table, showing the average, mean, and extreme wave-length of each of the spectrum colors as given by nine or more authorities together with those of the present work (as determined by Dr. P. G. Nutting, Associate Physicist of the U. S. Bureau of Standards) is of interest in this connection:

[^8]: From this table it will be seen that the red of this work is appreciably more orange than that of others, the orange slightly more yellowish, and the violet a little less bluish than the average; but the author is assured by Dr. Nutting that thesestandards are exceptionally accurate.

[^9]: *The percentages are given in tables on pages 23 and $2 \overline{0}$.
 \dagger That is to say, theoretically. Unfortunately it seems to be beyond the colorists' skill to reproluce true shades of the pure collors, all showing a mone or less decided admixture of gray, resulting in a series of broken or dull shades. (See pages 23 alid 24.)
 \ddagger Although only 1115 different colors are actually shown on the plates the system is really equivalent to the presentation of considerably more than 4000 distinguishable and designatable colors.

[^10]: *The Theory of ('olor (American edition, 1876), p. 99.

[^11]: *In the present work the possibility of variation between different copics is wholly eliminated by a very different process of reproduction. Earth color, for the entire edition, is painted uniformly on large sheets of $p^{\text {mat }}$ from a single mixture of pigments, these sheets leing then cut into the small squares which represent the colors on the plates.

[^12]: *irue Lioud, Modern Chromatics, pages $50-52$.

[^13]: *Some 'riticisms of Popular Color Definitions and Suggestions for a better Color Nomenclature. Miltun Bradley Co., Springfield, Mass. (Small panphlet of 1.) pages).

[^14]: *Milton Etadley: Elementary Color, p. 2.
 \dagger Exception has been taken in a recent work ("A Color Notation," by A. II. Munsell) to the use of the term toue in this connection, on the ground that its proper use belongs to music, and the term colue is substituted. The same line of reasoning would, however, certainly require the discarding of chromatic scate as a term ot music nomenclature, since its derivation is clearly from color (chroma). Furthermore, the word "value" is even more elastic in its applicatin" than tone, and, all things considered, the present writer, at least, fails to see that any improvement is made by the proposed change.
 \ddagger The term chumafic seale has unfortunately been appropriated for a very different use (in music); nevertheless it is strictly correct in the present sense while in the other it is not, though firmly established by long usage. The term spectrum scale is not adequate, as a substitute, because the spectrum series of colors is incomplete through absence of the hues connecting violet with red, which are necessary to show the full scal' of pure colors and hues.

[^15]: *The distinctions of color or hue diminishing in proportion to the iucreased admixture of gray, each alternate color or hue, with its scale (vertical) of tones, is omitted from the thind and fourth series; while in the fifth the color differentiation is wo dreatly reduced that onty the six spectrum colors (dulled by admixture of 9.5 per cent. of neutala gray), together with parple (the intermediate lntween violet and red) are given; a yollow orange hue being subatituted for spectrum orange because it i more catally intirmediate in hue hetween red and yellow:

[^16]: *J. J. Müller figund that a maxture of the orange and vielet rays of the spectrum produced a whitish red (Rsod, "Modern ('hromaties," p. 129). The author of the present work, withont heing at the time aware of this, produced an absolutely pure red (but ot reducilintensity) hy mixture of either orange and violet (orange 63.5 , violet $6 i .5$ percent. $=$ red $85+$ white 1 i per cent.), or from orange and the violet-red which is complententary to green (violet-red 51, orange 49 per cent.), the latter equaling red $x y$ white 11 per cent; the mixtures lring nade on a color wheel with Maxwell disks reprementing the pure colors of the present work. The red resultiug from either of these mixtures on the color-wheel is lar purer than the blue resulting from mixture of green and violet, and incomparably more so that the yellow resulting from mixture of either red and greenor orange and green. Consequently, if the same results would come from mixing orange and violet light, it is difficult to understand how rad can he a primary color aceording to the accepted ilefinition.

[^17]: * liood. Hudern Chromaties, p. : 4.
 where yollow is given first in order of luminosity) all authoritias on color-physios that I harr been able to consult wry singularly ignore yellowentirely in their ireatment of the subject of Juminosity.
 †All quotations here are from Milton Brall'y's "Elementary folor," except where otherwise noted.

[^18]: I As determined by Dr. P. G. Nutting, Associate Physicist, U. S. Bureau of Standards.

[^19]: * are Lisod, Morern C'hromaties, pages 34, 35.

[^20]: *The anilinc or coal-tar dyes named are all of the manufacture of Dr. G. Grübler and Co, Leipig, Germany, unless otherwise stated. (wer Preface, page ii.)

