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Preface 

This is a book of ecology in transition from a "soft" science, synecology, 
to a "hard" science, systems ecology, in which the lens of H. T. Odum's 
"macroscope'^on the world of big patterns is the machinery of mathe-
matical modeling, simulation and systems analysis. The book is sub-
stantially the creation of young people at a time when youth in America 
is experimenting with, if not revising and reorganizing, the ethical 
and moral basis of contemporary civilized life. The systems theme is 
central in this exploration in its two salient aspects, change and relation-
ship, and its current pervasiveness in science as well as in society seems 
no accident as the world presses closer together in the last third of the 
Twentieth Century. 

Soft ecology of the past2 has identified in nature a hierarchy of organism/ 
environment units, each maintaining structural and functional identity 
while evolving in the large and fluxing constituents in the small. Such 
a conception is quintessentially an organismic one, with philosophical 
overtones that have led recently to an eruption of public concern 
about the fate and well-being of the planetary "organism" in the face 
of human extravagance. This book is an enthusiastic and optimistic 
statement about the fundamental adaptability of the scientific mechanism 
to newly appreciated truths of existence. It documents, in ecological 
science, a move away from the explanatory or cognitive criterion of 
truth, a soft criterion which heuristically lends intellectual points of 
leverage for seeking understanding, and toward the predictive criterion, 
a hard one with the potential of leading ultimately to optimal design 
and control of ecosystems. 

1 Odum, H. T. (1971). "Environment, Power and Society." Wiley (Interscience), 
New York. 

2 The terminology is that of Rapoport, A. (1970). Genl. Syst. Yrbk. 15, 15. 
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XIV PREFACE 

Systems ecology, in its infancy, is a "bisociation"3, a hybrid intersection 
of two branches of science, biology and engineering, previously discon-
nected. Such a juxtaposition is not new to biology, recalling earlier asso-
ciations with exact sciences like chemistry and physics that proved so 
potent in the microscopic concerns about organisms, and indeed, that 
became the dominant biology of recent years. This new bond comes 
fortuitously, or perhaps providentially, at a time of winding down of 
technology in the human appreciative system, with concommitant release 
from productive work of skilled engineers trained in the hard aspects of 
systems. Ecologists need only open the door ever so slightly and one can 
easily forecast a shotgun marriage in only a few years, and an explosive 
development of the predictive potential. Indeed, it has already begun to 
happen. Take, as a single example from many indications, the statement 
last April by Frank C. Rieman, President of SCi (Simulation Councils, 
Inc.), redirecting the purposes of that entire engineering society: 

. . . SCi has its roots in analog computation in the aerospace 
industry, from which it grew naturally into the field of hybrid 
computation. This history dominates the society's image 
today. The Executive Committee feels that it is now time to 
change that image. . . . We would like to direct the effort of 
the Society toward mathematical modeling and specific 
applications, independent of computational technique, rather 
than the analog/hybrid hardware orientation we now seem to 
have. . . . The Executive Committee is recommending that 
the attention of SCi, as a society, be directed toward solution 
of problems in the environmental and ecological areas. 

This book, written in the language of systems scientists, should help 
accelerate development of an inevitable kinship between them and 
ecologists by demonstrating multifariously how ecology can be cast in 
their terms. 

I take particular pleasure in having the work of a number of my 
students on exhibit here. Students have been the mainspring of my 
development as a systems ecologist, and they continue to challenge and 
question the many tentative and half-baked notions that seem to be 
integral in the learning process. All my students, including those not 
represented in these pages, deserve special recognition for the unique 
and significant role they have played and continue to play in this chal-
lenging enterprise. 

3 Kestin, J. (1970). Am. Scient. 58, 250. 



PREFACE XV 

There are also debts to the past and I discharge, in a small way on 
the dedication page, the two of profoundest meaning to me. These two 
men taught and practiced ecology that was of a kind whose kernel 
should be conserved wherever this field leads from here. It was an 
ecology of interrelationships that did not fail to look closely and inti-
mately at the players. It was a field ecology, a natural history ecology, 
but profoundly an ecology of systems. 

Throughout this project my wife, Marie, encouraged and prodded and 
absorbed externalities at home. Thelma Richardson aided in various 
programming and editorial chores, particularly in the final stages. And 
Bill Cosgrove, my department chairman, provided an outstanding climate 
for unencumbered academic pursuits at the University of Georgia. For 
these assistances, I am grateful. But the book belongs to the authors, 
and I would like especially to aknowledge and congratulate them all for 
their roles in bringing it to fruition. 

Athens, Georgia BERNARD C. PATTEN 
January, 1971 



PART I 

INTRODUCTION TO MODELING 

A science is known by its methods, and ecology as "the painful elaboration of the obvious*' 
has for a long time followed the questionable path of seeking insights by pushing numbers 
around. "Quantify and clarify" has been the paradigm of much contemporary study, and 
the illusion of synecology as a "hard" science has been provided by widespread use and 
misuse of statistical methods, which have enormous predictive appeal if little explanatory 
power. 

Systems ecology does not lean heavily upon numbers until the latter stages of an investiga-
tion. It differs from statistical ecology in its greater emphasis on the explanatory criterion 
of truth as applied to holistic behavior. It accepts as an operating principle that no complex 
system can be fully known in all of its interactive details, and accordingly seeks to elucidate 
global properties that characterize "core" dynamics, the broad set of possibilities from 
which actual behavior is generated according to environmental inputs. The current method 
of systems ecology is mathematical modeling, for the dual and distinct purposes of simulation 
and systems analysis. This section provides an overview of some of the methods and rationales 
for ecological systems modeling in relation to these purposes. 

Chapter 1 is an elementary introduction to the use of analog and digital computers for 
simulation. The presentation is tutorial, designed to bring the reader with modest mathe-
matical preparation quickly to the point of being able to use modern computing machines 
effectively. In a sense the treatment is selective and superficial, sparing many details, but 
it offers the proven advantage of giving a fast return in satisfaction to the new student of 
simulation. The methods selected, and how they are presented, are the result of a number 
of years of classroom sifting and sorting. The treatment centers on compartment models 
and their expression by means of ordinary differential equations. 

Analog computation is covered first, as the surest way to captivate a new audience.With 
a variety of graphic outputs available, and instantaneous turnaround time, there is no better 
approach to developing a subjective appreciation for what holism is all about in connection 
with system dynamics. At the turn of a potentiometer dial an individual can alter system 
inputs, outputs, or internal connections, and observe immediately the behavioral conse-
quences, or lack of them, of his act. Fortran programming, only as much as necessary, is 
introduced next and, with a presentation of numerical approximation methods, the reader 
is encouraged by examples and exercises to retrace the same ground on the digital computer 
that he has just covered with the analog. Thus gaining familiarity with some of the undesirable 
as well as desirable features of simulation by Fortran, the instruction loop is closed by 
introducing one of the modern simulation languages, S/360 CSMP. This language essentially 
makes an analog computer of the digital machine, except for turnaround, and so simple is 
its use that it could well have been introduced first were it not for the pedagogical ad-
vantages of the preceding analog and Fortran struggles. A reader who masters this chapter 
is well on his way to effective computer use as a basis for his further progress in systems 
ecology. 

Chapter 2 presents a rationale for ecological model-building in the context of a particular 
system of interest to the author, the pine-mor food web. Stages in model formulation are 

1 



INTRODUCTION TO MODELING 2 

divided into five steps, each one being discussed in detail. A Fortran program for the resultant 
model is presented, with description and analysis of its main features. Then, a distinction 
between non-dynamic and dynamic state variables is made, and a procedure for eliminating 
the former (represented by algebraic equations) to obtain a differential equations model 
for systems analysis (as opposed to simulation) is described. At this point, the mathematics 
becomes scaled up as Dr. Kowal begins a treatment of the main outlines of linear and non-
linear systems analysis. Transient and frequency response are briefly described, followed by 
a consideration of stability as approached in classical dynamic analysis. The Lyapunov stability 
theorems are stated, and the methods associated with them outlined and evaluated for 
their ecological significance. Finally, the subject of system optimization is reviewed in terms 
of the possibilities for eventual optimal control of ecosystems. 

The distinction between simulation and systems analysis, implied by this book's title, 
should be clearer for the reading of these two chapters. It is further clarified in subsequent 
sections, particularly in the chapters of Part III—and Part IV (in Vol. II). 
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L Dynamic Modeling of Ecological Systems 

A. STATE OF A SYSTEM 

The word system is so overused in everyday language that there is a 
tendency to forget what it means. A system is an assemblage of objects 
united by some form of interaction or interdependence in such a manner 
as to form an entirety or whole. This is essentially a dictionary definition 
which can be made slightly less abstract in relation to physical or 
biological systems: A system is a group of physical components connected 
or related in such a manner as to form and/or act as an entire unit. 
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The concept of system state is intuitive. The state of a system is its 
mode or condition of being. In systems science, the state usually is 
given an operational definition in terms of state variables: The state of a 
system is the condition of its state variables. The state variables of a 
system are its component parts or observable attributes, or arbitrary 
groupings of parts or attributes for particular purposes. 

Thus, operationally the definition of a system is a matter of choice, 
a function of the observer more than of the thing observed. Specification 
of the state of a system must be in terms of arbitrarily defined state 
variables. 

B. CHANGE OF STATE 

Let 

X(t) = {*,(*), *2(*),..., *n(*)} 

represent the state of a system with n state variables x^t), i = 1, 2,..., n. 
Each state variable is a function of time t as indicated by the use of 
functional notation from mathematics: Xi(t). If the variables are under-
stood to be functions of time, it is not necessary to write this argument 
explicitly every time the variable is written. Thus, the state set given 
above can be written equally well as 

X. = {x1, x2,..., xnj 

without any loss of meaning. Later we will be working with state vectors 

x = (x1 , x2,..., xn) and x = 

in which the variables are arrayed in a definite order, unlike sets which 
merely represent a collection of variables. 

If X(t) is the state (set) of a system at time t> then its state after a unit 
of time has passed can be represented as X(t + 1). If at least one of 
the n state variables has changed in this time interval, X(t) Φ X(t + 1 ) , 
the system has undergone a change of state, definable as the difference 
between the old state and the new state. If x^t) is the old state of variable i 
and xt(t + 1) the new state, then the variable change in the unit time 
interval can be denoted by Axi = x^t + 1) — x^t). More generally, 
if after a time interval At the variable has changed from x^t) to xt(t + At), 
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then the amount of change which has occurred can be expressed as 
Axi = (x^t -\- At) — Xi(t))y and the rate of change by 

AXJ Xj{t +At) — Xj(t) 

At At 

Change, or lack of it, constitutes system behavior. The behavior of a 
system is its mode of acting or, more operationally, a sequence of state 
changes in time. The sequence may be discrete or continuous. 

C. DETERMINISTIC AND STOCHASTIC SYSTEMS 

Consider an abstract system with 16 possible states: A, B,...y P (the 
letters denote state-variable sets). Suppose the behavior of the system is 
defined as 

ABCDEFGHI J K L M N O P 

I 
DHDIPGPHAEENBANE 

That is, if the system is in state A it changes to D> if in B to H, and so on. 
This is a deterministic system because prior states determine succeeding 
ones with unit probability. If, for example, A —► D with a probability 
p = .8, and to some other states with p = .2, the system would be 
termed stochastic. Its behavior is probabilistic. 

D. STATIC AND DYNAMIC SYSTEMS 

Behavior of the above system can be represented by a ' 'graph' ' of its 
sequences of state changes. That is, if the system is in state M, then the 
subsequent sequence will be M -> B —> H^>. The graph of the entire 
system behavior is shown in Fig. 1. This behavior graph shows at a 

^N^^Ac+'-ß^-C 

V" J 

FIG. 1 

glance that, depending on the initial state, the system will advance 
through a sequence of states to one of three sets of states where it will 
remain. These sets are the self-loop i / ^ , and the cycles E-^P—> E^> · · · , 
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and A-^D-+I-+A-^> ··■·. The states contained in these sets, 
{H, A, D, I, E, P}, are system steady states, and the remaining states, 
{By C, Fy G, J, K, L> My Ν, O}, are termed transient states. 

Example 1 

Ellison (1954) recognized distinctive vegetation states (communities) 
in a phytosociological study of the high-mountain Wasatch Plateau 
in Utah 

Xx = talus vegetation, 
X2 = ephemerals, 
X3 = spruce-fir, 
Xé = tall shrubs, 
X5 = mixed herbs, 

X6 = grassland, 
ΧΊ = low shrubs, 
X8 = forbs, 
X9 = erosion pavement community, 

X10 = rock crevice plants. 

The natural behavior of this system (succession) is altered if sheep or 
cattle are grazed, either separately or together. Five classes of grazing 
influence were distinguished 

1 = no grazing, 
2 = sheep only, 
3 = cattle only, 
4 = sheep and cattle simultaneously, 
5 = sheep and cattle alternately. 

The behavior of this system can be summarized by means of a * 'trans-
formation matrix* ' 

\ 

1 
2 
3 
4 
5 

*1 

x, 
— 
— 
— 
— 

x* 

x3 
x, 
x9 
— 

x* 

xs 

x, 
— 
— 
— 

Xt 

x5 
— 
— 
— 

x, 

x, 
x* 
Xs 

x7 

x* 

x, 
x* 
— 
— 

x7 

x, 
— 
— 

x* 

Xs 

x, 
— 

Xz 
— 

x» 

Xi 

^10 

^10 

— 
^10 

^10 

Xi 
— 
— 
— 
— 

Dashes indicate only that the particular grazing combination of that row 
does not act on the system state in whose column a dash appears. The 
behavior graph of the system is shown in Fig. 2. The bold arrows indicate 
the sequence of state changes in absence of any grazing; this is the normal 
successional behavior leading to the climax state X5 which is indicated 
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FIG. 2 

by a self-loop. Note that any form of grazing disturbance causes the 
system to retrogress to an earlier state in the developmental sequence. 

Systems which do not change are static or constant', they are represented 
by the self-loop form of steady state. All other systems are dynamic. 

Both static and dynamic systems are important in biology. In fact it 
gives some concept of the * 'state' ' of biological science at the present 
time to indicate that animals preserved in formalin, dried herbarium 
specimens, and freeze-dried tissues or cells all are examples of interesting 
(useful) static systems. Science still largely studies life through death. 
To study life as living will mean ultimately to develop an orientation to 
dynamic behavior and change, i.e., a systems orientation. Modeling and 
computer simulation will become indispensable to serious advances in 
this effort. 

E. MODELS OF SYSTEMS 

There is some vagueness about what a model actually is, and hence, 
about what kinds of information can be obtained from models. Many 
biologists think of models as miniature versions of some real system 
which will do everything the real system will. This is not only naïve and 
unrealistic, it is wrong. 

Any real system can be looked at from many different points of view, 
and each one gives a different perspective on the system. All the per-
spectives do not equal the real system, because it will always be possible 
to find an additional one. But each view gives some information about the 
system, and a collection of views permits a system concept to be formed. 
This concept is a function of the observer only. The real system exists 
very well without it, and irrespective of whether it is "right" or "wrong." 

All models, therefore, are abstractions. The degree of abstraction 
permissible is a value judgement to be made in context of the purpose 
at hand. The key to effective modeling is to strike a proper balance 
between realism and abstraction. Technically, a model is a "homo-
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morphism" (Ashby, 1956) of some real system which it represents. 
That is, in modeling a many-one correspondence exists between the parts 
and state transformations of the real system and those of the model, 
with a corresponding sacrifice in behavior alternatives of the latter. 

Example 2 

Consider the two systems X = {Xx, X2 , fx, /2} and Y = {Υλ, Υ2 , 
^ 3 » Y* > γ5 > gi y g* y gs y g*}· T h e Xi y X2 > Yi > ·> are states, and / i , / 2 , 
gx,..., are influences such as the five grazing influences of Example 1. 
Let the behavior of these systems be defined by the following transforma-
tion matrices 

Ï 

/l 

*1 

Xi 

x, 

x* 
X2 y 

X2 

I 

gl 

gt 

gs 
gi 

Yi 

Y* 
Yi 

Yi 

Y, 

Y* 

Yi 

Y2 

Y* 
Y3 

Y> 

Y, 
Y3 

Y> 
Υχ 

Y, 

YS 

Y2 
γ* 

Ys 

Y* 

Υχ 

Ys 
Y* 
Y5 

The behavior graphs are shown in Fig. 3. There is little in either the 
transformation tables or the graphs to suggest that system X could serve 

(a) 

i %J* \ 

(b) 

FIG. 3. (a) System X. (b) System Y. 

as a model for Y. The two systems in fact appear quite unrelated. 
However, the following correspondences establish a homomorphism: 

Substitute 
A for Yl9 y 2 , or Y3, 
B for y4 or Y5, 
a for £3 or £4, 
β for gx or g2. 
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Then, define the correspondences 

X\ <-► B> / i <-> <*> 

X^A, /2<->ß. 

Under these relations, a new transformation table for system Y is 

1 

ß 
ß 
oc 

α 

A 

A 
A 
A 
A 

A 

A 
A 
A 
A 

A 

A 
A 
A 
A 

B 

A 
A 
B 
B 

B 

A 
A 
B 
B 

i 

OL 

ß 

A B 

A B 
A A 

This new matrix becomes, upon interchanging columns, identical to the 
one given above for system X. The behavior graph is given in Fig, 4 
which is identical also under the established correspondences. Thus X is 
homomorphic to Y and therefore a valid model of Y. 

^ ß ^ 

FIG. 4 

The above example illustrates the important feature of models that 
they represent only limited aspects of the behavior of real systems. 
System X is only a partial representation of Y when Y is viewed in a 
certain way. This way is established arbitrarily—by the correspondences 
which define the homomorphism between the two systems. How 
usefully system X represents Y depends upon the needs of the 
investigator, and utility, not correctness, is the criterion by which models 
should be judged. 

It was stated above, and it is repeated here for emphasis, that the key 
to effective modeling is the striking of an appropriate balance between 
realism and abstraction for the purpose at hand. If X is too abstract 
a representation of F, then (in effect) another set of correspondences 
must be sought to establish a more realistic homomorph of the real 
system. It is well remembered that the only "complete* ' model of a 
natural system is the system itself, and to attempt exact one-to-one 
duplication in another medium, e.g., a computer program, is to fail to 
recognize the inherent limitations on modeling. More importantly, it 
betrays a lack of understanding of basic modeling rationale, which would 
seem a priori to foredoom the effort. 
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Example 3 

King and Paulik (1967) presented three different models of rotifer 
populations. 

a. Modell. This model abstracts the life cycle of monogonant 
rotifers (Class Monogononta: females with paired ovaries, mastax 
specialized for grinding plankton, detritus, etc. (i.e., ramate), and no 
secreted tube or lorica), which comprise 9 0 % of known species. The 
state variables are different stages of the life cycle 

Xi 

x* 
x3 
X, 

x, 
x* 
x7 

= immature amictic females (2n, diploid), 

— mature amictic females (2n), 

= amictic eggs (2n), 

= mictic females (2n), 

= mictic eggs (n, haploid), 

= resting eggs (2n), 

= males (n). 

The behavior graph is shown in Fig. 5. Both parthenogenetic and 
sexual cycles occur. In the first case mature amictic females (X2) lay 

• I Parthenogenetic 
x\ * - x2 *~ χι 

"""^"T - " " " ~~~| S e x u a l 

ϊ χ Diploid 
"7 ^ - _ 

Haploid 

FIG. 5. Model I. 

amictic eggs (X3) which hatch into immature amictic females (^ ι ) . 
In the bisexual mode the amictic eggs (Xs) hatch to produce mictic 
females (^4) . Presumably the environment regulates the production of 
amictic versus mictic females, but whether the influence is exerted on Χλ, 
X2, or X3 is not, apparently, known. The mictic female meiotically 
produces haploid mictic eggs (X5) that hatch into males (X7) if 
unfertilized. If fertilized, the mictic eggs become resting eggs (^6) , and 
after some time delay these hatch into immature amictic females (-ΧΊ). 
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b. Model IL This model is a different view of the same system. 
The state variables are age categories of animals and eggs 

Yi = population density of rotifers in *th age category (/ = 1, 2,..., 5), 
Yj = density of eggs in (/ — 5)th age category (j = 6, 7,..., 9). 

The behavior graph is shown in Fig. 6a. The sequence of states 
Y6 —► ΥΊ —► Yg-* Y9 serves to lag an egg for the period of time between 
laying and hatching. 

*! \ Rotifers = \ Xu ^,XAtX7\ 

T ^ - -, 7 — 
Eggs -\xvX5,x6\ 

(a) 

FIG. 6. (a) Model II. 

c. Model III. A third concept of the rotifer system is given by the 
following model. Instead of dividing the life-span of the animal into days, 
it is divided into reproductive periods. The state variables are repro-
ductive periods 

Zx = immature rotifers, 
Z2 = mature rotifers, 
Z3 = postreproductive animals, 
^4 = eggs. 

This model is more practical for field studies because of difficulties in 
distinguishing X2 and X±, and X3 , Xh and X6 in model I, and of aging 
animals and eggs in model II. The behavior graph is given in Fig. 6b. 

Ζ^Ζϊ^Ζτ Rotifers--} X„XZ,X^X7[-- \r< ,YZ.Y*X%\ 

~^"\x~x,,x,\-- )r6,r7,rBS9\ z* 

(b) 

FIG. 6. (b) Model III. 

These three models each give a different concept of rotifer popu-
lations and, because of the way they are structured, have different data 
requirements for implementation and yield different forms of information 
about rotifers. The animals themselves never differ, only the models. 
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F. POPULATION GROWTH: EXPONENTIAL 

None of the models of Example 3 is yet complete enough to permit 
quantitative study of its dynamic behavior. Working toward this end, 
consider the traditional models of population growth. 

Let density N(t) of a plant or animal population be the only charac-
teristic of that system of interest. The state of the system is then defined 
by the single state variable N(t), a function of time. If the birth and 
death rates, b and d, are constant (do not change as a function of the 
argument time), then the rate of change of population size dN/dt is 
given by the difference between population gains and losses 

dN/dt = bN - άΝ = (b - ά)Ν = rN. 

The difference between birth and death rate constants r is termed the 
"biotic potential," "specific growth rate," or "intrinsic rate of natural 
increase" of the population. 

This is a differential equation because it contains a derivative of the 
state variable. Dynamic systems frequently are modeled by means of 
differential equations. An analytical solution of a differential equation 
is an algebraic equation, free of derivatives of the dependent (state) 
variable with respect to the independent variable(s), which relates values 
of the independent variable to those of the dependent variable. With an 
analytical solution, it is possible to substitute values of the independent 
variable and calculate corresponding values of the state variable. 

Example 4 

The analytical solution of the population growth equation, 

dN(t)ldt = rN(t), 

is 

N(t) = N(0) ert. 

Knowing the initial population density iV(0) the density at any time 
t > 0 can be computed. 

In analog computation, a program for obtaining the solution is shown 
in Fig. 7a. In digital computation, a Fortran segment for obtaining the 
same solution is 

REAL N 

10 DN = DT * (R * N) 

N = N + DN 

GO TO 10 
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FIG. 7. (a) Analog computer program for solving population growth equation. 

An analytical solution is obtained in the following manner: 

(1) Begin with the differential equation 

dNjdt = rN. 

(2) Separate the variables 

dNjN = r dt. 

Then N appears on the left-hand side and everything else on the right. 

(3) Integrate both sides 

j dNjN = j-rdt 

In N + Cx = rt + C2. 

Since differentiation and integration are inverse operations, the derivative 
is integrated away. Let C1 and C2 be arbitrary constants of integration; 
they can be combined into a single constant, C = C2 — C1 

\nN = rt + C. 

(4) Exponentiate both sides 

e]nN = e ,rt+C 

N en . ec = c'e 

where C" = ec. 

(5) Evaluate C" at t = 0 

N(0) = C'er'° = C. 
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(6) Substituting 
N(t) = N(0) er\ 

the desired result. 
A graph of this solution for three possible cases is shown in Fig. 7b. 

(1) If the birth rate exceeds the death rate (r > 0), the population grows 
exponentially at a rate determined by the value of r. The system never 

N(t) r>0 

A/{0) 

(0,0) 

(b) 

FIG. 7. (b) Three cases of exponential growth equation solutions. 

has a steady state when r > 0 since the population continues to grow as 
t gets larger. (2) If birth and death rates are equal (r = 0), N(t) = N(0) 
always, and the population is in perpetual equilibrium, with a behavior 
graph which is a self-loop. (3) Finally, if the death rate is greater (r < 0), 
then the population declines exponentially to zero size as t —► oo in the 
limit. The steady state of N(t) = 0 is never actually reached; it is said 
to be approached asymptotically. 

The remainder of this chapter will not be concerned with analytical 
solutions of differential equations, but rather with development of 
programs, such as the two illustrated in the above example, which 
permit obtaining solutions by analog and digital computers. 

G. POPULATION GROWTH: LOGISTIC 

Populations in nature do not, of course, grow without bound. As 
populations get large, they become either self-inhibited or environment-
limited—internally or externally controlled. Early stages of growth may 
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be exponential, but increased density leads to greater and greater 
departure from the exponential growth form, producing the well-known 
s-shaped curve of growth shown in Fig. 8. This sigmoid pattern is 
accounted for by, among others, the logistic model, which can be 

Nyf I Fxr>nni»ntinl Growth 

K 

mo) 
(0,0) , 

FIG. 8 

formulated in terms of either self-inhibition by the population, or in 
terms of environmental limitation. 

The first form is 

dN/dt = (r- cN)N, 

which displays the growth rate (the terms in parentheses) as a decreasing 
function of population size. The constant c represents reduction of the 
growth rate per unit of N. The product cN is the total reduction, often 
termed "environmental resistance." The logistic differential equation is 
nonlinear because the state variable iV appears raised to a power higher 
than one. The exponential equation was linear. 

The environmental-resistance aspect of this theory is brought out 
explicity by defining a parameter K, the maximum supportable popula-
tion density in a given environment. In Fig. 8, K is the asymptote of the 
sigmoid curve and is termed the "carrying capacity" of the environment. 
Letting c = r/K, the logistic equation can be rewritten in the following 
forms 

Tr-('-(-fH»-"'('-T)-'"(JT!L)· 
These forms display the product rN from the exponential model dimin-
ished by the expressions within parentheses. 

Note in the figure that logistic population behavior involves only 
dynamic states, technically, since the steady state N = Kis approached 
only in the limit as t -> oo. 
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IL Elements of Analog Computation 

A. INTRODUCTION 

Analog computers essentially are single purpose devices: they solve 
differential equations. Consequently, they can be used to simulate and 
analyze the behavior of models which are expressed as systems of 
differential equations. There is only one independent variable available— 
time—and one dependent variable—voltage. Different computers have 
different reference voltages, usually 10 V or 100 V. This chapter will 
assume a 10-V machine, so that all the behavior of a simulated system 
must take place within the voltage range —10 ^ £ " ^ 1 0 . For ecological 
systems this becomes in practice 0 < E < 10 since negative quantities 
generally are inappropriate. 

The computer consists of a set of basic components which can be 
interconnected so that they are governed by the same differential 
equations as those which represent the model of the real system. These 
components are capable of (1) summation, (2) integration, (3) multi-
plication, and (4) arbitrary function generation. 

B. OPERATIONAL AMPLIFIERS 

High gain, operational amplifiers are the basic functional units in 
modern, electronic analog computers. A linear amplifier is a device which 
augments a signal by a factor μ termed the open-loop gain. Gains can be of 
magnitudes 108 or higher. A common reference level or ground (0-25 μΥ) 
exists between the amplifier input and output. All voltages are measured 
relative to this reference level (see Fig. 9). The symbol for a high-gain 
linear amplifier is, as shown, a triangle with a curved back representing 
the input side. Note that a characteristic of the amplifier is that on output 
it reverses the polarity of the input signal. 

Input Terminal ^ ^ 

( H-J^ o Output Terminal 

^ Ε*=-μΕχ 

f i ï ί 
FIG. 9 

C. CLOSED-LOOP GAIN 

If input and feedback impedances, Zj and Z f , respectively, are intro-
duced into the circuit of a high-gain amplifier, the configuration shown 
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in Fig. 10 results. Here Eg is the voltage at the amplifier grid; / j is the 
input current, It the feedback current, and Ig the grid current, I{ -{- It. 

of. 

X 
FIG. 10 

Fundamental Gain Theorem 

The gain of an amplifier containing an input and a feedback impedance 
is approximately equal to the ratio of the feedback impedance to the 
input impedance. 

Proof: 

(1) The open-loop gain is E0 = —μΕ^ . 
(2) From KirchhofFs first law (the algebraic sum of currents 

flowing into any point in a circuit is zero) the grid current is zero 

Ig=Ii+It = 0. 

(3) From Ohm's law, 

_ Ei — Eg and Eo 

which, substituted into the previous result, gives 

Ei-Eg 

Zi 

Ei Eo^ _ 
Zi + Z( 

+ 
EQ — Eg 

z~t 
0 

(i+i)=°· 
(4) Substitute Eg = (1/μ)Ε0 

Jxi +f+7£»(i+i)=0· 
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(5) Since μ (open-loop gain) is very large, the third term virtually 
vanishes, leaving 

the desired result. 

For multiple inputs it can be shown in the same manner that 

* ■ - - ( # * + ■E2 + +£*■)· 
These results lead to the definition of the closed-loop gains of a linear 

amplifier as the ratios of the feedback impedance to the input impedance 
associated with each input voltage. Note that the output voltage of an 
amplifier with input and feedback impedances is dependent only upon 
the closed-loop gains, and not on the intrinsic open-loop gain of the 
amplifier itself. The open-loop gain is so large that small input voltages 
(a few microvolts) could produce several volts of output. Also electronic 
noise could distort considerably the output signal. Noise-free, undistorted 
gains of 1 to 20 are achieved by introducing the negative feedback 
loop, and this feedback essentially trades quantity of gain for quality 
(accuracy and stability). The term feedback signifies that a portion of 
the ouput voltage is returned to the input. It is "negative" because the 
returned voltage is opposite in polarity to the input voltage. 

D. T H E SUMMING AMPLIFIER 

When both input and feedback impedances are resistances R, the 
resulting device—a summer—is capable of adding voltages. A general 
schematic for a summing amplifier is given in Fig. 11. In analog computer 
programs, this same unit is represented by the symbol shown in Fig. 12, 
where the G's are closed-loop gains. The output voltage is thus 
E0 = - ( G A + G2E2+- + GnEn). 

/?. 

-2o V W -

■ΛΛ/V 

£> ^ 

FIG. 11 
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G\ 

Ï2. 

FIG. 12 

If there is a single input signal with a gain of one, the unit is called 
an inverter because its only function is to change polarity: E0 = —Eit 

The symbol for an inverter is given in Fig. 13a. 

E 

(a) 

FIG. 13. (a) Inverter. 

10K 

100K 
-ΛΛΛ/ ' 

10K 
- Λ / W -

c> 
(b) 

FIG. 13. (b) 

Exercise 1 

(1) The circuit in Fig. 13b shows a high gain amplifier with two 
input resistances Rx and R2 of 10,000 Ω and 100,000 Ω, and a feedback 
resistance Rf of 10,000 Ω. 

(a) Draw an analog computer symbol to represent this circuit. 
(b) Write an expression for the output voltage. 

(i) (ii) (iii)10 

FIG. 14 
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(2) (a) Draw schematic circuits with appropriate combinations of 
resistances to represent the summers given in Fig. 14. 

(b) Write expressions for the output voltages in each case. 

E. T H E INTEGRATING AMPLIFIER 

When the feedback impedance is a capacitance C, and the input 
impedance still a resistance, the amplifier unit becomes an integrator. 
The configuration in Fig. 15 is represented by the symbol shown in 
Fig. 16, where E0 = E(0) - Jo (GXEX + G2E2 + - + GnEn) dt. Note that 

£> - 0 * 0 

FIG. 16 

the unit sums as well as integrates. The term E(0) represents initial 
condition voltage on the integrator at t = 0. Each of the gains Gi is 
given by the relation 

Gt = 1/RiC 

because Zf = 1/C. 
Considering the single input case, we have as in the proof of the 

fundamental gain theorem 

Jg = Ji + Jf = 0 

A. + /f = 0 . 
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The capacitance is C = Q/E0 coulombs per volt, or farads, so that 
Q = CE0 . The feedback current is 

τ dQ d ,rF x r
 dEo 

Therefore, the expression for the grid current becomes 

Ei_ cdEo___ 

Solving for E0 

dE0 = 1 „ 
dt R{C * 

dEo = - ^ r E{ dt 

r ° rl 1 
I dE0=- ^Etdt 

J E(0) J 0 KiC 

Eo-E(0) = -f^Eidt 

and finally 

dt. Eo = E(0)-j^Eit 

In the case of multiple inputs, this expression becomes 

E^EW-ffj^Etdt. ί Σ Λ 

Exercise 2 

(1) A microfarad (/xf) is 10~6 farads (coulombs per volt), a kilohm 
(kQ) is 103 Ω, and a megohm (ΜΩ) is 106 Ω. What integrator gains are 
represented by the following RC combinations ? 

(a) R = 1 ΜΩ (c) R = 1 kΩ 
C=10 /x f C = l /xf 

(b) # = 10 kΩ (d) R = 100 kΩ 
C =\ μΐ C = 10 /xf 
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c 10K 
-1 O W A r -

10/xf 

100K 
f 2 o W V -

r 100K 
-30 W \ r 

c> -O^o 

FIG. 17 

dX{\) 
dt 

-X(0) 

% > -
-X(t) or + 

FIG. 18 

dX(t) 1 
dt 

- + X(0) 

-X(t) 

(2) Draw an analog computer symbol to represent the circuit in 
Fig. 17, and write an expression for the output voltage. 

(3) Because integration is the inverse operation of differentiation, 
integrators can be used to obtain state variables from their derivatives 
(see Fig. 18). In fact, this is the most common usage of the integrator 
in analog computation and the basis for solving differential equations. 
Draw appropriate integrators or combinations of integrators to solve the 
following differential equations: 

(a) dxjdt = y + 10#, 
(b) x = -0 .1 x + lOy + *, 
(c) z = l O t f + j + 100s, 
(d) w + 10^ - u + 10z> + O.lw. 

(The dot notation refers to time derivatives: x = dxjdt, x = d2xldt2, etc.) 

F. POTENTIOMETERS 

The potentiometer is a variable resistance by means of which it is 
possible to multiply voltages or voltage differences by constants k which 
lie in the interval 0 ^ k ^ 1. A schematic for grounded "pots" is 
shown in Fig. 19. This configuration permits multiplication of a voltage 
by a constant and its corresponding analog computer symbol is given in 
Fig. 20(a). 

Potentiometers also can be used to divide voltages by constants. 
Consider the configuration of a high-gain amplifier shown in Fig. 20b. 



BERNARD C. PATTEN 

0EïkEi (Ο-Λτ—1) 

^ Wiper Arm 

E. O 

FIG. 19 

E "' 

/?f k 

o - O c o 

(a) (b) 

FIG. 20. (a) Multiplication of voltage by a constant, (b) Division of voltage by a 
constant. 

The output voltage from the pot is kE0 . Summing the input and feedback 
currents at the grid, we obtain as before 

h + It = h = 0 
Ej , kE0 _ 

Rt
 + Rt " ' 

and solving for E0 

For multiple inputs, 
*--(£)£ 

*·--Σ(£)ί· 
The analog computer symbol for the above circuit is shown in Fig. 21. 

R/R,. 

' "^O^* 
o 

k 

FIG. 21 

24 



1. ECOLOGY SIMULATION PRIMER 25 

Exercise 3 

(1) Write expressions for the output voltages E0 of each of the 
following circuits: 

(a) Fig. 22 
(b) Fig. 23 
(c) Fig. 24 
(d) Fig. 25 
(e) Fig. 26 
(f) Fig. 27 

(g) Fig. 28 
(h) Fig. 29 
(i) Fig. 30 
(j) Fig. 31 
(k) Fig. 32 
(1) Fig. 33 

0.43. 
a 

x—O 
2/ — O 

b/\o 
My 

FIG. 22 FIG. 23 

3 0 0 0 / — O -
0.1 

FIG. 24 

50*-
5 / - 0 

-100—O 
7r<m >— 
tf/100 

FIG. 25 

-25 z 

FIG. 27 

-50* 

50 / 

10, 
1/ 

10£ 

FIG. 28 

a/5 . 

a/5 

FIG. 30 

-10* 

FIG. 29 

10 

^m-T y-O 
b 

FIG. 31 
- C H 
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■5y 
^ > 

-o—' 
FIG. 32 

■ o 

FIG. 33 

<P 
(2) Draw simplest possible analog computer programs to solve or 

represent the following equations for the state variable x(t), given -j-x, 
+3/, and -\-z as available voltages. 

(a) x = y + 10s, 

(b) x = —{y + 10* + Ö#), 

(c) x = ay — bz — ex, 

(d) x = az — by, 

(e) x + ax = 0, 

(f) * + a* = 0. 

G. T H E MULTIPLIER 

Multipliers are components of the analog computer which permit 
multiplication (or division) of two variable voltages. This is a nonlinear 
operation and, consequently, the multiplier makes it possible for analog 
computers to solve nonlinear differential equations. 

The multiplier circuitry is designed to implement the identity 

xy \[(*+yr-i*-yn 
For this reason these devices frequently are referred to as ' Quarter-
square' ' multipliers. 

The symbol for a multiplier is given in Fig. 34, or more succinctly 
in Fig. 35. Note that although it is desired to obtain the product 

+5 

1 
X 

y L -

-o- 10 

+£> 1 
FIG. 34 
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+5 E> £>= — 
^f2 
10 

FIG. 35 

+E1 - E2, — Ex · E2110 is actually generated. This is due to the internal 
circuitry of the multiplier and the usual sign-inverting property of the 
amplifier. The sign inversion can be avoided by interchanging the -\-X 
and — Y inputs, or the + Y and — Y inputs. The lost gain of 10 must be 
picked up elsewhere in the circuit. 

The configuration for division, EX\E2, is given in Fig. 36, and the 
simplified symbol is shown in Fig. 37. The additional gain of 10 which 
is picked up must be reduced at some other point in the circuit. 

E^\0Eh/E2 

FIG. 36 

τ> _ε0=\οε</εζ 

FIG. 37 

H. OTHER COMPONENTS 

Diode function generators (DFG's) are used to generate arbitrary 
functions which are approximated by a number of straight line segments. 
The segments may be for fixed or variable time intervals, depending 
upon the particular unit which is being used. Some DFG's in common 
use are x2, LOG, SIN-COS, and VDFG (variable). The VDFG is particularly 
useful in making it possible to approximate experimental data of any 
curve form for use in system simulation without writing equations to 
describe the curves. 

Function switches are single-pole, double-throw, mechanical binary 
switches which permit different program segments to be switched in 
or out manually. Their symbol is given in Fig. 38. 
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Down 
FIG. 38 

Comparators are program-actuated switches which operate two sets of 
contacts, permitting computed problem voltages to determine connec-
tions or conditions applying in a patched circuit. As the name implies, 
the comparator accepts two input voltages, compares their sum to zero, 
and positions two switches up or down depending on whether the sum is 
greater than or less than zero. 

Altogether, these components make it possible to obtain exact 
solutions to differential equations, and to simulate with considerable 
flexibility the time behavior of dynamic systems. 

Exercise 4 

With reference voltages of + 1 0 and —10 available, write analog 
computer programs to solve the following differential equations: 

(1) "ramp" function x = k, 

(2) sine-cosine generator x = —ω2χ> 

(3) exponential population growth N = rN> 

(4) logistic population growth I\f = rN(l — N/K). 

IIL Population and Ecosystem Models 

A. COUPLED SYSTEMS 

In Section LA a system was defined to consist of a group of components 
interconnected in such a way as to form a conceptual or functional entity. 
We wish now to extend this system concept further. A control system is an 
arrangement of physical components connected or related in such a 
manner as to command, direct, or regulate itself or another system. By 
this definition, populations which grow either exponentially or logistically 
are control systems: Their current states are determined by previous 
states, and they are examples of state-determined systems. 

State-determinancy is the loosest possible concept of control since few 
systems lack this quality. To develop a stronger meaning, concepts of 
coupling and feedback are needed. An input to a system is a stimulus, 
excitation or force (a signal) applied from an external energy or informa-
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tion source. A system output, on the other hand, is the response or 
behavior which results from applying an input. Two systems are said 
to be coupled, joined, or connected, etc. in interaction, if communication 
(energy, matter, or "information" transfer) can take place such that one 
can influence the other. 

Coupling of systems, subsystems, or system components means 
connecting an output from one so that it becomes an input to another 

B. ECOLOGICAL COUPLING: POPULATION COMPETITION 

The Lotka-Volterra theory of competitive interaction between two 
logistic populations is a good example of coupled ecological systems. 
The state set is {Νλ(ί), N2(t)}, the population sizes as functions of time. 
The "rules" of coupling are expressed as interaction coefficients, a and β, 
in the system equations 

dNJdt = riNJÎl - (Ι/Κ,) Nt - («IKJ N2] 

dN2\dt = r2N2[l - (1/iQ iV2 - (ßlK2) Ν,], 

where (1/i^i) and (l/K2)
 a r e self-inhibition coefficients, as in the logistic 

formula 

dNjdt = rN[\ -(\IK)N]. 

Since (1/i^i) is the self-inhibition of population 1 by one individual of 
itself, total self-inhibition is the second term in brackets, (1/^ι)Λ^ . 
Similarly, (l/i£2) is the unit self-inhibition of population 2, and (IIK2)N2 

the total. Also, (oc/K^ is the inhibition of species 1 by one individual of 
species 2, and total inhibition by the competitor is (a/K1)N2', (β/Κ2) is 
the unit inhibition of population 2 by 1, with (β/Κ2)Ν1 the total inhibition. 
Since both total self-inhibition and total competitive inhibition depend 
on the population sizes, these are said to be density-dependent attributes 
of the populations; in systems terms they are state-determined attributes. 

It may not be obvious from the Lotka-Volterra equations that the 
only manner of coupling between the two populations is through the 
competition coefficients a and β. However, this feature of the system 
shows to good advantage in the analog computer program illustrated 
in Fig. 39. The upper part of the diagram represents the equation for 
species 1 and the lower part that for species 2. Note that the only 
connections between upper and lower halves are through potentiometers 
representing (oc/K^ and (ßlK2). 



30 BERNARD C. PATTEN 

+ 10 

[/i/V,(i-(^)/vr(^)/V2)]/io 

\\/K 

- + 10 
0.1 

Hfx-t1-^^-^)^] 

L—r2 [^H^)^-(|wj/|io V\ 

+10 

FIG. 39 

C. FEEDBACK 

Control systems are classified into two general categories, open-loop 
and closed-loop. The distinction is determined by the mechanism of 
control action—how the system is activated to produce an output. An 
open-loop control system is one in which the control action is independent 
of the output. A closed-loop control system is one in which the control 
action is dependent on the output. Closed-loop control systems more 
commonly are referred to as feedback control systems. Feedback is that 
property of a closed-loop system which permits the output representing 
some controlled system variable to regulate specific inputs. Feedback can 
be defined as the coupling of system output to input in such a way that 
the input is related to and controlled by the output. Feedback is positive 
if increased output results in increased input, as in the case of expo-
nentially growing populations. Control is achieved through negative 
feedback, in which output and input are inversely related. The logistic 
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population model incorporates both positive and negative feedback, 
respectively, in the two components of population change rate, rN 
and -N2/K. 

D. BLOCK DIAGRAMS 

A block diagram is a pictorial way of representing cause-and-efFect 
relations between inputs and outputs of a physical system. The simplest 
form of block diagram is a single "block" with one input and one output 
as in Fig. 40. The interior of the rectangle usually represents either (1) 
some system component (state variable) or (2) some mathematical 
operation (e.g., transfer function) to be performed on the input to yield 
the output (see Fig. 41). Convention (1) will be used in this chapter 
exclusively. 

It was noted in Section LE that definition of a system is arbitrary. 
Once it is made, however, what is part of the system and what is external 
to it becomes fixed. Input signals to the system which originate in energy 
or information sources outside the system will be termed forcings. Such 
systems are forced dynamic systems, in contrast to unforced, as in Figs. 

Block 

Input Output 

FIG. 40 

Ψ) 
d_ 

dt -y-- dt 

(a) (b) 

F IG . 41. (a) System component, (b) Mathematical operator. 

0>) 

(a) (b) 

F IG . 42. Systems of definition: (a) forced, (b) unforced. 
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42a and b, respectively. In these diagrams, x represents the state vector, 
the notation χ{(χ, i) signifies that state variable i may be a function both 
of the system state and of time, and Foj(t) signifies a forcing on the / th 
block, a function of time only. 

E. SIGNAL-FLOW GRAPHS 

A signal-flow graph is another pictorial device used to display transmis-
sion of signals through a system. Consider the algebraic equation 

Xj = rx^jXi . 

The corresponding signal-flow graph is given in Fig. 43. The variables 
xi and Xj are represented by a small dot called a node, and the transmission 

Node A'J Node 

• >- · 
Xj Branch χ. 

FIG. 43 

(signal-flow) function Atj is depicted by a line with an arrow, called a 
branch or arc. In representing systems by signal-flow graphs, every 
state variable is designated by a node, and every transmission function 
by a branch. Branches are always unidirectional, the arrow signifying the 
direction of signal flow. Outputting nodes are source or donor nodes 
while nodes which receive inputs are called terminal or receptor nodes. 
A path is an uninterrupted, unidirectional sequence of branches along 
which no node is passed more than once. 

Signal-flow graphs and block diagrams are used extensively in control 
theory and operations research, with many mathematically sophisticated 
variations. Signal-flow graphs are formal models of systems, with 
well-developed algebras and other mathematical theories (such as 
transfer function and network flow theories) which make them powerful 
tools when implemented by computers. In biology and ecology, the 
particular kind of graphic system representation most used has been the 
compartment model. This form of model incorporates aspects of both 
block diagrams and signal-flow graphs. 

F. COMPARTMENT MODELS 

In compartment models, state variables of a system are denoted by 
blocks, and signal flows between these "compartments" by unidirectional 
branches. There is little difference between this and a block diagram. 
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The real difference lies in the mathematical system description implied by 
the diagram: In compartment models relations between the state 
variables are expressed as a system of differential equations. For example, 
a compartment model of the forced system block-diagrammed in 
Section III.D is given in Fig. 44. The system equations are based on an 
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FIG. 44 

income-and-loss rationale dictated by the conservation principle. All 
energy or substance transmitted must be accounted for 

dxjdt = F01 — F12 

dx2\dt = F12 + F32 

dxz/dt = F03 + F13 

■ ^ 2 0 — ^ 2 3 

^ 2 3 — ^ 3 0 — ^ 3 ! 

The system behavior is obtained by solving the equations simultaneously. 
Note how intrasystem coupling is represented by shared variables, i.e., 
F12 in the first and second equations, F13 in the first and third, and F2 3 
and FS2 in the second and third. 

G. DEFINITION OF FLOWS IN COMPARTMENT MODELS 

The compartment model is particularly well suited to ecology because 
abstract "signal" flows readily can be converted to energy or material 
transfers between compartments. These are, in principle at least, 
measurable, although with differing degrees of difficulty for different 
ecological systems. Having quantified a flow empirically, it then must be 
given a mathematical representation to be of use in a compartment 
model. 

An elementary unit of a compartmentalized ecological system is 
shown in Fig. 45, where F^x, t) is the flux of energy or matter from 
compartment i to j , and x^x, t) and Λ ·̂(Χ, t) are concentrations in the 
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donor and recipient compartments, respectively. If the concentration 
units are, e.g., kilocalories per square meter or milligrams per liter, 
then corresponding flux units might be, e.g., kilocalories per square 
meter per year and milligrams per liter per day. 

The flux or flow over a branch in a compartment model is the amount of 
energy or material delivered to the terminal compartment in a unit 
interval of time. This usage will be in contradistinction to the rate of flow. 
The rate of transfer, or flow rate, is the fractional quantity of some 
function of source or terminal materials delivered over a branch per 
unit time. The distinction between flux and rate is made best in terms of 
units. If a flux F^ is in kilocalories per square meter per year, then the 
corresponding rate of flow φ^ is expressed per year. Similarly, if F{j 

is in milligrams per liter per day, then φ^ is given per day. 
A hierarchy of useful mathematical expressions for flows in ecological 

compartment models and their corresponding rationales is: 

(1) Fy = k (constant). Flow from compartment i toj does not change 
with time or system state. 

(2) F{j = ΦαΧι. Flow to j is proportional to the content of i. The 
donor compartment only is controlling. 

(3) Fy = (f>ijXj . Flow is regulated by the receiving compartment only, 
as in the case of herbivores or detritivores when plants (detritus) are in 
abundant supply. 

These first three functions represent linear flows; those which follow 
denote nonlinear flows: 

(4) Fy = <f>ijXiXj . Flow is regulated jointly by both source and 
terminal compartments. 

(5) Fy = </>ijXi(l — oLyXj). The flow has two components: a positive, 
linear one regulated by the donor compartment and a negative, nonlinear 
one controlled by interaction of both compartments. 

(6) Fy = <l>ijXj(l — ocijXi)· A positive, linear component is controlled 
by the terminal compartment and a negative, nonlinear one by inter-
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compartmental interaction. The constant α^ corresponds here and in the 
above flow to the coupling coefficients, (OL/K^ and (ß/K2), in the Lotka-
Volterra model of population competition (Section III.B). 

(7) Fis = <l>ijXj(\ — ßijXj)> The flow is regulated by a positive feedback, 
linear term and a negative feedback, nonlinear term. This latter is the 
same "self-inhibition" rationale which appears in the logistic model of 
population growth (Section I.G) and also in the Lotka-Volterra equations. 

(8) F^ = </>ijXj(l — o^ijXi — ßijXj)- This flow corresponds to the full 
Lotka-Volterra system, with two negative feedback loops to represent 
both interactive ( — c^x^·) and intrinsic (—ßijXj2) flow control by the 
terminal compartment. 

These flow expressions comprise a significant, though by no means 
exhaustive, set for description of energy and material transmissions in 
compartment models of ecological systems. 

Example 5 

In Section I.E three models of rotifer populations were described as 
examples of different ways to view a given real system (Example 3). 
A compartmental representation of model I viewed as an energy-
transferring system is shown in Fig. 46. Here a number of forcings 
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FIG. 46 

Foj have been introduced to all the nonegg compartments to allow energy 
to enter the system (e.g., by feeding). Acceptable units for the state 
variables would be, e.g., numbers per liter or milligrams per liter, and 
the corresponding fluxes might be in numbers per liter per day or 
milligrams per liter per day. In every case, an appropriate transmission 
function would be the linear flow Ftj = φ^Χι because creation of units 
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in the terminal compartments depends only on concentrations of units 
in donor compartments. 

The foregoing model is not very complete because it ignores the 
conservation law: production of amictic eggs (x3) by mature amictic 
females (x2)> for example, is not the only source of (energy) loss from x2 . 
The model can be improved by adding transmission branches to represent 
prédation, natural mortality, and other losses (see Fig. 47). In this 
completed diagram, all the nonforcing flows are defined mathematically. 
The rate notations aid in recalling the different biological processes: 
λ is the losses due to mortality, prédation, emigration, etc.; δ is the 
developmental maturation; e is the egg production; φ is the fertilization. 
The differential equations for this system are 

X1 — Γ01 -\- 0 3 1 # 3 -f~ OßiXß Ô 1 2 ^ 1 ^ ΐ θ ^ Ι > 

τ? ι a ., _ .. \ „ 
X2 — -^02 I 0±2X1 €2SX2 ^20^2 

X3 ~ e2 3 ^ 2 " 3 1 # 3 ^ 3 4 X '34^3 Λ3 0χ3 

X\ ~ -^04 l ^ 3 4 ^ 3 e4 5 * 4 ^ 4 0 ^ 4 > 

X5 = e45**4 ~T YlbXl " 5 6 ^ 5 °blXb ^50X5 > 

X6 = °56X5 " 6 1 ^ 6 ^60^6 » 

Χη = . Γ 0 7 -f- 05 7Λ:5 φηζ>Χη ΛΊ$ΧΊ . 

An analog computer program to solve these equations is shown in Fig. 48. 
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+10 

FIG. 48 

Exercise 5 

For the model II and III rotifer systems of Example 3: 
(1) Prepare compartment models in block diagram form. 
(2) Write system differential equations. 
(3) Prepare analog computer programs that represent each of the 

systems. 

H. A MODEL FOOD CHAIN: SILVER SPRINGS, FLORIDA 

Odum (1957) abstracted the details of energy flow in the Silver 
Springs ecosystem into Fig. 49. The data obtained in this study are 
sufficient to implement compartment models for the system. 

The state variables, in kilocalories per square meter, are 

^(x, t) = producers, #4(x, t) = top carnivores, 
#2(x> t) = herbivores, ^s(x, t) = decomposers. 
x3(x, t) = carnivores, 

The caloric contents of these compartments (annual averages) can be 
taken as initial conditions 

^(x, 0) = 3421.26, *4(x, 0) = 8.87, 
*2(x, 0) = 213.44, *5(x, 0) = 24.38. 
*3(x, 0) = 62.06, 
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FIG. 49. Values are given in kilocalories per square meter per year. Reproduced 
from H. T. Odum (1957). Ecol. Mono. 27, 61. Reprinted by permission of Duke University 
Press, Durham, North Carolina. 

Two of the state variables are forced—primary producers by photo-
synthesis, and herbivores by bread added to the spring daily to make 
animals conspicuous for tourists. The values of these inputs, in kilo-
calories per square meter per year, are 

?ω(0 = 20,810 and F02(t) = 486. 

The measured values of energy fluxes within the system, also in kilo-
calories per square meter per year are shown in Table I. A com-
partmental diagram of this system is shown in Fig. 50. 

TABLE I 
SILVER SPRINGS NONFORCING ENERGY FLOWS 

Feeding Mortality Respiration Export 

F12 = 2874 
F2, = 382 
^34 = 21 

F16 = 3455 
F25 = 1095 
^85 = 46 
^45 = 6 

F10 = 1 1 9 7 4 
F20 = 1891 
F30 = 317 
Fto = 13 
F,0 = 4598 

2498 
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FIG. 50 

Two models will be examined for purposes of illustration:(l) a linear 
system in which all flows are functions of the source compartment only 
{Fy = <f>ijXi)y and (2) a nonlinear system in which all nonfeeding flows 
are linear as in the first model, but feeding transfers are functions of 
both donor and recipient compartments (F^ = ^ayc,·). Using r to 
represent trophic level feeding rates, p for respiration, μ for natural 
mortality, and λ for losses downstream, system equations for the first 
model are 

Xl = -^01 Τ12Λ'1 ^ Ι δ ^ Ι ^ ΐ Λ . PlOXl » 

X2 = ^ 0 2 T~ T 1 2 ^ 1 T23,X2 /Χ25Λ:2 P20X2 > 

X% = T 2 3 ^ 2 τ3 4 ^ 3 Η^35Χ3 PS0X3 > 

# 4 = TMXZ ^45«^4 ^ 4 0 ^ 4 > 

^ 5 = = Α Ί δ ^ Ι "T H^25X2 T" lHbXZ ~i / ^ δ 1 * ^ ΡδΟ^δ · 

The nonlinear system equations are 

#! =Γοι Τ 1 2^ 2 Λ :1 ^ Ι δ ^ Ι ^ ΐ Λ . P l O ^ l > 

X 2 — -^02 "T" Τ12'^2Λ'1 T23^3*^2 tx25X2 P20X2 » 

■ 3̂ = τ 2 3 ^ 3 ^ 2 T3 4 ^ 4 ^ 3 Α ^ δ ^ P30^3 » 

XA = TMX4X3 ^ 4 5 ^ 4 P40^4 > 

^ δ = ^ Ι δ ^ Ι 4 " /χ2δ'Χ:2 ~l· ^ β δ ^ β + /χ4δΛ ;4 Ρ δ 0 Χ δ · 

I. SOLUTION COMPONENTS OF DIFFERENTIAL EQUATIONS 

In Section I.D transient and steady-state system behavior were 
distinguished, and in Section III.D the distinction between forced and 
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unforced behavior was introduced. These classes of system response have 
their nominal counterparts in the solution components of differential 
equations. 

The solution of a differential equation can be divided into two parts, 
a free response and a forced response. The sum of these two responses 
constitues the total response or total solution. Thtfree or unforced response 
of a differential equation is the solution when the input forcing is 
identically zero. Differential equations which are unforced are termed 
homogeneous differential equations. The forced response of a differential 
equation is the solution when the initial conditions are identically zero. 

The total solution can also be partitioned into transient and steady 
state solutions. The transient response of a differential equation is that 
part of the total response which approaches zero as time approaches 
infinity. The steady-state response is that part of the total solution which 
does not approach zero as time approaches infinity. 

IV* Analog Computer Programming 

A. VOLTAGE SCALING 

In Section ILA it was stated that only two variables are available on 
the analog computer: an independent variable, time, and a dependent 
variable, voltage. It was indicated also that all behavior of systems to be 
simulated by an analog computer must be compressed into the voltage 
range (e.g., 0-10 V) of the particular machine being used. 

For the Silver Springs system (Section III.H), producers contain 
almost 4 X 103 kcal m~2 of energy while top carnivores have less than 
1 X 101. If 4 X 103 were equated to 10 V, then the top carnivores would 
be represented only by around .0025 V and their behavior would not be 
discernible. To avoid this problem, each state variable is scaled inde-
pendently so that its behavior can be observed conveniently within the 
full voltage range available. This is done through a process termed 
voltage scaling by equating an estimated maximum value of each 
compartment to 10 V, determining voltage scale factors, doing the same 
for forcing functions, and then rewriting the system equations in terms of 
voltage-scaled computer variables and forcings. 

Example 6 

Determine voltage-scaled system equations for the Silver Springs 
linear model. 
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(1) Set up tables to determine computer variables and computer 
forcings as shown in Table II. 

TABLE II 

PROCEDURE FOR DETERMINING VOLTAGE-SCALED COMPUTER VARIABLES AND FORCINGS 

State 
variables, Xj 
(kcal m~2) 

X-L 

Xi 

x3 

tf4 

Xb 

Estimated 
maxima 

(kcal m - 2 ) 

5 X 103 

5 X 102 

2 X 102 

2 X 101 

5 X 101 

Scale factors, a,· 
(V/(kcal m"2)) 

10/(5 x 103) = 2 X 10-3 

10/(5 x 102) = 2 x 10-2 

10/(2 x 102) = 5 x 10-2 

10/(2 x 101) = 5 x 10-1 

10/(5 x 101) = 2 x 10-1 

Computer 
variables, [ape,] 

(V) 

[2 x l O " 3 ^ ] 
[2 x 10-2 x2] 
[5 x 10~2χ3] 
[5 x l O - 1 ^ ] 
[2 x 1 0 - ^ 5 ] 

Forcing Estimated 
functions, Foj maxima 
(kcal m - 2 yr_1) (kcal m - 2 yr - 1) 

Scale factors, ai 

(V yr-1/(kcal m"2 yr"1)) 

Computer 
forcings, [ojFj] 

(V yr-i) 

F0 1 2.5 x 104 10/(2.5 x 104) - 4 x 10~4 [4 x 10-4F0 1] 
F02 5 x 102 10/(5 x 102) - 2 x 10~2 [2 x 10-2^0 2] 

(2) Rewrite the system equations in terms of the voltage-scaled 
computer variables and forcings. This means converting equations in 
which every term on the left- and right-hand sides has units of kilo-
calories per square meter per year 

n n 
xi = F0i + Σ Φϋχί - Σ Φηχό > 

to equations whose terms have the units volts per year 

«yM'od i v ° ^ « Μ ί ] ν αίΦη\.αΐχϊ\ M;] = + Σ 
*=1 

Σ 

- b Ä ] + Σ — taMd - Σ &iMd· 
3 i=l a i i=l 

The ratios OCJ/OJ and ô ·/«* turn out to be gains on integrators, the φ^ are 
rate constants which are set on potentiometers, and the terms in brackets, 
[°Ά:/]> [αΛ]ΐ a n d [α^·], are computer forcings and variables. It is the 
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latter which will appear as outputs from integrators. The unsealed linear 
system of Section III.H becomes 

[2 x 10"%] = 5[4 x 10-4F01] - (r12 + μ15 + λ10 + Pl0)[2 x 10~%] 
= 5[4 X 10-^01] + (au)[2 x lO"3^] 

[2 x 10-%] = [2 x 10-2i^02] + 10(τ12)[2 χ 10"%] 
- (̂ 23 + /*25 + Ρ2θ)[2 X 10"%] 

= [2 x 10-2F02] + 10(r12)[2 x 10"%] + (<*22)[2 x 10"%] 

[5 x 10-%] = 2.5(r23)[2 x 10-%] - (r34 + μ35 + p30)[5 x 10-%] 
= 2.5(r23)[2 x 10-%] + (a33)[5 X 10~%] 

[5 x 10-%] = 10(r34)[5 x 10-%] - 0x45 + P40)[5 x 10"%] 
= 10(r34)[5 x 10-%] + (ö44)[5 x 10-%] 

[2 x 10-%] = 100(/x15)[2 x 10-%] + 10(/x25)[2 x 10"%] + % 3 5 ) 
x [5 x 10-%] + 0.%45)[5 x 10-%] - (p50)[2 x 10~%] 

= 100(^15)[2 x 10-%] + 10(^25)[2 x 10-%] + 4(/x35) 
X [5 X 10-%] + 0.4(/x45)[5 x 10-%] + (a56)[2 X 10"%] 

In these equations the numbers without parentheses represent gains on 
integrators, the expressions within parentheses are rate constants, and the 
bracketed expressions are computer variables or forcings. Note that, for 
reasons to be explained later, the negative of the sums of loss coefficients 
for each compartment have been combined into a single loss-rate constant 
(cijj). These coefficients represent negatives of the turnover rates of each 
compartment. The equations comprise a system of voltage-scaled 
differential equations for the Silver Springs linear model. 

B. T IME SCALING 

The terms of the voltage-scaled equations in Example 6 have the 
units volts per year. This means that to simulate a year of Silver Springs 
behavior would take a year on the machine, and to simulate 10 or 100 years 
would take that long. This difficulty is averted by time scaling— 
introducing a time-scale factor into the system equations. The scale 
factor is 

computer time 
real time 
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where "computer time " is in seconds and "real time" is the unit of time 
in which the system has been measured. For the Silver Springs models, 
real time is years because the original data were reported in years. 
So ß is in seconds per year, expressing how many seconds of computer 
time correspond to a year of Silver Springs' operation. 

To convert each system equation in volts per year 

n n 

[<*&] = ^- M + Σ —Φα^ί] - Σ Φα[^χί] 

to a corresponding equation in volts per second, it is necessary only to 
divide each term by β (i.e., volts per year/seconds per year = volts per 
second) 

As indicated, this means dividing pot settings by β for all nonforcing 
inputs to each integrator, and also dividing gains for the forcing inputs by 
the value of j8. 

When a system of equations is voltage-scaled and time-scaled, and 
numerical values are available for its rate parameters, it is ready for con-
version to an operational analog computer program. The step yet 
remaining for Silver Springs is to calculate rates. 

C. DETERMINATION OF RATE PARAMETERS 

Average annual flows were measured for the Silver Springs system 
(Section III.H). In the linear model these take the mathematical form 
Fy = φφι , and in the nonlinear model they have the form F^ = φ'^χ^ . 
The values of xi and Xj also are known as annual averages, and thus the 
rate constant component of each flow can be determined from the 
relations 

Φα = FJXi (per year) 

and 

φ'ν = Fijlxflj (square meters per year per kilocalorie) 

The φ^ values for Silver Springs are shown in Table III . In the 
nonlinear model, τ'13 = .0039, τ^3 = .0272, and T'U = .0382. 
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TABLE III 

RATE CONSTANTS FOR THE SILVER SPRINGS LINEAR SYSTEM 

Feeding 

r12 = .84 
τ23 = 1.79 
T34 = -339 

Mortality 

/*15 = 

^ 2 5 = 

/*35 = 

^ 4 5 = 

1.01 
5.13 

.74 

.676 

Respiration 

P10 = 
P20 = 
Pso = 

Pio = 

Pbo = 

3.50 
8.86 
5.10 
1.466 

188.6 

E 

^10 

xport 

- .73 

Summed loss rates 

«11 = 
a22 = 
«33 = 
Û44 = 

«55 = 

—6.08 
—15.78 

—6.179 
—2.142 

—188.6 

D. ANALOG PROGRAM FOR SILVER SPRINGS LINEAR MODEL 

Substituting the rate constant values into the scaled equations of 
Example 6, the following final system equations are obtained. 

[2 x 10~%] = 5[(4 x 10-4)(2.0810 x 104)] - 6.08[2 x 10~%] 
= 10(.4162)[10] - 10(.608)[2 x 10-%] 

[2 x 10~%] = [(2 x 10"2)(4.86 x 102)] + 10(.84)[2 x 10-%] 
- 15.78[2 x 10~%] 

= (.972)[10] + 10(.84)[2 X 10~%] - 100(.1578)[2 X 10"%] 

[5 x 10-%] = 2.5(1.79)[2 x 10~%] - 6.179[5 x 10"%] 
= 10(.4475)[2 x \0~2x2] - 10(.6179)[5 X 10~%] 

[5 x 10~%] - 10(.339)[5 x 10-%] — 2.142[5 X 10-%] 
- 10(.339)[5 x 10-%] - 10(.2142)[5 x 10~%] 

[2 x 10-%] = 100(1.01)[2 x 10-%] + 10(5.13)[2 x 10~%] + 4(.74) 
x [5 x 10-%] + 0.4(.676)[5 x 10~%] - 188.6[2 x 10~%] 

= 103(.101)[2 x 10-%] + 100(.513)[2 x 10"%] + 10(.296) 
x [5 x 10-%] + (.2704)[5 x 10~%] - 103(.1886)[2 x 10~%] 

The voltage-scaled variables (or reference voltages in the case of 
forcings) are in brackets, pot settings in parentheses, and integrator 
gains unenclosed in the final form of each equation. 

A program to represent this system is given in Fig. 51. 

Exercise 6 

(1) Prepare a scaled analog computer program for the Silver Springs 
linear system in which rate constants retain their identities by being 
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FIG. 51 

represented individually on separate potentiometers. Contrast the 
virtues and limitations of this type of program with those of the program 
above. 

(2) Prepare a scaled analog computer program for the Silver Springs 
nonlinear model. 

V* Introduction to Digital Computers 

A. COMPARISON OF DIGITAL AND ANALOG COMPUTERS 

There is very little similarity between analog and digital computers, 
either in principles of operation or in suitability for different tasks. The 
analog computer is essentially a one-purpose machine (solving differential 
equations), although in the hands of an expert its versatility can be made 
to appear impressive. The digital computer, as its name implies, processes 
numerical information. It is best suited for implementing discrete data 
and producing numerical output, whereas the analog computer deals 
with continuous signals both on input and output. Since most of the 
quantitative data of science, business, industry, and government is 
numerical, it is no surprise that digital computers have found a wider 
range of applicability in human enterprises than analog devices. 
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In using analog computers for dynamic systems modeling, one trades 
numerical accuracy for immediacy: The solution of an entire system of 
equations is virtually instantaneous, and simulation experiments with 
changing parameters take as long as reaching out and turning a 
potentiometer dial. The operator is coupled very closely to the machine, 
and hence to his model, and this leads to great insight about behavior of 
dynamic systems. 

With digital computers this intimacy and short turnaround time are 
sacrificed in favor of numerical accuracy and a greater variety and size 
of mathematical models, particularly algebraic and statistical, which can 
be handled. The digital computer is largely a production machine; it 
grinds out numbers impersonally and, by the intricate programming 
languages through which access is afforded, imposes this by-the-numbers 
rigidity on its users. 

An analog machine, once-programmed, is "played" more like a 
musical instrument, perhaps, and is capable of translating quickly 
subjective insights of an investigator into electronic realities. The 
cartoon in Fig. 52 overstates the difference. Efforts to gain the best 

Jiterfw* tifuj^A VWtoL A*i ANfiLoGr' 

FIG. 52. Reproduced by permission of Analog Computer Educational User's Group. 

advantages of both types of computers take the form of development of 
"hybrid" computers in the analog field and programming languages for 
continuous system simulation in the digital field. 

B. FUNCTIONAL UNITS OF DIGITAL COMPUTERS 

It may not always be possible to associate particular physical com-
ponents in a modern digital computer installation with specific functions, 
but basically there are always five functions represented: input, memory, 
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arithmetic-logic, control, and output, as shown in the block diagram 
of Fig. 53. 

_J *JOutput 

i ' ' 

FIG. 53 

The input unit permits information to be entered into memory by 
means of codes acceptable to the computer. This coded information may 
be on cards, paper tape, magnetic tape, or paper imprinted with special 
characters (such as those commonly used on bank checks). In scientific 
applications IBM (or Hollerith) cards and magnetic tape are used most 
frequently. 

An IBM card consists of 12 rows and 80 columns. A combination of 
punches in each column represents a specific alphabetic, numeric, or 
special character (see Fig. 54). Cards are punched on a keypunch, and 
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read into memory by a card reader. Cards may be "read" photo-
electrically, or by brushes which make an electrical contact when they 
drop through a hole. Magnetic tape is a plastic ribbon coated with a 
metallic oxide which will accept and hold magnetism permanently. 
On 7-track tape there are seven lengthwise rows (channels) and many 
crosswise columns forming positions which can be magnetized or not 
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according to a code. Characters can be entered with great density 
serially along the length of the tape. Densities vary from about 
200-1500/in., and data can be read in at rates of about 340,000 
characters/sec. 

Memory is accomplished by either drum, disk or core storage units. 
These are composed of binary cells capable of being magnetized or not, 
and thereby representing the binary digits 0 and 1. Such ont-bit cells 
are used together to represent larger binary numbers. A consecutive 
number of binary cells is a byte. All information used by the machine is 
binary-coded, e.g., 

Character 

0 
1 
2 
3 
4 
8 
A 

Z 

* 

6-Cell bi, 

0 
0 
0 
0 
0 
0 
0 
1 
1 

0 
0 
0 
0 
0 
0 
1 
1 
0 

0 
0 
0 
0 
0 
1 
0 
1 
1 

nary code 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
0 0 0 
0 0 1 
0 0 1 
1 0 0 

Characters stored in cells in memory are manipulated in groups of 
consecutive cells, called words. Different computers manipulate different 
word lengths. Each word location is identified by a number which can be 
used as an address to retrieve the word stored there. Some machines have 
fixed word lengths, others have variable word lengths. The capacity of 
a computer's memory refers to how much information can be stored. 
A "32K" capacity means that a computer can store 32,000 words. 

The arithmetic-logic performs arithmetic operations (addition, sub-
traction, multiplication, and division) and simple numerical and logical 
operations on words brought over from memory. 

The control unit is the functional part of a computing system. One 
instruction at a time is taken from the program stored in memory, 
interpreted, and then executed. What the instruction means and how it 
is carried out is implicit in the control unit's circuitry. The operations 
occur in two basic machine cycles called the instruction cycle (I-time) 
and the execution cycle (E-time). During I-time the control unit receives 
the next instruction in the stored program and prepares it for execution. 
The instruction is performed during E-time. In receiving, interpreting, 
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and executing instructions, the control unit coordinates the operations of 
input, memory, arithmetic-logic, and output portions of the computer. 

The output serves to present results to the user, either on cards, paper 
or magnetic tape, paper, or by cathode ray display, etc. The most 
common method is a print-out on large sheets of paper, performed very 
rapidly (1100 lines/min) by a printer. 

C. ELEMENTS OF PROGRAMMING 

The physical machinery that comprises the functional units of a 
digital computer—the hardware—is of little direct concern to the user. 
Modern computer facilities generally are operated on a closed-shop basis 
in which jobs are submitted, run, and results returned without the 
individual user ever entering the computer room. The user is concerned 
more directly with programs and programming systems, collectively 
referred to as software. 

A computer program is a set of instructions coded in such a way that the 
machine can perform each one in an indicated order. The basic code that 
a machine can accept, interpret, and execute is called machine language. 
This differs for different computers, but in general consists of long 
strings of decimal or binary numbers. These are too tedious and detailed 
for people to handle readily and, consequently, other languages are used 
in programming which are converted to machine language within the 
computer. These other languages basically are of two kinds—those for 
assembly systems and those for translating systems. An assembly system 
language is a symbolic language which is machine-oriented; it is used to 
specify how hardware components are to be used. A translating system 
language is more human-oriented, and bears a greater relation to the 
language in which a problem is normally written than to machine 
language. 

A translating system consists of (1) a processing program called a 
compiler, and (2) a language. The programmer writes instructions in 
accordance with rules of the language; these are then read into the 
computer where the compiler converts them to machine language. 
Examples of modern translating systems are Algol, Cobol, and Fortran. 
In science, probably 90 % of existing programs are written in Fortran, 
so this is a good language to learn. 

D. FORTRAN IV: INTRODUCTION 

Fortran IV is the version of this language currently in use with IBM 
equipment, such as 7090/7094 and 360 systems. Like other translating 
systems it consists of two phases—compilation and execution. 
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For compilation, the compiler program in machine language is entered 
into memory through an input unit. A source program, written in 
Fortran IV and keypunched on cards, is entered into memory through 
a card reader. The compiler translates each card from the source deck 
into machine language instructions. Depending upon what operations 
are to be performed, a number of subprograms will be called from the 
compiler. These are determined by monitor control cards included with 
the source deck and also by statements within the source program. The 
machine language program produced by translation of the source 
program is called an object program. This can be stored in memory, or 
outputted as an object deck or printed listing as the source program. 
Generally, a listing becomes the primary documentation of a program. 

During execution the object program takes command of the machine. 
It calls for data from a data deck entered into memory, usually with the 
source program, and processes these in accordance with instructions of 
the original source program. Results are furnished through an appropriate 
output unit. 

A schematic representation of a typical entire process of compiling and 
executing a Fortran program is shown in Fig. 55. In some systems the 
object deck is by-passed completely. 

Compilation 

Written 

4_ 
Source 

deck P 
Compiler Object 

deck 

Program 
listing 

I L u r object Γ L 
[/> ] | deck IS 

Object 
program 

FIG. 55 

A typical card input package consists of the source deck followed by 
the data deck, and appropriate control cards as in Fig. 56. The job-control 
cards identify the user and an account number to which the job is to be 
charged, and they also determine what subprograms are to be called for 
entry into the object program. The data-control card signals that the 
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/ End -of -job cards 

Data deck 

Data-control 
card 
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Source deck 
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Job-control 
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FIG. 56 

data deck follows, and the end-of-job cards specify the end of the data 
deck and termination of the job. The control cards are specific for each 
type of computer, and sometimes there may be local variations introduced 
at different installations. 

VL Digital Computer Programming with Fortran IV 

A. FORTRAN STATEMENTS 

A Fortran IV program consists of five kinds of statements: (1) input and 
output, (2) assignment, (3) control, (4) specification, and (5) subprogram. 
The first three kinds are termed * 'executable.' ' The compiler translates 
them into equivalent machine language during I-time and they are 
executed during E-time. Input and output statements direct the flow of 
information between memory and an input or output unit. Assignment 
statements direct arithmetic and logical computations. Control statements 
determine the order in which statements are executed. 

Specification and subprogram statements are "non-executable," being 
descriptive in nature. Specification statements indicate to the compiler 
types of variables used in the program, arrangements of input and output 
data, and storage allocations. Subprogram statements permit subprograms 
to be identified and used in a main program. 

In Fortran IV there are available 53 source program statements, but 
no compiler uses all of them. The IBM-7090 uses 45, and the 360 
(H level) uses 47. 

When data cards are punched, use of the 80 columns of an IBM card 
is as stated by specification statements in the source program. However, 
in punching the source deck itself there are restrictions on how statements 
are to be entered. 
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COLUMNS CONTENT 

1-5 The first five columns are for statement numbers, 
which may be omitted except when they are 
needed. A c punched in column 1 signifies that 
card to be a comment card. These are strictly for 
clarification or other purposes of the programmer. 
Comment cards are not processed by the Fortran 
compiler. 

6 This column is reserved for continuation cards, 
necessary when a statement exceeds a card's 
capacity. On continuation cards, columns 1-5 are 
blank, column 6 contains any character except 0 or 
blank (typically numbers 1-9 are used sequen-
tially), and the remaining columns are as for other 
cards. 

7-72 The statement begins in column 7 and may 
extend through 72. 

73-80 These columns are not processed by the compiler. 
They are left blank or may contain sequence 
numbers which can be used to preserve the order 
of cards in the deck. 

Unless control statements specify otherwise, executable statements 
are performed in the same order as that in which the cards on which they 
are keypunched enter the computer. 

B. CONSTANTS AND VARIABLES 

Two kinds of constants are used in Fortran. An integer is a whole 
number, positive, zero, or negative. A real number is denoted by a 
decimal point. The numbers 3.1416, —.314, 3.0, 2., and 0. are real, 
while 3, 2, —2, and 0 are integers. Within the computer real numbers 
are represented m floating point form: some fraction between 0.1 and 1.0 
and a power of 10. The following are floating point representations of the 
numbers 3.1416 and 0.0031416: 0.31416 X 101 and 0.31416 X 10~2. 

There also are two kinds of Fortran variables. Integer variables take 
on integral values, and are named by 1 to 6 letters or digits, the first of 
which is i, j , κ, L, M, or N. Real variables assume real values, and they 
also are named by 1 to 6 letters or digits, the first of which is not I, J, κ, 
L, M, or N. The compiler uses the first letter of the variable name to 
determine if it is real or integer. Special characters are not permitted 
in constants or variables. 
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C. OPERATIONS AND EXPRESSIONS 

Five arithmetic operations are provided in Fortran, each represented 
by a distinct character: 

Addition + 
Subtraction — 
Multiplication * 
Division / 
Exponentiation ** 

An expression is a rule for computing a numerical value. For example, 

a · b 

TVd~a 

is represented by the Fortran expression 

(A * B)/(C + D) — A ** 2 

The following rules must be obeyed in writing such expressions: 

(1) Two operation symbols must never be adjacent. Thus A** — B 
is not valid, but A ** (—B) is. 

(2) Parentheses are used for grouping as in ordinary mathematical 
notation. In complex expressions there must always be the same number 
of left parentheses as right parentheses: (A * (B — c ** 2)) * (x + B). 
Parentheses cause inner operations to be performed first; (x + B) must 
be computed before its product with (A * ( B — c ** 2)) can be obtained. 

(3) If the order of operations is not completely specified by 
parentheses, the order is: exponentiation first, multiplication and 
division next, and addition and subtraction last. Thus, the expression 
x * Y + u/v — w ** A is equivalent to (x * Y) + (u/v) — (w ** A). 

(4) In a sequence of multiplications and divisions, or additions and 
subtractions, where the order of operations is unspecified by parentheses, 
the evaluation is left-to-right. Thus X/Y * z means (x/y) * z and not 
x/(y · z); also, A — B + c means (a — b) + c rather than a — (b + £)· 

(5) Mixed-mode expressions are forbidden technically (actually 
they are allowable on most modern Fortran compilers). That is, integer 
and real quantities cannot be mixed, except that a real quantity can be 
raised to an integer power: A -+- i * j , EMU/IBIS, and κ ** A are incorrect, 
but EX ** IJAY and WHY ** AIJAY are both correct. 
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The mixed-mode restriction comes about because it is possible in 
Fortran to perform two kinds of arithmetic, integer and real. Integer 
arithmetic is calculated in the integer mode. In integer division, fractional 
parts of the quotient are ignored; the quotient is rounded down or 
truncated to the next lowest whole number. Thus, 5/3 = 1, (7 * 2)/3 = 4, 
and 7 * (2/3) = 0. Real arithmetic also has its problems. For example, 
t he suml . / 3 . + 1./3. + 1./3. to eight digits is .33333333 + .33333333 + 
.33333333, or .99999999. If a program were written to compare this 
result with 1.00000000, the result would be "not equal." Yet clearly, 
1/3 + 1/3 + 1/3 = 1 in ordinary arithmetic. 

D. MATHEMATICAL FUNCTIONS 

Fortran functions include the following: 

Mathematical function 

Exponential 

Natural logarithm 

Common logarithm 

Sine (radians) 

Cosine (radians) 

Square root 

Absolute value 

Fortan name 

ΕΧΡ 

ALOG 

ALOGIO 

SIN 

cos 

SQRT 

ABS 

These are external functions normally supplied with the Fortran IV 
compiler. To use them they are followed by a constant, variable, or an 
expression in parentheses, called the argument of the function; the 
function of the named argument is computed, e.g., eat is EXP (A * τ), sin 
ωΐ is SIN (OMEGA * τ), and \^b2 — 4ac is SQRT (B * * 2 — 4. * A * c). 
Note that all variables and constants of the arguments are real. There also 
are functions for complex and double precision variables, neither of which 
will be discussed here. 

E. ARITHMETIC ASSIGNMENT STATEMENTS 

Computation of a new value of a variable is accomplished with an 
arithmetic assignment statement. The general form is 

a = b 

where a is a variable name, written without a sign, and b is any expression. 
This type of statement is an order to compute the value of the expression 
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on the right and assign that value to the variable on the left. Thus, in 

Y = A + B * X 

A + B * x is calculated and the value given to Y. If Y had a previous 
value, it is lost since the variable Y is allocated a specific position in 
memory. The result of the following two Fortran statements in the given 
sequence in a program 

Y = 25. * .043 + 2. 
Y = 0 . 

is to assign a value of 3.075 to Y and then assign a value of 0.0. The 
first value is lost when the second statement is executed. 

Note that the " = " sign has a different meaning in Fortran than in 
mathematics, and statements like 

x = x + 1. 

are not only valid, but they also are very useful. 

Exercise 7 

(1) Write the following as Fortran real constants: 

(a) 784 (d) -0.0000784 
(b) 7.84 (e) 109 

(c) 7.84 x 10-3 (f) -7.84 x 109 

(2) Which of the following are unacceptable integer constants ? 

(a) -256 (d) 256,000,000,000 
(b) +256. (e) 256000000000. 
(c) 2,560 (f) 256000000000 

(3) Indicate integer, real, and unacceptable variables in the following 
list: 

MAX 

AMAX 

EMU 

ROTIFER 

POPSIZ 

Xl 

Nl 

SILSPR 

XSQ 

x ** 2 
A 

IA 
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(4) Write real-mode Fortran expressions for each of the following 
mathematical expressions: 

(a) x + y2 

(b) (x+yf 

(c) x+y-

z 

(e) 1 + * + 

(0 ^ ( 3 

2 + 3 

c + 2) 

(g)^rr^2 + 1) 

wiQ* 
(i) a + x[b + <*(£ + ^ ) ] 

Ü) tan jj 

(k) (1 - é>-a<) 

(1) 1 + sin Θ (cos 2φ)2 

(5) Write arithmetic assignment statements to compute values of the 
following variables: 

(a ) a = 77T2 

(b) —y = k sin(coi) 

(c) j = qpjt (What is the value of j if q = 5, p = 20, and t = 3 ?) 

(d) * = --& + V62 - 4ac 

(e) ÏÏ = rN 

(f)tf = ™ ( ^ ^ ) 

(g) *« = &Λ*,-
( h ) # 2 = X*02 ~f~ τ ΐ Λ T23^2 ^25^2 P20^2 

... 1 - 1 + sin x 
(1) :V = 2 l 0 g l - s i n ^ 

F. INPUT AND OUTPUT 

In this section FORMAT, READ, WRITE, STOP, and END statements of the 
Fortran IV language are discussed. 

The FORMAT statement is a nonexecutable specification statement which 
defines how input data will appear in the data deck or other input 
media, and what the arrangement of results will be on output media. 
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In other words, the FORMAT statement specifies input and output data 
fields, and it is always used in conjunction with a READ or WRITE statement. 
The form of the FORMAT statement is 

n FORMAT (SX , s2,..., sm) 

where n is the statement number and s1, s2 ,..., sm are any number of 
field specifications. Each field specification describes the kind and 
arrangement of one data field: 

Specification Type of field 

iw Integer 
Fw.d Real without exponent 
Ew.d Real with exponent 

where I, F, and E denote the type of field, w the width of the field (number 
of characters), and d the number of digits to the right of the decimal 
point (not including any part of the exponent). 

Example 1 

Consider a card with the following data punched in columns 1-28 
(the notation ® will be used to signify n blanks): 

®-3570©28656-0.095®8.76£®02@) 

It is impossible to judge what the data are without field specifications, 
The following FORMAT statement provides the necessary information: 

(3)13®FORMAT®(I6, i7, F6.3, E9.2) 

The first field (i6) contains an integer constant (—3570), the second 
(i7) another integer constant (28656), the third (F6 .3 ) a real constant 
with three digits to the right of the decimal (—0.095), and the last 
field (E9.2) contains a real number expressed as an exponent, with two 
digits to the right of the decimal (8.76 X 102). The blank space after 
the E is reserved for a + or — sign. The remaining 52 spaces of the data 
card are unspecified in the FORMAT statement and therefore unused. 

The READ statement is used to read input data into the computer's 
memory, and the WRITE statement is used to transfer results to an output 
medium. 
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The general form is 

READ (i, n) variables 

WRITE (i, n) variables 

where i is the number code of an input or output device, n is the number 
of the corresponding FORMAT statement, and "variables" is an ordered 
sequence of variable names separated by commas. A card-reader input 
unit usually is designated by i = 5, a printer for output by i = 6, and a 
card punch for output by i = 7. Magnetic tapes, disks, etc., for both 
input and output are designated generally by numbers 0, 1,..., 4. 

Example 8 

To solve the exponential growth equation 

N(t) = N(0) ert, 

values of the birth- and death-rate parameters and the independent 
variable t must be read in as data and the computed value of N(t) printed 
out. Assume that b and d are to be entered in an F 10.0 field specification, 
N(0) in an i8 field, and t in an F6 .3 field, and that r is to be printed out 
in an E12.4 field, and N(t) in an ilO field. A program segment to 
accomplish this is would be 

READ (5, 20) B, D, NZERO, T 

20 FORMAT (2F10.0, I8, F6.3) 

R = B — D 

ENZERO = NZERO 

NT = ENZERO * EXP(R * T) 

WRITE ( 6 , 3 0 ) R, NT 

30 FORMAT (lH®, E12.4, ilO) 

In this program b, dy r, and t are real variables; ΛΓ(0) and 7V(/) are 
integer variables because they represent numbers of individuals, for 
which there can be no fractions. In computing N(t), however, this 
variable must be real to avoid NZERO * EXP(R * τ), a mixed-mode expres-
sion. Conversion to a real variable is accomplished by the assignment 
statement ENZERO = NZERO. Note that N(t) is automatically computed 
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as an integer variable, however, in the statement NT = ENZERO * EXP(R * τ). 
In the first FORMAT statement the notation 2 F 1 0 . 0 means that there are 

two adjacent FIO.O field specifications. This convention, also valid with 
I and E specifications, saves writing each field specification explicitly 
when there are a number of identical fields in sequence. The second 
FORMAT statement contains the notation 1 H ® which advances the paper 
in the printer one line. Other common printer controls are IHO for 
advancing two lines, and 1H1 for advancing to a new page. 

The STOP statement terminates execution of the object program and 
returns control to the monitor. The END statement signifies the end 
of a source program, and must be the last card of every Fortran IV 
source deck. These statements are written as 

STOP 

END 

Exercise 8 

(1) The logistic model of population growth is, from Section I.G, 

ΛΓ = (r - cN)N. 

Write a Fortran IV program which (1) receives data on population birth 
rate, death rate, the environmental resistance parameter c, and population 
size; (2) computes the rate of change of the population at the specified 
size; (3) computes the carrying capacity of the environment; and (4) 
prints the results. 

G. TRANSFER OF CONTROL 

Sometimes it is necessary to execute statements in a different order 
from that in which they appear in the program. This so-called branching 
is accomplished by statements described in this section: GO TO, logical IF, 
arithmetic IF, and computed GO TO. 

The GO TO statement directs a one-way branch. It takes the form 

GO TO n 

where n is the number of another executable statement in the program. 



6 0 BERNARD C. PATTEN 

Statement n thereupon is executed next, no matter where it appears in the 
program. 

The logical IF statement provides a two-way branch in the Fortran IV 
language. Its form is 

IF (e) s 

where e is any expression involving one of the relational operators 
described below and s is any statement except another logical IF or a DO 
statement (described later in Section VI. J). The six relational operators are: 

Relational operator 

.LT. 

.LE. 

.EQ. 

.NE. 

.GE. 

.GT. 

Meaning 

Less than 
Less than or equal to 
Equal to 
Not equal to 
Greater than or equal to 
Greater than 

The periods are part of the notation. If the logical expression e is true, 
statement s is executed; otherwise s is not executed and the program 
moves in normal sequence to the next statement. 

Example 9 

Suppose a linear relation between y and x varies with the value of x 

y = a + bx if x < p, 

y = c + dx if x > p. 

A program sequence which would select the proper equation for a 
particular computation would be 

IF (X.LT.P) Y = A + B * X 

IF (X.GE.P) Y = C + D * X 

The usefulness of the logical IF is extended considerably by using 
relational expressions in combination with logical operators: 

Logical operator 

.AND. 

.OR. 

.NOT. 

Meaning 

And 
Inclusive or (a or b or both) 
Not 
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For example, it is possible to write 

IF (X.LT.P.AND.P.NE.Q) GO TO 137 

or equivalently: 

IF (.NOT.(X.GE.P).AND.P.NE.Q) GO TO 137 

A three-way branch is provided by the arithmetic IF statement. The 
form is 

IF (e) nx , n2 , nz 

where e is any expression and nx, n2, and n3 are statement numbers. If 
e < 0, nx is executed; if e — 0, n2 is executed; and if e > 0, n3 is executed. 

Finally, multiple branching is made possible by the computed GO TO 
statement. This statement has the form 

G O T O ^ ! , W2,..., nm), i 

where nx, η2,..., nm are statement numbers, and / is an integer variable 
such that i = 1, 2,..., m. If the value of the variable z is 1, then control is 
transferred to statement nx\ if the value is 2, then the program branches 
to statement n2 , and so forth. For example, in 

GO TO (7, 14, 3, 72, 100), KAPPA 

if KAPPA = 4 from elsewhere in the program the next statement to be 
executed will be that numbered 72. 

Example 10 

Suppose it is desired to write a Fortran IV program to (1) accept a 
biotic potential r and an initial population size N(0); (2) solve the expo-
nential growth differential equation (Section I.F) sequentially over a 
specified time interval, 0 < t < *maxî and (3) print the results for each 
computation time so that, in effect, the print-out will be a discrete, 
numerical representation of the system's dynamic behavior. 
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Such a program is 

C NZERO = INITIAL POPULATION SIZE, R = BIOTIC 

C POTENTIAL, TMAX = COMPUTATION TIME, DT = TIME 

C INTERVAL BETWEEN COMPUTATIONS. 

C READ IN DATA. 

READ ( 5 , 1 0 0 ) NZERO, R, TMAX, DT 

100 FORMAT (110, 3F10.4) 

C INITIALIZE TIME ( τ ) . 

T = 0. 

C PRINT INITIAL CONDITIONS. 

WRITE ( 6 , 1 0 1 ) T, NZERO 

C INITIALIZE POPULATION SIZE (EN). 

EN = NZERO 

C COMPUTE DIFFERENTIAL OF POPULATION SIZE. 

2 0 DN = DT * (R * EN) 

C COMPUTE NEW POPULATION SIZE. 

EN = EN + DN 

C CONVERT EN TO INTEGER VARIABLE. 

N = EN + .5 

C INCREMENT TIME. 

T = T + DT 

PRINT RESULTS 

WRITE (6, 101) T, N 
101 FORMAT ( lH®, FlO.0, ilO) 

C REPEAT COMPUTATION FOR NEXT TIME INTERVAL. 

IF (T.LT.TMAX) GO TO 2 0 

STOP 

END 

Exercise 9 

(1) Write a Fortran IV program to solve the coupled system of 
differential equations which represents Lotka-Volterra population 
interaction (Section III.B). The program should be able to receive input 
data for rx, r2, Κλ, K2, a, ßy and the initial population sizes Λ^(0) and 
iV2(0), and should print out system behavior, N^t) and N2(t)> as a 
function of time. (This program essentially corresponds to the analog 
computer program for the same system given in Fig. 39.) 
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H. FLOWCHARTS 

A great aid in digital computer programming is the flowchart, which 
essentially is a special block-diagram representation of the program 
logic. Flowcharts help the programmer keep track of where he is in 
developing the program, and they serve also as a visual documentation 
of the completed program. The symbols shown in Fig. 57 typically 
are used. 

ί j An oval indicates the beginning or end of a program. 

V / A trapezoid indicates an input or output operation. 

A rectangle signifies any processing operation, except 
a decision. 

O 
1 

A diamond indicates a decision (branching) process. 
The lines leaving the box are labeled with the decision 
result that causes each path to be followed. 

_w Arrows indicate the direction of flow through the 
flowchart. 

FIG. 57 

Example 11 

A flowchart for the program of Example 10 is given in Fig. 58. 

FIG. 58 



64 BERNARD C. PATTEN 

Exercise 10 

(1) Prepare a flowchart for the program written in Exercise 9. 

I. SUBSCRIPTED VARIABLES 

Use of subscripted variables makes it possible to denote many variables 
with one variable name. The set of variables is termed the variable array, 
and the individual members of the array are called elements. In Fortran, 
subscripted variables can have one, two, or three subscripts, representing 
1-, 2- or 3-dimensional arrays. The state sets and vectors of Section LB 
are examples of 1-dimensional arrays, and the combined loss coefficients 
ajj of the scaled system equations in Example 6 are elements of a 
2-dimensional array which will be formed later in order to represent the 
Silver Springs system in vector-matrix notation. 

One-dimensional array elements such as x± , x2 ,..., xn are written 
in Fortran subscript notation as x(l), x(2), ..., x(w), or x(i), where 
I = 1, 2,..., n is an integer variable. Similarly, the elements of the matrix 

ö l l β12 Λ13ΐ 

^21 β22 α23* 

are written A(1, 1), A(1, 2), etc., or using integer variables, A(I, J) , where 
i = l , 2 a n d j = 1,2, 3. 

When subscripted variables are used in a program, (1) which variables 
are subscripted, (2) how many subscripts for each variable, and (3) the 
maximum size of each subscript are items of information that must be 
supplied to the compiler. This is done with a DIMENSION statement, 
which must appear before the first occurrence of the dimensioned 
variable in the program. The form of the dimension statement is 

DIMENSION v, v, v,... 

where the v's stand for variable names followed by parentheses enclosing 
one, two, or three unsigned integer constants which denote the maximum 
size of each subscript. For example, a one-dimensional array x with eight 
elements, a 2 X 3 two-dimensional array Y, and a 3 X 5 X 4 three-dimen-
sional array z would be indicated by the following statement: 

DIMENSION x(8), Y(2, 3), z(3, 5, 4) 

The compiler then assigns eight memory locations to variable x, six (2 X 3) 
to Y, and 60 ( 3 x 5 x 4 ) to z. The DIMENSION statement is non-
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executable since its only function in the program is to provide information 
to the compiler; it does not generate any instructions in the object 
program. 

When subscripted variables appear in READ statements, as 

READ (5, 25) x, Y, z 

where x, Y, and z are the subscripted variables x(8), Y(2, 3), and z(3, 5, 4), 
the elements of each array are entered in column order, i.e., in such 
a manner that the first subscript varies most rapidly and the last least 
rapidly. For Y, the sequence of entering elements would be Y ( 1 , 1), 
Y(2, 1), Y ( 1 , 2), Y(2, 2), Y(1 , 3), Y(2, 3). Of course, array elements can be 
read in any order by specifying the elements in explicit form in the 
READ statement, for example, 

DIMENSION Y ( 2 , 3) 

READ (5, 35) Y(1, 1), Y(1, 2), Y(1, 3), Y(2, 1), Y(2, 2), Y(2, 3) 

Note that in the DIMENSION statement " Y ( 2 , 3)" refers to a 2 X 3 variable 
array, whereas in the READ statement " Y ( 2 , 3)" specifies the element in 
the second row, third column of the same array. 

Example 12 

The differential equations of Example 5 representing the model I 
rotifer system can be written as follows by combining loss coefficients: 

*1 

#2 

#3 

*4 

x5 

XQ 

χΊ 

= ^01 + δ31*3 + δ6 A + (Λ1ΐ) *] 

= = -^02 ~Γ ο12Χι + (#22) x2 > 

— €<ZZX2 1 (#33/ ^3 > 

= ^04 + δ34*3 + (au) *4 > 

= e45*4 + \a55) Xb » 

= = "56^5 1 \α6β) Χ6 > 

= ^07 + δ57^5 + (a77) x7. 

In vector-matrix notation, this system is written more succinctly as 

x = f + Ax, 
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where: 

and 

A = 

Γ*1] 
^2 

^3 

*̂ 4 

* 5 

X6 

[_x7J 

"25 

L 01 

* 0 2 

0 
^04 

0 
0 

L u 71 * 7 7 j 

u1 2 

0 
0 
0 
0 
0 

0 
ß 2 2 

€23 

0 
0 
0 
0 

δ 3 1 

0 
β 3 3 

δ3 4 

0 
0 
0 

0 
0 
0 

044 

e45 

0 
0 

0 
0 
0 
0 

δκβ 

ϋ6 1 

0 
0 
0 
0 

0 

0 
0 
0 
0 

In the coefficient matrix A note that the subscripts of the coefficients 
are the reverse of those of the corresponding matrix-element names: 
0i a = § 3 1 > *i6 = δ6ΐ > ö2i = δΐ2 > e t c · This is due to the naming conven-
tion for signal flows from source to terminal compartments established 
in Section III.E. 

A Fortran IV program to solve this system, comparable to the analog 
computer program of Example 5, is 

C DIMENSION THE VARIABLES. 

DIMENSION x ( 7 ) , F (7 ) , A ( 7 , 7 ) , DX(7) 

C R E A D F , A , A N D I N I T I A L X , A L S O Τ Μ Α Χ ( C O M P U T A T I O N T I M E ) 

C AND DT (COMPUTATION TIME INTERVAL). 
READ (5, 10) X, F, A, TMAX, DT 

10 FORMAT (7F10.3/ 7F6.2/ 7E10.2/ 7E10.2/ 7E10.2/ 7E10.2/ 
1 7E10.2/ 7E10.2/ 7E10.2/ 2F10.4) 

C COMPUTE SOLUTIONS OF SYSTEM EQUATIONS. 
T = 0. 

C PRINT INITIAL CONDITIONS. 

WRITE ( 6 , 13) T, X 

14 i = 1 
12 SUM = 0. 

J = l 
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11 SUM = A(l, j) * X(j) + SUM 

J = J + 1 
IF (j.LE.7) GO TO 11 

DX(l) = DT * (F(I ) + SUM) 

X(l) = X(l) + DX(l) 

i ^ i + l 

IF (l.LE.7) GO TO 12 

C INCREMENT TIME. 

T = T + DT 

C PRINT SOLUTIONS. 

WRITE (6, 13) T, X 

13 FORMAT ( 1 H ® , F5.3, 7F10.3) 
IF (T.LT.TMAX) GO TO 14 
STOP 

END 

Note, in format statement 10, that additional cards are indicated by /. 
The use of subscripted variables in this program facilitates greatly the 
bookkeeping requirements of solving this many equations simultaneously. 
With very large systems, the advantages of dimensioning become particu-
larly significant. 

Exercise 11 

(1) Write a Fortran IV program to solve the model III rotifer system 
of differential equations formulated for Exercise 5. Prepare a flowchart, 
and use subscripted variables. 

J. T H E DO STATEMENT 

As with dimensioning of variables, the so-called DO loop permits 
very complex computations to be performed rather easily. This feature 
of Fortran is one that contributes, probably more than any other, to 
the power and versatility of the language. The DO statement can be 
written in either of two forms 

i 1 
DO n i = mx , m2 , tn3 

DO n i = m1, m2 
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The first form states "Do (i.e., execute) down through statement n from 
i z=z m1 through i = m2 in z-increments of m3 ." It means to execute all 
statements within the range of the loop for every value of / specified by 
m1 , m2, and m3 . The action is that the program cycles through the loop 
repeatedly for each value of i, executing each of the indicated statements 
each time. In the second form of the DO statement, m3 = 1 is implied by 
convention. 

Certain rules must be adhered to in using the DO statement: (1) The 
first statement following the DO statement must be executable (i.e., 
DIMENSION and FORMAT statements are prohibited). (2) Other DO 
statements are permitted within the range of a DO; in fact, DO statements 
can be nested sometimes with great complexity. An inner DO loop must 
terminate before an outer one which contains it, or both can terminate 
with the same statement. (3) The last statement (numbered n) cannot be 
a GO TO, arithmetic IF, STOP, or another DO, nor a logical IF which contains 
any of these. (4) No statement within the DO loop may alter or redefine the 
index i of the loop, or its range or increment (m1, m2, and m3). (5) 
Control should not be transferred to a statement within the range of a DO, 
except from the range of an inner loop into that of an outer loop. 

Rule (3) prohibits the last statement of a DO loop from transferring 
control. This can be achieved, however, by use of the statement 

CONTINUE 

The CONTINUE statement is a dummy statement used frequently to 
terminate DO loops. It causes no action when the object program is 
executed, and merely provides an innocuous executable statement to 
which the number n can be attached. 

Example 13 

A Fortran IV program, employing DO statements, which solves the 
7-compartment, model I rotifer system of Example 12 is 

DIMENSION x(7), F(7), A(7, 7), DX(7) 
READ (5, 10) x, F, A, TMAX, DT 

10 FORMAT (7F10.3/ 7F6.2/ 7E10.2/ 7E10.2/ 7E10.2/ 
1 7E10.2/ 7E10.2/ 7E10.2/ 7E10.2/ 2F10.4) 
T = 0. 
WRITE (6, 13) T, x 

13 FORMAT ( 1 H ® , F 5 . 3 , 7F10.3) 
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C OUTER DO WITH INDEX I FOLLOWS. 

14 DO 100 I = 1,7 
SUM = 0. 

C INNER DO WITH INDEX J FOLLOWS. 

DO 101 j = 1,7 
101 SUM = A(l, j) * X(j) + SUM 

DX(l) = DT * (F( I ) + SUM) 
100 x(i) = x(i) + DX(I) 

T = T + DT 

WRITE (6, 13) T, X 

IF (T.LT.TMAX) GO TO 14 

STOP 

END 

In this program, exit from both DO loops is automatic and the CONTINUE 
statement is not needed to obtain a transfer of control. 

2. Exercise 12 

(1) Prepare Fortran IV programs employing DO statements and 
subscripted variables to solve the system differential equations of: 

(a) Lotka-Volterra population competition (Section III.B); com-
pare this program with that of Exercise 9. 

(b) The model III rotifer system based on equations developed 
in Exercise 5; compare with the program produced for Exercise 4. 

K. DIGITAL AND ANALOG COMPUTERS: SUMMARY COMMENTS 

If there is a philosophy emergent in the preceding notes on the uses 
of modern computing systems in ecological modeling, it is perhaps 
related to how much Fortran has been left out. This has had to be a 
succinct and cursory treatment, and many important topics such as 
FUNCTION and SUBROUTINE subprograms, type statements for other than 
real and integer variables and constants, and useful field specifications 
such as A (alphameric) and H (Hollerith) have gone undiscussed. The 
same is true of analog computer technique as an expert would view it. 
(These notes are intended only to be introductory in nature, and the 
interested reader will want to consult standard references and users' 
manuals, a sampling of which is provided in Appendix B). Still, within 
the framework of these notes is a sufficient treatment of programming 
elements to permit ecological models of no small significance (systems of 
coupled differential equations) to be implemented effectively for simula-
tion or systems analysis studies on both digital and analog computers. 



70 BERNARD C. PATTEN 

The philosophy here is identical to one we all subscribe to in our 
use of the automobile and scores of other mechanical and electrical 
devices in our daily lives. It is to learn enough to become a user, not an 
expert. If we are apprehensive about a particular machine, such as a car 
or airplane, we avoid its use, but the alternative is to move more slowly 
and inconveniently. As some machines serve to make our personal lives 
both more facile and effective, computers hold the potential for accom-
plishing the same in our scientific lives. A small investment of time and 
effort puts us, as ecologists, within communicating reach of the technical 
specialist. Is there really a sensible alternative ? 

VIL Digital Simulation 

A. INTRODUCTION 

Many of the chapters in this book are concerned with simulation— 
mimicking or reproducing the time behavior of dynamic systems—using 
digital computers to solve differential or difference equations. In the 
former case where the models are continuous, this means using a machine 
which operates in discrete, finite time-steps to approximate systems 
whose state transformations occur in infinitesimal increments of time. 
Thus, the subject of numerical approximation is relevant, and in this 
section we consider it briefly along with discussions of special- versus 
general-purpose programs, and the topic of simulation languages. 

B. A SPECIAL-PURPOSE PROGRAM: SILVER SPRINGS 

In Examples 10, 12, and 13 differential equations were solved 
numerically by the "brute force" technique of computing differentials 
over small intervals of time and adding these to the state-variable values 
at the beginning of each interval. This method is straightforward and 
effective so long as the time intervals between calculations are very small. 
The special-purpose program of this section, SILVER SPRINGS, implements 
this method for both the linear and nonlinear models of Section III.H 
as options, and provides for multiple runs. A flowchart of the program 
appears in Fig. 59, and Table IV is a listing. 

In Table IV the first statement after statement 104 is a type statement. 
It overrides the naming convention and makes LAMDIO and the 
MU-variables, normally integers, real throughout the program. In the 
next statement NCASE is an integer variable specifying the number of 
cases (experiments) in a particular computer run; xOl, x02,..., x05 are 
initial values of the compartments. In statement 20, JFLAG is a variable 
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TABLE IV 

PROGRAM SILVER SPRINGS LISTING 

C PROGRAM STLVFR SPRINGS 
C l I N F A * OR NCNLINEA' i FEEDING TRANSFFRS, L I N F A R N O N - F E E D I N G LOSSES 
C F T V F COMPARTMENTS. THF F I ° S T AND SECOND FORCED 
C C H M P A R T M F N T S - - X', = FNV IR ΓΝΜΕΝΤ , X 1= PRODUCER S , X2*HERB I VORE S , 
Γ. X l = C A R N T V r ° E S , Χ 4 = Τ Π Ρ C APN I VOR ES , X«>=DECOMP0SFRS 
C F A C I N G S — F 0 1 = P H 0 T 0 S Y N T H F S I S , F02=PREAD INPUT 
C FLOW ΟΛΤΡ C O N S T A N T S — T AU I J = FF ED I N G , RHOIO= RESP IRAT I O N , 
C 1 AMri") = LOSS HOWNSTRFAM, MUI5 = M0RTAI ITY 

OO C R P M A T I I H I ) 

1 0 r F 0 R * A T ( 6 . ) H T XI X? X3 X4 X5 
I I 

I ' M F O R M A T ! ' > F 1 1 . 4 ) 
1C2 FORMAT! Tl fF 3 . r t < î F R . C I 
1 0 1 F C R M ^ ( R F 1 ^ . 0 / 5 F i n . O ) 
Γ 4 FOPMATf T ' , 5 F 1 0 . n | 

»PAL I.AMD1? ,Μ ΙΠ 5 , Μ υ ? 5 , Μ υ 3 * > , Μ υ 4 5 
R F A O I M H ) N C A S F . X ^ l , X C ? , X 0 3 , X 0 4 , Χ 0 5 
T = 0 . 
ΤΓ = η . 
! = · ■ "> 

P 0 0 10 ΐ = 1 f N C A S F 
Γ FNTFR JPLAG O OR 1 ) , NUMBER OF VFARS FOR COMPUTATION ( Y ) ' .COMPUTATI ON 
C Î N T C R V A I ( O T ) , P R I N T I N G INTERVAL ( P R N T I , I N I T I A L C O N O I T I O N S Î K C A L / M * * 2 I , 
C AND CONSTANT Fnpr, INGS ( * C A L / M * * ? * Y ) 

?"» R F A r ) ( S , l C ? ) J F l Α Γ , , Υ , Π Τ , P R N T , X I , X 2 , X 3 , X 4 , Χ 5 , F O 1 , F O 2 
C FN.TFR RATE CONSTANTS 

?1 , R F A 0 C > , K ' 3 ) T A ' J 1 ? , T A I J ? 3 , T A U 3 4 , R H 0 1 0 , R H 0 2 0 , R H 0 3 0 , R H 0 4 0 , 
1 R H T » 0 , I A M T i r , M U l S , M U ? 5 , M U 3 5 , M U 4 5 

C COMDUTF NONLINFAR r O F F F I C I F N T S 
TTAU1? = T A ( J 1 ? / X r ? 
T T A U ? 3 = T A U 2 3 / X < ~ ^ 
T T A U 3 4 = T A U 3 4 / X ^ 4 
WPÎ TP(6,=»<5) 
W P I T F ( 6 , I 0 ^ ) 
W P I T F I 6 , m i ) T , X l , X ? , X 3 , X 4 , X 5 
M A X T = Y / r ) T * . ^ 
DO 9 J = 1 , M A X T 
P J = J 
T = Q T * P J 

C CTMPUTE COMPAPTMFMT D I F F E R E N T I A L S 
I F ( J F L A G . F Q . 1 ) G 0 TO SO 
n v i = 0 r * ( F 0 1 - X l * ( R M O 1 0 + L A M n m * M U l S < - T A U 1 2 ) ) 
r)X? = r > T M r O 2 + T A U l ? * X l - X ? * ( R H O ? 0 * M U 2 5 4-TAU23l I 
0 X ? = r j T * ( T A U ? 3 * X 2 - X ^ * ( R H 0 ? r f M U 3 5 * T A U 3 4 ) ) 
n X 4 = 0 T * ( T A t l 3 4 * V 1 - X 4 * ( R H C 4 f * M U 4 5 ) > 
Π χ ς = η τ * ( Μ | ) ΐ 5 * χ ΐ ♦ M U p 5 * x ? + M I J 3 5 * X 3 * M U 4 5 * X 4 - R H O 5 0 * X 5 l 
GO TO 6 0 

F« n x i = D T * ( F 0 1 - X l * ( R H O i n « . L A M D i n 4 - M U 1 5 + T T A U 1 2 * X 2 ) ) 

D V ? = P T * ( F n ? * T T A ! n ? * X l * X 2 - X 2 * I R H O 2 0 * M U 2 5 « - T T A U 2 3 * X 3 n 
0 X ? = 0 T * ( T T A U ? 3 * X ? * X 3 - X 3 * Î R H 0 3 0 4 - M U 3 5 * T T A U 3 4 * X 4 M 
n X 4 = 0 T * ( T T A i n 4 * X 3 * X 4 - X 4 * ( R H 0 4 0 * M U 4 5 ) ) 
η χ ς = τ Τ Α ( Μ υ ΐ « ; * Χ 1 + Μ υ ? 5 * Χ 2 * Μ υ 3 5 * Χ 3 * Μ υ 4 5 * Χ 4 - Η Η 0 5 0 * Χ 5 ) 

C r p M P U T F SOLUTIONS 
60 χ ι = χ ι * η χ ι 

Χ 2 = Χ ? * η χ ? 
X"> = Χ"»4·ΊΧ^ 
Χ4= Χ 4 * Π Χ 4 
X 5 = X 5 * 0 X S 
T f = 7 C + 1 . 

C P P I rjT f>FSULTS °NLY AFTER FVFRY «OELT» COMPUTATIONS 
O F L T = P R N T / n T 
I F ( T C , I . T . P F l T ) r C ΤΓ o 

1 W » I T C ( 6 , i r » n T, X 1 , X ? , X 3 , X 4 , X 5 
TC = * . 

Q CONTIN i jF 
T = 0 . 

1? C ONT'INtJP 
ς τ η ρ 
F NO 
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( s t a r t ) 

Real Xand/x 
variables 

Increment X's 
TC = TC+1. 

DELT=PRNT/DT 

( Stop ) 

FIG. 59 

that directs for each case whether the linear or nonlinear model is to be 
used; Y is a real variable denoting the number of years for which the 
solution is to be computed, e.g., Y = 10 yr; DT is the computation time 
interval, e.g., DT = .001 yr. This means that in 0. ^ Y ^ 10. yr, 
MAXT — 104 calculations of each state variable will be performed. The 
variable PRNT (printing interval) specifies which of these will be printed on 
output. For PRNT = 0.1 yr, there will be 10 lines of output per year, or 
100 lines for a 10-yr total period (plus one line for initial values), FORMAT 
statement 99 is a special carriage control statement which instructs the 
printer to start a new page for each new case, FORMAT statement 100 
specifies column headings and their positions on the printout. 

There are two DO loops in the program. Statement 8 is an outer DO with 
index i = 1 ,NCASE. The program loops through the sequence of statements 
through statement 10 as many times as there are cases. The inner 
loop, D O 9 J = Ι,ΜΑΧΤ, specifies the number of iterative computations 
of each state variable to be performed, MAXT is an integer variable 
computed by the program from input data provided for Y and DT; the 
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statement MAXT = Y/DT + .5 adjusts for rounding error in conversion 
from real to integer variables by adding 0.5 to each result before it is 
rounded down. In the inner DO loop, it is necessary to "float" the index j , 
i.e., to convert it to a real variable, RJ, to avoid mixed mode in the state-
ment T = DT * RJ. In order to print the results, a variable DELT = PRNT/DT 
is defined which specifies the printing interval in terms of number of 
computations (every 100 computations in the present cases). After 
every computation a counter TC is advanced one unit. When TC = DELT 
the results are printed (statement 1), the counter is reset, TC = 0., and 
the program cycles again through the inner loop. When j = MAXT, and 
after statement 1 is executed a final time, control is transferred to the 
outer loop and a new case is begun. Exit from the outer loop occurs 
automatically after the computations for I = NCASE, and the program 
terminates. 

Three types of data cards are required for this program as shown in the 
Type 1, 2, and 3 tabulations below. Each type of card is repeated NCASE 
times, one set for each case. 

TYPE 1 
Case Control, and Initial Conditions for Computing Nonlinear Rate Constants 

Column: 
Format: 
Input: 

1-2 
i2 
NCASE 

3-12 
FlO.O 
xOl 

13-22 
FlO.O 
x02 

23-32 
FlO.O 
x03 

33-42 
FlO.O 
x04 

43-52 
FlO.O 
x05 

TYPE 2 
Linear or Nonlinear Decision Card, Initial States and Forcings0 

Column: 1 
Format: 11 
Input: JFLAG 

2-4 
F3.0 

Y 

5-12 
F8.0 

DT 

13-20 
F8.0 

PRNT 

21-28 
F8.0 

xl 

29-36 
F8.0 

x2 

37-44 
F8.0 

x3 

45-52 
F8.0 

x4 

53-60 
F8.0 

x5 

61-68 
F8.0 

F01 

69-76 
F8.0 

F02 

° JFLAG (linear-nonlinear control flag) is 0 for linear model and 1 for nonlinear model. 

TYPE 3 
Linear Rate Constants" 

Column: 
Format: 
Input: 

1-10 
FlO.O 
TAU 12 

Column: 
Format: 
Input: 

11-20 
FlO.O 
TAU23 

1-10 
FlO.O 
LAMD 

21-30 31-40 
FlO.O FlO.O 
TAU34 RHOlO 

11-20 
FlO.O 

10 MU15 

41-50 
FlO.O 
RHO20 

21-30 
FlO.O 
MU25 

51-60 
FlO.O 
RHO30 

31-40 
FlO.O 
MU35 

61-70 
FlO.O 
RHO40 

41-50 
FlO.O 
MU45 

71-80 
FlO.O 
RHO50 

α Nonlinear rate constants are computed in the nonlinear portion of the program. 
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Table V presents sample output from the program: 2.5 yr of the free 
response of the linear model. 

TABLE V 
FREE RESPONSE OF SILVER SPRINGS LINEAR SYSTEM 

BY PROGRAM SILVER SPRINGS (EULER METHOD) 

T 
0 . 0 

0 .1000 
o.?coo 
0 .3000 
0 .4000 
0 .5000 
0 . 6 0 0 0 
0 .7000 
0 .8000 
0 .9000 
1.0000 
1.1000 
1 .2000 
1.3000 
1.4000 
1.500O 
1.6000 
1.7000 
1.8000 
1.9000 
2 .0000 
? .1000 
2 .2000 
2 .3000 
2 .4000 
2 .5000 

XI 
3421 .2598 
1859.2056 
1010.3384 

549 .0391 
298 .3557 
162.1333 

8 8 . 1 0 7 4 
47 .8796 
26 .0187 
14 .1390 

7.6835 
4 .1754 
2 .2690 
1.2330 
0 .6700 
0 .3641 
0 .1979 
0 .1075 
0 .0584 
0 .3318 
0 .0173 
0 .0094 
0 .3051 
0 .0028 
0 .3015 
0 .0008 

X2 
213 .4400 
144. 1214 
84 .0527 
46 .8446 
25 .6943 
14 .0112 

7 .6240 
4. 1451 
2 .2529 
1.2244 
0 .6654 
0 .3616 
0. 1965 
0. 1068 
0 .0580 
0 .0315 
0 .0171 
0 .0093 
0 .0051 
0 .0027 
0 .0015 
0 .0008 
0 .0004 
0. 00C2 
0.0001 
0 .0001 

X3 
62 .0600 
57 .0822 
45 .3400 
32 .7007 
22 .1805 
14.4410 

9 .1354 
5 .6579 
3 .44 79 
2 .0745 
1.2354 
C.7295 
0 .4277 
C.2493 
C.1445 
0 .0834 
0 .0479 
0 .0275 
0 .0157 
o.ooe9 
0 .0051 
0 .0029 
0 .0016 
0 .0009 
0 .0005 
0 .0003 

X4 
8 .8700 
9 .0002 
8 .8315 
8 .3109 
7 .5339 
6 .6292 
5 .7023 
4 . 8 2 2 4 
4 .0272 
3 .3321 
2 .7381 
2 .2388 
1.8238 
1.4818 
1.2016 
0 .9730 
0 .7872 
0 .6364 
0 .5142 
0 .4153 
0 .3354 
0 .2708 
0 .2186 
0 .1764 
0 .1424 
0 .1149 

X5 
24 .3800 
14 .5704 

8 .1602 
4 .5144 
2.4891 
1.3729 
0 .7592 
0 .4217 
0 .2358 
0 .1331 
0 .0761 
0 .0443 
0 . 0 2 6 4 
0 .0162 
0 .0103 
0 .0068 
0 .0046 
0 . 0 0 3 3 
0 .0024 
0 .0018 
0 . 0 0 1 4 
0 .0011 
0 .0008 
0 .0007 
0 .0005 
0 .0004 

C. NUMERICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS 

The material of this section, except that on the matrix exponential 
method, is drawn largely from Benyon (1968) and IBM Application 
Program Manual H20-0367-3. Benyon's article, in particular, should be 
consulted for further details and entries into the literature. 

1. Euler (Rectangular) Method 

The technique employed in Examples 10, 12, 13, and in program 
SILVER SPRINGS preceding is the Euler or rectangular method. Consider 
the system of differential equations 

x = f(x, t) 

any one of which at an arbitrary time n can be represented as 

xn = J Vxn > *n)' 

A solution in the interval (tn , tn+1) is depicted graphically in Fig. 60. 
The objective of numerical approximation is to estimate this solution, 
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i.e., to determine a new value of x, xn+1, after some time interval of 
choice, At = tn+1 — tn , given an initial value xn and the amount Δχη 

that it changes in the interval. That is, 

xn+l == Xn ~T~ A^n 

is to be approximated because the only information available is xn and 
its instantaneous rate of change xn — / ( x w , tn). The approximation is 

*n+l = Xn + At(f(xn,tn)) 

and reference to Fig. 60 indicates that the error en+1 , which 
results from assuming a constant slope xn for the function over the 
computation interval, is proportional to the length At of this interval. 
In other words the error can be controlled by making At appropriately 
small. 

Once xn+1 is approximated 

*n+l = Xn + M*n), ( l a) 

the new value is used to compute a derivative to serve as a slope over the 
next computation interval (tn+1, tn+2) 

xn+l — / V x n + 1 > *n+l)' (lb) 

A sequence of calculations beginning at any arbitrary time tn would then 
be 

xn ~ J Vxn > *η) 

Xn+1 = xn + At(*n) 

= /(«, n+1 > Ln+1 
xn+2 — xn+l l At(Xn+1) 
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The errors e at each calculation accumulate, limiting the period of time 
over which a response can be calculated with usable accuracy. 

This method was implemented in Examples 10, 12, 13, and program 
SILVER SPRINGS in the following way, as illustrated by the SILVER SPRINGS 
linear model herbivore compartment (Table IV): 

Procedure 

%n == J \X-n > tn) 

Δχη = At(xn) 

xn+i = xn -\- uxn 

Xn+1 — J\Xn+l > ̂ n+l) 

Example 

Herbivore equation: 
*2 == ^ 0 2 ( v ~t~ T12^1 X2\P20 H" ^25 H~ T23) 

DX2 = DT * (F02 + TAU12 * xl 
— x2 * (RHO20 + MU25 + TAU23)) 

x2 = x2 + DX2 

2. Adams-Bashforth (Predictor) Methods 

In the Euler method inaccuracy results from assuming a constant 
slope in each solution interval. The problem then is to estimate how the 
slope of the solution equation actually changes in each interval At. 
The general approach of "predictor" methods is to use past values of 
x and x to estimate an average slope over the next computation interval by 
fitting a polynomial to the past and present values. The one-step method 
uses one past value. 

*( / ) 

fr-1 

Δ/ 

rn 

0 

F I G . 61 

£-1 

+Δ/ 

Referring to Fig. 61, and letting r be a relative time variable with 
origin at tn (i.e., τ = 0 when t = tn), the approach is to define a poly-
nomial (quadratic) with slope xn_x at tn_1 , and which passes through the 
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point (tn , xn) with slope xn . The polynomial is then to be extended to 
tn+1 to approximate xn+1. 

(1) Define a quadratic: x = a + br -f cr2. 

(2) The slope at any point is: x = è + 2cr. 

(3) The coefficients a, £>, and c must satisfy the following conditions: 

(a) At t = tn , T = 0 and from the quadratic equation 

a = xn. 

(b) Similarly, at * = tn the second equation gives 

b = xn. 

(c) At t = tn_1, T = — At> and substituting into the second 
equation 

Xn Xn—1 
£ — 2c(At) = χη_λ and c = 2Ji 

(d) At t = tn+1 y r = At; substituting the above-derived values 
of a, bf and c into the quadratic equation 

< / m \ I / n n 1 i 
xn+\ — xn ~r \Xn) T + 1 2/1/ ) 

M il ■ - 1 · \ 

■*n+l — *w + ~2~ (3*n *w-l)· (2^) 

This is the same basic form as in the Euler method, but (xn) in the latter 
is now replaced by a weighted mean of the current and past slopes, 
(f*n — i^n-i)· Using the new value xn+1, the derivative is updated as 
before for use in the next calculation 

*n+l = /(Xn+1 , *n+l)· (2b) 

In this 'Second-order" version of the Adams-Bashforth predictor 
approach, errors are proportional to (At)2 instead of At9 a reduction since 
0 < At < 1 always in applications. The fourth-order method based on 
the use of three past slopes and a fourth-degree polynomial is 

xn+i = xn + 24(55*n - 59*n_! + 31xn-2 — 9*n-3) (3a) 

Xn+1 = / ( X n + l , * n + l ) · (3t>) 
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The error in this method is even further reduced to being proportional 
to {At)\ 

3. Predictor-Corrector Methods 

a. Constant Step-Size (Adams-Moulton). In predictor-corrector 
methods, xn+1 and xn+1 are calculated by a predictor method, but these 
are then regarded only as preliminary estimates, xn+1 and &n+1 . The 
estimate of the next slope is then included in the fitted polynomial and, 
for example, the fourth-order equations become 

^ n + l = xn i jT \*xn+l ~T ^ x n $xn-l ι xn-2/ ( 4 a ) 

xn+l — / ( x n + l > *«+l)> ( 4 b ) 

where $n+1 is as yielded by Eq. (3b). 
In iterated variants of the predictor-corrector rationale, the last-

computed slope in Eq. (4b) is still regarded as an estimate xn+1—a very 
refined estimate—to be cycled back through Eq. (4a) in an iterative loop 

At ? 
xn+l == xn i TT \'Xn+l ' **xn ^ w - 1 ~T xn-2) ( ^ a ) 

Xn+1 = = / ( x n + l > *n+l)· P D ) 

b. Variable Step-Size (Milne). Methods which vary the length of the 
integration interval At do so in response to an estimate of the error at 
each step of the calculation. If estimated error exceeds a specified bound, 
At is reduced until the error remains in bounds. The Milne fifth-order 
predictor-corrector method is 

At. 
3 

vw+l — xn-l "Γ /j \νχη $xn-l ~T ^xn-2 Xn—3J ( " a ) 

4+1 =/(Χη+1,ίη+ΐ) (6b) 

1 , , „ , , At_ 
192 Vi+1 = Ö (xn + 7χ

η-ΐ) + Ten ( 6 5 i n + l + 2 4 3 * n + 5 1 * η _ χ + * n _ 2 ) ( 6 c ) 

xn+1 = 0.96116xn+1 + 0.03884£n+1 (6d) 
Xn+1 = / ( Χ η + 1 . ί η + ΐ ) . ( 6 e ) 

Note how this method, unlike preceding ones, makes use of information 
about the past state xn_1 of the system. 
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4. Simpson's Rule Method 

With methods that look at the past history (states and/or derivatives) 
of a system's behavior, the first few points must be computed by some 
other means (e.g., Euler method) since there is no history to look back to. 
Simpson's rule and Runge-Kutta methods (below) search forward. 
With tn+1/2 signifying At/2, and xn+1/2 the state a half-step forward, the 
Simpson's rule method can be summarized as 

Cn+l/2 — Xn ~T 2 ^*71' 

^n+1/2 = / ( X n + l / 2 > tn+1/2) 

Xn+1 — Xn+l/2 ~T~ y \Xn+l/2J 

xn+l = J ( x n + l > ^w+l) 

xn+\ = xn i 7~ \xn ι ^xn+l/2 ~T~ xn+l) 

xn+l ~ / ( x n + l y *n+l)' 

(7a) 

(7b) 

(7c) 

(7d) 

(7e) 

(7f) 

The procedure of this method, which is basically a predictor-corrector 
method, will become clear in the discussion of Runge-Kutta methods 
below. 

5. Runge-Kutta Methods 

Following is a description of the fourth-order Runge-Kutta method. 
Referring to Fig. 62: 

FIG. 62 
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(1) Go halfway {Δίβ) through the step to point P using xn 

χη+ι/2 = xn + y (*») (8a) 

Xn+l/2 = / (Xw+l/2 > ^+1/2)· (8b) 

(2) Repeat the same half-step through the interval (tn , tn+1/2)f this 
time using the slope just computed 

Xn+l/2 — Xn 
At 
2 (*i+i/,) (8c) 

Xn+l/2 —f(Xn+l/2 > ^+1/2)· (°d) 

(3) Take a whole step J* with this new slope to reach the point x^+i 

Xn+1 = xn + MXn+l/2) (8e) 

xn+l = / ( x n + l > *n+l)· ( ° i ) 

(4) The field forward has now been well explored, and a weighted 
mean of the various slopes is used to carry out the final, accurate step 
forward 

Xn+1 — Xn + ~7~ \xn + ^-Xn+l/2 + ^-Xn+l/2 + ^n+l) (8g) 

Xn+1 = / ( Χ η + 1 , ί η + ΐ ) . (8h) 

A one-parameter family of second-order Runge-Kutta methods in 
which the step-length forward is arbitrary (0 < a ^ 1 ) is 

*n+a = xn +OiAt(xn) (9a) 
Xn+a ~ / ( X n + a > *w+cJ ("") 

*n+l = χη + ^* (( l - 2^) χη + ^ *n+«) (9c) 

xw+1 = / ( χ η + ι , ί η + ι ) · (9d) 

6. Trapezoidal Method 

When oc = 1, the second-order Runge-Kutta method collapses to the 
trapezoidal or improved Euler method 

Xn+1 = χη + At(*n) (10a) 

4+1 =/(*n+l»*n+l) (10b) 

= *n + ΊΓ (xn + *n+l) (lOc) Kn+1 2 
xn+l = /(xn+l,'n+l)· (10d) 
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7. Matrix Exponential (Paynter's) Method 

Consider an unforced (homogeneous) system of linear differential 
equations written, as in Example 12, in vector-matrix notation 

x = Ax, 

where x is the solution vector and A the coefficient matrix. Just as in 
Example 4 where the solution of N = rN was shown to be N(t) = N(0)ert, 
so the matrix equation above has the solution 

x(0 = ^x(O). 

Over a computational time interval (tn , tn+1) this solution can be 
expressed as 

or, letting r be a variable representing step-length, 

x(*n + T) = eA*x(tn). 

The matrix exponential eAr is defined operationally by a truncated Taylor 
series 

e ^ ^ 2! 3! k\ ' 

where I is the identity matrix (diagonal elements = 1, off-diagonal 
elements = 0) with the same number of rows and columns as A, 

For forced systems the corresponding differential equations are 

x = Ax + z, 

where z is the forcing vector as in Example 12. The general incremental 
solution is 

X(tn + r) = eATx(tn) + eA{i^ fn+T β-Ατζ(τ) dr 

whose exact solution in the case where z is constant over the step-length is 

x('n + r) = ^x(tn) + ( ^ - / ) A-iz(tn). (11) 

This is the basic equation of the method. The symbol A~x is the inverse 
of matrix A (i.e., A~XA = A A-1 = / ) , but it does not have to be calculated 
since it can be shown that 
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Because this series is so similar to that which represents eAr, it becomes 
very economical to compute both matrices (i.e., eAT and {eAr — I)A~X) in 
a single computer program, and to use these to solve the system by 
applying Eq. (11). Such a program is described below. 

D. A GENERAL-PURPOSE PROGRAM: MATEXP 

MATEXP (Ball and Adams, 1967) is a general purpose Fortran IV 
program for solving large systems of differential equations by the matrix 
exponential method. The program is highly efficient, and is said to yield 
virtually exact solutions. It is available for both nonlinear and linear 
equations, with constant or time-varying coefficients and forcings. 
Discussion here will be restricted to linear constant-coefficient systems, 
with the Silver Springs linear model (Section III.H) taken as an illustrative 
example. 

In the program the eÄT matrix is termed the " c " matrix and the 
(eAT — Ι)Α~λ matrix is called the " H P " matrix. These matrices are 
computed to nearly any desired accuracy (specified in the data input). 
Solution proceeds in the following manner 

X(*n + r) = C X(tn) + HP Z(*„). 

Just one time increment r = At is required, and therefore the c and 
HP matrices need to be evaluated only once. 

The basic parts of the MATEXP program are the main program MATEXP, 
a utility subprogram OUTPUT called as a subroutine for outputting, and 
DISTRB, a subroutine for calculating nonconstant forcing functions and 
also coefficient sensitivities dx/da^ . Sensitivity analysis is an important 
subject in systems analysis, and the MATEXP program permits ready 
implementation of the sensitivity concept (see Volume II, Chapters 1 
and 2). There are many options available within the context of the basic 
program, e.g., time-varying coefficients, nonlinear differential equations, 
arbitrary function generation (comparable to the VDFG capabilities of 
analog computers), variable transport lags, etc. In general, it is a good 
program to have in one's library for implementing dynamic models of 
ecological systems. Following is a brief description of the basic informa-
tion required to use it. 

The data to be read in include the initial x vector, the coefficient 
matrix Ay and the constant forcing vector z. Additional information 
required for each run includes the number of equations, initial time, 
computation time interval, final time, and printing interval—much as 
for program SILVER SPRINGS. Since many elements of the coefficient 
matrix often are zero, only nonzero elements need to be read in. This 
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makes it necessary to enter also the row and column index numbers of the 
corresponding coefficients. Similarly, only nonzero initial conditions 
and forcings are read in with their row numbers. Since successive cases 
in a run may require only one or a few changes, options are available so 
that only altered data need to be entered. 

For each case in a MATEXP run, four types of data input cards are 
necessary as shown in the Type 1-4 tabulations below. 

TYPE 1 

MATEXP Control Card0 

Column: 1-2 3-5 6-7 8-10 11-20 21-30 31-40 41-50 51-60 61-62 
Format: i2 
Input: NE (J) 

Type J (cont.) 

Column: 63-64 
Format: i2 
Input: icss 

i2 
LL ® 

65-66 
i2 
JFLAG 

FlO.O 
P 

67-69 
i3 
ITMAX 

FlO.O 
TZERO 

70 
il 
LASTCC 

FlO.O FlO.O 
T TMAX 

71-72 
i2 
i lz 

FlO.O 
PLTINC 

73-74 
i2 
ICONTR 

l2 
MATYES 

75-80 
F6.0 

VAR 

a Key to control card variables: NE is number of equations; LL is coefficient matrix tag 
number; P is precision of c and HP (recommend 10~6 or less); TZERO is zero time; τ is 
computation time interval; TMAX is maximum time; PLTINC is printing time interval; 
MATYES is coefficient matrix (A) control flag: 1 is use previous A and τ, 2 is read new 
coefficients to alter A, 3 is read entire new A (nonzero values), 4 is DISTRB to calculate 
entire new A, 5 is read some, DISTRB to calculate others, 6 is DISTRB to alter some A elements. 
ICSS is initial condition vector (xic) flag: 1 is read in all new nonzero values, 2 is read 
new values to alter previous vector, 3 is use previous vector, 4 is vector = 0, 5 is use 
last value of x vector from previous run. JFLAG is forcing function (z) flag: 1-4 is same 
as for icss for constant z, 5 is call DISTRB at each time step for variable z. ITMAX is maximum 
number of terms in series approximation of exp(AT). LASTCC is nonzero for last case 
(blank otherwise); i lz is row of z if only one nonzero, otherwise = 0; ICONTR for internal 
control options: 0 is read new control card for next case, 1 is go to 212 call DISTRB for 
new A or T, —1 is go to 215 call DISTRB for new initial conditions, VAR is maximum 
allowable value of largest coefficient matrix element times τ (Recommend VAR = 1.0). 

TYPE 2 

Coefficient Matrix Aa'b 

Column: 
Format: 
Input: 

1-3 
i3 
Row No. 

4-6 
i3 
Column No. 

7-18 
E12.3 
Coefficient 

Repeat, 4 per card 

° Include if MATYES = 2, 3, or 5. 
b Notes: (1) All row and column number entries on a card must be nonzero. (2) Insert 

blank card after last A-matrix card. (3) Format option: data can be entered in F format. 
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TYPE 3 
Initial Conditions Vector xica'b 

Column: 1-2 3-5 6-17 Repeat columns 3-17, 
Format: i2 i3 E12.3 5 per card 
Input: MMC Row No. i.e. value 

α Include if icss = 1 or 2. 
b Notes: (1) All row number entries on a card must be nonzero. (2) Insert blank 

card after last xic card. (3) Format option: data can be entered in F format. 
c MM is initial state vector tag number. 

TYPE 4 
Forcing Vector za>l 

Column: 1-2 3-5 6-17 Repeat columns 3-17, 
Format: i2 i3 E12.3 5 per card 
Input: KKC Row No. z Value 

a Include if JFLAG = 1 or 2. 
b Notes: same as for Type 3 cards. 
c KK is forcing vector tag number. 

For further details on the use of DISTRB and other subprograms, Ball 
and Adams' report should be consulted directly. A listing of the MATEXP 
main program, and the two subroutines DISTRB and a version of OUTPUT 
appears in Appendix A. Table VI is a sample of output for the linear 
Silver Springs model: its free response which can be compared to that 
computed by the Euler method in Table V. The MATEXP output is the 
more accurate. 

E. DIGITAL SIMULATION LANGUAGES: s/360 CSMP 

1. Introduction 

Simulation languages essentially attempt to provide access to digital 
computers for purposes of studying time-behavior of dynamic systems 
without programming in a complex general purpose language such as 
Fortran. They are special purpose languages based on the common 
features of all simulation problems, and as such they are relatively simple 
and easy to use. The latest entries into the field, one of which is described 
below, incorporate virtually every feature of analog computers—except 
instantaneous turnaround. There is little question that simulation langu-
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ages, because of their great power, versatility, and simplicity, will become 
of leading significance to ecological modeling in the years ahead. 

Some of these languages, without translating their acronyms or 
discussing their characteristics or interrelationships, are: GPSS, DYNAMO, 
MIDAS, PACTOLUS, MIMIC, DSL/90, CSSL, 1130 CSMP, and S/360CSMP. 
The last one, IBM's System/360 Continuous System Modeling Program, 
is introduced below. Benyon (1968, Table 4) summarizes the numerical 
integration methods used with most of these languages. 

TABLE VI 

FREE RESPONSE OF SILVER SPRINGS LINEAR SYSTEM BY PROGRAM MATEXP0 

M A T E X P C A S E 1 

N O . O F E Q U A T I O N S 5 

S P E C I F I E D P R E C I S I O N 0 , 0 0 0 0 0 0 1 0 

T I M E I N T E R V A L 0 , 0 1 0 0 0 0 0 0 

P L O T I N C R E M E N T 0 . 0 9 9 9 O 9 9 6 

C O N T R O L F L A G S -

MATYFS 3 
ICSS 1 
JFLAG 4 
ICONTR 0 

MAX, TERMS IN EXPONENTIAL APPROX, 30 
SINGLE I ROW 0 
MAX. ALLOWABLE A*0T 1 , 3 0 0 
MAX. ALLOWABLE OPT ELEMENT 1 0 . 0 0 0 

MAX.COEFF. MATRIX ELEMENT = AI 5 , 5» = - 0 . 1 8 8 6 E 03 
MAX. A*0T = 0 . 9 4 2 9 9 9 3 6 WITH DELTA T = 0 . 0 0 5 0 0 0 0 0 

MINIMUM NON-ZERO EL FMFNT = Ai 4 , 3) = 0 . 3 3 9 0 E 00 

RATIO AMAX/AMIN * 3 . 5 5 6 3 E 03 

NO. OF TERMS IN SERIES APPROX. OF MATEXP = 11 

TOTAL NO. OF T HALVINGS = 1 

A 1 
- 6 . C 8 0 E 0Γ 0 . 0 0 . 0 0 . 0 0 . p 

8 . 4 0 0 F - 0 1 - 1 . 5 7 8 F 01 0 . 3 0 . 0 0 . 0 
O.C 1 .790F 00 - 6 . 1 7 9 E 00 0 . 0 0 . 0 
0 . 0 0 . 0 3 . 3 O 0 E - 0 1 - 2 . 1 4 2 F 0 0 0 . 0 
1 .010E OC 5 . 1 3 * F 00 7 . 4 1 0 F - 0 1 6 . 7 6 0 F - 0 1 - 1 . 8 8 6 E 0? 

9 . 4 1 0 F - 0 1 
7 . 5 3 3 F - 0 3 
6 . 8 4 9 E - 0 5 
7 . 8 8 0 E - 0 « 
4 . 4 8 4 F - 0 3 

0 . 0 
R .S40F-<n 
1 . 6 0 4 F - P 2 
2 . « 0 1 E - 0 5 
2 .0RHF-0? 

0 . 0 
0 . 0 
9 . 40 1E-01 
3 . 2 5 2 F - H 3 
3 . 2 0 9 F - 0 3 

0 . 0 
O.C 
0 . 0 
9 . 7 8 F F - P 1 
2#o<)9P-"\3 

0 . 0 
O.C 
0 . 0 
O.C 
1 . 5 1 7 F - 0 1 

HP 
1 . 9 9 4 E - 7 9 - 7 . 7 ? 1 F 4^ 2 . 3 1 3 F 55 6 . 6 4 4 F 12 - I . P 1 3 F - 3 9 
1.0O4É-7Q 8 . 4 3 1 F - 0 1 3. 1 4 1 F - 6 1 Q . 3 3 6 F - 4 6 - 5 .173Ε-6Γ» 
0 . 0 - 4 . 1 7 5 F 27 1 .1C6E 01 - 2 . 9 1 1 F - 7 R 6.350«=-0? 
0 . 0 - 1 . 2 5 3 F ?7 3 . 8 M F 03 - 2 . 6 7 C P - 2 0 1 . P 8 8 F - 7 8 
0 . 0 7 . 5 6 0 Ε - Π 1 1 , 153F 19 1 .085E 09 5 . 9 4 7 F - 7 8 

T = 0 . 0 X = 
3 . 4 2 1 2 5 9 7 7 F 03 2 .13439QP7F 02 6 . 2 P 5 9 9 Q 7 6 F 01 9 . 7 5 9 9 9 9 2 8 E 0 0 2 . 4 3 9 9 9 9 3 9 F 01 

T * l . C O O E - 0 1 X = 
1 . 8 6 2 6 6 3 8 ' E 03 1 . 4 4 2 3 6 6 1 9 F 02 5 . 7 0 4 7 6 3 7 9 F 0 1 9 . 7 1 7 3 1 0 5 * F 00 1.45943232»= 01 

T = 2 . C 0 0 F - O 1 x = 
1 . 0 1 4 1 0 4 4 9 F 03 8 . 4 2 9 0 7 2 5 7 E 01 4.53344?6<>e 0 1 9 . 4 0 7 8 3 4 0 5 F 0 0 8 . 1 8 9 8 2 6 0 1 F 00 

T x 3 . C C 0 F - 0 1 X = 
5 . 5 2 1 1 6 4 5 5 F 02 4 . 7083770KF 0 1 3 . 2 7 3 5 7 7 8 8 e 01 8 . 7 7 5 1 5 « « 8 F 00 4 , 5 4 0 1 0 8 6 8 F 00 

T « 6 .CO0E-O1 X = 
3 . 0 0 5 9 2 5 2 3 E 02 2 . 5 8 8 0 3 1 0 1 F 01 2 . 2 2 3 8 2 0 5 3 F 01 7 . 9 0 9 1 3 4 1 8 F 00 2 . 5 0 8 3 5 9 9 1 E CO 

T = 5 . C 0 0 E - 0 1 X = 

° MATEXP = matrix exponential method. Table continued 
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TABLE VI (continued) 

1 . 6 3 6 5 3 8 2 4 F 
6 . C 0 0 F - 0 1 X s 

8 .Q0O93347F 
7 . 0 0 0 F - 0 1 X = 

4 . 8 5 C 9 0 6 3 7 F 
8 . 0 0 0 F - 0 1 X = 

2 . 6 4 1 0 1 4 1 O F 
P.COCF-'M X = 

1 . 4 3 7 8 6 4 4 0 e 

1.C00F Π0 X = 
7 . « 2 8 2 8 1 4 0 F 

1.1COF 00 v = 
4 . 2 6 2 0 1 2 4 8 F 

1 .200F 00 X = 
2 . 3 2 C 3 9 9 2 8 E 

1 .300F * 0 X = 
1 . 2 6 3 3 1 0 4 ^ P 

1.4C0F 00 X = 
6 .877Q403OF-

1 .500F 00 X = 
3 . 7 4 4 6 1 2 3 4 F -

1 .600F 00 X = 
2 . 0 3 P 7 0 8 3 3 F -

1 .700F 00 X = 
1 . 1 C 9 9 4 8 7 5 F -

1 .800F 00 X = 
6 . 0 4 2 9 6 2 8 9 F -

1 . 9 0 0 F 00 X = 
3 . 2 9 0 C 1 9 1 8 F -

2 . 0 0 0 F 00 X = 
1 . 7 9 1 2 1 1 2 2 F -

2.1AOF 00 X = 
Q . 7 ti 2 ^ 3 1 4 2 F -

2 . 2 COF 00 X = 
5 . 3 0 9 3 6 1 Q 6 F -

2 . 3 0 0 F 00 X = 
2 . 8 9 0 6 1 5 4 9 F -

2 .4C0F 00 X = 
1 . S 7 3 7 6 0 9 9 E -

2 . 5 0 0 F 00 X = 
8 . 5 6 8 1 4 9 0 6 F -

02 

01 

01 

01 

01 

00 

00 

00 

00 

-01 

-01 

-01 

-n i 

-r? 

-0 2 

-02 

-Π3 

-03 

-03 

-03 

-04 

l . 

7 . 

4 . 

2 . 

1 . 

6 . 

3. 

2 . 

1 . 

5. 

3. 

1 . 

Q. 

5. 

2 . 

1 . 

8. 

4, 

7, 

1 , 

7, 

, 414p0941F 

70938587F 

1QQ44572F 

28678036F 

, 24509811F 

778OR109F-

69077623F-

,Or»9404"*OE-

, 093QO498F-

05611185E-

24274153F-

, 765471 70F-

, 6 1 1 8 7 8 5 4 F -

23305312E-

, 84O07361F-

, 5 5 1 1 4 5 2 2 F -

, 4 4 5 0 1 6 5 7 F -

, 59778123F-

, 5 0 3 1 9 7 1 7 F -

, 3 6 2 8 3 8 3 7 F -

, 4 1 9 8 1 2 0 3 F -

Ή 

00 

CO 

00 

00 

■01 

- 0 1 

-01 

- 0 1 

-C2 

-02 

-02 

-03 

- 0 3 

-03 

-03 

- 0 4 

- 0 4 

-04 

-Γ4 

- 0 5 

1 . 4 5 0 2 9 4 0 2 F 

9 . 1 Q 0 5 4 0 3 Î E 

5. 70220,661 F 

3 . 4 8 1 1 8 5 9 1 F 

2 . 0 9 8 3 7 7 2 3 F 

1 . 2 M 9 1 7 8 4 F 

7 . 4 0 6 1 3 1 6 3 F -

4 . 3 5 0 3 5 7 6 5 F -

2 . 5 4 0 0 1 O 1 5 F -

1 . 4 7 5 3 4 2 5 1 F -

8 . 5 3 0 7 3 5 9 7 E -

4 . 9 1 3 1 3 8 2 3 E -

2 . 8 1 9 7 4 7 1 1 F -

1 . 6 1 3 2 6 0 0 6 F -

9 . 2 0 4 1 0 0 8 2 F -

5 . 2 3 7 9 4 8 1 5 F -

2 .9740491OF-

1 .6P512575E-

9 . 5 2 9 9 2 1 2 3 F -

5 . 3 8 0 0 5 9 5 9 P -

3 . 0 3 2 3 9 5 6 2 F -

Cl 

00 

no 

00 

On 

00 

-01 

-01 

- 0 1 

-01 

-02 

-02 

-0 2 

-0 2 

-03 

-0 3 

- 0 3 

-03 

- 0 4 

- 0 4 

- 0 4 

6 . 9 3 3 8 5 0 ? o ç 

5 . 9 5 0 Î O 5 6 7 F 

5 . 0 2 4 2 O 5 8 1 F 

4 . 1 9 1 8 3 5 4 0 F 

3 . 4 6 6 2 7 3 3 1 F 

2 . 8 4 7 5 1 2 2 5 E 

2 . 3 2 7 9 2 9 5 0 E 

1 . 8 9 6 4 3 4 7 8 F 

1 . 5 4 0 9 4 3 1 5 F 

1 . 2 4 9 7 4 * 4 6 F 

1 . 0 1 2 2 0 0 3 6 F 

8 . 1 9 0 1 5 9 2 0 F -

6 . 6 2 2 3 7 6 4 4 F -

5 . 35201907F-

4 . 3 2 3 8 0 4 3 8 F -

3 . 4 Q 2 2 3 7 3 3 F -

2 .82008Q46F-

2 . 2 7 7 0 1 8 4 3 F -

1 . 8 3 8 3 6 2 8 1 F -

1 . 4 8 4 1 1 5 1 2 F -

1 . 1 9 8 0 7 5 4 1 F -

00 

no 

00 

00 

00 

00 

00 

00 

00 

00 

00 

- 0 1 

- 0 1 

-01 

- 0 1 

- 0 1 

-01 

-01 

- 0 1 

- 0 1 

-01 

1 . 3 8 6 3 9 0 6 9 F 0 0 

7 . 6 8 2 5 1 1 8 1 F - 0 1 

4 . 2 7 6 3 2 7 4 9 F - 0 1 

2 . 3 Q 6 4 0 1 7 6 E - 0 1 

1 . 3 5 5 8 7 9 O 0 P - 0 1 

7 . 7 7 4 5 4 9 T 2 C - 0 2 

4 . 5 3 8 6 4 0 7 5 F - 0 2 

2 . 7 1 1 9 6 2 5 4 F - 0 2 

1 . 6 6 7 7 8 7 1 3 F - 0 2 

1 . 0 6 0 6 8 8 5 0 F - 0 2 

6 . 9 9 7 9 1 M 2 F - 0 3 

4 . 7 9 2 2 1 7 1 7 F - 0 3 

3 . 3 9 9 2 5 4 5 2 E - 0 3 

2 . 4 8 7 0 5 4 3 3 F - 0 3 

1 . 8 6 6 9 3 2 4 9 F - 0 3 

1 . 4 2 9 O Q 8 7 8 F - 0 3 

1 . U 2 1 4 3 9 7 F - 0 3 

S . 7 4 6 4 5 7 7 5 F - 0 4 

6 . 9 3 3 8 0 1 3 4 F - 0 4 

5 . 5 2 7 7 R 1 3 2 F - 0 4 

4 . 4 2 4 1 3 1 4 8 E - 0 4 

2. s/360 CSMP 

This simulation language is described by Brennan and Silberberg 
(1968), and in IBM Application Program Manuals H20-0240-1 and 
H20-0367-3, the last being a user's manual with full details. 

a. Elements of the Language. Numeric constants are either integer or 
real, and represented essentially as in Fortran. Symbolic names of one to 
six alphameric (alphabetic A through z, numeric 0 through 9) characters 
are used to represent real variables. Certain words reserved by the 
language are exluded as symbolic names. Integer variables are specified 
with a FIXED translation control statement (one of the kinds of control 
statements used to specify operations associated with translation, 
execution, and output segments of a program). Symbolic names can be 
subscripted according to the normal rules of Fortran. Operators [ + , —, 
*> /> **> = , ( )] are as in Fortran, including the order in which they are 
performed. 

86 
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Functions are operators which perform complex mathematical or other 
simulation-relevant operations. The basic s/360 CSMP library includes all 
the standard functions found in analog computers, plus a number of 
special purpose functions often encountered in simulation problems. 
Additional functions can also be supplied by the user. Examples from the 
standard library include those listed in Table VII. 

TABLE VII 

Name of function 

Integrator 

Derivative 

Time delay 

Function switch 

Comparator 

Arbitrary function 
generator (linear 
interpolation) 

Arbitrary function 
generator 
(quadratic 
interpolation) 

Step function 

Ramp function 

Sine wave with 
delay, frequency, 
and phase 
parameters 

Largest value (real) 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

General form 

= INTGRL(IC, X) 
where: ic = Y(0) 

== DERIV(lC, X) 

where: ic = x(0) 
= DELAY(N, P, X) 

where: N = number 
of points in interval P ; 
p = delay time 

= FCNSW(XX , x2 , x 3 , x4) 

= C O M P A R A , X2) 

= AFGEN(FUNCT, X) 

= NLFGEN(FUNCT, X) 

= STEP(P) 

= RAMP(P) 

= S INE(P! , P 2 , P 3 ) 
where: PX = delay, 
p2 = radian 

frequency, 
p3 = phase shift 

= AMAX1(XX , x2 , . . . , xn) 

Y = 

Y = 

Y(t) 
Y(t) 

Y = 
Y = 
Y = 
Y = 
Y = 
Y = 

Y = 

Y = 
Y = 
Y = 
Y = 
Y = 
Y = 

Y = 

Operation 

ic + \l Xdt 
J 0 

dX/dt 

= X(t - P) when t > P 
= 0 when t < P 

X2 when Xx < 0 
X3 when Xx = 0 
Xi when Xx > 0 
0 when Xx < X2 

1 when Χγ > X2 

F U N C T ( ^ ) 

FUNCT(X) 

0 when t < P 
1 when t > P 
0 when t < P 
t — P when t > P 
0 when t < P1 

S I N ( P 2 ( Î - P 1 ) + P 3 ) when t > P1 

ΜΑΧ(ΑΊ , Χ2 ,..., Xn) 

The first word of s/360 CSMP data and control statements is a label. 
It identifies the statement as of a particular type. Examples include 
TITLE, INITIAL, INCON, CONSTANT, DYNAMIC, FIXED, MACRO, PARAMETER, 
PRINT, PRTPLOT, LABEL, TERMINAL, TIMER, END, STOP, ENDJOB. S o m e of 
these labels will be explained in an example later. 
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b. Program Structure. The s/360 CSMP formulation of a model consists 
of three program segments, identified by statements containing the labels 
INITIAL, DYNAMIC, and TERMINAL. Computations preliminary to solving 
the system differential equations are performed in the INITIAL segment, 
and subsequent ones in the TERMINAL segment. The equations are solved 
numerically in the DYNAMIC segment. The INITIAL and TERMINAL 
segments are optional in a program, but the DYNAMIC segment is 
mandatory. An END statement is used to complete specification of the 
model's structure. 

Structure statements define the model to be simulated. They have the 
general form Y = f(Xx , X2 ,···> Ρχ, Ρ% >···)> where Xys are inputs, 
P's parameters, and Y the output from the "device" (e.g., a function) 
represented by the structure statement. Examples of structure statements 
include 

NDOT = R * N 
FIJ = PHIIJ * XI * XJ 

X2DOT = F02 + TAU12 * xl — x2 * (RHO20 + MU25 + TAU23) 
x2 = INTGRL (IC2, X2DOT) 

In general, rules for structure statements follow those for Fortran 
statements. Some particular points are: (1) If an INTGRL function is 
included in an expression, it must be the rightmost part of the expression 
(e.g., z = INTGRL (ic, x) + Y is incorrect, but z = Y + INTGRL (IC, X) 
is correct). (2) Continuation cards are identified by " · · · " as the last entry 
on cards which precede them. There may be up to nine cards in a 
statement. Cards should not be continued in the middle of variable 
names or constants. (3) Comment cards are denoted by an asterisk in 
column 1. (4) As in Fortran, columns 73-80 are not processed by the 
compiler. 

c. Data Statements. Data statements are used to assign numerical 
values to constants, parameters , initial condit ions, and variables with 
fixed values dur ing a run. Referring to data for the Silver Springs linear 
model (Section I I I .H and IV.C) , some sample data s ta tements are 

PARAMETER All = - 6 . 0 8 , A22 = -15 .78 , A33 = —6.179,... 
A44 = -2 .142 , A55 = - 1 8 8 . 6 

CONSTANT F01 = 20810., TAU12 = .84, M U 1 5 = 1.01,... 
RHOIO = 3.5, LAMDIO = .73,... 
F 0 2 = 486., TAU23 = 1.79, MU25 = 5.13, RHO20 = 8.86,... 
TAU34 = .339, MU35 = .74, RHO30 = 5.1, MU45 = .676,... 

RHO40 = 1.466, RHO50 = 188.6 

iNCON ici = 3421.26, ic2 = 213.44, ic3 = 62.06,... 
ic4 = 8.87, ic5 = 24.38 
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Some rules for data statements include: (1) Each data type is identified by 
an appropriate label, such as PARAMETER, CONSTANT, and INCON, among 
others. The label does not have to start in column 1, but it must be 
followed by at least one blank before data is entered. (2) Data statements 
may be continued on an indefinite number of cards. (3) Data may appear 
anywhere on a card following the card label. (4) Unlike Fortran, data-
card columns 73-80 are not processed by s/360 CSMP. 

d. Control Statements. Certain operations related to translation, 
execution, and output segments of a program are specified by control 
statements. 

TRANSLATION CONTROL STATEMENTS 

EXAMPLE LABELS PURPOSE 

FIXED Converts real variables to integer variables. 
MACRO These labels identify a group of statements 

*: defining a "MACRO," a large functional 
ENDMAC block constructed by the user. 
INITIAL These three labels identify the major 
DYNAMIC segments of the program. 
TERMINAL 

END This statement marks completion of the 
model's structural description. 

CONTINUE Replaces the END card when a run is to 
continue from some arbitrary point where 
a preceding run terminates. Neither time 
nor ic's are initialized. This statement 
allows a control statement to be changed 
during a simulation. 

SORT These cards determine whether a sequence 
NOSORT of cards is to be machine-sorted into 

correct order or not. 
STOP This card follows the last END statement in 

the program. 
ENDJOB This card denotes the end of a job and 

must follow the STOP card (or otherwise 
any Fortran subroutine used). The label 
ENDJOB must be punched in columns 1-6. 
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EXECUTION CONTROL STATEMENTS 
TIMER This label is used (e.g., TIMER FINTIM = 

10., DELT = .001) with the following 
csMP-specified variables: 

PRDEL Output print increment 
OUTDEL Print-plot output print increment 
FINTIM Maximum time for simulation 
DELT Integration step-size, At. If DELT 

is not specified, it is automatically 
set equal to the smaller of PRDEL 
and OUTDEL. If neither of these is 
specified, DELT is adjusted to be a 
submultiple of FINTIM/100 

DELMIN Minimum allowable integration 
interval for variable-step integra-
tion methods. 

FINISH Used to specify run-terminating condi-
tions other than FINTIM. 

RELERR Used to specify relative error when 
variable-step integration methods are used. 

ABSERR Controls absolute error when the Runge-
Kutta variable-step method is used. 

METHOD Used (e.g., METHOD MILNE) to specify the 
integration routine used. If none specified, 
the RKS method is used. Integration-
method labels are: 
ADAMS Eqs. (2) 

CENTRL A dummy routine to be replaced 
by a user-supplied method 

MILNE Eqs. (6), variable-step 

RECT Eqs. (1) 

RKS Eqs. (8), variable-step, Simpson's 
Rule to estimate error 

RKSFX Eqs. (8), fixed integration interval 
SIMP Eqs. (7) 

TRAPZ Eqs. (10). 
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OUTPUT CONTROL STATEMENTS 

PRINT Specifies variables whose values are to be 
printed at each PRDEL interval. 

TITLE For naming the program, etc. 

PRTPLOT Specifies variables whose values are to be 
print-plotted (e.g., Table VIII) at each OUTDEL 
interval. 

LABEL Used to specify headings for each page of 
print-plot output. Up to 10 per run 
permitted. 

RANGE Used to obtain maximum and minimum 
values of specified variables (done auto-
matically for PRTPLOT variables). 

Example 14 

A s/360 CSMP program to obtain the free response of the Silver Springs 
linear model (Sections III.H and IV.C) by the Milne method is as 
follows: 

TITLE SILVER SPRINGS LINEAR SYSTEM 

* INITIAL PROGRAM SEGMENT. 
INITIAL 

* ENTER DATA. 
INCON ici = 3421.26, ic2 = 213.44, ic3 = 62.06, ic4 = 8.87, ic5 = 24.38 
CONSTANT FOI = 0., F02 = 0., TAU12 = .84, TAU23 = 1.79, TAU34 = .339,... 

MU15 = 1.01, MU25 = 5.13, MU35 = .74, MU45 = .676,... 

LAMDIO = .73, RHOIO = 3.5, RHO20 = 8.86, RHO30 = 5.1,... 
RHO40 = 1.466, RHO50 = 188.6 

* COMPUTE MINUS TURNOVER RATES (A-MATRIX ELEMENTS). 

All = —(TAU12 + MU15 + LAMDIO + RHOIO) 

A22 = —(TAU23 + MU25 + RHO20) 

A33 = —(TAU34 + MU35 + RHO30) 

A44 = —(MU45 + RHO40) 

A55 = —RHO50 

* DYNAMIC PROGRAM SEGMENT. 
DYNAMIC 

Xl = INTGRL (ICI, FOI + Al l * Xl) 
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x2 = iNTGRL (ic2, F02 + TAU 12 * xl + A22 * x2) 
x3 = INTGRL (ic3, TAU23 * x2 + A33 * x3) 

x4 = INTGRL (ic4, TAU34 * x3 + A44 * x4) 

x5 = INTGRL (ic5, MU15 * xl + MU25 * x2... 

+ MU35 * x3 + MU45 * x4 + A55 * x5) 

suMx = xl + x2 + x3 + x4 + x5 

* NO TERMINAL PROGRAM SEGMENT REQUIRED. 

* SPECIFY INTEGRATION METHOD. 

METHOD MILNE 

* SPECIFY OUTPUT (PRINT-PLOT EACH X AND PRINT SUMX ALONGSIDE). 

PRTPLOT Xl (SUMX) 

LABEL Xl 

PRTPLOT X2 (SUMX) 

LABEL X2 

PRTPLOT X3 (SUMX) 

LABEL X3 

PRTPLOT X4 (SUMX) 

LABEL X4 

PRTPLOT X5 (SUMX) 

LABEL X5 

* SPECIFY RUN TIME AND PRINT-PLOT INCREMENT (DELT ADJUSTS 

* AUTOMATICALLY). 

TIMER FINTIM = 2 . 5 , OUTDEL = 0 . 1 

END 

STOP 

ENDJOB 

The free response of the Silver Springs system, as computed by this 
program, is print-plotted in Table VIII, along with a printed output of 
SUMX. These results should be compared with behavior computed by the 
Euler method (Table V) and by the matrix exponential method 
(Table VI). 

Exercise 13 

(1) Write a s/360 CSMP program to solve the Silver Springs nonlinear 
system (Sections III.H and IV.C) by the fourth-order Runge-Kutta 
fixed step-length routine. Generate system behavior for lOyr, and print 
the results out at intervals of 0.2 yr. 
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TABLE VIII 

FREE RESPONSE OF SILVER SPRINGS LINEAR SYSTEM BY S / 3 6 0 CSMP" 

MINIMUM XI VERSUS TIME MAXIMUM 
8 . 5 S 7 6 F - 0 4 3 . 4 2 1 3 E 03 

TIME X I I I SUMX 
0 . 0 3 . 4 2 1 3 F 03 ♦ 3 . 7 3 0 0 E 03 
1 . 0 0 0 0 F - 0 1 1 . B627E 03 «■ 2 . 0 8 7 5 E 03 
2 . 0 0 0 0 E - 0 1 1 .0141E 03 ♦ 1 . 1 6 0 B E 03 
3 . 0 0 0 0 E - 0 1 5 . 5 2 1 1 E 02 ♦ 6 . 4 4 7 8 E 02 
4 . 0 0 0 0 E - 0 1 3 .0G59F 02 ♦ 3 . 5 8 7 5 E 02 
5 . 0 0 0 0 E - 0 1 1 .6365F 02 — ♦ 2 . 0 0 3 1 E 02 
6 . P 0 C 0 F - 0 1 3. 909BF 01 - ♦ 1 . 1 2 4 7 E 02 
7 . 0 0 0 0 E - 0 1 4 . 8 5 0 8 F 01 ♦ 6 . 3 6 6 3 E 0 1 
8 . 0 0 C 0 E - 0 1 2 . 6 4 1 0 E 01 ♦ 3 . 6 4 4 8 E 01 
9 . 0 0 P 0 E - P 1 1 .4378F 01 ♦ 2 . 1 1 9 3 E 01 
1 .0000E 0 0 7 .R281E 00 ♦ 1 . 2 5 7 8 E 01 
L 1 0 C 0 F 00 4 . 2 6 1 9 F 01 ♦ 7 . 6 6 0 3 E 00 
1.20CCF CO 2 . 3203F 00 ♦ 4 . 8 U 5 E 00 
1 .3000E 00 1 .2633E 00 ♦ 3 . 1 2 9 0 E 00 
1.400CF CO 6 . B 7 7 7 E - 0 1 ♦ 2 . 1 1 0 6 E 00 
1.5000E CO 3 . 7 4 4 5 F - 0 1 * 1 . 4 7 5 5 E 0 0 
1 . 6 0 0 0 F 00 2 . 0 3 8 6 E - 0 1 ♦ 1 . 0 6 5 2 E 00 
1.70C0E 00 1 . 1 0 9 9 E - 0 1 «· 7 . 9 1 1 0 E - 0 1 
1.800CE CO 6 . C 4 2 7 E - 0 ? ♦ 6 . 0 0 7 1 E - 0 1 
1 . 9 0 0 0 F 00 3 . 2 8 9 8 E - 0 2 ♦ 4 . 6 3 8 9 E - 0 1 
2.OOC0E CO 1 . 7 9 1 1 F - 0 2 ♦ 3 . 6 2 9 3 E - 0 1 
2 .10C0E 00 9 . 7 5 1 5 F - 0 3 ♦ 2 . 8 6 7 5 E - 0 1 
2 .200CE 03 5 . 3 0 9 0 E - 0 3 ♦ 2 . 2 8 0 6 E - 0 1 
2.3OC0F CO 2 . 89O4F-03 ♦ 1 . 8 1 9 5 E - 0 1 
2 . 4 3 0 0 E 00 1 . 5 7 3 7 F - 0 3 ♦· 1 . 4 6 0 5 E - 0 1 
2.50CCE 0 ^ 8 . 5 6 7 6 F - 0 4 ♦ i . 1 7 3 6 E - 0 1 

TIMF 
0 . 0 
1 . 0 0 0 0 F -
2.O0C0E-
3 . 0 0 0 0 E -
4 . 0 0 0 0 F -
5.00CCF-
6.O0C0F-
7 . 0 0 0 0 E -
B .ODOE-
9 . 0 0 0 0 E -
1.00C0F 
1.100OF 
1 . 2 0 0 0 F 
1 .3000F 
1 .4000F 
l.«50C0E 
1 .600 0E 
1 .7000E 
1.8OC0F 
1.9000E 
2 . 0 0 0 0 E 
2 . I O C OF 
2 . 2 0 0 IF 
2 . 3 0 C 0 F 
2.40GCF 
2 .50C0E 

-0 1 
- 0 1 
- 0 1 

- 0 1 

- 0 1 
- 0 1 

- 0 1 

- 0 1 

- C l 

oo 
CO 

on 
oo 
CO 
0 0 
0 0 

0 0 

0 0 
CO 

CO 

0 0 

0 0 

CO 

0 0 

0 0 

MINIMUM X2 VERSUS T IME 
7 . 4 

X2 
2 . 1 3 4 4 F 02 
1 .4421F 02 
8. 4291E 01 
4 .70R4E 01 
2 . 5 8 8 0 E 0 1 
1 .4141F 01 
7 .7093E 00 
4 . 1 9 9 4 E 00 
2 . 2868E 00 
1 .2451E 00 
6 . 7 7 8 8 E - 0 1 
3 . 6 9 0 7 F - 0 1 
2 . 0 0 9 4 E - 0 1 
1 . 0 9 4 0 E - 0 1 
5 . 9 5 5 9 E - 0 ? 
3 . 2 4 2 6 F - 0 2 
1 . 7 6 5 4 F - 0 ? 
9 . 6 1 1 5 F - 0 3 
5 . 2 3 2 R F - 0 3 
2 . 8 4 8 9 E - 0 3 
1 . 5 5 1 1 E - 0 3 
8 . 4 4 4 Λ Ε - 0 4 
4 . 5 9 7 5 F - 0 4 
2 . 5 0 3 0 E - 0 4 
1 . 3 6 2 8 E - 0 4 
7 . 4 1 9 3 E - 0 S 

1 9 3 F - 0 5 
1 

4. 
— + 

f 
- «■ 
♦ 

f 
*■ 

♦ 

f 

♦ 

♦ 

* + 
*■ 

*■ 

+ 
*■ 

■f 
♦ 
♦■ 

♦ 

♦ 

♦ 

* 

MAXIMUM 
2 . 1 3 4 4 E 02 

1 SUMX 
3 . 7 3 0 0 E 03 
2 . 0 8 7 5 E 03 
1.16C8E 03 
6 . 4 4 7 8 E 02 
3 . 5 8 7 5 E 02 
2 . 0 0 3 1 E 02 
1 . 1 2 4 7 E 02 
6 . 3 6 6 3 E 01 
3 . 6 4 4 8 E 01 
2 . 1 1 9 3 E 01 
1 . 2 5 7 8 E 01 
7 . 6 6 0 3 E 00 
4 . 8 1 1 5 E 00 
3 . 1290E 00 
2 . 1 1 0 6 E 00 
1 . 4 7 5 5 E 00 
1 .0652E 00 
7 . 9 1 1 0 E - 0 1 
6 . 0 0 7 1 E - 0 1 
4 . 6 3 8 9 E - 0 1 
3 . 6 2 9 3 E - 0 1 
2 . 8 6 7 5 E - 0 1 
2 . 2 8 0 6 E - 0 1 
1 . 8 1 9 5 E - 0 1 
1 . 4 6 0 5 E - 0 1 
1 . 1 7 3 6 E - 0 1 

a Results obtained by the Milne method. 
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TABLE VIII (continued) 

MINIMUM 
3 . 0 3 2 3 E - 0 4 

X3 VERSUS TIME MAXIMUM 
6. 2060E 01 

TIMF X3 I I SUMX 
0 . 0 6 . 2 0 6 0 E 01 ♦ 3 . 7 3 0 0 E 03 
1 . 0 0 0 0 F - 0 1 «5.704«F 01 ♦ 2 . 0 8 7 5 F 03 
2 . 0 0 0 0 F - C 1 4 . 5 3 3 5 F 01 «■ 1 . 1 6 0 8 E 03 
3 . 0 0 0 0 Ε - Π 1 3 . 273ΛΕ 01 ♦ 6 . 4 4 7 8 E 02 
4 . 0 0 0 0 F - 0 1 2.223RE 01 ♦· 3 . 5 8 7 5 E 02 
5 .00COF-^1 1 .4503E 01 ♦ 2 . 0 0 3 1 E 02 
6 . 0 D C 0 E - 0 1 9 . 1 9 0 5 E 00 ♦ 1 . 1 2 4 7 E 02 
7 . 0 0 0 0 F - C I 5. 7022E 00 «■ S.3663E 01 
e .OOOOF- 'U 3 . 4 8 1 2 F 00 - - ♦ > .6448E 0 1 
9 . 0 0 0 0 F - 0 1 2 . 0 9 8 4 F 00 - + 2 . 1 1 9 3 E 01 
l.OOOOF 00 1 . 2519E 00 -*■ 1 . 2 5 7 8 E 01 
1 .1000F 00 7 . 4 0 6 0 E - 0 1 ♦ 7 . 6 6 0 3 E 00 
I . 20C0F 00 A. 3 5 0 3 E - 0 1 ♦ 4 . 8 1 1 5 E 00 
1 .3000E 0 0 2 . 5 4 C 0 E - 0 1 «■ 3 . 1 2 9 0 E 00 
1 . 4 0 0 0 F 00 1 . 4 7 5 3 F - 0 1 ♦ 2 . 1 1 0 6 E 00 
1 . 50C0E 00 8. 5306E-02 ♦ 1 .4755E 00 
1 . 6 0 0 0 E 0 0 4 . 9 1 3 0 E - 0 2 ♦ 1 . 0 6 5 2 E 00 
1 .70C0F 00 2 . 8 1 9 7 E - 0 2 ♦ 7 . 9 1 1 0 E - 0 1 
1 .8000E 00 1 . 6 1 3 2 E - 0 ? ♦ 6 . 0 0 7 1 E - 0 1 
1 .9000E 0 0 9 . 2 0 3 9 E - 0 3 ♦ 4 . 6 3 8 9 E - 0 1 
2 . 0 0 0 0 E CO 5 . 2 3 7 R E - 0 3 + 3 . 6 2 9 3 E - 0 1 
2 . 1 0 0 0 F 00 2 . 9 7 4 0 E - 0 3 ♦ 2 . 8 6 7 5 E - 0 1 
2 . 2 0 0 0 F 00 1 . 6 8 5 1 F - 0 3 ♦ 2 . 2 8 0 6 E - 0 1 
2 . 3 0 0 0 F CO 9 . 5 2 9 7 F - 0 4 ♦ 1 . 8 1 9 5 E - 0 1 
2 . 4 0 0 0 F 00 5 . 3 7 9 9 F - 0 4 ♦ 1 . 4 6 0 5 E - 0 1 
2 . 5 0 0 0 F 00 3 . 0 3 2 3 E - 0 4 + 1 . 1 7 3 6 E - 0 1 

TIME 
0 . 0 
i.OOOOE-
2 . 0 0 0 0 F -
3.00COE-
4 . 0 0 0 0 F -
5 .00C0E-
6 ,000OE-
7 .00C0F-
8.C0C0E-
9 . 0 0 0 0 E -
l.OOOOF 

l . iorcF 
1 . 2 ) C 0 E 
1.300CE 
1.40CCF 
1.50CÛF 
1.60COE 
1 .7300F 
1 .8000E 
I . 900 OF 
2.00ΓOF 
2 .10C0E 
2 . 2 0 0 0 E 
2 .?0C0E 
2 .400CF 
2 . 5 0 0 0 E 

-01 
-Cl 
■Ci 
-01 
-01 
-01 
-01 
- 0 1 
-01 
00 
00 
0 0 
00 
00 
00 
no 
or» 
00 
00 
00 
00 
00 
GO 
00 
CO 

X 
8 . 
8 . 
8 . : 
8 . 
7 , 
6 . 1 

5. 
4 . 
4 . 
3. 
2 . 
2 . 
1 . 
1 . 
1 . 
9 . 
7 . ' 
6. 
5 . 
4 . 
3 . 
2 . 
2 . 
1 . 
1 . 
1 . 

MINIMUM X4 VERSUS TIME MAXIMUM 
I . 1560F-01 8.9986E 00 

4 I I SUMX 
R700F 00 * 3 . 7 3 0 0 E 03 
9986F 00 ♦ 2 . 0 8 7 5 E 03 
8279E 00 + 1 . 1 6 0 8 E 03 
3071E 00 ♦ 6 . 4 4 7 8 E 02 
5315E 00 ♦ 3 . 5 8 7 5 E 02 
6288F 00 ♦ 2.0031E 02 
7039F 00 f 1 . 1 2 4 7 E 02 
8256F 00 ♦ 6 . 3 6 6 3 E 01 
0314E 00 ♦ 3 . 6 4 4 8 E 01 
3368E 00 «■ 2 . 1 1 9 3 E 0 1 
7430E 00 ♦ 1 . 2 5 7 8 E 01 
2435E 00 «■ 7 . 6 6 0 3 E 00 
8283E 00 «■ 4 . 8 1 1 5 E 0 0 
4859F. 00 ♦ 3 . 1290E 00 
2053E 00 *■ 2 . 1 1 0 6 E 00 
7 6 3 6 E - 0 1 ♦ 1 . 4 7 5 5 E 00 
9 0 0 8 E - 0 1 + 1 . 0 6 5 2 E 00 
3 8 8 8 E - 0 1 —*■ 7 . 9 1 1 0 E - 0 1 
1 6 3 5 F - 0 1 - - ♦ 6 . 0 0 7 1 E - 0 1 
1 7 1 6 E - 0 1 - ♦ 4 . 6 3 8 9 E - 0 1 
3 6 9 4 E - 0 1 - ♦ 3 . 6 2 9 3 E - 0 1 
7 2 0 9 E - 0 1 + 2 . 8 6 7 5 E - 0 1 
1 9 7 0 F - 0 1 ♦ 2 . 2 8 0 6 E - 0 1 
7 7 3 8 F - 0 1 ♦ 1 . 8 1 9 5 E - 0 1 
4 3 2 0 E - 0 1 ♦ 1 . 4 6 0 5 E - 0 1 
1 5 6 0 E - 0 1 ♦ 1 . 1 7 3 6 E - 0 1 
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TABLE VIII (continued) 

95 

X5 

TIMF 
0 . 0 
l . O O O F 
2.C0C0E 
3 . 0 0 0 0 F 
4 . 00C OF 
5.000OE-
6 .00C0F-
7 .00C0F 
8 .C000E 
9 .00C0E 
1 . O 0 0F 
1 . 1 0 0 0 E 
1 .20C0E 
1.30CCF 
1 . 4 0 0 0 F 
1.50CCF 
1.60COE 
1 . 7 0 0 0 F 
1 .8000E 
1 .90C0F 
2 . 0 ) C O F 
2 . IOC OF 
2.2">C0F 
2.30POE 
2 . 4 0 0 0 F 
2.50COF 

VIIL 

- 0 1 

Λ1 

- 0 1 

- 0 1 
- 0 1 

- 0 1 

- 0 1 
- 0 1 

0 0 
0 0 

f 0 
CO 

0 0 
CO 

ÜO 

no 
0 0 

0 0 

0 0 

CO 

0 0 

CO 

CO 

0 0 

PAGE 1 

MINIMUM X5 VFRSUS TIME MAXIMUM 
3 . 

X«5 
2 . 4 3 8 0 F 01 
1.45Q1E 01 
8. 1962E 00 
4 . 5 3 8 2 F 00 
?.. 5070F 00 
1 .3848F 00 
7 . 6 7 1 6 E - 0 1 
4 . 2 7 0 7 E - 0 1 
2 . 3 P 1 6 F - 0 1 
1 . 3 4 9 3 E - 0 1 
7. 7 4 3 2 F - 0 2 
4 . 5 2 4 1 E - 0 ' 
2 . 6 8 5 6 E - 0 2 
1 . 6 3 7 4 F - 0 ? 
1 . C 4 3 4 E - 0 2 
6 . Q 2 7 6 E - 0 3 
4 .433<5E-03 
3 . 4 2 3 0 F - O 3 
2 . 5 6 7 0 F - 0 3 
1 . 7 7 3 3 F - 0 3 
1 . 2 8 8 7 F - 0 3 
1 . 0 8 1 6 F - 0 3 
9 . 0 5 1 1 F - 0 4 
4 . 8 3 4 3 E - 0 4 
6 . 0 3 C 0 E - 0 4 
5 . 2 7 0 0 E - 0 4 

4 4 7 3 E - 0 4 
I 

+ 
— f 
- ■f 
♦ 

* ♦ 

f 

·♦■ 

♦ 

f 

♦ 

+ 

♦ 

♦ 

f 

♦■ 
+ 

«■ 
*■ 

+ 

f 

♦ 

Answers to Exercises 

Exercise 1 

2 . 4 3 80E 01 
I SUMX 

♦ 2 .C875E 03 
1 . 1 6 0 8 E 03 
6 . 4 4 7 8 E 02 
3 . 5 8 7 5 E 02 
2 . 0 0 3 1 E 02 
1 . 1 2 4 7 E 02 
6 . 3 6 6 3 E 01 
3 . 6 4 4 8 E 01 
2 . 1193E 01 
1 .2578E 01 
7 . 6 6 0 3 E 00 
4 . 8 1 1 5 E 00 
3 . 1 2 9 0 E 00 
2 . 1 1 0 6 E 00 
1 .4755E 00 
1 . 0 6 5 2 E 00 
7 . 9 1 1 0 E - 0 1 
6 . 0 0 7 1 F - 0 1 
4 . 6 3 8 9 E - 0 1 
3 . 6 2 9 3 E - 0 1 
2 . 8 6 7 5 E - 0 1 
2 . 2 8 0 6 E - 0 1 
1 . 8 1 9 5 E - 0 1 
1 . 4 6 0 5 E - 0 1 
1 . 1 7 3 6 E - 0 1 

(1) (a) See Fig. 63 (b) E0 = -(E, + 0ΛΕ2) 
(2) (a) See Figs. 64-66 

(b) (i) E0 = -Ex (iii) E0 = - (10* + OAy + z) 
(ii) E0 = -10E, 

FIG. 63 

100 K 

r V W 

100 K 

x-
y 

FIG. 64 

( i i i ) 
10 K 

100 K 

100 K 
Γ Λ Λ Λ Π 

o 
FIG. 65 FIG. 66 
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Exercise 2 

(1) (a) 1/(106 · 10-5) = 
(b) 1/(104 · 10-*) = 

(2) See Fig. 67 
(3) (a) See Fig. 68 

(b) See Fig. 69 

1/10 
100 

(c) 
(d) 

(c) 1/(103 · 10-6) = 
(d) 1/(105 · 10-5) = 

See Fig. 70 
See Fig. 71 

1000 
1 

£"(0) 

Jo 

FIG. 67 

HOZ 

-\0x 

0> 
FIG. 68 

1, 

-y—m 

1.0 

FIG. 70 

Exercise 3 

(1) (a) E0 = -0 .43* 
(b) E0 = - ( a x + 2by) 
(c) E0 = -(-50ax + 300y) 

" T 
10K 1 

(2) 

(d) E0 

(e) E0 

(f) E0 

(a) 
(b) 
(c) 

re 

FIG. 69 

Ar 

- ( -5Qjc-506y-10e) 
-(lOx+O.ly+IOz) 

-(10* + 10j)/a 
See Fig. 72 (d) See Fig. 75 
See Fig. 73 (e) See Fig. 76 
See Fig. 74 (f) See Fig. 77 

FIG. 71 

(g) E0=-(lObx+y)llOb 
(h) E0= \Oa(x-y) 
(i) E0 — I0a(x — y) 
(j) E0 = lObx - (b*la)y 
(k) E0=-!l(Sx-5y+aE0)dt 
(1) E0 = (E0 - \Oax)/b 
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10 

FIG. 72 

V 
z -

1 

■ & 

FIG. 73 

v 
z 

1hv * 

£> 3 ^ i 
C^J 

FIG. 74 FIG. 75 

FIG. 76 

r^0> 
-o1—o 

FIG. 77 

Exercise 4 

(1) See Fig. 78 (3) See Fig. 80 
(2) See Fig. 79 (4) See Fig. 81 

*/1° ιΓΚ 
- i o — O " - ^ ! / — x - k t 

FIG. 78 

4/10( ) 10 

<f—cv 
- * = 4s in Vcu/' 

FIG. 79 
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-10 

i f h v /V(/) = /V(0)* rt 

^ ^ 

FIG. 80 

+ /!/(/) 

^Η>—# 

+ /-/!/(1-/V//T) 

£ 
Q^^i 

ΧΗ>ι 
l//C 

+ 10- o—1 

-rN{\-N/K) 

(1-/1///T) 

FIG. 81 

Exercise 5 

(1) Model II: Fig. 82; Model III: Fig. 83 

^ 0 1 <-Ό2 ^Ctt ϋ0 4 «̂ Οδ 

I > l̂O>i I * 2 0 / 2 I λ 3 θ / 3 I ^ 4 0 ^ I λ 5 θ / 5 

δ„/9 

«26 X 

14 

« 3 6 / , « 4 6 ^ 

8s 7 yt 

λ 9 0 / 9 /XeoJJ | yXroy7 

SesJÉ δ 7 β / 7 

F IG. 82 
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> % i 

J λ40ζ4 

Γ4 / «24*2 

FIG. 83 

(2) Model II: 

j l = ^ 0 l ( 0 + δ91^9 - (δ12 + λ10)>Ί 

}h = G^if) + δ12>Ί — (δ23 + *26 + ^0)^2 

$3 = ^03(0 + δ23^2 — (δ34 + Hß + A3o)j3 

& = G 0 4 ( 0 + δ34^3 - (δ45 + *46 + λ4θ) Ĵ t 

J5 = G J O + δ453>4 - λ50>/5 

Je = €2β^2 + €36^3 + ^46^4 ~ (δ67 + λ6θ) 3>6 

$1 = 8 β 7 ^ β - ( 8 7 8 + λ 7 0 ) 3 ' 7 
J8 = « 7 8 ^ 7 - ( δ 8 9 + λ 8 0 )^ 8 

Λ> = δ 8 9 ^ 8 - ( δ 9 1 + λ 9 θ ) ^ 9 

Model III: 

*1 = # 0 ΐ ( 0 + δ41*4 - (δ12 + λ10) *ι 

ζ2 = H02(t) + 812ζ1 — (δ23 + €24 + λ20) ζ2 

* 3 == " 0 3 W I "23*2 ^30*3 

* 4 = €2 4 * 2 ("41 ~Γ ^40 / * 4 

(3) Model II (initial conditions omitted): Fig. 84 

Model III (initial conditions omitted): Fig. 85 

Exercise 6 

(1) The original program (Section IV.D) has more than one 
rate constant lumped on a potentiometer in many cases, e.g., au = 
—(Ti2 + ΗΊΒ + λιο + Ριο)> α22 = ~(τ23 + /*25 + P2o)> e t c · T o represent 
these individually by separate potentiometers in effect removes con-
straints on the potentiometers. For example, in the program of Section 
IV.D the potentiometer labeled ".608" represents — (0.1an), where 
alx = —(r12 + /x15 -f λ10 + Pio)· The coefficient r12 also is represented 
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-Gw(t) 

FIG. 84 

-"οι('> u 
•H 

k>' 

fc<H 
11 

^ > 

-o 

FIG. 85 

-H03(t) 

U 

by the potentiometer labeled ".84." In simulation, any change in value 
of the ".608" pot may or may not imply a change in r12 . If it does, then 
the ".84" pot must be altered accordingly. If r12 is ever changed for a 
simulation run, then the alx pot must always be adjusted. Mutual 
dependency of potentiometers in a program creates operational problems, 
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and consequently is to be discouraged. In this example, only p10 and λ10 
can be lumped onto one potentiometer without impairing operational 
convenience. The disadvantage of not lumping parameters is, of course, 
that more potentiometers are required in a program, which may cause 
computer capacity to be exceeded. 

The scaled equations for Section IV.A can be rewritten as follows. 

[o^J = 5[σ^01] — ( τ 1 2 ) Μ - (/Χι5)Κ*ι] — (λ10 + Pio)l>A] 
= 10(.5)KF0J - (.84)K*J - 10(.101)[αΛ] - 10(.423)[αΛ] 

= 10(·5)[σΛι] - (τ12)[*Λ] - 10(/χ15/10)[αΛ] 
-10((λ10+/>10)/10)[αΛ] 

[ot2X2] = [a2F02] + lOir^oc^] — (r23)[oc2x2] — (/x25)|>2*2] — (p2o)[a2^] 
= [ < Ä I + 10(.84)[αΛ] - 10(.179)Κ*2] 

-10(.513)[α2*2] - 10(.886)[α2*2] 

= [<Α] + ιο(τ12)[αΛ] - ΙΟ(Τ23/ΙΟ)Κ*2] 
- ΐ0(/χ25/ΐ0)Μ2] - iO(P20/io)[V2] 

[a3*3] = 2.5(τ23)[α2*2] — (τ34)[α3*3] — (μ35)[(ΧΒΧ3] — (p3o)[a3^] 
= 25(.179)Μ2] - (.339)[<*Α] - (.74)[<χ3*3] - 10(.51)[α3*3] 

= 25(τ23/10)[α2λ:2] - (τ34)[αΑ] - (/x35)M3] ~ ^0(psol\0)[OLSX3] 

[α4Λ:4] = 10(r34)|>3*3] — (/χ45)Κ*4] — 0>4o)[a4*J 
= 10(.339)[aA] - (.676)[a4*J - 10(.1466)[α4*4] 
= 10(τ34)[α3λ:3] - (/x45)K*4] - 10(ρ40/10)[αΛ] 

M J = 100(/*15)[<*Λ] + ^(μ25)[α2Χ2] + 4(/χ35)[α3*3] 
+ 0.4(μ45)|>4*4] - (pm)[ocbx5] 

= 1000(.101)KJCJ + 100(.513)Κ*2] + 4(.74)[α3*3] 
+ 0.4(.676)Κ*4] - 1000(.1886)[α5*5] 

= 1000(/x15/10)K*J + 100(μ25/10)Μ2] + 4(μ35)[αΛ] 
+ 0.4(/χ45)Κ*4] - 1000(ρ50/1000)[α5*5]. 

The corresponding program (initial conditions omitted) is shown in 
Fig. 86. This diagram does not show how unusual gains (0.4, 4, 25, 100, 
1000) can be obtained. The program has to be modified (e.g., as in 
Section IV.D) to achieve this. 

(2) Scaled equations from the nonlinear system equations (Section 
III.H) are as follows. 
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FIG. 86 

(αι/σι)[σι^οι] - (τί2/α2)[α2*2][αΛ] — (μι5 ) [ αΛ] — (λιο + Ριο)[«ι*ι] 

5 |>Λι ] - 50(TÎ2)[a2x2][ai^i] — (/*i5)[>i*i] — (λιο + Ριο)[«ι*ι] 

5["Λι] - 50(.0039)[oc2x2][oc1x1] - 10(μ15/10)[αΛ] 

— 10((λ10 + Ρ ι ο ) / 1 0 ) Μ 

5[σΛι] - 1 0 ( 5 τ ί 2 ) Μ 2 ] Μ ι ] - 10(μ,15/10)[α1Λ:1] 

-10((λ1 0 + P X O V I O ) ^ ^ 

(α2/σ2)[σ2,Ρο2] + (^Wal)[ a2*2ÏÏ a l*l] — (T23/a3)[a3^3][a2^2] 

— (/χ2δ)[α2Λ:2] — (Ρ2θ)[α2^2] 

1|>2^02] + 500(τ;2)[α2^2][αι^ι] — 20(τ23)[α3^3][α2Λ;2] 

— (/*25)[α2*2] — (p2o)[0i2X2\ 

[σ2^02] + 500(Ό039)[α2*2]Κ*ι] - 20(Ό288)Κ*3]|>2*2] 

- 10(/χ25/10)Μ2] - 10(ρ2ο/10)Μ2] 

[σ2^02] + 100(5TÎ2)[a2*2][al*l] — 10(2τ23)[α3^3][α2Λ;2] 

- 10(/x25/10)[V2] - K W 1 0 ) K * 2 ] 

[otlXl] 

[oc2x2] 
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[Vz\ = ( ^ / ^ K ^ K 0 ^ ] — (T34K)K*4][a3*3] — (/*35)l>3*3] ~ (/°3θ)K^s] 
= 50(T23)[a3*3][a2*2] — ^DW^^s] — (μ35)[(χ3Χ3] — (pso)[oczX3] 

= 50(.02SS)[otzx3][oc2x2] - 2(.0382)K*4]K*3] 

— (^35)^3] — 10(p3o/10)Kx3] 

= 25(2τ23)[α3Λ:3][α2*2] ~ ( 2 T ^ K < ] K * 3 ] 

- (/^)[«3*3] - 10(p30/10)[a3x3] 

[«Ä] = (T34/a3)[a4^4][a3^3] — ( / ^ Κ ^ ] ~ (p4o)[a4^] 
= 20(T34)[a4x4][a3^3] — (/x45)[a4^4] — (?4o)l>4*4] 

= 20(.0382)M4]M3] - (/*«)[«Λ] - 10(p40/10)K*4] 
= 10(2T34)[a4^4][a3X3] - (/X45)[<*4*4] - 10(/θ4θ/10)[αΛ] 

K*5] = 1000(^15/10)[αΛ] + 100(^25/10)[«2χ2] + 4(^35)[V3] 
+ 0.40OK*4] - 1000(ρ50/1000)[αΑ] 

The program (without initial conditions) corresponding to these 
equations is shown in Fig. 87. 

FIG. 87 
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Exercise 1 

(1) (a) 7.84 (c) 7 . 8 4 E - 0 3 (e) I.E + 09 
(b) 7.84 (d) - 7 . 8 4 E - 0 5 (f) - 7 . 8 4 E + 09 

Unacceptable: (b) period (d) commas 
(c) comma (e) period 

Columnwise: z, r, r, u (too many characters); r> r, z, r\ r, u (special 
characters), r, i 

(2) 

(3) 

(4) (a 
(b 
(c 
(d 
(e 
(f 

(5) (a 
(b 

(c 
(d 
(e 
(f 

(g! 

(h 

(> 

Exercise 8 

x + Y ** 2 
(x + Y) ** 2 
x + Y/Z 
(X + Y)/Z 
l . + x + x ** 2/2.+X ** 3/3. 

(g) B = N 
A/(B— l.)*(4. *B **2+l . ) 

(h) ( 1 . /A**2)* (R /10 . )*A 

(i) A + X * (B + X * (C + D * X)) 
(j) SIN(X/2.)/COS(X/2.) 

( ( A + B ) / ( C - 3 . ) ) * ( 3 . * C + 2 . ) (k) 1. — EXP(—A * τ) 

(1) 1. + SIN(THETA) * cos(2. * PHI) ** 2 
A = 3.1416 * R ** 2 
c = K 
Y = — c * SIN(OMEGA * T ) 

J = (Q * P) /T; ; = (5 · 20)/3 = 100/3 = 33.333... = 33 
X = —B + SQRT(B ** 2 — 4. * A * C) 

ENDOT = R * EN 

C = K 
ENDOT = R * EN * ( (C — E N ) / C ) 

F ( I , J ) = P H I ( I , j ) * x(i) * x(j) (see Subscr ipted Variables, 
Section VI.I) 

X2DOT = F 0 2 + TAU 12 * x l — T A U 2 3 * x2 

— A M U 2 5 * x2 — R H O 2 0 * x2 

Y = .5 * L O G ( ( 1 . + S I N ( X ) ) / ( 1 . — S I N ( X ) ) ) 

MAKE THE VARIABLES N, NDOT, AND MU REAL. 

REAL Ν , N D O T , M U 

READ ( 5 , 1 0 0 ) BETA, MU, C, N 

100 FORMAT (4F10.0) 
COMPUTE GROWTH RATE CONSTANT. 

R = BETA — MU 
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C COMPUTE POPULATION RATE OF CHANGE. 

NDOT = (R — C * N) * N 

C CARRYING CAPACITY K IS MAX N, DENOTED WHEN FIRST AND 

C SECOND DERIVATIVES VANISH: K = R/(2 * C). 

C COMPUTE K AS AN INTEGER VARIABLE. 

K = R/(2. * C) + .5 

WRITE (6,101) NDOT, K 

101 FORMAT ( lH(f ) ,F l0 .4 , ilO) 

STOP 

END 

Exercise 9 

C MAKE THE VARIABLES Ni , N 2 , Kl, K 2 , NICl, Nic2 REAL (NICl AND 

C NIC2 ARE THE INITIAL POPULATION SIZES). 

REAL Nl , N2, Kl, K 2 , NICl, NIC2 

READ (5,20) Rl, R2, Kl, Κ2, ALPHA, BETA, NICl, NIC2, DT, TMAX 

20 FORMAT (10F8.0) 

C INITIALIZE TIME (τ) AND POPULATION SIZES. 

T = 0. 
Nl = NICl 

N 2 = N I C 2 

C PRINT INITIAL POPULATION SIZES. 
WRITE (6, 21) T, Nl , N2 

21 FORMAT ( I H Q , 3F12 .4 ) 

C COMPUTE POPULATION DIFFERENTIALS. 
100 DNI = DT * (R1 * N1 * (1. — N1/K1 — (ALPHA * N2) /K1) ) 

DN2 = DT * (R2 * N 2 * (1. — N2/K2 — (BETA * N1) /K2) ) 

C INCREMENT POPULATION SIZES. 
N1 = N1 + DNI 
N 2 = N 2 + DN2 

C INCREMENT TIME. 

T = T + DT 

C PRINT NEW POPULATION SIZES. 

WRITE (6, 21) T, Nl , N2 

C REPEAT COMPUTATION FOR NEXT TIME INTERVAL. 

IF (T.LT.TMAX) GO TO 100 

STOP 

END 
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Exercise 10 

(1) See Fig. 

1 

RealNI ΝΖ ,Κ Ι , 
K2,NIC1,NIC2 

1 f 

\ Read / 

\ °"" / 
t 

Initialize 
Variables 

y f 

\Print Initial / 
\ Values / 

y f 

Compute 
Population 

Differentials 

< 

Exercise 

• 

11 

7 

\ 

Population 
Sizes 

T 
\ Hnnt / 

\ New / 
\ vaiues / 

\ r 

< ; Τ < Τ Μ Α Χ y 

\ ? / 

Yes 

FIG. 88 

7 

> No >( > \ 
(^Stop^ 

(1) The model III rotifer system differential equations are given in 
the answers to Exercise 5 above. The equivalent system in matrix notation 
is 

z = h + Az, 
where 

and 

A = 

i = 
~ * 1 ~ 

* 2 

* 3 

_ * 4 _ 

(δ12 + λ10) 
δ 1 2 

0 
0 

, h = 
# 0 1 

# 0 2 

# 0 3 

_ 0 

y 

0 
— (^23 + €24 + λ 2 0 ) 

δ 2 3 

€ 24 

z = 

0 
0 

— ^ 3 0 

0 

* 1 ~ 

* 2 

* 3 

_ * 4 _ 

> 

8« 
0 
0 

-ft H + ^4θ) 
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A program to solve this system, using subscripted variables, is as follows. 

C DIMENSION THE VARIABLES. 

DIMENSION z(4), H(4), A ( 4 , 4), DZ(4) 

C READ H, A AND INITIAL Z, ALSO TMAX AND DT. 

READ (5, 50) Z, H, A, TMAX, DT 

50 FORMAT (8F10.0/ 8F10.0/ 8F10.0/ 2F10.0) 

C IN STATEMENT 50, SLASHES INDICATE NEW DATA CARDS. THE FIRST 

C CARD CONTAINS THE Z AND H VECTORS; THE SECOND AND THIRD 

C CARDS CONTAIN THE A MATRIX (ELEMENTS MUST BE READ I N 

C COLUMNWISE, A l l , A21, A31, A41, Al2, ETC., TO BE SUBSCRIPTED 

C CORRECTLY); AND THE FOURTH CARD CONTAINS TMAX AND DT. 

C COMPUTE SOLUTIONS OF SYSTEM EQUATIONS. 

T = 0. 

WRITE (6,51) T, Z 

60 i = 1 
61 SUM = 0. 

J = l 
62 SUM = A(l, j) * Z(j) + SUM 

J = J + 1 
IF (j.LE.4) GO TO 62 

DZ(l) = DT * ( H ( I ) + SUM) 

Z(l) = Z(l) + DZ(l) 

1 = 1 + 1 
IF (l.LE.4) GO TO 61 

C INCREMENT TIME. 

T = T + DT 

C PRINT SOLUTIONS. 

WRITE (6,51) T, Z 

51 FORMAT ( 1 H ® , F5.3, 4F10.4) 

IF (T.LT.TMAX) GO TO 60 

STOP 

END 

A flowchart is shown in Fig. 89. 
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( Stort^) 

I 
Dimension 
Ζ,Η,Α,ΟΖ 

Read z, H,A 
\ ΤΜΔΧ,οτ 

τ=0. 
1 = 1 

SUM = 0. 
j=l 

Compute Sum 
j = j + I 

Yes No 

/TV Yes 

Compute 
Differentials 

1 = 1 + I 

Print 
Solutions 

( Stop ) 

FIG. 89 

Exercise 12 

(1) (a) Program for the Lotka-Volterra system. 

C IN THIS PROBLEM IT IS NOT EFFICIENT TO DIMENSION THE 

C STATE VARIABLES. HOWEVER, TIME ITERATIONS CAN BE 

C ACHIEVED BY A DO LOOP. 

REAL N l , N 2 , K l , Κ2, N I C l , NIC2 

READ ( 5 , 1 0 0 ) R l , R2, K l , K 2 , ALPHA, BETA, N I C l , NIC2, DT, TMAX 

100 FORMAT (10F8.0) 
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INITIALIZE TIME (τ) AND POPULATION SIZES. 

T = 0. 

Nl = NICl 

N 2 = N I C 2 

PRINT INITIAL CONDITIONS. 

WRITE (6, 101) T, Nl , N2 

101 FORMAT ( 1 H ® , 3Fl2.4) 

CALCULATE NUMBER OF COMPUTATIONS. 

NCOMP = TMAX/DT + .5 

DO 2 0 J = 1, NCOMP 

REAL THE DO LOOP INDEX. 

RJ = J 

T = DT * RJ 

POPULATION DIFFERENTIALS. 

D N I = DT * (R1 * N 1 * (1. 

D N 2 = DT * ( R 2 * N 2 * (1. 

INCREMENT. 

Nl = Nl + DNl 

N2 = N2 + DN2 

PRINT RESULTS. 
WRITE (6, 101) T, Nl , N2 

2 0 CONTINUE 
STOP 
END 

- N l / K l -
- N2/K2 -

- (ALPHA *N2) /K1) 
- (BETA *N1)/K2)) 

(b) Program for the model III rotifer system. 

DIMENSION z(4), H(4) , A(4, 4), DZ(4) 

READ (5 , 4 0 ) Z, H, A, TMAX, DT 

40 FORMAT (8F10 .0 / 8F10 .0 / 8F10 .0 / 2F10 .0 ) 

T = 0. 

PRINT INITIAL CONDITIONS. 

WRITE (6, 41) T, Z 

41 FORMAT ( 1 H ® , FIO.4, 4 F 1 2 . 4 ) 

OUTER DO LOOP TO INCREMENT TIME. 

NCOMP = TMAX/DT + .5 

DO 5 0 K = 1, NCOMP 

RK = K 

T = DT * RK 

109 
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C NESTED DO WITH INDEX I (NUMBER OF EQUATIONS). 

DO 51 I = 1,4 

SUM = 0 . 

C NESTED DO WITH INDEX J (NUMBER OF TERMS IN EACH EQUATION). 

DO 52 j = 1,4 
5 2 SUM = A(l, j ) * Z(j) + SUM 

DZ(l) = DT * ( H ( I ) + SUM) 

51 z(i) = z(i) + DZ(I) 

C PRINT RESULTS. 

WRITE ( 6 , 4 1 ) T, Z 

5 0 CONTINUE 

STOP 

END 

Exercise 13 

(1) s/360 CSMP program for Silver Springs nonlinear model. 

TITLE SILVER SPRINGS NONLINEAR SYSTEM 

iNCON ici = 3421.26, ic2 = 213.44, ic3 = 62.06, ic4 = 8.87, ic5 = 24.38 

CONSTANT F01 = 20810., F02 = 486., TAU12 = .84, TAU23 = 1.79,... 

TAU34 = .339, MU15 = 1.01, MU25 = 5.13, MU35 = .74,... 

MU45 = .676, LAMDIO = .73, RHOIO = 3.5, RHO20 = 8.86,... 
RHO30 = 5.1, RHO40 = 1.466, RHO50 = 188.6 

* COMPUTE NONLINEAR RATE CONSTANTS 

TTAU12 = TAU12/X2 

TTAU23 = TAU23/X3 

TTAU34 = TAU34/X4 

DYNAMIC 

xl = INTGRL (ici, F01 — xl * (TTAU12 * x2 + MU15... 

+ L AMD 10 + RHO 10)) 

x2 = INTGRL (ic2, F02 + TTAU12 * x2 * xl... 

— x2 * (TTAU23 * x3 + MU25 + RHO20)) 

x3 = INTGRL (ic3, TTAU23 * x3 * x2... 

— x3 * (TTAU34 * x4 + MU35 + RHO30)) 

x4 = INTGRL (ic4, TTAU34 * x4 * x3 — x4 * (MU45 + RHO40)) 

x5 = INTGRL (ic5, MU15 * xl + MU25 * x2 + MU35 * x3... 

+ MU45 * x4 — RHO50 * x5)) 

METHOD RKSFX 

PRINT xl, x2, x3, x4, x5 
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LABEL Xl, X2, X3, X4, x5 

TIMER FINTIM = 10. , OUTDEL = 0 . 2 

* NOTE: PRDEL WILL AUTOMATICALLY EQUAL OUTDEL. 

END 

STOP 

ENDJOB 
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Appendix A* MATEXP Program Listing 
MAIN 

C PROGRAM MATEXP FOR TIME RESPONSE OF LINEAR SYSTEMS 
C 
C THIS PROGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRST 
C ORDER, SIMULTANEOUS DIFFERENTIAL EQUATIONS W/ CONSTANT COEFFICIENTS 
C OF THE FORM DX/DT - AX ♦ Z . 
C 
C THE METHOD I S PAYNTER-S MATRIX EXPONENTIAL METHOD 
C 
C THE SOLUTION I S GIVEN FOR INCREMENTS OF THE INDEPENDENT 
C VARIABLE ( T l FROM TZE*0 THROUGH TMAX 
C 
C COMPUTES MATRICES C - EXP(A*T) AND 
C HP = (C-I)*A INVERSE 
C SOLUTION X(N*T) * C*X ( ( N-l )*T ) *HP*7 ( ( N-l ) *T ) 
C SERIES CALCULATION OF C AND HP MONITORED TO 
C ASSURE SPECIFIED SIGNIFICANCE· 
C IF T IS REDUCED FOR C AND HP CALCS., 
C ORIGINAL ARGUMENTS ARE RESTORED BY-
C C ( 2 * T > * C ( T ) * C ( T ) 
C HP( 2 * T ) = H P ( T ) * C ( T ) * H P ( T ) 
C 
C OUTPUT FROM THF PROGRAM IS PRINTED AT INTERVALS PLTINC. 
C THE PROGRAM USES SUBROUTINES DISTRB AND OUTPUT 
C 
C INPUT FOR THE PROGRAM CONSISTS OF 
C ONE CONTROL CARD 
C THE COEFFICIENT MATRIX A (UP TO 60 X 60 ) 
C THF I N I T I A L CONDITION VECTOR X 
C A FIXED DISTURBANCE VECTOR Z 
C 
C A VARYING Z CAN BE GENERATED BY DISTRB 
C VARIABLE COEFFICIENT EQUATIONS MAY BE SOLVED BY APPROPRIATE 
C FUDGING OF THF DISTURBANCE FUNCTION SUBROUTINE. 
C 
C CONTROL CARD INPUT INFORMATION 
C NE=NO. OF EQUATIONS ( 1 2 ) 
C LL=COEFF. MATRIX TAG NO· ( 1 2 ) 
C P=PRECISION OF C AND HP ( F 1 0 . 0 ) - RECOMMEND U O E - 6 OR LESS 
C TZERO=ZERC TIME ( F 1 0 . 0 ) 
C T=COMPUTATION TIME INTERVAL ( F 1 0 . 0 ) 
C TMAX=MAXIMUM TIME ( F 1 0 . 0 ) 
C PLTINC^PRINTING TIME INTERVAL ( F 1 0 . 0 ) 
C MATYES=COEFF. MATRIX (A) CONTROL FLAG ( 1 2 ) 
C 1=USE PREVIOUS A AND T 
C ?=RFAD NFW COEFF.S TO ALTER A 
C 3=READ ENTIRE NEW A (NON-ZERO VALUES) 
C 4=DISTRB TO CALC. ENTIRE NE* A 
C SPREAD SOME, DISTRB TO CALC· OTHERS 

C 6=DISTRB TO ALTER SOME A ELEMENTS 
C ICSS= IN ITTAL CONDITION VECTOR ( X I C ) FLAG ( 1 2 ) 
C 1=READ IN ALL NEW NON-ZERO VALUES 
C ?*RFAD NEW VALUES TO ALTER PREVIOUS VECTOR 
C 3=USE PREVIOUS VECTOR 
C 4=VECTOR=0 
C 5=USE LAST VALUE OF χ VECTOR FROM PREVIOUS RUN 
C JFLAG^FORCING FUNCTION (Z) FLAG (12) 
C 1 THRU AxSAME AS FOR ICSS FOR CONSTANT Z 
C 5=CALL CISTRB AT EACH TIME STEP FOR VARIABLE Z 
C ITMAX = MAX· NC. OF TERMS I N SERIES APPROX. 
C OF E X P ( A T ) . ( 1 3 ) 
C LASTCC = NON-ZERO FOR LAST CASE ( 1 1 ) 
C ! 1 7 = ROW NO· OF Z IF ONLY ONE NON-ZERO, 
C OTHERWISE =0 ( 1 2 ) 
C ICONTR - FOR INTERNAL CONTROL OPTIONS ( 1 2 ) 
C 0=READ NEW CONTROL CARD FOR NEXT CASE 
C 1=G0 TO 212 CALL DISTRB FOR NEW A OR T 
C - 1 = G 0 TO 215 CALL DISTRB FOR NEW U C . - S 
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C VAR = MAX· ALLOWABLE VALUE OF LARGEST COEFF. MATRIX ELEMENT * T 
C (RECOMMENO VAR = 1 . 0 ) ( F 6 . 0 ) 
C 

DIMENSION AC 6 0 , 6 0 ) , C ( 6 0 , 6 0 ) , H P ( 6 0 , 6 0 ) , Q P T ( 6 0 , 6 0 ) , 
1 X ( 6 0 ) , Y ( 6 0 ) , Z ( 6 0 ) , X I C ( 6 0 ) , T Q P ( 6 0 ) , A N 3 R M ( 6 0 ) , P X ( 6 0 ) 

C 
0C3MM0N C , H P , A , Q P T , X , Z , Y , I T M A X , K K , L L , M M , 
1 J J F L A G , X I C , N I , T I M E , T M A X , T 7 E R 0 , N E , T Q P , T , 
2 I1Z ,TC0NTR,PLT INC,MATYES, ICSS,JFLAG,PLT ,NFLAG,AN0RM 

C 
C K=CASE NUMBER 
C N I = 0 ON 1-ST PASS· SET TO 1 ON 1-ST CALL OF OUTPUT· 

K = l 
N I=0 

C 
1 READ ( 5 , 1 0 0 ) N F , L L , P , T Z E R O , T , T M A X , P L T I N C , M A T Y E S , Ï C S S , 

1JFLAG, ÏTMAX,LASTCC, I1Z , ICONTR,VAR 
100 F O R M A T ( 2 U 2 , 3 X ) , 5 F I O . O , 3 I 2 , I 3 , I 1 , 2 I 2 , F 6 . 0 ) 

C 
C COEFFICIENT MATRIX INPUT 

GO TO ( 3 , 9 9 , 2 , 2 , 2 , 3 ) , M A T Y E S 
C 

2 DO 90 1=1 ,NE 
DO 90 J * 1 , N E 

90 A ( I , J ) = 0 . 0 
I F ( M A T Y E S - 4 ) 9 9 , 3 , 9 9 

99 D3 91 I « l , 1 3 7 9 
C MATRIX ELEMENTS 5IR0W, COLUMN, VALUE) 
C ALL I ANO J ENTRIES ON CARD MJST BE NON-ZERO. 
C A BLANK CARD I S REQUIRED AFTER ALL ELEMENTS ARE READ I N . 

READ ( 5 , 1 0 1 ) I 1 , J 1 , D 1 , I 2 , J 2 , D 2 , 1 3 , J 3 , D 3 , 1 4 , J 4 , 0 4 
101 FORMAT ( 4 ( 2 1 3 , E 1 2 . 3 ) ) 

C 
I F ( I 1 ) 3 , 3 , 9 2 

9? A( I1 , J1>=D1 
A ( I 2 , J 2 ) = 0 2 
A( I 3 , J 3 ) = D 3 

91 A ( I 4 , J 4 ) = 0 4 
C 
C INITIAL CONDITION VECTOR XIC INPUT 

3 GO T O ( 4 , 1 2 0 , 6 , 5 , 6 ) , I C S S 
C 

4 DO 93 1=1,NE 
93 X I C ( I ) = 0 . 0 

120 DO 94 1 = 1 , 1 5 
C ALL ROW ( I I ENTRIES MUST BF NON-ZFRO 
C A BLANK CARD I S REQUIRED AFTER ALL ELEMENTS ARE READ I N . 

READ(5,95) M M , 1 1 1 , 0 1 1 , T 1 2 , D 1 2 , 1 1 3 , D 1 3 , 1 1 4 , D 1 4 , 1 1 5 , D 1 5 
95 F0RMAT(I2,5( I 3 , E 1 2 . 3 ) ) 

IF ( 1 1 1 ) 6 , 6 , 9 6 
96 XIC(T11)=D11 

XIC(I12)=D12 
XIC( I13)=D13 
XIC(T14)=D14 

94 XIC(I15)=D15 
C 

5 MM=0 
DO 7 1=1,NE 

7 X T C ( I ) = 0 . 0 
6 I F ( I C S S - 5 ) B 1 , 2 1 4 , 8 1 

81 DO 8? 1=1,NE 
82 X( T) = XIC(I ) 

214 IF(MATVFS-3)213 ,213 ,212 
212 CALL DISTRB 
213 JJFLAG=0 

C QPTMP = MAX. PERMISSIBLE ELEMENT OF OPT FOR 8 DECIMAL COMPUTER 
C MATRIX CALC. LOSFS SIGNIFICANCE IF LARGEST 
C ELEMENT IN SERIFS APPROX. MATRIX QPT IS 
C GRFATER THAN P*l.0E8 
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0 Ρ Τ Μ Ρ = Ρ * 1 . 0 Ε 8 

C 
W R I T E ( 6 , 2 i n L L , N E , P , T , 

1 P L T Î N C M A T V E S , TCSS,JFLAG, ICONTR , ÏTMAX, 11 7 , VAR, QPTMP 
C 

2110FORMAT(12HOMATFXP C A S E , I 3 / 1 7 H NO· OF EQUATIONS, 
1 T 3 / 2 0 H SPFCTFÎFD PREC1SION,F 1 2 . 8 / 6 H TIMF , 
2 8 H I N T F R V A L , F 1 « . 8 / 1 5 H PLOT I N C R E M E N T , F 1 7 . 8 / / 

316H CONTROL FLAGS - / 1 H , 5 X , 6 H M A T Y E S , T 4 / 1 H , 
^ 5 X , 4 H I C S S , I 6 / 1 H ,5X , 5 H J F L A G , I 5 / 1 H , 5X , 6ΗΪ CONTP , 1 4 / 
534Η0ΜΔΧ. TERMS IN EXPONENTIAL A P P R 3 X . , I 5 / 
613H SINGLE Z R 0 W f I 4 / 2 3 H MAX. ALLOWABLE A * D T , F 9 . 3 / 
727H MAX· ALLOWABLE OPT E L E M E N T , F i l . 3 ) 

C 
P L T I N C = P L T I N C * 0 . 9 999 

C 
JFK=0 
I F ( M A T Y F S - l l 2 0 , 2 0 , 8 0 6 

C SCAN MATRIX FHR MAX. AND MIN . NON-ZERO ELEMENTS. 
806 IMAX=1 

JMAX=1 
AMAX=ARS < A ( 1 , 1 ) ) 
00 401 1=1 ,NE 
DO 4 0 1 J = 1 , N E 
IF(AMAX-ABS ( Α ( Ι , . Μ ) ) 4 0 2 , 4 0 1 , 4 0 1 

402 AMAX=ARS (A( I , J ) ) 
ÎMAX=I 
JMAX=J 

401 CONTINUE 
IM IN=IMAX 
JMIN=JMAX 
AMIN=AMAX 
r>n 409 I = l t N E 
On 409 J = l ,NE 
I F ( A ( I , J ) ) 4 0 7 , 4 0 9 , 4 0 7 

407 TF(ABS ( A U , J ) ) -AMÎN) 4 0 8 , 4 0 9 , 4 0 9 
4 0 8 AMIN = ABS (A( I , J ) ) 

I M I N = I 
JMIN=J 

409 CONTINUE 
RATIO=AMAX/AMIN 

C AMIN = MINIMUM NON-ZEUO ELEMENT 
ISTOR=0 
AOT=AMAX*T 
00 403 1 = 1 , 1 1 
I F ( V A R - A O T ) 4 1 3 , 4 0 4 , 4 3 4 

413 IS TOR=ISTORNI 
403 ADT=ADT*0 .5 
404 T=ADT/AMAX 

C COMPUTATION INTERVAL T IS HALVED ISTOR 
C TIMES (10=MAX. ) SO MAX. ELEMENT I N A*T 
C I S LESS THAN VAR. 

WRITE ( 6 , 4 0 5 ) I M A X , J M A X , A ( I M A X , J M A X ) , A D T , T , 
1 I M I N , J M I N , A C I M I N , J M I N ) , R A T I O 

405 FORMAT (31H0MAX.COEFF. MATRIX ELEMENT = A( , 1 2 , 1 H , , 1 2 , 3 H ) 
1 E 1 5 . 4 / 1 3 H MAX. A*0T = , F 1 2 · 8 , 2 X , 1 4 H W I T H DELTA T « , ^ 1 5 . 8 / 

230H0MINIMUM NON-ZERO ELEMENT » A ( , 1 2 , l H t , 1 2 , 3H) - , E 1 5 . 4 / 
318H RATIO AMAX/AMIN » , E 1 5 . 4 ) 

C 
IF(ISTOR-10)8 ,410 ,410 

410 WRITE ( 6 , 4 1 1 ) 
4110F0RMAT(34H0A*DT ST ILL GREATER THAN ALLOWABLE« 

119H AFTER 10 HALVINGS·) 
GO TO 37 

C CALCULATION OF MATRIX EXPONENTIALS C AND HP 
8 00 9 1*1 ,NE 

00 9 J = 1 , N E 
9 C ( I , J ) =0 . 

114 
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DO 10 1 * 1 , N E 
10 C( I , T I « 1 . 

C 
C SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS 

TF ( J F L A G - 4 1 4 8 , 5 1 , 4 8 
48 DO 49 1=1 ,NE 

DO 49 J = 1 , N E 
49 H P U , J ) = 0 . 

C 
DO 50 1 = 1 , N E 

5 0 H P ( I , I I = T 
C 

51 P E = 0 . 0 
C 

DO 11 I = U N E 
DO 11 J = 1 , N E 

1 1 Q P T U , J ) = C ( I , J > 
C 
C NOW FORM THE MATRIX EXPONENTIALS C=EXP<A*TI AND H P = < < C - I ) * A INVERSEI 
C 

A L = 1 . 0 
C 

12 DO 16 KL=1, ITMAX 
C 

KLM=KL 
ALL=T/AL 
A L = A L H . 0 
TALLL=T/AL 

C 
DO 1 * 1=1,NE 

C 
C 

DO 13 J=1 ,NE 
T Q P ( J ) = 0 . 0 
DO 13 KX=1 ,NF 

13 TQP(J» = T Q P ( J ) * O P T ( I , K X ) * A ( K X , J I 
C 

DT 18 J=1 ,NE 
18 Q P T ( I , J ) = T Q P < J ) * A L L 

C 
C QPT=MATRIX TERM IN SERIES APPROX. * ( ( A * T ) * * K t / K FACTORIAL 
C 

DO 44 1=1,NE 
DO 44 J=1 ,NE 

44 C ( I , J ) = C U , J ) * Q P T ( T , J ) 
C 

I F ( J F L A G - 4 1 4 5 , 4 7 , 4 5 
C 

45 I F < I T M A X - K L ) 4 7 , 4 7 , 1 4 5 
145 03 46 1*1 ,NE 

DO 46 J=1,NE 
46 H P U , J ) = H P ( I , J t * O P T ( I , J | * T A L L L 

C 
C 
C FIND MAX ABS ELEMENT IN OPT AND CALL I T PMK 
C 
C LARGEST QPT ELEMENT USUALLY IN ROW IMAX, COLUMN JMAX 

47 PMK=ABS ( Q P T ( I M A X , J M A X U 
IF(OPTMP-PMKI 8 3 , 8 3 , 5 0 2 

502 IF<PMK-P) 4 0 6 , 4 0 6 , 1 6 
C SCAN OTHER OPT ELEMENTS ONLY WHEN Q P T U M A X , JMAX) IS LESS THAN P 

406 DO 14 1=1 ,NE 
DO 14 J=1,NE 

14 PMK*AMAX1(PMK,ABS C Q P T t I « J I I ) 
I F ( P M K - P ) l 7 f 1 7 , 1 6 

C 
C PRESENT MAX. QPT ELEMENT SHOULO BE LESS THAN 
C HALF PREVIOUS MAX. TO INSURE CONVERGENCE 

17 I F ( P E - 2 . * P M K Ï 1 6 , 2 1 , 2 1 
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16 PE«PMK 
C 

2 1 WRITE ( 6 , 2 0 0 1 KLM 
C 

200 FORMAT (44H0NO. OF TERMS IN SERIES APPROX· OF MATEXP * . 1 2 ) 
C 

I F ( I T M A X - 1 ) 2 0 , 2 0 , 5 3 8 
5 3 8 IFCKLM-ITMAXI 4 1 4 , 8 3 , 8 3 

C 
8 3 T » T * 0 . 5 

J F K * J F K ^ 1 
I F ( J F K - 7 1 3 0 3 , 3 0 4 , 3 0 4 

304 WRITE ( 6 , 3 0 5 1 PMK 
305 0F0RMATI32H07 TRIES AT HALVING T N . G . , P M K « , F 1 2 . 6 ) 

C ALL ROW ( I ) FNTRTFS MUST BF NON-ZFPO 
C A BLANK CARD I S PeotJIPFD AFTPR ALL El F^FNTS ARF READ I N . 

RFAO ( 5 f Q 5 ) K K , T ? 1 , 0 2 1 , 1 2 2 , 0 2 2 , 1 2 3 , 0 2 3 , 1 2 4 , 0 2 4 , 1 2 5 , D 2 5 
I F f I ^ 1 ) ? 7 t ? 7 , 7 8 

78 7 ( \ ? \ ) = n ? l 
7( I 2 ? ) = D 2 ? 
7( Ι ? ? ) = Π?? 
7( I 2 4 ) = 0 2 4 

9 8 7( I 2 5 ) = D 2 5 
C 

25 κ κ = 0 
01 23 1 = 1,NF 

28 7 < I ) = 0 . 
C 
C ON 1-ST CALL OF OUTOIJT NI SET TO 1 

27 CALL OUTPUT 
C 
C NOW CnM^S THF EQUATION SOLUTION BASED ON 
C X ( N T ) = M * X ( N T - 1 ) f ( ( M - l ) A I N V . ) * Z ( N T - I ) 
C 

24 IF ( J F L A G - 4 ) 2 9 , 5 4 , * 6 
54 00 5λ 1=1 ,NF 

v ( I ) = C ( I , 1 ) * X ( 1) 
00 53 J = 2 , N F 

5^ V i T I = Y ( I ) * C ( ! , J ) * X ( J ) 
T F ( H 7 ) 5 2 , 5 2 , 7 0 ? 

56 I ^ i J I F L A G ) 3 0 , 2 P , 3 0 
30 CALL OISTRR 
2 9 I F ( T 1 7 ) 7 0 0 , 7 0 0 , 5 4 

C ONLY ONF Z-TERM C A l C . I F H Z I S GREATER THAN ZERO 
7 0 2 oo 7 0 3 1 = 1 , N E 
7 Γ 3 Vf l ) = v ( I ) * H P ( I , I 1 Z ) * 7 ( I 1 Z I 

GO TO 5 2 
7 Γ 0 0 0 3? 1 = 1 , N F 

Y( I ) = C( I , i ) * X ( 1 ) * Η Ρ ( Ι , 1 ) * Z ( 1) 
00 32 J = 2 , N F 

3 ? V ( T ) s V ( ! l + C ( T , J ) * X ( J ! + H P ( I , J ) * Z ( J ) 
52 0 0 31 1 = 1 ,NF 
31 X ( T 1 = V ( I ) 

c 
C ONE TIME INCRFMFNT OF THE SOLUTION HAS JUST REEN FOUND 
C 
C NOW PLOT AND PRINT IF PLTINC INTERVAL HAS ELAPSED 
C 

JJFLAG = 1 
ΤΙΜΕ = ΤΙΜΕ«·Τ 
PLT=PLT*T 
I F ( P L T - P L T Ï N C » 3 5 , 3 3 , 3 3 
GO TO 37 

303 WPTTE ( 6 , 2 1 0 ) KLM,PMK,T 
210 F0RMAT(21H0MAX. ELEMENT IN T E R M f I 3 , 9 H 0 F OPT = , E 1 1 . 3 / 

1 35H TRY HALVFC TIME INTERVAL DELTA T = , F 1 5 . 8 ) 
GO TO R 

414 ISTOR=ISTOP*JFK 
C ORIGINAL ARGUMFNTS 0»= C AND HP MATRICES RESTORED I F ISTOR GREATER THAN 0 
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I F ( I S T O R ) 2 0 , ? 0 , 4 ] f t 
416 WRTTF ( f , f 4 1 5 » ISTOR 
415 F0RMAT(26H0TOTAL NO. OF T HALVINGS = , 1 3 1 

03 4 1 7 KR=1,TSTOR 
TF(JFLAG~4) 4 1 9 , 4 1 8 , 4 1 9 

C SKIP HP CALCS. FOR HOMOGENEOUS FOUATIONS 
419 m 420 1=1,NF 

ΠΟ 4 2 1 J = 1 , N E 
T Q P ( J ) = 0 . 0 
no 4 2 1 KX=1,NE 

4 21 T Q P ( J ) = T Q P ( J ) * H P ( I , K X ) * C ( K X , J ) 
03 470 J = 1 , N F 

420 H P ( I , J ) = T Q P ( J ) + H P ( T , J ) 
c 

418 0Π 4 3 * 1=1,NF 
00 430 J = 1 , N F 

430 O P T ( I , J ) = n . O 
DO 4 3 1 1=1 ,NE 
00 431 J = 1 , N F 
no 4 3 1 KX=1,NF 

431 Q P T ( I , J ) = Q P T ( I , J ) * C ( I , K X ) * C ( K X , J ) 
on 4^2 T=1 ,NF 
00 432 J = 1 , N F 

432 C( I , J ) = Q P T U , J ) 
417 T = 2 . 0 * T 

C 
C C ( I , J ) IS THF MATRIX FXPONFNTIAL C=EXP(A*T ) 
C AND H P ( I , J ) IS THF ( f C - I · * A INVERSE) MATRIX 
C NOW WF RFAD (OP CALL SUBROUTINE FOR) OISTURBANCF V 
C 

20 TIME=T7FRO 
P L T = ^ . 
GO TO ( 2 6 , 1 7 1 , 7 7 , ? 5 , 5 5 ) , J F L A G 

55 T F ( M A T V F S - 3 ) 2 1 ^ , 2 1 5 , 2 7 
215 CALL n iSTPR 

T l Z = T 1 7 
GO TO 27 

C 
26 DO 97 T = l , N F 
97 7( I ) = 0 . 0 

121 00 9 * 1 = 1 , 1 5 

31 T l Z = I S ( 1 S T ) 
C COL. I l Z OF HP MATRIX MULT. BY Z 

WR I T F ( 6 , 1 0 1 ) I S( I S T ) f J S ( I ST) 
101 FORMATdBHOSFNSIT IV ITY TO A ( , I 3 , 1H , , I 3 , 1H ) ) 

TIME=TZERO 
NDT=! 
00 41 1=1 ,NE 
X( I ) = 0 . 0 

4 1 7( I ) = 0 . 0 
J J F L \ G = 0 

C DURING EACH S E N S I T I V I T Y RUN -
7 Z( I 1 7 ) = X T ( I S T , N D T ) 

N0T=NDTM 
30 RETURN 

ENn 

117 
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OISTRB 

SUBROUTINE DISTRB 
C OISTRB FOR TIME RESPONSE S E N S I T I V I T I E S OF LINEAR SYSTEMS 

DIMENSION A ( 6 0 , 6 0 » , C ( 6 3 , 6 0 » , H P ( 6 0 , 6 0 » , O P T ( 6 0 , 6 0 » , 
1 X ( 6 0 ) , Y ( 6 0 ) , 7 ( 6 0 » , X I C ( 6 0 ) , T Q P ( 6 0 » 
OCOMMON C , H P , A , Q P T , X , 7 , Y,ITMAX,KK,LL,MMf 

1 J J F L A G , X I C , N I , T I M E , T M A X , T Z E R O , N E , T O P , T , 
2 I 1 Z , I C 0 N T R , P L T I N C , M A T Y F S , I C S S , J F L A S , P L T 
0 0 1 MENS ION I R ( 5 » , I S ( 1 5 » , J S ( 1 5 », 1 0 ( 3 0 ) , X T ( 5 , 1 0 0 0 ) , 
1 X S E N ( 1 5 , 3 0 » , X P S I ( 3 0 » 

I F ( N I ) l , l , 2 
1 I F ( I C 0 N T R * 2 » 5 , 4 , 3 
2 TF( I C 0 N T R * 2 » 7 , 6 , 6 

C INITIAL INPUTS AND CALCS. 
3 R E A D ( 5 , 1 0 0 » ( I S ( ! » , J S ( I » , 1 = 1 , 5 » , N T I , N S E N S 
IOC F 0 R M A T ( 6 ( 2 I 3 , 4 X ) ) 

M0T=1 
I C 0 N T R = - 2 
NT IM0=NTI-1 
00 3 1 = 1 , N E 

8 nn=e.o 
RFAD(5,103»(7(I»,I=1,NE) 

103 P0RMAT(RF10.0» 
C DURING SOLUTION 0«= SYSTEM EQUATIONS 

6 DO 23 I=1,NSENS 
TCO=JSU» 

20 XT( I,NDT) = X( ICO» 
NDT=N0T«-1 
GO TO 30 

C 
C JUST AFTFR SYSTEM SOLUTION I S COMPLETED 

4 IST=0 
TCDNTR=-3 
0 0 21 I = 1 , N S E N S 
00 21 J = 1 , N T I M 0 

21 X T ( I , J » = 0 . 5 * ( X T ( I , J ) » X T ( I , J » 1 » » 
C XT = AVG VALUES OF SENSITIVITY EON INPUTS 

W R I T F ( 6 , 102» Π Χ Τ ( I , J » , J = 1 ,NTI » , I = 1 , N S E N S » 
1 0 2 F0RMAT(3H0XT/ (1N » 1 0 E 1 1 . 3 » » 

C 
C APTER COMPLETING EACH SENSITIVITY RUN -

5 TST=IST*1 
I F ( I S T - N S F N S » 3 1 , 3 1 , 3 2 

C GO TO NEXT CASE 
3 2 TCONTP=0 

PLTINC=TMAX 
TMAX=0.0 
NÏ =1 
GO TO 30 

33 CALL OUTPUT 
P L T = % 

35 I F ( T I M E - T M A X » 2 4 , 3 7 , 3 7 
3 7 I F ( L A S T C C » 4 n , 3 4 , 4 0 

34 K=K«-l 
NI=0 
PLT=0. 0 
I F U C O N T R Î 2 1 5 , 1 , 2 1 2 

40 STOP 
END 
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OUTPUT 

SUBRHUTTNF OUTPUT 

0ÏMENS ION A ( 6 0 , 6 0 ) , C ( 6 0 , 6 0 ) , H P ( 6 0 , 6 0 ) , Q P T ( 6 0 , 6 0 ) , 
I X ( 6 0 ) , V ( 6 0 ) , Z ( 6 0 ) , X T C ( 6 0 ) , T Q P ( 6 0 ) , A N O R M i 6 0 ) , P X ( 6 0 ) 

0C3MM0N C » H P , A , Q P T , X , Z , V , I T M A X , K K , L L , M M , 
1 J J F L A G , X I C , N I , T I M F , T M A X , T Z F R 0 , N F , T 0 P , T , 
2 I 1 Z , T C 0 N T R , P L T I N C , M A T Y F S , I C S S , J F L A G , P L T , N F L A G , A N O R M 

ÎF(NT > 2 , 1 , 2 
1 NI =1 

NC = 10 
nq 11 N C M = l , 5 1 , 1 0 
W R T T F ( 6 , ? 0 0 ) L L , ( ( A ( I , J ) , J = N C M , N ' C ) , I = 1 , N F ) 

?00 FORMAT ( 2 H 0 A , I 2 / ( 1 H » 1 P 1 0 F 1 1 . 3 » ) 
TF(NF-NC) 1 0 , 1 0 , 1 1 

11 N O N C M O 

10 NC=10 
03 21 N C M = 1 , 5 1 , 1 0 
W R I T E ( 6 , 2 0 1 ) C C C f I · J 1 * J = N C M , N C ) , 1 = 1 , N E ) 

201 EORMAT ( 2 H 0 C / ( 1 H , 1 P 1 D E 1 1 . 3 ) ) 
TF(NF-NC) 2 0 , 2 0 , 2 1 

2 1 NC=NC+10 

2 0 NC = 10 
HO 31 ΝΓ,Μ=1 , 5 1 , 1 0 
W R I T F ( 6 , 2 0 2 ) ( ( H P ( I , J ) , J = N C M , N C ) , I = 1 , N F ) 

202 FORMAT ( 3 H 0 H P / ( 1 H , 1 P 1 0 E 1 1 . 3 » ) 
I F ( N E - N C ) 2 , 2 , 3 1 

31 MONCMO 

2 W R I T E ( 6 , 2 0 3 ) T T M F , ( V ( I ) , I = 1 , N E ) 
203 F0RMATÎ4M T = , I P F Î 0 . 3 , 4 M X = , / ( I N ,5X , 1 0 F 1 5 · « ) I 

T F ( J F L A G . N F . 5 ) GO TO 30 

W R I T E ( 6 , 2 0 4 ) ( 7 ( 1 ) , 1 = 1 , N E ) 
2 n * Ft?RMAT(6H0Z = , IP 1 0 E 1 1 . 3 / ( 1 H , 5X , 10F 1 1 . 3) ) 

30 RFTURN 
FNO 
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L Mathematical Models 

A. INTRODUCTION 

Scientific hypotheses and theories never deal directly with the real 
world, only with arbitrary variables and other concepts, such as statements 
of relationships among variables. There may be many levels of concepts, 
all somehow connected to the real world through the operations of 
measurements. 
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An excellent example of relationships among different levels of con-
cepts, and between concepts and the real world comes from the field 
of thermodynamics. Dixon and Emery (1965) view all concepts of 
"operational thermodynamics,, as being defined in terms of seven 
directly measured variables: pressure, volume, mass, time, length, force, 
and temperature. All concepts in successive levels of abstraction are 
defined in terms of these variables, from concentration and velocity to 
Gibbs free energy and chemical potentials. This is the basic structure of 
theory throughout empirical science. 

These concepts and the expressed relationships among them are the 
models. I am dealing here with mathematical models, but in certain 
situations one might use physical models as well, e.g., graphs, springs, 
rubber balls, and miniature replicas. 

Although the intelligent use of models requires explicit connection 
of measurements with concepts, ecologists in the past have been prone to 
remain satisfied with one or the other alone. Thus plant ecologists have 
accumulated measurements, yielding endless statistics and descriptions, 
with few connections to concepts. On the other hand, some ecologists 
have constructed elaborate models, never satisfactorily connecting them 
to the real world, e.g., some models of ecological succession or of the 
niche concept. 

Ideally the scientist should work both ends simultaneously—the man 
who formulates the model should also make the measurements. I do not 
think that this is an unreasonable suggestion. The current problems 
ecology is called upon to solve demand it, and the current mathematical 
training received by young ecologists facilitates it. 

B. NATURE OF MATHEMATICAL MODELS 

In order to understand the nature of mathematical models one must 
understand the nature of mathematical theory, i.e., a body of knowledge 
constructed by the axiomatic method. 

One begins with certain undefined concepts. One then makes certain statements 
about the properties possessed by, and the relations between, these concepts. These 
statements are called the axioms of the theory. Then, by means of logical deduction, 
without any appeal to experience, various propositions (called theorems) are obtained 
from the axioms. Although the propositions do not refer directly to the real world, 
but are merely logical consequences of the axioms, they do represent conclusions 
about real phenomena, namely those real phenomena one is willing to assume possess 
the properties postulated in the axioms. 

The theory is used as the mathematical model. Continuing: 
We are thus led to the notion of a mathematical model of a real phenomenon. A 

mathematical theory constructed by the axiomatic method is said to be a model of 
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a real phenomenon, if one gives a rule for translating propositions of the mathe-
matical theory into propositions about the real phenomenon. This definition is vague, 
for it does not state the character of the rules of translation one must employ. . . . 
Generally speaking, to use a mathematical theory as a model for a real phenomenon, 
one needs only to give a rule for identifying the abstract objects about which the 
axioms of the mathematical theory speak with aspects of the real phenomenon. 
It is then expected that the theorems of the theory will depict the phenomenon 
to the same extent that the axioms do, for the theorems are merely logical con-
sequences of the axioms (quoted with permission from Parzen, 1960). 

The abstract objects of the mathematical theory are variables of the 
mathematical model; the axioms are statements of relationships among 
the variables. Henceforth the "mathematical theory" used as a mathe-
matical model will be called the "mathematical structure," since the 
former term is usually used in a more restricted sense. 

The mathematical models then lead to "new" conclusions, i.e., ideas 
and predictions. But the conclusions to which this technique leads assert 
nothing that is theoretically new in the sense of not being implicit in the 
mathematical model. But they may well be psychologically new; in fact, 
they usually are (Hempel, 1945). An apparent requirement for this 
method to work is that the real world operates with the same logic that 
human beings think in. The fact that mathematical arguments do lead 
to practical results suggests that this may be true, but, of course, man 
will never know. 

In the acts of identifying variables of the mathematical model with 
aspects of the real world lie many of the problems in formulating 
mathematical models. These acts of identification must be operational 
definitions (Bridgman, 1927) of the variables, i.e., specific instructions 
on how to make measurements which evaluate the variables. If the 
variables are not operationally defined, predictions generated by the 
model do not correspond to any real-world measurements, and thus the 
model cannot be tested. Such a model may be intellectually stimulating, 
but is not useful in applications to the real world. 

Each variable used in the model is an abstract concept, connected to 
the real world directly or indirectly through specific physical measure-
ments (Fig. 1). Thus the same real-world phenomenon might underly (in a 
metaphysical sense) many different variables, e.g., NaCl concentration 
and osmotic pressure. Moreover, the way a variable is defined is often 
determined by convenience, e.g., availability of certain kinds of data, 
instruments, or talent, and different definitions lead to different variables 
(Bridgman, 1927), e.g., the various concepts of productivity. 

If a model is to be tested by comparing its predictions with data from 
the real world, the model then becomes a hypothesis, although often a 
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Underlying 
Real-World 

Phenomenon 

FIG. 1. Relationships between different variables and same real-world phenomenon. 

very complex one, consisting of numerous "subhypotheses." Since the 
predictions and real-world data must usually be compared statistically 
(chi-square, ί-test, etc.) using an arbitrary confidence level, it is often the 
case that several different models may be accepted as ''explaining'' the 
same set of real-world data. There is no philosophical conflict here, 
since a model is an abstract concept arbitrarily identified with the 
real world. 

The predictions themselves are often regarded as the hypotheses, 
rather than the model which generated them. Since the predictions are 
necessary consequences of the model, one can view the model as including 
the predictions (Hempel, 1945), and thus it seems more reasonable to 
consider the model as the hypothesis. Moreover, in hypothesis-testing 
one does not accept or reject predictions; one compares predictions of 
a model with real-world observations, and then accepts or rejects (usually 
later to modify) the model. 

The formulation of mathematical models of complex real-world 
phenomena thus requires one to (1) operationally define the important 
real-world variables, and (2) precisely state the hypothetical relationships 
among these variables. The model then represents a complex hypothesis 
which can generate predictions about the real world. The predictions 
can then be tested against real-world measurements, and the model then 
either accepted as it is or modified in some way. If the model is modified, 
the cycle must be repeated until predictions agree with measurements 
at some satisfactory level of statistical significance. In engineering terms, 
the whole process is called "system identification"; in more general 
terms, this is nothing more than the traditional method of empirical 
science. 
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C. TYPES OF MATHEMATICAL MODELS 

1. Introduction 

Since such a large number of different types of mathematical structures 
exists for use as mathematical models, one should have some set of 
guidelines in making a choice. Probably as good a set as any is the 
following: (1) Naturalness with which the mathematical theory represents 
the real-wo rid phenomenon, e.g., continuous versus discrete functions, 
one versus several variables, (2) ability to generate predictions, (3) 
comprehensiveness and esthetics, (4) tractability of mathematics, and 
(5) consistency with other existing models. 

At this point it is advantageous to comment on the word "system." 
Mathematically, a "system" is a mapping (Sell, 1967). We shall, in this 
chapter, concern ourselves only with the special type of system defined 
by the first-order ordinary differential equation 

± = f(x,0. 0) 

where the vector-valued function f maps the real 1-space (whose elements 
are time t) and the real «-space (vector space) (whose elements are the 
vectors x) into the same real «-space. In other words, our system will be 
defined by a set of coupled first-order ordinary differential equations, 
one for each of the "state variables" xi (to be defined later). 

Notice that the definition of a system refers to concepts—coupled 
equations in this case—and not directly to the real world. This indicates 
that the identification of and the limits on a system are arbitrary; they 
are a matter of definition. Of course, one always tries to identify the idea 
of a system with some set of real-world phenomena (the "real-world 
system") in such a way that is psychologically satisfying, but arguments 
about what is or is not a system in the real world, or what the limits 
"really" are on a particular system, are largely futile. It should be obvious 
that, mathematically, the system is the mathematical model; in this 
paper the word will usually be used in its real-world intuitive sense. 

At this point it is also advantageous to comment on vector and matrix 
notation. Boldface symbols like x will be used to represent vectors 
(usually column vectors). Capital letters like A will represent matrices. 
Thus, x = f(x, t) is shorthand for 

X^ = J\\Xi > # 2 >···> ^n » t)i 

# 2 == J2\P^1 > ^2 >·") ^n i t)> 

Xn = Jn\X\ , # 2 »···> ^n y *)> 
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and x = Ax is shorthand for 

X1 = ûnXi -f- ö12-^2 T" *" ~r a\nxn » 
X2 = a2\X\ ~T ^22^2 i ' " i a2nXn > 

Xn = Cln\
xl \ an2X2 ~Γ " ' T~ annxn · 

The question often arises whether one should use deterministic or 
probabilistic models. The question really involves two problems—one 
philosophical, one practical. 

The philosophical problem is nicely put to rest by the following 
quotation: 

The controversy of determinism and causality versus randomness and probability 
has been the topic of extensive discussions. In our opinion, the difference lies not 
in the nature of this or that phenomenon, but in the quantities in which the observer 
is interested. If he is interested in the outcome of one experiment, then his statement 
is deterministic ; if he is interested in certain averages of a large number n of experi-
ments, then his statement is probabilistic. In either case no categorical assertion 
is possible. In the first case, the uncertainty of his conclusions takes the form within 
certain errors and in certain ranges of the relevant parameters; in the second case, 
with a high degree of certainty if n is large enough. 

But, it is often objected, the universe really is deterministic, and 
··· The phenomenon is thus inherently deterministic, and probabilistic considera-

tions are necessary only because of our ignorance. Our answer is that the physicist 
is not concerned with what is true, but only with what he can measure. Such explana-
tions are therefore outside the sphere of his scientific interests (Papoulis, 1965). 
(From "Probability, Random Variables, and Stochastic Processes," pp. 15-16, by 
A. Papoulis. Copyright © 1965, McGraw-Hill. Used with permission of McGraw-
Hill Book Company.) 

The practical problem is that the theory of probability has, up to now, 
produced only rather simple models limited to one or only a few variables 
changing in time. If one wishes to formulate probabilistic models of 
complex phenomena, it is probably best to use an essentially deter-
ministic model, and introduce randomness into this model in some 
fashion; then multiple digital computer solutions are obtained (Monte 
Carlo techniques). The randomness can be introduced either in the input 
or somewhere in the system itself, depending on the nature of the 
physical problem. 

In the three brief sections which follow are indicated those mathe-
matical structures which, in my opinion, are the most useful as models of 
ecological phenomena. Ecological phenomena are grouped into three 
categories: changes in time, changes in space or in space and time, and 
classification. 
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2. Changes in Time 

This category includes those phenomena in which the values of 
dependent variables change with the passage of time, but not in space. 
Thus it includes only those phenomena which may be considered to be 
spatially homogeneous (in engineering: "lumped"), i.e., without space 
effects. Although for some purposes such a restriction may be too 
unrealistic, the gain in tractability of the mathematical model is usually 
great. Ecological examples are: energy and material flow in food webs, 
ecological succession within small areas (so that spatial variation is not 
relevant), and population changes. 

There is but one independent variable, time, and the state of the 
system at any point in time is affected by the state of the system at a 
previous point in time, i.e., the system has a finite memory, or is state-
determined. Thus the system is dynamic, and may be represented by 
the methods of classical physics. Probably the most useful mathematical 
structures to use as the models of such systems are ordinary differential 
equations. Where the variables are measured, or have meaning, only at 
regular discrete points in time, the corresponding ordinary difference 
equations can be used. Integral equations might be used as an alternative 
to the differential equations, but their theory has not been well developed 
(Hart, 1967). 

For probabilistic models with only one dependent variable, one can use 
Markov chains, birth-and-death processes, and queueing. 

3. Changes in Space, or in Space and Time 

This category includes those phenomena in which values of dependent 
variables change in physical space (surface or volume), and, perhaps, 
time as well. Thus it includes those phenomena which are considered to 
be spatially heterogeneous (in engineering: "distributed"). Ecological 
examples are: (1) time not an independent variable: distribution of 
organisms, ecological gradients, niches, and distribution of genotypes, 
(2) time an independent variable: energy and material flow in food webs 
in spatially heterogeneous systems, and ecological succession over broad 
areas. 

Since there is more than one independent variable (two or three for 
space, and, perhaps, one for time), the required mathematical theory 
becomes very complex and difficult to work with analytically. The most 
useful mathematical structures to use as models of such systems are 
partial differential equations, or the corresponding partial difference 
equations. Since analytical solutions (predictions) to systems of partial 
differential equations are very difficult to find, these models will probably 
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always be solved by numerical approximation on digital computers. 
Probability density functions may also be used. 

4. Classification 

Schemes of classification differ from other models in that they are 
not testable, and thus are not hypotheses. Ecological examples are: 
classification of vegetation types, of communities, and of species 
(taxonomy). Useful mathematical structures are: sets (Rosen, 1967), 
mappings (Rashevsky, 1959), and information (Hairston et al., 1968). 

IL Formulation of Models of Dynamic Ecological Systems 

A. FORMULATION AS SETS OF ALGEBRAIC 
AND ORDINARY DIFFERENTIAL EQUATIONS 

1. Formulation 

a. Introduction. Through the remainder of this chapter, it is assumed 
that one is interested in making a mathematical model of a continuous, 
dynamic system (using the term, "system," loosely) which is spatially 
homogeneous, or in which space effects are negligible, i.e., a lumped 
system. The mathematical disadvantages of trying to account for the 
space effects, i.e., dealing with a distributed system, are tremendous 
(Schwarz and Friedland, 1965). 

The objective of this section is to suggest a procedure for formulating 
a model as a set of coupled first-order ordinary differential equations. 
This is best done in two steps, first by formulating the model with both 
algebraic and differential equations, and second by eliminating the 
algebraic equations. A simple procedure for numerical approximation 
of solutions is also given. 

The formulation of a mathematical model as a set of coupled algebraic 
and ordinary differential equations is divided into five steps: 

( 1 ) specification of variables of interest, 
(2) construction of control diagram, 
(3) classification of variables, operational definition of variables, and 

specification of variable units, 
(4) specification of forms of equations, 
(5) evaluation of constants. 

Each of these steps will be considered in turn, together with an example 
from the pine-mor food web. 
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b. Specification of Variables of Interest. A mathematical model may 
be constructed for a number of reasons, such as for the experience, for 
pleasure, or for a publication, but usually the objective will be the solut-
ion of some specific problem. The problem will usually be the causal 
explanation of the values or changes in the values of some particular 
variables as functions of other particular variables. The values must 
be in either numerical or logical, e.g., true-false or present-absent, terms. 
In ecology, the variables of interest will often be biomasses (total or of 
some component), fluxes, rates, or characteristics of the physical environ-
ment. 

As one formulates the model, new variables will probably need to be 
recognized and defined, and old ones omitted. In any case the choice of 
variables must be explicitly stated. Which particular variables are chosen 
depends upon the nature of the problem, knowledge and personal 
interests of the researcher, and ability to measure the variables. 

In the case of the pine-mor food web, I am interested in explaining 
the changes in time of biomass of the major components of pine mor (the 
forest floor of a pine forest). These components consist of decomposing 
plant material (with contained fungi and bacteria, since not operationally 
separable) of several types, frass, materials from throughfall, numerous 
animal taxa, fèces (with contained fungi and bacteria), and exuviae (with 
contained fungi and bacteria). These biomasses are considered to be 
controlled by each other, several litterfall types and other inputs, air 
temperature, and precipitation. 

In order to keep the model relatively simple, I have chosen as the 
variables of the model only what I consider to be the most important of 
all the possibilities. 

A fairly complete list of decomposing plant material types would 
include: Pine—leaves, branches, bark, cones and seeds, bud scales, male 
strobili, and pollen; Understory species—leaves, etc.; Groundcover 
species—leaves, etc. Of these, only pine litter, taken as a whole, is 
chosen as a variable. 

Frass, materials from throughfall, feces, and exuviae are ignored in 
the present model, partly because of the difficulty of measuring them. 

A fairly complete list of the animal taxa in pine mor would be quite 
extensive. Of these, nine arthropod taxa are chosen as variables: Litho-
biomorpha (Chilopoda), Symphypleona (Collembola), Entomobryo-
morpha (Collembola), Poduromorpha (Collembola), Formicidae 
(Hymenoptera), Araneae, Mesostigmata (Acarina), Trombidiformes 
(Acarina), and Oribatei (Acarina). 

The litterfall types (the input fluxes), of course, are the same as the 
decomposing plant material types, and thus only pine litterfall is chosen 
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as a variable. The characteristics of the physical environment, air 
temperature and precipitation, are also chosen as variables. 

c. Construction of Control Diagram. Once the variables of interest 
have been chosen, it is then necessary to indicate paths in which 
immediate cause-and-efTect relationships ("controls," "signals," "com-
munications," "flows of information," etc.) operate among the variables. 
To do this it is almost always necessary to add new variables, gradually 
building up a "control diagram," until all "first causes" are variables 
outside the system of interest (Fig. 2). These latter variables have causes 
not expressed in the mathematical model, and may be regarded as 
inputs to the system. The extent of the diagram, i.e., the number of 
variables to be used and how far back one should go for first causes, 
depends upon objectives of the model, availability of information, degree 
of accuracy required, etc. 

The number of variables used between first causes and the other 
variables of interest depends upon the level at which one wishes to 
explain the variables' behavior. For example, suppose one wishes to 
explain variations in a mouse population as a function of weather 
variations. One could attempt an explanation on a coarse level by 
introducing no new variables, and set up an equation expressing mouse 
population directly as a function of weather variables. One could 
attempt an explanation on a finer level by introducing food supply, 
natality, and mortality as new variables. Or one could go still further by 
adding plant photosynthesis and respiration, ingestion, mouse respiration, 
and various mouse behavior variables. The process could be continued 
almost indefinitely, each time attempting an explanation on a finer 
level, or "higher magnification." Each shift to a finer level might be 
regarded as substituting an "explanation" for a "description" (Bradley, 
1968), but, of course, all explanations are descriptions. 

The procedure of starting with variables which have no or few effects 
on the other variables (i.e., are at the bottom of the effects chain), 
and working backwards to immediate causes is to be strongly recom-
mended. This procedure helps to overcome preconceived notions of what 
affects what. Where a variable, e.g., biomass, changes due to a rate, e.g., 
respiration, making that rate into a separate variable will greatly simplify 
formulation of the mathematical model. 

Each arrow on the control diagram indicates only that a cause-and-
effect relationship exists from one variable to the other; the exact nature 
of the relationship will be stated later in the formulation. The diagram 
represents an outline of a complex hypothesis concerning the time 
behavior of the variables of interest. 
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FIG . 2. Control diagram for pine-mor model. 

(The control diagram is obviously a type of block diagram, but it must 
be kept in mind that the blocks are variables, rather than operators. The 
latter is the most comman usage in engineering literature. The 
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arrows signify mappings or functions. Thus the control diagram is 
similar to "signal-flow graphs" in engineering literature, with the 
important distinction that the units of the "signals" impinging on a 
variable are nonuniform.) 

The control diagram for the pine-mor food web model is presented in 
Fig. 2. Where an effect is indicated from a variable back to itself, this 
means that at any point in time the value of that variable depends upon 
its previous value. This would be true of any variable representing mass 
or stored energy, changing in time. (Only three of the nine arthropod 
taxa have been included, to avoid confusion.) 

d. Classification of Variables, Operational Definitions of Variables, and 
Specification of Variable Units. Once the control diagram is completed, 
the variables can be classified into three types: "input variables" (z^), 
"nondynamic state variables" (nd)y and "dynamic state variables"(xk). 
(This formulation is leading up to the analysis of dynamic ecological 
systems using the "state variable approach" of differential equations 
theory (DeRusso et al. 1965). This approach utilizes only the input 
variables and the dynamic state variables. The nondynamic state 
variables are used here to simplify formulation of the mathematical 
model; they will later be eliminated.) 

The input variables are the "first causes" of the control diagram, 
and lie outside of the system being represented by the mathematical 
model. In ecological systems they will usually represent input fluxes 
(e.g., litterfall, immigration, fallout, and input current) or environmental 
controls (e.g., temperature and humidity). 

The state variables represent the system, i.e., at any point in time the 
set of values of the state variables is the state of the system. The non-
dynamic state variables are those considered to be zero-memory, 
instantaneous, or, in the language of the engineer, non-energy-storing, 
e.g., rates. Thus, at any point in time the value of a nondynamic state 
variable does not depend upon its previous value, and the variable may 
be defined by an algebraic equation. The dynamic state variables are 
those considered to be finite-memory or energy-storing, e.g., biomass. 
Thus, at any point in time the value of a dynamic state variable depends 
upon its previous value, and the variable must be defined by a differential 
equation. The existence of dynamic state variables in a system results in 
the system itself being state-determined. 

Since the model must later be tested by comparing measured values of 
state variables with predicted values of state variables (as functions of 
themselves and measured values of input variables), operational defini-
tions must be given for each input variable and state variable. These 
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definitions are often implicit, since many ecological measuring techniques 
are standardized, but it is better to make definitions explicit, since 
different definitions yield different variables. For example, the term, 
"plankton biomass," has been used as a label for several essentially 
different variables, including in their operational definitions different net 
meshes or filter grades, different drying temperatures, etc.; certainly 
these variables are based upon the same real-world phenomenon, but 
they cannot be used interchangeably in a mathematical model. In many 
cases it will be necessary for the researcher to compromise his ideal 
operational definition of a variable because of the availability of data 
based on other definitions. In some cases it may be necessary to omit 
certain variables entirely, because of the difficulty or expense of 
measuring them. 

One particular problem, which has led to a great deal of confusion in 
ecological modeling, is the use of trophic levels, saprophage levels, 
biophage levels, etc. as variables. It is practically impossible to measure, 
thus to operationally define, such functional groups of organisms in a 
psychologically satisfying manner. Thus it is better to use easily recog-
nizable taxonomic groups as the variables of the model, and, perhaps, 
later construct a new model by partitioning the taxonomic variables 
among the functional variables. In this way an indefinite number of new 
models may be constructed, using different definitions of the functional 
variables. 

Since the statements of relationships among model variables are 
mathematical equations, the units of each variable must be explicitly 
stated. As with the operational definitions, the best units to be used 
depend upon the objective of the model and availability of data. Where 
relevant, most variable dimensions will contain three types of units: 
(1) a measure of amount, e.g., weight, length, or number of individuals; 
(2) a measure of distribution in space, e.g., inverse area or inverse 
volume; and (3) a measure of distribution in time, i.e., inverse time. 
Where possible, identical units should be used to simplify computation, 
e.g., all weights in grams. 

Input, nondynamic state variables, and dynamic state variables used in 
the pine-mor model, together with their units, are listed in Table I. The 
system is defined as a pure pine forest with no undergrowth. 

Mean air temperature (v^ and precipitation (v2) are defined in the 
same way as does the US Weather Bureau, in order to utilize Weather 
Bureau records. Pine litterfall (^3) is defined as ash-free, oven-dry 
(105 C) weight of litter collected in litter baskets at two-week intervals. 

Mor (x2) is defined as ash-free, oven-dry (105 C) weight of the total 
forest floor. The arthropod taxa (x^-Xu) are defined as total oven-dry 
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TABLE I 

P I N E - M O R MODEL VARIABLES 

Symbol Description Units" 

Input variables {vt) 

νλ Mean air temperature 
v2 Precipitation 
v3 Pine litterfall 

Nondynamic state variables (n,) 

n i 

n2 

n3 

« 4 

n5 

« 6 

ηΊ 

n8 

n9 

Mor temperature 
Throughfall 
Stemflow 
Net precipitation 
Potential evaporation from mor 
Actual evaporation from mor 
Precipitation retention 
Mor moisture fraction 
Mor respiration rate 

Dynamic state variables (xk) 

x1 Mor moisture 
x2 Mor (decomposing pine litter and fungi) 
x3 Araneae 
xA Mesostigmata (Acarina) 
x5 Trombidiformes (Acarina) 
*6 Oribatei (Acarina) 
x7 Symphypleona (Collembola) 
#8 Poduromorpha (Collembola: Arthropleona) 
x9 Entomobryomorpha (Collembola: Arthropleona) 
x10 Formicidae (Hymenoptera) 
Xn Lithobiomorpha (Chilopoda) 

g water m - 2 day - 1 

g PL m~2 day- 1 

g water m~2 day- 1 

g water m - 2 day- 1 

g water m - 2 day- 1 

g water m~2 day- 1 

g water m~2 day- 1 

g water m~2 day- 1 

(pure number) 
g M respired g M - 1 day - 1 

g water m - 2 

g M m"2 

g A m - 2 

g Me m - 2 

g T m - 2 

g O m"2 

g S m"2 

g P m - 2 

g E m"2 

g F m"2 

g L m"2 

α PL = pine litterfall, M = mor, A = Araneae, Me = Mesostigmata, T = Trombidi-
formes, O = Oribatei, S = Symphypleona, P = Poduromorpha, E = Entomobryo-
morpha, F = Formicidae, and L = Lithobiomorpha. 

(65 C) weights of the respective taxa, extracted in a micro-Tullgren 
funnel (Auerbach and Crossley, 1960). 

The unit of time used for all rates and fluxes in the model is the 
(inverse) day; the unit of area, the (inverse) square meter. There are 
several possible choices for the unit representing biomass, e.g., grams 
oven-dry weight, number of individuals, joules, grams carbon, grams 
calcium, grams nitrogen, and grams of other elements. The choice among 
these possible units is very important since this is the unit with which 
most of the model will operate. All data used in calculation of equation 
constants will have to be in this unit; all predictions from the model will 
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be in this unit, and must be compared with similar data from other sources. 
I have chosen grams of oven-dry weight (square meters per day) as the 

unit since this is most easily, most accurately, and most often measured. 
In most experimental work this is the unit actually measured, and then 
used to calculate one or more other units by means of a conversion factor. 
If predictions in some other unit are desired, it is easy to convert from 
grams of oven-dry weight, using conversion factors which are empirically 
determined. These factors would vary among variables and, perhaps, 
with time, e.g., joules per gram varies among arthropod taxa and among 
life stages within any given taxon. 

e. Specification of Forms of Equations. Specifying the equation forms 
represents the filling in of details of the control diagram. Each equation 
expresses a state variable as a function of both input and other state 
variables which have effects on the variable. The arguments of each 
function are the causes or controls of variable behavior, or the sources 
of signals, communication, or information flowing to the variable; the 
reader may choose the most satisfying phrase. The equations are the 
axioms of the mathematical structure which is the model. 

The set of equations is a complex hypothesis, in which each equation 
can be regarded as an independent subhypothesis, subject to being 
independently tested and modified. The terms of each equation, and even 
the constants, may be so regarded. Thus, the forms of the equations 
should be based upon mathematical, physical, chemical, and biological 
principles, as well as the literature, personal knowledge, and intelligent 
guesses. 

The equation forms should not be purely empirical, and probably 
cannot be, since an empirical equation is really a hypothesis that the 
future behavior of a variable will be the same as a sample of its past 
behavior was. Some empirical equations might be resorted to in order to 
calculate variable behavior necessary for the model to operate, but in 
whose genesis one is not particularly interested, e.g., the temperature of 
a biological system. The forms of such equations will often be statistical 
regressions or power series. 

Each nondynamic state variable is expressed as a function of other 
variables by an algebraic equation; each dynamic state variable, by a 
first-order ordinary differential equation. The differential equations are 
of the form 

xk = gain fluxes — loss fluxes, (2) 

where xk = dxk\dt. The algebraic equations could be condensed into the 
differential equations, and the nondynamic state variables eliminated, 
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but they are best retained for the present to ease formulation of the model 
and the digital computer program. They will later be eliminated to put 
the model into a form amenable to analysis. 

Each equation will contain a number of constants kx . (These are often 
called ''parameters," a word which leads to confusion because it is 
sometimes used, although not here, for the independent variables.) 
They will remain in an unevaluated form until the equations are fully 
specified. While I prefer to use a single letter, such as "Ä," to denote the 
constants, one might choose to use several letters (as in Chapter 1) so 
as to clearly identify several classes of constants, e.g., temperatures, 
ingestion rates, and respiration rates. The advantage of the single-letter 
approach is that the variables and the constants are immediately 
distinguishable by the reader, and the equation forms made obvious. 

Since both sides of each equation must have the same units, the 
constants will often have unusual ones, e.g., inverse degrees Celsius. In 
the case of the differential equations, all of the right-hand terms must be 
fluxes, often rate times mass (or density). 

Each term on the right-hand side of each equation (of course, some 
equations might have but one term) is a function of one or several 
variables. These arguments of the function are the sources of control. The 
question arises whether time should be considered as a possible 
argument. The question is an important one, since when one is dealing 
with a linear differential equation the inclusion of time as an argument 
produces an equation with variable coefficients (leading to "time-
varying," "variable," or "nonstationary" systems), while the exclusion 
of time as an argument produces an equation with constant coefficients 
(leading to "time-invariant," "fixed," or "stationary" systems). While 
the solution of the latter is routine, the solution of the former usually 
cannot be obtained in exact literal form (Coddington, 1961). 

Since in this type of mathematical model time is the only independent 
variable, all dependent variables (input and state) are functions of time. 
The state variables (the only variables for which equations are written), 
however, are only indirectly functions of time, so that time does not 
appear as an argument, and the system described by the model is time-
invariant. Where time is included explicitly as an argument of a variable, 
one is just describing the behavior of that variable in time without 
attempting to hypothesize the cause of that behavior. Such a variable 
would lie outside the system. This is the case with the input variables, 
which are just described as functions of time, and are sometimes merely 
constants ("constant forcing function"). Thus, in my opinion, all models 
of dynamic ecological systems should be so formulated as to be time-
invariant, except for the existence of input variables, which are defined 



2 . MODELING DYNAMIC ECOLOGICAL SYSTEMS 139 

as functions of time. Such models might be considered to be 
"explanatory" or "cause-and-effect" models. 

As an example of the two different approaches described above— 
time-invariant versus time-varying models—consider the pine-mor 
system which is affected by temperature, precipitation, and litterfall. 
The ecologist would consider all three of these to be input variables, 
with the resulting model being nonlinear, but time-invariant. In this 
case the concept of an "unforced system" would not be meaningful. 
On the other hand, the engineer or physicist would probably consider 
litterfall to be the only input variable, with the resulting model being, 
perhaps, linear, but time-varying (the variable coefficients would 
include the effects of temperature and precipitation as functions of time). 
In this case the concept of an "unforced system" would be meaningful. 

In ecological models, many dynamic state variables will often be 
biomasses (or biomass densities) of some taxon of organisms. Terms on 
the right-hand sides of the differential equations for these variables 
represent fluxes. (These fluxes are identical to the flows between 
compartments of "compartment models," special cases of general 
dynamic models discussed here.) The question arises of what variables, 
besides physical environmental controls, are the sources of control for 
each flux, i.e., whether the source taxon (or other foodstuff) or the 
receiver taxon or both exert control. (Other taxa might be hypothesized 
as exerting control, e.g., through competition, to further complicate the 
question.) 

Where the flux represents a physiological process, such as respiration 
or excretion, the assumption of total control by the source taxon is 
probably reasonable. The answer is more difficult when the flux 
represents a flow of food from the source to the receiver. 

It is sometimes assumed that feeding fluxes are completely controlled 
by the food source compartment. The biological interpretation of this 
assumption is that feeders are controlled by competition for a limited 
food supply or, perhaps, niches; the biomass of feeder has no effect on 
the amount eaten. A more realistic assumption would be that each 
feeding flux is controlled by both the source and the receiver. Thus, the 
more feeder present the more there is eaten, as well as the more food 
the more there is eaten. A biological interpretation of this assumption is 
that food supply and feeders mutually control each other. 

One might choose the "Hairston-Smith-Slobodkin" alternative 
(Hairston et al.y 1960) for the sources of control of feeding fluxes. In 
this case feeding fluxes from plants (or detritus) to herbivores (or 
saprovores) would be controlled solely by the receivers; feeding fluxes 
from herbivores (or saprovores) to predators would be controlled by 
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both sources and receivers. The biological interpretation of this assump-
tion is that competition for a limited food supply does not control 
herbivores; herbivores are controlled by predators, and predators are 
controlled by competition for supply of herbivores. Increased herbivores 
decrease the amount of plant material, but the amount of plant material 
has no effect on the feeding flux to herbivores. This last consequence 
seems somewhat unrealistic, unless there are unlimited supplies of 
plant material, or the model is only used when the plant material supply 
is high, i.e., for a certain range of conditions. 

In the case of the predator-prey feeding flux, it is common to assume 
that flux is expressed by a function of the form: constant times prey 
density times predator density. This is the Lotka-Volterra assumption 
that the rate of interaction of two species is directly proportional to the 
product of their populations—the mass action law of chemistry and 
physics. Watt (1962) has criticized this assumption (or hypothesis), but 
very rarely is enough information available to justify a better one. 

The above example is one of the simplest types of nonlinear functions 
(see Chapter 1 for a hierarchy), and serves to bring up the extremely 
important question of whether one should use linear or nonlinear 
functions in the equations. Certainly almost all real-world relationships 
are more accurately represented by nonlinear mathematical models than 
linear ones (I hestitate to say "are nonlinear"), but there is a great 
advantage in using linear models since most of the techniques developed 
by engineers and mathematicians for the analysis of dynamic systems are 
based upon linear mathematical models (DeRusso et al., 1965, Schwarz 
and Friedland, 1965). The disadvantage of a linear formulation is that 
it is usually a cruder approximation than the nonlinear, and, moreover, 
is usually valid for only a limited range of the model variables, including 
time. 

If it is felt necessary to use a nonlinear model, the analysis must 
usually be done by (1) the time-consuming process of digital (or analog) 
computer simulation (numerical approximation), or (2) linearizing the 
model about an equilibrium state and then using conventional linear 
techniques. The latter method is valid only for small deviations (or 
"perturbations") from equilibrium (Schwarz and Friedland, 1965). 

Time lags are sometimes thought desirable in ecological models. For a 
spatially homogeneous continuous dynamic system, time lags should not 
be necessary in the model equations. If they appear to be necessary, this 
is an indication that the state of the system has not been properly defined; 
in particular, more state variables are probably needed. This makes 
sense—a dynamic system is a state-determined system. Thus, the state 
of the system at any given instant of time is a function of the state of the 



2 . MODELING DYNAMIC ECOLOGICAL SYSTEMS 141 

system and the inputs at the immediately previous instant of time. Any 
effect from a distant time must act through the immediately previous 
instant of time. For example, growth of an animal may be considered to 
be a function of food intake at some previous time, since an obvious time 
lag exists. But if one increases the reality of the model by adding new 
state variables such as gut content and stored food, the necessity of 
time lags largely disappears. However, in some complex models, e.g., 
population models, it might not be feasible to redefine state in this way 
(Wangersky and Cunningham, 1957). If time lags are deemed necessary, 
a good introduction to the literature on the resulting differential-
difference equations and functional-differential equations may be found 
in the book by Hale and LaSalle (1967). 

If the system is spatially heterogeneous, then pure time delays 
("transport lags") may be necessary. This is the simplest space effect, 
and may often be used in formally spatially homogeneous models 
(Ball and Adams, 1967), and does not violate the system's property of 
being state-determined. 

Tables II and III contain the forms of the equations used for the 
nondynamic state variables (algebraic equations) and the dynamic state 
variables (differential equations), respectively, of the pine-mor model. 

The mean daily temperature within the mor (n^) has been made equal 
to the mean daily air temperature (v^. Some preliminary measurements 
in an Oak Ridge, Tennessee, shortleaf pine forest indicate this to be 
approximately true. In a future version of the model it might be wise to 
make mor temperature a function of a dynamic state variable, soil heat; 
in this way the temperature time lag could be accounted for. 

Throughfall (n2) and stemflow (ns) have each been made equal to 
constant fractions of open-air precipitation (v2), and net precipitation 
(w4) equal to their sum. This is, in general, consistent with the assump-
tions of foresters (Helvey, 1967, Hoover, 1953). A nonlinear relationship 
would be more realistic because of the initial period of saturation of 
branches and leaves during a storm. 

Potential evaporation from mor (w5) is assumed to be a function solely 
of mor temperature (n^. This is a tremendous oversimplification 
compared with other extant models, e.g., those of Thornthwaite, 
Penman, Budyko, and others, but is used here as a first approximation. 
The form of the potential evaporation curve (against temperature) 
is assumed to be the same as that of vapor pressure deficit (VPD) (milli-
meters of mercury, 0 % relative humidity), which is assumed to be 
of the form: VPD = aebn*. Values of a = 4.58 and b = 0.065 closely 
approximate the original VPD curve. ("6" is &4 in the actual model 
equation.) 
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TABLE II 

EQUATIONS FOR NONDYNAMIC STATE VARIABLES 

nx = vx 

n2 = k1v2 

n3 = k2V2 

«4 = «2 + «3 

«. = * / Λ 

Xl RQX2 

KbX2 RQX2 

5*̂ 2 Xl 
« 7 — 724 — 

R5X2 ^6^2 

«8 = — 
X2 

xllx2 ^6 
«5 = 

kb ^6 

«5 X1IX2 

~ï—r~n* = 

«g &6 

k —k "5 

^5 — n8 

k —k "4 

( «8 Ä6 \ 
- 7 -1 
^ 1 0 ^ 6 ' 

T A B L E I I I 

E Q U A T I O N S FOR D Y N A M I C S T A T E VARIABLES 

* 2 = ^3 — n9x2 — ku exp(Ä12(wi — k13)) x6 — £14 exp(Ä15(w! — &16)) x7 

— &17 exp(£18(fii — &19)) x8 — &2ο exp(/e21(w1 — /e22)) x9 

— k120 exp(Ä147(«! — &121)) * 1 0 

i 3 = &48&5o exp(Ä23(w! — &49)) * 3 x 4 + kblkb3 exp(k23(n! — kb2)) x3xb 

+ &54&56 e x p ^ s f a i — &55)) x3x6 + ^57^59 exp(£23(wi — kb8)) *3*7 

+ &60£62 βχρ(^ 2 3 («! — £61)) 
#3#8 l «63^65 

exp(£23(«! — kM)) * 3 x 9 
~l~ ^66^68 exP(^23(Wl ^67)) ^S-̂ IO "4~ ^69^71 exp(^23(wi — Ä70)) #3^11 
— k26 expi^aaiWi — &27)) * 3 — &72 exp(^24(w! — &73)) x3x4 

«9 6 eXp(Ä25(«1 «97)) x3%b ^123 exP(^147VWl ^124)) #3-*10 
— kli8 exp(Ä172(«! — k1M)) x3xn 

Xi = k72k7i exp(Ä24(«1 — k73)) x^x3 + k75k77 exp(Ä24(«1 — k76)) x^xb 

+ &78&80 exp(Ä24(w1 — k79)) x^x6 + k81k83 exp(ki4{n1 — Ä82)) x4tf7 

+ ^84^86 exp(Ä2 4(«! k8b)) XtX8 + ^87^89 expC&^Wj &88)) *4*9 

+ kQ0k92 exp(Â24(w! — k91)) χ^χ10 + &93&95 expC&^C«! — ß94)) χ4χλ1 

— &28 exp(Ä24(«! — k29)) Xi — ki8 exp(/e23(«1 — ki9)) x^x3 

— k99 exp(Ä25(w! — k100)) Xtx5 — /e126 exp(Ä147(«! — k127)) χ^χ10 

— k151 expikmiri! — klb2)) χ&1λ 

142 
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T A B L E III (continued) 

x$ = «96*98 exp(«25(wi — k97)) x5x3 + k99k101 exp(«25(wi — k100)) xbx^ 

+ «102*104 
exp(/e25(«! — k103)) xbx6 + «x 

05*107 

exp(«2 5(«! — /e106)) X 5 # 7 

+ «ι0 8*ιιο exp(«2 5(«i — k109)) xhx8 + kink113 exp(«2 5(tti — k112)) x5x9 

+ *ii4*ii6 exp(/e25(«i — *n 5 ) ) *5*io + *ii7*ii9 e x p ( « 2 5 K — k118)) x6xn 

— «3 0 expt&as^x — k31)) x5 — k51 exp(«23(rai — «52)) tf5*3 

— «7 5 exp(^ 2 4 («! — «76)) xbXi — k129 exp(«i47(wi — k130)) x5x10 

«154 exp(/e172(w1 «155)) #5^11 

x9 = knkM exp(Ä12(w! — k13)) x6 — k32 exp{k12{nx — k33)) x6 

— «5 4 exp(/223(«1 — «55)) x6x3 — «7 8 exp(«2 4(«i — k79)) * 6 x 4 

— «i0 2 exp(/e25(«1 — k103)) x6x5 — k132 exp(Ä147(«1 — k133)) x6x10 

«157 exp(«172(?21 «158)) ^6^11 
x7 = k^klb exp(«i5(wi — «i 6)) x7 — «34 exp(«i5(wi — «35)) x7 

— «5 7 exp(«23(w! — «58)) tf7*3 — k81 e x p ( « 2 4 K — k82)) x7x^ 

— «los e x p ( « 2 5 K — «106)) x7x5 — «1 3 5 exp(«i4 7(«i — k136)) x7x10 

— «160 e x p ( « i 7 2 ( « ! — « i 6 i ) ) χ7χ1λ 

x8 = «i7«46 exp(« 1 8 («! — «ι9)) * 8 — «3 6 exp(« 1 8 («! — k37)) x8 

— «6 0 exp(«23(wi — «61)) x8x3 — «8 4 exp(«2 4(ni — «85)) χ8*4 
« 1 0 8 eXp(«25(W! «109)) #8*5 *138 exp(«i4 7(«l «139)) #8*10 

— «lea exp(«i72(wi — «i64)) * 8 * i i 

* 9 = «20«47 exp(«2i(«i — k22)) x9 — «3 8 exp(«2i(wi — «39)) x9 

— «6 3 exp(«2 3(«i — «64)) *9*3 — *s? exp(«24(wi — k88)) x9Xi 

— « m exp(«2 5(«i — «n 2 ) ) * 9 * 5 — « 1 4 i exp(«147(wi — «i4 2)) * 9 x 1 0 

— «lee exp(«i72(wi — «167)) *9*n 

*io = «120*122 exp(«147(wi — «121)) X10 + k123k12b exp(«1 4 7(«i — « m ) ) Xi0x3 

+ *126*128 exp(«i47(Wl «12?)) *10*4 + *129*131 eXp(«i47(«l *13θ)) *10*5 

+ *132*134 e x p ( « i 4 7 ( « l *13s)) *10*6 + *135*137 e X p ( « i 4 7 ( « l *13β)) *10*7 

~T *138*140 

exp(«i4 7(«i — «i39)) Xio^8 + «i4i«i43 exp(«i47(wi — «142)) *io*9 
+ *144*146 e x p ( « i 4 7 ( « l ~ *14δ)) *10*11 ~ «40 e x p ( « i 4 7 ( « l ~ *4 l ) ) *10 

— «66 exp(«2 3(w! — «67)) #10*3 — &9o exp(«24(w! — «9 i)) ^ i 0 ^ 4 

— «114 e x p ( « 2 5 ( « i — «115)) * io*5 — ^ιβ9 e x p ( « 1 7 2 ( « i — « i 7 0 ) ) ^10^11 
^11 = «148^150 e x p ( « i 7 2 ( « ! — « 1 4 9) ) Λ η Λ 3 + « i 5 l«153 e X p ( « i 7 2 ( « i — « i 5 2 ) ) ^11^4 

+ «154*156 eXp(«i 7 2(Wi — « i 5 5 ) ) XUX& 4 - «157*159 e x p ( « i 7 2 ( « i — « i 5 8 ) ) XiiJC6 

+ «160*162 e x p ( « i 7 2 ( w i — * i 6 i ) ) ^11^7 + *163*165 e x p ( * i 7 2 K — *i64)) ■̂ 11̂ 8 

+ *i66*i68 exp(«i72(wi — «i6 7)) ^u^g + «i69*i7i exp(«i72(wi — k170)) xtlx10 

— «42 exp(«i72(wi — ki3)) Xu — «6 9 exp(«23(wi — k70)) xlxx3 

— «9 3 exp(«24(wi — k9i)) xrixt — k117 exp(«25(wi — k118)) xxlxh 

— «1 4 4 exp(«i47(W! — «145)) #11*10 
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The ratio of actual evaporation (w6) to potential evaporation (n5) is 
assumed to be equal to the ratio of actual available moisture to maximum 
possible available moisture. The latter term is equal to maximum mor 
moisture content minus minimum mor moisture content. This assump-
tion is commonly made in physical climatology (Sellers, 1965). That 
there is, indeed, a linear relationship between evaporation and available 
moisture is indicated by observed negative exponential drying curves of 
both pine and hardwood forest floors (Helvey, 1964, 1967). 

Similarly, the ratio of precipitation retention (n7) to net precipitation 
(w4), i.e., the fraction of net precipitation retained by the forest floor 
(the rest becoming runoff or soil seepage) is assumed to be equal to the 
ratio of actual moisture deficit to maximum possible moisture deficit 
(which equals maximum possible available moisture). That there is 
a linear relationship between precipitation retention and moisture deficit 
is indicated by observed asymptotic moisture buildup curves of hardwood 
forest floors (Helvey, 1964). 

The moisture fraction (w8) is simply the ratio of mor moisture (xj to 
mor (x2)y and is included solely for convenience. 

The mor respiration rate (w9) is assumed to be a function of both mor 
temperature (n^ and moisture fraction (w8), when k8 is the measured mor 
respiration rate, and k9 and k10 are the temperature and moisture 
fraction, respectively, at which the measurement was made. Respiration 
is assumed to be an exponential function of temperature within the range 
of the model, allowing the use of a simple Q10 value with k7, the tem-
perature sensitivity of mor respiration, determined by the value of the 
Q10 , and "ηχ — k9" is the difference in temperature of the mor from the 
original measurement. Data on the effect of moisture on the rate of mor 
respiration are very scarce. Those of Parkinson and Coups (1963) 
indicate that a linear relationship exists within the range they studied. 
A linear relationship is assumed here, although certainly a nonlinear one 
would be more realistic. 

The assumption of a single respiration rate (or decomposition rate) for 
mor is a gross approximation, and a closer approximation could probably 
be obtained by using several respiration rates based on the mor 
components of sugars, hemicelluloses, cellulose, lignin, waxes, and 
phenols (Minderman, 1968). To do so would greatly complicate the 
model, since the dynamic state variable, "mor," would have to be broken 
down into at least six different dynamic state variables. 

The dynamic state variable, mor moisture ( J^ ) , is defined by a 
differential equation in which the change in mor moisture per unit time 
(a "flux") is made equal to the gain flux, precipitation retention (n7)> 
minus the loss flux, actual evaporation (w6). Any transfer of moisture to 
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or from the mineral soil, not accounted for by the precipitation retention 
calculation, is ignored. 

In the case of the mor (x2), i.e., the decomposing pine litter with 
contained fungi, there is but one gain flux, pine litterfall (vs), and several 
loss fluxes, respiration (n9x2), and ingestion by the arthropods, Oribatei 
(x6)> Symphyleona (x7)y Poduromorpha (x8), Entomobryomorpha (x9), and 
Formicidae (#10). 

Temperature is assumed to affect ingestion fluxes in the same 
fashion as it affects mor respiration rate, allowing, of course, each 
arthropod taxon to possess its own Q10 value, expressed as its temperature 
sensitivity. Moisture is assumed to have no effect on ingestion or 
respiration by arthropods; this is based on the observation (Kendrick and 
Burges, 1962) that the arthropods tend to concentrate in the rather uni-
formly moist F2 layer. The insignificance of moisture is a questionable 
assumption, but sufficient information does not exist to make a different 
one. 

Fluxes representing ingestion of mor by saprovore arthropods are 
assumed to be controlled solely by temperature and the saprovore 
biomass, the mor biomass (Λ;2) not having any effect. Prédation fluxes, 
on the other hand, are assumed to be controlled by both prey and 
predator biomasses, as well as the temperature. Thus, I have adopted the 
^airs ton-Smith-Slobodkin" hypothesis. 

The differential equation defining the biomass of an arthropod taxon, 
in order to be complete, would have to include as gain fluxes: the inges-
tion of each prey taxon (or plant material) and immigration; and as 
loss fluxes: egestion of each prey taxon (or plant material), excretion, 
respiration, production of exuviae, production of nonviable eggs, 
nonpredatory death, predatory death (including parts not ingested by the 
predator), and emigration. (This assumes that water intake contributes 
nothing to dry weight.) In this model ingestions minus egestions for 
each prey (or mor) are used as the gain fluxes, and respirations and 
predatory deaths for each predator are used as the loss fluxes. 

The gain fluxes to each arthropod taxon (x^-Xu) represent ingestion 
minus egestion, i.e., assimilation, of each food material, and thus 
are of the form: ingestion rate · assimilation fraction · temperature 
effect · feeding arthropod biomass · food arthropod biomass (for 
predators only). Assimilation fraction is assumed to be a constant. The 
predatory loss fluxes are similarly formulated, with ingestion rates based 
on the predator, and with the assimilation fraction absent since all 
ingested material is lost from the food compartment. (It should be noted 
that the prédation ingestion rates do not have the usual units: grams of 
food ingested per grams feeder per day or, simply, inverse days, but, 
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grams of food ingested per grams feeder per grams food per day or, 
inverse grams food per day.) 

f. Evaluation of Constants. The equations specified in the previous 
step contain a large number of unevaluated constants k{. These constants 
must be evaluated if the mathematical model is to be tested and later 
(probably after modification) used for practical purposes. Of course, 
one might prefer to leave the constants in an unevaluated form, but I feel 
that this leads to rather empty models. Moreover, in nonlinear systems 
the qualitative behavior of the variables is often a function of the values 
of the constants. 

In general, there are three possible sources of values for the constants. 
In some cases the value of one or more constants may be suggested as 
hypothesis, perhaps a major hypothesis of the model. More often, values 
will come from the literature, but one must be careful that equation 
forms and the operational definitions of variables associated with the 
constants are the same in both models (one's own and that in the 
literature). Since this requirement is seldom satisfied, values of constants 
obtained in this way should probably also be regarded as hypotheses. 
The last, perhaps ideal, source of constant values is, of course, actual 
measurement. 

The actual measurement of constants, i.e., "parameter estimation," 
is where statistics makes its first major contribution to modeling. This 
is the area of least squares, regression, etc. In the case of fitting nonlinear 
curves (hypotheses) to sets of data, a very useful tool is the Taylor series 
gradient method developed by Marquardt (1963). 

It is important to manage one's resources so that constants most 
influential in determining solution behavior are the constants most 
accurately measured. It is often possible to calculate their influences, 
i.e., the partial derivatives of solution behavior with respect to particular 
constants, in a sensitivity analysis (Tomovic, 1963). 

It is in the evaluation of model constants that mathematical modeling 
has great value in guiding activities of the researcher. The model 
indicates what kinds of measurements are important, and what kinds are 
not. It provides a definite goal for the researcher, leading him toward the 
most useful observations to be made in order to accomplish his objectives. 

Table IV contains the evaluated constants of the pine-mor model. The 
sources of most of the values are indicated in the table. Ideally, all the 
constants should be measured in the same pine forest (the one on which 
the model is to be tested), since they are dependent upon local climate 
and topography, pine species, and species composition of arthropod taxa. 
Unfortunately, this has not been done. 
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Here k3 is the scale factor for potential evaporation n5=k3 exp(0.065w!). 
To calculate the value of A3 , I have used the data of Metz (1958). Metz 
measured a water loss from pine litter of 438 g m - 2 day- 1 immediately 
following rainstorms, during a period when the mean daily air tempera-
ture was 22.5 C. Using this data in the equation, and solving, k% = 101.6. 
Derivation of /e4 was explained in the previous section. 

The standard mor respiration rate k8 was calculated from a measure-
ment (Kowal, 1969b) of Pinus echinata L-layer respiration rate (0.00275 
day-1) corrected for relative weights of layers and relative respiration 
rates of layers (Parkinson and Coups, 1963). 

Predator ingestion "rates" were calculated from the assumptions that, 
at equilibrium, at 15 C all predator taxa ingest ^ of their biomass 
per day, and ingestion of the various prey taxa is proportional to prey 
taxa biomass. The values used for equilibrium biomass come from some 
preliminary P. echinata mor data. 

I recognize that many of the values used for constants are based upon 
crude data and unrealistic assumptions, but believe these to be the best 
available at the present time. Research is currently in progress to obtain 
better estimates of many of them, particularly the ingestion "rates." 

2. Digital Computer Programming (Numerical Approximation) 

Once the model has been formulated, it is necessary to obtain numerical 
solutions for use in system identification (testing of predictions and 
alteration of model) and, perhaps eventually, system analysis, this is 
most efficiently done (on the digital computer) by numerical approxi-
mation. 

By a "numerical solution" is meant a set of numerical values of the 
state variables at one or more points in time, usually starting with the 
initial state. Exact (analytical, closed form) solutions might be feasible 
for some very simple models, but for most practical models an approxi-
mation will be necessary. If they are feasible, exact solutions, of course, 
should be used rather than approximations. Numerical solutions are 
calculated indirectly from the exact or approximate literal solution, or 
may be calculated directly by a computer algorithm (the digital computer 
program). 

The model consists of a system of coupled algebraic and differential 
equations, and must be converted into a digital computer program. 
In formulating this program, algebraic equations pose no problems; 
they can be solved exactly. But, since the digital computer operates in 
discrete time steps, while differential equations are continuous, the 
differential equations must be approximated. This is most easily done by 
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TABLE IV 

P I N E - M O R MODEL CONSTANTS 

Symbol Physical description Units Value Reference 

kx Fraction of precipitation 
appearing as throughfall 

k2 Fraction of precipitation 
appearing as stemflow 

k3 Scale factor for potential 
evaporation 

/e4 Temperature sensitivity of 
potential evaporation 

ks Maximum mor moisture 
fraction (max n8) 

k6 Minimum mor moisture 
fraction (min n8) 

k7 Temperature sensitivity 
of k8 

kg Standard mor respiration 
rate 

k9 Temperature at which k8 

determined 
k10 Mor moisture fraction at 

which k8 determined 
ku Standard Oribatei 

ingestion rate of mor 
kl2 Temperature sensitivity of 

Oribatei 
k13 Temperature at which ku 

determined 
&14 Standard Symphypleona 

ingestion rate of mor 
k15 Temperature sensitivity of 

Symphypleona 
k16 Temperature at which £14 

determined 
k17 Standard Poduromorpha 

ingestion rate of mor 
k18 Temperature sensitivity of 

Poduromorpha 
k19 Temperature at which k17 

determined 
&2o Standard Entomobryomor-

pha ingestion rate of mor 
k2i Temperature sensitivity of 

Entomobryomorpha 

(pure number) 

(pure number) 

g H 2 0 m-2 day"1 

c-1 

(pure number) 

(pure number) 

c-1 

g M g M" 1 day"1 

C 

(pure number) 

g M g O"1 day"1 

C"1 

C 

g M g S"1 day"1 

C"1 

C 

g M g P" 1 day"1 

C 1 

C 

g M g E"1 d a y 1 

C 1 

0.80 

0.04 

101.6 

0.065 

2.30 

0.40 

0.069 

0.00119 

20 

1.00 

0.25 

0.139 

20 

0.14 

0.139 

15 

0.14 

0.139 

15 

0.14 

0.139 

Helvey (1967) 

Helvey (1967) 

Helvey (1967) 

Helvey (1967) 

010 = 2 
(Drobnik, 1962) 

Kowal (1969a) 

Berthet (1967) 

Kowal (1969a) 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

Healey (1967) 

0io = 4 
(Healey, 1967) 

Healey (1967) 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

Table continued 
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TABLE IV (continued) 
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Symbol 

k22 

« 2 3 

« 2 4 

« 2 5 

« 2 6 

«27 

« 2 8 

« 2 9 

" 3 0 

"31 

"32 

" 33 

" 3 4 

" 3 5 

" 3 6 

«37 

" 3 8 

" 3 9 

« 4 0 

"41 

"42 

" 4 3 

Physical description 

Temperature at which k20 

determined 
Temperature sensitivity of 

Araneae 
Temperature sensitivity of 

Mesostigmata 
Temperature sensitivity of 

Trombidiformes 
Standard Araneae 

respiration rate 
Temperature at which k2e 

determined 
Standard Mesostigmata 

respiration rate 
Temperature at which k28 

determined 
Standard Trombidiformes 

respiration rate 
Temperature at which k30 

determined 
Standard Oribatei 

respiration rate 
Temperature at which «32 

determined 
Standard Symphypleona 

respiration rate 
Temperature at which k3i 

determined 
Standard Poduromorpha 

respiration rate 
Temperature at which «36 

determined 
Standard Entomobryomor-

pha respiration rate 
Temperature at which k38 

determined 
Standard Formicidae 

respiration rate 
Temperature at which ki0 

determined 
Standard Lithobiomorpha 

respiration rate 
Temperature at which ki2 

determined 

Units 

C 

c-1 

C 1 

C 1 

g A g A - 1 day- 1 

C 

g M g M" 1 day"1 

C 

g T g T - 1 day-1 

C 

g O g O- 1 day"1 

C 

g S g S"1 day - 1 

C 

g P g P - 1 day"1 

C 

g E g E - 1 day- 1 

C 

g F g F - 1 day - 1 

C 

g L g L - 1 day"1 

C 

Value 

15 

0.139 

0.139 

0.139 

0.0047 

16 

0.0500 

16 

0.0500 

16 

0.00185 

16 

0.0282 

15 

0.0282 

15 

0.0282 

15 

0.0500 

16 

0.0103 

16 

Reference 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

MacFadyen (1963) 

MacFadyen (1963) 

MacFadyen (1963) 

MacFadyen (1963) 

Assumed same as 
Mesostigmata 

Assumed same as 
Mesostigmata 

Berthet (1963) 

Berthet(1963) 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

Healey (1967) 

Healey (1967) 

Assumed same as 
Poduromorpha 

Assumed same as 
Poduromorpha 

Assumed same as 
Mesostigmata 

Assumed same as 
Mesostigmata 

MacFadyen (1963) 

MacFadyen (1963) 

Table continued 
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TABLE IV (continued) 

Symbol Physical description Units Value Reference 

£ 4 4 

£ 4 5 

^46 

«47 

^48 

* 5 1 

&54 

«*57 

"*60 

^63 

^66 

^69 

"*49 

^52 

*55 
^58 

«*61 

&64 

^67 

k70 

« 5 0 

^53 

« 5 6 

^59 

«"62 

« 6 5 

« 6 8 

* 7 1 

Ä72 

* 7 . 

R78 

«"81 

«*84 

«*87 

« 9 0 

^93 

Oribatei assimilation 
fraction of mor 

Symphypleona assimilation 
fraction of mor 

Poduromorpha assimilation 
fraction of mor 

Entomobryomorpha assim-
ilation fraction of mor 

Araneae ingestion 
rate of prey 

Temperature at 
which Araneae 
ingestion rates 
determined 

Araneae assimilation 
fraction of prey 

Mesostigmata ingestion 
rate of prey 

(pure number) 

(pure number) 

(pure number) 

(pure number) 

g P ingested 
g A"1 g P - 1 day-1 

C 

(pure number) 

g P ingested 
g M" 1 g P" 1 day"1 

0.14 

0.55 

0.55 

0.55 

0.359 

15 

0.93 

0.364 

Berthet (1967) 

Assumed same as 
Poduromorpha 

Healey (1967) 

Assumed same as 
Poduromorpha 

Crossley and 
Shanks (1966) 

Table continued 
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TABLE IV (continued) 

Symbol Physical description Units Value Reference 

/e73 

^76 

k79 Temperature at C 15 
k82 which Mesostigmata 
k85 ingestion rates 
kgg determined 

^94 

&74 

*77 

" 8 0 

k83 Mesostigmata assimilation (pure number) 0.47 Assumed same as 
k8e fraction of prey Opiliones 
k89 (Phillipson, 
k92 1960) 
&95 

&96 

&99 

&102 

/e105 Trombidiformes ingestion g P ingested 0.368 
k106 rate of prey g T" 1 g P" 1 day"1 

&m 
^114 

^117 

"100 

k103 Temperature at C 15 
k106 which Trombidiformes 
1̂09 ingestion rates 

k112 determined 

^118 

*115 

Ai: 

^101 

^104 

k107 Trombidiformes assimila- (pure number) 0.47 Assumed same as 
k110 tion fraction of prey Opiliones 
k113 (Phillipson, 
*ne 1960) 
&119 

Table continued 
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TABLE IV (continued) 

Symbol Physical description Units Value Reference 

*120 

«121 

«122 

^123 

^126 

^129 

^132 

&135 

«138 

&141 

«144 

«124 

«127 

«~130 

^133 

^136 

^139 

Standard Formicidae 
ingestion rate of mor 

Temperature at which k120 

determined 
Formicidae assimilation 

fraction of mor 

Formicidae ingestion 
rate of prey 

Temperature at 
which Formicidae 
ingestion rates 
determined 

g M g F" 1 day" 

C 

(pure number) 

g P ingested 
g F" 1 g P" 1 day 

C 

15 

0.55 

Arbitrary 

Arbitrary 

Arbitrary 

0.417 

15 

^125 

^128 

^131 

&134 

^137 

«140 

« 1 4 3 

^146 

Formicidae assimilation 
fraction of prey 

Temperature sensitivity of 
Formicidae 

(pure number) 0.93 

0.139 

Assumed same as 
Araneae 

Assumed same as 
Poduromorpha 

«157 

^160 

^163 

^166 

^169 

Lithobiomorpha ingestion g P ingested 
rate of prey g L _ 1 g P - 1 day-

0.417 

Table continued 
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TABLE IV (continued) 

Symbol Physical description Units Value Reference 

^149 

&152 

&155 Temperature at C 15 
klb8 which Lithobiomorpha 
^lei ingestion rates 
1̂64 determined 

^167 

*170 

&150 

^153 

^156 

&159 Lithobiomorpha assimila- (pure number) 1.00 Crossley and 
k162 tion fraction of prey Shanks ( 1966) 
^165 

^168 

k171 

k172 Temperature sensitivity of C _ 1 0.139 Assumed same as 
Lithobiomorpha Poduromorpha 

converting them into their corresponding difference equations using 
Euler's method: 

dx/dt = f(n, x, v) (3) 
Ax/At = f(n,x,v) (4) 

Ax = Jtf(n, x, v), (5) 

where f(n, x, v) is the vector-valued function of the nondynamic state 
vector, the dynamic state vector, and the input vector, At is the time 
increment of the algorithm, and Ax is the resulting dynamic state vector 
increment. In the computer program, each dynamic state-variable 
increment is thus approximated by the product of the right side of the 
corresponding differential equation and a suitable time increment. At 
each step in the computation, state-variable increments are calculated 
from previous values of the dynamic state variables and current values of 
the others, and then added to the previous values of the dynamic state 
variables to approximate their next values 

x(t) = x(t - At) + Atî{n{t\ x(t - At\ v(t)). (6) 

This process is repeated for the total time period over which a solution is 
desired. 
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Euler's method is very appealing to the mathematical neophyte because 
of its simplicity, but it is also very inaccurate. The error usually grows 
as the solution proceeds from the initial time, and is proportional to the 
time increment (Nielsen, 1964). The error can be reduced by using small 
time increments, but solutions at times distant from the initial time will 
still always be considerably in error. One alternative approach would be 
to use an analog rather than a digital computer to obtain solutions. 
In this case the solution is exact (within the errors introduced by the 
electronic components) since the analog computer operates in continuous 
time; however, it may by difficult to program the computer for some 
types of models. Another alternative is to use finite (based on the chosen 
time increment) rather than instantaneous rates in the formulation of the 
model. This would convert the differential equations into difference 
equations, and then a digital computer program could produce an exact 
solution to the model. However, the model would be more approximate. 
(If the computer program time increment were equal to the time 
increment used in the real-world measurements, then the calculation of 
rates would be greatly simplified. The finite rates could be calculated 
directly from the measurements. Otherwise, from the measurements 
based on one time increment must be calculated the instantaneous rates, 
and from these must be calculated the finite rates based on the other 
time increment.) An important drawback of this last alternative is that 
the theory of difference equations has been developed to a lesser degree 
than has the theory of differential equations. 

The most practical alternative to the Euler method is to use one of the 
other standard methods of numerically approximating the solutions to 
differential equations (Nielsen, 1964; Scheid, 1968; Benyon, 1968), e.g., 
Taylor series, Runge-Kutta method, Milne method, Adams-Bashforth 
method, or Adams-Moulton method (see Chapter 1, Section VII.C). Of 
these, the fourth-order Runge-Kutta method is probably most practical 
for large systems, and is discussed later; the Milne method should be 
avoided because of its instability (Scheid, 1968). The Runge-Kutta 
method has been used for the pine-mor system, but discussion here 
is limited to the Euler method for the sake of simplicity. 

In North America digital computer programs usually are written in 
Fortran, and thus I am assuming its use here. (Elements of Fortran are 
given in Chapter 1.) The first step is the dimensioning of variables. 
(Table V, card 042 as numbered at the extreme right.) The constants are 
treated as subscripted variables in the program, but, once read in, are 
never changed. One must also define a new set of variables, DX(I), 
which represents approximate increments of the dynamic state variables, 
i.e., Axi . (In transferring between a computer language and ordinary 
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mathematical terminology, one should be careful in the use of paren-
theses. They may signify subscripts, arguments of a function, multiplica-
tion, sets, explanatory statements, or nothing, depending on context.) 

Next, any variable names implicitly typed incorrectly must be 
explicitly typed correctly. Thus, if one is using the v, n, x, k, dx notation, 
n and k must be explicitly typed "real" (card 043). The DO loop index, 
DAY, (see below) must be typed "integer" (044). 

The constants must now be evaluated, and the initial state of the 
dynamic state variables fixed. This is accomplished by two pairs of 
READ and FORMAT statements, (046-7, 049-50). The evaluated constants 
and the initial state form the first and second types of data required by 
the program, and are placed after the program itself. 

Before the DO loop, which calculates predicted states on the basis of the 
constants and initial state (and the input variables and equations), one 
must make certain preparations for the printout (predicted states) of 
the DO loop. The printout will normally consist of a column for the time 
variable, and several columns for selected state variables. These columns 
can be provided with headings by a pair of nonlist WRITE and Hollerith 
FORMAT statements (053-6). One must be careful that spacing of the 
headings matches that of the columns; either symbols or descriptive 
names could be used for column headings, but symbols will usually 
save space. At this point it is also useful to print the initial state, since the 
DO loop will not do this. Again, one must use the same format as that of 
the columns of predicted values of the selected state variables, plus print 
a zero in the time column by means of a Hollerith "field" (059-60). 

The DO statement (064) is now written. The systems we are dealing 
with are continuous, state-determined systems, characterized by the 
state equation (DeRusso et al.> 1965, p. 328) 

x(0 = f(x(i0), v(f0, t)\ (7) 

where x(t) is the state vector, including both dynamic and nondynamic 
state variables. (For the analysis of the model, the nondynamic state 
variables are eliminated, so that the inconsistency disappears.) Equation 
(7) means that the state x at the end of the time interval, tQ to t> is a 
function of the state at the beginning of the interval and the input v over 
this time interval. The equation represents conceptually the literal 
solution to our system of coupled (algebraic and) differential equations, 
i.e., our model. Since the literal solution is usually impossible or 
impractical to obtain, we obtain a numerical solution. This is done by the 
DO loop, by reading the input variables (066-7), calculating the non-
dynamic state variables (069-76), calculating the dynamic state-variable 
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TABLE V 

A SAMPLE FORTRAN COMPUTER PROGRAM FOR THE PINE-MOR FOOD WEB MODEL 

p 

L 

1PÏLER PPTlUNS - NAMF= ΜΛ IN , 3 P T = 0 0 , l I NFCNT=,> 0 , SOURCE .EBCDIC ,NOLI STt NQ0ECK«L0A0.N0MAP 
C PINE-MOR. FOOÜ WFR MOTEL. 
C N . E. KUrfAL, INSTITUTE flF ECOLOGY, U. GÄ. 
C 
C MODEL CONTAINS 3 INPUT, 9 Ν0ΝΠΥΝΛΜΙΓ. STATE, AND 11 DYNAMIC STATF 
C VARIABLES, PIUS 172 CONSTANTS. 
C INPUT VAPIARLFS 
C Vf 1 ) ΜΕΑΚ' AIR TEMPEWATUPT 
C V I ? ) PRF.CIPITATION 
C V U ) PINF LITTERFALL 
C NONDYNAMIC STATF VARIABLES 
C N i l ) MOR TEMPERATURE 
C NI 2 ) THROUGHFAL^ 
C N I ? ) STEMFLOM 
C N ( 4 ) NET PRECIPITATION 
C N(S) P01FNTIAL EVAPORATION FROM'MOP 
C NI 6 ) ACTUAL EVAPORATION FROM MOR 
C N I 7 ) PRECIPITATION RETENTION 
C NI 8) MOR MOISTURE FRACTION 
C N I 9 ) MOR RESPIRATION RATF 
C DYNAMIC STATF VARIABLES 
C X I 1 I MOR MOISTURE 
C X12) MOP 

1 C X ( 3 ) ARANEAE 
C X ( 4 ) MESOSTIGMATA 
C X I ? ) T*r *BIDIFORMES 
c x(6) ORIBATE: 
C XI 7 ) SYMPHYPLFONA 
C X I 8 ) POOURPMORPHA 
C X I 9 ) FNTOMOBRYONORPHA 

, C X I 1 0 | FORMICIDÀE 
C XI H ) LITHORIOMORPHA 
C PROGRAM OATA REQUIREMENTS: 
C 1) EVALUATED CONSTANTS: K ( 1 ) - K ( 1 7 2 ) 
C CAROS 1-22ICOLUMN 4 0 ) 

| C FORMAT 8F10 .Ö 
C 21 I N I T I A L STATF: X U ) - X ( l l ) AT TIME ZFRO 
C CAROS 2 3 - 2 4 (COLUMN 30 ) 

, C FORMAT 8 F 1 0 . 0 
■ C 3) VALUES OF INPUT VARIABLES FOR PF.RIOP OF f.Al CULATI ON: V ( U - V ( 3 ) 

C CAROS 2 5 - I 2 4 Î M A X DAY 1 
1 C FORMAT 3 F 1 0 . 0 

OIMFNSION V U ) , N I 9 ) , X l l l l , K I 1 7 2 ) , P X I l l ) 
f REAL N, K 

INTEGER DAY 
C EVALUATION OF CONSTANTS. 

HEAD 1 5 , 1 0 ) K 
10 FORMAT I 8 F 1 0 . O ) 

C SETTING OF I N I T I A L STATE OF DYNAMIC STATF VA^IABLCS. 

REAO 1 5 , 2 0 ) X 
20 FORMAT I 8 F 1 0 . O ) 

C PRINT COLUMN HEADINGS FOR PROGRAM O'JTOIJT. .<UST CORR ES<>ONO. taT TH SE-
C LECTEO VARIABLES PRINTED OUT Rv on L C i e . 

WRITE 1 6 , 3 0 ) 
3 0 FORMAT I121H1 DAY X I I I X I ? ) X( 3) X I * ) 

X X | 5 ) X I 6 ) X I 7 ) X I R ) X ( 9 ) X U O ) X l l l 
X ) ) 

C PRINT I N I T I A L STATES OF SELECTED ΠΥΝΑΜΓ STATF V A ' I A R L P S . THFSF NUST 
C CORRESPOND WITH COLUMN HEADINGS. 

WRITE ( 6 , 3 5 ) X 
35 FORMAT I 1 1 H 0 , 1 P 1 1 F 1 0 . 3 ) 

C CALCULATION OF STATE VARIABLES FROM I N I T I A L STATE ΑΝΓ INPUT VARIABLES. 
C 00 LOOP PERFORMS NUMERICAL APPROXIMATION OF DYNAMIC STATP VARIABLFS 
C BY EULER'S METHOD. 

DO 6 0 DAY« 1 ^ 7 3 0 , 1 
C VALUES OF INPUT VARIABLES FOR DAY »DAY··. 

READ 1 5 , 4 0 ) V 
4 0 FORMAT I 3 F 1 0 . 0 ) 

C èOUAÏtONS FOR NONDYNAMIC St a f t VARIABLES, DURING DAY «DAY«. 
N i l ) « V I I ) 
N I 2 ) » K | l ) * V t ? l 
N I 3 ) » K ( 2 ) * V ( 2 ) 
N I 4 ) » N ( 2 ) ♦ N I 3 ) 
N I 5 I m K U ) * E X P | K | 4 ) * N U ) ) 

001 
0 0 2 
003 
004 
0 0 5 
0 0 6 
007 
OOR 
0 0 9 
0 1 0 

on 
0 1 2 
013 
014 
015 
0 1 6 
017 
0 1 8 · 
0 1 0 
0 2 0 
0 2 1 
0 2 2 
0 2 3 
024 
0 2 5 
0 2 6 
0 2 7 
0 2 8 
0 2 9 
0 3 0 
0 3 1 
0 3 2 
033 
0 3 4 
0 3 5 
036 
0 3 7 
0 3 8 
0 3 9 
0 4 0 
041 
042 
043 
044 
045 
046 
0 4 7 
0 4 8 

Ο49 
0 5 0 
0 5 1 
Ô52 
0 5 3 
054 
055 
056 
057 
0 5 8 
0 5 « 
0 6 0 
0 6 1 
06? 
0 6 3 
0 6 4 
065 
0 6 6 
0 6 7 
666 
0 6 9 
Ö7Ö 
0 7 1 
0 7 2 
073 

Table continued 
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TABLE V (continued) 

' MM « >mWxtM — — — — imr-
NC6I » INI* t -k l61»»NIS»/ |KI5»-K|6»» 0T5 
HIT» « ΙΚΙ5»-ΝΙ01»*ΜΓ477ΓΚΙ51-ΑΤϊίΊ ~ VW~ 

C HE,XT TMO STATEMENTS PREVENT ACTUAL EVAPORATION I N I 6 I 1 FROM EXCEEDING 0 7 7 
C «ÖI5TÜRE 1 X ( 1 1 1 , AND P R E C I P I T A T Π » R f f ΕΝΤϊΤΓΝ~ΤΝ~ΤΤΠ"Τ1ΓΤ*Γ*Α,.«Γ'ΐΝ<} —Ö~7T~~ 
C HOI STURE D E F I C I T I K I 5 t * X I 2 ) - X l l | ) · THESE MAY OCCUR BECAUSE OF THE 0 7 9 ; 

T Ο Κ Μ Ε τ Έ - τ Ί Η Ε APPROXIMATION OP Ε Ο Ν Τ Ι Η Ι Ι Γ Ϊ Κ - Τ Τ Μ Έ SOLUTIONS, E S F I C I A U V OTO— 
C JIHEN MOR CXC2 I I I S LOW. 081 

i r i N t é l . C T . X I l » ) Ν Ι 6 Ι - Χ Ύ Γ Γ ^ ~ ~ "' 0B2 
l F l N l 7 ) i G T . l K t 5 ) » X I 2 ) - X l l » » » Μ 7 » « Κ Ι 5»*X* ?»-X I I » 083 
MC9» » K I 8 l * E X P l k r 7 T * T R T T P * 1 9 ) T » » I N < e »-ΚΊ 6 ) 1 ΠXI ΓΟΤ- ΙΠοΊΤ 0 1 * — 

C EQUATIONS FOR OYNAMIC STATE VARIABLE INCREMENTS, DURING NDAV »OAY··^ 0 8 5 
B X f U « N I 7 I - N < 6 | ' 5 1 5 — 

C 0 8 7 
DXIZ» » ¥ l 3 l ' - ~ T I - T ^ l ' * X r 2 T " ^ K I i n * F » f K ( 1 2 » M m n - < C n i H « T r m - = ■ 0 8 « 

Χ Κ Ι 1 4 » » Ε Χ Ρ Ι Κ Ι 1 5 » » Ι Ν Ι Ι » - Χ Ι 1 6 » » » » Χ | 7 ) - Kl 1 7 )»FXP| K| I R ) « | N I 1 l - M 19) ) ) 0 8 9 
X*X(A» - Κ ( 2 0 ) » Τ Χ Ρ Τ κ Ι 2 1 Τ * ΐ Ν ( 1 » - Μ 2 ? » ) »*Xl<M - Κ Π 2 0 » * E X P T K T R T T » ! 0 9 0 
X N I 1 ) ^ K I 1 2 1 ) ) » * X I 1 0 » 0 9 1 

T " — 0 9 T -
0X13» * k l 4 8 » * K | ' 5 0 » * E X P l K l 2 3 » * l N l l I - K I 4 9 ) t ) * X | ? » * X I 4 ) ♦ K I 5 U * K | S 3 09? 

Ι 0 7 Τ Τ * Τ Η Τ Π - Κ Ϊ 5 ? ) » | * Χ 1 3 ) * Χ Ι 5 » ♦ K< 54) * K | * é ) * F X P T K m ) * T W r T T ~ 0 9 * 
X - Μ 5 5 » » Ι » Χ Ι 3 » » Χ ( 6 » ♦ Χ Ι 5 7 | * Κ ΐ 5 9 ) » Τ χ Ρ < κ ( ? · * Ι * ( Ν Ι 1 » - Κ ΐ 5 « » ) ) * Χ Ι 3 ) * Χ Ι 095 

~ΎΠ~* Τ σ 6 Τ 5 ϊ * Κ Τ 5 7 Γ * Ε Χ Ρ ( Κ Ι 2 3 > * ( Ν ΐ 1 Ι - Κ ( ' t ) ) ) * X | 3 ) * X | R » ♦ k l S T F * * 
X E X P l M 2 3 ) » t N H » - K l 6 4 1 » » » X I 3 » » X 1 9 J ♦ K I66» »Kl 6 8 » * E X P I K I 2 3 » » | NI I I - 0 9 7 
X K I 6 7 » » » * X I 3 » * X I 1 0 ) ♦ K | 6 9 ) * K t 71 » » É X P I K I 2 3 » * I N I 1 » - K I 7 0 » M *X* 3»»X l I I 1>W 
X I « K I 2 6 l » E X P t K I 2 3 » » l N l I I - K | 27» » »»XI 3» - K | 7 2 » » E X P I K I 2 4 » » | N i l ) - 099 
Χ Μ 7 3 Η ) * Χ Ι 3 ) » Χ | 4 ) - K < 9 6 ) » E X P ( K I 2 5 ) » I N I 1 ) - K | 9 7 ) ) » * X I 3 » * X I 5 » - TW 
X M 1 2 3 M E X P I K I 1 4 7 » » I NI I » -KVL2* 1 » » » X I 3 » » X t l 0 ) - k l l 4 8 » » E X P | k t l 7 2 » » l 101 
Χ Ν Ι 1 > Η ( Ι 1 4 9 | ) ) » Χ | 3 » * Χ | 1 Ϊ Ι Ï Ô T " 

_ _ _ _ 103 
0X141 « Μ 7 2 » » Κ | 7 4 | * Ε Χ Ρ Ι Κ Ι ? 4 ) + Ι Ν Ι 1 » - Κ ( 7 3 » » ) » Χ Ι 4 » » Χ Ι 3 » ♦ K ( 7 5 ) * K < f Ö T " 

X T 7 » » E X P I K I 2 4 » » I N I l » - K I 7 6 » » » » X t 4 » » X l 5 » ♦ KI 78»»K I 80»»E XPI Kl 2 4 » » | N 105 
X ( 1 I - K I 7 9 ) ) ) * X I 4 ) »X 161 ♦ "K ie l ί *K I 83 ) *EXPl K I 24 » * l N | l » - K l 82 11 I * X I 4 | * Ϊ 0 6 -

X X I 7 I » K I 3 4 » » K I 8 6 » » E X P | K I 2 4 » » l N l l » - k l 8 5 » » ) » X | 4 » » X I 8 » ♦ K I87»»K189» 107 
Χ * Ε Χ Ρ Ι Κ Ι 2 4 > * Ι Ν Π » - Κ Γ 8 8 » ) » * Χ Ι 4 » · Χ | 9 » 4 K < 9 0 ) * M 9 2 l » E X P I K I 2 4 ) » I N I l l . - k l \ W 
X 9 1 » » » » X I 4 » * X I 1 0 » » Κ Ι 9 3 » » Κ Ι 9 5 » » Ε Χ Ρ Ι Κ Ι 2 4 » » Ι Ν Ι 1 » - Κ | 9 4 » » » » Χ Ι 4 » » Χ Ι 1 1 > 109 
X - Κ Ι 2 β » · Ε Χ Ρ ΐ Κ ΐ 2 4 ) » ( Ν Ι Ι ) - Κ ( 2 9 | » ) » Χ | 4 ) - K I 4 8 1 * E X P I K I 2 3 I * ( N I D - K I 4 9 Π(Γ 
Χ » » Ϊ » Χ | 4 » » Χ Ι 3 » - K | 9 9 » » E X P I K I 2 5 » « N I 1 »-K 1100» » ) » X | 4 » » X I 5 ) - Kl 126»» 111 

E X P | K ! 1 4 7 I * I N I 1 | - K | 12 7 ) » ί * Χ | 4 ) * X I 10» - Kl 151 »»FXPIK I 172 » * I N I 1 » - K Γ Ϊ 2 -

X U 5 2 ) t » * X ( 4 » * X t l l ) 113 
114 

0X15» « k l 9 6 ) » K I 9 8 ) » E X P t K I 2 5 » » I N t l » - K | 9 7 » > » » X I 5 » » X l 3 » ♦ K | O 9 » * K l l 0 115 
Χ Π * Ε Χ Ρ < Κ Ι 2 5 » * Ι Ν Ι 1 » - Χ Ι 1 0 0 Π » * Χ Ι 5 » » Χ Ι 4 » ♦ Kl 1 0 ? » * K | 104»»EXPI M2-5»» 116 
X t N t l » - K t l 0 3 » l » * X t 5 ) » X t 6 » ♦ Kl 105» »Kl 107 »»EXPIKI 2 5 » » f N l 1 ) - K | 106» H » 117 
X X I 5 ) * X I 7 » ♦ Kl 1 0 Β > * Κ ί Ι 1 0 » · Ε Χ Ρ ί Κ ΐ 2 5 » - > I N I l T - K 11 09 » » »*X | 5 ) * X | B 1 Γ Γ Γ 
X» K t l l l » » K t l l 3 » * F X P I K I 2 5 » » I N t l » - K t l l 2 » » » » X I 5 » » X I <? » » K l 1 1 4 » » K l 1 1 6 » . 119 
X » E X P I K I 2 5 ) » 1 N I ί » - Κ Ι 1 1 5 » » » * Χ Τ 5 » * Χ ί ΐ θ ) ♦ ΚΪ Π 7 Ϊ * Κ I l f 9 ) * E X P | K I ? 5 ».»INI Ï2Ô~ 
X l » - K l U 8 » » » » X I 5 » » X l l l » - Κ | 3 0 » » Ε Χ Ρ | Κ | ? 5 » » Ι Ν Π » - Μ ? 1 » » »»ΧΙ5» - 121 
xkt5U»fexp(ki2*»»tNlu-K<s2»»»»x<5»*xn» - Ki75)»EXPtKt?*»»iNU»- Π * -

XM76»» )»XI5»»X|4) - K|129)»EXPtK(147)*tN{l>-Kt130m»X|S)*X^lO) 1.23 
X- Χ<154ί»ΕΧΡ|Κ(172»*ΙΝΓΐΙ-Κ(ΐ55»ίΙ»χΓ5ΤτχΐΐίΤ l?4~~ 

. 1 2 5 
0 X 1 6 » * ΚΙ11Γ»ΚΙ 4 4 » *E ΧΡΪΚ112 » * I N< O - K 11 3~Γ> »*X<6» - K<32»*FXP< K ÏU) I T S -

X*INI1»-KI33»»»»XI6» - K |54)»EXPIM 23 »»ΙΝΠ »-Μ 55») ) »XI M »XI 3) - 127 , 
ΧΚ<78»*ΕΧΡ<Κ<24»*ΙΝΐΐ»-Κΐ79»))·χίΜ»ΧΙ4> - Kl 10? »»EXPI K I * 5 ) * I N I I »-* ΓΤβ-

XI103)»»»SI6»»XIS» - KI132»»FXP|KI147»*(NIÏ»-KI1J3J)»*X|6)*]( I10) _- 129 
"ΈχΤΓΚ(Γ72»»ΙΝΐί»-Μ(Ι158»»»*ΧΊ6»*ΊΪΙΪ1» " " 130 

C _ 13» 
ÖXlf» « MÎ4T*K|45»*EXl>TK(15)* lNU>-KlÎ6»)>*Xi7» -~ΪΓ|Τ4Γ*ΤΧΡ|ΚΤΤ5» Τ3Τ~ 

X»INI1»-K|35I»)*XI7) - KIS7»»EXP|KI23t»INIl»-K(58»»»»X(7»»XI ?» - 133 
XKlBi»»ÊxHM24»»tN<i» -Kt8*m»HT»»x(4) - fctinM+rxPt*<>M»<mn- Π Γ 
XKI106I»»»XI7»»X(5) - Kl 135»»EXPIKl 147 )» | N( 1»^Π 13M)) *X! 7)»_XI_L0» - 135 
X Κ|Γ60»*ΕΧΡΤΚΪΪ72»*ΙΝΙΙΙ-ΚΤΤ61»Ι»*ΧΙ7»*ΧΙ11) Τ 3 ^ ~ 

C _ , 137 
~ 0X18» « Kfl7»*K|46»*EXPIKll8"»»TNIÎ)-KÏ19)))»X(fl» - K| 36» *E ΧΡΐκΓΐΒΪ 138 

K»INI1»"K|37»)»»X|8» - Kl60»»EXPlKI23»»INI 1»-KI61»»»*XI8»»XI3» - 139 
ΧΚ(84**ΕΧΡ<Κ(24»»ΐΝΐ1»-Κί85»Π*ΧίΑ»»Χ<4» - K i Î08»*ÉXPÎ Κ<25)*(Νίΐ »- 140" 
XK1109»»» »XI8» »XI5» - Kl 138)*EXPIK 1147»»INI Γ Ι -ΚΙ 119» » » »XI 8»*X( ÎOJ^ - 141 
X κΠ63ί*ΕΧΡΐΚί177»*ΤΝΙ1»-Κί ίδ4ϊ»»*«*»»ΧΤΠ» " Γ4Τ" 

C _ 14? 
0X19» * KI20»»kl47»»EXPtkt2l|»|NH »-K't2>l_V)»X |9 » .-"K|.3B> »EXP(K< 211 144 

X»INIl»-K|39»t»»XI9» «" K|63»»EXPIK 123 »»INI ï )Ht 164 »» >»X 19» »XI 3J " - " " 145 
XKt87k»ÉXP<kl24»»ÎMl»-KÎ88»»»*Xl9»»X<4) - K<1 t l »»ÉXPt k<25»**NÜ »-K Γ5Ϊ~ 

. Xl l l2»»»»XI9|»X|5» ^JKÜ41 »*1:Xl.fKt_14î »*1_NJ l.»-kU4?lL»)*-XI 9»»XI10» - . 1 4 7 

Table continued 
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TABLE V (continued) 

XK ( 1 6 6 1 * Ε Χ Ρ ( Κ ( 1 7 ? ) * ( Ν ( l ) - Κ ( 1 6 7 ) ) ) * Χ ( 9 ) *Χ C l11 148 
149 

Π Χ Ι Ι Ο Ι = Κ( Γ20»*Κ( 122 » * Ε Χ Ρ ( Κ ( 1 4 7 ί * ( Ν < η - Κ ( 121 Π ) * Χ ί 1 0 ) ♦ Κ ( 1 2 3 ) * Μ 1 5 0 
Χ 1 ? 5 ) » Ε Χ Ρ ( Κ ( 1 4 7 ) * ( Ν ( 1 ) - Κ ( 1 2 4 ) ) ) « Χ ( 1 0 ) * Χ ( 3 ) ♦ K ( 1 2 6 ) * K t 1 2 B ) » F X P ( K ( 1 4 151 
Χ 7 ) * ( Ν ( 1 ) - Κ ( 1 2 7 ) ) ) * Χ ( 1 0 ) * Χ ( 4 ) ♦ KJ 1?9 ) * Κ < 1 3 1 ) *ΕΧΡ(Κ( 1 4 7 1 * (Ν111 f-KC13 Γ 5 Γ " 
ΧΟ) ) ) * X ( 1 0 ) » X ( S ) ♦ K C 1 3 2 ) * K ( 1 3 4 ) * F X P ( K ( 1 4 7 ) * ( N ( 1 ) - < ( 1 3 3 ) ) ) » Χ ( 1 0 ) » Χ ( 1 5 3 _ 
ΧΜ ♦ Κ(135)*Κ~( η 7 Ι * Ρ Χ Ρ ( Κ ( 1 4 7 Γ * < Ν ( Π - Κ ( 1 3 6 ) Ι Ι * Χ ( Ϊ 0 ) * Χ ( 7 ) ♦ Κ ( 1 3 8 ) * ΪΈ*~ 
Χ Μ 1 Λ 0 ) » Ε XΡ [Κ ( 1 4 7 ) *{Η± I ) -Κ C 1 3 9 ) ) ) * X U J ) ) *Χ( 9) ♦ Κ< 1 4 1 ) * Κ ( 1 4 3 ) »FXP(K 1 5 5 
M 147|*(N"Ü")-~K( Î 4 ' 2 l ' n * X f 16»*Χ"|"9")" V Κ( 144 ) * Κ ( 1 4 6 ) *ΕΧΡ< K l 147 ) » I N I 1 > - Γ56~~ 
X K f l 4 5 l l l * X f 1 0 1 * X ( 1 1 I - K ( 4 0 ) « E X P ( K ( 1 4 7 ) * ( N ( 1 ) - K ( 4 1 ) ) ) * X ( 1 0 ) - K ( 6 6 157 
X ) * E X P ( M 2 3 ) * ( N ( 1 ) - K ( 6 7 1 ) ) * X ( 1 0 ) * X < 3 ) - Kt<?0)*EXP( Kl 24 ) * ( N( D - K I 9 1 ) B F * 
X I ) * X ( 1 0 I * X ( 4 ) - K ( U 4 ) » E X P ( K ( ? 5 ) * ( N ( 1 ) - K ( 1 1 5 ) ) M X ( 1 0 ) * X ( 5 ) - K f l 6 9 1 5 9 

χΡχρ(κ<24)* (Ν<Π-κ<<»4)Π*ΧΠη*Χ(4) - κΜ17)*Εν»1κ(25>»ΙΝΙΠ-ΚΙ11Μ 
X » ) * X ( l l ) * X ( 5 ) - M 1 4 4 ) * E X P ( K ( 1 4 7 ) » ( t t ( l ) - K ( 1 4 5 > ) ) * X ( 1 1 ) * X ( 1 0 ) 1 7 1 

C EQUATIONS FOR DYNAMIC S T A T r ^ A R l Ä B t f S r V T CM» 0P~OAV. "ÖAY*·. T7T~ 
X t l ) « X t l ) ♦ 0XC1) . 1 7 3 
X ( 2 ) = X ( 2 ) ♦ 0Χ Ι2ΊΓ "~ Γ Τ 4 -

X ( 3 ) « X ( 3 ) ♦ P X ( 3 ) 1 7 5 
X.I4) » X ( 4 ) ♦ DXI4I "mm"' ~7~Γ" 
X ( 5 I » X ( 5 ) ♦ 0XC5) . 1 7 7 

m ) v χ ( 6 ) + 0X(AJ _ _ ΓΠΓ_ 
X ( 7 ) « X ( 7 ) ♦ DX<7) _ _ _ _ _ _ _ 179 

x(8j _ x(aj + DX(QJ . nro_ 
X<9) » XJ9 ) ♦ 0 X ( 9 ) 

c 

C 

, 

X ( 1 0 ) « X ( 1 0 ) ♦ C X ( I O ) 
X ( l l ) = X ( l l > ♦ D X ( 1 1 ) 

PRINT SELECTED VARIABLES. THESE MUST CORRESPOND WITH COLUMN HEADINGS. 
WRITE 1 6 , 5 0 ) DAY, X 

50 P O R M A T ( I H , n o , i P i t e i o . 3 » 
6 0 CONTINUE 

pRlKT V, N, AND k FOR CHECKING. 
WRITE 1 6 , 7 0 ) 

7C FORMAT (17M11AST VALUES OF V» 
WRITE ( 6 , 8 0 ) V 

80 FORMAT ( I H , 1 P 1 0 F 1 2 . 3 I 
WRITE 1 6 , 9 0 ) 

90 FORMAT U7H1LAST VALUES CF N | 
WRITE ( 6 , 8 0 ) N 
WRITE ( 6 , 1 0 0 ) 

IOC FORMAT (12HIVALUES OF K) 
WRITE ( 6 , 8 0 ) K 
STOP 
ENOK 

i COMPILATION ♦ » » ♦ ♦ ♦ 

183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 I 
195 
196 j 
197 
198 ! 
199 ' 
?oo 

-

increments (086-171), and calculating the dynamic state variables 
(173-83), for a sequence of time increments. The length of the total 
time interval of calculation is controlled by the DO statement. 

(At this point, the reader may be wondering what happened to the 
outputs of the system, usually symbolized by y. If any outputs are deemed 
necessary in the model, e.g., precipitation runoff, they may usually be 
made simple algebraic functions of the state variables and input variables, 
and will present few problems. If they must be defined by differential 
equations, they can be considered to be dynamic state variables, and the 
problem disappears.) 

The first act of the DO loop is to read the values of the input variables 
for each time increment. This is accomplished by a pair of READ and 
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FORMAT statements (066-7). These values form the third, and last, 
type of data required by the program, and it is important to have one 
set of values for each time increment. Each set of values, or input vector, 
should begin on a new card. 

The algebraic equations for nondynamic state variables follow 
(069-76). Because of their nondynamic nature, these variables are not 
functions of their previous values, and can be calculated directly from 
the current values of the input variables and the dynamic state variables. 
One must be careful to arrange these equations in a sequence required by 
the manner of their coupling. 

Equations for the dynamic state-variable increments are now written 
(086-171). They follow those for the nondynamic state variables, and 
are all written before the dynamic state variables themselves are evaluated. 
This arrangement is necessary because the current dynamic state variable 
increments are functions of the current values of the nondynamic state 
variables and the previous values of the dynamic state variables, as well 
as the current values of the input variables. 

The dynamic state variables are then evaluated, simply by adding the 
current dynamic state variable increments to the previous values of the 
dynamic state variables (173-83). The results may be interpreted to be 
values of the dynamic state variables at the end of the current time 
interval, i.e., the x(i) of Eq. (7). 

The last act within the DO loop is printing out the time variable 
(usually the index of the DO statement) and the values of the selected 
state variables. These must, of course, correspond to the column 
headings, and printing is achieved by a pair of WRITE and FORMAT 
statements (185-6). The use of an E format with a scale factor of one is 
desirable, since the number of significant digits can be controlled, the 
field lengths are uniform, and no space is wasted on long sequences 
of zeros. The DO loop is now completed, and may be closed by a CONTINUE 
statement (187). 

The program is essentially complete at this point. However, it may be 
useful before ending to print out the last values of the input variables v, 
the last values of the nondynamic state variables n, and the values of the 
constants ki . This (189-98) will facilitate finding mistakes and checking 
that input data has been properly read, as well as provide a convenient 
table of the constants. The program is now ended (199-200). 

In using the program, the source deck must be followed by three 
types of data: the evaluated constants, the initial state, and values of the 
input variables for the period of calculation. Formats of the data cards 
must, of course, agree with those specified in the program, and each 
input vector must start on a new card because it is read within the DO 
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loop. If constant input is desired, there need be but one input vector, and 
it must be read before the DO loop. 

The digital computer program is now complete, and can be used to 
obtain numerical solutions, or "transient responses/' of the system, given 
a particular initial state and set of inputs. These numerical solutions 
are the states predicted by the hypothetical model, and may be tested 
against real-world measurements, in the process of system identification. 
Once a particularly formulated model has been accepted, the predicted 
states may be used in the process of system analysis, for theoretical or 
applied purposes. 

The pine-mor program has been successfully run with both constant 
and variable inputs. For the constant input, mean annual values from 
Oak Ridge, Tennessee were used: 14.5 C mean air temperature (^) , 
3642.6 g m~2 day- 1 precipitation (v2), and 1.001 g m - 2 day-"1 ash-free 
Pinus echinata pine litterfall (^3) (Bray and Gorham, 1964). Oak Ridge 
data were also used for the variable input: daily air temperature from 
a smoothed curve of monthly means, precipitation as randomly placed 
rainy days based on total precipitation and number of rainy days within 
each month, and pine litterfall based on uniform litterfall in all months 
except October, which has twice as much as each of the other months 
and whose litterfall follows a sinusoidal curve above the September-
November base. The variable input data used are much less variable 
than real-world data would be, but give some idea of what a transient 
response to real-world data would be like, nonetheless. 

TABLE VI 
INITIAL STATE 

Dynamic state variable Initial value (g m 2) 

xx 

x% 

x3 

x4 

xb 

x6 

x7 

XQ 

Xg 

* 1 0 

Xu 

Mor moisture 
Mor 
Araneae 
Mesostigmata 
Trombidiformes 
Oribatei 
Symphypleona 
Poduromorpha 
Entomobryomorpha 
Formicidae 
Lithobiomorpha 

2239.7 
2239.7 

0.0033 
0.0073 
0.0103 
0.0881 
0.0059 
0.0189 
0.0640 
0.0422 
0.0421 
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The source of values used for the initial state (Table VI) was original 
measurements made on Oak Ridge material. The mor moisture fraction 
(ns) was assumed to be 1.00, a typical field value. 

Operation of the computer program with a constant input yields 
information on the system's behavior, possible equilibria (or "steady-
states"), and stability. (Determination of the system's stability by 
observation of its transient response with no input, i.e., the stability 
of the unforced system in the engineering literature, is not valid here. 
This is because some of the input variables, i.e., temperature and 
precipitation, control fluxes of "energy" without entering the fluxes 
themselves. The concept of an "unforced system" is essentially a linear-
system concept.) 

When the pine-mor program was run (2 yr, daily calculations) with 
constant input, the following behavior occurred: Mor (x2) decreased 
asymptotically toward a nonzero steady state, with mor moisture (x^ 
following it (mor moisture fraction (n8) remaining constant, near its 
upper limit (k5)). Because of the structure of the equations, arthropod 
variables (#3-#n) are not affected by mor and mor moisture, and may be 
regarded as an independent subsystem; these assumptions (hypotheses) 
may have to be modified later in the process of system identification. 
The Acarina (mites, x^-x6) and Formicidae (ants, x10) approached zero 
asymptotically. The Araneae (spiders, x3) decreased with oscillations. The 
Collembola (x7-x9) displayed oscillations, but with no obvious trend. 
Likewise, the Lithobiomorpha (centipedes, xlx) displayed oscillations 
with no obvious trend, but of increasing amplitude and of the same 
frequency as Collembola, but out of phase. This transient response 
suggests that the system was developing into an oscillating predator-prey 
system of Lithobiomorpha and Collembola. The results with variable 
input were very similar, the major difference being in the periods of 
oscillations—an effect of temperature. 

In order to obtain some idea of the amount of error introduced by 
using Euler's approximation, where the time differential dt is approxi-
mated by a time increment At of 1 day, the program was modified and 
rerun with the time increment equal to 0.1, 0.5, 2, and 10 days. The 
resulting state vectors for days 50 and 350 (together with the Runge-
Kutta approximations, for comparison) are presented in Table VII. 
It is evident that the error increases with a larger time increment, 
and grows with time. For critical work a smaller time increment than one 
day would have to be used, or a better numerical approximation method 
used, e.g., the Runge-Kutta method (Chapter 1). The behavior described 
above for the Euler approximation was not qualitatively different from 
that for the Runge-Kutta approximation. 
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3. System Identification 

The formulated mathematical model is a complex hypothesis, and the 
numerical solutions it produces are predictions of the hypothesis. The 
objective now is to produce a model whose predictions agree with 
real-world measurements at some satisfactory (arbitrary) level of 
statistical significance, by modifying the equation forms and constants. 
This is called "system identification'' or the "identification problem" 
in engineering literature, but is simply the "scientific method" of 
empirical science. 

The method is simple in concept, being an application of the state 
equation, Eq. (7), for dynamic (state-determined) systems. The predicted 
state (x(t)) is calculated, using the digital computer program, from the 
(real-world) measured initial state (x(£0)) a n d the (real-world) measured 
inputs during the time interval of interest (ν(ί0 , t)). The predicted state 
is then compared with the (real-world) measured state. This is usually 
done for a sequence of time points within the total time interval of 
interest (t± , t2 ,..., tn). Data representing past measurements could be 
used as well as future measurements, if the model was constructed 
independently of the past measurements. 

The predicted and measured states are compared with each other 
using the standard "hypothesis-testing" techniques of statistics, e.g., 
t-test and chi-square. This is where statistics makes a second major 
contribution to modeling (The first is "parameter estimation" in the 
evaluation of constants). 

If predicted states agree with measured states at some satisfactory level 
of statistical significance, the real-world system may be considered 
"identified," and the model accepted, to be used in system analysis and 
applications. If such an agreement does not occur, then the model must 
be modified and predictions made until such agreement occurs. The 
modification is done by changing (1) the equation forms, and/or (2) 
values of the constants. Data used to test the model must always be 
independent of the data used to modify the model; thus a new set of 
measured states must usually be used in each cycle of modification and 
testing. 

The last-mentioned requirement, i.e., that the set of data used to test 
a model be independent of the set of data used to formulate or modify 
the model, is a rather overpowering one. The measurement of states of 
dynamic ecological systems is usually extremely time- and energy-
consuming. The labor involved can be reduced by originally formulating 
several alternative models, or multiple hypotheses (Platt, 1964), and 
testing all of these against the same set of measured states. The value of 
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this approach, of course, depends on the nature of the specific problem. 
System identification has not yet been done for the pine-mor model. 

Thus, the model presently has the status only of an untested hypothesis. 

B. FORMULATION AS SETS OF ORDINARY DIFFERENTIAL EQUATIONS 

1. Formulation 

Once the mathematical model has been satisfactorily formulated as 
a set of algebraic and ordinary differential equations, it is then ready to 
be analyzed, i.e., used to obtain predicted solutions and stability 
information. This can always be done by digital computer simulation 
(numerical approximation). However, since approximation is time-
consuming and often very inaccurate, it is desirable to analyze the model 
by means of the theory of ordinary differential equations, i.e., the 
"qualitative theory" or "geometric theory" of ordinary differential 
equations. In order to make such an analysis, the algebraic equations 
must, of course, be eliminated; in so doing the nondynamic state 
variables are eliminated, leaving only the dynamic state variables. 

Elimination of algebraic equations is extremely simple. It consists 
merely of substituting algebraic expressions for nondynamic state 
variables into differential equations for the dynamic state variables. This 
will often require a series of substitutions, where nondynamic state 
variables are functions of other nondynamic state variables; in some 
cases it might require algebraic solution of a system of algebraic equa-
tions. The net result is a system of ordinary differential equations of the 
form 

x = f(x, v). (8) 

Mathematically, the resulting systems of differential equations fall 
into two important classes, "autonomous systems" and "nonautonomous 
systems." Autonomous systems are of the general form 

x = f(x). (9) 

The independent variable, time, does not appear as an argument of any 
of the functions. These systems are often called "dynamical systems" 
(Birkoff, 1927; Nemytskii and Stepanov, 1960), and an extensive theory 
exists concerning them in classical physics. 

If an autonomous system is linear, it possesses the form (homogeneous 
or unforced) 

x = Ax, (10) 
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or (nonhomogeneous or forced) 

x = .4x + k, (11) 

where A is a constant n X n matrix (n the number of state variables). 
Therefore, the linear differential equations have constant coefficients. If 
there is an input to the system, the vector of input variables v is a vector 
of constants k, i.e., there is a constant input (forcing, disturbance, etc.). 
Many nonlinear and nonautonomous systems are approximated by this 
linear autonomous system because of its mathematical tractability. 

Nonautonomous systems are of the general form 

x = f(x, t). (12) 

The independent variable, time, appears as an argument of at least one of 
the functions. In an explanatory (causal) model, all of the effects of time 
would be through the vector of time-dependent input variables v so that 
Eq. (12) could be expressed as 

x = f(x,v). (13) 

This is the general form of our formulated model, Eq. (8). 
If a nonautonomous system is linear, and an explanatory model, it 

has the form 

x = Ax + f(i), (14) 

or, equivalently, using our notation of v(t) for the input vector, 

x = Ax + Bv(t), (15) 

where B is a constant n x m matrix, where m is the number of input 
variables. Therefore the linear differential equations have constant 
coefficients. In a nonexplanatory model the linear differential equations 
would have variable coefficients, i.e., the matrix A would be a function of 
time, and the equations could be homogeneous or nonhomogeneous. 
If the input is constant, Eq. (13) reduces to Eq. (9), an autonomous 
system. 

It is useful to have an understanding of the different types of dynamic 
systems, since different methods are used in their analysis. 

The system of ordinary differential equations representing the pine-
mor food web is presented in Table VIII. It is nonautonomous, nonlinear, 
and "explanatory," and thus is of the form of Eq. (13). 
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TABLE VIII 
EQUATIONS FOR STATE VARIABLES 

k5 xjx2 Xilx2 «6 
xi = , _ h {kxv2 + «2̂ 2) , _ , («3 expCMi)) 

/S5 RQ R5 RQ 

x2 = v3 — k8 expfafa — k9)) 1 \ 2 _ , 6 1 x2 — «11 exp(£i2(üi — k13)) * 6 

\ RIQ RQ I 

— ß1 4 exp(k15(v1 — ß16)) x7 — k17 exp(kls(v1 — k19)) x8 

— k20 exp(k21(v1 — k22)) * 9 — k120 Gxp(k1„(v1 — k121)) x10 

x3 = «48«5o exp(k23(v1 — &49)) x3x^ + k51k53 expik^iv! — kb2)) x3xb 

+ k5ik5Q exp(/j23(^i — £55)) *3*6 + «57«s9 exp(^23^i — «ss)) #3*7 

+ «eo«62 exp(/e23(z;1 — k61)) x3x8 + k63k65 exp(£23(^i — «64» *a*9 

+ «66«68 eXp(Ä23(^l «67» *3*10 + «69«71 exp(Ä23(^l «70» *3*11 

— k26 exp(k23(v1 — £27)) *3 — «72 exp(/e24(^i — «73» *s*4 

— &96 exp(/j25(^i — «97» *3*5 — &i23 exp(Ai47(î>i — «124» *3*io 

— Ä 1 4 8 exp(^1 7 2(^i — £149)) *3*ii 

Xi = k72k7i exp(Ä24(^1 — k73)) XiX3 + «75«77 exp(Ä24(^! — k76)) *4*5 

+ «78«so exp(/î24(z;1 — &79)) x^x6 + k81k83 exp(/e24(̂ i — k82)) xtx7 

+ «84«86 exp(/e24(̂ i — k85)) x^x8 + «87«89 exp(Ä24(t;1 — k88)) x^x9 

+ «90«92 e x p ( / e 2 4 ( ^ ! & 9 1 » tf4*i0 + «9 3«95 e x p ( & 2 4 ( ü i & 9 4 » XiXu 

— k28 exp(k24t(v1 — &29)) x4 — km expC^ag^! — &49» x4x3 

— &99 &xp{k2b{v1 — k100)) xAxb — k126 exp(Ä147(z;1 — &127» χ^χ10 

«151 e x P ( « 1 7 2 ( ^ l «152» -^4^11 

*5 = «96«98 eXp(Ä25(^l « 9 7 » *5*3 + «99«101 e x p ^ s ^ k100)) XbX^ 

~T «102«104 e x P ( « 2 5 ( ^ l «103» #5^6 H~ «105«107 eXP\k2S\Vl «106» Χ^Χ7 

+ «io8«no exp(/225(^i — k109)) xbx8 + « i i i « n 3 exp(£2 5(üi — «112» *s*9 

+ «ii4«ii6 exp(^2 5(^i — «115» xbx10 + 
«117«119 exp(^2 5(^i — « n s » x5xu 

— k30 exp(k25(v1 — k31)) x5 — k51 expC^aaC^! — k52)) xbx3 

R7h exp(R2i{V1 «76)) ^5-^4 «129 exP(«147(î ;l «13θ)) #5^10 
— k154t expikmiVi — k155)) xbxxl 

x6 = Ä U Ä 4 4 exp(k12(v1 — k13)) x& — /e32 exp(Ä1 2(fi — «33)) x<> 

— Ä54 expik^Vi — k55)) x6x3 — k78 exp(k2i(v1 — &79)) x6xA 

— k102 expik^iv! — k103)) x6x5 — k132 exp(/i147(î;1 — /e133)) x6x10 

— k157 e x p ^ ^ a ^ i — k158)) χ&χτι 

x7 = k-ukto exp(Ä15(ü! — &16)) x7 — k3i expCÄ^C^i — k35)) x7 

— k57 expik^iv! — k58)) x7x3 — k81 exp(Ä24(7;1 — Ä82)) ^7^4 

«105 exP(«25V^l «ΙΟβ)) Λ;7Λ;5 «135 exP(«147(î ;l «13β)) Λ;7Λ;10 

— k160 e x p ( £ 1 7 2 0 l — «161» ^7^11 
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T A B L E VIII (continued) 

x8 = &17£46 exp(k18(v1 — k19)) x8 — k3G exp(Ä18(z;1 — k37)) x8 

— k&0 exp(k23(v1 — /e61)) x8x3 — £84 exp(/î24(z;1 — k85)) χ8χΑ 

— k108 exp(^2 5(î;1 — k109)) x8x5 — kl38 exp(Ä147(t;1 — /e139)) x8x10 

— k163 exp(Ä172(v1 — &164)) * 8 x n 

*9 = &20&47 exp(/?2l(^l Ä22)) *9 ^38 exp(£ 2 l (^ l — ^39)) *9 
— &63 e x p ^ * , ^ — Äe4)) x9x3 — k87 exp(/e24(?;1 — k88)) x9xA 

— & m expCÄasi^! — £112)) x9x5 — k14l e x p ^ « ^ — kli2)) x9x10 

— Â166 exp(k172(v1 — Ä167)) x9xlx 

X1Q =z ^120^122 exP(«147(î:;l &12l)) #10 + ^123^125 exP(^147(^l ^124)) ^ΙΟ*^ 
+ k126k128 exp(Ä147(7j1 — &127)) x10x4 + k129k131 expfauiVi — &130)) *io*5 

+ ^132^134 exp(Äi4 7(^! — Ä133)) x1 0x6 + k13bk137 exp(Ä147(t;1 — /e136)) x1 0*7 

+ &138&140 e x p C & i ^ j . — &139)) x1 0*8 + Ä 1 4 1 Ä 1 4 3 exp(/e147(?j1 — &142)) χ10χ9 

+ ^144^146 exp(^1 4 7(^i — &ι45)) *10*11 ~ &40 ^P(k1A7(vx — &41)) X10 

— &66 exp(Ä23(t;1 — k67)) x10x3 — k90 exp(/e24(7j1 — k91)) x10xA 

— Ä114 e x p C ^ i ^ — £115)) x10x5 — k1M exp(k172(v1 — k170)) x10xu 

* n = &148&150 exp(Äm(i>i — &149)) Λ;ηΛ;3 + A i s l e s exp(Äi7 2(^i — &152)) Xux* 

+ &154&156 exp(^i 7 2 (^ l — Ä155)) *11*5 + ^157^159 eXp(^172(^l — &158» X 11^6 
+ ^160^162 exp(Äi72(^! — klßl)) xnx7 -f k163k165 expik^^ — &164)) xllLx8 

+ ^166^168 exp(£172(î>i — Ä167)) ÄnJfB + ^i69^i7i e x p ^ i ? ^ — k170)) 
#11^10 

— &42 exp(/e172(7j1 — £43)) Xll — k69 exp(k23(v1 — k70)) xnx3 

— k93 exp(Ä24(t;1 — kM)) xlxXi — k117 e x p ^ s f a i — k118)) xux5 

— &144 exp(^147(7j1 — &145)) Xux10 

2. Analog Computer Simulation 

Once the model has been formulated as a set of ordinary differential 
equations, numerical solutions can often be computed by the process of 
analog computer simulation (e.g., Chapters 1 and 9). This is only 
feasible with rather simple models, but in these cases is extremely useful 
since the solutions are exact (within the errors introduced by electronic 
components). 

This concludes the discussion of formulating mathematical models 
of dynamic ecological systems. A general view of the process of formula-
tion, or "system identification/' and the subsequent "system analysis" 
is given in Fig. 3. The problem of system identification consists of 
hypothesizing equations, measuring physical and biological constants, 
and the cyclic testing and modification of the system of equations until 
it is in an acceptable form. Thus, it is primarily a biological problem. 



168 NORMAN E. KOWAL 

Formulate Model as System of Algebraic 

and First-Order Differential Equations 

n = f(n, x, v) 

x = g(n, x,v), 

Where: n = Nondynamic State Vector, 

x = Dynamic State Vector, 

v = Input Vector 

Measure or Hypothesize 
Constants kj 

Formulate Model 
as Digital) or 

Analog) Computer 
Program 

Compare Predicted States 
x('i » 'max) with Measured 

States, Given Measured 
Initial State x(t0) and 

Measured Inputs y(tx, rmax) 

Accept or Modify 
Original Model 

SYSTEM IDENTIFICATION 

SYSTEM ANALYSIS 
Formulate Model as System of 

First-Order Differential Equations 

x = f(x, v), 

or (If Linear) 

x = Ax + Bv 

Solutions (Predictions) and Stability 
Effect of Input : 

Constant 
Analytic Functions (e.g., 

Sinusoid) 
Real-World 

Probabilistic 
Effect of Initial State 

Optimal Control 

F I G . 3. Sys t em identification and sys tem analysis. 

On the other hand, system analysis is primarily a mathematical problem. 
It consists of starting with a mathematical model which has been accepted 
on biological grounds, and obtaining solutions and stability information 
from the model. These may be obtained analytically, but more commonly 
are obtained by some technique of numerical approximation. The 
information so obtained may then be used to make real-world predictions, 
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given real-world inputs, or may be used to select particular controllable 
input values which will produce an optimum behavior of the real-world 
system, i.e., optimal control. These are extremely important practical 
applications of the mathematical approach to biology, and perhaps its 
main justification. 

In the third section of this chapter is presented a brief survey of 
mathematical techniques available for the analysis of continuous dynamic 
systems. 

IIL Analysis of Models of Dynamic Ecological Systems 

The previous discussion describes formulation of an acceptable 
mathematical model in the form of a set of coupled first-order differential 
equations which define relationships among input variables and state 
variables. This is done by a process of system identification, in particular 
by cycles of hypothesis formation, direct measurement, and testing. This 
process lies in the realm of biology; it is the traditional method of 
empirical science. 

Once the model has been accepted on biological grounds, it can be used 
for theoretical or applied purposes, in particular, for prediction and 
optimal control. This constitutes the subject of analysis of mathematical 
models, and lies primarily in the realm of mathematics. Of course, 
applications of mathematical conclusions to the real world lie again in the 
realm of biology. 

We consider first the predictions, i.e., obtaining of solutions and 
solution behavior, especially stability, from the differential equations. In 
advanced works this is often called the "qualitative theory" or "geometric 
theory" of differential equations. Most of the material in such works is 
not useful to ecologists, who are usually concerned with complex 
multivariable systems; only material which seems immediately practical 
will be discussed here. We then will consider the subjects of optimal 
control and system optimization. These are of extreme practical 
importance, but because of their mathematical difficulty are treated very 
superficially. 

This chapter is concerned only with continuous dynamic systems, 
and treats them with sets of coupled, first-order, ordinary differential 
equations in the state-variable form. (Any n-order ordinary differential 
equation can be reduced to a set of n first-order ordinary differential 
equations (Coddington, 1961).) Other approaches to such systems are 
possible, and this one should be justified. As an alternative to the state 
variable approach (i.e., the use of input and state variables or input, 
state, and output variables, the last algebraically defined on the input 
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and State variables), one could use the input-output approach. In the 
latter approach one uses only input and output variables. The system 
itself is viewed as a "black box," which converts inputs into outputs; 
no hypotheses are made on the structure of the system. For extremely 
simple systems this approach works quite well, but for most practical 
ecological systems, which are nonlinear and multivariable (multiple 
inputs and multiple outputs), this approach can only yield mathematically 
intractable and intellectually unsatisfying models. Indeed, most of the 
time we are primarily interested in the structure of the system, e.g., 
feeding rates and competition, rather than just the inputs, e.g., solar 
energy and precipitation, and the outputs, e.g., runoff and nutrient loss. 

As an alternative to the differential equation approach, one could use 
the transfer function approach (e.g., Chapter 4). In the latter approach 
one expresses the relationship between an output (or state variable) 
and an input by a transfer function rather than a differential equation. 
A transfer function is the Laplace transform of the deviation of a 
system output (or state variable) from equilibrium divided by the 
Laplace transform of the deviation of a system input from equilibrium. 
In multivariable systems a matrix of transfer functions is used to express 
the relationships between individual outputs (or state variables) and 
each input. The advantage of the transfer function approach is that it 
substitutes algebraic equations for linear differential equations, greatly 
facilitating their solution. However, the transfer function approach is 
practical only for linear systems, and, even then, when the system is 
multivariable the use of transfer functions is cumbersome. Since most 
practical ecological models will turn out to be nonlinear, it may be unwise 
to place much emphasis on the transfer function approach. 

Traditional engineering has placed great emphasis on the combination 
of input-output and transfer function approaches, and physiologically 
oriented biologists have eagerly adopted this combination in the last 
decade (Grodins, 1963; Milsum, 1966; Milhorn, 1966). It seems unlikely, 
however, that these approaches will prove very useful in solving ecological 
problems, for reasons cited above. Moreover, almost all modern literature 
on ordinary differential equations and optimal control is based on sets of 
first-order ordinary differential equations. 

A. SOLUTIONS AND SOLUTION BEHAVIOR 

1. Deterministic Systems and Inputs 

a. Linear Systems. Linear systems are those which are defined by 
linear differential equations. Since analytical solutions are often easily 
found for these systems, and an extensive literature exists on the subject, 



2 . MODELING DYNAMIC ECOLOGICAL SYSTEMS 171 

they are very attactive when the real-world problem can be satisfactorily 
represented linearly. However most practical ecological problems cannot 
satisfactorily be so represented, and doing so can lead to large differences 
between predicted solutions and stability, and real-world measurements. 
Gumowski and Mira (1968, pp. 3-7) have brought attention to the ill 
effects of the excessive concentration on linear systems in the field 
of engineering; their argument is valid for ecology as well. Nevertheless, 
linear system theory is useful in many cases, has been well developed 
(Zadeh and Desoer, 1963), and is a prerequisite to the understanding of 
nonlinear theory. 

(i) Solutions. Linear systems are defined by equations of five basic 
types: the autonomous systems represented by Eqs. (10) and (11), non-
autonomous systems as represented by Eq. (14), and 

x = A(t)x, (16) 

x = A{t)x + f(t). (17) 

As before, x is an w-dimensional state vector, A is an n X n constant 
matrix, k is an w-dimensional constant vector, f(t) is an /z-dimensional 
vector-valued function of time, and A(t) is an « X n time-varying matrix. 
Equation (17) is the general case from which the others may be derived; 
(11) and (14) are the equations in which we are usually interested. 
Input to the system is represented by k or f(i); the former is used when 
input is constant and thé latter when input is time varying. Both are the 
equivalents of Bv(t) in Eq. (15). The latter formulation is necessitated by 
the fact that in ecological problems we usually must deal with several 
different input variables. When the input variables are constant, 
B\{t) = k; when at least one input variable is time varying, Bv(t) = f(t). 

Note that the difference between autonomous and nonautonomous 
systems is not whether they have an input, but whether the time-
derivative of the state vector is an explicit function of time. Practical 
nonautonomous systems are extremely difficult to solve, and are usually 
approximated by Eq. (11). Equations (16) and (17) are linear equations 
with time-varying (or "variable," as opposed to "constant") coefficients. 
They represent what I have been calling "nonexplanatory" or 
"noncausal" models, and thus do not properly concern us here. Their 
solutions are almost always obtained by numerical approximation, and 
they are discussed by DeRusso et al. (1965, pp. 362-394) and Schwarz 
and Friedland (1965, pp. 114-118). Thus, for most ecological problems 
the linear mathematical model is of the form of Eq. (15). 

The solution, or "transient response" (so called because the system 
responds to an input, as the system approaches steady state), of the 
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first-order vector differential equation (15) is analogous to solution of the 
corresponding first-order scalar differential equation 

x = ax + bv(t). (18) 

The solution to (18) is 

x{t) = eatx(0) + eat f e-aTbv(r)dr. (19) 
J o 

Of course, in the differential equations literature (e.g., Coddington, 1961) 
f{i) is used rather than bv(t). Similarly, the solution to the vector equation 
(15) is 

x(t) = eAtx(0) + eAt f ' e-^Bv(r) dr. (20) 
J o 

The second right-hand term of (20), with the first exponential moved 
into the integral, 

f ' eA^Bv(r) dr, (21) 
J o 

represents the effect of the input on the solution. In engineering literature 
this expression is called the "convolution integral.'' (When the matrix A 
is time varying, thus A(t), it is the more general * 'superposition integral.") 
The first right-hand term of (20) represents the effect of the initial 
state, x(0). 

When the input is time varying, evaluation of the convolution integral 
is usually extremely difficult, and thus exact solutions are rather rare. 
On the other hand, when the input is constant, the convolution integral 
simplifies nicely, yielding the solution 

x(0 = eAtx(0) + (eAt - I) A^k, (22) 

where / is the ^-dimensional unit (or identity) matrix, and k = 2?v. 
(This is done by integrating the infinite series expression for the matrix 
exponential in (20) and substituting (cf. DeRusso et al., 1965, p. 287).) 
A convenient digital computer program, MATEXP, for obtaining numerical 
solutions to the constant input form of (15) using (22) (Ball and Adams, 
1967) was discussed in Chapter 1. 

When the input is time varying, an approximate numerical solution 
to (15) can be obtained by using (22) in short time-steps, during each of 
which the input is made constant. This also can be done with the Ball and 
Adams (1967) program. 
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While the above discussion covers the most straightforward method of 
obtaining the solution, or transient response, of the mathematical model 
(15), the engineering literature abounds with other methods and concepts. 
Figure 4 represents an attempt to bring these together to indicate their 
relationships with one another. In particular, the figure shows the intimate 
relationship between the differential equation (to the left) and the transfer 
function (to the right) approaches. 

Linear 
Constant-Coefficient 
First-Order Vector 

Differential Equation 
x = Ax + By(t) 

Sylvester's 
Theorem 

Cayley-Hamilton 
Technique 

Infinite 
Series 

Transfer 
Function 

Matrix 
G(s) = (sI-ArlB 

Unit Impulse 
Response Matrix 

r 1 [(sI-A)-lB\ = eAtB 

Fundamental Matrix 
(State Transition 

Matrix) eAt 

Characteristic 
Frequency Matrix 

£{e*<)=(sI-Ayl 

Effect of Initial 

State e^'x(O) 

Convolution Integral 
(Effect of Input) 

eAt fe-^B\(T)dT 
Jo 

= f eA«-Vßy(T)dT 

Solution (Transient Response) 

x(t) = eAtx(0) + J <?>H/-T) Bv{r)dr 

FIG. 4. Linear system transient analysis. 
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Note that the effect of the input is calculated by means of the convolu-
tion integral whether one uses the basic differential equation approach 
or the more specialized transfer function approach. An important 
difference between these two approaches is that the transfer function 
approach does not take into account the initial state (or "initial 
conditions"). This is because the transfer function approach derives 
from electrical engineering experience, where the initial state is usually 
either zero or equilibrium (in which case deviations from equilibrium 
are of interest, and equilibrium is defined to be zero). Since the initial 
state in most ecological systems rarely is zero (actually, the zero vector) 
or known to be equilibrium, and in view of earlier arguments, this 
approach is not to be recommended. 

Note also that there are at least four different methods of obtaining the 
fundamental matrix (state transition matrix) eAt (a matrix exponential). 
The infinite series (Taylor series) expansion is best suited to the digital 
computer, and is the method used by Ball and Adams (1967). If one is 
interested in questions of stability, then he will want to use Sylvester's 
theorem after calculating the eigenvalues (characteristic values, charac-
teristic roots, latent roots) λ̂  of the system matrix A. The eigenvalues of 
the differential equation approach are equal to the "poles" si of the 
transfer function approach. 

The analogy between solutions to vector and scalar differential 
equations has been made. Perhaps a comment on the analogy between the 
vector and scalar transfer function is in order. The transfer function of 
the scalar differential equation (18) is bl(s — a), or (s — #)_ 1i. The 
transfer function matrix of the vector differential equation (15) is the 
comparable (si — Α)~λΒ. Further discussion of the concepts appearing 
in Fig. 4 may be found in the texts by De Russo et al., (1965) and 
Schwarz and Friedland (1965), among others. 

A particular type of solution, of some potential in ecology, is the 
"frequency response." In frequency analysis the system is assumed to be 
in a stable equilibrium, with a constant equilibrium input vector and 
a constant equilibrium state vector. (Thus it is sometimes called "steady-
state analysis.") The frequency response describes the deviations of the 
state vector from equilibrium in response to a sinusoidal deviation of one 
input variable from equilibrium. The response of the state vector is 
a sinusoidal deviation from its equilibrium, with a particular gain (in 
general different for each state variable) and phase angle (also in general 
different for each variable). (The gain is the ratio of the amplitude of the 
response to the amplitude of the input; the phase angle is the phase shift.) 
In linear systems (to which frequency analysis is usually limited), the 
frequency of the response is the same as the frequency of the input 
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signal. The input sinusoidal deviation is completely characterized by its 
frequency. 

Actual calculation of the frequency response involves the transfer 
function and elementary complex algebra. Further explanation of the 
method, and a digital computer program for calculating the frequency 
response of multivariable systems may be found in Kerlin and Lucius 
(1966). A frequency-response analysis of magnesium cycling in a 
tropical moist forest is presented in Volume II, Chapter 3 of this work. 

(ii) Stability, (a) Definitions of stability (linear and nonlinear). 
The situation often arises that we are interested not in particular 
numerical solutions to a mathematical model, but in qualitative behavior 
of the model, and in particular whether the system will "blow up" in 
time. Thus, we become interested in system stability. The stability 
concept, particularly concerning ecological systems, means many 
different things to different people. However since we are dealing with 
differential equations in the state-variable form, our options are con-
siderably limited. 

To obtain a convenient intuitive feel for stability, we introduce a 
geometric interpretation of the state of a system. At any given time the 
state of a system is represented by the value of its w-dimensional state 
vector x. Thus, at any given time the state can be represented as a point 
in the w-dimensional vector space, "state space" or "phase space," 
each of whose axes represents the scale of values for one of the n state 
variables xi . A solution to the system describes the "trajectory" (or 
"motion") in state space of the state vector with passage of time, 
from a particular initial state (where the state vector is at "time zero"). 
An "equilibrium state" ("steady state," "equilibrium point," "critical 
point," "singular point") xe is any state in which the system remains 
indefinitely with the passage of time, i.e., at which x = 0. Stability is 
usually defined with reference to the equilibrium states. 

In autonomous linear systems the equilibrium state is unique, i.e., 
there is but one. For systems without an input, Eq. (10), it is the origin or 
zero vector 0; for systems with a constant input, Eq. (11), it is the vector 
— A^k. Nonautonomous linear systems, Eqs. (14), (16), and (17), in 
general do not have equilibrium states (as defined above). Nonlinear 
systems may have no, one, or several equilibrium states. 

The distance between two points (xx , x2) in state space is measured by 
the Euclidean "norm," | x2 — xx |. Thus, one may consider the concept 
of a "neighborhood" (or "open ball") of an equilibrium state x e . A 
neighborhood is the set of all points which lie less than a fixed distance 
e from xe , i.e., all points for which | x — xe | < e. 

We are now in a position to define stability, as it is usually treated 
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in engineering and differential equations, i.e., in the "Lyapunov sense." 
An equilibrium state is ' 'stable" if an initial state within a small neigh-
borhood of the equilibrium state results in a trajectory which remains 
within another small neighborhood of that equilibrium state. The 
initial state is thus a perturbation from the equilibrium state, e.g., the 
result of some sudden disturbance to an ecological system in equilibrium. 
An equilibrium state is ''asymptotically stable" if (1) it is stable, and (2) 
the initial state within a small neighborhood of the equilibrium state 
results in a trajectory which approaches the equilibrium state as time 
approaches infinity (De Russo et al., 1965, pp. 503-504). Obviously the 
latter is a much stronger type of stability. 

This concept of stability is a local one, i.e., applicable only within 
a small neighborhood of each equilibrium state. This restriction leads to 
problems in nonlinear systems. But in linear systems things work out 
nicely, since the "neighborhood" constitutes the whole state space! 
Thus, stability of a linear system is a property of the system itself, 
rather than of any particular equilibrium state (DeRusso et al.y 1965, 
p. 501). Moreover, if a linear system is autonomous it has only one 
equilibrium state. 

(b) Ecological significance of stability (linear and nonlinear). It is 
clear from the previous definitions that stability is a property of the 
model, stability being operationally defined (on the model) in a particular 
way. This indicates that stability is a variable, in this case with only 
two values, + and —. The same is true of asymptotic stability; likewise 
with real-world ecological systems. Stability is a variable which, in order 
to have any practical meaning, must be operationally defined, i.e., 
must be associated with a set of instructions on how to measure it. There 
are infinitely many possible measures of stability, each of them defining 
a different variable, or concept; there is no such thing as "real" or " true" 
stability any more than there is a "real green" or "true short". One 
defines stability to suit one's purposes, e.g., the definitions of MacArthur 
(1955) and of Hairston et al (1968). 

Once one has a satisfactory definition of the variable, "stability," then 
he may hypothesize and test relationships between this stability and 
other operationally defined variables, e.g., diversity or species number. 
This is fair game, and may prove to be useful in ecology. Hairston et al. 
have tested a hypothesized relationship between their "stability" and a 
variable which is MacArthur's "stability." Their negative results say 
nothing about the validity of MacArthur's definition, since definitions 
are not testable, no matter how psychologically unsatisfying they are. 
Their results do question the relationship between stability and diversity, 
however. (This discussion is not to lead to the conclusion that I feel 
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that one operational définition of a variable is as good as another. I am 
only discussing the logical status of the definitions. On grounds of 
practical utility and esthetics, different definitions of variables are not 
equally good.) [The subject of stability in ecological systems has been 
recently discussed in a Brookhaven Symposium in Biology (1969).] 

Getting back to the mathematical model and Lyapunov stability (a 
special type of stability), the claim might be made that testing of a 
system (or individual equilibria) for stability may well not be relevant. 
This is because the process of system identification earlier would have 
resulted in a model which yielded acceptable state variable behavior 
for the time period of interest (the domain of the model). Whether the 
system blew up beyond this time period might not be of concern. 
However, it might be feasible to analyze hypothetical models before 
system identification, and use only those models proved stable for 
infinite time. These models would be more appealing in some ways, but 
the selection process might inhibit flexibility in choosing biologically 
meaningful and realistic hypotheses. For example, some ecological 
phenomena might be described by models not stable over a long period 
of time, such as the dynamics of a plankton bloom described by a model 
with a short time domain. 

Perhaps the major potential of stability analysis is in the design of, 
or modification of, ecosystems for practical purposes, e.g., agriculture and 
silviculture, pollution control, and satellites. Given an acceptable (on 
the basis of past experience) form for a mathematical model, one could 
select values of its parameters (constants) which would result in the 
model possessing stability of a desired type. 

(c) Stability criteria. For linear systems the question of whether 
a system possesses Lyapunov stability is answered in a straightforward 
manner. The analysis centers on the autonomous system without any 
input, 

x = Ax. (23) 

From the n x n system matrix A can be calculated n eigenvalues; these 
are equivalent to the poles which derive from the transfer function 
approach (they are calculated the same way, and used for the same 
purposes). The calculation is most easily done by one of the existing 
digital computer packaged programs (IBM Share Program 1578; 
Parlett, 1962). In general the eigenvalues are complex, i.e., they have a 
real part and an imaginary part. If all of the eigenvalues have negative 
real parts, the system (23) is asymptotically stable. If some of the eigen-
values have zero real parts (and are not repeated, i.e., are distinct, 
which is the usual case), and the rest have negative real parts, the 
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system (23) is stable. Otherwise, the system (23) is unstable. These 
criteria are intuitively reasonable when one realizes that the solution to 
Eq. (23) consists of exponential terms, in which the eigenvalues are the 
exponents. The nature of the imaginary parts of the eigenvalues does not 
affect the stability criteria; their presence, i.e., their nonzero values, only 
means that the solution is periodic. 

Before the widespread use of large digital computers, numerous 
alternatives to the difficult calculation of eigenvalues were used by 
engineers in stability analysis of linear systems. None of these furnishes 
any more stability information than does the calculation of eigenvalues. 
Among the more important of these methods are the Routh-Hurwitz 
method and its Lienard-Chipart simplification, and several graphical 
methods, e.g., the Nyquist method, the root-locus method, and the 
Mikhailov method (Schwarz and Friedland, 1965, pp. 399-433). 

When one wishes to compare the relative stability of several systems, 
the concept of "degree of stability,, is very useful. This is defined as the 
absolute value of the least negative real part of the eigenvalues, of an 
asymptotically stable system. It is a measure of the speed at which the 
state vector returns to equilibrium after a perturbation. The degree of 
stability is to be used with caution, however, since the speed of return to 
equilibrium is affected by the eigenvectors, as well as the eigenvalues. 

So far, the discussion has been limited to the autonomous system 
without any input, Eq. (23). This is because the stability of the fixed 
system with input, i.e., 

x = Ax + Bv(t), (24) 

depends upon the stability of the system without input. In other words, 
the stability depends upon the nature of the constant system matrix A. 
If the input is constant, we have the autonomous system (11); if the input 
is time-varying, we have the nonautonomous system (14). In either case, 
if the input is bounded (never becomes infinite), the system with input 
is stable if the system without input is asymptotically stable (Schwarz 
and Friedland, 1965, pp. 382-384). 

When one is dealing with time-varying systems, i.e., Eqs. (16) and 
(17), the situation is much more difficult. In this case, stability must be 
tested for by Lyapunov's "direct" (or "second") method (Schwarz and 
Friedland, 1965, pp. 390-394). This method is used primarily in testing 
nonlinear systems for stability, and is discussed below. 

b. Nonlinear Systems, (i) Solutions. Nonlinear systems are of two 
basic types, autonomous systems, 

x = f(x), (25) 



2 . MODELING DYNAMIC ECOLOGICAL SYSTEMS 179 

which would include those without any input (and rarely of ecological 
interest) and those with constant input, and nonautonomous systems, 

x = f(x, 0> (26) 

which would include those with time-varying input. When we are dealing 
with "explanatory" or "causal" models, all effects of time are through the 
input vector v. Thus, our mathematical model is usually of the form 

x = f(x, v), (27) 
but can be converted to the form of Eq. (26) for purposes of analysis, 
since v is a function of time. (Where v is in the form of a table of 
numerical values or of noncontinuous functions, this conversion will 
probably not be fruitful. This is the situation with most practical 
ecological models.) 

Although exact literal solutions of Eq. (26) are usually not possible 
to obtain, the theory of differential equations provides us with an 
extremely important existence and uniqueness theorem (Sanchez, 1968, 
p. 8-10). (Much of mathematics is concerned with the subject of 
"existence and uniqueness," which is simply proving that a mathematical 
structure having a particular property exists, and that it is unique, even 
if the form of that structure is not known.) The theorem states that given 
Eq. (26) and tha t / ; and the partial derivatives, dfjdx^, i,j = 1, 2,..., ny 

are continuous, then for every initial state, x(i0), and initial time t0 , 
there exists a unique solution x(t) to Eq. (26). 

In most continuous dynamic systems, the hypotheses of the theorems 
are satisfied. If in a model the partial derivatives are not continuous, 
a solution would still exist, but it might not be unique. 

The theorem justifies analysis of the behavior, particularly stability, 
of a solution, given particular initial conditions, even though we are 
unable to obtain the exact solution. Perhaps more important, uniqueness 
justifies our obtaining the approximate solution by numerical approxima-
tion, which would lead to trouble if two or more solutions existed (since 
we would calculate only one of them). 

Since most ecological models are of high order and rather complex, 
exact literal solutions are usually not possible to obtain, and numerical 
approximation must be resorted to. As stated previously, a particularly 
convenient numerical approximation technique for systems of first-order 
ordinary differential equations is the fourth-order Runge-Kutta method. 

The Runge-Kutta method approximates solutions by time increments, 
as does the Euler method. The fourth-order Runge-Kutta approximation 
for the scalar differential equation 

* = / ( * , * ) . (28) 
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with the initial values x0 and t0 , and time increment At, is obtained in the 
following manner (see also Chapter 1): 

ki = Atf(x0, t0) 

k2 = Atf(x0 + ±k1,t0 + iAt) 

kz = Atf(x0 + ik2,t0 + ±At) 

£4 = Atf(x0 + k3yt0+ At) 

Ax = Hk, + 2k2 + 2k3 + Ä4) 
x — ^ο I ^ίΛ. 

where x is the approximated value of the dependent variable at the end 
of the time increment At. 

We wish to make use of the approximation in the vector case, and 
where all effects of time are through the input vector, i.e., 

i = f(x,v). (32) 

The values of the input variables are assumed to remain constant 
during each calculation increment; this assumption is usually matched by 
the restricted availability of input data. To obtain the numerical 
approximation by use of a Fortran program, it is convenient to use a 
subroutine to calculate values of the function f, since this is done four 
times within each calculation increment (each time with a different 
argument). Each calculation increment is done by one run through 
a large DO loop, just as with the Euler method described previously. 

One possible Fortran implementation within the large DO loop is the 
following (each equation actually represents a series of statements 
performed by a DO loop or subroutine as indicated): 

rx = x 
kO = f(x, v) 
kl = k 0 
x = rx + Jkl 
kO = f(x, v) 
k2 = k0 
x = rx + |k2 
kO = f(x, v) 
k3 = k0 
x = rx + k3 
kO = f(x, v) 
k4 = k0 
dx - i (kl + 2k2 + 2k3 + k4) 
x = rx + dx 

(DO Loop) 
^Subroutine) 
[DO Loop) 
(DO Loop) 
[Subroutine) 
[DO Loop) 
[DO Loop) 
[Subroutine) 
[DO Loop) 
[DO Loop) 
[Subroutine) 
[DO Loop) 
[DO Loop) 
[DO Loop), 

(29) 

(30) 

(31) 
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where rx, kO, k l , k2, k3,k4, and dx are vectors of the same dimension as x. 
(The "k variables" should be typed "real.") If the time increment is not 
unity, then f(x, v) in the subroutine must be multiplied by it. There may 
be more efficient implementations of the Runge-Kutta method to obtain 
approximate numerical solutions of Eq. (32) but the structure of this one 
is particularly clear. 

(ii) Stability, (a) Linear versus nonlinear systems (DeRusso et al.y 

1965, pp. 501-502). As was mentioned previously, the stability of 
fixed nonautonomous linear systems depends upon the stability of the 
corresponding autonomous linear systems. Autonomous linear systems 
have but one equilibrium state, and the neighborhood of this equilibrium 
state, for which stability is defined, includes the whole state space. Thus, 
for fixed linear systems stability is a property of the system itself, and 
not just of a particular equilibrium state. The perturbation (or new 
initial state) may lie anywhere in the state space. 

Stability in nonlinear systems is a different matter. Nonlinear systems 
may have several equilibrium states, each with its own stability properties 
within its own neighborhood. Some equilibrium states may be asympto-
tically stable, some stable, and some unstable. Thus, behavior of the 
solution depends upon the location of the perturbation in the state 
space, i.e., the initial state vector value. This is why the behavior of 
nonlinear systems depends upon their initial states. From a particular 
initial state the trajectory may move through state space to one equi-
librium state, to another equilibrium state, to infinity, or even into a 
"cycle" (which is the trajectory of a periodic or oscillating solution), 
depending upon the value of the initial state. 

(b) Autonomous systems. We are concerned here with the stability 
of systems of the form of Eq. (25), i.e., systems with no input or with 
constant input. As is true (to a lesser extent) in linear systems, the theory 
of nonautonomous systems has been developed to a much lower degree 
than that of autonomous systems. Consequently, most available tools deal 
with autonomous systems. This is unfortunate, since most practical 
ecological problems are formulated as nonautonomous systems. 

Phase plane analysis. When the system consits of only two state 
variables, the behavior of the system may be graphically analyzed by 
direct observation of the trajectories (after they have been calculated and 
plotted) in state space (or "phase space"). In this case, the state space 
is 2-dimensional, and thus a state plane (or "phase plane"), and the 
analysis termed "phase plane analysis." (The term "phase" comes from 
the phase angle of the polar coordinate analysis of second-order systems 
in engineering.) 

The distinction between a "trajectory" and a "solution" should be 
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kept in mind. A solution of an τζ-dimensional system is an integral curve 
in (n + l)-space, a space with n axes for the n state variables and one 
axis for time. The exact position of the integral curve depends upon the 
position of the fixed point, usually the initial state and initial time, 
through which the curve passes. A trajectory (or "motion") of an 
«-dimensional system is a curve in «-space, state space. The exact 
position of the trajectory, likewise, depends upon the position of the 
fixed point, usually the initial state (LaSalle and Lefschetz, 1961, p. 24). 
Each trajectory is a parametric curve that may represent several solu-
tions, depending upon the time associated with each point of the 
trajectory (Sanchez, 1968, p. 70). 

The behavior of trajectories near each equilibrium state determines the 
stability near that equilibrium state. If trajectories continuously approach 
an equilibrium state, that equilibrium is asymptotically stable. If they 
continuously diverge, the equilibrium is unstable. And if they remain 
within a small neighborhood, but do not approach the equilibrium, it is 
just stable. 

Trajectory behavior near equilibrium states can be classified into 
several basic types. A "center" is a set of concentric cycles (closed 
curves) around the equilibrium, and indicates that the equilibrium 
possesses stability, but not asymptotic stability. A "stable focus" is 
a set of converging spirals, indicating asymptotic stability. (Note: the 
direction of a trajectory is always that of increasing time.) An "unstable 
focus" is a set of diverging spirals. A "stable node" is a set of converging 
radii, indicating asymptotic stability. An "unstable node" is a set of 
diverging radii. A "saddle point" is a set of radii converging in 
some areas and diverging in others, indicating instability. Finally, a 
"limit cycle" is an isolated cycle around an equilibrium. By "isolated" 
is meant that trajectory behavior inside and outside of the limit 
cycle is not in the form of other cycles. If the trajectories on both 
sides of the limit cycle converge to the limit cycle, the limit cycle is 
stable (and the enclosed equilibrium is an unstable focus or node). If the 
trajectories on both sides of the limit cycle diverge from the limit cycle, 
the limit cycle is unstable (and the enclosed equilibrium is a stable 
focus or node). If the trajectories are convergent on one side and diver-
gent on the other (two possibilities), the limit cycle is "semistable." 

Interesting as it is, phase plane analysis is practically limited to 
autonomous 2-dimensional systems, and thus will probably find little 
use in the analysis of complex ecological systems. The reader may find 
more details on the subject (including methods for the calculation of the 
trajectories) in the text by DeRusso et al (1965, pp. 470-498). 

The traditional graphical analysis of predator-prey and competition 
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models is an ecological example of phase plane analysis (e.g., Slobodkin, 
1961). Another example comes from the pine-mor food web model. 
The solutions for Collembola and Lithobiomorpha are periodic 
(oscillating) curves of increasing amplitude; the Lithobiomorpha 
maxima follow the Collembola maxima. This behavior could be inter-
preted in the phase plane, defined by a horizontal Collembola axis and 
a vertical Lithobiomorpha axis, as a trajectory forming an unstable 
counterclockwise focus around an unstable equilibrium. (Of course in 
the complete state space of the model this trajectory would be rather 
difficult to visualize.) This is an example of the common unstable 
predator-prey cycle. 

Variational equations (perturbation equations, linearization). Within 
a small neighborhood of an equilibrium state, a nonlinear system 
behaves similarly to a corresponding linear system. Thus, stability 
within the neighborhood of equilibrium for the nonlinear system 
can be estimated from stability of the corresponding linear system 
(a different one for each equilibrium). The zth linear system corre-
sponding to the zth equilibrium state of the nonlinear system (25) is 
calculated by expanding the components of f (x) in a Taylor series about 
the zth equilibrium state, and ignoring the high-order terms of the 
expansion. This results in the homogeneous, constant-coefficient, linear 
system, 

~(x~xei) = J(xet)(x-xei), (33) 

where /(xc.) is the Jacobian matrix of f(x), evaluated at the zth equi-
librium state xe. (DeRusso et ai, 1965, pp. 479-488). 

The Jacobian matrix is a constant n X n matrix. Thus its eigenvalues 
may be computed, and used for stability judgements. A simpler alter-
native to the calculation of the eigenvalues of the Jacobian matrix has 
been developed by Krasovskii (Kaiman and Bertram, 1960). Krasovskii 
proved that if the matrix —(J+ / T ) , where J7 is the transpose of / , 
is positive definite (see below), then the linear approximation is 
asymptotically stable. 

The analysis of stability based on the linear approximation is valid 
only within an infinitesimal neighborhood about an equilibrium state. If 
the perturbation is outside this neighborhood, the resulting trajectory 
may be stable or unstable, but the linear analysis tells us nothing, not 
even the size of the neighborhood. Thus, stability analysis by the 
variational equations is often not practical (LaSalle and Lefschetz, 
1961, p. 57, Gumowski and Mira, 1968, pp. 10-11). 
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Lyapunov's direct (second) method (DeRusso et al., 1965, pp. 498-527 ; 
LaSalle and Lefschetz, 1961). Most nonlinear stability analyses in 
engineering are based upon the methods originally published by 
Lyapunov in 1892 (Lyapunov, 1907). An intuitive understanding of the 
ideas underlying the method can be gained by considering a function 
defined on the state variables of the system, and physically representing 
the energy of the system (in ecological systems the function might be 
thought to represent biomass). If the time rate of change of energy is 
negative for every possible state except for one equilibrium state, then 
the energy will continually decrease until it reaches its minimum at the 
equilibrium state. The system, in this case, is intuitively felt to be stable 
(in particular, asymptotically stable). 

Usually there is no simple physical interpretation for the function, 
"energy," and an arbitrary mathematical scalar function of the state 
variables is used in the analysis. This function is a "Lyapunov F-func-
tion" or, simply, a "Lyapunov function.'' Unfortunately, there are no 
general methods for defining Lyapunov functions, and this is a major 
limitation of the method. 

In stability analysis it is much more convenient to deal with stability 
of the state space origin than with other equilibrium points (states). 
Thus, in the analysis it is usually understood that the state space origin 
has been translocated to the point representing the equilibrium state 
under consideration. This amounts to replacing the state variables with 
their corresponding perturbation variables, and all states henceforth 
represent perturbations from a particular equilibrium state. This is 
exactly what was done in the previous section on the variational equations. 
This entails no special assumptions; it is simply a shift of axes for the 
sake of simplification. 

Before stating Lyapunov's theorems it is necessary to make a few 
definitions. The function V(x) is "semidefinite" in a neighborhood 
about the origin if it is continuous and has continuous first partial 
derivatives, and if it has the same sign throughout the neighborhood, 
except where it is zero. Thus V(x) can be positive semidefinite or 
negative semidefinite. The function V(x) is "definite" in a neighborhood 
about the origin if it is continuous and has continuous first partial 
derivatives, and if it has the same sign throughout the neighborhood, 
and is nowhere zero, except possibly at the origin. Therefore, V(x) can 
be positive definite or negative definite. The time derivative of F(x), 
V(x)y is defined in the normal fashion for scalar functions of vectors 

T/ / \ VV CJl· VV . (34) 
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or, in terms of the inner ("dot," "scalar") product with the gradient 
of V(x) 

V(x) = grad V(x) · x = grad V(x) · f(x), (35) 

assuming the system to be described by Eq. (25). Then V(x) can be 
evaluated directly from V(x) and Eq. (25), without obtaining solutions of 
Eq. (25). 

We are now in a position to state the Lyapunov theorems. It must be 
kept in mind that the state variables now represent perturbations from 
a particular equilibrium, and that the stability is with reference to that 
equilibrium. 

Given the system described by Eq. (25), the equilibrium is stable 
if it is possible to determine a definite J^(x), such that V(0) = 0 and 
Y(x) is semidefinite of sign opposite to V(x). Such a V(x) is a Lyapunov 
function. The Lyapunov theorem for asymptotic stability is similar. 
Given the system described by Eq. (25), the equilibrium is asymptotically 
stable if it is possible to determine a definite V(x), such that V(0) = 0 
and V(x) is definite of sign opposite to V(x). The Lyapunov function is 
usually defined so that it is positive; thus V(x) is negative or zero. 
Thinking of the Lyapunov function as "energy" again, the theorems 
state that for the trajectory resulting from a perturbation within a 
neighborhood of an equilibrium, if the "energy" does not exceed its 
original finite value then the equilibrium is stable, and if the "energy" 
approaches zero then the equilibrium is asymptotically stable. 

As with the variational equations, conclusions about stability from the 
Lyapunov theorems are valid only when the perturbation lies within a 
small neighborhood of the equilibrium, i.e., the stability is local. What 
one usually wants in practical problems is asymptotic stability "in the 
large," i.e., asymptotic stability no matter where in state space the initial 
perturbation lies. This often is true of linear systems, and occurs in non-
linear systems if the following condition is satisfied. If the system 
described by Eq. (25) is asymptotically stable, and if V(x) approaches 
infinity as the norm of x, | x |, approaches infinity, then the equilibrium is 
asymptotically stable in the large. 

As mentioned previously, there are no general methods for defining 
Lyapunov functions; it is partly a matter of experience. Several specific 
methods have been developed, however, and an introduction to the 
literature may be found in DeRusso et al. (1965, pp. 524-527). 

First canonic form of Lur'e and Popov's method (DeRusso et al.y 

1965, pp. 513-517; LaSalle and Lefschetz, 1961, pp. 75-105). These 
are methods useful where the nonlinear system can be manipulated into 



186 NORMAN E. KOWAL 

an almost linear form, and thus apply only to a narrow class of nonlinear 
systems. 

Practical stability (total stability). Up to now we have been dealing 
with the stability of trajectories resulting from a single perturbation, i.e., 
an impulse shifting the state away from equilibrium. The system 
has been assumed to be undisturbed following the initial perturbation. 
In real-world systems this situation is extremely unlikely; perturbations 
are likely to be acting constantly. A number of theorems have been 
developed to deal with constantly acting perturbations (DeRusso et al.y 

1965, pp. 518-519; LaSalle and Lefschetz, 1961, pp. 121-126). They 
conclude that the trajectory remains near the equilibrium if it is not too 
far away intially, and if the perturbations are not too large. 

Since the perturbations are acting constantly on these autonomous 
systems, it is possible that they might be reformulated and considered as 
nonautonomous systems, and handled as such. However, this would 
require knowledge of the mathematical form of the perturbation. 

(c) Nonautonomous systems. We are concerned here with the stability 
of systems of the form of Eq. (26), i.e., systems with time-varying input. 
As was mentioned previously, the theory of nonautonomous systems has 
been developed to a much lower degree than that of autonomous systems, 
and most practical ecological problems are formulated as nonautonomous 
systems. 

Lyapunov's direct (second) method. With a slight modification of the 
requirements of the Lyapunov function (now V(x, t)), and of the 
asymptotic stability theorem, Lyapunov's method may be used for non-
autonomous systems (DeRusso et al.y 1965, pp. 527-529). Unfortunately, 
the definition of Lyapunov functions for nonautonomous systems is 
even more difficult than for autonomous systems, and thus the method 
has proved to be of limited usefulness. 

Eventual stability (DeRusso et al., 1965, pp. 529-531). The concepts 
of stability used in the discussion heretofore were in the Lyapunov 
sense, i.e., they were concerned with the system trajectory following a 
perturbation from a particular equilibrium state. However, in many 
(perhaps most) ecological systems the input is time-varying in such a way 
that no equilibrium state exists, and thus the Lyapunov concepts cannot 
be used. (This also puts into question much discussion in the ecological 
literature which assumes the existence of an equilibrium or steady 
state, e.g., in the calculation of many rates.) 

Lyapunov's direct method has been extended to such systems by 
LaSalle and Rath (1963) to produce the concept of "eventual stability," 
which, in general, states that if a system behaves properly for a sufficiently 
long time, it can be expected to behave properly in the future. 
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In conclusion, it should be obvious that for most complex, nonlinear, 
practical, ecological systems, stability analysis will probably not prove to 
be very useful. This is partly because in empirical ecology we shall often 
be dealing with systems satisfactorily identified and thus stability may be 
irrelevant [see (b) Ecological significance of stability, p. 176], and partly 
because the tools are not available. The major use of stability analysis might 
be in ecological design problems, where it finds its major use in engi-
neering. 

The reader seeking further discussion of the analysis of deterministic 
systems is referred to the excellent text by DeRusso et al. (1965), 
from which I have here drawn heavily. 

2. Probabilistic (Stochastic, Random) Systems or Inputs 

Heretofore we have been concerned with deterministic mathematical 
models, i.e., the values of input variables, of initial state variables, and 
of constants were assumed to be known exactly. Thus, predictions 
generated by the model were exact, or deterministic. These assumptions 
are wildly unrealistic if one is using the model to help solve practical 
problems. 

Since the values used for input variables, initial state variables, and 
constants of the model are derived from physical measurements, each 
value is actually an element of a probability distribution. This is because 
of the nature of measurement, and not necessarily because of the nature 
of the real world (whose nature we cannot know anyway). Therefore, in 
generating predictions from the model, instead of entering specific values 
for variables and constants we should be entering probability distribu-
tions. The predictions generated by the model in this case will be 
probability distributions, rather than exact values. 

This would be realistic, but unfortunately it is extremely difficult to do. 
In many practical systems it will probably be impossible to do without 
resorting to Monte Carlo techniques, which are very time-consuming 
on the computer. 

The special case of probabilistic inputs ("random signals," "noise") 
to linear deterministic systems has been particularly well analyzed 
because of its applications in electrical engineering and other areas 
(Schwarz and Friedland, 1965). For the probability theory background 
to this work, see the excellent text by Papoulis (1965). 

The case of probabilistic systems (probabilistic operators) has been 
developed for linear systems by Adomian (1963, 1970), and has great 
potential for dynamic ecological systems. The model allows a "stochastic 
filter" whose parameters are randomly varying in time, or a differential 
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equation with randomly time-varying constants, as well as the simpler 
cases of probabilistic inputs or boundary conditions (e.g., initial state) 
(Syski, 1967). Both cases can be represented by a "stochastic oρerator,,, 

and "stochastic Green's functions'' can be found for the various statistics 
of interest, e.g., the covariance function of the output or solution process. 
Sibul (1968) has extended Adomian's formulation into a state space 
formulation particularly adaptable to control applications. 

The general probabilistic operator model opens a fertile new field for 
consideration of sophisticated modeling of randomly varying phenomena, 
for statistical optimization of stochastic systems, and for a new approach 
to nonlinear stochastic systems. This field, the combination of nonlinear 
differential equations and stochastic processes, is a very active area of 
modern research in optimization theory (Bellman and Kalaba, 1964). 

B. OPTIMAL CONTROL AND SYSTEM OPTIMIZATION 

In the analysis of models of dynamic ecological systems we are 
interested in two essentially different objectives: (1) prediction of 
system behavior (solutions and solution behavior, e.g., stability), and 
(2) control of system behavior. For example, given a fish pond with 
known inputs and an acceptable mathematical model, we might wish 
not only to predict fish production, but also to maximize fish production 
by controlling the inputs. Or, given an agricultural pest common on 
field crops, and several possible predators and competitors, we might 
wish to select that combination of organisms which would minimize the 
pest or maximize crop production. (The first example would be an 
"optimal control" problem; the second, a "system optimization" 
problem.) Since the control of system behavior requires use of the 
calculus of variations, or some derivative of it, this is a much more 
difficult problem than just prediction. 

We are dealing here with optimization, or "extremal," problems, i.e., 
finding maxima or minima of functions or functionals (functions of 
functions). "Optimal control" is the optimization of system input to the 
desired system behavior; "system optimization" is the optimization of 
system structure (equation forms and parameters) and, perhaps, input 
to the desired system behavior. Stated in this way, system optimization 
is the "design problem" of engineering, i.e., how to construct the best 
system from components with known properties. If the "desired system 
behavior" actually represents real-world data, measured from an existing 
real-world system, then system optimization is equivalent to what we 
have been calling "system identification," i.e., the mathematical empirical 
description of a phenomenon based on measurements and (usually) 
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hypothetical equation forms. Curve-fitting or parameter-estimation 
("measurement") of statistics is a special case of system identification, 
when the systems are very simple. 

Stated in the mathematical notation developed previously, optimization 
consists of minimizing a functional of the general form 

f V x W . v(f),*)*> (36) 
J to 

where (t0 , tt) is the total time interval of interest. The functional (36) 
is called the "optimization criterion,,, "error index,,, "performance 
criterion,,, etc. Ecological examples might be pest productivity, produc-
tion of pollutant, food production (in which case the functional would be 
formulated with a minus sign, resulting in a maximization), or a function 
of some desired final state, in which case it would be of the general 
form A(x(Î!)). In most real control problems only some of the 
input variables are controllable, and the rest are uncontrollable (the 
"disturbances,,). For example, in a model of an agricultural field one 
might consider as input variables only fertilizer, temperature, and 
precipitation (assuming no irrigation); the first would be controllable, 
and the others not. In the standard formulation of the optimization 
criterion the input vector v(t) includes only the controllable input 
variables. 

Along with a particular formulation of the optimization criterion, 
several types of constraints exist, their type and formulation depending 
upon the particular problem. These constraints may be on the input 
variables (both controllable and uncontrollable), the system itself (the 
mathematical model of coupled differential equations), or the state 
variables. 

In the optimal control problem, the optimization criterion is minimized 
by finding the optimal control (optimum controllable input, "optimum 
control signal") v(t0 , tx) subject to the constraints represented by the 
previously accepted mathematical model of the system, 

x(0=/(x(*) ,v(0 ,0> (37) 

the initial state x(*0)> a n < l t n e values of the uncontrollable input variables 
for the time interval (ί0 , ^ ) . As in the formulation of (36), v(t) represents 
only controllable input variables, the uncontrollable input variables 
being incorporated into Eq. (37) as time-dependent disturbance 
functions. 

The system optimization problem, as mentioned above, really takes on 
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two forms, system design and system identification. In the design 
problem, the optimization criterion is minimized by finding the optimum 
mathematical model (theoretical design) and, perhaps, optimal control, 
subject to constraints represented by the values of uncontrollable input 
variables for the time interval (t0 , tx) and, often, the forms of the model 
equations. In the identification problem, the optimization criterion is 
minimized by finding the optimum mathematical model, subject to 
constraints represented by values of the controllable and uncontrollable 
input variables for the time interval (ί0 , ίχ), the values of the state 
variables x(£0 , ix), and, usually, the equation forms of the model. 

In any of these optimization problems additional constraints are 
usually made in the form of upper and lower limits on values of the 
controllable input variables and the state variables. The lower limits 
for most of these variables in ecological systems, for example, would be 
zero. 

The system optimization problem is most commonly encountered in 
ecology as a parameter optimization problem in system identification. 
This is simply fitting of the hypothetical model equations to observed 
behavior. When the optimization criterion is a quadratic functional (as it 
usually is), parameter optimization is equivalent to parameter estimation 
by least squares in statistics. Given several complete sets of data [i.e., for 
the period (t0 , ^)] for the input and state variables, one may attempt to 
estimate values of all the parameters, or constants, simultaneously 
(that is, those parameters which are not, together with the equation 
forms, part of the hypothesis). This is really an elaborate form of curve 
fitting and, as with curve fitting, one of the main problems with parameter 
identification is that of uniqueness. When one is trying simultaneously 
to estimate more than a certain maximum number of constants (and the 
number may be very small), several widely different combinations of 
estimates will yield local minimum sums of squares of deviations 
(Kerlin, 1968). In this case, the only practical alternative is parameter 
identification from simpler systems, perhaps so simple that the process is 
called "direct measurement.'' (It should be kept in mind that measure-
ment is a form of estimation, and estimation is an optimization procedure, 
usually done by minimizing a sum-of-squares function.) 

Other common types of system optimization problems are impulse-
response or transfer-function optimization for linear systems, and 
equation-form optimization for nonlinear systems (Harris and Lapidus, 
1967). 

The actual solution of optimal control and system optimization 
problems requires the digital computer application of some rather 
elaborate mathematical techniques. These techniques are all closely 
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related to the classical calculus of variations; they are Bellman's "dynamic 
programming," Pontryagin's "maximum principle," and the "direct 
methods" (Gumowski and Mira, 1968; Gelfand and Fomin, 1963; 
Elsgolc, 1962) of the calculus of variations. 

Although the mathematical theory of optimal control and system 
optimization is only in its infancy and already very difficult, it is destined 
to play an extremely important role in ecology in the future, because of 
the pressing needs to control and design real-world ecological systems. 
However, the theory of optimal control and system optimization is 
concerned with optimization only of mathematical models. In very few 
areas of ecology has formulation and testing of mathematical models 
resulted in models whose correspondence with the real world is satis-
factory enough to be used in optimization applications. To attempt 
to do so prematurely could result in disaster. 

Before closing, something should be said about the subject of 
"sensitivity analysis" (Tomovic, 1963). The sensitivity of system 
solutions to small changes in components of the system (mathematical 
model) is usually expressed as partial derivatives of state variables 
with respect to system components, the partials being either absolute 
or normalized. When formulating a model for design purposes, it is 
very important to keep these values as small as possible, i.e., a successful 
practical design must be relatively insensitive to small variations in its 
components (Gumowski and Mira, 1968, pp. 11-12). This is because 
values of a model's components are not known exactly, nor is the 
range of the input or the initial state. Sensitivities to the following 
have proved important in design problems (Gumowski and Mira, 1968, 
pp. 11-35): parameter variations, equation forms (leading into the 
fascinating subject of "structural stability" or "inertness" (Peixoto, 1967; 
Thorn, 1968)), time delays, discretization (the representation of the 
differential equations by difference equations), noise (probabilistic input), 
and initial state. When formulating a model for identification purposes, 
the sensitivities, of course, depend upon the observed behavior. The 
mathematical expressions for sensitivities find great use in the techniques 
of optimal control and system optimization, particularly for linear 
systems. 

For serious study of the theory of optimal control and system optimiza-
tion the reader is referred to texts by Merriam (1964), Fel'dbaum (1965), 
and Pontryagin et al. (1962), and to the series of three volumes by 
Bellman (1967). The subject of optimal control and system optimization 
of general (not restricted to linear) stochastic systems is an extremely 
difficult one; an introduction to the subject, as well as a treatment of the 
linear case, may be found in the text of Pugachev (1965). 
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ONE-SPECIES MODELS 

Population dynamics has always been as important concern in ecology. It may be said 
fairly that, if there now exist natural affinities between mathematics and ecological science 
generally, this is the clear result of both early and continuing efforts to mathematize popula-
tions. The chapters of this section illustrate three different approaches to population 
modeling. But perhaps their main significance in the context of this book is in representing 
experimental systems ecology. This is a side of the subject that is hardly underway beyond 
the stage of simple two-species interactions, except in rudimentary (from the systems 
standpoint) manipulations of artificial ecosystems like microcosms, agriculture plots, or 
experimental ponds and streams, and a few natural units such as old fields and watersheds. 
Outside the framework of one or two species, connections between experimental results 
and systems models have so far been tenuous and tentative indeed. 

Chapter 3 presents a thoroughgoing mathematical analysis of microbial (Chlorella, 
Selenastrum) dynamics in both continuous and batch cultures. The modeling is mechanistic, 
seeking to reconstruct whole-system dynamics from detailed understanding of the parts, 
with impressive success. The experimental work has a definite systems analysis component, 
particularly in the use of step and pulse inputs into the cultures. This comes very close, at 
least in principle, to the engineers' use of "singularity functions" (impulses, steps, ramps, 
etc.) in transient analysis, or sinusoids in frequency analysis. Dr.Williams develops two types 
of complementary models, dealing with what he terms"extensive" and "intensive" popula-
tion properties. He seeks to interact these models heuristically in a process of theory 
construction referred to as "anacalypsis." In his closing discussion of Hutchinson's (1961. 
Am. Nat. 95, 137) "paradox of the plankton," he makes a convincing argument for the 
importance of instantaneous dynamics of competitive advantage in the partitioning of 
biotopes that leads to stable, multispecies equilibria. 

Chapter 4 is a bioenergetics study of the terrestrial isopod Armadillidium, utilizing concepts 
from control theory and the transfer function technique of classical dynamic analysis. 
Dr. Hubbell's perspective is a hierarchical view of the natural world in which lower-level 
laws account for properties of systems at lower levels of organization. These properties 
constrain what is possible at higher levels, and the more restricted set of the actual is 
generated by higher-level laws. The widespread notion of organisms as passive energy 
partitioners is criticized, and from the contrary view a focus upon control aspects of energy 
processing is developed. Biological control systems and characteristics of the cybernetic 
control model are contrasted, illustrating little general comparability of components. 
Since "control" inevitably presumes—in some sense—objectives to be met or optimized, 
two methods of estimating set points experimentally are identified: an "optimum environ-
ment" method, and a "perturbation" method. 

Three models of energy regulation by Armadillidium are formulated, two linear and one 
nonlinear. "Linearity" is restricted to mean the additivity component of the superposition 
principle (additivity and homogeneity) by which linear dynamic systems are usually defined, 
and it is pointed out that the algebraic equation for a line defines a nonlinear input-output 
relation. This is useful because ecologists usually confuse what is meant by a "linear system." 
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Chapter 9 of this volume, and the chapters in Part IV, of Volume II, all of which deal with 
linear dynamics, will serve further to clarify the definition. In the context of Laplace trans-
form transfer functions, Dr. Hubbell develops his models, incorporating such standard 
transient analysis techniques as step, impulse, and pulse testing, and of opening feedback 
loops to determine whole-system transfer functions. 

This sort of work, along with other attempts of ecologists to employ classical systems 
analysis methods, has been criticized by some on the frontiers of systems science as archaic 
and obsolete. So it may be in engineering, but not in ecology. It seems quite reasonable that 
ecologists should explore "old" territory for new insights. It is not old to them, and what 
better systematic entries into modern approaches are there than paths already well-worn 
by predecessors? Dr. Hubbell's chapter, in this instance, stands as an important contribution 
to the orderly development of new perspectives and new progress in systems ecology. 

Chapter 5 presents an analysis, based on interaction of laboratory experiments and the 
digital computer, of factors pertinent in predator-prey relations of a freshwater fish, 
Micropterus. The emphasis is on habitat complexity and its implications for predator efficiency 
viewed in terms of energetics. The work is patterned after Holling's (1963. Mem. Entomol. 
Soc. Can. 32, 22) experimental components analysis approach, in which detailed mechanistic 
submodels are combined to produce a static representation of factors accounting for the 
overall prédation process. 

Both "routine" and "active" aspects of the fish's respiratory metabolism are modeled, 
and a computerized sensitivity analysis of the routine metabolism performed to identify 
parameters of greatest significance. An energy model is then constructed, incorporating both 
routine and active aspects, and used to investigate consequences of cover density in the 
predator's environment. Movie films of feeding experiments, analyzed by computer, provide 
the basis for conclusions about the stabilizing effect of cover upon the prey-predator inter-
action. 
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L Introduction 

A. RATIONALE FOR MICROBIAL POPULATION STUDIES 

Detailed studies of single-species microbial population dynamics are 
important to ecology both to gain understanding of population behavior 
as an end in itself, and also as a means of approaching the analysis of 
large, complex ecosystems. In the latter context, there seem to be three 
main reasons for the importance of microbial dynamics to ecological 
systems research: 

(1) Microorganisms comprise a major fraction of the earth's biomass. 
To the extent that this is true for any ecological system, the dynamics of 
that system must be largely microbial dynamics. Also, the turnover rate 
of microorganisms is generally greater than that of higher organisms. 
Since the flux through a system equals the product of its mass times 
its turnover rate, it should be clear that microorganisms, with high 
biomass and high turnover rates, must be overwhelmingly important to 
energy or material fluxes in an ecological system. Energetically, at least, 
higher animals are little more than a minority ghetto in the total 
community. 

(2) The relative simplicity of microbial systems allows us to approach 
most closely the ideal of a complete quantitative description of population 
behavior. As implied above, it is scientifically satisfying to understand 
microbial dynamics for its own sake. But also, being aware of the 
remarkable conceptual advances made in genetics and molecular biology 
via the use of microbial "model" systems, it behooves us as ecologists to 
explore the extent to which the study of microbial systems can provide 
us with a basic, fundamental dynamics, to which we can add the 
complicating factors present in higher organisms. The basic question 
I am raising is whether, say, territoriality is the fundamental population 
control mechanism of higher animals, or whether it is a secondary 
factor modifying the action of some more universal and fundamental 
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dynamic principles. The elucidation of such principles, if they exist, 
may be easiest through study of simple microbial systems. Perhaps we 
ecologists should begin a search for our own "Escherichia coli." 

(3) Detailed knowledge of single-species dynamics is essential for 
optimal modeling of complex ecosystems. However, in an ecosystem 
model we clearly cannot include all possible detailed information for 
every species; as Levins (1966) points out, such a ''naive, brute force 
approach" leads to both computational and conceptual intractability. 
What, then, is the value of single-species details ? Even though the 
species will be represented in a highly simplified fashion in a large model 
system, only by having prior knowledge of the details can we ensure 
that the simplifications we choose will be most appropriate. Our task 
in simplifying is to obtain a maximum of realistic prediction with a 
minimum of complexity. Beginning with the detailed model, we can 
consciously and rationally eliminate the minor second-order effects 
while preserving the important first-order effects. Otherwise, simplifying 
would be mere guesswork. 

Further, it is not necessarily true that theory complexity increases in 
proportion to the quantity of empirical information accounted for. 
A great wealth of empirically relevant detail may be predicted, if we 
are fortunate, by a very simple theory. Such is, of course, the goal of 
all theory construction. We usually obtain the greatest predictive power 
by proposing new entities or relationships between entities, an aspect 
of theory construction we can call anacalypsis ((χνοίκοιλυφις: discovery, 
invention). In this chapter I hope to show that, by addition of a single 
new variable to standard population equations, we can predict many 
more general properties of microbial populations than we could before. 
By opening up a wider variety of empirical phenomena against which 
to test the model, not only is the anacalyptic model potentially more 
fruitful, but also more vulnerable to rejection. The vulnerability of 
the anacalyptic model is a property to be cherished. 

B. A N APPROACH TO MICROBIAL POPULATIONS 

The first section of this chapter will describe the results of experi-
mental studies on the population dynamics of unicellular green algae, 
both in continuous (chemostat) culture and unrenewed (batch) culture. 
Included will be observations on oscillations, lags, and synchronous 
growth. Measured variables include cell number, biomass, chlorophyll, 
limiting nutrient concentration, and cell size distributions. Environ-
mental variables studied include turnover rate, temperature, carbon 
dioxide concentration, and photoperiod. 
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In subsequent sections I shall describe an approach to microbial 
population theory. The models thus generated seem to have general 
applicability to most microbial populations. As an overall philosophy of 
population modeling, I shall take the approach that an understanding 
of the control of single cell growth and division will entail a prediction 
of the population dynamics of the organisms. If we know the behavior 
of individuals, we can deduce the behavior of the population. 

Two complementary models are developed. The first entails the 
prediction of time-dependent behavior of extensive population variables: 
total biomass, numbers, nutrient, etc. The second entails the prediction 
of time-independent properties of intensive population variables: 
distributions of age, size, etc., within the population. (An example of an 
extensive model is the time-honored logistic equation, while an example 
of an intensive model is a life table.) Ultimately any complete theory 
must combine both intensive and extensive properties within a single 
framework. At present, however, any such amalgamation of the two 
approaches seems to me unmanageable without an immense "brute force" 
computer program. Such a computer program I believe would be 
premature and nonanacalyptic. 

IL Experimental Studies on Algal Populations 

I report here the results of population studies of algae grown under 
very precise conditions of batch and chemostat culture. The experiments 
have been designed such that both steady state and transient population 
behavior could be studied. The approach is along lines used in control 
systems analysis (e.g., Harris, 1961), in the hope that insight might 
be gained by recognizing the feedback nature of population control. 
Most of the interesting processes occurring, however, are almost 
certainly nonlinear, such that analysis in terms of linear control systems 
does not seem to be the simplest or most straightforward method. 
However, the experimental design is quite adaptable to a variety of 
theoretical approaches. 

I believe the chemostat (Novick and Szilard, 1950) is the best laboratory 
idealization of nature for population studies. It is a dynamic system 
with continuous energy and material inputs and outputs, thus modeling 
the open system character and temporal continuity of nature. The input 
and removal of nutrient analogs the continuous turnover of nutrients 
in nature. The washout of organisms is formally equivalent to non-
age specific death, prédation, or emigration which always occur in 
nature. 
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A. METHODS 

A much more detailed description of methods will be found in 
Williams (1965). 

1. General Culture Procedures 

Two green algae of the order Chlorococcales were used: Selenastrum 
gracile Reinsch and Chlorella pyrenoidosa Chick. Both were purchased 
from the Indiana University Culture Collection of Algae (Starr, 1960). 
Both were grown on a modification of Chu No. 10 culture medium 
(Chu, 1942). The Chu medium was used because its composition and 
concentrations are more ecologically realistic than many frequently used, 
highly concentrated media. The composition of Chu No. 10, as modified, 
is given in Table I. Nitrate is the limiting nutrient. All media were 

TABLE I 
MODIFIED CHU N O . 10 CULTURE MEDIUM 

Compound 

Ca(N03)2 · 4 H 2 0 a 

K 2 HP0 4 

Na2COs 

M g S 0 4 · 7H 2 0 
Na2Si03 · 9H 2 0 
FeCl3

 a 

Disodium versenatea 

Trelease trace element solution0 

Concentration (mg/liter) 

59.2 (500 μΜ Ν 0 3 - ) 
10.0 
20.0 
25.0 
58.0 
0.5 

10.0 
0.5 cc 

a Denotes change from formulation of Chu (1942). 

sterilized by filtration through a Selas 03 Filter Candle or a Millipore 
GS Filter. 

Chlorella was purchased axenic, and was maintained thus. Selenastrum 
was purchased contaminated. It was rid of its contamination by approxi-
mately three weeks' growth in a chemostat using the inorganic medium 
described above. The chemostat may be potentially useful to axenize 
many autotrophs which have proved refractory to other methods. 

2. The Chemostat 

The chemostat system developed was capable of highly precise, 
reliable, long-term use. The culture vessel was approximately a standard 
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design (Novick and Szilard, 1950), but containing 130 ce of culture. 
It was illuminated by a 22-W-circular fluorescent bulb, providing almost 
uniform illumination over the entire cylindrical surface of the vessel. 
Incident intensity was approximately 6.5 klx, saturating but not 
inhibitory to growth. 

Temperature was controlled to ±0.05 C. Mixing and gas exchange 
were accomplished by bubbling humidified air (or air + 1 % C02) 
through each culture at 500 cc/min. 

Flow rate in early experiments was controlled by the method of 
Kubitschek (1954), impeding flow from a constant head Mariotte bottle 
with a capillary tube. This was accurate to ± 1 - 5 % . Most experiments 
had more precise flow control ( ± 0 . 5 % ) by use of a peristaltic pump 
(Harvard Apparatus). 

3. Assay Techniques 

A maximum sample of 2 to 3 cc could be removed without perturbing 
the culture. In early experiments, cell number was estimated by 
haemacytometer counts. High accuracy ( ± 2 % ) was possible with a 
modified filling technique (Williams, 1965). In most experiments, a 
Coulter Counter Model B was used with a 50 /x aperture. Routine 
accuracy was ± 0 . 5 % . 

Size distributions were made with the Coulter Size Plotter, graphing 
between 30 and 50 size classes for a total of about 30,000 cells/distribu-
tion. At least three replicates were run per sample. 

Grown in essentially fresh water osmotic concentrations, the cells 
plasmolyzed when added to the 0.9 % NaCl normally used for counting 
and sizing in the Coulter Counter. This was solved by an empirically 

TABLE II 

IMPROVED COULTER COUNTER FLUID 

Compound g/liter 

NaCl 5.0 

PVPa 35.0 

Na2HP04 0.32 

NaH2P04 0.04 

NaOH 0.08 

α PVP is Polyvinylpyrollidone ("Plasdone 
C," MW = 40,000, Antara Chemicals, 
Gracelli, N.J.). 
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developed counting fluid (Table II) containing polyvinylpyrollidone. 
In addition to preventing plasmolysis, the fluid's high density and 
viscosity improve counting accuracy by (i) impeding the settling out of 
cells and (ii) slowing passage of cells through the aperture, thereby 
preventing the pulse truncation and size distortions resulting from 
normal counter methods (Kubitschek, 1964). 

Dry weights were determined from 2 cc of culture filtered onto a 
tared 13-mm Ultrathin Millipore Filter, washed, desiccated, and weighed 
on a quartz cantilever microbalance. There was a linear correlation 
coefficient of 0.982 (DF = 28; t = 743.2, P < 0.001) between dry 
weight and total cell volume over a variety of experimental conditions 
involving mean cell dry weights of 4 to 40 /x/xg/cell. This is shown in 
Fig. 1. Since there is thus no evidence for density differences between 
cells, cell volume data (from the Coulter Counter) and cell mass are 
equivalent, and will be used interchangeably. 

Selenastrum pigments were extracted in 80 % acetone, while the more 

( μ 3 χ IO"7/cc) 

10 20 30 40 50 
120 

100 

~ 80 

o 

| 60 

40 

20 

0 5 10 15 

Total cell volume (counter units/cc) 

FIG. 1. Total cell volume from Coulter Counter data versus dry weight: Coulter 
Counter volume is a good measure of biomass. 
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refractory Chlorella pigments were extracted in absolute methanol. 
Chlorophyll was estimated at 670 nm, and carotenoids at 480 nm. 
Accuracy was ± 1 %. 

A semi-micro modification of the phenoldisulfonic acid method was 
developed (Williams, 1965) for nitrate assay. Sensitivity was ± 1 m/x mole 
nitrate/sample. 

4. Data Presentation 

Each experimental population furnishes information on a variety of 
subjects; hence subject matter and not the individual experiment will be 
the unit of organization. More complete presentation of the data is in 
Williams (1965). 

B. PRECISION OF STEADY STATE REGULATION 

When studying causes of natural population fluctuations it is important 
to know whether populations will fluctuate in the absence of environ-
mental fluctuations. In this section we examine the organisms' ability 
to maintain a steady state under constant environmental conditions. 
The results relating to steady state precision fall empirically into two 
classes: short-term and long-term precision. The two questions are not 
logically disjunct, but they must be so treated at present by virtue of 
the experimental design. I will show that regulation is quite precise 
over periods up to 15 generations, but that over longer periods of time 
there are occasional unexplained and very gradual trends in the popula-
tion parameters. 

1. Short-Term Precision 

I choose a maximum of 14 generations as an arbitrary but convenient 
time limit, during which enough measurement can be made to assure a 
steady state, but during which any long-term trends will be insignificant. 

Note that the question concerns capability of population regulatory 
mechanisms; hence only those populations are treated for which it 
was clear that no significant environmental fluctuations occurred. 

Three measures are used. First is the coefficient of variation (SXIX). 
Although intuitively comprehensible, the coefficient of variation does 
not take account of the time-sequential nature of the data. 

The second measure I shall call the coefficient of sequential variation. 
It is derived (Williams, 1965) from the mean square successive difference 
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(dx
2) of von Neumann et al. (1941). The coefficient of sequential variation 

(dJX) I define as 

h = (À1K 11.) (1) 
X \ (n-l) r {l) 

where i enumerates the variâtes X chronologically. 
The third measure is a measure of randomness in sequential variation 

based on the above: Since dx
2 = 2SX

2 for random sequences, and since 
the two functions are statistically independent, Δχ = 1 — dx

2/2Sx
2 

should be normally distributed about a mean of zero when the sequence 
is random. Deviations of Δχ from zero are thus a test of nonrandomness 
(Young, 1941). 

Table III presents the results from seven steady state populations. 
The variability of steady states is quite small, ranging from a coefficient 
of variation of 0.0174 to one of 0.0593; most fall on the low side of this 
range. The variability is, however, greater than that of any environmental 
or sampling parameter. There is zero correlation between the three 
variables (Williams, 1965). 

While most of the biomass and chlorophyll measurements appear 
random, most of the cell number measurements appear nonrandom. 
Since the chemostat is nutrient (i.e., biomass) limited, and since cell 
division is much more of a discrete (or "digital") process than cell 
growth, the results presage a general character of cell populations, that 
cell division is only loosely coupled to cell growth. Cell number may be 
thought of as an oscillator (cf. "cell cycle") set in motion by small 
random fluctuations in biomass growth. The loosely coupled nature of 
the division process will be discussed at length later on. 

2. Long-Term Precision 

There is little systematically collected data on long-term changes 
in supposedly steady state populations. No experiments were specifically 
designed to study such changes. Nevertheless, there is evidence for 
their occasional occurrence. 

Two simple measures are adequate here. The first is Rx , the ratio of 
the averages of the last few values in the time sequence to the average 
of the first few values. Thus Rx > 1 shows an increase with time; 
Rx < 1 shows a decrease. The second measure is rx = l00Rxr2lty 

where r2 is the doubling time interval studied; rx measures the average 
percentage change per generation. The results are shown in Table IV. 

Of the few significant long-term trends, it is difficult to see any 



TABLE III 

COEFFICIENTS OF VARIATION (SJX), COEFFICIENTS OF SUCCESSIVE VARIATION (dJX), 

AND A MEASURE OF NONRANDOMNESS (ΔΧ) FOR SEVERAL POPULATIONS 

Culture 
designation 

Selenastrum 

IV 

ιν2 
iv4 

Chlorella 

VI, (a) 
VI2 (a) 
VI, (b) 
VI2 (b) 

Dura-
. · tion 
(hr) 

190 
293 
240 

239 
239 
252 
252 

Number 
of 

samples 

10 
12 
12 

11 
11 
14 
14 

Cell number (N) 

SJN 

.0373 

.0296 

.0593 

.0175 

.0174 

.0225 

.0230 

dJN 

.0373 

.0406 

.103 

.0271 

.0172 

.0142 

.0216 

Δη 

0.50° 
0.16 

- 0 . 4 9 α 

- 0 . 1 9 e 

0.49° 
0.83b 

0.56b 

Biomass (M) 

SJM 

— 
— 

.0246 

.0384 

.0298 

.0353 

.0313 

dJM 

— 
— 

.0347 

.0516 

.0386 

.0309 

.0210 

àm 

— 
— 

0.01 

0.096 
0.164 
0.614* 
0.665* 

Total chlorophyll (φ) 

βφΙΦ 

— 
— 

.0480 

.0354 

.0384 

.0226 

.0249 

ΖφΙΦ 

— 
— 

.0738 

.0458 

.0504 

.0346 

.0357 

ΔΦ 

— 
— 

-0 .173 

0.354 
0.270 

- 0 . 1 7 0 
- 0 . 0 1 2 

a Nonrandom, 0.05 > P > 0.01. 
b Nonrandom, P < 0.01. 
c If one possibly (but unprovably) erroneous measurement is removed, Δη 0.545, 0.05 > P > 0.01. 
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pattern: the presence or absence of trends, their direction, and their 
magnitudes, seem to be at best sporadic. No instrumental changes can be 
invoked to explain the trends (Williams, 1965). 

Mutation accumulation should be minimal in an autotrophic organism 
on inorganic medium, but it is possible that the trends result from 

TABLE IV 

LONG-TERM POPULATION CHANGES, EXPRESSED AS THE RATIO OF FINAL TO 
INITIAL VALUES (RX) AND THE PERCENT CHANGE PER GENERATION (rx) 

Popula-
tion 

Inter-
val t 
(hr) 

T"2 

(hr) 
Rn rn 

(%) 
Rm ^m 

(%) 
** ré 

(%) 

Selenastrum 

IV2 

iv4 

Chlorella 

νι2 
VI, (a) 
VI2 (a) 
VIx (b) 
VI2 (b) 

1033 
938 

20.0 
20.6 

1.211* 
1.024 

0.41 

252 18.0 0.946 
198 18.0 1.030 
322 18.0 1.015 
322 18.1 0.987 
308 36.6 0.990 

0.75b 

1.046 
0.995 
1.114» 
1.078 
0.982 

-0.55 0.87b 

0.64 

0.912a 

0.945 

0.975 
308 36.6 0.942a -0.69 0.924* - 0 . 9 0 0.965° 

-0.29 

- 0 . 6 3 

-0.42 

a Results of t-test between initial and final means show value to be significantly different, 
P < 0.05. 

b Results of t-test between initial and final means show value to be significantly different, 
P < 0.01. 

accumulation of a number of small polygenic changes. Since these 
organisms are almost certainly asexual, such polygene accumulation 
would be quite slow to achieve equilibrium. This slowness is in distinc-
tion to the normally discussed major gene situation in the chemostat, 
where selection is accelerated (Moser, 1958). However, since the trends 
are so sporadic and slight, it would be difficult to study them system-
atically. 

C. STEADY STATE DEPENDENCE ON TURNOVER RATE 

In order for a steady state to occur in a chemostat, the specific growth 
rate (dX/X dt) must exactly equal the turnover (dilution) rate of the 
instrument. Consequently, as the turnover rate increases, we expect a 
greater nutrient requirement per cell in order to achieve faster growth. 
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Hence we expect a smaller population at higher turnover rates. The 
theory predicting these relationships is well known (Herbert et al.y 1956). 
However, that theory utilizes only one measure of population density, 
thus making the implicit assumption that organisms are chemically or 
physiologically identical, regardless of growth rate. I shall show that 
this assumption is incorrect; the model (for extensive properties) 
developed later in this chapter is designed explicitly to handle changes in 
physiological state of organisms. 

Figure 2 shows the relationship to steady state turnover rate of three 

0 0.01 0.02 0.03 0.04 

Specific growth rate (hr~ ) 

FIG. 2. Steady state specific growth rate versus total numbers (ΛΓ), biomass (M), 
and chlorophyll (φ) for Chlorella. Ordinate scaled for cell number. Biomass and chlorophyll 
in arbitrary units. (Note different slopes as discussed in text.) 

extensive properties of Chlorella: cell number (TV), biomass (M), and 
total chlorophyll (φ). Both cell number and biomass decline with 
increasing turnover rate, but they do so with different slopes. Total 
chlorophyll, on the other hand, actually increases as the biomass and 
number decline. The corresponding measures of average cell mass (M/N), 
chlorophyll per cell (φ/Ν), and chlorophyll per unit mass (φ/Μ) are 
shown in Fig. 3. A few data points are added from batch culture, to show 
the great range over which cell mass (and volume) may vary. 

We shall see that increased cell mass with higher growth rate is a 
generalization for most microorganisms; it is a result of increases 
primarily in the cell's synthetic machinery. Note the strong increase in 
total chlorophyll, an important part of this synthetic machinery. 



3 . DYNAMICS OF MICROBIAL POPULATIONS 209 

0.07 

Specific growth rate (hr~ 

FIG . 3. Average cell size (M/N), average chlorophyll per cell (φ/N) and per unit 
mass (φ/Μ) versus specific growth rate (turnover rate). · : batch culture, O: chemostat. 

Note also in Fig. 2 that the slope of cell number is steeper than that 
of biomass; if we extrapolate to the right, cell number will be expected 
to reach zero before biomass. The washout or extinction point of course 
occurs when cell division cannot keep up, regardless of the potential 
for biomass growth. We shall see in other contexts also that cell division 
is a critical rate-limiting and lag-producing step. There is further 
discussion of this in Section III on the extensive model. 

The relation of chlorophyll to productivity is of the form 

dM 
Mdt 

Κ(Φ — Φο)> (2) 

where φ0 is the intercept value of total chlorophyll (φ) at zero growth rate. 
Since chlorophyll is part of that synthetic machinery which increases at 
high growth rates, extrapolation to zero growth should define that 
amount of chlorophyll required for maintenance metabolism. If this 
is so, maintenance chlorophyll is anywhere from 30 to 7 0 % of the 
chlorophyll measured in the experiments reported. 
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D. EFFECTS OF TEMPERATURE AND C 0 2 

In addition to the effects of turnover rate (and hence nutrient limita-
tion), it is of interest to investigate the effects of nonlimiting factors on 
steady state behavior. Although not directly involved in the regulation 
of the organisms' biomass, nonlimiting factors may interact in a manner 
profoundly affecting the character of the population. Two such non-
limiting factors, temperature and C 0 2 , will be discussed briefly here. 
I shall show, in the model section, that temperature effects can be 
adequately explained by effects on the kinetics of nutrient uptake and 
incorporation. The C 0 2 effects are more problematical. 

1. Temperature Effects 

The chemostat provides a unique method for studying temperature 
effects, in that the same steady state growth rate may be maintained 
independent of temperature. We shall see that this provides a unique 
analytical tool for the analysis of temperature effects: If two mutually 
dependent processes have different temperature optima, we should be 
able to dissociate the processes by maintaining a constant specific growth 
rate in the chemostat. 

Figure 4 shows the steady state values of cell number, biomass, and 
chlorophyll over a very narrow temperature range, 22-25 C. (These 
preliminary experiments were hampered by the limited range of a 
homemade contact thermometer controller.) Even over this three-degree 

25 

20 

I 
E 
E 

to 

Ό is 

10 

22 23 24 25 

Temperature (C) 

FIG. 4. Steady state cell number (N), biomass (M), and chlorophyll (φ) over a three-
degree temperature range. Cells at 22 C are twice as large as those at 25 C. 
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range, the results are striking. Very small changes in total chlorophyll 
and biomass are accompanied by very large changes in cell number; 
cells at 25 C are approximately one-half the size of cells at 22 C. 

More recently in my laboratory, Maurice Blaug (1970) has extended 
these measurements over a wider temperature range. His results are 
shown schematically in Fig. 5, pending publication of his detailed 

15 

10 

5 

10 20 30 
Temperature (O 

FIG. 5. Schematic representation of Maurice Blaug's results on Chlorella, showing 
steady state number, biomass, and average cell size versus temperature. 

findings. There are distinct maxima for cell number and total biomass, 
corresponding to a minimum in cell size. Thus, at the same growth rate, 
large cells may occur either at high or low temperatures. Minimum cell 
size presumably occurs at the temperature optimum. Similar results 
have been reported for Tetrahymena cell size versus temperature in 
batch culture (Zeuthen, 1964). 

By changing cell size with temperature, we have again demonstrated 
that there is only loose coupling between the growth and division 
processes. The lack of significant change in total chlorophyll is inter-
preted to mean that the linear relationship of total chlorophyll to specific 
production rate (dM/M di) is relatively temperature independent. This 
might be expected if the light reaction rate, which is relatively temper-
ature independent, were controlling the amount of chlorophyll present. 
Further discussion of temperature occurs in the description of the 
extensive model. 

2. C 0 2 Effects 

With nitrogen as the growth limiting nutrient, one might expect the 
addition of extra carbon to the nutrient supply to have no effect. On the 
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other hand, if more photosynthesis occurs with added C 0 2 , one might 
expect excess carbohydrate to accumulate, causing an increase in total 
biomass. Neither of these alternatives, however, occurs. The data are 
shown in Table V. Total biomass is not significantly affected by added 

TABLE V 

EFFECTS OF C 0 2 ON THE STEADY STATE 

Popu-
lation 

VI, (a) 
VI2 (a) 
VII, (a) 
VII2 (a) 

VI, (b) 
VI2 (b) 
VII, (c) 
VII2 (c) 
VII, (d) 
VII2 (d) 

w 

5.00 
4.98 
4.98 
4.98 

2.46 
2.46 
2.99 
2.98 
1.97 
1.97 

co2 

air + 1% 
air + 1% 
air 
air 

air + 1 % 
air + 1% 
air 
air 
air 
air 

M 

123.9 
126.0 
111.3 
122.2 

135.5 
136.0 
131.3 
136.3 
132.2 
139.6 

N 

18,810 
19,170 
22,920 
23,760 

32,630 
33,040 
36,670 
35,680 
36,640 
36,440 

f 

.0483 

.0492 

.0750 

.0752 

.0419 

.0417 

.0572 

.0576 

.0460 

.0475 

M/N 

13.18 
13.14 
9.75 

10.28 

8.30 
8.24 
7.16 
7.64 
7.22 
7.64 

Φ/Μ 

3.90 
3.90 
6.74 
6.70 

3.09 
3.07 
4.36 
4.23 
3.48 
3.40 

φ/Ν 

2.57 
2.57 
3.27 
3.17 

1.28 
1.26 
1.56 
1.61 
1.26 
1.30 

C 0 2 ; this rules out carbohydrate accumulation. The added C 0 2 , 
nonetheless, causes a decided decrease both in cell number and total 
chlorophyll; cells grown in high C 0 2 are larger and contain less chloro-
phyll. Since the total population biomass is virtually unchanged by C 0 2 , 
and since nitrogen is rate-limiting, there has been no significant change 
in carbon/nitrogen ratio, hence no carbohydrate accumulation. 

This argument has more generality. For any condition where the 
total biomass remains constant and cell size changes (temperature, C 0 2 , 
and the transient cases to be discussed), it follows that the relative 
proportions of all of the major elements (carbon, nitrogen, oxygen, etc.) 
in the organism are the same for all cell sizes regardless of cell size 
change. In this context, recall also that there was no evidence of any 
specific gravity changes over a wide range of cell sizes (Fig. 1). In a 
nitrogen limiting chemostat, cell composition seems very well controlled. 
This is contrary to some previous reports (Fogg, 1965) based on experi-
ments done under very different conditions in batch culture. 

In the presence of high C 0 2 , it seems plausible that less chlorophyll 
would be required to maintain the same rate of carbon fixation. Chlorella 
thus seems to have a control mechanism that allows maintenance of 
just enough chlorophyll to maintain the steady state photosynthetic rate. 
Recall also that total population chlorophyll was a linearly increasing 
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function of steady state growth rate (Fig. 2). As a generality, we may 
propose the controlled production of just the right amount of synthetic 
machinery to maintain the environmentally appropriate growth rate. 
This generalization is a theorem of the model presented for extensive 
properties, and further illustrates the looseness of coupling between 
cell growth and division. 

E. UNUSED LIMITING NUTRIENT 

The amount of unused nutrient remaining in the culture container 
during a steady state must be just that amount required in the medium 
to maintain the steady state growth rate. If it were higher, the population 
would increase; if it were lower, the population would decrease. 

Using the original Monod or Novick and Szilard chemostat theories 
(1950), we can predict from the biomass data that nitrate concentrations 
in the steady state cultures should be of the order of 0.2 to 1.0 /xg(N)/cc 
(15-75 μΜ) over all experiments (Williams, 1965). 

Despite the fact that the assay technique was refined to a sensitivity of 
±0.014 /xg(N)/cc ( ± 1 fiM), actual nitrate levels were so low that it was 
impossible to obtain good quantitative estimates. All samples measured 
between 0.01 to 0.04 ju,g(N)/cc (0.75-3 /xM), right at the sensitivity 
limits of the technique. 

However, there is enough accuracy to warrant the following important 
conclusion: The average steady state nutrient concentration is 20-100 
times lower than that predicted by the basic theory of growth dynamics 
(Herbert et al.9 1956). Despite the uncertainty of the values, 20-100 
fold is certainly a very real difference. Almost no growth is observed 
in batch cultures with 3 μΜ nitrate (Williams, unpublished). 

I suggested earlier (Williams, 1965) that this discrepancy might be 
accounted for by the existence of a nitrate pool within the cells. Other 
experiments (Ketchum, 1939) have demonstrated a very rapid uptake of 
nutrient following starvation, along with the ability to use that nutrient 
for growth later when removed from the nutrient. Recent data by 
Caperon (1968) provide similar indirect evidence for an internal nitrate 
pool in Isochrysis, by showing a constancy of nitrate over a wide range of 
growth rates. 

Ideas similar to this have been invoked to explain high growth rates 
in apparently nutrient-poor natural waters (Rhode, 1948). Thus, in an 
open natural system, measurement of nutrient concentrations may not 
provide an adequate predictor of growth potential. 

The role of intracellular nutrient pools in population control is 
explored in the extensive model developed in the next section. 
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F. TRANSIENT POPULATION BEHAVIOR 

In principle, the transient behavior of populations should provide 
the most unambiguous reflection of operative control mechanisms 
(Harris, 1961). It is here, for example, that we might expect the clearest 
expression of looseness of coupling between cell growth and division. 
But, for successful transient experiments environmental conditions must 
be very well controlled and biological states must be precisely measurable. 
Transient studies thus entail considerable technical difficulty. Chemostat 
use can eliminate many of these difficulties: With clearly defined steady 
states as initial conditions, the responses of populations to systematic 
perturbations can be followed until new steady states are reached. 
This is a powerful approach familiar to systems engineers. 

Only a few of the clearer experimental results will be shown here. 
The treatment of some aspects of the transients is frankly descriptive, 
for no satisfactory model has been developed to predict observed 
oscillatory behavior. Further results of these experiments can be seen 
in Williams (1965). 

We shall subdivide transient phenomena as follows: 

(1) Batch culture: always transient 
(2) New chemostat inocula: transients approaching a steady state 
(3) Chemostat perturbations: steady state-transient-steady state 

(a) step function perturbations 
(i) nutrient concentration 

(ii) flow rate 
(b) square wave perturbations 

(i) flow rate 
(ii) temperature 

These experiments have been done on both Chlorella and Selenastrum. 

1. Batch Culture 

Batch cultures are closed systems in which inocula are allowed to 
grow, with no nutrient addition, until nutrient exhaustion causes growth 
cessation. Figure 6 shows the usual cycle of events for Chlorella as it 
passes from "lag" phase to "exponential" phase to "stationary" phase. 
Cell numbers, total biomass, and average cell size are shown. Figure 7 
shows a similar batch culture growth curve for Selenastrum showing cell 
number, total chlorophyll, and chlorophyll per cell. 

Note that the lag phase is a lag merely in cell division. While cell 
number remains constant for a time following inoculation, both biomass 
and chlorophyll show large increases, 4-fold and 8-fold, respectively. 



Hours 

FIG. 6. Batch culture growth cycle for Chlorella, 
inoculated with stationary cells. Note lag in numbers 
but not biomass, as well as cyclic return of cells to 
original minimum size upon entering stationary 
phase. M: biomass, N: cell numbers, M/N: average 
cell biomass. 

• —· · 

F IG . 7. Batch culture growth cycle for Selenastrum. Note initial 
rapid increase in chlorophyll during lag, and continued decay of 
chlorophyll in stationary phase. N: cell number, φ: total chlorophyll, 
ΦΙΝ: chlorophyll per cell. 
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Certainly the cell synthetic machinery is not lagging. Following the lag 
phase, cells divide and the population numbers increase exponentially 
for a time, along with biomass and chlorophyll. When nitrate becomes 
limiting, the biomass and chlorophyll stop increasing, but cell division 
continues, producing smaller cells with less chlorophyll in stationary 
phase. (Chlorophyll continues to decline continuously because of 
photodecomposition.) 

Referring to Fig. 3 for comparison, we see that the cycle of events 
in batch culture is simply a particular transient reflection of the changes 
in cell properties with turnover or growth rate which we have already 
seen in steady state conditions. Thus, lag and stationary phases are 
simply an antisymmetric pair of extremes on the continuum of cell 
property changes with turnover rate. Therefore, a single explanation 
will account for all of these, as will be shown with the extensive model. 
Nowhere else is the complete uncoupling of growth and division more 
clearly illustrated than in batch cultures. 

2. New Chemostat Inocula 

Because of lag phase, there is a tendency for new inocula to be washed 
out of a chemostat before division begins. For this reason, the most 
reliable method of starting up a chemostat is to establish a large, rapidly 
growing batch culture population before turning on the nutrient flow-
through. This procedure makes transient analysis difficult, since condi-
tions are difficult to define precisely. 

The sudden switching on of nutrient flow is likely to produce oscilla-
tions in cell number, while biomass and chlorophyll respond generally 
without oscillation. This is illustrated for Selenastrum and Chlorella 
in Figs. 8 and 9, respectively. By contrast, a nonoscillating approach 
to the steady state is achieved when flow is turned on at the time of 
inoculation with already rapidly growing Chlorella (Fig. 10). 

Otherwise, the approach of a new inoculum to a steady state in the 
chemostat shows strong similarities to the batch culture cycle, with 
a decline in cell size and chlorophyll content as the steady state is 
approached, illustrating further that the lag and stationary phases are 
merely special cases of the physiological differences between organisms 
at different growth rates. 

3. Chemostat Perturbations 

Several examples are shown here of steady state-transient-steady 
state perturbation experiments. Other examples may be found in 
Williams (1965). 
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E 

0 100 4 0 0 500 2 0 0 3 0 0 

Hours 

FIG. 8. New inoculum of Selenastrum in chemostat. Flow is turned on at arrow. 
M/N: average cell volume (in this case measured optically), M: biomass, N: cell num-
ber. Note irregular ( ?) oscillations. 

3 0 0 

Hours 

FIG. 9. New inoculum of Chlorella in chemostat. Flow is turned on at arrow. Note 
large, damped oscillations in cell number compared to uniform behavior of biomass. 
N: cell number, φ: chlorophyll, M: biomass. 

a. Step Function Perturbations. A step function is denned as an 
instantaneous change of a constant parameter to a new constant value. 
I shall show one example of each for step function changes of limiting 
nutrient concentration and of flow rate. 

(i) Nutrient Concentration. A Selenastrum culture is shown in 
Fig. 11 which has been stepped instantaneously from 100 μΜ nitrate 
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FIG. 10. New inoculum of two replicate Chlorella populations in chemostat, starting 
with already rapidly growing cells. Note smoothness of approach to steady state compared 
to Fig. 9. N: cell number, M: biomass, M/N: average cell volume. Subscripts (1,2) identify 
the two populations. 
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FIG. 11. Step function increase of nitrate concentration from 100 to 500 μΜ, for 
Selenastrum in chemostat. Note decreases in cell size and chlorophyll per cell as higher 
nutrient concentration is exhausted, and oscillatory behavior of cell number. 
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to 500 μΜ. This is not an ideal example in that preshift variables other 
than cell number were not measured. The initial and final cell sizes 
and chlorophyll should be identical because the flow rate and hence 
steady state growth rate remain constant throughout. Nevertheless, 
we can follow the response after the cells have increased size and chloro-
phyll content because of higher nutrient level. All three variables increase 
to new steady state standing crop values in response to the higher input 
nutrient concentrations. As the growth rate decreases to the steady 
state value, cell size and chlorophyll decline accordingly to values 
which should be identical to the initial conditions. 

(ii) Flow Rate, In contrast to the above, a step function change in 
flow rate sets a new steady state growth rate, and hence leads to new 
cell size and chlorophyll contents. Except for cell number, changes in 
standing crop values are minimal. An example is shown in Fig. 12 
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FIG. 12. Step function decrease to 50% flow rate for two replicate Chlorella popula-
tions. Notice large change in cell number compared to almost negligible change in 
biomass, causing about a 45% decrease in cell size. 

showing a Chlorella population responding to a halving of flow rate. 
Since cell number increases significantly, and total biomass and chloro-
phyll change little, cell size and chlorophyll content decrease strikingly. 
The increase in cell number is the result of a lag in cell division response; 
cells continue to divide at the same rate as previously, but not being 
washed out as fast, until the new steady state cell number is achieved. 
This is a further example of the dissociation of growth and division 
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control processes. Oscillatory behavior, expecially in cell number, 
is present in both of the above experiments. 

Other examples are in work by Williams (1965); this type of experiment 
corresponds to Caperon's (1969) "first experiment/' measuring cell 
number of Isochrysis. 

b. Square Wave Perturbations. A square wave perturbation is defined 
as an instantaneous shift of a parameter to a new constant value, held for 
a defined period of time (usually short) and then returned to its original 
value. I shall show one example each for square wave changes of flow 
rate and of temperature. 

(i) Flow Rate. An example of a square wave cessation of flow rate is 
shown for Selenastrum in Fig. 13. Cells continue to divide at the same 

8h 

/ 
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*v i /V v V v % —T 

100 300 500 

Hours 

FIG. 13. Square wave cessation of flow rate for one day in a chemostat population 
of Selenastrum. Note constancy of chlorophyll compared to cell number. Dashed line 
is a damped sinusoid curve; discrepancies where maxima should be are the ''notched 
peaks"; see text and Fig. 14. 

rate, but since they are no longer washed out, increase in number. 
Chlorophyll standing crop remains constant, drastically reducing the 
chlorophyll content per cell. Although it is not shown quantitatively, 
cell size became much smaller; there was almost certainly little or no 
change in standing crop biomass. 

When nutrient flow is turned on again, there is a sharp decline in 
cell number, with a corresponding increase in cell size, but no significant 
change in total chlorophyll (visually, this and other cultures look greenest 
at cell number minima). There is an oscillatory return to the original 
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cell number steady state value. This corresponds to Caperon's (1969) 
"second experiment" with Isochrysis, where there are overshoots, but no 
obvious oscillations. 

The dashed line following the cell number trajectory is a damped 
sinusoid; the fit is everywhere excellent except at the maxima which 
show what I have called a "notched peak" (Williams, 1965). Selenastrum 
populations have subpopulations of cells dividing into two and four 
daughter cells (autospores) under the conditions used. Since oscillation of 
cell number implies at least a partial synchrony of cell division, one can 
show that a synchronization of the subpopulations will produce a 
higher harmonic to the fundamental frequency illustrated by the 
dashed line. The effect of this higher harmonic is to produce the "notched 
peak" effect. An example is shown in Fig. 14, and further details of 

Time 

FIG. 14. The combination of two harmonics, representing division synchrony of 
subpopulations producing two and four daughter cells, resulting in the "notched peak" 
effect. Compare with Fig. 13. 

the argument appear in my thesis (Williams, 1965). The argument 
must be regarded as at best semi-quantitative. 

(ii) Temperature. Because of the drastic effects of temperature on 
cell size and other population measures, it is of interest to see the 
effects of a temperature pulse on the population behavior. One example 
is shown in Fig. 15 of a square wave temperature perturbation, admittedly 
accidental, from 22 to 27 C. The unique aspect of this perturbation is 
that, unlike other populations observed, cell number oscillations showed 
no sign of damping out for the almost 300 hr observed after the perturba-
tion. Again qualitatively, cells were very small and very pale at the 
maxima and very large and very green at the minima, indicating much 
less, if any, response of biomass and total chlorophyll. Mr. Blaug is 
just completing an extensive study of temperature effects (1970). In 
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■*> 10 

FIG. 15. Sustained oscillation following a square wave temperature shock to a 
Selenastrum population. 

general, it seems that the effects of temperature perturbation are much 
more persistent than effects of nutrient and flow rate perturbation. 

G. OSCILLATIONS 

A generalization of the above studies is that oscillations occur primarily 
if not exclusively in cell number; biomass and chlorophyll generally 
approach a steady state monotonically. Observed amplitudes of oscillation 
range up to ± 7 5 % of the steady state cell numbers. 

While we might expect a relationship between oscillation amplitude 
and the rate of approach to a steady state, this is not very satisfactory. 
Figure 16 shows the amplitude of initial over- (under) shoot as a function 
of the difference between growth rate and washout rate, i.e., the rate of 
approach. While there is some correlation, it is by no means a precise one. 

On the other hand, there is an excellent and surprising relationship 
between period of oscillation (expressed as fractions of a generation time) 
and rate of approach, shown in Fig. 17. Except for population crashes 
in which cell disintegration occurred (Williams, 1965), the relationship 
is a remarkably precise straight line. This implies that the period of 
oscillation is a constant, regardless of culture conditions, and more 
remarkably, regardless of whether it is Selenastrum or Chlorella. Over all 
experiments, the oscillation period is 62.3 ± 7 . 1 hr. Also remarkable is 
the fact that the period is greater than most generation times. 

I shall attempt to explain this bit of numerology in the following way. 
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FIG . 16. Initial amplitude of oscillation versus rate of approach to a steady state 
for both Chlorella and Selenastrum cell number. O: Chlorella, · : Selenastrum. 
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FIG. 17. Period of oscillation versus rate of approach to steady state. Period is 
expressed per generation time. Constant frequency is implied, unless cells disintegrate 
during extreme population crashes. O: Chlorella, · : Selenastrum. 

Since I have shown cell division and growth to be loosely coupled, 
and since I have shown growth or mass increase to be temporally prior 
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to division response, this implies that there is a time lag in division 
response. 

Hutchinson (1948) and Wangersky and Cunningham (1956, 1957) 
developed a general population model based on an abstract time lag 
built into the logistic equation. Their most complete form of the model 
is (1957) 

dN(t) __ A 
N(t) dt K [K _ N(t _ r ) ] , ( 3 ) 

where K is the steady state number, N(t) and N(t — r) are numbers of 
organisms at times t and t — r, respectively, and A is a specific rate of 
approach to the steady state, which is a complicated form of another 
lag and an age structure, including a density-independent mortality 
term. Since the age structure in A is a linear transformation of the 
microbial age density functions to be developed in the next section, 
and since the washout from a chemostat is a density and age independent 
"mortality," we may accept the validity of the model for chemostat 
purposes. Empirically, the value of A is just the rate of approach 
calculated above (division rate minus washout rate). 

The authors show that when oscillations occur in the above model, 
the oscillation period will be approximately 4.4τ. Thus the time lag 
for these populations will be 62.3/4.4 = τ = 14.1 hr. The minimum 
generation time of both Chlorella and Selenastrum under the conditions 
used is just about 14 hr (Williams, 1965). Thus we conclude tentatively 
that the response lag of a cell is its minimum generation time. Conversely, 
the minimum generation time is a simple expression of the time 
lag under steady state conditions. The response lag may be thus the 
minimum time required for the genome to replicate (Donachie, 1968; 
Donachie et al.y 1968). 

H. CELL SIZE DISTRIBUTIONS 

It is impossible to pick out a cell from a population and measure its 
age. We can, however, measure age-dependent properties of cells: the 
simplest of these is cell size (volume or dry mass). The overall behavior 
of a population is the result of the distributions of ages and sizes of 
cells comprising the population, since chemical composition and 
physiological condition will be functions of age and size. 

In this section I shall show the appearance of size distributions as 
measured by the Coulter Counter (see Section ILA) from steady state 
Chlorella cultures. 

Figure 18 is an example of such distributions from two populations, 
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FIG. 18. Frequency of cells versus cell size for two steady state Chlorella populations. 
Note "plateau" on right of each, and note geometric similarity of the two. 

one with large and the other with small cells. The distributions are 
remarkable in that there is an extensive "plateau" region on the right of 
each distribution. This plateau is absent from size distributions which 
have been reported for other cells (e.g., Kubitschek, 1969; Bell and 
Anderson, 1967; Scherbaum and Rasch, 1957). 

The other feature of the two distributions shown in Fig. 18 is that they 
are remarkably similar in shape, despite the absolute differences in cell 
sizes. Figure 19 shows eight different size distributions from different 
experimental conditions (flow rate, temperature, C02) , all scaled for 
equal means and areas. The similarity of shape is obvious. From the 
similarity of shape we can conclude that there are no differences in 
interdivision cell growth (and hence growth control) under different 
experimental conditions. When I develop the intensive model in a later 
section, I shall show how the size distributions may be accurately 
predicted, and how they allow us to deduce the growth curves of 
individual cells. 

I. PHOTOPERIOD SYNCHRONIZED POPULATION 

Photosynthetic cells have been shown to be easily entrained into 
repetitively synchronous divisions by growing them in a photoperiod 
(Tamiya, 1964; James, 1964; Bernstein, 1960; Howell, et al, 1967). 
I report growth of Selenastrum synchronized by photoperiod in a 
chemostat. 
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Cell volume 

FIG . 19. Eight steady state size distributions from different conditions of growth 
rate, temperature, and COa , normalized for equal means and areas. Numbers at right 
of each are mean cell sizes. Note geometric similarity of all. 

Existence in an open system with a photoperiod is in fact the natural 
state of existence for organisms. At any rate, when cells are synchronized, 
they must be all approximately the same age at the same time, and the 
sizes of cells should give us a direct measure of interdivision growth 
patterns. 

Figure 20 shows the approach of Selenastrum to a steady state of 
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FIG. 20. Photoperiod entrained growth and division synchrony in a chemostat 
culture of Selenastrum. Here V is modal cell volume for D = 2 cells; see Fig. 21. 

synchronous oscillation. Illumination was on a 16-hr light: 8-hr dark 
cycle. Unfortunately, this experiment was plagued by use of a highly 
erratic piston pump rather than the usual precise peristaltic pump. 
Hence the oscillations of cell number are not as uniform as might have 
been otherwise. But cell growth and division, as represented by the 
modal cell volumes in the size distributions, behaves in precisely periodic 
fashion. 

Figure 21 shows a typical sequence of cell size distributions from 
neonatal to ripe to neonatal cells, and also shows a non-synchronous size 
distribution for comparison. During division, we can resolve two modes, 
representing the large ripe cells and the small neonatal cells just being 
formed. Apparent growth of cells seems to vary between approximately 
exponential and approximately linear, probably because of the erratic 
pumping of nutrient. Under these conditions of light entrainment, 
we can clearly confirm the existence of subpopulations of cells dividing 
into two and four daughters, represented by the distribution peaks. 

J. SUMMARY OF EXPERIMENTAL STUDIES 

Methodology and results are reported from studies on the growth 
dynamics of Chlorella and Selenastrum in (usually) precisely controlled 
chemostat cultures. Populations were accurately assayed for cell number, 
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Cell volume (Coulter units) 

FIG. 21. Partial sequence of Selenastrum size distributions over one cycle of syn-
chronous growth (bottom to top). Dashed lines follow modes of cells dividing into two 
(D = 2) and four (D = 4) daughter cells. Steady state size distribution at top for com-
parison. 

cell size and size distributions, chlorophyll, and (less accurately) unused 
limiting nutrient (nitrate). 

Steady state regulation of all population variables was quite precise 
over periods of less than 15 generations (doubling times). Coefficients of 
variation were as low as 0.0175. The small steady state fluctuations in 
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cell number are nonrandom, probably reflecting the discrete nature of 
the cell division cycle, and a loose coupling of cell division to the cell 
growth process. Total biomass and chlorophyll variabilities were also 
small, but generally random. 

Over longer periods there were occasional upward or downward trends, 
which remain unexplained. A trend in one population variable was 
unrelated to the presence or absence of a trend in any other variable in 
the same population. All trends were less than 1 % per generation. 

Not only population size but cellular characteristics are functions 
of steady state turnover rates. Population numbers and biomass decline 
with increasing flow rates, as predicted by the simple chemostat theory. 
But they do so with very different slopes, contrary to the theory. Conse-
quently, average cell size is a positively accelerating, increasing function 
of specific growth rate. Cell size changes represent the uncoupling 
of cell growth and division processes, and larger cells are the result of 
more synthetic machinery at higher growth rates. 

Completely contrary to the basic theory is the increase of total popula-
tion chlorophyll with increasing growth rate; while numbers and 
biomass decline, chlorophyll increases. Extrapolation to zero growth rate 
partitions the chlorophyll into that required for maintenance and that 
required for growth. 

A temperature increase of 3 C causes a doubling of steady state cell 
number, but no significant change in total biomass or chlorophyll. 
Cell size is thus halved over only a 3 C range. 

Elevated C 0 2 causes more than a 30% decrease in cell number and 
total chlorophyll but no change in total biomass. Larger cells are not 
the result of accumulation of carbon compounds at high C 0 2 levels. 

The unused limiting nutrient concentration is 20-100 times lower 
than that predicted by the simple chemostat theory. This is explained by 
accumulation of cellular metabolite pools. 

Transient population behavior was studied under conditions of batch 
culture, new chemostat inocula, and perturbations of steady state 
chemostats. Generally, biomass and chlorophyll appear critically damped, 
approaching a steady state monotonically, while cell number can oscillate 
violently under certain conditions. The transient data indicate a loose 
coupling between growth and division, and a time lag between response 
of mass growth and cell division. The oscillation period is a constant, 
indicating a division time lag which is equal to the minimum generation 
time. 

Cell size distributions are presented which differ from most previous 
observations in the presence of a large "plateau" on the right side. 
The distributions are geometrically similar, regardless of cell size or 
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environmental condition, indicating a constancy in the cell control and 
growth processes. 

Preliminary results of photoperiod synchronized populations are 
presented for the open system chemostat, and its relevance to natural 
systems emphasized. 

IIL The Model for Extensive Properties 

In this section and the next I develop two model systems, one devoted 
to a population's extensive properties, the other to its intensive properties. 
Although the terms ''extensive'' and "intensive" do not have here 
exactly their usual physical definitions, the spirit is identical. Extensive 
properties refer to overall measures of population size, such as numbers, 
biomass, and amount of nutrient available, as well as derived measures 
such as average mass per cell. Intensive properties refer to frequency 
distributions of age, size, and chemical components within a given 
population. Both approaches are based on my conviction that a knowledge 
of physiological and reproductive behavior in the individual allows us 
simply to deduce the behavior of the population. 

Qualitatively, many of the experimental observations reported above 
are not unique to green algae; most have been reported for at least one 
other organism. I have argued elsewhere (Williams, 1967) that there are 
a very large number of dynamical features universal to all cell popula-
tions, whether they be bacteria, algae, protozoa, or even mammalian 
cells in culture. Through elucidation of these universal features, it is 
my hope that we can approach the fundamental dynamical principles of 
populations. 

Thus the models are broadly based, and I have consciously attempted 
to avoid reference to details concerning any particular taxonomic group. 
I begin with the model for extensive properties. 

Much of the extensive model is already published, but with a cell-
biological emphasis (Williams, 1967). I repeat it here for ecological 
emphasis, and greater accessibility to ecologists. Some new predictions 
have been derived, which are included here. 

As a basis against which to test the population model, I list what I 
believe is a minimal set of universal features of microbial population 
behavior: 

(i) "lag phase," during which biomass increases, but numbers 
do not; 

(ii) an approximately "exponential phase," during which all popu-
lation variables increase at about the same rate; 
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(iii) "stationary phase," during which the population no longer 
increases, but remains viable at a minimum cell size; 

(iv) greater cell size at higher specific growth rates, i.e., at higher 
nutrient levels; 

(v) different chemical composition at different growth rates and 
nutrient levels; especially, higher contents of synthetic machinery at 
higher growth rates; 

(vi) absence of lag phase when a population is started with already 
rapidly growing cells; 

(vii) ability of a population to increase in number after the removal 
of all nutrients; ability of starved cells to absorb nutrient for use in 
division at a later time; 

(viii) differences in response lag of different population variables 
following an environmental change; a temporal precedence of biomass 
response over number response; 

(ix) overall shapes of population growth and response curves, 
measuring more than one variable, and under various conditions; 

(x) positive sister-sister cell correlations in size and generation 
time; 

(xi) environmentally entrained population growth and reproductive 
synchrony; 

(xii) cell and population changes as a function of temperature. 
I shall present partial documentation for the ubiquity of these 

microbial population features as I proceed. I believe also that most 
or all of these principles can be applied to populations of higher 
organisms with little or no modification except changes in wording. 

I begin with the notion of a cell, and derive the population behavior 
from it. 

A. GENERAL MODEL OF A CELL 

We start with the obvious functional differences between the growth 
and replicative processes, to postulate the existence of two separately 
measurable portions of the cell, one for each process. Hence there is 
one fundamental assumption: The cell comprises two basic portions y 

a synthetic portion (s) and a structural!genetic portion (n). Stipulative 
assumptions are: 

(i) The synthetic portion (s) increases by uptake of externally 
available nutrient (c); 

(ii) The structural/genetic portion (n) increases in turn from 
materials in the synthetic portion; 

(iii) The total cell mass m = s + n. 
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An important stipulation is: 

(iv) cell division into D equal daughter cells occurs if and only if 
the n-portion has become D times its initial size. 

For most cells, D = 2 and division will occur when the w-portion has 
doubled; for algae such as studied above, D may be 2, 4, 8,..., depending 
on environmental conditions (Fritsch, 1961 ; Morimura, 1959). 

Since the necessary and sufficient condition for cell division is a 
D-iold increase of n, it follows that the size of the s-portion, and hence 
the overall size of the cell at division, is not uniquely determined. 
Size differences between cells are determined by variations in s which 
will be a function of nutrient conditions through the cell cycle as well 
as a function of its initial (neonatal) value s0 . If a dividing cell apportions 
each component systematically to its daughter cells, then s0 is a function 
of the state of a cell's immediate ancestor. Therefore, the model provides 
for cell size and composition being determined by both nutrient condi-
tions and ancestral history. 

The synthetic portion may be interpreted as the raw materials and 
synthetic machinery of the cell (soluble pools, precursor material, 
synthetic enzymes, chlorophyll, ribosomes, and other RNA's). The 
structural/genetic portion may be interpreted as the genome along with 
structures and materials necessary to maintain a minimal intact and 
viable cell (cell wall and membranes, any self-replicating cytoplasmic 
inclusions, and the genome (DNA) with its associated structures, 
especially protein). This interpretation is more fully discussed in my 
earlier paper (Williams, 1967). 

It remains only to specify the exact functions by which the cell and 
environmental components interact, consistent with the above assump-
tions. This is done simply by assuming that: 

(v) reaction rates are proportional to quantities present, and are 
bimolecular. 

Hence, 
dsjdt = kxcm — k2sn, (4) 

and 
dn/dt = k2sn. (5) 

Since m = s + n> the overall cell growth rate is 

dmjdt = kxcm. (6) 

Clearly, since cell growth is a function of an external nutrient dynamics 
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yet to be specified, and since overall growth sheds no light on the s-n 
interactions, empirical observation of individual cells will provide little 
or no information with which to test this model. We thus create popula-
tions of such model cells, to provide testable consequences. 

B. POPULATIONS OF MODEL CELLS 

To have a population we must have an environment, and consequently 
we must specify a nutrient dynamics. For present purposes, I shall 
make the simplest possible assumption of an open system environment, 
namely: 

(vi) there is a constant input to the environment of nutrient with 
concentration C0 at rate kQ ; there is a constant output from the environ-
ment of unused nutrient (C) and organisms* at rate k0 . 
This assumption effectively defines a chemostat, but it is also nearly 
true of a stable natural environment (e.g. Silver Springs: Odum, 1957). 
Clearly, the definition of a particular environment is arbitrary, and may 
be done in any manner conforming to experimental or field conditions. 
We use the well-defined chemostat because its simplicity makes it easy 
to study implications of the model. 

To study the population behavior of these model cells, we sum over 
the individual s and n components. Thus, if cell division is approximately 
asynchronous, the extensive variables of the population may be 
represented by the following equations, shown schematically in Fig. 22. 

FIG. 22. Diagrammatic representation 
of population constructed of model cells 
in the assumed open system environment. 
C0 : input nutrient concentration ; C: un-
used nutrient in environment ; S: synthetic 
portion of population ; N: structural/genetic 
portion of population equivalent to cell 
number. 

* Again, output of organisms may correspond to mortality, prédation, or emigration. 
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dC/dt = k0(C0 - C) - kxCM, (7) 
dSjdt = k^CM - k2SN - k0Sy (8) 

and 
dN/dt = k2SN - k0N, (9) 

where 
M = S + N, (10) 

such that the total population's biomass is 

dMjdt = kxCM - k0M, (11) 

where C, S> N, and M are the total population values of c, sy n> and m 
in Eqs. (4)-(6). They are thus the extensive population properties. 

Since cell division is asynchronous, and because of assumption (iv), 
the number of cells in the population will be proportional to N\ if N is 
measured in average cell equivalents, then cell number equals N. 
We shall also measure C and M in equivalent units, avoiding the need 
for conversion factors. 

Clearly the representation of the extensive properties of the population 
in this manner is an (good) approximation based on the law of large 
numbers. But it is important to note that, even if we had perfect 
synchrony (an impossibility), we could never be more than 4 0 % in error 
(see model of intensive properties) when estimating cell number by 
measuring the quantity of N. By contrast, much interesting population 
behavior takes place over several orders of magnitude. 

C. PROPERTIES OF THE MODEL 

The steady state and transient behavior of the extensive population 
has been studied by analog computer (see Williams, 1967, for program), 
and confirmed by digital computer (M. J. Bazin, personal communica-
tion). All of the twelve universal features of microbial populations, and 
most of the experimental results described above, are successfully 
mimicked by the model. 

D. PRECISION OF STEADY STATE 

Questions concerning precision of steady state do not really apply 
to this model. Since the model is asymptotically stable, any wobble 
about a steady state would have been noise in the analog computer. 
Perhaps the few percent variability observed in the experimental cultures 
is noise in the biological computer. 
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E. STEADY STATE DEPENDENCE ON TURNOVER RATE 

For steady state chemostat populations, Eqs. (7)-( l l) yield 
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Most of these steady state relations are shown graphically (Fig. 23) as 

100 K 

FIG. 23. Steady state turnover rate versus numbers, biomass, synthetic material, 
and average cell size for the model population. Compare with Figs. 2 and 3; compare 
chlorophyll (<j>) with S. (See text.) 
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functions of turnover rate (equal to steady state growth rate k0). Average 
cell size (M/N) is a positively accelerating, increasing function of growth 
rate. Biomass (M) and number (N) decline with k0 ; number declines 
more rapidly than biomass. The amount of synthetic portion (S) in the 
population increases, despite the decline of biomass and numbers. The 
higher the growth rate, the greater the fraction of biomass devoted to 
synthetic functions. 

Compare Fig. 23 with Figs. 2 and 3. The experimental results are 
in good agreement with the theoretical. Let us interpret total chlorophyll 
(</>) as part of the synthetic portion (S)\ note that both show a linear 
increase with growth rate. Though not shown graphically, S/M and S/N 
are both positively accelerating, increasing functions of k0 [Eqs. (17) 
and (18)], comparing favorably with φ\Μ and φ/Ν in Fig. 3. 

The only discrepancy between theoretical and experimental is in the 
curvature of the M and N lines. The discrepancy results from there 
being in the model no hyperbolic saturation relation (Monod, 1942; 
Hinshelwood, 1946; Novick and Szilard, 1950; Williams, 1965; Caperon, 
1967, 1968) for nutrient uptake. I have fitted my own data with the 
hyperbolic relation (Williams, 1965), but I have consciously avoided it 
here, in order to visualize most clearly the S-N relationships proposed. 
In a later paper I shall discuss the combined S-N model and hyperbolic 
relation. 

With the exception noted, agreement is good for the Chlorella popula-
tions. Agreement is just as good with bacterial populations (Herbert, 
1959; Maaloe and Kjeldgaard, 1966), where it has been shown that 
increased cell size is due to increased numbers of ribosomes, certainly 
a major part of the cells' synthetic machinery (S). 

F. TEMPERATURE EFFECTS 

The model also predicts cell and population changes as a function 
of temperature. As is reasonable for chemical and biological rate 
constants, we assume the uptake and division rates are functions of 
temperature, each with a temperature optimum. Let kx =f(T) and 
k2 = g( T) with optima at 7\ and T2 , respectively. These are shown 
schematically in Fig. 24. Then, for the chemostat steady states, 

M(T) = C0-7^r, (19) 

N{T) = C»-W)-Wy W 
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and 

N{T)=1+ g(T)[C0 - kJf(T)] - k0 ■ ( 2 1 ) 

These relations predict a dependence of cell size on temperature which 
varies in intensity with turnover rate. Rapidly growing cells will change 
size much more radically than slowly growing cells, as illustrated in 
Fig. 25. 

Temperature 

FIG. 24 FIG. 25 

F IG . 24. Assumption of temperature dependence of biological rate constants in 
model population, each with different optima 7\ and T2 . 

FIG. 25. Average cell size versus temperature at two different turnover rates (k0)f 

under assumption in Fig. 24. Compare with Figs. 4 and 5. Size minimum occurs at 
optimum for cell division (T2). 

For numbers and biomass, the temperature dependence is identical to 
that shown in Fig. 5, where I have schematically represented Blaug's 
results (1970) on Chlorella. Clearly my data in Fig. 4 can be segments of 
such curves. The model predicts that the biomass maximum occurs at 
the temperature optimum for uptake (7\), while the cell size minimum 
occurs at the temperature optimum for division (T2). 

Since batch culture is always transient, simple predictions are not 
as easy. But from Eq. (10), plus Eqs. (25)-(27) in the next section, 

dlnM =f(T) C0 + M0-M 
d\nN g(T) M-N K ] 

Temperature 
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Let R =f(T)lg(T). If dRjdT > 0, cells will be larger at higher temper-
atures. Thus dRjdT = 0 implies cell size independent of temperature, 
while dRjdT < 0 implies smaller cells at higher temperatures. All the 
examples I have found are of the last type, cells smaller at higher 
temperatures (Jollos, 1913; Scherbaum and Loefer, 1964; Morimura, 
1959). Maaloe and Kjeldgaard (1966) claim temperature independence 
for Salmonella cell size, but close examination of the data shows a slight 
decrease at higher temperatures. Aside from Chlorella, Tetrahymena has 
been investigated most extensively (Zeuthen, 1964), showing a curve 
very similar to those in Fig. 25, with a cell size minimum at the division 
optimum. 

Then dRjdT < 0 is a formal statement of the generalization (Zeuthen, 
1964) that cell division processes are more temperature sensitive than 
uptake processes. 

G. BATCH CULTURE 

By setting k0 = 0 in Eqs. (7)-( l l) , we simulate the unrenewed or 
batch culture, a closed system 

dCjdt = -kxCM, (23) 
dSjdt = kxCM - k2SN, (24) 
dNjdt = k2SN, (25) 

and 
dMjdt = kxCM. (26) 

Consider for the moment only biomass and nutrient, and let M0 and 
C0 be their initial values, respectively. Since this is a closed system, 

C = M0 + C0 - M (27) 

at any later time, due to conservation of mass. Substituting into 
Eqs. (23) and (26), 

dMjdt = - dCjdt = ^Μ(Ο0 + M0) - k±M2. (28) 

Integrating, * 

1 + (C0jM0) exp[ -V(C 0 + M0)] ' ^ 

C = C° + M ° (W) 

1 + (M0/C0) expfo^Co + M0)] ' ^Ό) 

and 

* This expression was printed incorrectly in my original paper, and has been quoted 
in its incorrect form (Thrall et al., 1967). 
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Equation (28) is formally identical to the logistic equation, 

dN/dt = rN- (r/K) iV2, (31) 

where r is the so-called "intrinsic rate of increase," and K is the 
stationary value, or "carrying capacity of the environment." Here r 
corresponds to ^(Ο0 + M0), while K corresponds to (C0 + M0). Thus, 
in this model the intrinsic rate of increase is neither a constant nor 
intrinsic; it is a function of nutrient concentration and initial population 
size. The "carrying capacity" is also a function of initial population size. 
I reemphasize a point made by Smith (1952): that the logistic equation 
is conceptually restricted to closed system populations. Note that the 
formal similarity to the logistic holds only for biomass. 

Figure 26 shows the dynamic behavior of the model population in 

100 

v 50 h M 
N 

Time 

FIG. 26. Batch culture growth cycle for model population, showing lag in numbers 
but not biomass, exponential and stationary phases. Note cyclic cell size changes. Compare 
with Figs. 6 and 7; compare chlorophyll (φ) with S. 

batch culture, when inoculated with stationary cells. These are non-
growing cells which are the smallest possible cells still intact and viable 
(set Eqs. (23)-(26) equal to zero with M, N > 0; then C = S = 0 and 
M = N). The growth cycle clearly shows: 

(i) a lag phase with biomass increase, but little increase in numbers; 
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(ii) an approximately exponential phase with biomass and numbers 
increasing; 

(iii) cells largest during exponential phase; 
(iv) since cell size changes as the result of changes in S, the cells' 

"chemical composition,, changes through the cycle; 
(v) biomass becomes stationary before number; 

(vi) a stationary phase as defined above. 

Comparison with the experimental results in Figs. 6 and 7 shows strong 
similarities. Again compare chlorophyll (φ) with S> where the exponential 
decline in φ is simulated by the asymptotic approach of S to 0. These 
features are typical of virtually all kinds of cells in batch culture (Hershey 
and Bronfenbrenner, 1938; Maaloe and Kjeldgaard, 1966; Scherbaum, 
1956; Harris, 1964). 

Again we lose exact detail in the shape of the curve because there is no 
hyperbolic nutrient uptake term present (see discussion in Section III.E). 

Inoculation of a culture with already rapidly growing cells (M/N large) 
reduces or eliminates the lag phase. This is illustrated in Fig. 27, where 
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FIG. 27. Semilog plot of initial growth of model populations started with (a) stationary 
cells (M0/N0 = 1), and (b) rapidly growing cells (M0/N0 = 4). Curves spaced arbitrarily 
on ordinate. 

the initial phases of population growth are shown for a stationary and 
a rapidly growing inoculum. Although the lag in the stationary inoculum 
is not perfect (dNjdt = 0), neither is it experimentally in Fig. 6. 



3 . DYNAMICS OF MICROBIAL POPULATIONS 2 4 1 

It is a common observation that cells can continue to divide once 
or twice after having been removed from all nutrient. This means 
essentially that division can occur from utilization of nutrient absorbed 
at an earlier time. Similar experiments have shown that starved cells 
can rapidly absorb nutrient for use in division at a later time (Ketchum, 
1939). Figure 28 shows a simulation of nutrient removal from a growing 
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FIG. 28. Population's nutrient removed at vertical broken line; note continued 
increase in cell number. 

population. In the absence of nutrient no further biomass increase 
occurs, but cells continue to divide, yielding a final fourfold increase in 
numbers. This may be thought of as an abrupt version of what happens 
when organisms exhaust their nutrient (cf. Fig. 26): biomass no longer 
increases but cell division continues, until internal synthetic pools are 
exhausted. 

H. CHEMOSTAT TRANSIENTS 

The behavior of a new inoculum in the chemostat is simulated in 
Fig. 29, starting from a stationary inoculum. Note the small but definite 
initial decrease in cell number (this is confirmed by Bazin's more precise 
digital simulation). Recall the discussion in Section II.F.2 concerning 
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FIG. 29. Approach to chemostat steady state of new inoculum of a model population. 
Compare with Fig. 10. 

the difficulties of starting chemostat cultures with flow on. Minor 
instabilities in the analog computer did in fact cause a few similar 
computer runs to go to extinction during the initial phases. 

Cell size becomes very large as the population increases toward its 
steady state, then declines into its appropriate steady state value. Again 
biomass reaches its steady state much sooner than cell number. Essen-
tially, the features shown here are similar to those shown for batch 
culture, except that the population terminates in an open system steady 
state. This simulation corresponds most closely to the experimental 
results shown in Fig. 10, where similar features will be found. 

Step function changes are illustrated in Fig. 30, where flow rate is 
reduced to 2 5 % of its original steady state value. Again we see a lag 
in the response of population numbers: cell division continues at 
essentially the previous rate until the new steady state cell size and 
composition are reached. Again biomass responds more readily and 
reaches a steady state sooner than number. Although this is a more 
extreme shift than that shown in Fig. 12, the similarities are clear, 
except for the oscillatory behavior of the experimental population 
numbers. 

An example of a square wave cessation of flow rate is shown in Fig. 31. 
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FIG. 30. Step function decrease to 25% turnover rate for model population in 
chemostat. Corresponds to "shift down" experiment in batch culture. Note relatively 
larger change in cell number than in biomass, causing decrease in cell size. Compare 
with Fig. 12. 

M 
N 

Time 

FIG. 31. Square wave cessation of flow rate for a model population in chemostat. 
Compare with Fig. 13 ; note absence of oscillation in model population. 
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Although the overall behavior is similar to that shown in Fig. 13, clearly 
there is a large discrepancy in oscillatory behavior. 

These transient experiments are the chemostat equivalents of the 
bacterial batch culture "shift" and "double shift" experiments done by 
Maaloe and Kjeldgaard (1966). Translated to a batch culture condition, 
the above transients correspond well to their results. 

I. ENVIRONMENTALLY ENTRAINED SYNCHRONY 

The extensive model was by no means designed to be concerned with 
questions concerning synchronous growth and division, since synchrony 
involves considerations of age structure not mentioned in the model. 

It is of interest, therefore, that under certain conditions the model does 
predict synchronous behavior somewhat resembling that observed 
experimentally. 

To simulate the photoperiod-induced synchrony described above, 
we mimic the dark period by setting kx = 0 for about 40 % of a generation 
time. The population is otherwise identical to that shown in Fig. 29. 
(Although nitrates and phosphates have been shown to be taken up in 
the dark (Ketchum, 1939), overall growth effectively ceases in inorganic 
medium, as shown by the above experiments (and, e.g., Cook, 1961); 
hence we are justified to a first approximation in simulating darkness 
by kx = 0.) 

The results are shown in Fig. 32. (I am most grateful to M. J. Bazin 

FIG. 32. Simulation of photoperiod-induced growth and division synchrony in a 
model population. Compare with Fig. 20. 

for these digital computer results.) The biomass and cell size behavior 
are reasonable approximations of those observed experimentally, but 
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cell number behavior is inferior: although the phasing is approximately 
correct (number maxima in dark period), the sharpness and amplitude of 
oscillation are poor compared to those observed experimentally (Fig. 20; 
Cook, 1961; Morimura, 1959). Since it has been shown that light 
inhibits the process of cell division (Sorokin, 1960; Tamiya, 1964), 
we could realistically improve the synchrony by depressing the value 
of k2 during the light period. This latter approach seems for now to be 
forced and artificial, however. 

Pulsing of nutrient gives similar results, resembling chemostat experi-
ments by Goodwin (1969) and Hansche (1969), pulsing phosphate to 
bacteria, and glucose to yeast, respectively. Figure 32 is very similar to 
Goodwin's results. 

Although the degree of realism achieved in simulating synchrony 
is not good, it seems enticing that some of the basic dynamics of 
synchronous populations can be mimicked without introducing an age 
structure. 

J. GENERATION T I M E CORRELATIONS 

Without developing a stochastic model to pursue cell generation time 
correlations, we simply note in passing that the model predicts such 
correlations. 

Since the initial values of the synthetic portions of neonatal cells 
(̂ ο,ι » *ο,2 >···> SO,D) a r e by definition each (l/D) times the value of s 
in the ripe mother cell, we see that a large mother cell will endow each of 
its daughters with a large ^-portion, while a small mother cell will 
endow each of its daughters with a small s-portion. 

The initial growth rates of the w-portion are functions of the initial 
ί-portion, dnQjdt = k2s0n0 . Other things equal, larger s0 will give the 
w-portion a head start on its D-fold maturation growth. Hence n-portions 
with larger s0 will be D times larger in a shorter time, i.e., will have 
shorter generation times. Thus there will be a positive sister-sister 
correlation in generation times. 

Positive sister-sister generation time correlations have been observed 
several times (e.g., Powell, 1958; Kubitschek, 1966); generation time 
correlation with initial size is partly confirming, partly not (Kubitschek, 
1966). 

There is no relation specified between mother and daughter cell 
generation times, since we have not specified the time course by which 
the ripe mother cell accumulated a large or small s-portion. Experi-
mentally, there is usually no mother-daughter correlation. 
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K. DISCUSSION AND CRITIQUE 

I have attempted to show that a number of seemingly unconnected 
but universal features of microbial population dynamics can be predicted, 
and hence "explained," by one new, simple but obvious, postulate 
concerning the nutritive (s) and reproductive (n) functions of a cell. 
I have tried to maximize simplicity throughout to gain breadth. Qualita-
tively, most of the features of the model are insensitive to the exact 
way in which the s-n interaction kinetics are specified. The kinetics, 
as well as the environmental postulate (chemostat), are the simplest I 
can think of to explore the consequences of the model. There seem to be 
a large number of testable consequences, such that experiments can be 
done to provide future modification or rejection of the model. It has the 
desirable property of anacalyptic theories: vulnerability. It is therefore 
more important to explore what the model cannot do. 

First, the model in its present form cannot account for any of the 
oscillatory behavior I have observed in the chemostat (except under 
photoperiod entrainment). The model does produce transient over-
shooting, but it is non-oscillatory. Finn and Wilson (1959) and Droop 
(1966) have also reported some oscillatory behavior in the chemostat, 
particularly following large, sudden, environmental changes. Since 
oscillation in numbers in the chemostat implies a division synchrony, 
it is likely that an age structure will have to be introduced in order to 
simulate realistically the observed oscillations in cell number. I make 
some attempts in this direction in the next section. 

Second, as I have mentioned, the model does not take account of 
saturation conditions leading to a maximum growth rate. I shall discuss 
this in a later paper, where I shall show that the usual Michaelis-Menten 
type rectangular hyperbola is inappropriate except for batch culture. 

Third, I cannot account for the observed very low nutrient concentra-
tions with the model, although its explanation by intracellular pools is 
consistent with the modeFs fundamental assumption. It is not clear how 
universal my very low nutrient concentrations, or Caperon's (1969) 
nitrate constancy at different growth rates, may be. 

Fourth, the model cannot account for some of the anomalous results 
obtained at very high or very low flow rates (e.g. Williams, 1965; 
Jannasch, 1967; Herbert, 1959). 

Fifth, the model cannot account for the observed C 0 2 effects or 
effects such as autoinhibition by exometabolites, simply because there 
have been no extra variables introduced to cover such effects. 

Other shortcomings, of more cell-biological than ecological relevance, 
are discussed in the original paper. 
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Finally, I have not fitted the model statistically to the data; I feel it is 
premature, and a good fit might be misleading. To quote A. J. Lotka: 

It must be remembered that the mathematical method is concerned, 
not only, and indeed not primarily, with the calculation of numbers, 
but also, and more particularly, with the establishment of relations 
between magnitudes (Lotka, 1925). 

IV* The Model for Intensive Properties 

I shall first explore some aspects of the age distributions within 
microbial populations, and then explore the implications of age distribu-
tion with respect to age-dependent cell properties, such as size, chemical 
composition, etc. 

Although Lotka investigated age distributions of populations in 
general in 1911 (see 1925), much of the recent activity has been in 
microbiological research, some highly abstract (e.g., Fredrickson et al., 
1967; Trucco, 1965), and some devoted to experimental findings (Collins 
and Richmond, 1962; Kubitschek, 1969; Scherbaum and Rasch, 1957; 
Harvey et al., 1967). Lotka showed that the age distribution of a popula-
tion is stable in the face of perturbations, if mortality and fecundity are 
time independent. He thus tended to dismiss age structure as having 
no profound effect on population growth. 

Perhaps we are more accustomed today to think of rapidly changing 
environments: daily changes in light, temperature, etc., for micro-
organisms, as well as medical and nutritional advances in longevity, 
pollution, etc., for human populations. At any rate a population's age 
structure seems increasingly important for understanding its dynamics; 
I want to emphasize that age structure cannot be dismissed in the study 
of microbial populations. I hope the microbial populations may serve 
as a model for higher organisms. Many of the results that I present 
here are not new, but I want to present derivations which I have tried 
to develop for their intuitive appeal in the classroom, as well as to 
provide a framework for the new aspects to be presented. For now I 
restrict myself to the steady state (equal to constant specific growth 
rate), for that is currently where the best data occur for testing. The 
most rigorous formulation, suitable for transient analysis, is in the 
work by Fredrickson, et al. (1967); to my knowledge, it has not been 
applied to experimental populations. 

A. AGE DENSITY FUNCTION: NOTATION 

I shall use the following notation (most of which will disappear in 
the final formulation): 
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(i) t is clock time; 
(ii) s is cell age (in clock time units, As = At; but s = 0 for a 

neonatal cell); 0 ^ s ^ r; 
(iii) r is cell generation time {not doubling time); 
(iv) D is number of daughter cells produced per cell per generation; 
(v) μ is population specific growth rate (/x = l n f l / τ = 

d In N(t)Idt); 
(vi) N(t) is total number of cells at time t; 

(vii) N(t, s/ds) is number of cells in the age interval s to s + ds at 
time t; 

(viii) n{sjds) is fraction of cells in age interval 5 to s + rfr, 
(ix) d(s) is death rate per cell at age s (or emigration or prédation 

rate); 
(x) o(s) is fraction of neonatal cells surviving until age s; 

(xi) n(s) is age density function, to be derived. 

B. BATCH CULTURE 

We make only one assumption: that we have an exponentially growing 
population of ideal cells. By "ideal" cells I mean cells which divide 
into D daughters at exactly age s = τ. 

Then, 

N(t) = N(0) e»*; dN(t)ldt = μΝ(ί), (32) 

where μ is a constant, and μ = In Ώ\τ. 
Since cells divide into D daughters at age r, 

N(t, Ojds) = (1 - d(r) ds) DN(t -ds,r- dsjds) ; (33) 

there are D times as many neonatal cells (age interval 0 to ds) at time t, 
as there were ripe cells (age interval τ — ds to r) at time t — ds> minus 
the fraction d(r) ds not surviving. 

But since the mother cell "ceases to exist" at division, the net increase 
to the population in that time interval ds has been D daughters minus 
the one lost mother cell 

N(t) -N(t-ds) = (1 - d(s) ds)(D -l)N(t-ds,r- dsjds), (34) 

The total population at t has increased by (D — 1) times the number of 
ripe cells at t — ds, minus the fraction d(s) ds not surviving. 
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Combining Eqs. (33) and (34), 

N(t) - N(t - ds) = [(D - I)ID] N(t, O/ds). (35) 

But by definition, 

N(t) - N(t - ds) = (dN(t)lds) ds, 

and 
[N(t) - N(t - ds)]IN(t) = 1 - e~»ds = μ ds; (36) 

The fractional increase of the population in the time interval ds is simply 
the specific growth rate, and is time independent. Thus, combining 
Eqs. (35) and (36) with definition (viii), 

n(0lds) = N(t, Olds)IN(t) = [D/(D - 1)] μ ds; (37) 

the fraction of neonatal cells in the population is a constant, independent 
of time, and is [D/(D — 1)] times the specific growth rate. This defines 
our essential boundary condition. 

To derive the distribution curve, we return to the number of cells, 
and note that 

N(t + s, sjds) = a(s) N(t, Olds). (38) 

The population of cells at time t + s with age s to s + ds is exactly the 
surviving portion of the population of neonatal cells at time t. 

Since we have shown that n(0/ds) is time independent, 

[N(t + 5, slds)]IN(t) = σ(ί) n(0lds) (39) 

is also time independent. Since euS is also time independent for any 
given sy 

N(t + sy sjds) _ N(t + s, s/ds) 
N(t) e»8 N(t + s) 

= σ(5) n(0/ds) e-»* (40) 

is also time independent. That is, the fraction of cells in any age class 
s to ds is a constant. 

Thus we may write 

n(slds) = a(s) n(0/ds) e~»s. (41) 

Returning to Eq. (37), 

n(slds) = u(s)[DI(D - 1)] μβ~^ ds, (42) 
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for which the corresponding density function is 

n(s) = a(s)[DI(D - 1)] μβ-»*. (43) 

Under conditions of exponential growth, mortality is usually negligible, 
or at least unmeasurable by viable counts. Thus, unless demanded by 
the experimental condition, we let o(s) = 1, and the final age density 
function is 

n(s) = [DI(D - 1)] μβ-»\ 0 5ζ s < τ. (44) 

C. CHEMOSTAT CULTURE 

In a steady state chemostat culture, the population numbers do not 
increase exponentially but remain constant. Thus μ = 0 in Eq. (32). 

But mortality is not negligible in the chemostat, in the form of 
emigration (washout). If the turnover rate of the chemostat is k0 , then 
d(s) = k0 , and is age independent. The fraction of cells surviving the 
washout "mortality" at age s is 

*> = NUo^S) = W^fäs) /o N{t + S' S'dS) 8(S) ώ' (45) 

and substituting k0 for d(s), 

a(s) = exp(— k0s)y (46) 

assuming no other sources of mortality. Since we have a steady state, 
let N(t) = N be time independent. Again we have 

N(t, Olds) = (1 - ko ds) DN(t -dsyr- dsjds), (33') 

by substituting k0 for d(s) in Eq. (33). 
Since cells are washed out at rate k0 , the number of cells born in 

the age interval ds to just replace those lost will be, in order to maintain 
the steady state, 

k0N ds = (1 - k0 ds)(D -l)N(t-ds,T- dsjds)y (47) 

similar to Eq. (34). Combining Eqs. (33') and (47), we have 

ηφ/ds) = [DI(D -l)]k0 ds. (48) 

Substituting Eq. (46) into Eq. (38), 

N(t + i, s/ds) = exp(—V) N(t, 0/ds). (49) 
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Dividing by N> along with definition (viii), 

N(t + s, s Ids) IN = n(0lds) exp(~V)> (50) 

which because of time independence becomes 

n(s\ds) = nififds) exp(—k0s)f (51) 

and with Eq. (48) yields, 

n(slds) = [DI(D - 1)] k0 exp(-k0s) ds, (52) 

whose density function is 

n(s) = [DI(D - 1)] kQ e x p ( - V ) , 0 < s < τ, (53) 

exactly corresponding to the batch culture density function in Eq. (44), 
but with kQ , the washout rate, replacing /z, the batch culture growth rate. 

D. VARIABLE GENERATION TIMES 

Powell (1958) has shown that if there is a distribution of generation 
times within the population, where the probability that a cell will have 
a generation time τ is governed by some function / ( r ) , then the age 
density function will be 

n(s) = 2μβ-»8 ff(r) dr. (54) 
J o 

To complicate things, this unknown distribution f(r) will be truncated 
in a chemostat. 

Since we rarely have information concerning the distribution of 
generation times, and since the measurement of individual cell generation 
times microscopically is of doubtful significance to an entire population, 
I prefer the following to handle the variability in generation times. 

Consider a chemostat in a steady state. Any distribution of generation 
times must be independent of time. Otherwise, a fluctuation of the genera-
tion time distribution would produce a fluctuation in growth rate, 
thus violating the steady state assumption. 

This means that, for every interval of generation time τ to τ + dr, 
there exists a stable subpopulation with that generation time. Let that 
subpopulation be a fraction p{r) of the total population. Each subpopula-
tion will have an age distribution governed by Eq. (52). Remembering 
that the birth rate of cells must equal the washout rate, 

k0 = In D/ry 



252 F. M. WILLIAMS 

and 
nT(slds) = [(D In D)I(D - l)r] exp(-* In D/r), (55) 

giving us explicit dependence on τ. 
Let us introduce the variable representing relative age a. We define 

a = S/TJ such that 0 < a < 1. That is, relative age is measured as a 
fraction of a generation time, and a cell divides at relative age a = 1. 
Since da = dsjr, we can transform Eq. (55) into the relative age distribu-
tion 

nr{ajda) = [(D In D)I(D - 1)] e~al*D da. (56) 

Equation (56) is an age distribution which is independent of generation 
time; it is identical for all populations, regardless of growth rate, and 
hence regardless of generation time. 

Now returning to the chemostat population, the overall relative age 
distribution will be 

r00 
n(a/da) = p(r) nT(a/da) dr. (57) 

* o 

Since nT{ajda) is independent of τ, and since J^ p(r) dr — 1, n(a\dd) = 
nT{ajda), and thus 

n(a\dd) = [(D In D)I(D - 1)] e~a^D da, 0 < a < 1. (58) 

Thus if we consider only relative ages, we do not have to consider the 
distribution of generation times, for it will be eliminated in a steady state 
population. This will be very useful in calculating the size distributions 
in the next sections. 

E. IDEAL SIZE DISTRIBUTIONS 

Consider a population of cells, each of which has an interphase growth 
law governed by some function of relative age f(a). Then, for an 
individual cell, 

m = f(a), m0 < m < Dm0 , (59) 

where m0 is the neonatal cell size and Dm0 is the ripe cell size for cells 
dividing into D daughters. 

If the growth function is monotonically increasing throughout the 
cell cycle, we may readily define the inverse funct ion/ - 1 , 

a=f-\m). (60) 
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(If/ is not monotone, we may piece together monotone segments, giving 
us a set of inverse functions over different age ranges; this does not 
alter the argument.) 

Given an age distribution n(a\da) as in Eq. (58), we want to derive 
the distribution of sizes in a population whose cells grow according to 
Eq. (59). Let h(m\dm) be the fraction of cells in the size interval m to 
m + dm. Using the tautology da = (dajdm) dm, we transform the 
coordinates of the age distribution to those of size 

h(mjdm) — η(/-1(^)) (dajdm) dm, (61) 

or 

h(m\dm) = ^ - L - - ^ - ^ · txp(-f~\m) In D) dm, (62) 

whose corresponding density function is 

«*> = * k ■ ί £ τ · exp(-/_1(,M) ln D)- (63) 

Thus we see that the density function governing cell size distribution 
within a population is exactly the age density function divided by the 
individual celVs growth rate (dm/da). 

Associated with the steady state, there is the notion of balanced growth 
(Maaloe and Kjeldgaard, 1966) which occurs if all components of the 
population increase at the same specific growth rate. That is, numbers, 
biomass, protein, DNA, RNA, etc., all stay in constant proportions. 
There are only two conditions under which balanced growth can obtain: 

(i) a ZMold increase over the cell cycle, and 
(ii) a start from zero in the neonatal cell, and a return to zero by 

the time the cell divides. 

Thus, the density function in Eq. (63) applies to every constituent of 
the population, whether it be a particular chemical, an organelle, or 
the overall cell size. [For case (ii), we will have to piece together at 
least two monotone segments of m = f(a).] 

As examples of ideal size density functions, we consider exponential, 
linear, surface uptake, and half-sinusoid growth models. 

Example 1 

For exponential growth, the exponent must exactly equal the rate of 
increase of the population in order to have steady state balanced growth. 
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Thus 

m = m0e
alnD, dmjda = m In D, (64) 

and 
a = f-\m) = ln(w/wo)/ln D. (65) 

Substituting into Eq. (63), 

he(m) =-- [Dlm(D - 1)] exp(-ln(w/w0)), 
or 

he(m) = Dm0l(D - 1) m2. (66) 

Example 2 

For linear growth, 

m = m0(l + (Z) — 1)Λ), dmjda = w0(Z> — 1), 
and 

a = f-\m) = (m- mQ)jmQ{D - 1). (67) 

Substituting into Eq. (63), we have* 

*ι(«) = MD _ 1)2 exp [- ^φ_χ)[ (68) 

Example 3 

For surface limited uptake by a sphere (or other shape which remains 
geometrically similar throughout its cell cycle), growth rate will be 
proportional to surface area, which is in turn proportional to the § power 
of mass, 

m = m0[(D1^-l)a + l]3, 

dmjda = 3(D1/3 - 1) mà/3m2/3, 

and 

w l / 3 1/3 

* = ^ = 4W»-i) (69) 

* An approximation was used in my original derivation (1965) for linear growth. 
The exact growth expression producing the approximate density function is 
m = m0 exp[(D In D)(l — e~alnD)l{D — 1)], which deviates nowhere from linear by more 
than 0.3% over a cell doubling. 
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The corresponding size density function is 

W = 3(D - l)(Zy/» - 1) mi/»m»/» CXp ί " Β^^Ύ ( ^ ) J> (70) 

which is a curve with intermediate slope between the linear and expo-
nential distributions. 

Example 4 

The last example is somewhat different, concerning a substance that 
is synthesized de novo in the neonatal cell, then decays to zero before 
the cell divides. The pulsed synthesis of a labile enzyme might behave 
this way. We approximate this behavior by the top half of a sine curve. 
Let 

m = sin πα, 0 < a < 1, 
dmjda = π cos πα, 
a — (Ι/π) sin_1(w), 

and 
da = ±dmln(l - τηψ2. (71) 

Note that the expression for a is not single-valued, as shown by the 
± sign for da. We piece together the two monotonie segments of this 
function to yield, 

w \ DlnD 

hv(m) = π(Ό - 1)(1 - w2)1'2 

X exp [ — sin-^m)] + exp Γ—— sin-^w) — In Z)l . (72) 

These growth curves are shown in Fig. 33 for D = 2 cells. The 
corresponding size density functions are shown in Fig. 34. The sinusoidal 
growth function is clearly very different from the others. Note (Fig. 33) 
that the other three, linear, exponential, and surface uptake have nearly 
identical growth curves over a cell doubling; the maximum difference 
is 6 % between exponential and linear over the growth cycle. Clearly 
it would take very good data to resolve these differences. But in Fig. 34, 
we note that there has been a process of amplification, such that there 
is now approximately a 45 % difference between the size density functions 
for linear and exponential growth. 

Thus the indirect method of observing good steady state size distributions 
can provide us with more resolving power to test cell growth theories than 
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0 

Relative age (a) 

FIG. 33. Growth curve examples used in deriving examples of cell size distributions. 
I: exponential growth; II: linear growth; III: surface-limited uptake; IV: pulsed synthesis 
and decay of cell constituent. Note closeness of curves I—III. 

Relative size (m/m0) 

FIG. 34. Ideal size distributions based on growth models shown in Fig. 33. Note 
greater separation and resolution of curves I—III, compared with those in Fig. 33. 
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can direct observation of the cells as they grow. Conversely, knowledge of 
details of individual growth can give us very precise predictions of population 
distributions. 

F. SIZE DISTRIBUTIONS WITH VARIABILITY 

In order to apply the above size distributions, we must account for 
the variabilities in size for cells of a given relative age. We do this 
in the following way: 

Given h(m)f the ideal size density function, we assume that cells 
with an expected size mE will be distributed over other values m according 
to a probability distribution function p(mE , m) such that 

f°° KmE) P(mE ,tn)dm = h{mE), (73) 
J —oo 

where admissible values of mE are 1 ^ mE ^ D. 
Then the new density function with variability, A*(ra), is given by 

CD 

h*(m) = h(mE)p(mE , m) dmE . (74) 
* l 

Note that mE , the expected value, is the variable of integration; we are 
integrating over the contributions to a particular size m by cells smeared 
out from all possible expected values mE . 

G. FITTING DATA 

In order to fit the data to be shown below, we have assumed that 
p(mE , m) is a normal density function with constant coefficient of 
variation. We have assumed normality for want of a better hypothesis; 
we have chosen a constant coefficient of variation because the experi-
mental size distribution data in Fig. 21 from a synchronous population 
shows peaks with widths which are almost exactly proportional to the 
modal size. Although confounded by the presence of two subpopulations 
dividing into two and four daughter cells, the shapes of the distributions 
are not inconsistent with approximate normality, although they may be 
somewhat positively skewed. 

Under this assumption, the size density function with variability in 
Eq. (74) becomes 

(75) 
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where c is the coefficient of variation. While some of these density 
functions may be evaluated analytically, it is more prudent to let a 
reliable computer do the job. As one example, Fig. 35 shows predicted 

2.00-

o in 
M ÎNJ 

Cell size (m) 

o 
y) 

FIG. 35. Theoretical size distributions of exponentially growing cells with seven 
different coefficients of variation: 0, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30, top to bottom. 

size distributions for exponentially growing cells with six different 
coefficients of variation, plus the ideal distribution. 

The data are fitted visually, after normalizing the theoretical and 
experimental distributions for equal areas and equal means. Different 
growth models and coefficients of variation may then be tried. 

Results are shown for the steady state Chlorella populations, the 
experimental results of which were given in Figs. 18 and 19. Recall 
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that there were subpopulations of cells dividing into two and four 
daughter cells. Consequently Fig. 36 has been fitted with a 2 5 % 

16 24 
Cell volume (/i.3) 

FIG. 36. Example of a fit of a theoretical to experimental size distribution for 
Chlorella, under assumption of linear growth (Fig. 33, curve II), coefficient of variation 
0.10, with 75% of population dividing into four, and 25% into two, daughter cells. 
Line is theoretical; points experimental. 

subpopulation with D = 2 daughter cells, plus a 75 % subpopulation 
with D = 4 daughter cells; It was impossible to come anywhere near 
the observed distribution with a hypothesis of exponential growth 
(Williams, 1965). The model used in Fig. 36 is linear growth* and a 
coefficient of variation c = 0.10. Overall, theoretical and observed 
results agree excellently. 

Further, the similarity of the eight distributions shown in Fig. 19, 
each from populations with different growth rates and different mean 
sizes, allows the conclusions that: 

(i) the cell growth function does not change appreciably under 
very different conditions, and 

(ii) there is thus a well-defined relative size (mlm0) for every cell of 
relative age a> regardless of absolute sizes or growth rates. 

Thus, pending further data, we conclude that for all experimental 
conditions of nutrient, growth rate, C 0 2 , and temperature, Chlorella 
grows linearly between divisions. 

To show a somewhat simpler example, I present data from the blue-

Actually the fit shown is the approximation mentioned earlier (p. 254). 
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green alga, Anacystis nidulansy grown in the chemostat by Dr. Bazin. 
Anacystis divides into two daughter cells only. Figure 37 shows how 
even the ideal size distributions may be used for approximate testing. 
Clearly the exponential growth model is superior to the linear one. 
Figure 38 shows the same experimental distribution compared to 
linear and exponential growth models with a coefficient of variation 
c = 0.2. Again the best fit is clearly provided by the exponential growth 
model. 

H. DISCUSSION 

Thus, Chlorella populations comprise D = 2 and D = 4 cells, which 
grow linearly with a coefficient of variation c = 0.10. Anacystis popula-
tions comprise only D = 2 cells, which grow exponentially with a 
coefficient of variation c = 0.20. These results seem less ambiguous 
than we could have gotten by direct measurement of individual cells. 

There is dissent on this last point, however. Koch (1966) and 
Kubitschek (1969), each using derivations different from the one 
presented above, and different from each other, feel that the general 
approach of fitting size distributions is a highly ambiguous one. Their 
derivations, both of which depend on differences between integrals of 
neonatal and ripe cell size distributions, do not seem to provide the 
resolution required to distinguish adequately theoretical distributions 
based on linear versus exponential growth. While we seem to get a clear 
distinction, our method is different [cf. Eqs. (74) and (75)]. Resolution 
of these differences must await a better understanding of the causes 
underlying variability in organisms. 

Ecologically, the relevance of such cell growth studies may lie along 
the following lines: 

First, a knowledge of how an individual organism grows is a necessary 
step in formulating the growth dynamics of a population; indeed, 
that is the central thesis of the theoretical development I have undertaken 
with both models. 

Second, the form of cell growth will have obvious implications for 
the dynamics of nutrient in the environment. We may take Chlorella and 
Anacystis as examples. First, for Chlorella, linear growth implies a 
constant rate of removal of nutrients from the environment over the 
whole cell cycle. This means that the nutrient drain imposed upon the 
environment will be a function of numbers of organisms present, regardless 
of their ages (or sizes). 

On the other hand, the exponential growth of Anacystis implies a 
doubling of the uptake rate over the cell cycle, such that the nutrient 
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Cell volume (m) 

FIG. 37. Example of rough hypothesis testing with ideal size distributions. Data 
(solid line) is from Anacystis chemostat population of Bazin. Dashed line represents 
exponential; dotted line represents linear growth models. Cells divide into two only. 
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FIG. 38. Bazin's Anacystis data (solid line) shown with linear (dotted line) and 
exponential (dashed) growth models, with a coefficient of variation 0.20. 
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drain on the environment may differ by a factor of two, depending on 
ages (or sizes). Nutrient drain will be a function of biomass present, not 
numbers. 

In terms of intraspecific competition in the face of nutrient deficiency, 
all ages of Chlorella cells are equally good competitors with each other. 
On the other hand, older, and hence larger Anacystis will have a 
competitive advantage over younger cells. Everything else being equal, 
we expect that the dynamics of these two populations will be different, 
especially in transient phases. 

I. O N THE PLANKTON PARADOX 

Finally, and perhaps most important ecologically, is the insight that 
these studies can provide into the question of interspecific competition. 
I refer specifically above to what Hutchinson (1961) has so aptly called 
4'The Paradox of the Plankton.'' The question is simply: 

How do we reconcile the competitive exclusion principle with the 
obvious long-term coexistence of very large numbers of species of 
photoautotrophs in a homogeneously dispersed environment, when each 
of these photoautotrophic species has almost exactly the same needs 
in terms of inorganic carbon, nitrogen, phosphorous, and other elements ? 

Hutchinson has suggested (i) the existence of symbiosis or commen-
salism, such as might occur if a vitamin requirer utilized vitamin 
excreted by a synthesizer, (ii) selective prédation on the plankton can 
establish stable, multispecies steady states, (iii) the plankton does not 
exist, being simply the washout from stable chemostatic communities 
in the heterogeneously diverse littoral benthos, and (iv) competition is 
never brought to equilibrium because of rapidly and randomly changing 
conditions. 

I suggest here another mechanism for stable multispecies associations 
in phytoplankton, which seems to me more universally applicable, and 
independent of such details as vitamins and selective predators. The 
mechanism relies on known temporal phasing of cyclic events in the 
cell cycle. 

I begin with a simple illustrative example. Assume: 

(i) two autotrophic species with the same growth requirements 
(nitrate, phosphate, carbon, etc.) 

(ii) each starts the day with a unit biomass M0 . 
(iii) each is just capable of doubling M0 over the course of the 

daylight hours. Thus each will consume exactly the same quantity of 
nutrient over the period of daylight. 
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As seems to be universally true of photoautotrophs (see above), cell 
division is phased to the photoperiod. For this example we assume 
simply that: 

(iv) both species have divided during the night, beginning the 
daylight hours as neonatal cells. 
Finally we assume: 

(v) one species (L) grows linearly over its cell cycle, while the 
other species (E) grows exponentially. 

Since growth is just uptake of nutrient from the environment, we define 
the nutrient demand on the environment as 

dMjdt = -dC\dt\ (76) 

evidently the total nutrient demand of the species E and L together is 

-dCE+L/dt = dMJdt + dMEldt. (77) 

Since each species is just capable of a doubling over the daylight period 
of length T, 

dMJdt = MJT, 

and 
dME\dt = (In 2IT)ME = (In 2/T)M0 exp[* In 2/T]. (78) 

[We have seen above that there will be at most a 6 % difference in these 
curves over a doubling (Fig. 33).] 

The result is a precise phasing of the nutrient demand on the environ-
ment over the course of the day length T. In the early morning, at t & 0 
and ML = ME = M0 the ratios of the nutrient demands are 

dML/dME = 1/ln 2 ^ 1.44; (79) 

Near midday, at t & 0.53 Γ, the ratio will be 

dMLjdME = 1. (80) 

In the evening the ratio will be reversed; at t & T, 

dMJdME = 1/2 In 2 ^ 0.72. (81) 

Thus, we see that in the morning the linearly growing species (L) has a 
4 4 % competitive advantage over the exponentially growing species, 
while in the evening the exponentially growing species (E) has a 3 9 % 
competitive advantage. 
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The regular cyclic changes of nutrient demands, and hence competitive 
advantages, over the course of one day, would seem to ensure a stable 
two-species system. 

We now ask: What would be the optimal strategy for an invader (F) 
with similar nutrient requirements, given the impossibility of displacing 
either E or L ? The strategy is clearly for the invader F to maximize 
his nutrient demand when the existing total nutrient demand is minimal. 
Since the total nutrient demand of E and L is 

<*CE+L dML dME M0 In 2 / * In 2 \ 

~ ~ΊΓ = ~άΓ + 1Γ^^τ+Ύ-^ \~Ύ~Υ (82) 

it is clear that —dCE+Lldt is a minimum at t = 0. 
Thus the invader F will maximize his ability to survive by growing 

most rapidly in the early morning, when the combined nutrient demand 
of the existing species is at a minimum. 

With this simple example I hope I have demonstrated adequately 
the principle involved, the substance of which is: that the one inescapable 
periodic regularity in the environment, photoperiod, plus the demonstrated 
phasing of cell cycles to this photoperiod, will allow subtle differences in cell 
growth behavior to establish stable, multispecies equilibria by means of 
regular, cyclic changes in competitive advantage. 

Applying this principle over an evolutionary time course, we predict 
that there will develop: 

(i) differences in phasing to the photoperiod. [This has occurred 
(Hastings and Sweeney, 1964).] 

(ii) more and more exotic differences in details of the cell cycle 
for these otherwise "simple" cellular organisms. (Ask any algologist.) 

(iii) greater diversity in cell cycle details for organisms in the 
homogeneously diverse planktonic environment than in a heterogeneous 
environment such as soil. (I do not know if this is true.) 

V. General Summary 

I have tried to develop a rationale for the study of basic problems in 
population dynamics via the use of microbial populations. I describe 
both experimental and theoretical aspects of the study. 

Experiments are reported on the chemostat culture of Chlorella and 
Selenastrum. The state of a population cannot be characterized by 
numbers or biomass alone. Differences in behavior of several population 
measures, both in steady state and transient experiments, are emphasized. 
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The looseness of coupling of the growth and replicative processes is 
evidenced repeatedly in the results. 

A cell model is developed, based on a separation of the growth (uptake) 
and replicative properties of a cell. The population consequences of 
this cell model are deduced. Most of the behavior of the experimental 
populations can be predicted from the model. This behavior is not 
restricted to green algae, but seems universally true of all cell populations 
from bacterial to mammalian cell cultures. 

Models are developed for the distribution of properties within popula-
tions: age structure, size distributions, etc. The models are fitted to 
experimental size distribution data. The consequences of the conclusions 
drawn are explored. A possible solution to the "paradox of the plankton" 
is discussed. 
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L Introduction 

During the past fifteen years there has been an explosive increase 
of interest in measuring, understanding, and predicting energy flow 
through ecological systems. This interest derives from the hope that 
knowledge of energy flow will help us comprehend biological structure 
and function at the levels of organism, population, and community. 
We have come to recognize that all living organisms are energy trans-
ducers, and that a great many seemingly unlike biological processes 
can be described and compared in terms of energetic yield and cost. 
Moreover, important questions about the evolution of efficient use by 
organisms of their potential energy supply have been raised by the fact 
that the biosphere as a whole appears to be energy limited (Hairston 
et al.y 1960; Slobodkin et al.y 1967). Yet, in spite of considerable effort 
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269 



270 STEPHEN P. HUBBELL 

to describe the caloric stores and flows associated with diverse biological 
processes, our generalizations have been relatively few in number and 
slow to accumulate. Certainly in large part the slow rate of advancement 
is due to the enormous complexity of the systems with which we are 
dealing. But perhaps some of the difficulty also stems from our approach. 

A frequent problem is that we expect too much of energy considera-
tions: One fairly common view is that much if not all of biology will 
someday be describable in thermodynamic terms. Attempts to reduce 
ecology to thermodynamics have not been notably successful thus far, 
but the usual reason given for their lack of success is the current 
inadequacy of theory in nonequilibrium, steady state thermodynamics. 
Aside from the fact that it is somewhat questionable whether biological 
steady states are commonplace or even exist, it cannot be expected that 
energy considerations alone will ultimately explain biological structure 
and function. Morowitz (1968) concludes that energy flowing through 
a system will tend to "organize" that system, but that the course of 
development and the nature of this organization cannot be predicted. 
Thus, for example, it is difficult to conclude much from thermodynamics 
about the rates of entropy production by ecological systems, except 
perhaps that the rates are not minimal because of the complex feedback 
characteristics of such systems (Slobodkin, 1962). Yet conclusions about 
entropy production in ecological systems are continuing to appear in 
the literature. Note the comment by Margalef (1968, p. 29): "It is 
probably justified to say that any system formed by reproducing and 
interacting organisms must go on to develop a kind of assemblage in 
which the production of entropy per unit of preserved and transmitted 
information is at a minimum." It is not clear from MargaleFs preceding 
or following remarks why this statement is "probably justified." 

The laws of thermodynamics merely define a set of rather broad 
"boundary conditions" within which all natural systems must operate; 
they are necessary but not sufficient conditions for determining the 
actual operation of natural systems. This is a restatement of Polanyi's 
argument (1968). In a natural world which can be viewed hierarchically, 
laws governing events at one level must be consistent with all laws at 
lower levels of organization. The lower-level laws establish bounds on 
the possible for higher levels; but it is the higher-level laws which 
restrict the possible to the "actual," a narrower set of possibilities. 
Thus, it is unrealistic to expect the laws of thermodynamics ever to be 
sufficient to explain the organization and function of biological systems. 
At the same time, no correct law about biological systems may violate 
thermodynamic principles. 

A second problem with our approach to ecological bioenergetics is 
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that, for the most part, we have seriously underestimated the importance 
of a basic characteristic of life: control. This concept is almost entirely 
missing from the flow diagrams developed by the Odums (1959, 1960, 
1963, 1968) and widely used by other ecologists to describe energy flow 
through organisms, populations, and communities. The historical 
importance of these diagrams is clear: they have been instrumental in 
focusing the attention of ecologists on whole-ecosystem energy relation-
ships. Moreover, they continue to serve the useful purpose of conveni-
ently summarizing gross energy partitioning within different types of 
ecosystems. 

The value of such flow diagrams for research and predictive purposes, 
however, seems quite limited. As Slobodkin (1962) put it, they violate 
common sense. The dominant impression they give is of a series of 
conveyor belts rushing along until they meet a set of strategically placed 
knife edges, which then split each belt into a series of narrower belts of 
varying widths. Odum (1960) reinforces this impression when he 
intentionally eliminates the idea of control from his thinking. According 
to Slobodkin (1962) he states, "The validity of this application may be 
recognized when one breaks away from the habit of thinking that a fish, 
or bear, etc., takes food and thinks instead that accumulated food by 
its concentration practically forces food through the consumers.'' If this 
view is correct, then a consumer is nothing more than a passive, open-
loop, energy-partitioning device that is dealt an input of energy to 
divide among a series of physiological processes. 

But this is not what an animal or plant is doing. An organism is an 
active agent which takes in, or attempts to take in, potential energy 
to meet some internally defined "need." To us, animals are generally 
more obvious than plants in their efforts to control energy intake and 
expenditure. Yet plants, while unable to turn the sun on and off, have a 
high degree of control over the rate at which they fix radiant energy 
photosynthetically, exerted on a short-term basis through a variety of 
biochemical mechanisms and phototropic responses, and on a long-term 
basis through vegetative growth plasticity. 

In my view the prevalent treatment of organisms as passive agents 
has hindered further development in the field of ecological bioenergetics 
by producing few significant questions about what living systems are 
really doing with energy. Such a treatment ignores perhaps the most 
fundamental characteristic of life: the capacity of living organisms to 
regulate, within the bounds established by the laws of thermodynamics, 
the rates at which they accumulate and dissipate energy. No other 
naturally occurring set of physicochemical systems has this remarkable 
property. 
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Once this fact is seriously taken into account the approach to energy 
flow in ecology is, as it were, turned inside out. One is no longer on 
the outside of an organism, energy input in hand, looking in to see 
how it will be partitioned physiologically. Instead, one is inside the 
organism, aware of its energy requirements, and looking outside at 
the varying potential energy supply. Now one can ask more than simply 
how an organism partitions a given input of energy. The dominant 
question is now how the organism, faced with a varying energy supply 
and a fluctuating physical environment, regulates energy intake and 
expenditure in an attempt to maintain energetic and physiological 
homeostasis. It should be emphasized that this change in approach to 
ecological bioenergetics does not mean that we lose interest in how 
organisms partition energy. Indeed, it is the newly reexamined dynamic 
characteristics of energy partitioning, as organisms adapt physiologically 
and behaviorally to a changing environment, which are so interesting. 

It should not be inferred from this discussion that energy regulation 
is the only important business of organisms. Certainly reproduction 
is equally important. Moreover, it is not all clear that energy regulation 
is even a small part of the business of populations and communities, 
as distinct from the business of individuals. Nevertheless, the energy-
regulating abilities of individual organisms have a profound effect on, 
and response to, the temporal and spatial patterns and nature of energy 
flow through populations and communities. Consequently, energy regula-
tion cannot be safely ignored in any study of ecological bioenergetics, 
particularly in studies of organisms or populations. 

I shall be concerned here with how energy control is accomplished 
dynamically in individual animals, and more particularly in the terrestrial 
isopod, Armadillidium vulgäre Latr. Before developing this topic, 
however, I will briefly discuss systems analysis and a philosophy on 
modeling. 

IL Systems Analysis and Model Building 

To understand and have the power to predict quantitatively the 
energy dynamics of an animal's response to its environment and to its 
own nutritional condition, we need the conceptual framework and 
mathematical tools of the systems analysis approach. Systems analysis 
means many different things among ecologists. For some it simply means 
any organized systematic research in ecology. In this discussion, however, 
the term refers to the branch of applied mathematics and engineering 
sciences of the same name. I shall only touch briefly on its logical 
foundations and on my prejudices concerning methodology, since this 
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is not the place for a lengthy discussion of systems analysis. For this, 
the reader is referred to the introductory chapters of this book, especially 
Chapter 2, and to texts such as Milsum (1966), Schwarz and Freidland 
(1965), and Elgerd (1967). 

Fundamental to systems analysis is the assumption that natural 
processes are organized in a hierarchy of complexity, a notion familiar 
to biologists in the ordered sequence: cell, organ, individual, population, 
and community. Each process or system in the hierarchy is assumed 
to be the combined result of the actions and interactions of a set of 
simpler processes. No system is isolated, of course; every system interacts 
with others, both on its own level of organization, and on higher and 
lower levels as well. Thus, to an extent, system boundaries are arbitrary 
and a matter of convenience. The interaction with other systems consti-
tutes the input and output of a particular system, as matter, energy, 
or information. 

The internal dynamics of a system are characterized mathematically 
by the relationship between output and input; to understand the dynamic 
behavior of a system, then, we must thoroughly analyze its input-output 
relationships. Once these are known, it remains to determine the 
dynamics of the intervening system component ("system identification,,). 
This type of problem is more difficult than the "forward-analysis" 
problem typically encountered in engineering, in which the output 
must be calculated from the input and system dynamics, which are given. 

As biologists, we commonly tend to think of input-output relationships 
in terms of statistical correlation, and build regression models to explain 
the organization of biological systems. We generally recognize the 
problems associated with causal inference from regression models, 
as well as the fact that physical and biological systems do not work on 
the basis of relationship by correlation. It is less generally recognized, 
however, that such systems operate on the basis of the relationships 
between quantities ("storages" or "levels") and transfers ("flows") of 
matter and energy. In part we have relied upon regression models because 
we have not known enough about most biological systems to build 
storage-and-flows models, but also in part because we are used to 
thinking in terms of relationship and not in terms of process. 

The methodology of systems analysis embodies a close feedback 
between theory and experiment, as Holling (1966a, b) has emphasized. 
This feedback distinguishes it from the almost unguided empiricism and 
also from the nearly "pure" deductive reasoning evident in some of 
the ecological literature. The study of a biological system usually begins 
with the construction of a block (flow) diagram, a graphic model in 
which the storages and flows associated with known or suspected 
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components of the system and their interactions are identified. Initially, 
the object is to develop a qualitative or semiquantitative overview of 
the system, often merely in terms of educated first guesses. This graphic 
model provides the logical framework upon which to build experiments 
designed to select one of several alternate model formulations. As 
results from experiments become available, modifications can be made 
in the flow diagram, and also in the design of future experiments. 
Gradually a quantitative model is developed to replace the qualitative 
one, as transfer functions ("operational" output-input ratios) for each 
system component are empirically determined. 

At an intermediate point in the analysis, it becomes possible to begin 
computer simulation of the model, using transfer functions already 
identified plus guesses about those which remain to be determined. 
In this way the performance of the model can be compared with that of 
the real system, often hastening the discovery of the remaining transfer 
functions in the system. Computer simulation can occasionally offer a 
type of internal check on the accuracy and consistency of empirical 
results: if a significant error exists, the model will probably not behave 
like the real system. It must be established, however, that the fault 
lies in measurement and not in the model, a task that is frequently 
difficult. Thus, at each step in the development of the model, its 
performance can be tested against the real system, until the model 
simulates reality with acceptable accuracy. 

The purpose of modeling, then, is twofold. First, a model is an 
essential tool in on-going research: It is a conceptual structure of 
hopefully testable guesses about how some natural system is organized. 
As such it should help to determine relevant experiments to perform or 
data to collect, or both, thereby increasing the efficiency of the research 
effort. Second, a model can be put to predictive use once it exhibits a 
satisfactory performance. "What if" questions can be asked about the 
consequences of different input conditions upon the behavior of the 
system of interest. In addition, the model's parameters, corresponding 
to the system's attributes, can be systematically changed to find out 
more about the reasons for a particular biological system's organization, 
as well as to test its generality when applied to systems other than those 
intensively studied. It is usually far more economical to conduct 
"experiments" on the model than on the real system, especially in 
ecology. 

It is sometimes easy and always risky to forget that a model is not 
the real system. Models hold only certain properties in common with 
reality. As Levins (1968) has pointed out, there is no such thing as an 
"all-purpose model," which is simultaneously precise, realistic, and 
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general. This is particularly obvious in constructing models of hierar-
chical systems: In moving from one level of organization to the next, 
information is invariably lost. This results from the practical necessity of 
approximating or lumping the dynamics of systems at one level before 
they can be incorporated into systems models on the next higher level 
of organization. There are few general rules about how to do this, 
although the lumping procedure that is optimal has a minimal effect 
upon the performance of the higher-level model while remaining 
consistent with lower-level laws. There is always the danger of making 
unwarranted assumptions that generate more fiction than fact about the 
supposed performance of the modeled system. Unfortunately, it is 
frequently not clear to what extent assumptions are unwarranted until 
for some reason it is "too late"; thus, the anticipated cost of a model's 
inaccuracy may determine in part what approximations to make or 
which lower-level detail to save. It would be disastrous, for example, 
to have a model of a proposed chemical plant which simulated the plant 
closely under normal conditions, but which failed to predict a destructive 
explosion under some rare but eventual circumstances. Fortunately 
for ecologists, the tight control characteristic of biological systems below 
the organismal level makes assumptions about the mean performance of 
physiological processes reasonably safe. 

IIL Models of Energy Regulation and Growth in Animals 

There is a vast literature on the physiological and ethological control 
mechanisms directly or indirectly involved in energy intake and expen-
diture in mammals, particularly in man and the domestic animals 
(Brody, 1945; Hamilton, 1965; Hardy, 1961, 1965; Kalmus and Wilkins, 
1966; Kinne and Locker, 1966; Kleiber, 1961; Mayer and Thomas, 1967; 
Tepperman, 1962; Tepperman and Brobeck, 1960). There is also a 
rapidly growing body of information about energy regulation in other 
groups of animals, especially fish (Gerking, 1967), birds, and insects. 
Until quite recently this literature has had little effect upon the field of 
ecology because of its diffuse and fragmented nature and because of its 
rather strict physiological orientation. Although numerous models of 
physiological systems "in isolation" have appeared, only a few of these 
have been constructed with an eye to the possible ecological and adaptive 
significance of the physiological processes for the organism as a whole. 
Moreover, in general they contain far more detail than is necessary or 
advisable in a model of the ecological bioenergetics of entire organisms. 
Physiological and ethological processes that have been modeled include 
thermorégulation (Benzinger, et al., 1961; Crosby, et ai, 1961; Hardy, 
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1961, 1965), respiration and circulation (Grodins, 1963; Priban and 
Fincham, 1965), feeding and prey capture (DeRuiter, 1963; Holling, 
1965, 1966a, b; Mittelstaedt, 1957, 1962), drinking and water balance 
(McFarland, 1965; Stevenson, 1965), embryological growth and develop-
ment (Weiss and Kavanau, 1957; Kavanau, 1960, 1961), endocrino-
logical systems (e.g., DiStefano and Stear, 1968; Brown-Grant, 1966), 
and others. In the last few years there have been a few attempts at 
synthesis. One notable attempt has been made by DeRuiter (1963), 
who constructed flow diagrams depicting qualitatively the overall 
nutritional control system of a mammal, bringing together data both of 
a physiological and an ethological nature relating to nutrition and 
the control of feeding. 

In spite of this rather extensive modeling in physiology and ethology, 
there has been relatively little effort to develop models of whole-animal 
growth and energy regulation suitable for use in ecology, models which 
are realistic and general, but which forfeit some physiological and 
precision because of the essential lumping of lower-level systems' 
dynamics. Several attempts have been made to fit simple descriptive 
equations to observed or smoothed growth curves of animals, but usually 
no effort was made to assess the biological significance of the equations. 
Furthermore, most of these equations attempt to describe only idealized 
growth under optimal conditions without providing for environmentally 
imposed physical or biotic perturbations of growth processes. 

Three of the most commonly used models of growth are the logistic, 
Gompertz, and von Bertalanffy equations, all of which have a basically 
sigmoid form with an asymptotic adult body weight (Ricklefs, 1967). 
Brereton (1955) attempted to fit the logistic curve to his data on growth 
of the terrestrial isopod, Porcellio scaber. Wieser (1965), working from 
growth data on P. scaber collected by Matsakis (1955), showed that 
von Bertalanffy's equation gave a better fit. I have found, however, 
that this model is inadequate to describe the growth of Armadillidium 
vulgäre. 

Bertalanffy's equation is derived from the model proposed by Pütter 
in 1920 (Ursin, 1967), who appears to have been the first to recognize 
that the instantaneous growth rate of an animal can be expressed 
as the difference between the instantaneous rates of anabolism and 
catabolism. Pütter assumed that the rate of assimilation of food is 
surface-dependent, whereas the rate of dissipation of energy throughout 
the body is dependent on body weight. He assumed further that the 
area of the food-absorbing surface changed as the § power of body weight, 
giving 

dwjdt = aw2/3 — bw, (1) 
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where w is weight and a and b are constants, with a > bw1^ at time zero. 
The final or asymptotic weight is approached as bw approaches aw2^. 

Since this model was proposed, knowledge of metabolic processes 
has advanced greatly, although there still are significant gaps to be 
filled before a general theory of growth can be constructed. We can now 
be certain, however, that Putter's equation is based on incorrect assump-
tions. First, there is abundant evidence to show that the rate at which 
animals expend energy is only rarely proportional to body weight; 
rather it is proportional to some fractional power of body weight, 
reflecting the fact that respiratory processes are also surface dependent. 
This power varies from species to species (Zeuthen, 1953; von Bertalanffy, 
1951) as a result of different surface-volume relationships and other 
factors (Prosser and Brown, 1961). Second, the area of the absorbing 
surface of the gut is highly variable between species, and even between 
individuals; and it is rarely proportional to the § power of body weight 
because of allometric growth of the intestine and food habits. Attempts 
have been made, therefore, to generalize Putter's formulation by 
specifying only that the exponents are species-specific constants between 
zero and one (Zeuthen, 1953; von Bertalanffy, 1951). Parameter values 
for this equation have been estimated for a diverse set of organisms, 
notably fish (Ursin, 1967; Paloheimo and Dickie, 1965, 1966a, b; 
Ricklefs, 1967; Taylor, 1958, 1962). The species-specific constancy of 
these parameters, however, has been seriously questioned. Environ-
mental factors, particularly temperature, and nutritional condition have 
been found to influence the slope of the log-log relationship between 
oxygen consumption and weight in a number of animals (Armitage, 1962; 
Clark, 1955; Norris et ai, 1963; Vernberg, 1959). 

The most serious weakness of Putter's equation is its overly simplistic 
representation of the growth process. His model implies that growth 
is entirely passive, because the rates of anabolism and catabolism are 
viewed merely as passive functions of the current weight of the animal, 
unable to make any compensation for perturbations. As with energy 
regulation, treating growth as a passive process completely ignores the 
adaptive and regulatory features of physiological processes. Unlike 
nonliving physicochemical systems which exhibit growth (Oparin, 1953), 
living organisms control their growth homeostatically. Such regulation 
implies that organisms have built-in mechanisms for evaluating their 
growth performance, and for modifying energy intake and expenditure 
to compensate for performance "errors" resulting from environmental 
or physiological disturbances. Compensatory modifications of this sort 
are the result of stabilizing negative feedback, an almost universal 
feature of energy-regulating control systems. 
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The generic structure of such systems will be familiar to most readers. 
The actual performance or output of the system is compared with some 
criterion of "ideal" performance, known as the "reference input." 
If the actual and ideal performance of the system differ, an "error" 
signal is used to compute the appropriate "control effort" to force the 
output of the system closer to the desired level, thereby reducing the 
performance error. Output rarely equals the reference input exactly, 
however, primarily because the system must continually counteract 
disturbance effects of exogenous factors over which the system has no 
direct control, but which act upon the controlled process. 

The importance of negative feedback in the regulation of growth 
has been recognized for some time (Glinos, 1958; Mayer and Thomas, 
1967; Weiss and Kavanau, 1957), but there have been few attempts to 
develop control systems models of growth processes. Ursin (1967), 
working from Putter's equation, introduced feedback into a model of fish 
growth by making catabolism a function of the rate of food absorption, 
although such feedback, by itself, produces no control. He also attempted 
to describe the effects of temperature on rates of anabolism and 
catabolism. Perhaps the most notable dynamic model of growth was 
proposed by Weiss and Kavanau (1957) and developed mathematically 
by Kavanau (1960, 1961). This model, however, is unsuited for studies 
of ecological bioenergetics. It was intended as a model of the embryo-
logical growth and development of various tissues and organs within 
the body, containing more detail about the hormonal and cellular 
aspects of growth regulation than practical in an ecologically oriented 
model. Moreover, it is not a caloric model, and no provision is made for 
environmental disturbances of growth because time is the only inde-
pendent variable. 

IV* Generalized Bioenergetics Model 

Models of biological control systems are complicated because they 
usually have variable, rather than constant, reference inputs. That is, 
they are servomechanisms which have the task of tracking variable 
signals. In addition, biological control systems contain nonlinear 
elements, nested feedback loops, positive as well as negative feedback, 
and parameters which change with time. Finally, the parameters them-
selves may be under the partial or complete control of the system, in 
which case the system is said to be adaptive. 

The most difficult problems in analyzing a biological control system, 
however, are probably not in coping with its mathematical complexity. 
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One major difficulty lies in isolating the system of interest sufficiently to 
permit its study. What one would like is to open feedback loops and 
manipulate some of the system's internal variables that are otherwise 
inaccessible, as if they were extrinsic in origin and independent of 
the system. Unfortunately, opening loops in biological systems often 
destroys the systems themselves. Instead, the biologist frequently is 
left only with environmental disturbances that can be controlled. 

A second major difficulty lies in determining just what feedback loops 
do, in fact, exist in biological systems. This is the problem of determining 
the performance criteria of the system. Technical problems of measure-
ment may be considerable, but these aside, the task is made harder by 
the fact that the controlling variable or variables may bear little resem-
blance to the controlled variables. For example, the firing rate of 
temperature-insensitive neurons in the hypothalamus may establish the 
"set-point" for mammalian thermorégulation (Hardy, 1965). Neuron 
firing rates are obviously rather different variables from body temper-
atures. Mammals do not have an actual set-point temperature, somehow 
physically stored, with which actual body temperature is compared. 
Moreover, conceptual difficulties may arise out of the difference between 
the abstract mathematical representation of feedback and the actual 
physical process for which it stands. Real biological control mechanisms 
are almost bewildering in their variety, some involving actual reference 
inputs, others not. Well-known examples of control systems without 
reference inputs can be found in the mammalian neuroendocrine system 
(Gorbman and Bern, 1962). Commonly they are composed of a system 
of coupled elements, the first being excitatory of the second, and the 
second being inhibitory of the first. In such a system the concept of 
reference input has only an abstract and arbitrary meaning. Nevertheless, 
in dealing with lumped models of such systems, it is useful to retain 
this concept. Even if particular reference inputs of the model have no 
exact physical counterpart, they can be made to mimic the behavior of 
the controlling element in the real system as accurately as desired. 
I shall make use of such reference inputs in the bioenergetics model 
developed below. 

Many subsystems contribute to the overall ecological and evolutionary 
success of an organism. The performance criteria of these different 
subsystems will be different and will depend on the selective forces 
acting upon the species. That is, performance criteria are adaptive. 
In considering the evolutionary success of an individual or species, 
performance criteria are related to the production of the maximal 
number of surviving offspring. However, with regard to how organisms 
regulate the rate at which they accumulate and dissipate energy, 
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reproductive success is not an issue. An immature animal must grow to 
maturity if it is to reproduce successfully, and during this period of 
growth it must control its daily maintenance. Even after it reaches 
maturity, reproduction is frequently intermittent. Thus animals have 
performance criteria relating to growth and energy balance; and in 
addition they have reproductive criteria while thev are reproducing. 
These criteria need not be mutually exclusive if both energy regulation 
and reproduction are under a higher level of control within the organism. 
For present purposes, we shall assume that there is only one reference 
input for growth and energy regulation, and one for reproduction, 
although we recognize that this design is physiologically too simple. 

My work to date on the isopod, Armadillidium vulgäre, has dealt 
primarily with the regulation of energy balance and growth. Details 
of reproduction and its performance criteria are currently being investi-
gated by L. Lawlor (personal communication). As a descriptive term 
for the growth and energy balance criterion, I have chosen "desired" 
growth rate; desired is put in quotation marks to indicate avoidance of 
ideological implications. I view desired growth rate as some measure 
of the optimal growth rate of an animal, but because of the difficulty of 
assessing whether a given growth rate is, in fact, optimal, I have avoided 
use of that word. I am using the word growth to mean an increment 
in the caloric content of the body, rather than to mean an increment in 
the proteinaceous components of the body, as is customary in physiology. 
My object is to make the meaning of the term more consistent with the 
ecological notion of productivity. 

The concept of desired growth rate is incorporated into the bioener-
getics model whose generalized information flow diagram is illustrated 
in Fig. 1. Each block in the diagram represents a subcomponent of 
the system which computes an output storage or flow variable Vom its 
input variables. The circles are comparators, which produ a new 
variable from the sum or difference of other variables. Solid lines with 
arrows denote variables in units of calories or calories per time, and 
dotted lines with arrows indicate environmental disturbance ariables, 
i.e., physical factors whose units depend on the factor considered. 

At the upper comparator the growth performance of the individual 
is evaluated by subtracting current growth rate (net energy accumulation 
rate) from the desired growth rate. The difference constitutes a measure 
of how well the animal has been growing; if, according to this measure, 
growth has been poor, then corrective action is taken to force the 
actual growth rate closer to the desired growth rate. The block at the 
lower left computes current gross rate of energy accumulation (calories 
assimilated per unit time) as a function of the availability of energy 
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FIG. 1. Generalized block diagram of bioenergetics model. (See text for explanation.) 

resources, i.e., food. For a given food availability, an input to this block 
of positive growth error would result in a greater rate of energy accumula-
tion. 

The comparator at the lower center subtracts the rate of energy 
dissipation (respiration rate) from the gross rate of energy accumulation. 
The difference constitutes the net energy accumulation rate, or current 
growth rate. Note that a positive growth error acts negatively upon 
energy dissipation; this feature results from the fact that starving 
animals show a reduced respiration rate. By summing (integrating) 
the net rate of energy accumulation over the life of the animal, the 
current net production (current total caloric content) of the animal is 
obtained. This net production signal feeds back positively to the blocks 
which determine the rates of energy accumulation and dissipation. 
Thus, as the individual increases in body size, it eats and respires more. 
Net production also acts positively on the desired growth rate of 
immature individuals of any species, such as Armadillidium, which 
has an accelerating growth rate. 

Finally, all of the transfer functions are subject to disturbance by 
physical factors (dotted lines with arrows) including desired growth rate 
(which we assume to be a physiological process). The system must 
continually counteract these disturbances as well as the effects of varying 
levels of food availability. There are two additional ways that an 
organism can counteract the effects of such disturbances besides using 
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its "regular" feedback control mechanisms. The animal can adapt 
physiologically, and it can seek out preferred conditions in a hetero-
geneous environment. Under physiological adaptation we shall include 
physiological responses both to short-term cyclic inputs that are predic-
table, such as the daily light regime, and to long-term acyclic, or 
otherwise less predictable inputs, such as seasonal temperature and 
moisture patterns. Mathematically, physiological adaptation is equivalent 
to modifications of parameter values in the model's transfer functions; 
to the extent that these modifications are controlled by the system itself, 
we are dealing with a so-called adaptive system, as defined earlier. 
Physiological acclimation to temperature is already included in the model. 
As yet, however, I have not included behavioral attributes. Armadillidium 
is known to exhibit preferenda in gradients of certain physical factors, 
particularly temperature and humidity (Barlow and Kuenen, 1957a,b; 
Miller, 1938). Behavioral modification of disturbance inputs will be 
incorporated into future versions of the model, after more is known 
about the choice of conditions available to Armadillidium in the field, 
relative to its preferenda. 

The success of the individual bioenergetics model outlined above 
depends to a large extent upon the adequacy of the concept of desired 
growth rate as an approximation of the actual physiological subsystems 
controlling growth and energy balance in an animal, and also upon our 
ability to deal with the concept operationally. One of the first questions 
to arise is whether the feedback controller should be modeled as a rate-
sensitive element. In models such as Putter's, the implicit "control" 
is exerted by the difference between the current size of an animal and 
its final body size. However, if we were to use the final body size as 
the reference input for growth control, we would find it difficult to 
account for the phenomenon of stunting, as well as for the response of 
animals to starvation, appropriately scaled for their current body size. 
Also, in many animals, particularly invertebrates and including 
Armadillidium, there is no obvious asymptotic adult body size; growth 
continues throughout life. 

In choosing rate sensitivity for the growth controller, we should 
recognize that the actual physiological controllers of growth and energy 
balance are, in reality, responding to stores and levels. Stores such as 
the quantity of glucose in the blood, or the concentration of hormones 
are involved; and variables such as neuron firing rates are sensed as 
levels of discharged acetylcholine. As we recall from calculus, however, 
every store may be treated as a rate, and every rate a store, simply 
depending upon the magnitude of the time scale on which we observe 
a particular process, relative to the scale on which we observe other 
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processes. For our purposes, milliseconds, even tens of minutes, is a very 
short time; consequently, the dynamics of stores on this time scale can 
be ignored or time-averaged, when necessary, to produce a rate. 

For the ecologist interested primarily in the implications of energy-
regulating capacities of animals for population and community level 
phenomena, it need not matter that desired growth rate has no actual 
physical correlate in the animals, provided that the lumped model has 
similar properties to that of the real system. There is certainly a neuro-
hormonal system whose function the comparator and desired growth 
rate could mimic operationally. In mammals, for example, there is a 
complex central regulatory system centered in the hypothalamus, which 
closely matches energy intake with energy expenditure, as energy 
demands and the nutritional value of the food vary (Mayer and Thomas, 
1967). The feedback control is achieved through a glucostatic mechanism, 
and feeding is initiated or inhibited by the hypothalamic centers, 
depending on information received from chemoreceptors detecting 
the glucose concentration in the blood. Long-term energy regulation 
may involve a separate lipostatic control mechanism. Growth regulation 
appears to result from the interaction of these energy-regulating systems 
and hormonal systems. 

Less is known about the energy-regulating and hormonal control 
systems of invertebrates. Information is most complete for arthropods, 
but it concerns primarily the hormonal control of growth and molting 
(Knowles and Carlisle, 1956; Waterman, 1960, 473 if.; Wigglesworth, 
1965, 175 if.). The work of Dethier et al (1956) on the sheep blowfly 
provides some of the most relevant information on energy regulation in 
an invertebrate. They found that feeding was initiated by oral chemo-
receptors and was terminated by unidentified receptors in the foregut. 
Termination was independent of blood sugar level and of crop and 
mid-gut contents. 

We intend that the desired growth rate signal and the feedback 
comparison of actual growth rate in the model should approximate the 
combined action of physiological processes such as those known for 
mammals and insects. Although energy regulation and growth control 
represent separate physiological systems, they can be lumped into one 
process in the model of individual bioenergetics. To illustrate, consider 
an animal which reaches a constant adult body size; when this size is 
reached, desired growth rate becomes zero, and the animal simply 
balances energy intake against respiratory demand. On the other hand, 
a growing animal must acquire energy in excess of the amount dissipated 
in respiration; hence desired growth rate is positive. Thus, in the 
model a single comparator of desired and actual growth rates simulates 
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the action of at least two control systems in the body. For ecological 
purposes, this analog should be adequate. 

We turn now to operational considerations of desired growth rate. 
Clearly growth rates can be measured; but can we, in fact, measure a 
desired growth rate ? The answer is probably no, at least in the usual 
sense of the word measure, simply because the desired performance of 
an unknown system may or may not be its actual performance, which is 
all that we can observe. Nevertheless, there are at least two basic indirect 
methods for assessing what the desired performance of a biological 
system might be. The first might apply be called "the optimal environ-
ment method." In this approach one tries to provide the best possible 
set of conditions to the system for its operation, based upon what is 
already known about the system's dynamics. This is the most straight-
forward approach, and it assumes that the actual and desired perfor-
mances will most nearly coincide if the system does not have to correct 
errors caused by disturbance inputs. The weakness of the method, 
of course, is that the environment provided for the system may not be 
truly optimal. The second approach can be called "the perturbation 
method,'' in which no attempt is made to provide optimal conditions. 
On the contrary, the object is to determine how the system reacts to 
precisely controlled disturbance inputs. From the dynamics of recovery 
from controlled disturbances, the nature of the system's controller can 
often be ascertained. This method is frequently more difficult, but is 
also theoretically more sound than the optimal environment approach. 
It should be noted that analyzing a system's response to a controlled 
disturbance input is different from the common engineering problem 
of analyzing the system's response to a transient change in a reference 
input. In the bioenergetics model, the reference "input," desired growth 
rate, is an internally generated performance criterion, not subject to 
manipulation because it is under the control of the system itself. This 
characteristic is common to many biological control systems: Frequently 
the differential equations that describe the system form a set of implicit 
functions', that is, the separation of "independent" and dependent 
physiological variables is impossible. 

Both methods have been used to establish desired growth rates for 
Armadillidium vulgäre. The details of this work will be published 
elsewhere (Hubbell and Paris, in preparation), but a brief resume of 
the results of the optimal environment method is presented below: 

Under a wide variety of constant conditions of temperature, moisture, 
and food availability, Armadillidium vulgäre exhibits two characteristic 
growth phases: an exponential phase as a juvenile, and a linear phase, 
gradually assumed as an adult. Superimposed upon this basic growth 
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pattern are the effects of molting and, in females, of reproduction. 
Molting causes the growth curve to take on the * 'staircase' ' appearance 
typical of arthropod growth, whereas the brooding of young by females 
is accompanied by a temporary cessation of growth. Figure 2 illustrates 
this growth pattern for a typical individual grown at 24.5 C at 100% 
relative humidity with unlimited food. Note the relatively constant 
percentage increase in weight with each molt during the exponential 
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FIG. 2. Growth pattern in an individual of Armadillidium vulgäre at 24.5 C and 
100% relative humidity with unlimited food. Asterisks denote premolt condition. 
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growth phase. There is also a relatively constant percentage weight 
gain with each adult molt; however, the inter molt stage lasts for succes-
sively longer periods, resulting in the arithmetic growth pattern. For 
simplicity, the modifying effects of molting and reproduction upon 
the rates of energy accumulation and dissipation will not be included 
in the mathematical treatment of the bioenergetics model to follow. 
The details of these effects will also be published elsewhere (Hubbell, 
in preparation). 

The coefficient of exponential growth is exponentially related to 
temperature in the range between 5 and 31.5 C (Fig. 3), as described 
by the equation 

log K = -2.4761 + 0.03657 (C). (2) 

Here K has a time base of one day, and is the coefficient in the growth 
equation, 

P = P^/0.43429).^ (3) 

10 15 20 

TEMPERATURE (C) 
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FIG. 3. Relationship between the coefficient of exponential growth and constant tem-
perature with a time base of one day, expressed Eq. (2). 
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where P is weight (expressed in the model in calories), P 0 is weight at 
birth, t is age in days, and 1/0.43429 is the factor converting K from 
a power of 10 to a power of e. Equation (3) is adequate only until the 
isopods reach sexual maturity. The linearity of adult growth is illustrated 
in Fig. 4, which is a plot of the average growth of a cohort of animals. 
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FIG. 4. Growth rate curve of adult isopods at 21.6 C. Scale of weight on left applies 
to left-most portion of curves, and scale on right to right-most portions. · : males, 
O: females. 

The influence of molting is obscured because of a lack of precise molt 
synchrony between individuals. Females grow at the same rate as males 
except when they are carrying eggs, during which time their weight 
remains constant. Note that two broods were produced in rapid succes-
sion. During the arithmetic growth phase, weight or caloric content 
can be expressed as 

P — ^sm ~r C\t £sm)> (4) 

sm , where Psm and tsm are the weight and age at for P > Psm and t > t 
sexual maturity, and c is a temperature-dependent constant. 

Desired growth rate is obtained by taking the derivatives of Eqs. (3) 
and (4). In the exponential phase of growth, desired growth rate is 
proportional to the current weight or total caloric content (net produc-
tion) of the individual. If DG is desired growth rate, then 

DG = KDG(Poy
KDG» = KDG(P), (5) 
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where KDG = K/0.43429. In the arithmetic phase of growth, desired 
growth rate becomes independent of the size of the animal; hence 

DG = c. (6) 

Age appears to have no effect on growth rate in Armadilltdium. 
Immature animals grow at a rate which is characteristic of their weight, 
given a specific temperature. After reaching sexual maturity, and after 
a period of switching from exponential to linear growth, the isopods 
grow at a temperature-dependent, constant rate, whatever their age or 
weight. Size- or weight-dependent growth rates have been described 
in a variety of other animals (Larkin et al, 1956; Rasmussen, 1967). 

Desired growth rates are apparently independent of soil moistures 
above a soil water content of 12% by weight, except for exceedingly 
wet conditions; below 12%, however, growth rates are lowered as 
the isopods attempt to conserve water by restricting their intake of 
dry food. The effects of varying temperature and food availability will be 
considered in a later section. 

V* An Improbable Linear Bioenergetics Model 

It is an often stated truism that nature is inherently nonlinear. 
Biological systems particularly are full of threshold phenomena and 
saturating nonlinearities (Holling, 1966a, b), synergisms (multiplicative 
effects), hysteresis, and the like. In spite of these complications, it is 
often possible to construct linear models of biological processes which 
are reasonable approximations of the dynamics of the real system. 
It should be noted that the linearity of a systems model does not mean 
that it produces only straight lines. Unlike a regression model, the 
time-domain solution of a system of linear differential equations consists 
of a sum of exponential curves, not straight lines. Linearity as used here 
means additivity; thus, if yx = /(Χχ) and y2 —/(#2)> then (yx -f- y2) = 

f(Xx + x2)- Note that the equation y = a + bx is nonlinear by this 
definition because (y1 + y2) does not equal f(x1 + x2)> 

The reason we go to the trouble of building linear models when we 
are really interested in nonlinear systems is that we then acquire the 
power to evaluate the dynamic performance of the system analytically, 
not just numerically. In fact, we can analytically solve for the response of 
a linear system to any conceivable input function, however complicated. 
Even exceedingly complex linear systems can be simplified enormously 
using the techniques of so-called "operational" mathematics. 

It should be emphasized that the linear models developed below 



4 . ECOLOGICAL BIOENERGETICS 289 

are only exercises to acquaint us with some of the most basic properties 
of energy-regulating biological control systems; they are by no means 
intended as definitive models of such systems. Biological systems which 
control energy have a number of essential nonlinearities which ultimately 
cannot be ignored. At the end of this chapter in Section VII, we shall 
consider progress that has been made toward developing a realistic and 
hopefully somewhat general nonlinear model of growth and energy 
regulation in animals. 

Hence, once we thoroughly understand the linear approximation, 
we can begin to introduce more realistic nonlinear elements into the 
model one by one, to determine how they modify the behavior of the 
linear system. There is, of course, no guarantee that the nonlinear 
system will behave anything like the linear system. Generally, however, 
the performance of the two systems will not differ so greatly as to make 
the linear exercise worthless, especially when the linear system was 
designed to approximate the behavior of the real system. Often, nonlinear 
systems exhibit greater control accuracy, although they may be less 
stable in the face of large perturbations than their linear counterparts. 

In constructing a model of a hypothetical "linear" isopod, I shall 
have two primary concerns: first, the adequacy of each system component 
as an approximation of the actual physiological process; and second, 
the capacity of the assembled model to regulate energy accumulation 
and dissipation, as it is supposed to do. The first model we shall consider 
is very simplistic and inadequate as a physiological model, but it will 
serve to illustrate ideas about control and the differences in performance 
of open- and closed-loop systems. 

For simplicity, we shall be making use of Laplace transforms in the 
following discussion, rather than differential equations, although a 
completely parallel treatment of the material is possible using differential 
equations. For those not familiar with this transform technique, the 
Laplace transform of a function of time, F(t)y is given by 

F(s) = &[F(t)] = fV(f) e~st dt. (7) 
J o 

Clearly, one effect of this transformation is to eliminate time as the 
independent variable, substituting for it a new variable s in the "complex 
frequency" domain. Convergence of this integral is assured for only 
certain s and F(t), but the class of permissible F(t) is broad. Moreover, 
the transformation is linear; and when it is applied to a linear system, 
it has the remarkable property of reducing the operations of differentia-
tion and integration essentially to simple algebraic multiplication and 
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division by the complex variable s. Using this technique, we shall 
obtain overall transfer functions for two linear bioenergetics models of 
increasing complexity. In particular, we are interested in the transfer 
function characterizing the dynamic relationship between actual growth 
rate (the "output") and desired growth rate (the "input"). Obtaining 
this transfer function for a study of how accurately the model will 
track a given desired growth rate signal requires that we open the 
feedback loop of net production (body caloric content) P upon desired 
growth rate DG (henceforth called the "desired growth rate loop"). 
This simplification will not alter the model's growth control abilities, 
and it eliminates the implicit nature of the model's functions. In addition 
to opening this feedback loop, we shall also be opening the loop in 
which actual growth rate is compared with desired growth rate, to 
compare the control abilities of the open- and closed-loop systems. 

Consider the linear model illustrated in Fig. 5a, which is one of the 
simplest that can be derived from the generalized bioenergetics model 
of Fig. 1. To compute the output variable from each block, the expression 
in the block is multiplied by the input variable. As mentioned above, 
the desired growth rate loop has been broken, and is indicated by 
the dotted line. In this model, the assimilation rate, A(s), is assumed 
to be composed of a body size component RP(s)y an error-correcting 
signal AE(s), and a disturbance input DA(s). As is required of a linear 
system, all of these signals are additive, not multiplicative, and they are 
related to other variables as simple proportions. In the nonlinear model, 
of course, some or all of these signals may be multiplicative and/or 
nonlinear functions of other variables. For example, the body size 
component of assimilation rate will become an exponential function of 
body size, rather than a linear one. Also it will become apparent that all 
environmental disturbance inputs, including food availability, enter the 
model nonlinearly. Respiration rate R(s) likewise has three components 
here: a body-size component RP(s), a growth rate error compensator, 
RE(s), and a disturbance input DR(s). The difference (A(s) — R(s)) 
is the actual growth rate of the isopod AG(s); integrating this signal by 
multiplying it with l/s gives the current net production of the animal P(s). 
The control of growth is assumed here to be of the "integral" variety; 
that is, the controller variables, AE(s) and RE(s), respond to E(s), 
the integral of GE(s), rather than to the instantaneous growth rate error 
itself. This is equivalent to the biological statement that the animal 
has a "memory" of prior nutritional history, a fact that is amply docu-
mented in the literature (cf. Brody, 1945). Here we unrealistically assume, 
however, that the animal has an indefinite memory of its past nutritional 
states. In the second linear model we shall eliminate this unreal feature. 
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P(s) 

(b) 
DG(s) > KAE+KRE 

s + (KAE+KRE+KRP-KAP) 

AG(s) „ 

(c) 

DG(s) 

*§> 
AG(s) 

KAE+KRE 

D(s) 

■ME 
KAP-KRP AG(s) 

AG(s) 

FIG. 5. (a) Block diagram for simple linear model, (b) 'Open- loop" transfer 
function for model in (a), (c) Rewritten block diagram emphasizing the difference 
in the locus of disturbance inputs and of the reference input. 

To find the transfer function H(s) = AG(s)IDG(s)y we "solve" the 
system for AG(s) as a function of DG(s)y assuming for the moment that 
there are no disturbance inputs. Formally this is the same as eliminating 
intermediate variables from a set of simultaneous differential equations. 

AG(s) = (A(s) - *(,)) (8) 
= (KAPIs)(AG(s)) + (KAE/s)(DG(s) - AG(s)) 

+ (KREIs)(DG(s) - AG(s)) - (KRPIs)(AG(s)). (9) 
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Separating the variables in Eq. (9) and cross-multiplying, we obtain 

H(s) 
KAE + KRE AG(s) 

DG(s) ~ s + (KAE + KRE + KRP - KAP) 
(10) 

This is the transfer function relating AG(s) to DG(s) shown in Fig. 5b, 
and it is equivalent to the block diagram in Fig. 5c. The effect of our 
algebraic manipulation has been to "collapse" the three feedback loops 
in the model, to give a much more straightforward, "open-loop" function. 
When DG(s) is multiplied by H(s)> we obtain AG(s). Suppose, for 
example, that we are interested in the dynamic response of AG(s) to 
one of the following three commonly used "transient" test inputs: 
impulse (the Dirac delta function), step, or ramp (Fig. 6). Because we 

x ( t ) f 

I/o 

x ( t ) f 

o V a = o + 
(a) 

x(t)l 

(b) (c) 

FIG. 6. Three commonly used transient "test" inputs: (a) impulse, x(s) = 1. 
(b) step, x(s) = 1/s. (c) ramp, x(s) = 1/s2. 

are operating in the complex frequency domain, we need the Laplace 
transform of their time functions, which are respectively: 1, 1/i, and 1/s2. 
Multiplying any one of these by H(s) gives the Laplace transform of 
the response of AG(s) to that input. 

The generalized transfer function of an arbitrary linear system is a 
so-called rational algebraic fraction, consisting of numerator and 
denominator polynomials in s 

F(s) Α{ή «o + ats1 + - + amsm 

B(s) b0 + V 1 H h bns
n (Π) 

where m ^ n for a physically realizable system. The roots of the 
numerator, called zeros, are concerned with the gain (the ratio of output 
and input amplitudes) and the phase of the response relative to the input, 
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but not with the basic character of the response. The latter is determined 
by the roots of the denominator polynomial, known as the system poles 
or eigenvalues (Chapter 2). The number of eigenvalues determines 
the order of the system. In general, eigenvalues are complex numbers, 
and their position on the complex plane is critical for the control 
capabilities of the system and its stability. All of the system's eigenvalues 
must have negative real parts; otherwise the system's response in the 
time domain will diverge exponentially to infinity. If the set of eigenvalues 
contains one or more complex-conjugate pairs, the system will be 
oscillatory; on the other hand, no oscillations will appear if the eigen-
values are real. 

Equation (10) indicates that our simple bioenergetics model is a 
first-order control system with its eigenvalue located at 

s = KAP - KAE - KRE - KRP. (12) 

The sum of KAE, KRE, and KRP must be greater than KAP for 
the system to be stable. The system is incapable of oscillatory behavior 
because it has only one pole, and imaginary poles occur only in pairs. 

Once we have a transfer function for the system we are analyzing, 
we usually want to determine the corresponding function in the time 
domain. The inverse transformation of going from the complex frequency 
domain to the time domain is commonly made by the method of partial 
fractions. Any rational algebraic fraction such as Eq. (11) can be expressed 
as a sum of the form 

A{s)lbn =
 C i ι C* ι ... I C " (i%) 

(* + r^s + r2) - (i + rn) s + r, ^ s + r, ^ s + rn * v ; 

where the constants Ct are equal to 

C, = [(* + U) A(s)IB(s)], where * = -rt. (14) 
The îth member of this sum is then equivalent to 

Cil{s + u) = Ct exrt-rjt) (15) 

in the time domain. As an example, we solve for the time-domain 
response of Eq. (10) exposed to a unit step input of DG(s). Letting 
Kx = KAE + KRE and K2 = KAE + KRE + KRP - KAP, we 
have 

7T^nr = T S + ΎΛ2) = §"<! - exP(-^)}· (i6) 
s s -\- K2 s -f- U s -\- K2 K2 
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Thus, the response of actual growth rate AG(t) to a hypothetical step 
from 0 to 1 in DG{i) is an exponentially decelerating rise to a plateau 
value of K^K^ (Fig. 7), with a time constant of l/K2 . 

À 

κ,/κ3-

1-

κ1/κ2-

^^^OPEN-LOOP, AG(t) 

/ REFERENCE INPUT, DG(t) 

/ \ ^ *~"=='*~~ CLOSED-LOOP, A6(t) 

L 1 , 

— ► 

— -̂
l/K2 l/Ka TIME 

FIG. 7. Comparison of step responses of open- and closed-loop simple linear 
bioenergetics model. 

By use of the step response, we can compare the ability of the open-
and closed-loop versions of the model to track a desired growth rate 
input signal. If we eliminate the feedback comparison of AG(s) with 
DG(s)y the open-loop transfer function becomes 

H(s) = 
KAE + KRE 

s + (KRP - KÄP) (17) 

Letting ΚΆ = KRP — KAP, the time-domain step response of Eq. (17) 
is 

F(t) = (KJK^l - exp(-K3i)}. (18) 

Thus the open-loop system exhibits the same first-order type of response 
to the reference input shown by the closed-loop system, but responds 
more slowly than the closed-loop system and reaches a higher steady-
state level, resulting from the fact that K2 > K3 . The more rapid 
response of the closed-loop system indicates an important and desirable 
effect of negative feedback upon the system's dynamics. The "loop gain" 
(the amount by which the signal is multiplied by feedback on itself) 
of the system is very important in setting this response time. Thus, 
the more we amplify the error-correcting signal by increasing KAE 
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and KRE, the more negative the eigenvalue becomes, and the smaller 
the time constant becomes. 

One undesirable but partially correctable feature of negative feedback 
is that the steady-state level finally achieved, KX\K2 , is below the 
desired level, unity (if we input a- unit step). This is a better situation, 
however, than in the open-loop model, whose steady-state value Κχ/Κ3 

need be nowhere near the desired level (Fig. 7). When the loop gain of 
the system is known, the problem of undershooting the desired level 
in the closed-loop system may be overcome by premultiplying the 
reference input by a constant so that the desired level is achieved. 
In our case, we can simply scale DG(s) by Κ2/Κλ . Note also that 
increasing the loop gain by increasing the amplification of growth rate 
error relative to the difference (KRP — KAP) will likewise tend to 
bring the steady-state performance of the system closer to the desired 
performance, as Κλ approaches K2 . Yet another way that control could 
be improved would be to make the model respond not only to the 
integral of growth error, but to GE(s) as well. In none of these cases, 
however, is it possible to achieve a steady-state error of zero for finite 
loop gain. 

Not only does the open-loop model respond slowly to changes in 
reference inputs, and assume steady states frequently nowhere near the 
desired states, but also the open-loop model is incapable of compensating 
for disturbances. Thus, if we are interested in an animal's ability to 
correct growth errors due to environmental disturbances, including 
variations in food availability, the closed-loop model is clearly far 
superior to the open-loop one. To explore how these two versions of 
the model respond to a disturbance input, the block diagram shown 
in Fig. 5a has been modified as illustrated in Fig. 5c, combining for 
convenience the disturbances of assimilation rate and respiration rate 
into one input D(s). In this form the diagram emphasizes the difference 
between the locus of disturbance inputs, which act directly upon the 
controlled process, and the locus of the reference input, which does not. 

In the model, with the desired and actual growth rate loops closed, 
the transfer relations between AG(s) and DG(s) with D(s) included are 

AG^ = vf^ ■DG^ - ττκ: ■D^ (19) 

For the model in which the actual growth rate loop is open, the transfer 
relations are the same with K3 substituted for K2 . Since we are primarily 
interested here in the responses of AG(s) to disturbances, we shall 
set DG(s) equal to zero and consider only the second term of Eq. (19). 
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Note that sj(s + K2) is a transfer function of the same order in the 
numerator and denominator, so that the time-domain equivalent of 
this equation will not remain finite with the input of an impulse transient. 
Nevertheless, we can explore the frequency response of this system. 
If we let D(t) be a sinusoidal input, A sin œty of amplitude A and angular 
frequency ω, the Laplace transform D(s) is given by 

D(s) = &\A sin œt] = 4? \ -. ϊ^τ-1 = 9
Αω . (20) 

W L J 2jls— jœ S+jœi S2 + ω2 V ' 

from Euler's equation, where j = y/—\. Substituting Eq. (20) for D(s) 
in Eq. (19), setting DG(s) equal to zero, and applying the method of 
partial fractions to Eq. (19), we obtain the time-domain solution for 
AG(t) 

AG^ = WT^ exp("^} + (ξ^τsin (ωί + T - 4 (21) 

where oc = s i n " 1 ^ / ^ 2 + ω2)1!2). 
In time, the first term of Eq. (21) goes to zero. Thus, the amplitude of 

the steady-state oscillation of AG(t) is given by 

| AG(t)\ = Αω/(Κ2
2 + ωψ2. (22) 

Earlier we noted that K2 of the closed-loop system was greater than 
the corresponding constant in the open-loop system Ks . Substitution 
of K3 for K2 in Eq. (22) significantly increases the amplitude of the 
oscillations in AG(t). For example, if we let ω = A = 1, Ks = 0.5, and 
K2 = 8, the oscillations in the model with the actual growth rate loop 
open are 7.22 times greater than in the corresponding closed-loop model. 
Clearly, then, the closed-loop model exhibits far lower sensitivity to 
disturbances than does the open-loop model. 

Before turning to the second linear bioenergetics model, we note 
the effect of closing the desired growth rate feedback loop, which we 
earlier broke to eliminate the implicit character of the model's functions. 
We may close this loop and still compute a transfer function for the 
model if we treat the disturbance input as the "reference input" of the 
model. While this is biologically meaningless, this approach will enable 
us to discover what happens to the order and stability of the system when 
this loop is closed. The transfer function AG(s)ID(s) is given by 

AG(S) _ £2 

D(s) ~~ s2 + s(KAE + KRE + KRP-KAP) - KDG(KAE + KRE) 
s2 

= s2 + K2s - K, ' ( 2 3 ) 
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where K± = KDG(KAE + KRE). This equation has two eigenvalues, 
rather than one. The eigenvalues are located at 

r1 = (-K2-(K2* + 4K4y/*)ß and r2 = {-K2 + (K* + 4KA)V*)j2. (24) 

Thus, one effect of closing the desired growth rate loop is to increase 
the order of the system to two, by putting the two integrators in the 
model in series, or "in cascade," instead of in parallel. Earlier we noted 
that the system without the desired growth rate loop could be either 
stable or unstable, depending upon the value of K2 . The intact model, 
however, is exponentially unstable regardless of whether K2 is positive 
or negative: since K± is greater than zero, the second eigenvalue is 
always positive. It should be noted that this instability is desirable, 
because we want our * 'linear' ' isopod to grow exponentially with time 
as a juvenile. When the isopod reaches sexual maturity, we simply 
break this feedback loop, and thereafter the isopod will grow arith-
metically. 

VI ♦ Another Improbable Linear Bioenergetics Model 

Obviously the bioenergetics model we have just considered is physio-
logically too simple, notwithstanding its linearity. Yet, for many 
ecological studies of higher level systems, a nonlinear version of this 
simple model—such as might be obtained by adding feedback control 
to a modification of Putter's equation—may be an adequate model of 
individual growth performance, especially if the time scale is measured 
in terms of months, years, or other long periods relative to the time 
constants of physiological processes. If, on the other hand, one is 
interested in ecological events for which days or even hours are important, 
certainly greater physiological detail must be introduced into the model. 
The price paid for more detail is, of course, a certain risk of losing 
generality. Nevertheless, apart from its linearity, the model developed 
below will hopefully have general aspects, although it is specifically 
meant for an isopod. I have, in fact, drawn upon work done on other 
organisms wherever the information necessary was not yet available 
for Armadillidium vulgäre. 

We consider first the process of energy accumulation. In the simple 
model, no account was taken of the dynamics of the digestive system of 
an animal. The model responded instantly to an increase in food 
availability, whereas in reality the time necessary to digest consumed 
food may cause a significant time lag in the response of the system to 
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changes in food supply. Moreover, the direct impact an animal makes 
upon its food supply could not be assessed, because there was no measure 
of ingestion; only assimilation was modeled. 

Although considerable efforts have been devoted to the measurement 
of ingestion and assimilation rates of terrestrial isopods (Bakker, 1956; 
Dunger, 1958a, b, 1960; Gere, 1956, 1962, 1963; Hartenstein, 1964; 
Hubbell et al, 1965; Paris and Sikora, 1967; Wieser, 1965, 1966), 
no attempt has been made to model the dynamic behavior of the digestive 
system of isopods as a whole. The model developed here is based in 
part upon the work of Ivlev (1961) and Holling (1966a), and upon studies 
on Armadillidium (Hubbell and Paris, in preparation). 

Holling has found that in a variety of invertebrates the amount 
of food ingested after starvation rises at an exponentially decreasing 
rate until the gut capacity is reached; by using radioactively labeled 
food we have confirmed that this is also true for Armadillidium. This 
result suggests that ingestion rate is proportional to the unfilled volume 
of the gut. If SA is the current contents of the gut, SC is the gut capacity, 
and dC/dt is ingestion rate, then 

dCjdt = KC · (SC - SA) = KC ■ SE, (25) 

where KC is the proportionality factor and SE is the remaining unfilled 
capacity of the gut. In the nonlinear model, KC is a function of food 
availability and physical factor disturbances and SC, which is the 
reference input for this control system, is a function of the body size 
of the animal P. According to this model, then, the desired condition 
of the digestive system is for the gut to be full at all times. 

Assimilation rate dA\dt and defecation rate dD/dt are assumed here 
to be proportional to the amount of food actually in the gut SA. 

dAjdt = KASA, (26) 
and 

dD/dt = KD- SA. (27) 

We have direct evidence of this proportionality for defecation rate, 
from pulse feeding experiments involving radioactive and nonradioactive 
food presented sequentially to the isopods (Hubbell and Paris, in prepara-
tion). The exponential rate at which isopods lose radionuclide has two 
main components: a fast gut component, and a slower body component 
attributable to assimilated radionuclide (Hubbell et al., 1965). There is 
some curvilinearity to the gut component on a semilogarithmic plot, 
indicating the existence of several isotopic compartments in the gut. 
Nevertheless, the gut component of the radionuclide loss rate curve 
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can be approximated reasonably well by a single-compartment model 
for our purposes; and if greater accuracy is ever required, we can always 
model the gut as a series of first-order systems in cascade, instead of a 
single first-order system. 

The proportionality assumption for assimilation rate is based upon 
the fact that the metabolic cost related to assimilation, including the 
specific dynamic action (SDA) component of respiration rate and 
associated metabolic costs of digestion, falls exponentially with time in 
a starving isopod, with the same time constant as that for the disap-
pearance of food from the gut (Fig. 8). This indicates that SDA is 
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FIG. 8. Superimposed curves of the decrease in respiration rate ( · — · ) and the 
loss of radionuclide from the gut (O O), in a starving isopod at a temperature of 30 C. 

roughly proportional to SA. Since SDA is generally regarded as the 
metabolic cost of digesting and assimilating food (cf. Kleiber, 1961) and 
is approximately proportional to assimilation, we can assume here 
that there is a similar approximately proportional relationship between 
dAjdt and SA. The processes of assimilation and defecation result in 
calories being removed from the current cut contents. Thus, SA, 
the amount of food in the gut, is computed as ingested calories minus 
assimilated and defecated calories: 

SA = C - A - D. (28) 
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To compensate for growth performance errors, control must be 
exerted over this system. In the simple model this was accomplished 
in a direct fashion, by adding to assimilation rate the amplified and 
integrated growth rate error. Clearly, however, an animal cannot do 
this in such a direct manner. What happens, in fact, is that an animal 
increases its tendency to feed, regardless of whether or not food is 
available. When animals are starved, they not only eat more rapidly, 
but also eat more totally to satiation than their unstarved counterparts. 
Figure 9 illustrates this phenomenon in Armadillidium, which depicts the 
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FIG. 9. Average weight-specific ingestion and assimilation rates of 25 isopods for 
an eight-day period. Numbers indicate day of measurement. Solid-line group was starved 
for five days before the first measurement. Dotted-line group was not starved. 

changes that occurred in average daily ingestion and assimilation rates 
for 8 days, in one group of 25 animals that had been starved for 5 days, 
and in another group that had not been starved. These results suggest 
that gut capacity can be treated as a variable which is a function of 
the growth error compensator as well as a function of body size. This is 
in contrast to the approach used by Holling (1965, 1966a), in which gut 
capacity imposes a fixed physical limitation on the amount of food 
that an animal can eat. I shall consider it here, not as the physical 
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capacity of the gut, but as the optimal amount of food that an animal 
should ingest for its size and nutritional condition. Hence, 

SC(s) = E(s) + KSC · P(s), (29) 

where KSC is a constant. 
The assembled linear version of the digestive system component 

of the bioenergetics model is illustrated with a block diagram shown in 
Fig. 10a. To compute a transfer function for it, we solve for SA(s) 

(a) 

E(s) 

SC(s) 

Φ 

P(s) 

KC 

SE(s) 

C(s) 

SA(s). 

C(s) 

^ > 
D(s) 

A(s) 

D(s) 
KD k-

- „ A M , K A k 

(b) 
E(s) 

^ 
P(s) 

SC(s) y 
KC 

s + K C + K A + K D 

SA(s) 

FIG. 10. (a) Linear version of the digestive system component of the bioenergetics 
model, (b) Open-loop transfer function of model in part (a). 

in terms of SC(s)f noting that SA(s) is the controlled variable and SC(s) 
the reference input. Then, dividing both sides of the equation by SC(s), 
we obtain 

SA(s) _ KC _ KC 
tfiM SC(s) s + (KC + KA + KD) s + KX

9 (30) 

where Κλ = KC -\- KA + KD. Evidently the gut is a first-order system 
(Fig. 10b) with a time constant of l/Kt. With a unit step input in 
SC(t)y SA(t) rises at an exponentially decreasing rate to a plateau 
value of KC\K± ; clearly, the smaller KA and KD are relative to KC, 
the closer SA(t) gets to SC(t) in the steady state. 
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We turn now to the process of energy dissipation. In the simple 
linear model, respiration rate was assumed to be directly and negatively 
affected by the growth rate error compensator RE. This representation 
may be closer to the truth in homeotherms than it is in invertebrate 
poikilotherms. For Armadillidium in particular, the fall in respiration 
rate that accompanies starvation appears to be a passive rather than an 
active process (Hubbell, in preparation). The decrease is exponential, and 
as a first-order approximation appears to have two major additive 
components (Fig. 8). The fast component has been attributed to specific 
dynamic action and other costs of digestion, and the second, slow 
component, to a gradual reduction in the amount of respiring tissue (P). 
(The curve in Fig. 8 does not result from a decrease in muscular activity 
because Armadillidium, like some insects, spends little time searching 
for food in the absence of olfactory stimuli, even when starving.) The 
ability, passive or otherwise, of A. vulgäre to reduce its respiration rate 
when starving is of special adaptive value in California grassland, where 
dry atmospheric conditions may prevent the isopods from surfacing to 
feed for periods of up to two weeks during the summer and fall drought 
(Paris, 1963). Laboratory experiments have shown that A. vulgäre can 
survive up to 45 days without food. 

Little is known about the effect of muscular activity on respiration rate 
in Armadillidium because many variables which determine the activity 
state of the isopod have not yet been examined quantitatively. Physical 
factors known to influence activity include temperature, vapor pressure 
deficit, soil moisture, light intensity, and wind speed. Physiological 
variables include the nutritional condition of the isopod (when olfactory 
stimuli are present—the usual state of affairs in soil in the field), feeding, 
and reproductive condition. I have made simultaneous recordings of 
respiration rate and activity (Hubbell, in progress), and although this 
work is not nearly complete, some general conclusions can be drawn. 
From an energetics standpoint, A. vulgäre has essentially two important 
activity states. Individuals either sit motionless, often hours at a time, 
making only an occasional preening movement, or else they walk 
slowly at a temperature-dependent rate (White, 1968; Hubbell, 
unpublished results). A third temporally important activity, eating, 
has a rate of energy expenditure close to the resting state, and can be 
treated as resting. A maximal metabolic scope of about two was obtained 
for metabolic rates (averaged over hourly periods) between times of 
low and unusually high activity. The isopod is nocturnal, with a peak in 
activity usually just before midnight (Paris, 1963; Hubbell, unpublished 
results). Finally, when isopods are starved in the presence of a food 
stimulus they cannot reach, total daily activity increases up to about 



4 . ECOLOGICAL BIOENERGETICS 303 

five days, and then begins to decrease as the animals weaken. The 
functional form of this relationship, however, has not yet been well 
defined. Until more information is available about activity, we shall 
model its effect upon respiration rate as a simple additive term propor-
tional to integrated growth rate error E. This signal will be continuously 
"on" in the linear model because of the linearity assumption; in the 
nonlinear model, on the other hand, it will only be "on" for positive values 
of E and when physical factors are appropriate for activity. In other 
words, we are assuming that the isopod will exhibit locomotory activity 
in proportion to its current nutritional state, modified by the current 
state of the "weather." 

The linear model of energy-dissipating processes in a poikilotherm 
emerging from this discussion is as follows: If R{s) is respiration rate, 

R(s) = KRA · SA(s) + KRE · E(s) + KRP · P(s), (31) 

where KRA, KREy and KRP are proportionality factors, and SA(s), 
E(s), and P(s) are as before. The first term is the contribution of specific 
dynamic action, while the second and third terms are the activity and 
body size components, respectively. In the nonlinear model the body 
size component becomes an exponential function of P. Omitted from 
this discussion are the important nonlinear effects of molting and 
reproduction on respiration rate; however, discussion of these effects, as 
mentioned earlier, will appear elsewhere. 

Before considering the assembled model, we examine briefly the 
concept of the "nutritional state" of an animal. Obviously, since we 
are dealing only with calories, our use of the term is less inclusive 
than that usually meant by nutritional physiologists. Thus, our model 
of nutrition will not explain changes in an animal's growth performance 
due to protein or micronutrient deficiencies. Nevertheless, the effects 
of such deficiencies can eventually be included in our model if desired, 
and without drawing our attention away from the problem of energy 
regulation in animals. This can be accomplished by interpreting non-
caloric limitations on growth performance as the result of measurable 
"degenerative" changes (i.e., changes away from optimal values) in the 
parameters of the bioenergetics control system. 

Recognizing, however, that currently we can attempt only to explain 
the effects of caloric deficiencies on growth, we still face a major problem 
with the concept of nutritional state as modeled thus far. In the simple 
linear system the variable E (defined as the caloric nutritional condition 
of an animal) is simply the growth rate error signal integrated over the 
life of the individual. According to this definition, an animal has a 
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complete memory of its nutritional history over its entire lifetime. 
If this were true, no animal could be permanently stunted by starvation. 
From the point of view of the model, if an animal grew at a suboptimal 
rate indefinitely, it could conceivably build up an enormous integrated 
growth rate error which, when added to the body size component, 
would produce an impossibly large gut capacity. It would also produce 
an activity component of respiration rate that was unrealistically large. 
Clearly, animals do not have an indefinite memory of prior nutritional 
history; in reality, they "forget" past food deprivation, and in general, 
the farther back in time the deprivation is, the more it is forgotten. 

We have evidence of this "memory loss" in growth rate experiments 
which we have conducted on Armadillidium (Hubbell and Paris, in 
preparation). Cohorts of newborn isopods were maintained either on a 
continuous food regime or on different pulse feeding regimes (in which 
they were fed one day for every one, two, four, six, or eight days starved). 
At the end of about 50 days, all cohorts were put onto a continuous 
food regime to test for "memory" of long-term nutritional history. 
During the 50 days of exposure to pulsed food availability, the isopods 
grew at greater exponential rates than would be expected simply from 
the percentage time exposed to food (see Fig. 11). This result indicates 
that on a short-term basis, isopods "remember" their nutritional history 
and attempt to compensate for it. When the isopods were shifted to 
continuous food, the initial weight-specific growth rates in all but 
the ninth-day cohort were greater than the average weight-specific 
rates in the continuously fed cohort, but only for the first four or five 
days. However, the initial growth rates of the cohorts fed every fifth, 
seventh, and ninth days were no greater than those of the cohorts fed 
every other day or every third day. This suggests that after about three 
to five days of starvation, further starvation cannot significantly increase 
the isopod's compensatory efforts. Of course, if the animal is starved 
a very long time, system degeneration takes place, reducing even its 
limited abilities to compensate, as in the case of our ninth-day cohort. 

In modeling the limited ability of animals to respond to their nutri-
tional history, I have assumed that animals forget at an exponentially 
decreasing rate. Accordingly, they will remember immediately past 
nutritional events more accurately than events long ago. In the model this 
can be accomplished simply by decreasing the integrated growth rate 
error £ at a rate which is proportional to the size of E. Thus, instead 
of KGE I s for the transfer function of E(s)jGE(s)y we have 

E(s)IGE(s) = KGEI(s + KE), (32) 

where KGE is the amplification factor of growth rate error and KE is 
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FIG. 11. Relationship between the coefficient of exponential growth at 24.5 C and 
the fractional amount of time (in days) exposed to food. The dotted line indicates the 
growth rate coefficients to be expected if the isopods grew at a rate simply proportional 
to the fraction of time exposed to food. The vertical bars indicate 95 percent confidence 
limits about the mean growth rate coefficient. (Time unit is one day.) 

the gain term in the negative feedback in the forgetting process. 
When Eq. (32) is exposed to a unit impulse in GE(t)y E(t) falls from an 
initial value of KGE/KE at an exponential rate, with a time constant of 
I IKE. 

The assembled linear bioenergetics model is illustrated in Fig. 12. 
The diagram includes two nonlinear multipliers, shown as circles 
containing a multiplication sign, which should be disregarded for the 
moment. As in the case of the simple linear model, we wish to determine 
the transfer function AG(s)IDG(s); accordingly, we again open the 
desired growth rate feedback loop. Simplification of a block diagram 
of this complexity is most conveniently carried out in steps. The first 
step has already been taken with the determination of the digestive 
system transfer function SA(s)/SC(s); substituting Eq. (30) for the gut 
component in Fig. 12 gives the somewhat simplified diagram of Fig. 13a. 
Note that the output from H-^s), the amount of food in the gut, is an 
input at two points in the remainder of the model: the specific dynamic 
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FIG. 12. Second linear version of bioenergetics model. 

action component of respiration rate as well as the assimilation rate 
of the "linear" isopod. 

The next simplification we can make is to find the transfer function 
AG(s)IE(s). 

AG(s) = A(s) - R(s) (33) 

= (KA - KRA) · H^s) · SC(s) - (KRP/s) ■ AG(s) - KRE · E(s). (34) 

Since SC(s) = E(s) + (KSC/s) · AG(s), we have 

AG(s) _ slH^s) · (KA - KRA) - KRE] 
H2(s) 

E(s) s + KRP - Hx{s) · {KA - KRA) · KSC ' (35) 

as shown in Fig. 13b. 
The final simplification removes the two remaining feedback loops 

in the model. From Eq. (32) 

AG{s) = ^syKGE . G m 

which gives the open-loop transfer function in Fig. 13c 

AG(s) KGE 
DG(s) ~ s + KE + KGE · H2(s) ' 

(36) 

(37) 
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FIG. 13. (a-c) Sequential steps in the simplification of the second linear bioenergetics 
model (see text). 

To obtain AG{s)jDG{s) as a rational algebraic fraction of the form of 
Eq. (11), we substitute H^fjs) into Eq. (35) and H2(s) into Eq. (37) and 
obtain 

as2 + bs AG(s) 
DG(s) _ s3 + cs2 + ds + e ' (38) 

where a = -KRE · KGE, b = KGE · [KC · (KA - KRA) - KRE · 
(KC + KA + KD)}, c = KC + KA + KD + KE + KRP - KRE · 
KGE, d = (KE + KRP - KRE · KGE) · (ÜTC + I M + KD) + KC · 
(KGE - /(TSC) · ( / M - KRA) + KRP · KE, and e = KE · [ÜTÄP · 
(Ä:C + KA + Ü:Z)) - Ä:C · KSC · (iC4 - KRA)]. 
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This linear bioenergetics model is a third-order system, so it can 
have either three real eigenvalues or one real and two complex eigen-
values; in the latter case it is oscillatory. Unlike the simple linear model, 
closing the loop of P(s) onto DG(s) does not increase the order of this 
system, but it does change the position of the system's eigenvalues as 
well as its phase and gain. Thus, if we again assume the existence of a 
direct and additive disturbance D(s) on growth rate in order to compute 
a closed-loop transfer function for the model, we have 

AG(s) = A(s) - R(s) + D(s), (39) 

which can be rewritten 

AG{s) s*+fs*+gs 
D(s) s* + cs2 +hs + / ' K } 

where f = KC + KA + KD + KE, g = KE(KC + KA + KD), 
h = d - KDGa, a n d ; = e - KDGb. 

The caloric state of our "linear" isopod at any instant in time can be 
completely characterized by just three state variables. In our case these 
are net production (P), the amount of food in the gut (SA), and the 
nutritional condition of the animal (E). All other variables in the model 
are intermediate variables that are eliminated in the algebra of computing 
a transfer function for the model. The order of a system (in our case 
three) determines the minimum number of state variables necessary 
to completely determine the system's behavior. These state variables 
form a state vector which, when specified at some arbitrary time tQ , 
together with the inputs that arrive during the interval between t0 and 
some later time t1 , uniquely determines the values of the vector at 
time tx , as well as at any time between t0 and tx . Thus, once the initial 
values of P, SA, and E are known, along with the values of the inputs 
through time, the caloric state of the isopod can be predicted analytically 
at any later time. 

As in the case of the simple linear model, we are interested in the 
stability of the system as a function of the parameter values in Eqs. (38) 
and (40). Because there are 10 parameters in the model, a very thorough 
parameter space study of all its parameters would be an exceedingly 
great task. In such complex cases, however, one is usually not interested 
in "global'' characteristics because of the many constraints upon values 
that the parameters can take in the real system. For our bioenergetics 
model of whole animals, broad constraints are imposed by the laws of 
thermodynamics, and narrow constraints by the laws of lumped, lower-
level, physiological systems. One function of the empirical half of 
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systems analysis is to determine what these constraints are, as well as 
their variability in natural systems. 

For purposes of illustration, I shall describe here the response of 
the model's eigenvalues to changes in just one parameter KGE. This 
parameter determines the loop amplification of growth rate error. 
A more extensive study of parameter constraints and spaces will be 
published elsewhere (Hubbell, in preparation). I have chosen KGE for 
illustration for two reasons. First, recall from the simple linear model 
that the control abilities of a system are strongly affected by the loop 
gain of the system. Second, unlike most of the other parameters in the 
model, the value of KGE can be estimated only indirectly by empirical 
means; consequently, a parameter space study is essential as a corrobo-
rative check. A 3-dimensional graph showing the movement of the 
system's three eigenvalues as the value of KGE is increased from zero 
to about thirty is shown in Fig. 14; I used what I consider to be a 
reasonable set of parameters for an isopod living at a constant 20 C 
temperature. It should be noted that these linear system parameters 
are based upon, but modified from, parameters measured on a nonlinear 

FIG. 14. Parameter space study of KGE, the growth rate error amplification factor, 
showing the response of the system's eigenvalues (see text). 
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system—the isopod; therefore, they should be regarded as relatively 
crude approximations to the real parameters of the nonlinear system. 
Moreover, the optimization of the parameter estimates has not yet 
been undertaken, so that some changes can be expected in future 
publications (Hubbell, in progress). Tentative values for the parameters 
other than KGE are 

KC = 2.0/hr (ingestion rate factor) 
KA = 0.05/hr (assimilation rate factor) 
KD = 0.085/hr (defecation rate factor) 

KRA = 0.02/hr (specific dynamic action factor) 
KRP = 0.002/hr (body size factor in respiration) 
KRE = 0.003/hr (activity factor in respiration) 

KE = 0.0021/hr (nutritional condition loss rate factor) 
KSC = 0.068 (body size factor in gut capacity) 
KDG = 0.00173/hr (desired growth rate factor at 20 C). 

The poles of the unforced system with the desired growth rate loop 
open are illustrated in Fig. 14. By unforced, we mean that the system has 
been exposed to a unit impulse input of desired growth rate. Since the 
Laplace transform of a unit impulse is one (Fig. 6), the response of 
actual growth rate to a hypothetical impulse in desired growth rate is 
identically Eq. (38). Pole 1 in the figure is associated with the state 
variable describing the amount of food in the gut (in calories), pole 2 
with the nutritional condition of the animal, and pole 3 with the isopod's 
caloric content (net production). In the system with the desired growth 
rate loop open, we want the actual growth rate AG(t) to be asymptotically 
stable (Chapter 2) in response to the impulse transient in DG(t). The 
figure indicates that the system is stable for all positive values of KGEy 

because the real parts of all three eigenvalues are negative. 
Note that as the amplification of growth rate error increases above 

a value of about 20, poles 1 and 2 take on imaginary parts, and the 
system becomes unrealistically oscillatory (although the oscillations are 
damped). Oscillations are particularly unrealistic for the gut, because 
they may cause negative values of caloric gut contents SA. Hence, KGE 
must have a value somewhere between 1 and 20. This range is narrowed 
considerably more by the fact that the value of KGE chosen must result 
in time constants for the disappearance of food from the gut, and for 
the memory of prior nutritional history, that are the same as the empiri-
cally determined time constants for these processes. Accordingly, the 
amplification factor of GE must be relatively low, somewhere between 1 
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and 4.5, because only in this region do poles 1 and 2 give realistic values 
for these time constants. 

By comparison with the simple linear model, this model is less 
successful at tracking a desired growth rate signal, both because of the 
lag introduced by the time to fill the gut and, more importantly, because 
our "linear" isopod now gradually forgets its nutritional history. Hence, 
if the model is exposed to a unit step input in DG(t), AG(t) rises rapidly 
toward the desired level of one at first, but quickly slows down, reaching 
a maximum below one. Then it slowly decays back to zero at an 
exponentially decreasing rate. In other words, the isopod cannot 
remember indefinitely the step transient in desired growth rate, resulting 
from its limited memory of growth rate error. Note that if the nutritional 
condition loss rate factor (KE) is zero, then the system will once more 
successfully track a desired growth rate signal indefinitely. Also note 
that if KE is zero, the parameter e of Eq. (38) becomes zero, which 
reduces the order of the system to two. 

In spite of the reduced ability to track a desired growth rate signal, 
however, the intact model will still grow exponentially. As in the simple 
linear model, closing the desired growth rate loop has the desirable 
effect of introducing exponential instability. While in the open-loop 
model, parameters c, d, and e of Eq. (38) are all positive, in the closed-
loop model parameters h and j of Eq. (40) are positive and negative, 
respectively, so that one eigenvalue (pole 3) becomes a positive real 
number. It should be emphasized, however, that the isopod will not 
grow at a rate equal to KDG · P: because the nutritional state is 
gradually forgotten, actual growth rate will lag increasingly behind 
DG(t). Therefore, the model will grow at the exponential rates measured 
on Armadillidium by the optimal environment method (Section IV) only 
if we increase the magnitude of the desired growth rate signal by 
increasing the value of KDG listed above. 

Figure 14 makes it possible to evaluate the relative importance of 
the behavior of the three state variables in the dynamics of energy and 
growth rate control. Each pole of a linear system is the negative inverse 
of the time constant of one of the additive exponential terms in the 
time-domain solution. Hence, the more negative a pole is, the smaller 
its time constant, and the "faster" is that component in the time-domain 
solution. An exponential component whose time constant is large 
relative to the other time constants in the system, given equal scaling 
of all exponential terms by constants, will tend to dominate the dynamics 
of the system's response to inputs. In the bioenergetics model, the time 
constants of the body caloric content and the nutritional condition of 
the isopod are large relative to that of the gut contents, and have larger 
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scale factors as well. Thus, the dynamics of nutritional state and net 
production will tend to dominate the tracking behavior of actual growth 
rate on desired growth rate, whether DG is generated endogenously in 
a natural manner, or exogenously in an artificial manner. 

Figure 14 also indicates the existence of emergent properties of the 
bioenergetics model, properties which are determined as much by the 
interaction of the system's components as by the behavior of these 
components "in isolation." Note that the parameter KGE partly deter-
mines the location of all three poles of the system. Thus, KGE amplifies 
growth rate error, but in so doing it influences the rate at which the gut 
fills and empties, the rate at which the isopod forgets its nutritional state, 
and to a lesser extent, the rate at which the isopod grows. Similarly, the 
other parameters of the system influence the behavior of the system as a 
whole, not simply the behavior of the subcomponent to which they belong. 

VIL Toward a More Realistic Nonlinear Bioenergetics Model 

Although the linear model developed in the previous section has a 
fair amount of physiological detail, at least for ecological purposes, 
its linearity severely limits its ultimate heuristic and predictive value. 
Given a reasonable value for the state vector at some moment in time, 
and a set of parameters reasonable for current body size, the linear 
model can probably predict quite accurately the major aspects of the 
bioenergetics of an isopod for a relatively short period of time—a few 
days or perhaps a week or two—provided that the isopod's environment 
is completely constant. By suitable parameter manipulation, the linear 
model might even be made to predict one variable, such as body caloric 
content, accurately over the period of exponential growth. This "predic-
tion" would be more coincidental than otherwise, however, because 
variables other than P would have unrealistic values. Again a constant 
environment is required. Perfectly constant environments are rare; 
also they tend to be rather uninteresting. 

Environmental variables influence the bioenergetics of animals 
nonlinearly, usually with a multiplicative effect. Consider the two 
multipliers which we previously ignored in Fig. 12, one of which inter-
rupts the ingestion rate signal, and the other of which interrupts the 
signal computing the activity component of respiration rate. Food 
availability is one environmental factor which influences multiplicatively 
the rate at which an isopod eats. If we scale food availability (F) from 
zero to one, and multiply it by SEy we can simulate the effect of varying 
food availability on ingestion rate and on the animal's ability to control 
energy and growth rate. Thus, when food is unlimited, F equals one, 
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and the animal completely determines the rate at which it consumes 
food, according to internally defined needs. On the other hand, when 
no food is available, F equals zero, and the animal eats nothing in spite 
of its ''inclination'' to feed at the rate KC · SE. 

Similarly, physical factors alter in a multiplicative fashion an animal's 
tendency to search actively for food. The daily light regime probably 
entrains the isopod's circadian activity, and can be represented by a 
variable ranging between zero and one. The action of temperature, on 
the other hand, probably cannot be represented by such a variable, 
because at high temperatures activity is elevated above what would be 
expected from the animal's "hunger" alone, as the isopod attempts 
to escape from unfavorably hot conditions. 

Environmental disturbances may act to interrupt signals in the system, 
as considered above, but they may act directly on the parameters of 
the system as well. My work to date has dealt primarily with one input 
variable, temperature, and its effects on the parameters of the biological 
rate processes in Armadillidium. In particular, I shall consider adaptive 
parameter control by the isopod in the process of temperature acclima-
tion of respiration rate. 

Although it is well known that the rate of biochemical reactions is 
exponentially related to the inverse of absolute temperature and can be 
described by the Arrhenius equation (Johnson et al., 1954), no general 
mathematical model which adequately describes temperature acclimation 
by organisms has been developed. Typically the temperature dependence 
of biological rate phenomena is, itself, dependent on the organism's 
history of exposure to temperature. Thus, the response of respiration 
rate to temperature is nonlinear, both because of the exponential 
Arrhenius relationship and because of the dependence upon prior 
temperature conditions. To construct a nonlinear model for this system 
would require the explicit modeling of effects on respiration rate of all 
possible past temperature regimes, a manifestly impossible task. There-
fore, we have built a model of respiration which is linearized with respect 
to temperature, while at the same time attempting to retain the essential 
features of the dynamic behavior of the nonlinear system. 

According to the Arrhenius equation, the natural logarithm of 
respiration rate is proportional to l/K, a nonlinear relationship to 
absolute temperature. In order to obtain a linear relationship between 
log respiration rate and temperature, it was assumed that 

R' =\ogR=Cl + c3(C), (41) 

where cx and c3 are constants. Note that this is still a nonlinear equation 
by the definition given in Section V; however, the nonlinearity introduced 
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by the constant cx is of a very simple sort which can easily be handled 
mathematically. Note also that the equation is nonlinear in R. This 
"linear" approximation to the Arrhenius equation is only adequate 
for relatively small temperature ranges. The temperature range of 
interest to the biology of Armadillidium is 273-303 K, small enough 
so that our assumption of linearity introduces an insignificant error. 
This equation, then, can be used to account for the temperature-
proportional responses of respiration rate; it does not, however, account 
for temperature acclimation. 

Temperature acclimation in the respiration rate of A. vulgäre has 
been described by Edney (1964). Apart from the effects of specific 
dynamic action on respiration rate, which he apparently did not take 
into account, his results have been largely confirmed by me (Hubbell, 
in preparation). Acclimation in the standard metabolic rate is most 
obvious when an isopod is kept at a constant temperature for some time, 
and then suddenly exposed to a step transient to a different constant 
temperature. Rather than shifting more or less instantaneously to a 
new steady-state level, as Eq. (41) predicts, respiration rate overshoots 
the new steady-state level if the new temperature is higher, or under-
shoots the new level if the temperature is lower. This overcompensation 
in the acclimation responses of animals is, of course, well known 
(Prosser and Brown, 1961; Precht et al, 1955). 

Overshooting and undershooting is characteristic of a system which 
is responsive to both an input variable and its derivative (or other 
higher-order terms). In the present case, the logarithm of respiration 
rate is sensitive both to temperature and to the rate at which temperature 
is changing. The simplest differential equation which has these properties 
is the first-order equation, 

R' =c1+c3(k^ + (C)), (42) 

where cx , c3 , and k are constants. This equation, however, predicts 
that respiration rate becomes infinite when the animal is exposed to 
an instantaneous step change in temperature, an absurdity resulting 
from the instantaneous response of respiration rate in Eq. (42) to the 
rate of temperature change. Actually, of course, there is a lag in the 
response, which means that the logarithm of respiration rate is not 
perfectly proportional to the derivative of temperature. This lag has 
been included in the model as 

Τ*Ρ + *-., + *(.τφ + ίν). (43) 
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The constant T is the time constant of the exponential decay of log 
respiration rate to the new steady-state level. The constant a determines 
the type of response exhibited by respiration rate to temperature changes, 
as shown in Fig. 15: If a = 1, acclimation does not occur, and respiration 
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FIG. 15. Possible responses of a biological rate to a step in temperature. See text 
for discussion. 

rate responds stepwise to a step change in temperature; if oc < 1, 
acclimation occurs, but respiration rate responds with a lag to a step 
change in temperature; if oc > 1, the most commonly observed type 
of acclimation occurs, viz., respiration rate overshoots or under moots 
the new steady-state level. In the latter case the equation describes 
a "first-order lead-lag" system. 

Respiration rate changes also in response to changes in body size. 
As is generally true, in Armadillidium the logarithm of respiration rate 
is linearly related to the logarithm of weight (Edney, 1964; Hubbell, 
unpublished). This relationship can be accommodated by further 
modification of the equation, to make it read 

T?ψ- + R'=c1+ c2(log P) + c3 (ccT^p- + (C)), (44) 
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where c2 is the proportionality constant for the body size component. 
The caloric content of the isopod P changes so slowly that it has no 
influence on d(R')ldt. In A. vulgäre the empirical estimates of the 
parameters for this equation are: T = 96.4 hr, c± = —1.91 log cal, 
c2 = 0.234, c3 = 0.013 log cal/C, and a = 1.68 (Hubbell, in prepara-
tion). 

As an illustration of a test of this lead-lag model of respiration rate, 
a simulation of the response in the respiration rate of a 50-mg isopod 
to stepwise changes in temperature is compared to actual results of 
respiration measurements in Fig. 16; the values are scaled for a 50-mg 
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FIG. 16. Simulation of response of respiration rate (upper graph) to a hypothetical 
square wave temperature input (lower graph). The solid line is the model's linearized 
prediction. The broken line is based on actual results, scaled for a 50-mg isopod, of the 
nonlinear step response of standard metabolic rate to temperature. The calculations are 
based on the equation Td(logR)/dt + log R = ολ + c2P + c3[aTd(C)/dt + (C)], where 
T is the time constant, R is the respiration rate (microliters per hour), cx , c2 , c3 , α are 
constants, and P is body caloric content (log). 

animal. The solid line in the upper graph is the output from the model, 
and the dotted line presents the performance of the animal. The curve 
of temperature inputs is shown in the lower graph. In this simulation, 
the caloric content (weight) of the animal was held constant to illustrate 
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more clearly the effects of temperature change on respiration rate. 
The model predicts the logarithm of respiration rate as a function of 
temperature, but in the graph respiration rate is plotted against temper-
ature, because our interest is in the number of calories dissipated per 
unit time by the isopod. Thus, having solved the linear approximation 
of the response of log R to temperature and body size, we have returned 
to the nonlinear relationship between respiration rate and temperature 
by taking the antilogarithm of log R. 

With this linear differential equation to model effects of temperature 
on respiration rate, it becomes possible to compute respiration rate 
given any conceivable history of temperature exposure of the animal. 
The equation has built-in lags which, in effect, give the model a 
"memory" of acclimation history. Because the model is linear, inputs are 
additive so that short-term cycles (e.g., diurnal) can be superimposed 
on long-term cycles (e.g., seasonal), and the model will predict the 
appropriate acclimation response to the combined effects of these 
temperature fluctuations. Even though the values for the parameters in 
the model were derived from laboratory experiments with Armadillidium 
this model can predict with satisfactory accuracy the fluctuations in 
standard metabolic rate (in calories) for an isopod of a specified size 
under field conditions, provided that the temperatures which it expe-
riences are known. 

Although we have been directly modeling effects of temperature 
and body size on respiration rate, it should be clear that it is the respira-
tion rate parameters, such as KRP> KRA, and KRE, which are, in 
reality, being directly affected. This fact cannot alter our conclusions 
from the model, however, because the parameters must respond to 
temperature and body size in a manner similar to respiration rate; 
otherwise, they would not produce a signal (respiration rate) with these 
response properties. 

The dynamic behavior of this first-order lead-lag model can be fully 
described by evaluating the frequency response of the system. If an 
isopod is exposed to a sinusoidally varying temperature as, for example, 
in a diurnal cycle, its respiration rate will also vary sinusoidally with time. 
This response is represented graphically in Fig. 17, which is a classical 
Bode diagram of the relative amplitude and phase of the input and 
output waves of a system, plotted for different frequencies of the input 
signal. The upper graph shows the logarithm of the ratio, (amplitude of 
the log R sine wave): (amplitude of the temperature sine wave). The 
lower graph shows the phase of the log respiration wave relative to 
the temperature wave. As the frequency of the input signal becomes 
greater, the logarithm of the amplitude ratio (log AR) increases in a 
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FIG. 17. Bode diagram illustrating frequency response of respiratory acclimation to 
temperature with H(jw) = k · [Ο'αωΤ + 1)/(/ωΤ + 1)], where T = 96.4 hr, a = 1.6844, 
k = 0.01266, and ω is in radians per hour. See text for discussion. 

sigmoid fashion from a low to a high plateau. This increase reflects 
incomplete respiratory acclimation to temperature at higher frequencies, 
because respiration rate is overshooting and undershooting with each rise 
and fall in temperature. At still higher frequencies (not plotted), the 
curve would again fall because respiration rate would no longer be able 
to follow the very rapid changes in temperature. When ωΤ = 0.28 rad, 
where ω = 0.00291 rad/hr, a complete cycle of temperature occurs 
every three months. Thus, for seasonal temperature cycles having a 
period of three months or more, the isopod is essentially completely 
acclimated at all times. Partial acclimation occurs when the period is 
one week (ωΤ = 3.59 rad and ω = 0.0374 rad/hr). Finally, for cycles 
with a 24-hr period (ωΤ = 25.3 rad and ω = 0.2618 rad/hr), the isopod 
shows very little acclimation. 

Note that the sine wave of the logarithm of respiration rate is ahead, 
in phase, of the temperature sine wave. The lead in phase is a result of 
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partial acclimation to temperature: at low intermediate frequencies, 
the animal has longer to acclimate as temperature changes than it has 
at higher frequencies. This results in a large phase lead. At very low 
frequencies (not plotted), respiration follows the temperature curve 
exactly (complete acclimation), so that there is no phase lead. At very 
high frequencies, respiration has no time to develop a phase lead because 
no acclimation takes place before temperatures change. 

All of the parameters of the model discussed in Section VI, with 
the exception of KSC and KGE, are influenced by temperature; and 
all but KGE are also probably exponential functions of body weight. 
We are currently investigating the effects of temperature on the para-
meters of the digestive system, and our tentative conclusion is that they 
exhibit lead-lag responses to temperature similar to those of the para-
meters of the respiratory system. Growth rates, on the other hand, 
do not seem to exhibit overshoot, not is there any apparent tendency 
for growth rates to be accelerated by cycling temperatures (Hubbell, 
in preparation), as has been found in a number of insects (Cook, 1921; 
Parker, 1929; Ludwig, 1928). The frequencies in the temperature cycle 
tested so far range from 0.5 to 0.0625 cycles/day. It is possible, however, 
that still higher frequencies could have an accelerating effect on growth 
rates. 

Although we have been considering primarily the nonlinearity of 
environmental disturbance inputs, obviously this is not the only class 
of nonlinearities in the bioenergetics model, because even in a constant 
environment the system is nonlinear. As mentioned above, most of the 
system's parameters are log-log functions of body caloric content 
(weight). Moreover, desired growth rate is a nonlinear process. In 
Armadillidium, we have seen that linear models of desired growth rate 
suffice, both in the juvenile when the isopod is growing exponentially, 
and in the adult, when it is growing arithmetically. The nonlinearity is 
introduced by the switch from the juvenile to the adult linear model, 
with the opening of the desired growth rate feedback loop. In animals 
which do not grow continuously throughout life or have otherwise 
different growth patterns, we may expect to find different types of 
desired growth rate nonlinearities. 

Unfortunately, less is known about the nonlinearities in other compo-
nents of the system. In the case of the digestive system, however, some 
educated guesses can be made about what types of nonlinearity to 
expect. According to both of the linear models presented earlier, isopods 
eat continuously in the presence of food. Continuous feeding, of course, 
is not observed in isopods; like all other animals, they have essential 
occupations in addition to eating. Clearly, then, animals must have 
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built-in mechanisms for terminating currently inappropriate types of 
behavior, and initiating others which are more appropriate for the 
animal's present condition. Such mechanisms are often described 
abstractly in terms of "threshold" switches (Holling, 1966b). Depending 
on whether the value of a criterion variable is above or below some 
threshold value, different types of behavior are exhibited. The effect of 
thresholds in a storage-and-flow model is, of course, to produce 
discontinuous rates. Some indication of the discontinuous nature of 
feeding in Armadillidium is evident from the oscillation in average daily 
ingestion and assimilation rates of unstarved isopods (Fig. 9), although 
a finer time resolution is needed to see the actual discontinuities (Hubbell 
and Paris, in preparation). One way that the threshold effect on ingestion 
could be easily modeled would be to assume that the animal does not 
begin to eat until some fraction of the current gut capacity has been 
emptied. In the model, then, SE would have to reach a value, KSE · SC> 
where KSE is a constant, before feeding would commence. Such a 
model appears to be adequate for a variety of predators (Holling, 1965, 
1966b), but whether it is appropriate for isopods remains to be determined. 

Another type of nonlinearity found in the digestive system of isopods 
is adaptive parameter control. We know for certain that KD, and 
probably also KC and KA, are under the partial control of the system. 
When Armadillidium is without food, or when food availability is low, 
the isopod exhibits a greater assimilation fraction. This results in part 
from a slowdown in defecation rate, which means that the food remains 
in the gut for a longer period of time. Isopods typically assimilate a 
rather small fraction of what they ingest; however, when food is scarce, 
they may digest components of the food that are unnecessarily costly to 
assimilate otherwise (i.e., when food is abundant) (Hubbell et al., 1965). 

Clearly, much remains to be done on the nonlinear model. A major 
problem requiring attention is how animals respond to the spatial 
heterogeneity of their environment. Note that the models presented 
here have no space dimensions. There are two main courses of action 
open. One is to model explicitly the spatial attributes of ecological 
events by including distance as an independent variable in the model. 
The problem with this, of course, is that it would greatly increase the 
complexity of the model because we would then have to deal with 
partial differential equations in a "distributed" system. A less satisfactory, 
but possibly more practical approach is to attempt to describe how 
spatial properties alter the model's time-dependent functions, without 
explicitly modeling the space dimensions themselves. This was Ivlev's 
(1961) approach in describing how the dispersion of food affects the 
ingestion rate of fishes. 
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In conclusion, the objective of this chapter has been to underscore 
the importance of control in the ecological bioenergetics of animals. 
To treat organisms as passive, open-loop, energy-partitioning devices is 
to obscure a basic characteristic of living systems: the adaptive control 
of energy and growth in the face of a limited and varying potential 
energy supply. To illustrate some basic energy-regulating properties of 
animals generally, and of the terrestrial isopod, Armadillidium vulgäre, 
in particular, I have presented two linear bioenergetics models of differing 
physiological detail, and aspects of a more realistic nonlinear model 
now under development. If the value and necessity of treating organisms 
as active, energy-controlling systems becomes more widely recognized, 
the objective of this chapter will have been achieved. 
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L Introduction 

Prédation is often studied from the viewpoint of time spent by the 
predator in various activities such as searching for, pursuing, or capturing 
prey organisms, etc. (Holling, 1959a, b, 1965, 1966; Ivlev, 1944; Salt, 
1961, 1967). While the time that a predator devotes to different aspects 
of living is important, time itself is only an indirect measure of the 
critical commodity which all predators, indeed, all organisms, must 
obtain from their environments. Energy is the essential resource, and 
measures of time—while of direct value in some determinations of 
population dynamics—actually serve only as indices of the relative rates 
of energy acquisition and dissipation of individual predators. It is not 
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time per se which determines success or failure of a predator but rather 
optimization of the balance which must be struck between rates of 
energy acquisition and expenditure. Predators, like businessmen, survive 
over the long term not so much because of time spent in various activities 
but rather because energy debits and credits are in balance or show a net 
surplus. 

Individual animals (Brett, 1965a; Glass, 1968a; Ito, 1964; Ivlev, 1939a, 
1960, 1961; Smith, 1935a, b), populations (Slobodkin, 1960, 1962; 
Englemann, 1961; Richman, 1958), trophic levels (Golley, 1960; 
Lindeman, 1942), communities (Odum, 1957; Teal, 1957) and eco-
systems (Patten, 1959) have been investigated from an energetics point 
of view. It is apparent that the study of energetics at any level of ecological 
organization from single individuals to communities or geographic 
regions encompassing more than one ecological community can be of 
great value (Slobodkin, 1968; Watt, 1968). An understanding of the 
energy relationships which exist within a single individual or between 
two or more individuals of the same or different species facilitates solution 
of practical problems in applied ecology, such as biomass production 
(Brocksen et al.y 1968; Gerking, 1962; Paloheimo and Dickie, 1966a, b). 
Similarly, energetics studies may contribute to ecological theory 
(Brocksen et al., 1968; Warren and Davis, 1967; Engelmann, 1966) and 
provide a basis for comparison, which is ubiquitously applicable to all 
levels of organization from the individual to the ecosystem (Odum, 1968). 

Energy, or caloric flux, was, therefore, employed to explore some 
aspects of a problem in prédation arising from an apparent discrepancy 
between predator-prey relationships in nature and corresponding 
laboratory systems. The disparity between these two situations can be 
summed up as follows. In nature, most predators and their prey coexist 
in the same general environment for indefinite periods of time without 
the annihilation of the prey and subsequent starvation of the predator. 
There must be some explanation for the reasonably long-term survival 
of both organisms. That this relative stability does not obtain in the 
laboratory for the majority of experimental predator and prey populations 
is well known. In the classical case of laboratory populations (Gause, 
1934; Gause et al., 1936), it was shown that predators and their prey 
would survive only under the special circumstances of providing refuges 
for the prey by denying the predators access to some part of the environ-
ment or by introducing additional prey into the environment when there 
was a reduction in prey abundance. In a more recent study, Huffaker 
(1958) examined two more possible explanations: First, large environ-
mental size allows the dispersal of prey into parts of the habitat unoccu-
pied by predators with the result that prey survive as fugitives; Second, 
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prey survive because of partial (not restrictive) refuges which result 
from an increase in environmental complexity. There are, therefore, 
at least four potentially testable hypotheses and their various combina-
tions, which might serve to explain prey survival and/or predator success. 

(1) Prey reproductive rates or immigration of prey from areas 
outside of the normal habitat of the predator might be high enough to 
prevent extermination of the prey. 

(2) Environments might by virtue of sheer size lower the probability 
of encounters between predators and prey and thereby allow the 
continued existence of the prey. 

(3) Refuges may exist within the environment which are accessible 
to prey but totally exclude predators. 

(4) Refuges in the habitat may provide partial protection for prey 
by making access by predators difficult due to some behavioral phenom-
enon (Johannes and Larkin, 1961) or by creating a partial physical 
barrier which reduces predator efficiency. 

In practice, it is somewhat difficult to separate the effects of these 
four possibilities although the first represents a more or less discrete 
hypothesis. The fourth hypothesis can be examined in the laboratory 
by working in an experimental universe which is small enough for the 
predator to see all parts of it from any point and which is designed 
so that there are no complete refuges for the prey. 

Predator survival is, of course, intimately related to prey survival. 
If prey are exploited by a predator at a rate which is in excess of the 
maximum sustained yield, then prey abundance will decline to zero, 
and this will be followed very shortly by predator extinction. On the 
other hand, if prey survival is excessively high (e.g., due to a low 
predator attack rate), then the predator will also experience the same fate 
although the proximal causes and the effect on the prey are different in 
the two cases. In short, predators and prey must coexist in an environ-
ment which does not permit over-exploitation of prey and, at the same 
time, allows the predator to acquire food at a level concomitant with its 
energy requirements. Therefore, the hypothesis explored by the present 
research work is the fourth possibility listed above. This will be examined 
by performing a predator energetics analysis, developing a mathe-
matical and computer model of the various means by which a predator 
dissipates energy acquired through feeding, and, finally, an analysis of 
filmed feeding sessions. The various inputs for the model will be 
derived from a study of metabolic requirements of the largemouth 
black bass (Micropterus salmoides) and from a description of the environ-
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ment in which the bass is pursuing and capturing a small prey fish 
(Lebistes reticulatus). 

The analytical approach which was adopted is the experimental 
components analysis technique of Holling (1963, 1964, 1965, 1966) 
since this method is ideally suited to the solution of problems of this 
general type. Accordingly, the processes of energy intake and utilization 
can be fragmented, separated into basic and subsidiary components in 
the sense of Holling (1963), analyzed individually, and given a mathe-
matical description, and then the entire process reconstructed from 
these submodels. As the whole energetic process is rebuilt from 
submodels or sub-submodels, and interactions between the various com-
ponents can be included, the end product should then be a reasonably 
accurate and realistic systems model of predator energetics which can be 
used for descriptive, analytic, and predictive (through computer simula-
tion) purposes. In principle, it should be possible to model from an 
energy point of view a bass feeding on a small prey fish given certain 
input information such as the temperature, physical description of 
plant densities characteristic of the environment, prey density, and 
predator weight. Furthermore, it should be possible to determine 
which of numerous factors all affecting energy dissipation are most 
important in determining the rates of food acquisition and utilization. 

With due awareness of the existence of various feedback loops which 
exist between components, the general model of energetics adopted here 
is similar to those developed by Ivlev (1939b, 1960) and further elabo-
rated by Rashevsky (1959) and Ursin (1967). Basically, the model will 
be viewed as a series of additive components 

Et = Ew + Er + E& + Egf (1) 

where Et is total energy requirement (food), Ew is energy wasted due to 
incomplete assimilation, Ev is energy required for routine metabolism, 
E& is energy required for active metabolism, and Eg is energy required 
for growth and reproduction. Some data pertaining to Ew (Blackburn, 
1968: p. 7) have been collected for the largemouth bass. Blackburn 
found digestive efficiency 

calories ingested — calories defecated 
calories ingested 

to be approximately 90%. This value is somewhat higher than those of 
other investigators and was based on a rather small number of observa-
tions. Accordingly, until data in the literature or indications from 
further experiments suggest a more realistic alternative, a value of 
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8 5 % for assimilation efficiency determined by Brocksen et al, (1968), 
Warren and Davis (1967), and Winberg (1956, p. 156) will be assumed to 
be correct. Similarly, Eg may be derived from the net difference (positive 
or negative) between energy intake in the form of food and energy 
dissipated according to the formula 

Eg = 0.85£t - (ET + ΕΛ). (2) 

Therefore, only two components (Ev and £"a) will be presented here in 
detail. Furthermore, ET and Z?a are assumed to be independent and 
additive basic components. 

IL Materials and Methods 

To determine the parameter values, structure, and relative contribu-
tions of ET and £"a to the bioenergetics and possible environmental 
limitations dictating survival or local extinction of largemouth bass, 
three types of experiments were conducted. First, a physiological study 
of routine metabolic requirements was performed by varying the weight, 
environmental temperature, and time of food deprivation. The dependent 
variable measured was oxygen consumption. Data obtained from this 
set of experiments were then analyzed and assembled into a mathematical 
description of the ET component. The precise method of modeling 
this component is set forth in Section III. Second, an experiment 
was conducted to reveal the energetic requirements of largemouth bass 
at various swimming speeds. The dependent variable measured was 
again oxygen consumption. A detailed mathematical description of 
this component (£a) along with its derivation appears also in Section III. 
With data from, and a mathematical description of, the above two 
experiments, results from the third experiment can be interpreted and 
better understanding of prédation and its bioenergetic implications 
obtained. The third experiment involved determining the amount of 
food actually captured by the bass at four levels of environmental 
complexity and consists of movie films taken during feeding bouts. 
A detailed description of the experimental methods used in all three 
of the above investigations appears below under the appropriate 
subheadings. 

A. EXPERIMENTAL ANIMALS 

The prey fish were female guppies (Lebistes reticulatus) varying in 
weight from 0.5 to 1.0 g (av = 0.6 g) which were collected by dip net 
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at intervals not exceeding five days from the University of California at 
Davis sewage-treatment plant. Females of this size range were used 
because of their abundance and also to minimize possible variability of 
predator attack behavior which might result from using males with 
widely varying colors and color patterns. In addition, since the predator's 
gut capacity is approximately 6-8 g, determined both from the feeding 
studies of Wells (1968) and direct autopsy data, the predator would 
have to eat a number of prey during each feeding session to become 
satiated. This provides a measure of the variability in attack velocity 
during a filmed feeding session, thereby reducing the amount of film 
to be analyzed. 

Largemouth black bass, Micropterus salmoides, were obtained from 
two sources. The majority came from the State of California, Inland 
Fisheries Division fish hatchery at Elk Grove, California, through the 
generosity of Dr. Alex Calhoun. These bass were seined from holding 
ponds, transported approximately 30 miles to Davis, where they were 
held in either 10-ft diameter plastic swimming pools or in 250-gal 
holding tanks. The other source of bass was Lake Berryessa in Napa 
County, California, from which they were seined and transported to 
Davis. The bass were maintained in the laboratory on a diet of guppies, 
Gambusia, and young green sunfish and bluegills. No attempt was made 
to control either light regime or water temperature between experimental 
runs. Before using any fish experimentally, they were moved to different 
tanks and acclimated to desired temperatures as outlined below. 

B. ROUTINE METABOLISM MEASUREMENTS 

Before each run, the bass were fed to satiation every day for at least 
two weeks (satiation was assumed if excess food was present two hours 
after feeding). Since data on six fish could be collected during each 
routine metabolism experiment, all six were placed in a 75-gal tank and 
fed an unmeasured but excess supply of food during the acclimation 
period. It was therefore necessary to assume that each individual received 
a maximum ration, and observations indicated this to be valid. 

Beamish (1964a) measured oxygen consumption after a temperature 
acclimation time of two weeks following a gradual change in temperature 
of ± 1 C/day until the desired temperature had been attained. Brett 
(1964) included an extra week of acclimation at 5-C intervals above IOC 
in raising the temperature of young sockeye, but this was not considered 
necessary for bass, a warm-water fish. Therefore, the acclimation 
regimen of Beamish was employed to avoid confounding effects of 
the previous thermal histories of the fish (Fry, 1957). Some fish were 
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maintained more than eight weeks at the experimental acclimation 
temperature. 

Following the above acclimation procedure, fish were fed to satiation 
(as defined above), weighed individually and placed in respiratory 
chambers of one of two sizes, depending on size of the fish. The 
chambers were cylindrical, 15 cm in diameter by 15 cm long (approxi-
mately 2.5 liters) for the smaller fish, and 15 cm in diameter by 30 cm 
in length (approximately 5 liters) for larger fish. The chambers were 
made of ^-in. Lucite, painted black to reduce visual stimulation, and 
provided with a 7.5-cm diameter hole at one end to allow introduction 
of the fish. This hole was sealed by inserting a No. 14 rubber stopper. 
Other environmental stimuli (Fry, 1947) and vibrations were minimized 
as much as possible by performing the experiments in a concrete block 
laboratory isolated from other buildings. Low intensity vibrations were 
no doubt present since an air conditioner was in operation during the 
summer months and piston type air pumps were operated continuously 
to aerate various aquaria and holding tanks. However, even if slight 
vibration was present, it was at least continuous. 

Data on oxygen consumption were collected by means of a galvanic 
cell oxygen analyzer (Precision Scientific Co.) which operates on the 
principle of 0 2 diffusion through a thin polyethylene membrane. 
Measurement of dissolved oxygen (milligrams of 0 2 per liter) was 
accomplished by reading parts per million (ppm) 0 2 directly on a meter 
calibrated in 0.2-ppm intervals with the capability of estimating 0.03 ppm 
with reasonable accuracy. Dissolved oxygen determinations were made on 
water flowing into the respiration chambers from a constant temperature 
water bath in which the chambers were immersed. The amount of 
dissolved oxygen was then determined in the water flowing out of the 
respiration chambers from a | - in. o.d. Tygon siphon tube. The flow 
of water through the chambers was regulated by means of a screw 
clamp on the siphon hose and was set at a flow rate such that the change 
in dissolved oxygen resulting from extraction by the fish was at least 
1 ppm. The error in interpolating the second decimal place was thereby 
reduced to approximately 3 % . The rate of water flow was measured 
by using a stop watch to find the time required to fill a 100-ml graduated 
cylinder. Galvanic cell readings were taken either visually at selected 
time intervals (approximately 3-hr intervals, night and day, for the 
first 24 hr of each run) or were monitored continuously by dc microam-
meter recorders (Esterline-Angus Co.). 

The oxygen analyzer was calibrated daily, checked periodically by 
the unmodified Winkler titration method, and the probe renewed as 
required to maintain a sensitivity of at least 0.5. Sensitivity is determined 
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by dividing the meter reading in ppm dissolved oxygen by the actual 
dissolved oxygen concentration determined either theoretically for that 
temperature and salinity, or directly by Winkler titration 

. . . r . dissolved 0 2 (meter) sensitivity of probe = -j-.—=—, ^ ; rf . dissolved 0 2 (actual) 

Comparisons between the oxygen analyzer and Winkler titrations were 
always within ± 1 %. 

Variation in the temperature of water flowing into the respiration 
chambers did not exceed ± 1 C for any experimental run at any of 
the three acclimation temperatures. The three experimental temperatures 
were 12 ± 1 C, 20 ± 1 C, and 25 ± 1 C. These were maintained by 
thermostatically controlled submersible 150-W heaters. The 12-C 
experiments were conducted during winter to coincide with prevailing 
thermal trends experienced by fish in nature and to minimize seasonal 
effects on routine metabolism (Wohlschlag and Juliano, 1959). 

C. ACTIVE METABOLISM MEASUREMENTS 

The apparatus used for determining oxygen consumption at various 
swimming speeds was essentially a combination of that used by 
Wohlschlag (1957), and Wohlschlag and Juliano (1959), and that 
described by Fry (1957) and Fry and Hart (1948b). The chamber was 
a circular torus constructed of ^-in. clear Lucite with an outside 
diameter of 92 cm, an inside diameter of 61 cm, square (15 cm X 15 cm) 
in cross section, and containing a total volume of approximately 54 liters. 
Water was siphoned out of the torus by means of a Tygon outlet with 
flow rate controlled by a pinch clamp. Water removed for dissolved 
oxygen measurement was replaced by allowing water to enter the 
chamber from the 250-gal constant temperature water bath in which 
the torus was immersed. The rotating chamber was suspended by three 
wires fastened to one end of a mandrel, the other end of which was 
fitted with a series of reducing rubber V-belt pulleys. The chamber 
was driven by a 5-hp electric motor, and by varying the combinations of 
pulleys on the mandrel and on the motor the velocity of rotation could be 
varied between 5 and 70 cm/sec. In addition to pulley selection, a 
variable voltage transformer was connected to the electric motor and 
virtually any swimming speed within the above limits could be selected 
and maintained. It was found, however, that at velocities below 5 cm/sec, 
it was difficult to maintain a constant torus speed, apparently due to 
slight fluctuation in line voltage. 
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A mechanical counter was attached to the torus to count the total 
number of chamber revolutions. This number divided by the total 
minutes elapsed time equals revolutions per minute (rpm). By multi-
plying rpm times mean circumference (260 cm) and dividing by 
60 sec/min, velocity in centimeters per second was determined. 

To be sure that each bass maintained its position in the chamber 
during the run, pairs of 20-cm stainless steel electrodes were installed 
inside the torus at approximately 15-cm intervals around the inside 
and outside walls. The inner circle of electrodes was wired together 
and 4-6 V (60 cycle ac) were passed between the inner and outer 
electrodes each time the outer electrode made contact with a fixed 
brush mounted on the side of the water bath. With each contact between 
an electrode and the brush, a pulse would result, and since this pulse 
would always be detected by the fish at a fixed location with respect 
to the water bath, an avoidance of this region was quickly learned. 
After a few mild shocks, an inexperienced fish would maintain a position 
slightly in front of the electric field until fatigued. 

The method of temperature acclimation for active metabolism 
measurements was the same as that described for the routine metabolism 
experiments. Following acclimation to 20 ± 1 C, each bass was fed to 
satiation (as defined above), then starved for 24 hr, weighed to the 
nearest 0.1 g, introduced into the torus through a 7.5-cm hole, and 
allowed 12 hr to become accustomed to the chamber. Each fish was 
thereby kept for 36 hr (24 + 1 2 ) without feeding. This deprivation 
period has been considered adequate by other investigators (Brett, 1964, 
1965b), and should be sufficient to assure a postabsorptive state 
(Beamish, 1964a). Even though routine metabolism in largemouth black 
bass has been observed to require four to five days before approaching 
approximately standard metabolic levels (Glass, 1968a), the first 36 hr 
accounts for the majority of oxygen uptake due to specific dynamic 
action of food (SDA), digestion and assimilation of food, etc. 

Following the 12-hr habituation period, the hole used for introduction 
of the fish was sealed by inserting a No. 14 rubber stopper, the ppm 
dissolved oxygen in the torus was measured, the revolution counter was 
reset to zero, and the torus was set in motion at a low velocity. After the 
first few fish had been run, it was possible to estimate the approximate 
time required, at a particular velocity and weight of fish, for extraction 
of about 1 ppm of dissolved oxygen. This was done to minimize the 
error in reading the oxygen meter, as mentioned above and to avoid 
respiratory dependence which might result from low dissolved oxygen 
concentrations. The torus was then stopped, and a dissolved oxygen 
reading was taken along with a determination of probe sensitivity. The 
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torus was then flushed by circulating water from the constant tempera-
ture water bath through it for at least an hour. The torus was then sealed, 
ppm dissolved oxygen determined, and rotation initiated again at, gene-
rally, a velocity higher than that of the previous run. This process 
was repeated at several velocities so that a full day was often required 
to complete work on one fish. After each bass had been run in the 
torus, it was placed in a separate holding tank and a new fish was 
introduced into the chamber and held for 12 hr for testing the next day. 

All active metabolism experiments were performed at 20 ± 1 C. 
A total of 48 bass was used, some of which were tested individually; 
others were run in groups of two or three. The weight of test fish ranged 
from 21.5 to 294.0 g. 

D. FILMING EXPERIMENTS 

Feeding sessions were filmed in July, August, and September of 1967. 
Sixteen-millimeter movies, using a Bolex Rex 16H camera equipped 
with a 16-mm (moderately wide-angle) lens and electric drive motor 
were taken with Eastman Kodak tri-X film at an / setting of 4.0. 
Rolls of film 100 ft in length were used throughout the filming experi-
ments since this amount of film represents 4000 frames, and with a 
time of 1 sec between frames, 100 ft lasts approximately 1 hr. A filming 
speed of 1 fps was chosen as a compromise between accuracy in recording 
movements of the bass and time required for frame-by-frame analysis. 
A time lapse of 1 sec was obtained by using a timer and solenoid (Sample 
Engineering Co., MC-5 movie control) which could be set for intervals 
ranging from 1 fps to fph. 

The films were taken from overhead through a 2-ft square hole in 
the celling of a 9 X 12-ft filming room illuminated by eight 150-W 
bulbs. The light bulbs were located at ceiling height and were positioned 
so that there was no reflection from the surface of the filming tank onto 
the film. The camera was located 4.15 m above the filming tank, the 
distance at which, with the wide angle lens, the entire frame of film 
was occupied by the tank, thereby giving optimal resolution. 

The filming tank consisted of two parts, a holding or maintenance area 
divided into three sections to keep the fish separate during nonfeeding 
times. This separation guaranteed several objectives. First, each predator 
was isolated from the others, and aggressive behavior which normally 
exists between largemouth bass in confinement was eliminated. Also, 
maintaining each bass in the tank in which filming takes place ensures 
acclimation to the proper temperature, eliminates excessive handling 
by the experimenter, and allows time for habituation to the filming 
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tank and filming room. Therefore, the fish is not disturbed when the 
sliding doors are raised to allow its entry into the filming arena, and 
film as well as film analysis time is not wasted while habituation to new 
surroundings occurs. In addition, little fecal material accumulates on 
the bottom of the filming tank, lessening the possibility of confusion 
with a prey fish during analysis of the film record. 

The second part of the filming tank is used for filming of feeding 
bouts. This arena is 4 X 6 ft, made of f-in. exterior plywood which 
has been fiberglassed at each seam and corner to prevent leakage; all 
surfaces were coated with fiberglass resin and painted with white exterior 
house paint to enhance contrast between the fish and the background. 
The white background was necessary to accurately identify prey fish, 
which appear quite small when the film is projected on a screen or viewed 
in the film analyzer. The bottom of the filming arena was covered with 
a 4 X 6-ft x 18-in. piece of white Lucite in which ^-in. holes were 
drilled every 2 in. on 2-in. centers. Any predetermined pattern or 
density of ^-in. wood dowels could then be inserted into these holes and 
a range of environmental complexity or cover density could be easily 
established (see Fig. 1). By changing the density of dowels (^ X 6 in. 
in length), it was then possible to alter experimentally the density of 
partial refuge for the prey fish and, thereby, force the predator to pursue 
and capture prey in an environment which is more or less complex. 

Initial analysis of the movie film was performed on a Vanguard 
motion analyzer and consisted of locating the head of the bass in each 
frame of film. This was accomplished by aligning cross hairs on the 
head of the bass, recording the X- and Y-coordinate values on data 
sheets and later punching these coordinate values on punch cards for 
computer processing. Each set of coordinate values represents the 
position of the predator and, by knowing that the time between frames 
was 1 sec, the velocity of the bass from frame to frame could be readily 
calculated. Accelerations and times spent at various swimming speeds 
were computed, and by knowing the energy requirements of different 
swimming speeds from the active metabolism experiments, it was 
possible to calculate energy utilization for each feeding bout. The 
information obtained from each feeding session consisted of the weight 
of the bass, prey density, water temperature, time of food deprivation, 
number of successful and unsuccessful pursuits, cover densities, and 
number and weight of prey eaten. 

Films were made of three individual bass at a temperature ranging 
from 21 to 27 C with a minimum of two films at each of four cover 
densities. This is a very small sample size but in the absence of automatic 
film-reading equipment the long times required for film reading would 
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COVER TYPE 2 
DENSITY = 84.5/m2 

COVER TYPE 3 
DENSITY= 1 8 5 / m 2 

COVER TYPE 4 
DENSITY = 370/m2 

» · · · < 
> · · · ( 
• · · < 

I · · · < 

» · · · < (1.83m) 

- ( 1 . 2 2 m ) -

FIG. 1. Density and arrangement of cover in the filming area of the filming tank. 
Each dot represents the location of a \ X 6-in. wood dowel inserted into the tank bottom 
and extended to the height of the water level. Cover type 1 has no pegs anywhere in 
the tank. Cover type 3 is approximately double the peg density of type 2, and cover 
type 4 is approximately twice as dense as type 3 (not to scale). 
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have been prohibitive. The four densities of wooden doweling (see Fig. 1) 
were: 

(1) no pegs inserted in the tank bottom, a completely open and 
unobstructed feeding area, 

(2) 84.5 pegs/m2, 
(3) 185 pegs/m2, 
(4) 370 pegs/m2. 

Water depth in the filming tank was maintained at only 6 in. to avoid, 
as much as possible, the effect of three-dimensional movement of the 
predator by permitting only searching and pursuit which approximated 
a plane. This makes the use of only one camera, filming from overhead 
(instead of two cameras at right angles) a reasonably accurate method of 
recording swimming distances and velocities, and correspondingly 
reduces the time required for film analysis. 

Each bass was maintained in the holding area of the filming tank for 
at least two weeks before feeding sessions were filmed to allow time 
for habituation to the tank and to become accustomed to feeding in the 
filming arena. Before introducing fish into the filming tank, they were 
kept in another similar room in an identical tank. This was done to 
reduce the time required to become sufficiently used to surroundings 
in the filming room so that film and filming time would not be wasted 
on an animal which would not perform "properly." When a fish was 
placed in the filming tank, it was given an identification number, 
weighed and allowed one to two days to recover from handling and 
weighing. Each fish was kept in the filming tank for approximately 
four to six weeks during which time it was filmed 15-20 times. This 
resulted in more films taken per fish than will be analyzed here. The 
reason for this is that initial taking of movie films is less time consuming 
than retrieving the data from the film record. Therefore, additional 
films were taken in case more "within fish" replication was required, but 
these were not analyzed due to the excessive time required. 

IIL Results and Discussion 

A. ROUTINE METABOLISM 

Figure 2 shows graphical representations of some of the pooled data 
as this was used to develop a computer model of the routine metabolism 
(ET) component of Eq. 1. Table I gives a summary of routine metabolism 
data. 



TABLE I 

SUMMARY OF ROUTINE METABOLISM DATA, FOR LARGEMOUTH BLACK BASS 
(Micropterus salmoides) DEPRIVED OF FOOD FOR 24 HR 

Temper-
ature 
(C) 

12 

20 

25 

Weight group 
(g) 

10.1-20.0 
20.1-40.0 
40.1-80.0 
80.1-160.0 

160.0-320.0 

2.5-5.0 
5.1-10.0 

10.1-20.0 
20.1-40.0 
40.1-80.0 

0.O-2.4 
2.4-5.0 
5.0-10.0 

10.1-20.0 
20.1-40.0 
40.0-80.0 

Av. weight ± 95% 
con. int.° 

13.4 ± 1.701 
25.3 ± 1.44 
67.5 ± 3.58 

100.2 ± 1.68 
227.1 ± 1.45 

4.0 ± 0.00 
8.9 ± 0.00 

14.7 ± 1.26 
27.1 ± 1.43 
46.9 ± 1.14 

2.0 ± 0.14 
3.0 ± 0.07 
6.9 ± 0.75 

15.0 ± 0 . 4 3 
28.3 ± 0.89 
58.3 ± 2.08 

Av. mg Oa/hr ± 95% 
con. int.a 

2.08 ± 1.76 
4.64 ± 2.79 
4.68 ± 1.22 
7.27 ± 2.49 

17.78 ± 7.63 

1.22 ± 0.24 
2.30 ± 0.32 
2.58 ± 0.28 
3.74 ± 0.40 
6.35 ± 0.66 

0.72 ± 0 . 1 4 
0.81 ± 0.07 
1.99 ± 0.22 
3.48 ± 0.32 
5.53 ± 0.64 
8.93 ± 1.09 

Av. mg 0 2 /hr ± 95% 
con. int.a 

164.1 ± 148.5 
196.1 ± 123.3 
71.5 ± 21.5 
72.6 ± 25.0 
78.5 ± 33.8 

305.1 ± 60.8 
258.3 ± 36.4 
182.0 ± 23.1 
138.6 ± 13.2 
134.2 ± 12.7 

362.8 ± 66.8 
262.0 ± 22.7 
299.3 ± 34.4 
233.9 ± 21.8 
194.4 ± 20.1 
156.0 ± 19.8 

Number 
of 

observations 

6 
12 
22 
15 
7 

14 
14 
34 
82 
58 

24 
142 
25 
67 

102 
92 

TOTAL 716 

Number 
of 

fish 

3 
4 
6 
3 
2 

1 
1 
3 
7 
5 

17 
69 
11 
11 
14 
11 

168 

a con. int. = confidence interval. 
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Confidence intervals and/or standard errors of means are given to 
demonstrate some of the statistical characteristics of the data. The 
confidence interval is calculated on the basis of small sample size 
(n < 30). This was done to avoid overinterpreting the data and to 
minimize the importance of considering n the number of individuals 
tested or the number of observations (regardless of the number of 
individuals). All statistical computations were made on the basis of 
formulae in Bennett and Franklin (1966). With n as the number of fish, 
Student's t was calculated to determine any significant differences 
between mean values of mg 02/hr in Table I for each comparable 
weight group at each temperature. The formula used was 

_ m1 — m2 

with ηλ + w2 — 2 degrees of freedom. No significant differences (t05) 
between weight groups were found. 

In Fig. 2 it may be readily seen that oxygen consumption for all 
weights and temperatures declines with increasing time of food depriva-
tion. This is an important independent variable which has been over-
looked by many investigators for two main reasons. First, it is difficult, 
if not impossible, with our present knowledge of physiological processes 
and existing techniques of studying respiratory metabolism to determine 
the separate effects of food assimilation, specific dynamic action of 
food (SDA), and lipogenesis during times of high blood glucose 
immediately after feeding. As a result, most investigators have simply 
determined routine metabolism at some fixed time of food deprivation 
(usually 24-36 hr). However, the effect of food deprivation time has 
been studied in trout and white suckers (Beamish, 1964b), a limpet 
(Berg et al., 1958), lungfish (Smith, 1935a, b), largemouth black bass 
(Glass, 1968a), and a few other poikilotherms. The second reason 
why starvation time has been neglected seems to be that, apart from 
being just one more aspect of oxygen consumption for physiologists to 
examine, the need for data of this particular type is greatest if a model 
of a dynamic process such as the energetics of prédation is to be 
developed. 

Elsewhere (Glass, 1968a) the form of the function describing the 
decay in oxygen consumption with increasing time of food deprivation 
has been established using data from largemouth black bass, data on 
white suckers and trout (Beamish, 1964b), and data on five breeds of 
domestic animals (Brody, 1945). This relationship was best described by 

Yx-, = a + bexp(—cXi), (3) 
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FIG. 2. Oxygen consumption (milligrams per hour) as a function of time of food 
deprivation at three experimental temperatures and three levels of weight, (a) tem-
perature = 25 C, weight = 59.1. (b) temperature = 20 C, weight = 27.1. (^tem-
perature = 12 C, weight = 100.3. The solid line is the line of best fit through the data 
and was determined by an iterative least-squares calculation of best parameter values 
for the function Y = a + becX. The dashed line represents the prediction of the model 
[Eqs. (11), (12), or (13)] for the stated weight and temperature. Best parameter values 
for each weight and temperature are given in the accompanying tabulation. 
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where Y{ is oxygen consumption (mg 02/hr), Xi is time of food depriva-
tion in days (TD)y and a, b, and c are considered constants for any 
weight and temperature. 

In Fig. 2 the values for these three constants which give the best fit 
of the equation to the data appear [based upon minimum sum of squares, 
Σ ( ^ ι — Yc)

2]- An inspection of the values for the constants reveals 
that they are actually not constants, but vary in a systematic way. It is 
this variation which will be exploited in development of the computer 
model and, as will be shown, the variation can be explained in terms 
of the weight of the experimental animal and its acclimation temperature. 
Inspection of Fig. 2 shows that oxygen consumption varies with time of 
food deprivation as a family of curves whose intercepts, asymptotes, 
and rate constants all vary as functions of at least weight and temperature. 

The simplest and most thoroughly studied parameter in Eq. (3) is a. 
This obviously corresponds to and approaches Ymin or standard 
metabolism, which is known to vary with the body weight of the organism 
(Zeuthen, 1953; Kleiber, 1947, 1961) and also with temperature 
(Winberg, 1956, 1961; Beamish and Mookherjii, 1963; Fry, 1957). 

The most widely accepted mathematical description of the effect of 
weight is 

Yi = «Xf (4) 

where Yi is oxygen consumption (mg 02/hr), Xi is weight (W), and 
oc and ß are constants. Figure 3 shows plots of oxygen consumption as a 
function of body weight at each of the three experimental temperatures. 
An inspection of these figures reveals two items of interest. First, 
the slope ß is in the range reported by other investigators (Job, 1955; 
Zeuthen, 1953; Winberg, 1956; and many others). Second, a varies 
with temperature. A plot of a appears in Fig. 4 and is graphed as a 
straight line in the absence of enough data to demonstrate clearly any 
other functional relationship, although an exponential function could 
probably be rationalized if the origin were considered a valid intercept. 
Since at 0 C there would be very little oxygen consumption, the line 
should pass almost through the origin. For this reason the intercept 
in Fig. 4, even though it was derived from the best least-squares fit 
to the data, will not be incorporated into the model. The slope was 
found by least squares to be 0.021 and will be included as 

OL = 0.021 Ty (5) 

where T is temperature in degrees centigrade. By taking the average 
value for the slope in Fig. 3 to be 0.77 [close to the two-thirds propor-
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WEIGHT (GM) 

FIG. 3. Oxygen consumption as a function of weight for three experimental tem-
peratures. The equation Y = a.Xß was fit to the data (from Table I) by an iterative 
least-squares method. The a and ß yielding the line of best fit for each temperature 
appear in the box. 

tionality from the so-called surface area-to-volume proportionality, which 
is probably slightly low (Fry, 1957)], Eq. (4) can be refined by substi-
tuting Eq. (5) into it as 

y . = aW* = 0.021 T W™\ (6) 

By then substituting Eq. (6) back into Eq. (3), the result is 

Yi = a + be~c TD = 0.021 T W0·77 + be~c TD (7) 
which expresses oxygen consumption in milligrams 0 2 per hour in terms 
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FIG. 4. Alpha (a — 0.021 T — 0.037) from Fig. 3 as a function of temperature (degrees centigrade). A straight line was assumed 
in the absence of more data over a wide range of temperatures. 
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of temperature, weight of the fish, and duration of food deprivation. 
This kind of data is available from some respiratory metabolism studies, 
and the biological bases of oxygen consumption become more evident 
when a step-by-step derivation can be shown. 

It is more difficult to establish a logical biological basis for the 
parameter b in Eq. (7), but this can be accomplished by the following 
reasoning: b represents the difference between Ymax at zero time of 
food deprivation and y m i n . This difference, of course, is due to food 
in the gut (i.e., SDA, active transport, if any, for assimilation of some 
food materials, and perhaps gut motility) and/or other processing of 
this food. The more food in the gut, the larger will be the difference 
between Ymax and F m i n . By analyzing a large quantity of feeding data 
collected on M. salmoides by Wells (1968), wThich reflects the influence of 
feeding behavior as well as the morphological relationship between 
body weight and gut capacity, each body weight could be assigned a 
gut capacity. A comparison between feeding data and direct autopsy 
data showed a consistent tendency for feeding data to underestimate 
the maximum gut capacity of the fish. Nevertheless, if this under-
estimation is consistent for all weight groups, a plot of maximum gut 
capacity (Gm a x) as a function of the animal's weight should yield the 
correct shape of the functional relationship between these two variables, 
and the true parameter values will only differ from the derived parameter 
values by a constant (C). Therefore, since 

Fmax — ^min CC 6 OC G m a x = / ( w e i g h t ) , 

then 
b=f(W)±C, 

assuming a consistent difference between feeding and autopsy data. 
Figure 5 shows the functional relationship between b and log10 W which 
proved to be the transformation producing a linear relationship. By 
linear regression the line of best fit was found to be 

b = 8.25 log10 W-7.31. (8) 

By substituting Eq. (8) into Eq. (7), the computer model can be 
developed one step further 

Yi = 0.021 T W^ + (8.25 log10 W - 7.31) e~c TD. (9) 

The rate constant c is the only remaining parameter to be explained. 
This parameter will be influenced primarily by three variables—the 
amount of food in the gut at any instant during digestion, the type of 
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FIG. 5. The parameter as a function of log10 weight (B = 8.25 * log(weight)-7.31). The dashed line was fit by linear regression 
to data from Figures 8-17 in Glass (1968b). 
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food eaten (i.e., protein, carbohydrate, or fat), and temperature. Perhaps 
G m a x will also have an effect since this will determine the absolute 
quantity of the gut contents. An increase in gut contents might slow 
the rate at which the gut is emptied, but no data which might 
describe this relationship were collected. The type of food being ingested 
was not varied due to the effect that this might have on other parts of 
the experimental program. Also, different food types would have added 
one more dimension to the experimental design, and time and facilities 
prevented this. The relationship between c and temperature could be 
derived from existing data but would be confounded as a result of at 
least the two above-mentioned variables. Therefore, c was simply set 
in the computer model by three Fortran logical IF statements, depending 
upon the experimental temperature, as 

IF (T.EQ.12.) C = -1.97 

IF (T.EQ.20.) c = -1.10 (10) 

IF (T.EQ.25.) c = -0.90 

It may be readily seen from (10) that AC/AT -^0 as temperature 
increases. This is not unexpected since intuitively the rate at which 
the gut empties should approach a finite maximum. One implication of 
this is that the error introduced into the model as a result of errors 
in the value selected for c will decrease at higher temperatures. This 
observation negates to some extent errors which might arise in inter-
preting the filming experiments since some of these were conducted at 
temperatures slightly in excess of 25 C. 

The model developed in this section will be implemented later in 
analyzing the film records. It consists of three equations, one for each 
temperature at which routine metabolism experiments were conducted. 
These three equations are 

Yi = 0.021 T W«'11 + (8.25 log10 W - 7.31) e-1·97 TD (11) 
Yi = 0.021 T W0" + (8.25 log10 W - 7.31) e'1·10 TD (12) 
Yi = 0.021 T W077 + (8.25 log10 W - 7.31) é-0·90 TD (13) 

which differ only in the rate constant c which is set in the computer 
program by (10). 

B. SENSITIVITY OF THE MODEL 

Table II consists of the matrix which results from perturbations in 
each of the constants or variables in Eq. (12). For a given percent change 
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TABLE II 
RESULTS OF THE SENSITIVITY TEST OF THE COMPUTER MODEL 0 

/o 
Deviation 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

a 

0.00 
6.03 

12.05 
18.08 
24.11 
30.13 
36.16 
42.19 
48.21 
54.24 
60.27 

ß 

0.00 
17.15 
39.17 
67.46 

103.80 
150.48 
210.43 
287.45 
386.37 
513.44 
676.67 

b 

0.00 
8.30 

16.61 
24.91 
33.22 
41.52 
49.82 
58.13 
66.43 
74.74 
83.04 

a 

0.00 
- 4 . 3 3 
- 8 . 6 6 

-12 .99 
-17 .32 
-21 .65 
-25 .98 
-30 .32 
-34 .65 
-38 .98 
-43 .31 

c 

0.00 
- 2 . 1 3 
- 4 . 1 4 
- 6 . 0 4 
- 7 . 8 5 
- 9 . 5 5 

-11 .17 
-12 .70 
-14 .14 
-15 .51 
-16 .81 

T 

0.00 
6.03 

12.05 
18.08 
24.11 
30.13 
36.16 
42.19 
48.21 
54.24 
60.27 

W 

0.00 
5.81 

11.33 
16.59 
21.62 
26 46 
31.13 
35.64 
40.00 
44.24 
48.36 

TD 

0.00 
- 2 . 1 3 
- 4 . 1 4 
- 6 . 0 4 
- 7 . 8 5 
- 9 . 5 5 

-11 .17 
-12 .70 
-14 .14 
-15 .51 
-16 .81 

a The results were taken from Eq. (12) at 20 C for an arbitrarily selected weight of 50 g 
and TD of 0.5. Each variable or constant was varied individually and the resulting percent 
change in routine oxygen consumption appears in the appropriate column. 

(0-100%) in each variable or constant taken individually, the resulting 
percent change in the value of routine metabolism can be found in the 
appropriate row and column. It should be noted that if the variable 
values were different from the particular ones that were selected, the 
relative sensitivity of each variable or constant might be expected to 
change. In addition, the absolute change in Y would be somewhat 
different if other variate values, for example, W = 10.0, TD = 5, 
T = 12, were initially chosen. Obviously, many tables similar to Table II 
could be generated, each based upon different values of T, Wy and TD, 
to demonstrate how the sensitivity of Eq. (12) changed as a result of 
altering the input variables. This was not done since several pages of 
related tables would yield information of minimal utility for present 
purposes. The equation for the computer model, 

7 = ( α Γ Ρ ) + [(b log10 W -a) exp(r TD)], (14) 

indicates which column of Table II is representing each of the constants 
or variables, and is analogous to (12). 

There are several points revealed by Table II. First, the most 
dramatically influenced column is that headed by ß (column 3). This 
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parameter enters the computer model as the fractional power to which 
the weight of the animal [see Eq. (6)] is raised to give routine oxygen 
consumption. The constant ß is probably one of the most frequently 
measured parameters in studies of respiratory metabolism in fish 
(see Winberg, 1956). However, it is probably not actually a constant, 
as can be seen from Fig. 3. Very likely, ß is influenced by interaction 
between time of food deprivation, weight, and probably temperature 
as well (Job, 1955). Various values for ß have been reported in the 
literature. Fry (1957) has discussed them, and it would be redundant 
to repeat that discussion here. It is sufficient to say that most values 
reported for ß approximate the well-known surface area-to-volume 
relationship. 

Since ß is the most critical parameter, it follows that a great proportion 
of experimental effort should be allocated to its determination. The 
sensitivity of the model to perturbation in ß was not known at the 
beginning of the experimental work reported here, but this "constant" 
was determined on the basis of 716 observations of 168 animals and 
this should be more than adequate statistically. With this number of 
degrees of freedom, the variance (assuming ajy/n = 10% of the mean 
value for j3) would have to exceed 0.69 (σ2 = 168 · 0.0041 = 0.69) 
before additional sampling would be called for. To produce a variance 
of this magnitude would obviously require fluctuations in the data such 
that more than 33 % of the experimental observations would yield a value 
for β of —0.19 < β < 1.47. This is clearly not true since values of β 
in these ranges would indicate wildly different values and variances in 
oxygen consumption than are evident in Table I. It is therefore safe to 
conclude that more than enough samples were taken. It should be noted, 
however, that while accuracy in β has probably been attained, the 
criterion of realism in describing processes influenced by and influencing 
β has not been achieved. For purposes of showing how β affects metabolic 
processes, it should properly reflect interactions between at least weight, 
temperature, and time of food deprivation. That it does not arises from 
the magnitude of the experimental program necessary to incorporate 
these interacting variables, so a reasonably accurate mean value was 
accepted as tolerable for present purposes. 

The parameter which causes the second greatest fluctuation in the 
model is b, a linear multiplier of log10 W. That this is true emphasizes 
the need for studies of feeding behavior in order to provide realism and 
accuracy as well as completeness in any model purporting to describe 
metabolic processes in fish. It is, of course, the behavioral aspects of 
fish feeding which dictate how closely the amount of food in the gut 
approximates maximum gut capacity, morphological limitations and 
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capabilities of the gut notwithstanding. Therefore, it is evident that 
significant improvements in the accuracy of b must await quantitative 
investigations of feeding behavior. 

That oc and T constitute the third most sensitive components (as well 
as being identical) should not come as a surprise. They are multipliers 
of each other, and in addition exert an influence on the calculated value 
of routine metabolism which is even less than the induced change in 
their initial values. It is important to realize that if T were to be incor-
porated into the model as a functional part of the rate constant c, the 
effects on Eq. (12) caused by small changes in T would be expected 
to increase substantially. 

The actual weight of an experimental animal is apparently less critical 
to the performance of the computer model than was anticipated. 
Column 8 of Table II reveals a slightly diminishing, but nearly constant, 
change in the output from the model with increasing percent deviations 
in W. It should be pointed out that with W, as in the explanation of T> 
the expansion of certain model components (such as c) to include the 
effect of body weight might well result in an increased sensitivity to 
perturbations in W. However, that the model is somewhat resistant 
to variability in both W and T is an advantage since in a later section 
Eqs. (11), (12), and (13) will be employed to determine theoretical values 
for oxygen consumption during filming experiments. Although this 
apparent damping effect becomes important to the film analysis since fish 
weights were not taken every day and environmental temperatures were 
variable, the reasons for the lack of sensitivity to W and T are not known. 

The low sensitivity of the model to a can be explained by the manner 
in which it exerts its effects. Since it is simply a linear addend in the 
functional relationship shown in Eq. (8), it might be expected to be of 
small importance. 

Deviations in c and TD are equal in their alteration of the output 
from the model because they are multipliers of each other. Resistance of 
the model to changes in TD are low, but this results largely from the 
level of the variate values initially chosen. It is obvious from the relation-
ship between oxygen consumption and TD (see Fig. 2) that at low 
(less than one day) values of TD this variable becomes very important 
in determining oxygen uptake. Conversely, after a long period of food 
deprivation the importance of TD to routine metabolism is quite 
minimal. The same argument applies to c. However, c is seen from 
Table II to be one of the least important parameters for another reason. 
Changes induced in all the constants and variables was directional, 
as can be seen from the following set of Fortran statements which 
show the method of creating deviations in c. 
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A = 1.0 

DO 1 I = 1,10 

C = C * A 

c Calculate the value of Y by Eq. (12). 
c Calculate and write the percent change in Y resulting 
c from the deviation in c. 

A = A + 0.1 
1 Continue 

Since the shape of the curve generated by the computer model changes 
from the form seen in Fig. 2 to a straight line as c —> 0, it follows that 
if c were made more positive instead of more negative in (14), it would 
be more critical to model sensitivity than Table II indicates. Therefore, 
resistance of the computer model to changes in c depends upon at 
least two factors, TD and the direction of the imposed deviation. The 
lower the value of TD, the more the model output is altered by deviation 
in cy particularly if that change results in a more positive value of c. 

C. ACTIVE METABOLISM 

The results of active metabolism experiments in summary form 
appear in Table III. The raw data were pooled in two different ways. 
First, using standard cgs notation, work per milligram of 0 2 consumed 
as a function of velocity, and efficiency (defined as centimeters 
traveled X 104 per milligram of 0 2 consumed) were calculated and 
plotted (see Fig. 6). This figure reveals two experimental problems 
that arise in determining oxygen consumption for different velocity 
levels. One is that at higher velocities (above 30-35 cm/sec) it becomes 
difficult for the bass to maintain high swimming speeds, long enough 
to ensure adequate reduction in dissolved oxygen concentration (refer 
to Section II). This increases error resulting from limitations of the 
experimental apparatus, thereby decreasing confidence in data points 
at high velocities. In addition, provision for the oxygen debt incurred 
at high swimming velocities has not been included in the data points. 
This is especially important where total swimming time is relatively 
short. The combination of these two factors therefore increases the 
uncertainty of the form of the function which should be chosen to 
describe work or efficiency of energy utilization at different velocities of 
swimming. Consequently, the following simple empirical relationships 
were used in Fig. 6: 
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TABLE III 

SUMMARY OF ACTIVE METABOLISM DATA BROKEN DOWN BY WEIGHT 0 

Weight 
(g) 

30.50 
34.14 
39.07 
33.99 
35.50 

49.13 
46.87 
50.49 
45.99 
45.90 

69.55 
69.40 
70.64 
68.32 
64.80 

93.73 
88.33 
88.44 
87.75 
94.60 

Velocity 
(cm/sec) 

7.35 
15.76 
26.29 
34.66 
44.60 

8.44 
13.78 
25.93 
34.99 
51.41 

6.90 
14.81 
23.50 
34.88 
45.93 

6.93 
14.12 
26.38 
36.07 
45.21 

a y/n 

0.62 
0.95 
1.08 
0.84 
2.08 

1.39 
0.72 
0.78 
1.22 
4.86 

1.03 
1.21 
0.76 
0.65 
0.41 

1.53 
0.79 
1.18 
3.76 
3.38 

mg 02 /hr 

6.98 
10.45 
12.26 
16.20 
29.23 

12.38 
10.67 
16.62 
14.83 
24.94 

11.38 
10.81 
16.61 
23.28 
40.07 

20.99 
17.30 
22.89 
33.47 
31.52 

σ Vn 

0.35 
0.99 
0.95 
5.97 
6.66 

0.71 
1.06 
2.13 
3.75 
5.68 

0.51 
1.24 
1.70 
6.48 
9.94 

7.60 
1.87 
3.23 

21.19 
3.84 

nig 02/cm 
traveled 
(Xl0 4 ) 

2.67 
1.91 
1.37 
1.53 
2.22 

4.46 
2.01 
1.56 
1.44 
1.38 

4.65 
2.05 
2.00 
1.84 
2.43 

3.71 
3.39 
2.43 
2.44 
1.93 

σ \/η 

0.36 
0.23 
0.14 
0.43 
0.82 

1.15 
0.16 
0.17 
0.27 
0.36 

0.48 
0.22 
0.25 
0.52 
0.62 

0.94 
0.30 
0.38 
1.37 
0.09 

Number 
of obser-

vations 

2 
10 
6 
7 
3 

3 
13 
11 
7 
4 

2 
5 
8 
5 
2 

3 
6 
8 
2 
2 

a Each aj Vn column corresponds to the variable 

For 20.0- to 60.0-g fish, 

work = 0.077 + 0.244^0·746 

work = 3.45 - 0.0145^ 

and for 60.1- to 100.0-g fish, 

work = -0.486 + 1.823*?·245 

work = 5.05 - 0.0526X, 

For 20.0- to 60.0-g fish, 

efficiency = 0.0935 + 0.326X?·892 

efficiency = 1.22 - 0.0147X, 

column immediately to the left. 

for 0 < X < 31.4 
(15a) 

for .AT 5*31.5, 

for 0 < X < 28.4 
(15b) 

for X > 28.5, 

for 0 < X < 3 1 . 4 
(15c) 

for X ^ 3 1 . 5 , 



VELOCITY (CM/SEC) VELOCITY (CM/SEC) 

I (a) (b) 
FIG. 6. Graph (a) shows the relationship between work per milligrams of 0 2 consumed X 105 and velocity (in centimeters per second) 

for two weight classes of fish. Results for 60.1- to 100.0-g fish are given by a plus ( + ) , 20.1- to 60.0-g fish are plotted as an open circle. 
Graph (b) shows a plot of distance traveled per milligrams of 0 2 (efficiency) with 60.1- to 100.0-g fish represented by a plus (-f), and 
results for 20.1- to 60.0-g fish shown as open circles. All measurements were made at 20 ± 1 C. 
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and for 60.1- to 100.0-g fish, 

efficiency = 0.0811 + 0.1078Z?·3711 for 0 < X < 28.4 
(15d) 

efficiency = 0.62 - 0.0065*,· for X > 28.5, 

where constants were determined either by linear regression or by an 
iterative least-squares technique (Marquardt, 1963; Glass, 1967, Conway 
et al, 1970). 

The second method of pooling data was by weight and velocity (see 
Fig. 7). This relationship is, of course, subject to the same qualifications 
as Fig. 6. The value of routine metabolism was calculated from Eq. (12), 
using as input, T = 20.0, W= average weight, and TD = 1 . 5 days 
(see Section II). An equation of the form Y = a + bXc was fitted to 
the active metabolism data, where X represents swimming velocity and 
a, b, and c are fitted constants. 

Figure 8 is the result of pooling the data of Spoor (1946) for several 
intervals of activity. Many investigators of respiratory metabolism in 
fish have regarded Spoor's graph (his Fig. 4) as evidence for a linear 
relationship between oxygen consumption and activity. Figure 8 shows 
that this presumption is probably invalid and, in the case of Spool's 
data, results in an underestimate of standard metabolism by about 50%. 
Two lines of reasoning render the assumption of linearity improbable. 
First, the residual sum of squares is approximately twice as high for 
the straight line of best fit as it is for the curve. Second—and probably 
most convincing physiologically—increasing swimming velocity has a 
greater than linear effect upon oxygen consumption (see Fig. 7). Further-
more, the exponent of the curve in Fig. 8 has a value of about 1.5. 
This is not entirely unexpected since it is approximately the reciprocal 
of the well-known surface area to volume relationship. It would seem 
reasonable to hypothesize that use of muscle mass ( oc volume) facilitates 
swimming or level of activity, and that water resistance (oc surface) 
hinders swimming or level of activity. Logically, then, if the surface 
area to volume relationship is physiologically sound, the idea of swim-
ming velocity (or activity) raised to the 3/2 power being approximately 
proportional to oxygen consumption should also be true. 

Complete description of active metabolism by a mathematical model 
was not possible since data for a wide range of temperatures and weights 
of fish were not collected. However, a partial model based upon the 
data that were collected was constructed since the weight and tempera-
ture ranges involved in the filming experiments were not too different 
from those of the active metabolism experiments. The model was 
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FIG. 7. Oxygen consumption as a function of velocity (in centimeters per second). Data from Table III. The equation Y = a + bXc 

was fit to the data by iterative least-squares. The straight line labeled Ym\n represents the prediction of Eq. (12) for 1.5 days of depriva-
tion time, 20 C, and a weight of 60.4 g. The fitted parameter values appear in the accompanying tabulation. 
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developed using Eq. (12) in place of the fitted constant a (the Y-
intercept) in Fig. 7 since at zero velocity oxygen consumption should 
approach routine metabolic levels (F m i n ) . Substituting RM as the 
output from Eq. (12), the equation for active metabolism becomes 

Y = RM + bVc (16) 

where Y is oxygen consumption in milligrams per hour, V is velocity in 
centimeters per second, and b and c are fitted constants (see Fig. 7). 

D. FILMED FEEDING SESSIONS 

Analysis of movie films of feeding sessions was accomplished by 
means of a computer program which computed velocity, acceleration, 
location of the predator in the filming tank, and both routine and active 
metabolic expenditure through time during each feeding session. The 
number of attempts by the predator to capture prey, the number, 
time, and location of prey captures as well as the predator's velocity 
and acceleration during attempts and captures were monitored also. 
Some of the output from this program appears in summary form in 
Fig. 9 and Table IV. It is obvious that the complexity of analyzing 
film records is not great but does require a prodigious amount of 
bookkeeping. Once the scheme of analysis has been developed, however, 
memory capabilities of a moderately sized digital computer such as 
the IBM 7044 are adequate. 

Both high and low cover densities (cover type) or environmental 
complexity fail to optimize long-term energy input and expenditure, 
although for quite different reasons. At low cover densities the predator 
has the capability of annihilating its food source which, of course, 
ultimately leads to local extinction of both species. At the low cover 
density, therefore, maximal energy input to the bass may be realized 
but this will result only in short-term predator success, and the evolution 
of an animal which crops lower trophic levels in any but a sustained 
yield fashion is very unlikely. At high cover densities, the predator 
is subject to a double disadvantage. First, an apparently behavioral 
deterrent to initiating attempts to capture food is operating (see Fig. 9) 
in combination with both a high velocity required to capture food and a 
lowered maneuverability due to a more complex environment (Table IV). 
Second, column 5 in Table IV indicates a relatively low amount of 
work per unit energy expended at high cover densities, and column 6 
shows a rapid decline in the distance traveled per unit energy input. 
Therefore, even though the probability that an attempt will result in a 
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FIG . 9. Some summary information derived from analysis of filmed feeding sessions. 
Graph (a) shows the probability that an attempt will result in a successful capture at 
each cover density. Graph (b) shows how the rate of capture of prey fish by the predator 
declines with increasing cover density and represents the product of probability of 
capture and the attempt rate. Graph (c) gives the rate at which the predator attempts 
to capture prey at each level of cover density. Graph (d) shows the calories per day 
expended (solid line) by the predator and the calories per day acquired (dashed lines) 
by the predator at each cover density for 6 hr/day spent feeding and 12 hr/day spent 
feeding. 

capture increases slightly at high cover densities as opposed to the 
probability of capture at intermediate cover densities, the number of 
attempts initiated declines and the energy expenditure per attack 
increases rapidly. Stated simply, the rate of capture or food intake 



T A B L E IV 

SUMMARY OF DATA DERIVED FROM FILM RECORDS OF FEEDING SESSIONS" 

Cover 
type 

1(23) 
2(12) 
3(7) 
4(8) 

Average 
velocity 

at attempt 
(cm/sec) 

57.01 
51.35 
57.01 
42.29 

Average 
velocity 

at capture 
(cm/sec) 

23.68 
23.12 
50.12 
69.59 

Level of 
signifi-
cance 

0.001 
0.01 
0.1 
0.01 

Work/mg 0 2 

at capture 
(g-cm/mg 02) 

X 10-5 

2.67 
2.62 
2.72 
2.44 

Cm 
traveled/mg 0 2 

at capture 
X 10-4 

0.642 
0.630 
0.480 
0.194 

Probability 
of successful 

capture 

0.0795 
0.0596 
0.0510 
0.0541 

Cal/hr 
expended 

during 
feeding 

179 
159 
153 
131 

Cal/hr 
captured 
during 
feeding 

1845 
1448 
1043 
495 

Physiologically 
useful cal/hr 

captured 
during 
feeding 

864 
677 
487 
231 

a Each column is derived from analysis of approximately 100,000 frames of movie film. Level of significance is from Student's i-test 
for the difference between mean velocity at attempt and mean velocity at capture. Numerals in parentheses are degrees of freedom. 
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must be substantially higher than observed, or more than 12hr/day 
must be devoted to feeding at the experimentally observed rates before 
the effects of high cover density (such as decreased efficiency of energy 
utilization) can be overcome. 

In the case of environmental complexity and its effects on predator 
or prey success (or both), the criterion for continued existence is 
optimization rather than maximization. To maximize the energy input, 
a predator would be most successful if it could feed in a simple environ-
ment for an unlimited time. This would permit a maximum energy 
input, but would also result in extermination of prey. Optimization of 
energy acquisition and utilization requires that the predator, through 
behavioral or physiological means, be adapted to an environment 
requiring slightly higher energy expenditure to acquire food and, 
at the same time, one which provides an energy dividend in the form of 
increased efficiency of energy utilization. In the present context an 
environmental complexity approximately intermediate between cover 
types 2 and 3 appears to be optimal in this respect. It would be interesting 
to know if this level of environmental complexity is also compatible 
with other aspects of prey survival, but this would be difficult to deter-
mine in the laboratory using the present predator-prey system. One 
tentative conclusion drawn from the filming experiments could be tested. 
If a cover density intermediate between cover types 2 and 3 is optimal for 
largemouth black bass from an energetics point of view, then assuming 
Eq. (2) to be valid, growth of bass in the 20-50 g weight range under 
these conditions could be determined and checked for correspondence 
with growth curves in the literature. No denial of complicating factors 
such as prey density or schooling of predators is implied, but such a 
growth experiment could provisionally confirm or deny the validity of the 
metabolic model presented here. A simulation model designed to test 
the hypothesis that the energy acquisition and dissipation rates discussed 
here will result in growth rates comparable to published growth rates 
has been developed by the author and is currently being refined. 

Figure 9 shows the daily theoretical energy budget for a 50-g bass 
at 25 C. By multiplying the rate of attempts at each cover density 
by the probability of successful capture at that cover density, it is possible 
to determine the theoretical number of prey captured per hour. By 
multiplying the rate of prey capture by the average prey weight (0.6 g), 
the grams of food ingested per hour were determined. Assuming 85 % 
assimilation efficiency and 750 cal/g wet weight, the calories assimilated 
per hour spent feeding were calculated. Using the concept of "primary 
heat," Ivlev (1939b) found that 4 5 % of assimilated calories were 
unavailable to the organism for physiological purposes, and therefore 
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approximately 5 5 % of assimilated food was "physiologically useful." 
Caloric intake was calculated by 

caloric intake g of food captured __Λ ., Λ _ _ ___ 
r = r— x 750 cal/g x 0.85 X 0.55. 
hr hr 

To apply this hourly rate of caloric intake to a 24-hr day would 
introduce error for a number of reasons. For example, prey accessibility, 
abundance, and density are probably not uniform over an entire day. 
In the immediate vicinity of a predator, bass engage in activities other 
than feeding for a variable proportion of any given day, etc. Since the 
number of hours per day spent feeding at the experimentally determined 
hourly rates is not known, 12 and 6 hr/day were assumed. Figure 9, 
graph (d), shows the results of these two assumptions. It is important 
to note that the hours spent in feeding were selected arbitrarily and 
that regardless of time spent feeding, increases in cover density result 
in a more than linear decrease in energy captured. 

The effects of cover or environmental complexity on an aquatic 
predator-prey system are several. From the preceding paragraphs, 
it is possible to conclude tentatively that cover dampens (stabilizes) 
predator-prey interaction by affecting the predator's energy cost per 
capture (see Table IV, column 5), reduces the rate at which prey are 
attacked and captured, and that these combined effects decrease the 
energy available for growth. This conclusion implies that not only are 
predator and prey survival influenced by cover density but that the 
rate of predator biomass production is related to cover density as well. 
For this reason, from the viewpoint of trophic ecology, it appears 
reasonable that cover will influence the sustained yield of predator 
biomass to other predators (including man). Hence, from the standpoint 
of a resource manager attempting to maximize both stability and produc-
tion of a predator-prey system or an ecologist investigating the prédation 
process, a study of the effects of cover and predator energetics deserves 
central consideration. 

E. SUMMARY 

A computer model of the routine and active respiratory metabolism 
of the largemouth black bass (Micropterus salmoides) was developed 
using data from laboratory experiments. Sensitivity of a model of 
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routine metabolism to various perturbations in variate and parameter 
values was tested. The slope of the line relating log oxygen consumption 
to log weight was tentatively determined to be the most critical parameter 
in the model. The two components of respiratory metabolism in fish 
that were under study (routine and active metabolism) were combined 
into a more complete model used to describe some aspects of largemouth 
black bass energetics. The energetics model was then used to explore 
some implications and consequences of environmental complexity on 
the prédation process. To do this, approximately 100,000 frames of 
movie film taken of feeding sessions were analyzed individually. By 
incorporating the energetics model into the computer analysis of film 
records, it was possible to discuss the energetic consequences of préda-
tion by largemouth black bass in environments with different cover 
densities. It was tentatively concluded that both prey survival and 
predator success would occur at levels of cover density intermediate 
between a completely unobstructed (no refuges for prey) environment 
and one in which cover density was high (370 units/m2). The optimality 
of intermediate cover densities was found to be based upon energetic 
considerations. Although efficiency of energy utilization by the predator 
was found to be high in completely unobstructed environments, it is 
well known that simple laboratory environments result in prey extinction. 
Therefore, lack of cover was considered to be suboptimal for long-term 
predator survival. At high cover densities it was found that a reduction 
in energy utilization efficiency occurred. It was concluded that for 
long-term predator survival a balance between energy acquisition and 
energy dissipation could be achieved at intermediate levels of environ-
mental complexity (cover density). One characteristic of an optimal 
environment for largemouth black bass was therefore deemed to be an 
intermediate or moderate cover density. 
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PART m 

THE ECOSYSTEM: SIMULATION 

Webster's Unabridged does not inspire confidence in simulation as a prospective new tool 
of science. It's definitions are mainly pejorative: ''act of assuming an appearance which is 
feigned, or not true; pretense or profession meant to deceive ... a counterfeit ... a fraud." 
John McLeod reacted unbelievingly with an article, "Simulation is wha-a-at?" (1968. "Simula-
tion, the Dynamic Modeling of Ideas and Systems with Computers," p. 3. McGraw-Hill, 
New York). It is, of course, in modern usage, the dynamic modeling of ideas and systems 
with computers, and this section brings together a group of papers describing various 
aspects and philosophies of ecological simulation, with ecosystems the center of attention. 

Chapter 6 provides a transition from Part II by starting with a general population model 
at the single-species level. Drs. Lassiter and Hayne believe that behavior of big systems can 
be mimicked by combining detailed submodels, and further, that mathematical parameters 
of the latter should be restricted to those which correspond to known or postulated bio-
logical processes. As Hubbell does, in Chapter 4, they recognize that feedback control may 
not be directly related to specific recognizable structures or physiological functions, but 
that regulation may come out of a dynamic interplay of processes when systems are complex 
enough. And ecosystems, they say, have the requisite complexity and dynamism. 

Their model emphasizes the identity of the individual organism as mediator of all trans-
actions in coupled ecosystems. The focus is on energy, particularly details of consumer 
energy budgets and their mechanisms of regulation. The equations are presented in finite 
difference form for digital computer implementation, neatly simplified by using a time step 
of unit length. The final result is a Fortran program and description of a number of simulation 
trials, providing a basis for discussion of population control in relation to the well-known 
Hairston, Smith and Slobodkin (1960. Am. Natur. 94, 421) generalizations. 

Chapter 7 considers a number of broadly encountered problems in ecosystem simulation. 
The framework is the cryptozoan subcommunity of the forest floor, a complex system 
embracing hundreds of populations and trophic interactions. Dr. O'Neill addresses the 
problems of simulating temporal fluctuations, quantifying energy and material flows, and 
compromising mathematical perfection to data imperfections. 

Noting that constant coefficient models are inadequate to represent seasonal dynamics, 
a practical method of determining time-varying coefficients is described and applied to 
a millipede energetics example. Population simulation is illustrated with Collembola. 
Parameter estimation in complex food web models is approached through a conditional 
probability method related to Bayesian statistics. The method is applied to centipede and 
spider multiple-prey microcosms to determine dietary compositions. Interaction of radio-
tracer methodology and mathematical modeling in unraveling food webs is discussed. As 
an illustrative example, steps in the preparation of a digital computer model of radiocesium 
kinetics on the forest floor are described, with point-by-point discussion of difficulties as 
they arise. Finally, simulation runs are presented, illustrating the value of models, even 
inadequate ones, in concept formation and research planning. 

Chapter 8, by Bledsoe and Van Dyne, poses the interesting question whether or not some 
of the newer methods of systems ecology might not be used in connection with some of 
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the older data and observations of traditional synecology. The notion is to seek new insights 
from past literature, and to preserve and extend the usefulness of semiquantitative and even 
qualitative data. 

Two descriptive studies are recast in terms of simulation models, both on old-field 
succession, one in Oklahoma and the other in North Carolina. The methods and problems 
of making such conversions are systematically described, and example outputs from the 
models provided and discussed. Comments about appropriate uses of different kinds of 
hardware, both analog and digital, at different stages of model development are offered, and 
manpower requirements for such studies are also outlined. As to uses of such models, the 
authors suggest both sensitivity and perturbation analysis, stating that successional effects 
of fire, draught, erosion, pesticides, etc. can be given at least preliminary evaluation.While 
this paper may not bring the original idea to its ultimate utility, it does demonstrate clearly 
that qualitative information is not necessarily incompatible with modeling. 

Chapter 9 is an analog computer study of three energy models of the plant-moose-wolf 
food chain on Isle Royale. Details of the programming are given, following the steps outlined 
in Chapter 1. All non-feeding flows are represented as constant fractional transfers from the 
donor compartments, and feeding flows only are varied in the three models, being linear, 
nonlinear "uncontrolled," and nonlinear "controlled," respectively. 

Behavioral characteristics of the models are compared in terms of free and forced 
responses, steady states, and recovery from steady-state displacements. The uncontrolled 
nonlinear system was generally unstable. The controlled nonlinear model gave results 
similar to the linear one, with some improvement in realism based on considerable im-
provement of the biological rationale. Since little is gained operationally, however, Rykiel 
and Kuenzel suggest that linear models may be the more appropriate for studying general 
dynamic characteristics of ecological systems, particularly if the latter are in near-steady 
states where linear theory is known to apply. 

Chapter 10 is a simulation study of Lindeman's classical investigations of Cedar Bog Lake. 
Probably no work of recent times has had the impact of this single effort, and a retrospective 
look at it through the developing eyes of systems ecology is thus quite instructive. 
Dr.Williams tries faithfully to preserve Lindeman's ideas in developing a hieararchy of models 
from the general to the specific. The data requirements of the models, however, quickly 
expose numerous gaps in the original information. 

Four models are developed and explored. The first, a linear three-compartment cascade, 
failed to reproduce any of the significant behavior of the Cedar Bog Lake ecosystem when 
examined by an analog computer. The model was then expanded into a ten-compartment 
linear system with branching. Simulations of this and subsequent systems were performed 
with a digital computer, using a program that employs Euler integration. The model con-
formed generally to Lindeman's flow and standing crop data, but produced some unrealistic 
results due to dominance of the ooze compartment. The third model, a nonlinear "un-
controlled" version of the ten-compartment system, proved sluggish and unstable. Sub-
sequent adjustments stabilized it and improved its responsiveness. The resultant "controlled" 
nonlinear system was then modified variously in efforts to produce a realistic simulation. 
One result was negating Lindeman's general hypothesis of increasing assimilation efficiency 
with increasing trophic level. However, Dr. Williams is quick to point out that this and other 
deficiencies revealed by the modeling study in no way detract from the original work, 
a milestone for its time. The value of modeling as an aid to structured thinking is thus 
underscored by its power to expose weaknesses in one of the best early examples of struc-
tured thought in ecological literature. 



6 

A Finite Difference Model for Simulation 
of Dynamic Processes in Ecosystems 

RAY R. LASSITER AND DON W. HAYNE 
ENVIRONMENTAL PROTECTION AGENCY, WATER QUALITY OFFICE 

SOUTHEAST WATER LABORATORY, ATHENS, GEORGIA 

AND 

DEPARTMENT OF EXPERIMENTAL STATISTICS 

NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 

I. Introduction 368 
A. Point of View 368 
B. The Ecological System 370 

II. General Population Model 372 
A. The Equation of Population Dynamics 372 
B. Computer Routine for Population Dynamics 374 

III. Biotic Factors 375 
A. Crowding and Competition 375 
B. Energy Dynamics 380 
C. Energy Intake 381 
D. Effects of Energy Deficit 385 
E. The Energy Expense Budget 387 
F. Regulation of Food Consumption 391 
G. Prédation 396 
H. Subsystem of Computer Routines for Biotic Factors 402 

IV. Abiotic Factors 403 
A. Abiotic Factors of the Model 403 
B. Population Effects of Abiotic Factors 403 
C. Computer Routines for Abiotic Factors 406 

V. Results and Discussion 406 
A. Simulation Trials 406 
B. Characteristics of the Model 408 
C. Discussion of the Model 414 
D. Factors of Population Control 415 

This study was supported by Public Health Service Research Grant No. CC00250, 
from the National Communicable Disease Center, Atlanta, Georgia. 

367 



368 RAY R. LASSITER AND DON W. HAYNE 

VI. Conclusions 418 
Appendix A. Glossary of Symbols Used 419 
Appendix B. Input Formats 422 
Appendix C. Sample Output 429 
Appendix D. The Computer Program 430 
References 439 

L Introduction 

This attempt to set up a rational model of an ecosystem has had two 
objectives. First, we wanted to examine the feasibility of such a task 
and identify the information needed; here we are encouraged by our 
results. Our second objective was to explore the results of changing 
parameters (within the model's limited ability). Here we have just begun. 

There were two major questions when we started. First, can any 
finite model be realistic enough to be useful when any real ecosystem 
involves such great complexity and scope ? Second, will we simply 
know enough within the near future to build a useful model ? Clearly, 
much depends here on the point of view; although we disclaim any 
definitive answer to either question, we remain optimistic on both 
counts. 

A. POINT OF VIEW 

Models are abstractions of real-world phenomena. They are used to 
frame concepts and organize knowledge to the end that the right ques-
tions may be asked. Some models are mathematical; these do not differ 
in any basic way from non-mathematical models. They are expressed in 
formal notation, tend to be more explicit, and proceed in natural 
sequence from the conceptual to the quantitative form. 

In ecology, many of the modern conceptual models are inherently 
complex and difficult. Mathematical modeling may prove to be useful 
in several ways. First, it provides a means of systematic organization 
for what is known. The discipline of setting down a logical whole often 
forces attention to some relationship that hitherto has been ignored. 
If a model can be adequately quantified, then a test of the validity of 
general ideas may be possible. Systems analysis provides the basic ideas 
that may make possible the attack upon so complex an entity as an 
ecosystem. This is that the complex whole can be studied by modeling 
its separate parts and then combining these subsystems into the whole. 
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The nature of correspondences observed between the real system and 
the model is of fundamental concern to the ecologist. In the develop-
ment of a mathematical model, when the biological rationale is discussed 
for a particular mathematical statement, in effect an isomorphism is 
being described (Hall and Fagan, 1956). The rationale amounts to a 
discussion of properties of the real system in relation to the mathematical 
expressions chosen. The fewer the constraints placed upon the model 
by the mathematics, the closer the situation is to an isomorphism, and 
the more realistic the results may be expected to be. It has been pointed 
out, however, that in practice, every model is a homomorphism (see 
Chapter 1). Simulation is the use of mathematical models to quantita-
tively reproduce some aspect of the real world. This model is used 
in simulation. The results, however, apply only very generally to the 
real world, for lack of many items of specific information required 
before simulation can be more specific. 

As a guiding principle in developing the present model, we have, 
insofar as practical, admitted only algebraic components analogous to 
known or specifically postulated biological phenomena. To admit a 
mathematical function without any biological analog can often provide 
better curve fitting, but it explains nothing. On the other hand, if we 
construct a model analogous to the known or intelligently-postulated 
details of a system and find little correspondence to long-term system 
behavior, then we learn a significant fact: our hypothesis is too limited. 
We then must look elsewhere, and one way is to postulate a biological 
mechanism that may influence system behavior, introduce it as part of 
the simulated system, and try it. If it improves the results, then it may 
be worth studying in the real world. Such feedback between model 
simulation and the direction of field and laboratory research is the 
promise mathematical modeling can make in the advancement of 
ecological understanding. Such an approach is sound, however, only to 
the extent that the system model is built of components analogous to 
the real system as we comprehend it. 

Differential equations have been most used in the development of 
ecological models, and computers have been employed (Garfinkel, 
1962, 1967; Garfinkel and Sack, 1964; Patten, 1965; Wangersky and 
Cunningham, 1957; King and Paulik, 1967) as solutions have become 
more intractable. Solutions become more intractable as greater reality 
and resultant complexity are introduced. Thus, computer simulation, 
often meaning the solution of a set of simultaneous differential equations, 
has been employed of necessity in lieu of analytical solutions. 

In the present work a recurrence or difference equation has been used 
as the basic population model. This approach is well suited to capabilities 
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of the digital computer, and when used with short computing intervals, 
it allows the statement of any action to reflect the influence of many 
other factors, all of which may be varying simultaneously from interval 
to interval. The characteristics of the method have been discussed in 
detail by Watt (1966, 1968). All results are conveniently available at 
the end of each computational interval. Because of the large number of 
biological parameters in any modestly realistic, multispecies model, 
and the very large number of computations, solution by computer is 
the only feasible approach. 

B. T H E ECOLOGICAL SYSTEM 

A definition of system that will be acceptable to ecologists may be 
similar to that used by Khailov (1967): A system is a collection of 
interacting objects together with their interactions. This definition 
omits the important concept of holism (Spanner, 1964; Watt, 1966). 
Spanner uses this idea alone in his definition of systems as "complex 
wholes." This means, too, that a system must be defined to include a 
meaningful set of objects. 

In living systems as well as in others there are feedback control 
mechanisms, related to recognizable structures or physiological functions. 
But there is yet another type of regulation which von BertalanfTy (1956) 
has pointed out, namely those which result from a "dynamic interplay 
of processes." This type of regulation is possible only in systems which 
are sufficiently complex and dynamic to include great numbers of 
interactions. Conceptually, an ecosystem has the requisite complexity 
and dynamism, and therefore we should look for this type of regu-
lation. 

Khailov (1967) points out that systems are comprised of subsystems 
that are hierarchically subordinated. Subsystems may function sub-
optimally if that is the cost of whole-system optimization. An example 
of such "suboptimization" in ecology is found in the fact that populations 
of a community are restrained by competition for resources. Presumably 
the community system is optimized in the sense that there is maximum 
utilization of energy. 

A system may be open or closed depending upon whether there is an 
exchange with outside systems. In constructing models of particular 
communities the simplification introduced by assuming a closed system, 
that is, no between-community interactions, makes this an attractive 
and practical approximation. There is, however, some exterior exchange 
of matter or energy for every ecosystem, hence, all ecosystems are 
open systems (Spanner, 1964; von BertalanfTy, 1956; Botnariuc, 1966). 
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The statement of King and Paulik (1967) that ecosystems are "highly 
organized closed structures'' presumably referred to the idea expressed 
by Slobodkin (1964) that the biotic community is characterized by a 
particular set of ecological interactions, i.e., that the biological processes 
occurring within the ecosystem are the significant ones. 

The mathematical model in this chapter attempts to specify, and 
thereby provide a means for quantifying, some generally held ecological 
concepts about the dynamics of natural communities. The mutual 
interactions of the biotic populations, as influenced by abiotic factors, 
have guided the construction of the model. The biotic community 
is the main subsystem of interest, but it cannot be considered separately 
from the abiotic influences. The model contains some parameters which 
have been measured for some populations, and other parameters which 
have never been measured because, to our knowledge, they have not 
been proposed in a model. 

Ecosystem processes are best understood if the identity of the 
individual organism is maintained. Energy budgets and changes in 
body energy stores must be calculated for the individual. The unit of 
predator-imposed mortality is the individual predator. Population 
interactions take place between individuals, although ordinarily the 
interactions of individuals within populations are distinguished from 
those between populations. On the other hand, some of the important 
measures of population dynamics are best understood as populational 
rather than individual phenomena; an individual lives or dies, but a death 
rate or a statement of probability of death is a population parameter. 
Further, it is often convenient to treat population biomass as an entity, 
growing or furnishing food to some other population. 

Energy flow in biotic communities has come traditionally to be 
considered a process of trophic level transfer. But energy transfer and 
biomass changes result when individual consumers eat individual prey. 
To account the transfer one must identify the species, but need not 
explicitly name the trophic level. Thus the vexing problem of overlapping 
and indeterminate trophic levels does not arise in this model. Energy is 
transferred between individuals; the population flux is a matter of 
summation. 

The absolute upper bound of energy transfer is set by availability. 
But when food is abundant, the operational upper bound is set by the 
energy needs of the individual organism. This point, widely appreciated 
by ecologists, has not generally been introduced into mathematical 
models. The present model considers the effect of satiation, as well as 
those of malnutrition and starvation, in computing individual energy 
budgets. 
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IL General Population Model 

The form of the model will be stated in this section, then the parts will 
be examined in greater detail. Much of the paper is discussion of 
individual factors, biotic and abiotic. 

A. T H E EQUATION OF POPULATION DYNAMICS 

The familiar recurrence or difference relationship was used to represent 
population change. Thus, the population at time t is determined by (1) 
the population at time t — 1, and (2) the population rate of change 
during the interval (t — 1, t). With time of unit value, certain familiar 
equations may be used without explicit statement of the variable At. 
The basic equation describes changes in a single population in response 
to all the biotic and abiotic factors allowed to interact. Thus, the basic 
building block is the sum total of interactions by the individuals of one 
species with the ecosystem, including members of the same or different 
species. The model of a community is built up from a set of these 
submodels, one for each species. 

The form of the population model follows the Malthusian equation of 
change in population size proportional to size of the population 

dNJdt = τ,Ν,, (1) 
with 

Yi = b/ — d/, 

where 

hi = hi ( Π ^ Λ ) 

and 
m 

di = X Sik , 

so that 

dNJdt = \bt (Π φΔ - Σ U Ni · (2) 
* \-Λ=1 / k=l ' 

Ni is number of individuals of the ith species; 2̂  is physiologically 
maximum instantaneous rate of population increase, or birth rate for 
animals; b/ is adjusted or "ecological" instantaneous rate of population 
increase; yih is the Ath modifying factor, out of / such factors, for the 
rate of increase bi for the tth species (always 0 < cpih ^ 1); d{ is the 
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instantaneous rate of total mortality for the ith species, or death rate; 
and Sik is the instantaneous rate of the &th mortality factor, out of m such 
factors, for the zth species. Any influence on population change is 
limited to an effect on the birth or death rates. Thus, the population rate 
of change is the difference, the rate of increase minus the rate of decrease, 
with the direction of change denoted by the sign of the difference. 

Both rates of increase and decrease are modified through biotic and 
abiotic influences, as discussed later. The rate of increase starts with 
some maximum value bi and is modified toward zero by various influences 
including crowding, energy deficit, and deviations of abiotic factors 
from optimum values. The rate of mortality starts at zero and is modified 
upward without limit through addition of instantaneous rates of 
mortality Sik from different causes. These include a value, constant for 
each species, that may represent here such unspecified mortality as 
that from disease or fighting. This mode of expressing the influence of 
environmental factors allows action of limiting factors, any one of which 
may, of itself, suppress increase or generate high mortality. 

The working model is the integrated difference of Eq. (2), or 

NiM = #,(«-!) jexp [ft, ( Π φα) - Σ δ**] j . (3) 

where none of the / birth-modifying factors or m death rates is made 
an explicit mathematical function of N. As will be pointed out, if any 
of the modifying factors or death rates is a function of N it is not always 
easy to use an integrated difference form. 

In using this model, several approximations have been introduced in 
concession to both practicality and realism in simulation. A closed 
system is assumed, with two major exceptions. Unlimited energy is 
allowed as available to producers, and movement into the population 
is assumed to balance movement outward except for the case where 
action of mortality in one interval may reduce the population number 
to less than unity. Here the next interval is arbitrarily started with a 
single individual, simulating, in a sense, a continuous low-level exchange 
with surrounding populations. From interval to interval, the population 
number of each species is calculated, with species biomass following 
as the product of number and average weight. The average weight is 
accounted separately using a constant basic body weight of non-fat 
components and a fat weight varying by interval in response to the 
energy balance of the animal (for plants, a constant fat weight is used). 
Newly created individuals, animal or plant, are immediately accounted 
as of average size, with the energy expenditure of reproduction taken to 



374 RAY R. LASSITER AND DON W. HAYNE 

include any extra costs of growing the new tissue. The increase from 
reproduction (including growth of plants) is calculated each interval 
from the number of individuals and the modified rate of increase with 
no consideration of any distribution of individuals by age or sex. 
Seasonal patterns are imposed on both increase and mortality through 
effects of a seasonally fluctuating abiotic factor that simulates the 
combined effects of climatic factors. For the convenience of being able 
to divide a year into equal parts of several different magnitudes, a 360 
computing-interval span is used, with 12 equal months (Fig. 1). 

Summer Winter 

Time 

FIG. 1. Scaled and translated sine wave utilized as abiotic factor representing annual 
climatic changes. 

This form provides for population change as a function of factors 
operative within the system. Regardless of what happens in the environ-
ment, only those influences that in some way affect the birth or death 
rates are allowed for here. Such influences are of two kinds, biotic and 
abiotic. 

B. COMPUTER ROUTINE FOR POPULATION DYNAMICS 

The Fortran IV computer program, ECOSYS, is presented in 
Appendix D together with a flow diagram of the subroutine sequence. 
The subroutine which is the counterpart of the species population model 
is ACTION. When this routine is to be entered, the factors which reduce 
birth rate or which add mortality rates have all been computed. These 
are used in computations analogous to Eq. (2). In Appendix A the 
symbols used in the computer program are matched with text symbols 
and defined, and in Appendix B the items required as input are listed, 
along with a typical set of values. 
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IIL Biotic Factors 

Biotic factors are considered here as crowding or competition effects, 
or as energy relationships; this distinction is only for purposes of 
discussion. 

A. CROWDING AND COMPETITION 

The notion of crowding implies some resource in short supply. 
Often this is space, but the supply of energy is also finite. Other items 
are in limited supply; all may be grouped as resources for which there 
may be competition. Crowding and competition imply existence of 
some density-dependent factor. 

The best known expression for a density-dependent modification of 
growth is the following statement of the logistic relationship 

dN/dt = rN(l - NK-1), (4) 

where K is maximum possible population size. Andrewartha and 
Birch (1954) have interpreted this model biologically. Each individual 
organism, of which there are N, requires \/K of the available ecological 
space. When N = K individuals all the ecological space is used up, 
there is a zero rate of change, and a steady state results. The density-
dependent factor is (1 — NK'1); this becomes more restrictive of 
growth rate at higher population densities. The integrated form, as given 
for example by Andrewartha and Birch (1954), is 

N = K[\ + exp(a - rt)]~\ (5) 

where a = ln(Ä7V-1 — 1) when t = 0 and all other symbols are as 
previously defined. 

A difference form is readily obtainable as well. Rewriting the differen-
tial form as 

dN[N(l - NK-1)]-1 = r dt (6) 

and integrating over the interval (t — 1, t), we obtain 

Nt = Nt_, exp(r) K {K - JV«_X[1 - exp(r)]}-*. (7) 

This expression contains only r in the exponent and involves a density-
dependent factor. This form would allow the influence of current 
environmental factors through changes in the upper asympote Ky or in 
the maximum rate of increase r, or in both, but this manipulation is 
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more complex in concept and less easily handled in the difference form 
than in Eq. (3) which has the basic form 

Nt = Nt_, exp(6' - </')> (») 

where exponents b' and d' are modified birth and death rates. 
The simplicity of Eq. (3) makes it especially useful for computer 

simulation. The modifying factors for birth rate [φ^ of Eq. (3)] and 
the mortality rates [8ik of Eq. (3)] may be changed as desired and readily 
inserted into the model. In comparison, while the difference form of 
the logistic [Eq. (7)] can be handled well enough with the single 
generalized factor r, it becomes difficult when generalized to / factors 
(only part of which are density-dependent) modifying birth rate and to 
m death rates (where also only some are density-dependent). But ease 
of use is not sufficient justification if Eq. (3) departs too far from reality. 
For density-dependent factors, the form of Eq. (3) may not strictly be 
applicable because the integration has not taken into account that 
adjusted birth and death rates b' and d' are functions of N. This question 
requires examination. 

Cook (1965) has noted that if the logistic equation applies on a 
per generation basis, with the interval (t — 1, t) representing one genera-
tion, and if "adult numbers in any generation are determined by the 
number of adults in the previous generation/' the difference form may be 
written 

Nt = Nt_lQxp[r(\ -N^K-i)]. (9) 

A generation is too long an interval to be of use in simulation here, 
but the form of the equation is ideal. For a given value of r, the popula-
tion size increases faster by this form because it is always one time 
interval behind in applying the density-dependent modifying factor 
whereas the difference form of the logistic adjusts continuously to the 
current population level. But the shorter the interval the closer the 
approximation. Further, it seems unlikely that populations instanta-
neously and with perfect precision adjust birth rates to accommodate to 
population size. When the lag period is actually known it can be used 
instead of a single interval. 

The logistic form was not used here directly because of the need to 
separate the effect of density-independent and density-dependent factors. 
This model uses a logistic-like form as one of several modifiers of birth 
rate and uses a different method to treat mortality as a function of 
population size. 

Most users of the logistic have held to a basic interpretation that the 
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rate of increase r is modified by the density-dependent factor ( 1 — NK'1), 
with population growth rate going to zero as N approaches K. Now, 
r is ordinarily accepted as made up of two rates, b and d, so that the 
logistic may be written 

dNjdt = {b -d)N{\ - NK~L) 

= bN(l - NK-1) - dN(l - NK-1). (10) 

The latter form suggests that both birth and death rates are affected 
identically by the density-dependent factor. This implication may be 
questioned; it is not readily to be understood on a biological basis. 
One expects rather to find two types of response, a reduction of birth 
rate and an increase of death rate. In the literature on density-depen-
dence, use of the logistic has been more general and directed toward 
describing the result that a larger population increases more slowly. 

This model incorporates a direct density-dependent mechanism in 
the form 

Nt = Nt^ exp[Ä'(l - W - 1 ) - d'l (11) 

where b' and d' are as defined in Eq. (2). The density-dependent factor 
is stated explicitly here, but functions as one of a series of φ values 
[Eq. (2)], reducing the population birth rate in proportion to the fraction 
of the space taken up. In the computer program the operation of the 
density-dependent restraint on birth rate is optional for each species. 
Mortality rates are not made directly a function of population size, 
but indirectly so by increasing mortality when food is limited (discussed 
later). 

Consider competition for all resources together. For a model in the 
present level of detail, it is immaterial what behavior causes competition 
for what resources. It is required, however, that at any time the total 
amount of resource can be specified and that the amount of resource 
needed by an individual be known. These values need not remain 
constant for longer than the basic computational interval. This view of 
"known" leaves open the possibility of further detailed modeling, for if 
the functional form of the requirement for a resource be found, it can be 
incorporated. 

Let space, however, be used as the example of a resource for which 
there is competition. This may be root space for plants or territory for 
animals. If there are n species of organisms in a biological community 
and an individual of the yth species takes up an amount of space a^ 
which an individual of the ith species cannot simultaneously utilize, 
we may construct a matrix AnXn of these requirements. This matrix, 
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consisting of n2 elements, is similar in appearance to the prédation 
matrix discussed later, in that the effect of each species on every other 
is represented and may be addressed by its row-column index. Let row 
i represent the competitor species and column j represent the species 
being crowded, for which the competition effect is being calculated. 

Thus far the elements have either negative or zero values. For 
example, in a very small community of three species, the competition 
matrix may be represented as 

(12) 

In this matrix, a^ for i = j is the amount of space required by an 
individual of a species for which contemporaries of the same species 
are in competition. This would be equal to unity as used in the logistic, 
but space might also be specified as units of space or volume uniquely 
occupied by an individual. Now, atj for i Φ j is analogous to the 
"coefficient of competition" of Gause (1934). In general ai:j does not 
necessarily equal aji and, except where each is near zero, we may 
expect equality only rarely. Values near zero may be expected often 
for space, especially with animals, because territoriality is so often 
intraspecific. 

As an example, consider the competition matrix for a community in 
which there are two competing plant species and three animal species 
that compete for space only intraspecifically. The competition matrix 
would appear as follows, where the plant species are indexed 1 and 2, 
and the animals are 3, 4, and 5 

A 

fln 

fl12 

0 
0 
0 

*12 

ö 2 2 

0 
0 
0 

0 
0 

#33 

0 
0 

0 
0 
0 

«44 

0 

0 
0 
0 
0 

*5f 

(13) 

There is some amount of space available to each species, the same 
amount for each if we merely consider physical area. But there are 
more interesting meanings for available space. Say that the amount of 
available space could be different for each species. Then we could 
represent the community space as a vector for the n species 

K = [Κχ , K2 ,..., Kn]y (14) 
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where K is the community space vector. For one species/, the modifying 
factor for the effect upon birth rate of crowding by all n species is 

Ηκ, + Σα^Νλκτ1 for I £ a^N, 

[ 0 otherwise. 

<K, (15) 

The sign change in the numerator reflects the negative a{j values. 
The presence of a species may be beneficial to another, and may even 

be required for survival, referring to space, not food, and carrying the 
discussion beyond the present program. This would be the inverse view 
of competition with the a{j· values, the "coefficients of competition,,, 

carrying positive signs in contrast to the negative signs thus far associated 
with all nonzero values. Volterra (1928) proposed an analogous formula-
tion with what he called "the true coefficients of increase." His general 
statement of population rate of change for species j , in the presence of n 
species, becomes 

dN,ldt = (r, - £ PiiNt) N,, (16) 

where Volterra's p{j "are any constant whatever* ' and the rest of the 
symbols match those defined here. Volterra's form does not, however, 
discriminate the effect on birth and death rates. 

This generalization of the competition matrix [Eq. (13)] to accept 
positive coefficients to indicate symbiosis would allow for all possibilities 
of interaction between two species with respect to a resource. These 
might then be for the zth and yth species any element of the set of 
relationships 

{(+,+), (+,0), (+ , - ) , (0,+), (0,0), (0,-), ( - ,+) , (-,0), ( - , - )} . 

This representation resembles that of Odum (1959, p. 226) but differs 
in that prédation is excluded here. 

If symbiosis were to be included in the model, Eq. (15) would have 
to be modified. The amount of the resource available to species y would, 
in effect, be increased due to the symbiotic species. One adjustment could 
be that in K- (next page), only positive values for a^ be added to Kj, 
the measure of space present otherwise, changing Eq. (15) to 

(17) 
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where 
n 

Κ; = Kj + Σ α ^ for all aiS > 0. 

Note that Kj is not necessarily zero, but represents space available 
otherwise. 

Ecological succession may be viewed as a long term result of symbiotic 
relationships. In the succession of an old field to a forest, there are many 
unidirectional changes (Daubenmire, 1947). The dry, sunny habitat is 
converted to a moist, shady condition, with species change both cause 
and effect of the shift in local climate. It is not inconceivable that succes-
sion may one day be modeled, and a competition matrix like Eq. (17) 
might be useful to represent some phases of the process. But the present 
model is far from such a capability. 

B. ENERGY DYNAMICS 

Analysis of how the biota uses available energy is basic to contem-
porary ecology. The ideas of Lindeman (1942) have stimulated much 
research on the energetics of species and communities, with some general 
work. But the trend has been toward studies of mass results, assuming a 
steady state, without much concern with mechanisms. For simulation, 
at least the results of mechanisms must be described, whether under-
stood or not in detail. 

In this model, energy influences a population only by changing rates 
of increase and death. But consideration of how this may happen 
quickly expands the inquiry to include questions of the sources, use, and 
storage of acquired energy, the kinds of energy expenditures, the 
natural controls exercised over rates of energy capture, consumption, 
utilization and storage, and the mortality imposed upon the prey 
species through food acquisition by the predator. Figure 2 presents a 
simplified view of this physioecological system. 

I Food I 

FIG. 2. Schematic representation of the 
control system for energy intake, storage, 
and expenditure. Solid lines indicate phy-
sical or chemical transfer; broken lines 
indicate physiological influence. 
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We will consider energy relationships in the sequence indicated below; 
this also presents the postulates upon which the conceptual model is built. 

(1) Energy requirements of producers are assumed to be met in 
excess by the sun. Energy requirements of consumers are met by 
ingested food, with a constant fraction of stored fat mobilized in each 
interval, and in starvation by catabolism of body proteins. Excess energy 
is stored as fat. 

(2) The effect of an altered energy supply comes about through 
modified rates of increase and death. For producers, no energy fluctua-
tion is postulated. For consumers, when energy (food or stored fat) 
is abundant, then population changes are controlled by other factors. 
When energy is scarce birth rate may be depressed and death rate 
increased. For the population these changes commence before the 
average individual reaches energy deficiency. 

(3) The energy expenditure budget of the individual consumer 
organism is quantified here with a basic component related to body size, 
plus a set of expenditures proportional to the deviations of abiotic 
factors from optimum levels, plus the costs of reproduction and growth, 
plus the costs of activity (for food gathering and escape from 
predators). 

(4) Control of food intake, and thus of rates of prédation, is by 
satiation, brought about through the glucostatic and lipostatic mecha-
nisms. 

(5) Prédation has the dual aspect of food gathering by the predator, 
and mortality for the prey. Rate of prey capture by the individual 
predator is controlled by the numbers and vulnerability of the prey 
species, and under appropriate conditions by development of satiation. 
The prey mortality rate is the summation of instantaneous rates of 
mortality to all the predators on the species. 

Presenting the problem this way will sometimes introduce a mathe-
matical formulation ahead of its biological justification. We hope that 
the occasional awkward transition may be tolerated in the interest of 
maintaining continuity of biological thought. 

C. ENERGY INTAKE 

Producer organisms receive energy from the sun, and store it as new 
tissue. While the energy supply is considered unlimited, the rate of 
growth and storage of energy in tissue is made subject to modification 
by abiotic factors, by the grazing (predatory) action of consumers, and 
by the density-dependent limitations imposed by space. As a result, 
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the plants store energy in a varying tissue biomass that has a constant 
proportional composition of digestible carbohydrate, fat, protein, and 
bulk residue. 

For consumer organisms, the energy content of ingested food becomes 
available through digestion, then the energy is used, with any excess 
stored in tissues. If there is a déficit of energy, there will be a drain on 
tissue stores. In the model it is assumed that all food ingested during 
an interval is disposed of physiologically during the same interval, 
that is, either digested or excreted, and if digested, either used or stored. 
Therefore, it is reasonable that an interval correspond to a feeding cycle. 
It would require a more elaborate accounting system to provide for 
lags in use of energy, or to describe better the case of the continuously 
feeding organism. 

Assume that digestion is proportional to time within the computational 
interval, and set dx as the instantaneous rate of digestion for unit time. 
A constant proportion of food ingested will be digested. Then with ft 

representing the amount of food taken in by an individual during the 
interval, we may state the amount digested as 

ft[\ - exp t -^ ) ] , 

with the amount excreted being 

/ ; e x p ( - ^ ) . 

The energy content of food depends upon amount ingested and 
proportions of carbohydrate, fat, and protein. The diet composition 
is calculated from the known body composition of the species eaten, 
and from the amounts eaten of each. Where plants are eaten, the propor-
tions of dietary elements remain constant for any one species. Where 
animals are eaten, the proportion of fat in the prey changes with its 
energy status, with consequent changes of fat content in the diet of 
the predator. A running account of all fat stores is maintained and the 
fat content of each predator's ration of food is determined for each 
computing interval. 

For each time interval, let a set of three partial digestion rates be 
calculated as a product of the overall rate dx and the proportional 
composition in the diet of the three nutritional elements. These partial 
rates will be dn , d12, d13 with the second subscript designating, in order, 
carbohydrate, fat, and protein, respectively, and with 

d\ = du + d12 + dls. (18) 
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The amount of each of the three elements available to the animal in 
digested form will be the corresponding fraction of the total digested; 
with carbohydrate, for example, 

<VrY,[l - exp(-^)]. 

For convenience we may identify the average amount of undigested food 
during the interval as 

/ = d?ft[\ - expi-rfO]· (19) 

Further, our primary interest being in the energy contributed by digested 
food, let q1 , q2 , and q3 represent the respective unit caloric equivalents 
of digested carbohydrate, fat, and protein. Then the separate sources of 
energy from digested food become 

from carbohydrate = qiduf 

from fat = q2d12f 

from protein = q3d13f. 

It seems to be accepted that animals preferentially catabolize carbo-
hydrate over fat, and fat over protein (Guyton, 1966). This hierarchy 
utilizes carbohydrates when available, catabolizes some fat if not enough 
carbohydrate is available, and by the complementary mechanism, 
anabolizes the carbohydrate into fat when the energy available from 
carbohydrate exceeds the amount expended. Further, there is the energy 
from fat mobilized from storage. 

The model assumes that a fixed proportion of the body fat store is 
mobilized in a unit time. Bates et al. (1955), studying various strains of 
mice, found that an amount of fat proportional to the amount present 
was mobilized daily. This occurred under experimental conditions where 
need remained constant, while recording a weight gain up to 70% 
due to increased size of fat depots. Apparently this mobilized fat is 
available as raw material to the lipolytic process which itself proceeds 
at a rate dictated by energy expenditure. 

Using the idea of a constant proportion d2 of the initial fat store 
Ff_! , being mobilized during the interval, the total amount of energy 
in fat available from ingested food and body stores becomes 

^2(^12/ + d2Ft_1)y 



384 RAY R. LASSITER AND DON W. HAYNE 

and the total amount of energy available Ex may be written as 

Ei = {qidn + q2di2 + qAs)f + fc^i-i > (20) 

assuming that all fat ingested in an interval will be available in the same 
interval. 

The energy balance of an animal is reflected in changes in the body 
stores of fat. As the model is developed here, 

F _ (iViU - d2) + (Et - Ew) q'1 for El > Ew 
1 " ( F ^ l -d2) for Et<Ew)

 { } 

where Ft is fat store at the end of the interval ; Ft_x is fat store at the 
beginning of the interval ; d2 is the proportion of fat store mobilized 
during the interval ; El is available energy, as in Eq. (20) ; Ew is required 
energy ; and q2 is energy equivalent per unit of fat. Fat stores are reduced 
unless the available energy exceeds the demand by enough to repay into 
storage the amount of fat mobilized. Any excess over this requirement 
increases the fat stores. 

Starvation is defined here as the state when the demand for energy 
exceeds the total amount available; the déficit can be met only by 
destruction of protein. In the model, mortality is increased when starva-
tion occurs. There is also a state of less severe undernutrition where 
the animal must draw upon its fat stores to exist; this lies between the 
starvation level, where demand exceeds supply, and the level where 
supply exceeds demand by just enough to maintain the body stores. 
In the model, this intermediate state is accompanied by a reduction 
of birth rate. 

This model of energy intake, use, and storage uses approximations 
that will require more exact treatment in more sophisticated application. 
While the destruction of body protein is assumed with starvation, there 
is no allowance for a corresponding reduction in body protein weight. 
There is no explicit allowance for an energy cost of storing fat beyond 
the energy content of the tissue, though the energy needs for growing 
new animals are included under the energy expenditures for reproduc-
tion. 

There is no specific model here for protein metabolism. There seems 
to be neither need, nor adequate information, to warrant its construction. 
Proteins may play a role in food intake; amino acid imbalance and 
excessively high proportions of protein in the diet are cited in situations 
where proteins affect food intake (Krauss and Mayer, 1963). These 
authors found that protein in the diet may affect food intake indepen-
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dently of the homeostatic satiety mechanism, to prevent the excessive 
intake of protein. 

The energy equivalents used in this work (qx , q2 , q3) are those given 
by Hawk etal. (1954) as 4.1 kcal/g for carbohydrates and proteins, and 
9.3 kcal/g for fat. Other values for particular species may be obtained in 
Golley (1961), Slobodkin and Richman (1961), Watt and Merrill (1963), 
and Cummins (1967), among other sources. In computation, the energy 
derived from protein is combined with that from carbohydrate. 

D. EFFECTS OF ENERGY DEFICIT 

When the food supply is inadequate, an animal has increasing difficulty 
in maintaining physiological integrity. In the model, food shortage 
affects the birth rate or the death rate; any other impairment is an 
intermediate step toward one of these two results that in turn affect 
population size. 

The reduction of birth rate is assumed to start when the individual 
commences to draw upon body reserves for energy, and increased 
mortality to commence at the point of further deprivation where starva-
tion begins. But the population effect cannot be reasoned directly 
from the status of the average individual. When the average energy 
balance is at some threshold value, the population rates of birth and 
death will already have been affected, and perhaps to some important 
degree, because about half of the individuals will be experiencing greater 
than average deprivation. To calculate properly an effective rate for 
the population would require information not available, that is, knowl-
edge of both distribution of energy status throughout the population, 
as well as the functional relationship between energy deficit and biological 
result. Not knowing this, we use an approximation, based upon the 
observation that the closer the population approaches the stressed 
condition (from the unstressed) the more individuals will be under stress. 
A constant value L between zero and unity, subtracted from the ratio 
of energy supply to energy needs will have the effect of calculating the 
average individual to be in somewhat greater stress than it is, a correction 
in the right direction to make an allowance for that part of the population 
in worse condition than the average. 

That the birth rate is lower and the survival of young less when food 
is scarce has been reported often. Lack (1954) has summarized some of 
the information for birds and mammals; Slobodkin (1964) described 
the effect of starvation upon reproduction in Daphnia. But no general 
statement has been found relating birth rate to available energy; some 
such statement is required in a model. 
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We shall hypothesize that the birth rate of an individual begins to 
decrease when the energy in the food ration is no longer adequate to 
meet the energy demands, and that the birth rate becomes zero when 
none of the energy demands are met in the food. The effect is introduced 
into the model as one of the modifying factors ψ for birth rate, with the 
inclusion of the constant Ζ>φ inserted to reduce the population birth 
rate below the maximum as a result of undernutrition, at a time before 
the average individual is undernourished 

for Ζ/φ < <pb' < 1 + Lv 

ψ„= 0 for L„^9b' (22) 
' 1 otherwise, 

where £φ is a constant, 0 ^ Lv, < 1 (in the model, L = 0.10) and 

<Pb = (Mil + ?2 î2 + iMfE^1-

Increase in mortality rate due to starvation reflects a more severe 
deprivation than reduction of birth rate. In the model increased mortality 
begins with starvation, at the point where the needs are not met by 
the energy taken in as food plus that mobilized from body fat. Here 
destruction of protein begins; an organism can tolerate some loss of 
protein but the probability of death increases as proteolysis continues. 
The severity of the stress is in some fashion inversely related to the 
proportion of the energy demand met by available energy. Designating 
this proportion as / , then 

1 = KMn + 9Λ2 + %dis)f + <l2d2Ft-i} K1' (23) 

The inverse relationship may be represented as 

dSs/dl = MI-\ (24) 

where δ8 is instantaneous rate of mortality due to starvation and M is a 
constant. Integrating, we obtain 

8S = M In / + C, (25) 

and since δ8 = 0 when / = 1, C = 0. In practice, the value of /, no 
matter how small, must exceed zero; and here, though not below, 
δ8 = Oîov I > 1. 

There is still the need to start increasing the population death rate 
while the average individual is not yet starving by subtracting a constant, 
L8 from the ratio / . This constant Lô serves a populational function 
similar to L^ which reduces birth rate, though the two constants are not 
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necessarily equal; in fact, in the model, Lô has the value 0.25. The model 
for mortality due to starvation becomes 

( M l n ( / - L e ) for Lô < I < 1 + Ld 

Ss = l M In / for L 5 > 7 (26) 
(θ elsewhere. 

The form of this model results in a time lag from the development 
of a food shortage in one interval to its effect on the population in the 
next interval. This lag offers a means for describing naturally occurring 
lags (Wangersky and Cunningham, 1957; Slobodkin, 1964); it could be 
increased if biological information warranted. 

E. T H E ENERGY EXPENSE BUDGET 

Energy expenditures for an interval are calculated here as the sum of 
the separate items of the energy budget for an individual. The items 
accounted are cost of body maintenance as a function of body size, 
the energy drain imposed by action of abiotic factors, the costs of 
reproduction (and growth of young), and the energy demands of activity. 
No doubt other categories of energy expenditure exist, but it is likely 
that this model accounts for the major energy losses. 

Studies in ecological energetics have usually been based on mass 
energy exchange over long intervals of time, with the budget of the 
individual set aside in favor of the large goals. McNab (1963), in contrast, 
has constructed an energy budget model for a wild mouse. In simplest 
form his model is a function of time, environmental temperature, and 
rate of metabolism; the term for metabolism includes several environ-
mental factors. Porter and Gates (1969) have considered thermodynamic 
equilibrium in several species. 

The possibility of interactions among energy-demanding activities 
presents questions that cannot be resolved without detailed biological 
study. There may be differential responses to changes in one factor at 
different levels of another, and with study algebraic functions may be 
found to describe these interactions. On the other hand, we anticipate 
that in magnitude the interaction expenditures are probably less impor-
tant than direct effects. Thus for the initial model a simple algebraic 
summation is accepted for the components of energy expense after each 
is computed; this does not mean that any component is necessarily a 
linear function. 

The commonly accepted relationship between energy use and weight 
of an animal is used here for energy needed for body maintenance 

Elk = ulkWl\ (27) 
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where Elk is the energy expended which may be accounted for by body 
size for species &, and ulk and vk are constants, characteristic of the 
relationship for species k. Metabolism under standard basal conditions 
specifies the maintenance requirement for energy, to which other needs 
must be added. In the model the exponent v is given the generally used 
value of § (Englemann, 1966, for example) even though there is biological 
evidence against the universal value (Prosser and Brown, 1961). 

Departure of an abiotic factor from the optimum environmental value 
may require energy expenditure from an organism. Such abiotic factors 
include temperature, light, day length, precipitation, and humidity; 
in the model two abiotic factors are provided. It is assumed that the 
basal energy requirements Elk have been determined for species k in 
the optimum zone for each abiotic factor, i.e., where energy expenditure 
due to the particular factor is at a minimum. Any departure from the 
optimum zone increases the energy need; here it is assumed that the 
energy consumption increases by the same amount per unit deviation 
regardless of direction. Hence the model 

/ 
E2k = Σ U2kx^kx > (28) 

x=l 

where 
|zero for Okxl ^ ^x.^ Okx2 

A k x = Okxl - &x for ^ < Okxl 

[ 3FX — Okx2 for fFx > Okx2. 

E2k is total energy demand due to / abiotic factors acting on species k ; 
J ^ is the current level of abiotic factor x ; Okxl, and Okx2 are bounds of 
the optimum zone for abiotic factor x with respect to energy expenditure 
by species h (subscript 1 indicates lower bound, subscript 2 upper bound) ; 
and u2kx is a proportionality constant, the increase in energy requirement 
(kilocalories) per unit deviation of factor x from the optimum zone for 
species k. 

Population increase demands large quantities of energy. Here this 
reproductive function includes the cost of growing the new individual of 
average size as well as the usual charges for gamete production, courtship, 
and care of the young. The cost of growth must include the work of 
elaborating the new tissues as well as the energy content of those tissues. 
We have provided for both costs by calculating the energy expenditures 
to be 1.5 times the energy content of the tissues produced. This factor 
falls within the range of values given by Needham (1964) for a number 
of species. We assume that energy is expended in proportion to the 
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number of new individuals produced per unit time, or, on the per-
individual basis, proportional to the current value of the modified rate 
of birth b'. Thus, the amount of energy expended in reproduction is 

£3* = UzA'Qk > (29) 

where E2k is energy required for birth and growth of young by an 
individual of species k> u3k is energy cost per new individual as a ratio 
to average energy content (value used here is 1.5), bk is modified birth 
rate for species k, and Qk is average energy content of an individual of 
species k. 

The final category of the energy budget model for animals is that of 
activity. Activity may be directed in many ways; the two considered 
here are food gathering and escape from predators. 

Regarding food gathering, we may observe that (1) the more available 
the food, the less effort required to obtain it, and (2) the more food 
needed, the more effort required to obtain it. Thus, an expression 
proportional to need and inversely proportional to availability is 
suggested. The measure of food requirement is satiation level, to be 
given in Eq. (40). The measure of availability is the potential food ration, 
to be given in Eq. (50). Combining the two expressions as suggested 

£4fc = u^S^1, always £4fc < 2Elk, (30) 

where EAk is energy expended for food gathering in the interval by an 
individual of species k, Elk is energy expenditure accountable to body 
size, or basal rate [Eq. (27)], Sk is amount of food required to produce 
satiation for an individual of species k in this interval, Rk is maximum 
amount of food that an individual of species k could gather during 
this interval, or potential food ration, and w4/c is energy needed to gather 
the amount of food required to just reach the satiation level for species k, 
under conditions where exactly this amount can be captured during the 
interval. Note that the fraction Sj.R^1 has a value of 1 when the food 
for satiation just equals that which can be captured during the period. 
Values for the fraction greater than unity will result here when food 
is relatively scarce, implying that under such conditions the expenditure 
of energy can be greater than for a full day of hunting (but with a limit 
here of twice basal metabolism). The implicit concept of hunting 
efficiency is unsupported; factual information on predator behavior and 
physiology is needed. Two reported values for the energy spent in food 
gathering probably set reasonable bounds for most species; Pearson 
(1954) showed that something less than one-third of the energy budget 
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is spent in food gathering by the hummingbird, while Lucas (1963) 
reported that a steer spends about 5 % °f ^ts daily budget in grazing. 

To develop a model for energy expended in escaping from predators, 
let us use the assumption that a prey species spends energy in an amount 
proportional to the energy that all predators spend in capturing that 
prey species. It will be shown later that the number of prey taken by an 
individual predator of species i from n prey populations is 

n 

y C--N-
i=l 

with the amount taken by this predator from the kth prey population 
being 

where Nj is mean number of individuals of prey population j present 
during the interval, and c^ is adjusted prédation rate of predator / 
upon prey j . The proportion of the total amount of food taken by 
predator i that comes from the k\h prey population is 

,Nl (£ ^i)"1· 

Now, in order to find the amount of energy spent by an individual of 
the /th predator species in hunting food from the kûv prey population, 
we may multiply the above fraction by the amount of energy the predator 
of species i used in capturing all its food and obtain 

* ( Σ C«N^ X-

This expression describes the amount of energy expended by an 
individual predator of species i in capturing prey of species k. Considering 
that there are Λ^ such individuals of this predator species, and that we 
must account for the energy spent per individual of the Nk in the prey 
species, then multiplication by the fraction iV^A/^-1 is required. Further, 
such quantities must be summed over a total of y predator species. 
Thus, the submodel to represent energy spent in escaping all predators 
by an individual of prey species k becomes 

E^ = U^NJM1 £ iVAA^Z^)"1]. (31) 
where u5k is a proportionality constant characteristic of prey species k. 
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The energy budget model may be written out in full for an individual 
of species k, as 

Ek = Elk + E2k + E3k + E4k + Ehk . (32) 

Davis and Golley (1963) have pointed out that for mammals the energy 
cost of normal activity is about twice the resting metabolism, or in these 
terms, Ek = 2Elk . 

F. REGULATION OF FOOD CONSUMPTION 

The control of energy balance through limitation of food consumption 
has attracted relatively little attention among ecologists considering the 
apparent importance of this phenomenon in governing the flow of 
energy through populations. A notable contribution is the experimental 
and analytical work reported by Holling (1965, 1966). Physiological 
investigations of the regulation of food intake have been made by several, 
notably by Mayer and his co-workers. The mechanisms have been 
studied most for mammals, but research by Rozin and Mayer (1961, 
1964) on the goldfish and Dethier and Bodenstein (1958) on the blowfly 
indicate that the regulatory mechanisms for these widely divergent kinds 
of animals may be simpler versions of the mammalian mechanisms. 

Food intake appears to be regulated by two mechanisms, termed 
glucostatic (sensing on blood glucose) and lipostatic (sensing on blood 
lipid) as well as the more obvious upper limit of intake set by the physical 
capacity for ingesting, or the "biométrie limit." In discussing the regula-
tion of food intake, Mayer (1964) emphasizes the development of a 
satiation level which is adjusted by the glucostatic mechanism according 
to the recent exchange of energy. This is termed a "short term" regula-
tion in contrast to the lipostatic component of regulation, called "long 
term." In addition, there is biométrie regulation, which refers to the 
physical (and other) limits on the ability of the animal to ingest food 
at one time; this clearly sets an upper level below which the average 
rate of energy expenditure must surely lie. Ivlev (1961) has identified 
this limit as the maximum ration and Holling (1965, 1966) as the 
maximum amount of food the gut can hold. 

We now require a mathematical model to describe satiation level as 
a function of the variables mentioned above, viz., the biométrie maximum 
food intake, the glucostatic mechanism, and the lipostatic mechanism. 

The glucostatic mechanism is said by Mayer (1964) to function in 
short-term regulation by adjusting satiation level commensurate with 
the difference between recent energy intake and output. The satiety 
center, in the ventromedial area of the hypothalamus, contains gluco-
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receptive cells that control the nearby feeding center. As the animal 
feeds there is an increase in glucose concentration at the satiety center, 
and its resulting activity inhibits further feeding. As blood glucose is 
metabolized, activity is decreased in the satiety center, releasing the 
inhibition on the feeding center. But in order for a satiation level to 
operate in large animals the satiety center must be activated much 
sooner than would be possible through increased blood glucose from 
digested food. This has been observed to occur and has been explained 
in at least two ways. Mayer and Thomas (1967) quoted observations 
showing that blood glucose is elevated at the onset of feeding by release 
of endogenous hepatic stores. Mailer et al. (1967) suggested another 
possibility, metering of the intake via direct pathways to the brain from 
the oropharyngeal region. They were able to show that this was indeed 
the case not only for glucose, but also for several other compounds. 
Further, Mayer and Thomas (1967) point out that other receptors 
located in the stomach and perhaps elsewhere are complementary in 
the operation of the whole mechanism. 

In such small animals as the blowfly the mechanism may be much 
simpler. Because of the small size a direct influence of the carbohydrate 
level in the body fluid could be exerted on a satiety center with time lags 
sufficiently small that oversupply could be prevented. This appears to 
be the case (Dethier and Bodenstein, 1958). Goldfish have been shown 
to regulate caloric intake to balance energy output, perhaps by a similar 
mechanism (Rozin and Mayer, 1961, 1964); the mechanism has not 
been elucidated for other poikilotherms. It does not appear, however, 
that the glucostatic mechanism can be the only one operative in all 
mammals, especially with predators for they often ingest only minimal 
amounts of carbohydrate. 

Suppose that only the glucostatic component and the biométrie 
maximum accounted for the satiation level. The effective satiation level 
can never surpass the biométrie maximum. We postulate that satiation 
level may increase in response to an energy expenditure in proportion 
to the difference between the biométrie maximum and the most recent 
satiation level. Thus satiation level could increase more, if it had recently 
been low, than it could if it had been high. Some type of memory, 
possibly physiological, is implied here. The model then, is 

dS/dE = k(B - S), (33) 

where S is satiation level, E is energy expense, k is a proportionality 
constant, and B is biométrie maximum food intake. After integration 
we have 

S = B - Cexp(-kE), (34) 
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where C is a constant of integration. As an initial condition to evaluate C, 
let S = 0 when E = 0; thus B = C, and we can rewrite as 

S = B[\ - exp(-kE)]. (35) 

The satiation level is set here by the total energy expenditure. It seems 
somewhat more reasonable to set satiation according to that amount of 
energy used above basal metabolism. Further, the constant k in the 
above expression for satiation level is a function of animal size and 
carries the units cal - 1 . Both difficulties are corrected by standardizing 
the statement of energy expenditure above basal in terms of the basal 
value [which has already been calculated as Ex in Eq. (27)]. Rewriting, 
the basic expression used is 

S = B{\- expl-k^E - Ex) E?]}y (36) 

where kx is the modified rate constant, now a unitless number. The 
standardized statement of energy expenditure above the basal metabolic 
expense may range in value from some high multiple, where the satiation 
level approaches the upper (biométrie) limit, down to zero, where the 
satiation level is also zero. This last case implies that if no energy is 
expended beyond that required for maintenance, then no feeding will 
occur. 

Figure 3 shows satiation level graphed against energy expenditure. 
For some values of energy expenditure, the amount of food the animal 
can ingest before satiation will exceed its energy expenditure, and fat 
will be stored (provided, of course, that availability of food is such 
that it will be possible for an animal to ingest a ration sufficient to 
satiate). These values of energy expenditure consistent with fat storage 
all lie below some critical point, while above this point it is not possible 
for the animal to pay for the expenditure by intake. 

FIG. 3. Simple model relating energy intake to energy expense. The model assumes 
that all energy expenditures except basic bodily processes generate drive for energy intake. 
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The lipostatic mechanism is hypothesized by Mayer (1964) to function 
through some type of metering of blood lipids. The amount of fat 
mobilized in a given interval of time, and thus blood lipid level at any 
time, are proportional to the size of the fat depot (Bates et al., 1955; 
Mayer, 1964). There is a "privileged body weight," i.e., an adult animal 
is said by Mayer to tend toward some body weight typical of the 
individual and this tendency involves adding or losing weight due only 
to changes in the size of the fat depot. The farther the animal's weight 
moves from this privileged weight in one interval of time, the more 
likely is an accommodating change in food intake during the next 
interval. Thus, if an animal has depleted his supply of stored fat some-
what, he will soon eat a larger than usual amount of food to replenish 
his supply; if on the other hand he has accumulated an excess, he will 
soon reduce intake to utilize some of the excess fat. Perhaps this is 
called long-term regulation because fat stores do not usually change 
much from the day-to-day energy fluctuations, and because the size of 
the fat depot exerts a continuing influence on the effective asymptote 
for satiation level. 

It is interesting to speculate upon a possible mechanism for lipostatic 
control of satiety. Mayer and Thomas (1967) point out that the mecha-
nism probably operates through some type of interference in the 
functioning of the glucostatic mechanism instead of as a completely 
independent process. Fats are converted to glucose to some extent in 
the gluconeogenetic process. If there are fats available there may also be 
glucose. Now if this gluconeogenetic glucose is in proportion to the 
amount of fat present, then the stored fat F can give rise to a background 
amount of glucose exerting an effect on satiation level, and this could 
occur independently of blood glucose levels which originated from 
ingested carbohydrates. 

Whatever the mechanism, the effect of the lipostatic component upon 
satiation level is a function of fat depot. We expect the satiation level to 
remain high while fat stores are low, given that energy expense is such 
that the glucostatic component requires a large satiation level. But with 
larger fat stores the lipostatic component tends to subdue satiation level 
so that the privileged body weight is not exceeded. One simple model to 
approximate this component, given that energy expense is maximum, 
might be 

3S/3F = -KF, (37) 

where F is the size of the fat depot. After integration this becomes 

S = -KF2j2 + C, (38) 
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where C is the integration constant. When fat stores approach zero with 
energy expense high (as is assumed here) then satiation level is B; 
this supplies the initial condition: when F = 0, B = C. Substituting 
gives 

S = B - k2F
2
y (39) 

where k2 = Kj2y a proportionality constant (associated units are gm_1). 
This is the equation used for the lipostatic component of food intake 
regulation. 

Since Eq. (39) sets the level of satiation when energy expense is high, 
it is in effect a modified biométrie maximum level of food intake. Satia-
tion is bounded by the value set by fat stores regardless of energy 
expense, in the interpretation of the model. This, and not the value of B, 
is the real limiting value for the glucostatic model. Combining the 
lipostatic with the glucostatic model, we may use the maximal satiation 
level as set by the lipostatic model, as the asymptotic value for the 
glucostatic model. The final model for food intake regulation becomes 

S = [B- k^}{\ - e x p t - ^ Ê - EJ ΒΓ1]}. (40) 

Under experimental conditions, with a rigidly controlled activity 
regime in a controlled temperature environment, a long-term regulation 
to a privileged body weight is observed. The model adequately mimics 
this observation. With a constant energy expense, the right-hand factor 
of Eq. (40) is a constant. Thus, satiation level may be computed as 

S = C(B - k2F*). (41) 

If F could reach such high levels that k2F
2 = B, then S would equal zero. 

But in practice this may seldom happen. When fat storage is high, 
part of the energy expense is paid for by food intake and part by 
mobilized fat. Thus, there is a continual drain on fat stores during 
periods of low satiation level resulting from a large fat depot. 

Holling (1965, 1966) developed a model for hunger identical to that 
developed here for the glucostatic mechanism. Holling's experiment, 
designed to elucidate the effect of hunger in his prédation model, was 
to starve his animals (mantids) for varying lengths of time after satiating 
them. The times varied from J hr to 72 hr. Hunger was measured as 
the amount of food required to satiate after the planned period of 
deprivation. He postulated that hunger really was a measure of the 
amount of food left in the gut. From this he wrote, in the terminology 
used here, 

dHjdt = dx(B - H\ (42) 
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where H is hunger, t is length of time of food deprivation, d1 is a constant, 
the rate of food disappearance from the gut (digestion rate), and B is 
maximum amount of food the gut can hold, or biométrie maximum 
for the corresponding time interval. Integrated, this resulted in 

H = B[\ - expi-dj)]. (43) 

His experiments were conducted under controlled temperature and 
relative humidity with standard mantids. Assuming that activity was 
closely controlled, then energy utilization is a function of time; thus 

E = ct, 

and we can rewrite Holling's equation as 

H = B[\ - exp(-*£)], (44) 

where k = d^1, and we have a form identical to that used for satiation 
level in the glucostatic model. No effect of energy storage is included 
in this model, although, as Holling recognized, there was evidence in 
his data that some type of energy storage existed. In testing his model 
against his data, departures were found which Holling recognized as 
biologically meaningful. He said, 

The most likely cause is a nutritional deficit acquired after long periods of food 
deprivation, a deficit that cannot be made up at one sustained feeding but shows 
its effects on subsequent feedings as well. Since long deprivation times tended to 
be followed by shorter ones, therefore the hunger measured at these shorter intervals 
tended to be higher than the actual deprivation time would warrant (Holling, 1966, 
p. 18). 

This is a statement of much the same concept as Mayer's "privileged 
body weight." The "nutritional deficit" was created by utilization of 
the mantid's energy stores (which surely existed to permit survival for 
a 72-hr fast). With the deficit, just as Holling pointed out, the mantids 
tended to eat more until there had been a return to privileged body 
weight. It is likely that Eq. (40) here would better describe Holling's 
results. 

G. PRÉDATION 

Prédation always has a dual meaning, for while it serves one species in 
food gathering, it imposes mortality on the other. The mortality rate on 
the prey describes the process, but is a property of the interaction of 
two species. It is true that any predator may capture and consume 
members of a number of prey species, and any species may be preyed 
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upon by several predators. Nevertheless the essential act is pairwise, 
one predator with one prey, in a process vital to both. 

Consumption of plants by animals is prédation, in terms presented 
here, not to be distinguished from the eating of one animal by another 
(except by the numerical content and context). In fact, the identification 
of discrete trophic levels, while convenient, is not necessary. 

For complete generality let us say that any species may prey upon 
any species, including members of its own species. Then we may form 
a matrix P of prédation rates. These are instantaneous rates of mortality 
that characterize, pairwise, all the predator-prey interactions. They 
state the mortality rate imposed on a prey population by a unit density 
of predators, and are thus implicitly specific for some time unit and 
for some area (for statement of densities). A prédation rate may have 
any positive value including zero; the matrix may include very large 
and very small or zero rates at the same time. Any element ptj of the 
matrix may be identified by its row-column index, where the row i 
pertains to the predator species and the column j to the prey. 

For an example, consider the matrix representation of a simple, 
five-species food web with classical trophic structure, in the form 

0 
0 

Psi 
Pa 
0 

0 
0 

P32 

p42 
0 

0 
0 
0 
0 

/»53 

0 
0 
0 
0 

Pa 

0 
0 
0 
0 
0 

(45) 

In this matrix, with the row indicating the eater and the column the 
eaten, species 1 and 2 are autotrophic and are eaten by species 3 and 4, 
but eat no species (rows 1 and 2 all zeros). Species 3 and 4 eat species 1 
and 2 and are eaten only by the carnivorous species 5, which is eaten 
by none of the species. There is a discrete trophic structure here, 
with three levels, Λλ, Λ2, and Λ3 , as indicated by the prédation matrix. 

As a second illustration, we construct a prédation matrix for a food 
web in which there are five species: (1) a completely autotrophic plant, 
(2) a carnivorous plant, (3) a small omnivore that is cannibalistic, 
(4) an herbivore, and (5) a top carnivore. Taking the species in the 
order mentioned, the prédation matrix could be 

P = 

0 
0 

Pzi 
/>41 

0 

0 
0 

/>32 

Î 4 2 

0 

0 
0 

/>33 

0 
/>53 

0 
^ 2 4 

Î 3 4 

0 
/>54 

0 
0 
0 
0 
0 

(46) 
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Here though trophic structure may be unclear, it is still simple to show 
the feeding relationships in a prédation matrix. 

Prédation rates used here are instantaneous rates of mortality; for these, 
two properties are used (Ricker, 1958). First, the instantaneous rate of 
total mortality, when several different kinds of mortality are acting 
independently, is the sum of the separate instantaneous rates; this 
property has been used previously in this chapter when summing 
death rates. The second property is especially useful when several 
mortality rates apply at the same time with a rate of increase during 
an interval. The * 'yield' ' to any one kind of mortality (in present context, 
to a predator) may be calculated as the product of the particular instan-
taneous rate and the mean population level during the interval. The 
mean population during the interval is calculated, in present context, 
following Ricker (1958, p. 32), as 

N{ = N, exp 6 / - Σ Μ - 1 \(b'~ Σ 8i*) > (47) 
L N fc=l J X k=l } 

where Ni is mean population number during the interval ; N{ is population 
number at the beginning of the interval ; 6/ is adjusted birth rate for pop-
ulation i; and ΣΓ=ι ^ik 1S t n e s u m °f m mortality rates acting on popula-
tion i, taken at this point to include prédation. 

The prédation rate p^ is specific to the time interval and also to the 
unit area on the basis of which population densities are stated. Thus, 
the prédation rate reflects home ranges, activity patterns, and behavior 
of both predator and prey. Further, prédation rates provide an opera-
tional measure for the relative vulnerability of prey species to a predator, 
cr for any "preference" exercised by predators among prey items. 

To illustrate the use of prédation rates, consider an elementary 
example. Suppose that in a unit area there are iV̂ · individuals of prey 
species / , preyed upon by an individual (or, unit density of) predator of 
species i, with the resulting prédation rate being p{j . If this prédation 
is the only kind of mortality experienced by the prey, and with no 
reproduction, then during the unit time interval the probability of 
death for any individual of the prey population will be 

1 - exp( -pi5\ 

and the number of prey captured by the predator, on average, will be 

N,[\ - exp(-/>„)]. 

Next, if there are two individual predators the effective prédation rate 
is the sum of the rates for the separate predators, or 2ρ^ , and with Ni 



6. A FINITE DIFFERENCE MODEL OF ECOSYSTEMS 3 9 9 

individual predators, the prey is exposed to an instantaneous rate of 
mortality, or effective prédation rate, of Nrf^ . Here with the same 
assumption as above, the total number of prey captured becomes 

N,[l - exP(-NiPij)]. 

Under these conditions each of the Λ^ predators takes an equal share 
(on the average, Nt *) of the total prey captured. The amount of food 
ingested by an individual predator is the average weight of the prey, 
multiplied by the number captured. The potential ration Rt is the 
amount of food an individual predator of species i would consume, 
feeding for the interval at the maximum prédation rate p^ ; under these 
conditions it would be 

Ri = Ws[\ - exp(-NiPij)] N7\ (48) 

where R{ is the potential ration an individual predator of species i can 
capture in the interval under given conditions of prey abundance and 
weight ; Wj is biomass (total) for prey species j at the beginning of the 
interval; Ni is the number of individuals of predator species i\ and/>^· is 
the prédation rate on prey species /, exposed to a unit density of predator 
species i. Other factors equal, Ri will decrease with increasing Ni , 
illustrating competition among independent mortalities. This is the 
so-called "law of diminishing returns" as encountered by sportsmen 
who are predators on game and fish populations. 

Thus far this description of prédation is greatly oversimplified, even 
in terms of our model. Other kinds of mortality, including other 
predators, compete for any one prey population, and during some 
intervals the prey populations increase through birth and some of 
the prey increase may be taken by predators. Further, any predator's 
food ration is made up of a number of components, one for each prey 
species that it exploits. Finally, satiation may stop a predator before 
he has consumed the potential ration. 

Continue to consider the potential ration for an individual predator 
of species i. The whole ration is the sum of its separate components in 
the form 

Ri = t R'a · (49) 
i=l 

where R{j is the component of the whole ration Rt for an individual 
predator of species i due to prey species/; these components are summed 
over all n prey species. Each component of the complete ration for 
any predator is calculated separately, species by species, for all prey. 
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Use is made here of the property of instantaneous rates, illustrated 
earlier, for calculating yield to one predator when there are several 
kinds of mortality and possibly increase during the interval. The form 
for a single component of the ration is 

r / v m \ i 
R'a = PijWj exp lb/ - X Nipa - X 8jk\ - 1 

, V m i 

x (*/ - Σ KP« - Σ «ft) . (50) 
V i = l fc=l ' 

where b/ is the adjusted birth rate for prey species / ; Σν_ ^ίΡα ls t n e s u m 

of effective prédation rates on prey species j for all y predator species ; 
Σ™ 8jk is the sum of all m other instantaneous rates of mortality on prey 
species y, excluding any effect of prédation which here is included in the 
previous term ; and R^, Wj, Ni, and p{j are defined immediately above. 

The total food that might be ingested by a predator in all components 
of its potential ration Ri may exceed the satiation level S^ that has 
already been set according to the biométrie limit, the recent history of 
energy balance and the fat store. If this be true, the predator must 
cease to feed when satiated (or reduce the rate of feeding just to accom-
plish satiation within the interval), thus feeding at prédation rate c^ that 
is less than the definitive rate p{j . At the same time, other predators 
may or may not operate with reduced prédation rates. The new prédation 
rates must reduce the ration to the satiation level, in the form 

n 

Si == 2-( w ' 
3=1 

where 

r / y m \ i 

S^ = CuW, exp lb/ - X NiCij - X 8jk) - 1 
L V i=l k=l ' J 

y m x 

X (b/ - X NiCij - £ 8«) , (51) 
X i=l k=l 

where elements are as previously defined, except that Σ^ = ^icijls t n e s u m 

of adjusted effective prédation rates on prey species j for all y predator 
species (including any such rates where adjustment was not necessary 
because S{ ^ R/). The method is discussed later for changing each 
definitive prédation rate ptj to the corresponding adjusted rate co-
nceded to establish the above equality. 
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If, on the other hand, the sum of all components of the ration is less 
than or just equal to the satiation level for the predator (Ri ^ S^ then 
the potential ration may be used without adjusting the prédation rates; 
adjustment is required only with S^i?^1 < 1. 

Calculation of a set of adjusted rates, or ci:j values, is accomplished 
for any one predator species by reducing all its definitive rates in some 
constant proportion. This adjustment implies that when near satiation 
an animal exercises the same relative degree of selection as when hunting 
at full capacity. This seems to us a reasonable approximation in light 
of limited knowledge on the point, though Holling (1965) reported 
that certain sizes of prey were favored when his mantids were near 
satiation. Murdoch (1969) has discussed "switching"; the model makes 
no provision for this phenomenon. 

The calculation of adjusted rates is carried out by an iterative process, 
calculating trial c^ values from the definitive pif values in the ratio of 
satiation to potential ration (S^/ί^1), substituting these as new p^ values, 
recalculating a new JR ,̂ and then repeating the process until the potential 
ration is suitably close to the satiation value. 

To illustrate calculation of c^ values, consider the first example given 
for a prédation matrix. Suppose that we have calculated, for the three 
species of animals eating other organisms, both the satiation levels 
S3 , 5 4 , and S5 , and also the potential ration values R3, i?4 , and R5 . 
Then, as a first approximation, each c{j element is the product of 
PijSiRi 

C* = 

where C* is a C matrix conditional upon calculation (from its elements) 
of the food ration values that match the satiation levels. Where any of 
the StR^1 values exceeds unity, a value of 1.0 is used in the adjustment 
process. Calculation of a single C* matrix cannot be expected to give 
final Cy values. It will be a first approximation. The second C* matrix 
will be closer and with repetition the differences (Ri — S{) will all 
become less than a predetermined small value e. 

The effective prédation on each prey species may at this time be 
calculated as the sum of effective rates for each predator, as calculated 
above for the c^ values in the expression for satiation ration. This sum 

0 
0 

PiiSiR» 

A A V 
0 

0 
0 

Pa^SgRg 

A A V 
0 

0 
0 
0 
0 

p 5 3 S 5 V 

0 
0 
0 
0 

A A V 

0 
0 
0 
0 
0 

(52) 
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will enter into the basic expression for population change of the prey 
[Eq. (2)] as one of the Sjk values for mortality rate, as 

δ« = Σ WA,, (53) 

where k here denotes mortality due to prédation. 
To summarize briefly, this section concerns control of energy and 

food intake. The iterative computation of all elements of a prédation 
matrix provides prédation rates for the interval to be simulated. These 
rates are such that the predator's energy needs will be satisfied whenever 
prey levels are high enough that a full ration may be captured. There is 
a lag caused by basing energy need on the activity of the previous interval. 
This is realistic, but the amount of lag, one interval of time, is special 
to this model. If this period of lag proves too restrictive, it can be changed. 

H. SUBSYSTEM OF COMPUTER ROUTINES FOR BIOTIC FACTORS 

The computer subsystem of routines which correspond to the mathe-
matical models of this section is made up of four subroutines and one 
function subprogram. The four subroutines are, in the order that they 
are called in the main program: PRDAT, CALOR, FATLE, and SPACE. The 
function is SATIA. Note that with one exception computations for the 
entire biological community proceed for the values of a particular 
routine with one entry into the program. The exception is SATIA which 
is called once for each species. 

PRDAT is a routine which iteratively finds a set of prédation rates which 
satisfy satiation levels as computed in SATIA. SATIA is called with PRDAT. 
Following establishment of the matrix of prédation rates, the energy 
expense part of the energy budget for the current interval is computed 
in CALOR. The prédation rates for the current interval are required 
in order to construct the energy budget, because activity is largely a 
function of these rates. Based on the factors of food intake as determined 
by prédation rates computed in PRDAT, the population sizes, the energy 
expense as computed in CALOR, and the residual fat depot, subroutine 
FATLE computes the energy expended from food and from residual fat 
stores. The size of the fat depot at the end of the interval is also calculated. 
Depending upon the energy balance, birth rates may be reduced. 
Subroutine SPACE handles the computations for competition and the 
logistic-like density-dependent adjustment of rates of increase. 

Note the sequence of operation of the routines, SATIA computes 
satiation levels for the current interval based on the expenditure of 
energy and the fat depot at the end of the previous interval. The other 
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programs are sequenced in the order in which values are required. 
In this case we use the sequencing to take care of the time lag in satiation 
level by allowing computations to be based on the previous interval. 
These satiation values supply initial conditions so that the other values 
for the current interval may be computed. 

IV* Abiotic Factors 

A. ABIOTIC FACTORS OF THE MODEL 

Abiotic, or physical, factors influence populations. This section 
concerns their direct effects upon birth and death rates. We have 
already discussed the less direct effects resulting from increased energy 
demands; if the total energy needed exceeds the caloric intake in food, 
the birth rate is reduced, and if the demand exceeds energy in food 
plus mobilized fat, starvation begins and the death rate is increased. 

Although the mathematical model puts no limit on the number of 
abiotic factors, the present computer model contains only two. One of 
these is programmed to vary as a sine curve with a period of 360 intervals, 
simulating seasonal changes in climate throughout a year (Fig. 1). 
This cyclic factor is used for two reasons. First, it is a composite factor 
representing all influences that operate in a seasonal manner; it has 
been so-used here. Second, it allows the future inclusion of more 
specific seasonal effects where the sinusoidal factor may serve as an 
argument in describing natural processes that fluctuate with the earth's 
orbit and axial inclination. The second abiotic factor is not really used 
here; it is maintained at the value set, and represents some constant 
environmental influence. Neither factor is specifically identified as, 
for example, water, light, or minerals, the factors said by Clements (1949) 
to be important in terrestrial systems. Much could be done in simulation 
of abiotic factors for particular ecosystems; as a start the mathematical 
descriptions for a number of factors are considered in the volume 
edited by Van Wijk (1963). 

B. POPULATION EFFECTS OF ABIOTIC FACTORS 

The effect of an abiotic factor upon population birth and death 
rates is made a function of deviation from the optimum range for the 
organism. This mode of action in the model derives from the ecological 
concepts of tolerance (Shelford, 1913) and of niche (Hutchinson, 1957). 
With respect to any one factor, an organism may exist within a range 
of values, or the tolerance range. Within this tolerance there is a shorter 
range, or perhaps only a point, where conditions are optimum. 
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Changes in birth or death rates are as yet unknown and probably 
complex mathematical functions of the deviation from optimum. 
Within a population, we may expect individual variation in precise 
physical definition of optimum and tolerance, and perhaps also in 
functional response to change. We know too little to approximate 
populational response more than roughly, except possibly in the 
specialized area of toxicology (Finney, 1952). 

The model assumes a linear response to changes in an abiotic factor 
between the optimum zone and the limits of tolerance. As deviation 
from the optimum increases, both the birth rate modifying factor and 
the survival rate decrease from unity toward zero. The optimum range 
and the slopes of the linear responses are specified, thus implicitly 
defining the zone of tolerance. 

The model provides the options for a different optimum range for 
each species, with different constants for response to deviation from 
the optimum (and for birth and death rates, different values for deviations 
above or below the optimum). Further, different sets of values and 
responses may be set for increase of energy expenditure (as already 
discussed), reduction of birth rate, and increase of death rate. Thus, 
any species may be given a unique set of optimum ranges and responses. 

Reduction of birth rate by an abiotic factor is brought about through use 
of the modifying value ψ which takes values only in the interval (0, 1). 
At the optimum, the modifier has a value of unity and hence no effect. 
In nature, the modifier decreases, probably monotonically, as the abiotic 
factor departs from the optimum. Here we assume the decrease to be 
linear to a zero value; all population increase is cut off outside the zone 
of tolerance (Fig. 4). The model permits different rates of change 
above or below the optimum. The model is thus 

( l for Oixl < Fx < Oix2 

= ) 1 - ßixi(Oixl - &x) for Oixl > Fx > Oixl - (\/ßixl) 
Ψίχ 1 - ßiUOix2 - Fx) for Oix2 <FX^ Oix2 - (llßix2)

 {D > 
f 0 elsewhere, 

where <pix is the modifying value for birth rate of the zth species, for abiotic 
factor x, always 0 < <pix < 1 ; ßixl and ßix2 are slopes of decrease in the 
modifying value as abiotic factor x deviates from the optimum range 
(subscript 1 indicates deviation to lower values, and subscript 2 deviation 
to higher values, with a negative sign associated) for species /; Oixl and 
Oix2 are bounds of the optimum zone for the abiotic factor with respect 
to birth rate of species / (subscript 1 indicates lower bound, and 
subscript 2 upper bound) ; and Fx is current value for abiotic factor x. 
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FIG. 4. Function relating current value of abiotic factor J ^ to proportional modifica-
tion of birth rate φ. 

This model may be too simple to approximate nature in any real 
situation more than roughly, but it allows the specification of a seasonal 
pattern of reproduction with intervening periods of no increase, and 
the separate description of characteristics for each species. 

Mortality rate increases as the abiotic factor deviates from the 
optimum. Complete survival to action of the particular factor is assumed 
in the optimum range (under the hypothetical condition of no other 
mortality), with survival decreasing toward zero as the factor departs 
from optimum. The corresponding instantaneous rate of mortality is the 
natural logarithm of this rate of survival, providing survival exceeds 
zero by some quantity no matter how small. This small quantity is here 
arbitrarily made exp(—4). 

δ*.* = 

0 
-ln«[l 
- ln c [ l 
4.0 

^ixli^ixl 

**ix2\^ix2 

-**)] 
- ^ . ) ] 

for Oixl^aFx^Oix2 

for Oixl >&x> Oixl 

for Oix2 <&x< Oix2 

elsewhere, 

(I/A*«) (55) 

where Six is the instantaneous rate of mortality due to abiotic factor x, for 
species i\ Xixl and Xix2 are slopes of decrease in survival rates as abiotic 
factor x deviates from the optimum range (subscript 1 indicates deviation 
to lower values, and subscript 2 deviation to higher values, with a 
negative sign associated) for species i\ Oixl and Oix2 are bounds of the 
optimum zone for the abiotic factor x with respect to mortality of 
species i (subscript 1 indicates lower bound, and subscript 2 upper 
bound) and SFX is current value for abiotic factor x. 

This model provides for virtually complete extinction of a species 
when an abiotic factor is outside the range of tolerance. This provides 
the capability of imposing as heavy a mortality as may be required; 
if the species is to remain in the community it must have tolerance 
ranges that include the values for all the abiotic factors. 
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C. COMPUTER ROUTINES FOR ABIOTIC FACTORS 

The effects of abiotic factors are included in the two subroutines 
ABIMOD and ABMORT. Both routines require the operation of a function 
subprogram WEATHR that so scales a sine wave that its amplitude is 
the specified range (100 units, fluctuating 5-105), its period 360 intervals, 
commencing with the specified argument (0.65 rad), illustrated in Fig. 1. 
ABIMOD is a computation of modifying factor for birth rate, Eq. (54), 
for each species in the community, and ABMORT is a similar computation 
of mortality rate by Eq. (55). 

V* Results and Discussion 

A. SIMULATION TRIALS 

The computer program for the mathematical model is listed in 
Appendix D. An example of the output is in Appendix C, and a listing 
of input data required, with a sample set of data, is in Appendix B. 
A glossary of symbols used appears in Appendix A. 

The community simulated in the program had six species (two each 
of plants, herbivores, and predators). In selecting input values, we kept 
in mind two plants of small biomass, possibly perennials, two small 
herbivores like mice, and two predators of small body size like weasels 
or owls. Many values needed to implement the model were not available. 
These were approximated, often with little information. Surprisingly 
few trial sets of input data were required to find values that gave 
reasonable results. The first set tried was instructive in that hetero-
trophs became extinct in a few years due to starvation and repression of 
reproduction; prédation rates were not high enough to transport 
sufficient energy through the food chains. 

Four simulations are reported, each for a 30-yr span (Figs. 5, 7-9). 
Input data were similar for each, the runs consisting of a * 'standard' ' 
set of values and three variations. The standard data are those listed 
in Appendix B. Space limits, and thus upper limits on population growth, 
were imposed on the two producers, but not on heterotrophs. Maximum 
rates of increase were highest for the plants, less for herbivores, and 
still less for predators. Optimum climatic conditions were defined 
somewhat differently for each species (see Appendix B). The simulation 
based upon these standard data is shown in Fig. 5; setting an upper 
asymptote on herbivore growth produced Fig. 7; effectively removing 
predators yielded Fig. 8; and increasing the rates of herbivore increase 
to equal those assigned to plants resulted in Fig. 9. 



FIG. 5. Plot of biomass (logarithmic scale) of six species (from top down: two plants, two herbivores, two predators) for 30-yr simu-
lation; input data as listed in Appendix B. 
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Each species (e.g. Fig. 5) clearly responded to the annual cycle of 
simulated climate, with a period of growth and a period of decline. 
This pattern reflects ranges set in the input for the climatic factor 
optimum. The heterotrophic species had two optimal periods each year, 
resulting in two peaks of increase, as shown diagrammatically in Fig. 6. 

-8 >->^y \ FIG. 6. Typical pattern of population size during 
o / \ year of no overall change, for organism with two 
.2 / V» periods of high rate of increase. 
Q-
o 

ÛL I 

Time 

In Fig. 5 the climatic factor (Fig. 1) passed through the optimum 
range as it increased in spring and again as it decreased in fall. The two 
predators were almost eliminated (Fig. 8) by assigning them a zero 
increase rate (and starting them at zero level). Whenever any species 
count drops below unity, the program starts the next computing cycle 
with a single individual. Thus, predators were maintained at a very 
low level, and with minimal effect on the herbivores. 

B. CHARACTERISTICS OF THE MODEL 

The oscillations produced with the standard set of input data (Fig. 5) 
mimic generally the fluctuations of natural populations. Were these 
real observations, we might postulate long-term cycles for the hetero-
trophs, with nadirs occurring about 11 years apart on a somewhat 
irregular schedule. Like natural fluctuations, these would seem to be 
only generally predictable. Here, of course, the model is entirely 
deterministic, each fluctuation being absolutely predictable and any 
time sequence reproducible merely by starting the computer over with 
the same data. The oscillations result from species interactions; left to 
itself with an adequate energy supply, each would follow a smooth 
curve reflecting the seasonal effect. Thus, it is interactions that are 
responsible for observed irregularities. 

Still referring to Fig. 5, the plant populations fluctuated in regular 
annual cycles, following the climatic pattern, until some herbivore 
population grew sufficiently that its plant consumption reduced the 
plants to a low level during the nongrowing season. When this happened, 
the plants usually returned almost to their normal summer maxima, 
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and thus they oscillated over a wider range when under herbivore 
pressure. When herbivores were reduced, however, either by lack of 
food, or by predator action, or both, the plants returned to their regular 
annual cycles. In the illustrated simulation both herbivore species 
were made selectively predatory upon the two plants, and consequently 
both plants and herbivores were permitted to oscillate with different 
time relationships. 

Herbivore effects on the plant populations may be regulated by 
imposing upper limits on growth of each herbivore species. If these 
limits are beneath the point where herbivores constitute important 
mortality factors, then the producers fluctuate under climatic influence 
only. The data that produced Fig. 7 were so adjusted; other asymptotic 
herbivore limits would produce different results. Note that the variable 
period of oscillation caused by selective prédation on plants disappears 
in Fig. 7. 

In Fig. 5 herbivore populations oscillated under control of the available 
food level at some times, in response to predator pressure at other 
times, and under the combined influence of both these factors at still 
other times. When the predator effect was removed (Fig. 8) the herbivores 
oscillated somewhat as they do with predators present, but more often 
they reached levels high enough to reduce plant populations. When 
present (Fig. 5) the predators only occasionally reached levels high 
enough to reduce the herbivores; their effect in these trials seemed to be 
to lengthen the period between low values. 

When there is an upper asymptote limiting herbivore growth, 
fluctuations may all but disappear, as seemed to be the case in Fig. 7, 
or else, where the upper limit for herbivores is set at a higher point, 
they may fluctuate under control of periodic predator increase. When 
herbivores were given higher birth rates, equal to those assigned to the 
producers, oscillations of the lower two trophic levels became more 
frequent and more violent, while the predators were almost eliminated 

<Fis·9)· 
Predator species fluctuated here according to food availability. This 

response is clearly to a threshold level, above which predators may 
obtain food to reproduce and below which they starve. When herbivores 
are above the threshold, predators increase until the herbivores fall 
below threshold, either due to increasing numbers of predators, or 
starvation. At this point, the predator populations crash and remain 
low until herbivores again exceed the threshold level which allows 
predators to grow. Thus, in this model predators are entirely controlled 
by their prey levels. 

The predators of the community simulated in Fig. 8 are kept at low 
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FIG. 7. Plot of biomass (logarithmic scale) of six species (from top down: two plants, two herbivores and two predators) for 30-yr 
simulation where herbivores have upper population limits; input data as listed in Appendix B except that herbivores are assigned limits 
for space and coefficients of competition. 
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FIG. 8. Plot of biomass (logarithmic scale) of six species (from top down: two plants, two herbivores, two predators) for 30-yr simu-
lation where effect of predators is eliminated ; input data as listed in Appendix B except that predators are started at zero and assigned zero 
birth rates. Notches in lines representing predators represent periods of starvation and no weight gain. 
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FIG. 9. Plot of biomass (logarithmic scale) of six species (from top down: two plants, two herbivores, and two predators) for 30-yr 
simulation where herbivores have higher rates of increase; input data as listed in Appendix B except that maximum birth rates for 
herbivores have been increased to equal the values assigned to the plants. 
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levels by the timing of fluctuations in their food supply. Here the 
herbivore populations, given high birth rates, oscillated rapidly and 
frequently dropped below the threshold that controls the predators. 
Thus, the predators never increased long enough to attain control of 
the herbivores. 

The seasonal cycle built into this model clearly exerts an important 
influence on the oscillations. The most important population reductions 
occurred during nongrowing seasons. Starvation is most important then, 
though it may occur at any season. The ecology of the Temperate Zone 
is reflected in choice of optimum seasons and the adjustment to climatic 
fluctuation built into the model; therefore temperate or perhaps arctic 
conditions are simulated. 

The effects of changing numerous biological parameters of the model is 
not yet explored. Results of changing one value suggest that interesting 
questions may be raised. In the standard set of data, the proportion of 
the fat store mobilized each day is set at 0.10 for species 4 (one of the 
herbivores). Reduction of this fraction to 0.018 resulted in virtual 
extinction of this species, but could be counterbalanced by raising its 
birth rate by half. Apparently, in this model a low rate of fat mobilization 
results in frequent undernourishment and reduced birth rate, even 
when an animal has a large fat store. Another compensating adjustment 
might have been to adjust control of the satiation level as exercised by 
the fat store. 

Having a model that will simulate a hypothetical set of species, we 
now require a set of measurements to characterize real population 
histories. For example, it is clear that relatively minor changes, like 
altering the fat mobilization constant or the initial number of a species, 
will produce marked changes in biomass and numbers of all the species 
in a short time (10 yr). We now require useful measures to quantify 
such changes, an analysis of time series, not only by the usual mathe-
matical techniques but also with parameters of more immediate biological 
meaning. There is need to program a running summary, perhaps over 
quarter years or full years, to record the energy consumed by each 
heterotroph, the organic production of each species, and the cumulated 
rates of mortality and increase. 

There are certain obvious déficiences in the model. Most important 
is the absence of any age-class effect. The hypothesis of increased 
mortality in populations that exceed habitat carrying capacity should 
be incorporated. Some values now inserted into the program as constants 
should probably be made species-specific. Perhaps digestion rates should 
be variable among species. In earlier sections, comments were made at 
several points where increased sophistication might be introduced. 
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C. DISCUSSION OF THE MODEL 

It is apparent from this investigation that sufficient biological informa-
tion to simulate a real community accurately is not available at the 
present time. Many specific data demands of this model cannot be met, 
and some of the variables have never been measured in natural popula-
tions. It is by no means clear that further development of this kind of 
model into a more sophisticated mathematical form is justified before 
we know more. 

At the same time, we feel the model to be heuristically useful, in that 
it has required us to set down specific information and identify areas of 
greatest deficiency. The results appear realistic, and potentially able to 
give answers about effects of changing various parameters. Further, 
the work suggests certain general questions. 

This model emphasizes contingency as determining population change. 
Population dynamics may be described as a set of potentials for action, 
with final action contingent upon the set of factors instantaneously 
influencing the population. What happens next is contingent on the 
present status. That this principle governs the model only means, 
of course, that we built it on this view of natural events. This seems a 
valid view for it places less emphasis upon supposed overall governing 
processes which can, after all, have effects only through influences 
exerted at the present moment. Any natural programming of future 
events must be through the setting up now of processes that will approach 
the future set of predisposing conditions step by step as time passes. 
As population growth follows some curve, this means that at each 
instant the population changes in response to the set of influences to 
which it is immediately exposed. One important influence is the popula-
tion level itself; knowing nothing more we can expect it to be the same 
in the next instant. Other important influences are population charac-
teristics like sex and age distribution (not included in our model), 
reproductive status, other characteristics of physiological well being, 
as well as the pressures of other biotic and abiotic factors. Of no real 
importance is the position the population should take at some future 
date on some mathematical curve of expected growth. Such a curve 
may have great descriptive and predicted usefulness; used with caution 
it can enhance understanding. But what the population does at the mo-
ment must be determined only by the set of influences at that moment. 

In computer simulations of the model, whenever the same set of 
initial conditions, rates and characteristics, are provided the same 
output follows. But if a single effective condition is changed, the resulting 
series of population fluctuations differs to some degree. Even with the 
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vastly oversimplified description of nature illustrated in Fig. 5, it seems 
quite unlikely that exactly the same sequence of events will happen 
twice in a simulation. How much less likely is the enormously more 
complex natural system to return exactly to the same set of conditions, 
to predispose it to generate exactly the same set of responses. Any 
degree of predictability seems remarkable under these circumstances. 

The population fluctuations in Fig. 5, sometimes of several orders of 
magnitude, seem too violent to be "natural," and those in Fig. 9 are 
even more so. Yet, in making such a judgment, we lack good standards 
for there is little real knowledge of the actual scale of local fluctuations 
for most natural populations year after year. Most series of records are 
for economic forms (game or pests) over large areas; local information is 
especially scanty. 

D. FACTORS OF POPULATION CONTROL 

The factors which control populations are the most important and 
most interesting features of population study. In the natural world, 
no populations increase without limit and few decrease without limit. 
It has long been held that prey species are controlled in some manner 
by predators (and parasites). It has recently been suggested (Murdoch, 
1969) that a logical requirement for control by prédation is the phenom-
enon of "switching," or an increased efficiency of prédation upon the 
more common species. Holling (1959, 1965) has pointed out the impor-
tance of satiation in limiting prédation effectiveness. Other influences 
stabilizing numbers below some asymptotic upper limit are density-
dependent factors acting within populations. One density-dependent 
mechanism, not modeled here, is the postulated increase in vulnerability 
to prédation as numbers exceed the carrying capacity of the habitat. 
This may be another aspect of "switching," mentioned above. Finally, 
there is much speculation currently about the possibility that inter-
relationships among many species in a community impart stability 
not to be found in communities of few species. Our model is restricted 
to few species, and so this last factor is not included. 

The effect of the predator-prey relationship in the model is clearly 
control of the predator populations by prey density; control in the 
reverse direction is less clear. When prey availability is above a certain 
threshold level the predators may increase. Otherwise they decrease 
under mortality pressure of several kinds, to which starvation is added 
when prey become low enough. What has been called a threshold is 
actually a zone of rapid change with decreasing numbers of prey, 
the predator passing from adequate food through undernutrition to 
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starvation. This comes about because an individual predator cannot 
capture enough food to meet his energy requirements unless the prey 
population is at a certain level [Eq. (50)]. When the prey animals exceed 
this level, they can support the well-being of any number of predators, 
but below this level they can fully support none. 

As a control factor for prey populations, this threshold of predator 
well-being is density-dependent. When the prey reaches a certain 
density, the predators increase and so does prey mortality due to 
prédation. Of itself, this may not be able to reduce an increasing prey 
population, but this density-dependent factor may be combined in 
effect with others, like a decreasing food supply of the prey, or perhaps a 
graded series of similar releases of other predators, to control the prey 
numbers. 

Satiation of the predator tends, however, to reduce the effectiveness 
of any prey control. When the prey population exceeds that level which 
the predator needs for capture of a satiation ration, then the effective 
prédation rate is reduced [Eqs. (51) and (52)] more and more as the 
prey increases (and with predator numbers constant). The food intake 
per predator remains constant beyond a given point of prey density 
(Fig. 10). This phenomenon has been discussed by Holling (1959, 1965) 

FIG. 10. Food intake as a function of 
total prey density (biomass). Below a cri-
tical density, satiety (S) is not reached, 
above this level food intake is constant 
regardless of prey density. 

Prey density 

for several conditions. If it is allowed that predators will increase when 
food is abundant, then in the long run satiation would seem only to slow, 
rather than prevent, the ultimate overtaking and reduction of the prey 
in coordination with other factors. Further, at the point where prey no 
longer satisfy food needs of the predators, the mortality rate experienced 
by the prey increases disproportionately as each predator now hunts 
with full effectiveness. 

Switching is supposed to increase the effectiveness of prédation as a 
population control when a prey species becomes abundant (Murdoch, 
1969). But under these conditions, in the view taken here, the effective 
prédation rates are set at the reduced levels needed to just achieve 
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satiety; changes in the definitive rates may have relatively little effect. 
Switching can only increase the portion of the ration, already predomi-
nant, that is drawn from the abundant prey species, by substituting it 
for some of the food otherwise to be drawn from the rare forms. 
The total amount of food will not increase. This would seem less 
important in controlling the abundant form than in sparing rare species 
(the buffer species concept). 

An asymptotic upper limit of population growth can provide stability 
of numbers when adjusted to the correct level. To both achieve stability 
and retain a community of species, such upper limits must be set high 
enough that the species transmits enough energy to sustain those 
organisms that feed upon it, yet low enough that the species cannot 
generate important predatory pressure on its prey. A stable community 
can be achieved by postulating enough of such limits; the interesting 
question seems to be whether realistic stability can be achieved without 
them. 

Hairston et al. (1960) concluded that producers are resource limited, 
herbivores predator limited, and predators food limited. Regarding 
producers, this model agrees; a space limit was built in although energy 
was assumed to be unlimited. Regarding predators, agreement is also 
complete because predators are here provided with a capacity to increase 
unless food is limiting. Regarding herbivores, however, we observe 
that in this model their control comes about both by predator action 
and by limitation of their food supply. Even when predators are effec-
tively removed from the model, the herbivores are eventually limited 
by food. 

We raise the question of whether herbivores may not be limited, 
at least in part, by food supply. The remarks of Hairston et al. are based 
upon very general observation of nature; even so, they clearly take 
precedence over the results of this model where any resemblence to 
nature arises only from logical factors we have built in. But it may be 
instructive to examine the instances where food supply controlled the 
herbivores, either in Fig. 8 when predators are almost absent, or in 
Fig. 5 where they are relatively ineffective. When the herbivores reach 
high levels, their effect on producers is principally to reduce the winter 
minima; the effect on the summer maxima is much less frequent and 
pronounced. Thus, the herbivores in the model exert considerable 
influence on the producers, but fail to limit them in the strict sense of 
appearance during the growing season. Hairston et al. argued that 
because herbivores do not reduce their food supply, they are not food 
limited. We suggest that if herbivores are not limited in some other 
way they will be food limited. If the growth rate of producers is suffi-
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ciently high, plants may then approach the limit of some resource each 
growing season even though at some other time of the year they may be 
reduced by herbivores. Thus, a law of minimum food resource operating 
in time may limit herbivores, even though the producers may not be 
limited during the growing season. 

VL Conclusions 

Construction of an ecosystem model with emphasis on energy 
exchange, even one as simple as six species and two abiotic factors, 
has forced attention to a number of neglected phases of population 
dynamics and suggested questions that must be carried to nature for 
an answer. 

There are important deficiencies in the biological knowledge required 
to construct such a model on more than very general terms. 

The principal weakness of this study is in methods for describing 
and comparing results when simulating an ecological system. 

This work emphasizes that contingency governs population changes; 
that is, a population will change in the next unit of time contingent 
upon its status and relationships with the rest of the ecosystem at the 
present time. 

Predator numbers may be controlled by prey density through a 
threshold effect that constitutes a density-dependent factor in population 
regulation of the prey. 

It seems possible that herbivore numbers are controlled, at least 
in part, by food availability during some limited season, or in some 
limited form, and without apparent reduction in general level of the 
food supply during the growing season. 
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Text 
symbol Definition 

Computer 
program 
variable 

name 

TERTRY 

T 

T 

BMETM 

BM 

B 

B 

B 
BIRTH 

B 

B 

BIR 

G 

G 

G 

Y 
ASLOP 

ASL 

B 

Subroutine 

MAIN 

READM 
SPACE 

MAIN 

READM 
PRDAT 

SATIA 

CALOR 

MAIN 

READM 
PRDAT 

ACTION 
MAIN 

READM 
CALOR 

ACTION 
MAIN 

READM 

ABIMOD 

A Competition matrix; elements are coeffi-
cients of competition for a fixed resource 

a An element of the competition matrix ; 
also, constant in logistic 

B Biometrie maximum biomass of food intake 

Physiologically maximal birth rate 
(instantaneous rate of increase) 

Birth rate adjusted for modifying factors 

ß Proportionality constant relating birth rate 
modification to deviation of abiotic 
factor from optimum 

C Prédation matrix with elements (prédation 
rates by individual predators) reduced 
from maximal by satiety 

c An element in the prédation matrix C, 
reduced from maximal level by satiety 

d Death rate in logistic equation 
d' Instantaneous rate of total mortality, sum 

of separate rates 
dl Digestion rate (instantaneous rate) 

dlx Partial digestion rate—carbohydrate 
d12 Partial digestion rate—fat 
dl3 Partial digestion rate—protein 
d2 Proportion of stored fat mobilized daily 

B 

DIGES 
DG 

DiGES 

ACTION 

MAIN 

READM 
FATLE 

FFAMA 

FM 
FFAMA 

MAIN 

READM 
FATLE 

Deviation of abiotic factor from range 
optimum for species with regard to 
energy need 
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Appendix A (cont.) 

Text 
symbol Definition 

Computer 
program 
variable 

name 

D 

c 
c 
c 
c 
D 

ENERG 

ENG 

ENERG 

ENERG 

ENERG 

Y 
E 
ETOT 

DIFF 

DIFF 

AVCAL 

DEXP 

FL 

FACTR 

F 

FL 
F 

F 

FACLEV 

FAT 
FAT 

FAT 
FAT 

FAT 
FAT 

FAT 
FAT 

RATIO 
RATIO 

FOOD 
RATN 

Subroutine 

MAIN 

PRDAT 

CALOR 

ABMORT 

ACTION 

RECORD 

MAIN 

READM 

PRDAT 

CALOR 

FATLE 
CALOR 

RECORD 

RECORD 

MAIN 

FATLE 

RECORD 

(throughout) 

MAIN 

MAIN 
WEATHR 

CALOR 

ABIMOD 

ABMORT 

RECORD 

MAIN 
READM 

TOTSI 
PRDAT 
SATIA 

CALOR 

FATLE 
RECORD 

MAIN 
PRDAT 
FATLE 

RECORD 

Instantaneous rate of death by one of the 
factors: prédation, starvation, abiotic 
factors, or unspecified factors 

An amount of energy 

Et Energy available without use of body protein 

exp The exponential function ex, where x is 
the argument, as exp(x) 

^ Current value of an abiotic factor 

Fat store 

Average amount of food ingested during 
interval 

Average amount of indigested food during 
interval 
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Appendix A (cont.) 

Text 
symbol Definition 

Computer 
program 
variable 

name 

RSTRC 

R 

R 

R 

R 

R 

R 

X 

X 

CHG 

A 

A 

A 

SKl 

Si 
SK2 

s2 

Subroutine 

MAIN 

PRDAT 

FATLE 

SPACE 

ABIMOD 

ACTION 

RECORD 

MAIN 

ACTION 

RECORD 

MAIN 

READM 

SPACE 

SATIA 

READM 

SATIA 

READM 

Ψ 

K 

K 

L 

N 

O 

Modifying factor for birth rate in population 

Instantaneous rate of change of population 
size; b' — d' 

Population maximum biomass; upper 
asymptote of logistic 

Rate constant relating standardized energy 
expenditure to satiation level 

Proportionality constant relating fat stores 
to satiation level 

A constant subtracted from the ratio of 
energy supply to energy need, for adjusting 
average value to the population effect 

Proportionality constant relating survival 
rate to deviation of an abiotic factor from 
optimum 

Number of individuals in the population 

Optimum value for abiotic factor; bound 
of optimum zone 

Prédation matrix; elements are the potential 
prédation 

SLOPE 

SL 

S 

S 

s 
SP 

s 
s 
s 
SP 

s 
OPT 

POINT 

ALEVE 

O 

PT 

ALV 

O 

A 

P 

PRED 

P 

P 

P 

MAIN 

READM 

ABMORT 

MAIN 

READM 

PRDAT 

CALOR 

FATLE 

SPACE 

ACTION 

RECORD 

MAIN 

MAIN 

MAIN 

READM 

READM 

READM 

CALOR 

ABIMOD 

ABMORT 

MAIN 

READM 

PRDAT 

CALOR 
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Appendix A (cont.) 

Text 
symbol Definition 

Computer 
program 
variable 

Subroutine 

p Elements of prédation matrix, potential 
prédation rate; also Volterra's coefficients 
of competition 

Q Current average energy content of an 
individual 

q A caloric equivalent of an element of diet, 
kilocalories per gram 

R Potential ration; biomass a consumer can 
take at a given prey density 

r Instantaneous rate of population change in 
the logistic equation 

S Satiation requirement; biomass a consumer 
requires with given fat stores and recent 
energy expenditure 

u Constant relating some specific energy 
expense to some factor or activity 

v Constant; exponent in the body-energy 
relationship 

W Biomass of an individual organism 

RATION 

RATION 

RATIO 

SATIA 

E 

E 

E 

SIZE 

SZ 

SIZE 
SZ 

SZ 

SZ 

MAIN 
PRDAT 

CALOR 

(throughout ; 
function sub-
program name) 

MAIN 
READM 

CALOR 

MAIN 
READM 

TOTSI 
PRDAT 

CALOR 

RECORD 

Appendix B* Input Formats 

Input data required by computer program. Values given are those 
used for the simulation in Fig. 7. All cards except numbers 1 and 62-67 
with 10-column fields, right-hand justified, input order is card number 
(not order given below). Card number and species designation not 
punched in cards. 
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Card number 

1 

2 

Cnrn 
number 

Print 
interval 
(cols 

15 

N 

Number 
of 
species 

6 

Species 1 

1-3) 

NF 

Number 
of 
abiotic 
factors 

2 

Species 

Instructions (0, 

(Instruction cards) 

1) to print 
each of 16 lines 
(cols 4-19) 

1 1 1 1 1 1 1 

js 
Beginning 

interval 
number for 
printing 

1 

cards for Species: 

1 1 1 1 1 1 1 

JF 
Ending 

interval 
number for 
printing 

10801 

: 1, 2 producers; 
(Initial condition 

1 1 

SE 

Argument 
for sine 
function 
for season 

.65 + 00 

3, 4 herbivores 
cards) 

Species 2 Species 3 Species 4 

Date 
(cols 20-28) 
18 Dec '69 

Fl 

Constant 
to set 
range for 
abiotic 
factor 1 

.10 + 03 

i ; 5, 6 predators 

Species 5 

Border 
(cols 29-52) 

************ 

F2 
Constant 

to set 
range for 
abiotic 
factor 2 

.55 + 02 

Species 6 

DG 

Rate 
constant 
for 
digestion 

- . 3 0 + 01 

3 s = species number of individuals 
. 4 1 0 1 + 0 9 . 1 4 7 5 + 0 8 . 3 2 5 + 0 6 . 3 6 8 3 + 0 6 .3214 + 02 

4 sz = beginning weight of individuals of each species 
. 1 0 5 + 0 1 . 1 0 7 + 0 2 . 1 4 0 3 + 0 2 . 1 4 0 3 + 0 2 .1260 + 03 

9 FAT = beginning grams of fat per individual 
.5 - 01 .7 + 00 .403 + 01 .430 + 01 .2599 + 02 

13 ENG = initial value for energy (kilocalories per individual) expended during previous interv 
0.0 0.0 .6986 + 01 .7180 + 01 . 2 0 0 9 + 0 2 

16 G = initial value for modified birth rate 
. 2 3 8 9 - 0 1 . 3 5 3 2 - 0 1 . 1 8 3 0 - 0 1 . 2 5 9 3 - 0 1 . 6 1 9 2 - 0 2 

19 EBM = initial value for energy expended in maintenance of body 
0.0 0.0 .4 + 01 .3456 + 01 .1124 + 02 

.5212 + 02 

.1285 + 03 

.2848 + 02 

.2111 + 02 

.7403 - 0 2 

.1137 + 02 

6. 
A

 F
IN

IT
E

 
D

IF
F

E
R

E
N

C
E

 
M

O
D

E
L

 
O

F
 E

C
O

SY
ST

E
M

S 
423 



Appendix B (cont.) 

Card 
number 

(Variable cards) 

Species l Species 2 Species 3 Species 4 Species 5 Species 6 

5 

6 

7 

8 

10 

11 

12 

14 

15 

17 

18 

siz = nonfat weight of individuals (grams) 
. 0 1 + 0 1 .10 + 02 .10 + 02 .10 + 02 .10 + 03 

B = maximum birth rate 
.75 - 01 .70 - 01 .20 - 01 .20 - 01 .90 - 02 

A = amount of space available to each species ; asymptote for population number 
(.10 — 01 if logistic is not operating) 
.80 + 09 .80 + 08 .10 + 01 .10 + 01 .10 + 01 

CHO = carbohydrate, body content per individual (grams) 
. 3 5 + 0 0 .40 + 01 .10 + 01 .10 + 01 .10 + 02 

BM = biométrie maximum food intake per individual (grams) 
0.0 0.0 .104 + 02 .105 + 02 .24 + 02 

si = rate constant for influence of energy expenditure on satiation level (note negative sign) 
0.0 0.0 - . 1 0 + 01 - . 1 0 + 01 - . 7 5 + 0 0 

s2 = proportionality constant for influence of body fat store on satiation level 
0.0 0.0 .20 + 00 .30 + 00 

STV = rate constant for starvation 
0.0 0.0 .60 - 02 .55 - 02 

FM = turnover rate for mobilization of fat stores 
0.0 0.0 .20 + 00 .10 + 00 

PR = protein per individual (grams) 
. 7 0 - 0 1 .80 + 00 . 1 5 + 0 1 . 1 8 + 0 1 

DTH = basic mortality rate—cause unspecified (note negative sign) 
- . 2 0 - 0 2 - . 3 0 - 0 2 - . 1 8 - 0 2 - . 2 0 - 0 2 

.15 - 0 1 

.55 - 02 

.20 + 00 

.16 + 02 

.85 - 03 

.10 + 03 

.80 - 02 

.10 + 01 

.10 + 02 

.25 + 02 

-.70 + 00 

.125 - 0 1 

.60 - 02 

.50 - 01 

.15 + 0 2 

-.80 - 0 3 
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Card 
number 

20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
31 

(cont.) 

Species 1 

P(IJ) = prédation 
prey with 

0.0 
0.0 

- . 9 0 - 07 
- . 9 0 - 08 
0.0 
0.0 

Species 2 

matrix 6 x 6 ; 

(Variable cards) 

Species 3 

i(row) = predator, 

Species 4 Species 5 Species 6 

, j(col) = prey; instantaneous rate of mortality of 
unit density of predator (note negative sign) 

0.0 
0.0 

- . 9 0 - 08 
- . 9 0 - 07 
0.0 
0.0 

T(IJ) = competition matrix 6 X 
competition coefficients: 

- . 1 0 + 01 
- . 6 0 + 00 
0.0 
0.0 
0.0 
0.0 

- . 5 0 - 01 
- . 1 0 + 01 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

- . 5 5 - 05 
- . 6 0 - 05 

0.0 
0.0 
0.0 
0.0 

- . 5 2 5 -
- . 5 2 5 -

6; i(row) = competitor, j(col) = 
relative amount of 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

space i needs 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

05 
05 

: species 
in terms 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

being suppressed; 
of what j 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

needs (note negative sign) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

( S p l ) 
(Sp2) 
(Sp3) 
( S P 4 ) 
(Sp5) 
( S P 6 ) 

( S p l ) 
( S P 2 ) 
( S P 3 ) 
( S P 4 ) 
( S P 5 ) 
( S P 6 ) 

6. 
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Appendix B (cont.) 

Card 
number 

(Variable cards) 

Species l Species 2 Species 3 Species 4 Species 5 Species 6 

E(IJK) energy coefficient matrix: energy expenditure for different reasons; i(row) = species; j(successive pairs of 
cols) = reason for energy expenditure as named; K(lst or 2nd col of 2nd pair) 1st = abiotic factor 1, 
2nd = abiotic factor 2, insert zeros in 2nd col for other pairs (10 eight-column fields) 

Escaping 
Body mass Abiotic factors Reproduction Capturing food predators 

62 
63 
64 
65 
66 
67 

0.0 
0.0 
.70 + 00 
.60 4 00 
.45 + 00 
.45 4 00 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
.10 + 00 
.90 - 01 
.365 4 00 
.365 4 00 

0.0 
0.0 
.75 - 01 
.65 - 01 
.364 + 00 
.364 + 00 

0.0 
0.0 
.15 4- 01 
.15 + 01 
.15 4 01 
.15 4- 01 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
.30 + 01 
.267 4 01 
.45 + 01 
.60 4 01 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
.80 4- 00 
.80 4 00 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

(Sp 1) 
(SP2) 
(SP3) 
(Sp4) 
(SP5) 
(SP6) 

Card 
number 

(Variable cards) 

Species 1 Species 2 Species 3 Species 4 Species 5 Species 6 

O(IJK) = abiotic factors—optimum range outside of which energy is expended ; i(row) = species ; 
j(cols 1, 2 vs 3, 4) factor 1 or 2; κ( 1st or 2nd col), 1st = lower bound, 2nd = upper bound 

32 
33 
34 
35 
36 
37 

.75 4 02 

.75 + 02 

.75 + 02 

.75 4 02 

.75 4 02 

.75 + 02 

.75 4 02 

.75 4 02 

.75 + 02 

.75 4 02 

.75 4 02 

.75 4 02 

.50 4- 02 

.50 4- 02 

.50 + 02 

.50 + 02 

.50 4- 02 

.50 + 02 

.50 4 02 

.50 4 02 

.50 + 02 

.50 4 02 

.50 4- 02 

.50 + 02 

( S p l ) 
(Sp2) 
( S P 3 ) 
( S P 4 ) 
( S P 5 ) 
( S P 6 ) 
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Appendix B (cont.) 

ParH 

number 

44 
45 
46 
47 
48 
49 

Ραι-Η 

number 

38 
39 
40 
41 
42 
43 

Species 1 Species 2 

(Variable cards) 

Species 3 Species 4 Species 5 Species 6 

SL(IJK) = abiotic factors—slope—increase in proportion dying of factor per unit deviation from the optimum 
range 
1st = 

.80 - 04 

.50 - 04 

.25 - 04 

.20 - 04 

.55 - 04 

.60 - 04 

Species 1 

stated in PT(IJK) below; i(row) = species; j(cols 1, 2 vs 3, 4) = factor 1 or 2; K(lst or 2nd col) 
slope below optimum range, 2nd — slope above optimum range (note negative for 2nd value) 

0.0 
0.0 

- . 1 0 - 03 
- . 1 5 - 0 3 
- . 1 2 - 0 3 
- . 1 2 - 03 

Species 2 

. 1 0 - 0 3 - . 1 0 - 0 3 

. 1 0 - 0 3 - . 1 0 - 0 3 

. 1 0 - 0 3 - . 1 0 - 0 3 

. 1 0 - 0 3 - . 1 0 - 0 3 

. 1 0 - 0 3 - . 1 0 - 0 3 

. 1 0 - 0 3 - . 1 0 - 0 3 

(Variable cards) 

Species 3 Species 4 Species 5 Species 6 

PT(IJK) = abiotic factors—optimum range outside of which death rate is increased; i(row) = species, 
j(cols 

.25 + 02 

.35 + 02 

.35 + 02 

.40 + 02 

.20 + 02 

.25 + 02 

1, 2 vs 3, 4) factor 1 oi 
.106 + 03 
.106 + 03 
.98 + 02 
.101 + 0 3 
.10 + 03 
.10 + 03 

• 2; K(lst or 2nd col) 1st = lower bound, 2nd = upper bound 
.25 + 02 .75 + 02 
.25 + 02 .75 + 02 
.25 + 02 .75 + 02 
.25 + 02 .75 + 02 
.25 + 02 .75 + 02 
.25 + 02 .75 + 02 

( S p l ) 
( S P 2 ) 
( S P 3 ) 
(Sp4) 
( S P 5 ) 
( S P 6 ) 

( S p l ) 
( S P 2 ) 
( S P 3 ) 
(Sp4) 
( S P 5 ) 
( S P 6 ) 
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Appendix B (cont.) 

Citrn 

number 

50 
51 
52 
53 
54 
55 

56 
57 
58 
59 
60 
61 

Species l 

ASL(IJK) = 

.1667 - 01 

.20 - 01 

.45 - 01 

.47 - 01 

.80 - 01 

.57 - 01 

ALV(IJK) = 

.105 + 03 

.90 + 02 

.75 + 02 

.78 + 02 

.60 + 02 

.65 + 02 

Species 2 

abiotic factors—slope-
optimum range stated i 
K(lst or 2nd col) 1st = 
negative for 2nd value) 

I 0.0 
0.0 

- . 7 5 - 01 
- . 7 0 - 01 
- . 5 0 - 01 
- . 3 5 - 01 

(Variable cards) 

Species 3 

-constant reducing 
m ALV(IJK) below; 

Species 4 Species 5 Species 6 

birth rate modifier per unit deviation of factor from 
i(row) = species; j(cols 1, 2 vs 3, 4) = factor 1 or 2; 

= slope below optimum range, 2nd = slope above optimum range (note 

.40 - 01 

.40 - 01 

.40 - 01 

.40 - 01 

.40 - 01 

.40 - 01 

- . 4 0 - 01 
- . 4 0 - 01 
- . 4 0 - 01 
- . 4 0 - 01 
- . 4 0 - 01 
- . 4 0 - 01 

abiotic factors—optimum range outside of which birth rate is reduced ; i(row) = species ; 
j(cols 1, 2 vs 3, 4) = factor 1 or 2; κ( 1st or 2nd col) 1st = lower bound, 2nd = upper bound 

.106 + 03 

.106 + 03 

.85 + 02 

.85 + 02 

.80 + 02 

.85 + 02 

.25 + 02 

.25 + 02 

.25 + 02 

.25 + 02 

.25 + 02 

.25 + 02 

.75 + 02 

.75 + 02 

.75 + 02 

.75 + 02 

.75 + 02 

.75 + 02 

( S p l ) 
( S P 2 ) 
( S P 3 ) 
(Sp4) 
( S P 5 ) 
( S P 6 ) 

( S p l ) 
( S P 2 ) 
( S P 3 ) 
(Sp4) 
( S P 5 ) 
( S P 6 ) 
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6. A FINITE DIFFERENCE MODEL OF ECOSYSTEMS 429 

Appendix C* Sample Output 

ECOSYS MODEL 2 UPDATED DEC 69 

ECOSYSTEM INFORMATION FOR INTERVAL NUMBER 541 

INFO FOR SPECIES 1 2 3 4 5 6 

SATIATN LVL (GM) 
RATION (GM) 
KCAL EXPENDED 

BODY MASS 
ABIOT FACTRS 
REPRODUCTION 
FEEDING 
ESCAPING 

KCAL/INDIVIDUAL 

TOT AVAIL KCAL 
AVAIL KCAL FOOD 

GMS STORED FAT 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.5000D 01 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.70000 01 

0.4362D 
0.43620 

0.15940 
0.21290 
0.0 
0.27020 
0.20970 
0.9098D 

0.18030 
0.8949D 

0.4876D 

01 
01 

07 
07 

06 
04 
01 

02 
01 

01 

0.49430 
0.4943D 

0.55850 
0.750 7D 
0.0 
0.1278D 
0.5962D 
0.1034D 

0.16460 
0.10170 

0.3750D 

01 
01 

06 
06 

06 
03 
02 

02 
02 

01 

0.8895D 
0.88950 

0.1303D 
0.2295D 
0.0 
0.10010 
0.0 
0.32490 

0.83590 
0.30900 

0.2830D 

01 
01 

05 
05 

04 

02 

02 
02 

02 

0.90060 
0.9006D 

0.24840 
0.4303D 
0.0 
0.23660 
0.0 
0.3291D 

0.95880 
0.31330 

0.3152D 

01 
01 

05 
05 

04 

02 

02 
02 

02 

BIRTH PRPORTION-
ALITY CONSTANTS 

WEATHER 0.0 0.0 0.0 0.0 0.0 0.0 
OTHER ABIOT 0.10000 01 0.10000 01 0.1000D 01 0.1000D 01 0.10000 01 0.10000 01 
SPACE 0.14760 00 0.15250 00 0.10000 01 0.10000 01 0.10000 01 0.1000D 01 
FOOD LACK 0.10000 01 0.10000 01 0.8836D 00 0.8834D 00 0.8510D 00 0.8520D 00 

INSTANTANEOUS 
DEATH RATES BY 

STARVATION 
WEATHER 
OTHER ABIOT 

0.0 
-0.20750-04 
0.0 

SP 1 PREDN 0.0 
SP 2 PREDN 0.0 
SP 3 PREDN -0.9092D-03 -0.65660-03 
SP 4 PREDN -0.31890-03 -0.2551D-03 
SP 5 PREDN 0.0 0.0 
SP 6 PREDN 0.0 0.0 

0.0 0.0 0.0 
0.51310-03 -0.25650-03 -0.3052D-03 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

-0.1214D-02 

0.0 
0.0 
0.0 
0.0 
0.0 
•0.11590-02 

-0.23480-02 -0.20540-02 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
-0.1556D-04 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

OTHER CAUSES -0.20000-02 -0.3000D-02 -0.1800D-02 -0.20000-02 -0.85000-03 -0.8000D-03 

POPN RATE OF CHG -0.32490-02 -0.4425D-02 -0.56180-02 -0.5518D-02 -0.85000-03 -0.81560-03 

NUMBER OF INDIV 
BIOMASS (GM) 

0.1584D 08 
0.1664D 10 

0.5693D 07 
0.6091D 09 

0.4367D 06 
0.6499D 07 

0 .13820 06 
0 .19010 07 

0.1137D 04 
0.1459D 06 

.21320 04 

.2805D 06 

« « # « * # * « « « « « * « * * « * « « * * « « * « * * * * « « * « « * « * « * « * * « » * « * « # « * « * 4c*««4c»«*«4c«*«*4c<c»* 

WEATHER MEASUREMENT: 0.2474D 02 OTHER ABIOTIC FACTOR: 0.5500D 02 
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Appendix D* The Computer Program 

Input 

READM 

Output 

PRDAT 

TOTSI 

WEATHR 

1 
R E C n p n 

\ 

CALOR 

SATIA 

|End| 
JLYes 

/ 

- ^ C o m p l e t e " ? ] 

J 

FAT LE 

SPACE 

ABIMOD 

C ** ECOSYS: A PROGRAM TO SIMULATE AN ECOSYSTEM WITH SPECIFIABLE 
INTERRELATIONS AMONG THE MEMBER ORGANISMS, AND WITH SPECIFIABLE 
PHYSIOLOGICAL CHARACTERISTICS FOR AVERAGE INDIVIDUALS OF EACH 
MEMBER SPECIES, WITH REGARD TO RESPONSES TO BIOTIC AND ABIOTIC 
FACTORS. 

COMMON CK,DATRUN(9),IPAGE,STARS(3) 
INTEGER C M 16) 
DOUBLE PRECISION S(6 ) ,SIZE(6),PRED(6,6),D(6,10)»RATIO(6),SUMP(6), 

1PSUM(6),BMETM (6),SKE(6),SKF(6),FAT(6),ENERG (6),CHO(6),STARV (6), 
2FFAMA(6)»RSTRC(6,4),ΟΡΤ(6,2,2),FL(2),G(6),ΡΟΙNT(6,2,2),PRTN(6), 
3SLOPE(6,2,2),ASLOP (6,2,2),ALEVE (6,2,2 ) »TERTR (6,6),A(6),SEASO, 
4BIRTH(6),SIZ(6),E(6,5,2),DIGES,EBM(6),DEATH(6),FACTR,WEATHR,SL(6), 
5RATN(6,6),RATI0N(6),CSUM(6),EIND(6),Y(6,5),DIFF(6),DIFF1(6),X(6) 
DATA RSTRC /24*0.800/,D/60*0.DO/,EIND/2*225.,2*50.,2*325./ 

2 F0RMATU3,16I1,9A1,3A4) 
IPAGE = 1 

C ** READ OUTPUT CONTROL VALUES, DATE, AND BORDER FOR HEADING 
READ(5,2)INTRVL,CK,DATRUN,STARS 
ICNT=INTRVL 
CALL READM(NOSPP,NOFAC ,SEASO ,FACTR ,FL, JST, JFIN ,S,S IZE,PRED, 
1BMETM ,SKE,SKF,CHO,STARV »DIGES ,FFAMA ,OPT,POINT,SLOPE,ASLOP , 
2ALEVE ,TERTR ,A,BIRTH,SIZ,FAT,ENERG ,E,G,PRTN,DEATH,EBM) 
DO 1 I=1,N0SPP 
SL( I)=O.DO 
RATIO!I)=O.DO 
DIFF(I)=O.DO 

1 DIFFK I)=O.DO 
DO 4 IDTH=1,N0SPP 

4 D(IDTH,10)=DEATH(IDTH) 
DO 1000 LENGT=JST,JFIN 
FL(1)=WEATHR(SEAS0 ,FACTR) 
CALL TOTSI (NOSPP,SIZ,SIZE,FAT) 
CALL PRDAT (NOSPP,NOFAC ,S,SIZE ,PRED,D,RAT10 ,SUMP,PSUM,BMETM , 
1SKE,SKF,FAT,ENERG,EBM,BIRTH,RSTRC,RATN,RATI0N,CSUM,IHETER,SL) 
CALL CALOR (NOSPP,NOFAC ,S,SIZE ,PRED,OPT,FL,G,E,BMETM,SKE,SKF,FAT, 
1PSUM,ENERG,SUMP,RATI0N,EBM,CSUM,D,EIND,Y) 
CALL FATLE(NOSPP,NOFAC,S,D,FAT,CHO,STARV,ENERG,DIGES,FFAMA,RSTRC, 
1PSUM,PRTN,SUMP,EBM,RATN,EIND,DIFF,DIFF1) 
CALL SPACE(NOSPP,NOFAC ,S,TERTR ,A,RSTRC) 
CALL ABIMOD(NOSPP,NOFAC ,ALEVE ,ASLOP ,FL,RSTRC) 
CALL ABMORT(NOSPP,NOFAC ,POINT,SLOPE,FL,D) 
CALL ACTION(NOSPP,NOFAC ,S,RSTRC ,D,BIRTH,G,X) 
IF(S(3).LT.1.D0.0R.S(4).LT.1.D0.0R.S(5).LT.1.D0.0R.S(6).LT.1.D0) 

1CALL RECORD(NOSPP,LENGT,RATIO,ENERG,FAT,RSTRC,D,S,SIZE,FL,Y,DIFF, 
2DIFF1,X,SL) 
IF( ICNT.LT.INTRVL)G0 TO 3 
CALL RECORD(NOSPP,LENGT,RATIO,ENERG,FAT,RSTRC,D,S,SIZE,FL,Y,DIFF, 
1DIFF1,X,SL) 
IF(S(3) .LT.1.D0.0R.S(4).LT.1.D0.0R.S(5).LT.1.D0.0R.S(6).LT.1.D0) 

1G0 TO 1001 
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ICNT=0 
IPAGE=IPAGE+1 

3 SEASO = SEASO + .87266462599710-02*2.DO 
ICNT=ICNT+1 

1000 CONTINUE 
1001 STOP 

END 

SUBROUTINE READM<N,NF,SE,Fl,F,JS,JF,S,SZ,P,BM,SI »S2,CH0,STV,DG,FM, 
10,PT,SL,ASL,ALV,T,A,B,SIZ,FAT,ENG,E,G,PR,DTH,EBM) 
DOUBLE PRECISION F(2),S(6),SZ(6),P(6,6),BM(6),S1(6),S2(6),CH0(6), 

1FM(6),0(6,2,2),PT(6,2,2),SL(6,2,2),ASL(6,2,2),ALV(6,2,2),T(6,6), 
2A(6),B(6),SIZ(6),FAT(6),ENG(6),E(6,5,2),G(6),PR(6),STV(6),DTH(6), 
3EBM(6),SE,F1,DG 
1 FORMAT(6D10.4) 
2 F0RMAT(4I5,4D10.4) 
3 F0RMAT(10D8.5) 
A F0RMAT(4D10.4) 
5 FORMAT(· ·t6D15.4) 
6 FORMAT(«1·,415,4015,4) 
7 FORMAT(· ·,10012.3) 
8 FORMAT(· ·,4D15.4) 
9 FORMAT(·1«) 

READ(5,2)N,NF,JS,JF,SE,F1,F(2),DG 
READ(5,1)S,SZ,SIZ,B,A,CH0,FAT,BM,S1,S2,ENG»STV,FM,G,PR,DTH,EBM 
READ(5,1)((P(I,J),J=1,N),I=1,N) 
READ(5,1)((T(I,J),J=1,N),I=1,N) 
READ(5,4)(((0(1,J,K),K=1,2)»J=1,NF),I=1,N) 
READ(5,4)(((PT(I,J,K),K=1,2),J=1,NF),I=1,N) 
READ(5,4)(((SL(I,J,K),K=1,2),J=1,NF),I=1,N) 
READ(5,4)(((ASL(I,J,K),K=1,2),J=1,NF),I=1,N) 
READ(5,4)(((ALV(I,J,K),K=1,2),J=1,NF),I=1,N) 
READ(5,3)(((E(I,J,K),K=1,2),J=1,5),I=1,N) 
WRITE(6,6)N,NF,JS,JF,SE,F1,F(2),DG 
WRITE(6,5)S,SZ,SIZ,B,A,CH0,FAT,BM,Sl,S2,ENGtSTV,FM,G,PR,DTH,EBM 
WRITE(6,5)((P(I,J),J=1,N),I=1,N) 
WRITE(6,5)((T(I,J),J=1,N),I=1,N) 
WRITE(6,8)(((0(I,J,K),K=1,2),J=1,NF),I=1,N) 
WRITE(6,8)(((PT(I,J,K),K=1,2),J=1,NF),I=1,N) 
WRITE(6,8)(((SL(I,J,K),K=1,2),J=1,NF),I=1,N) 
WRITE(6,8)(((ASL(I,J,K),K=1,2),J=1,NF),I=1,N) 
WRITE(6,8)(((ALV(I,J,K),K=1,2),J=1,NF),I=1,N) 
WRITE(6,9) 
WRITE(6,7)(((E(I,J,K),K=1,2),J=1,5),I=1,N) 
RETURN 
END 

DOUBLE PRECISION FUNCTION 
DOUBLE PRECISION B,S,F 
B=(DSIN(S)+1.D0)/2.D0+.5D 
WEATHR*B*F 
RETURN 
END 

SUBROUTINE TOTSI (N,SZ,SIZE,FAT) 
C 
C ** TOTSI COMPUTES THE CURRENT INDIVIDUAL BIOMASS BY ADDING THE 
C CURRENT AMOUNT OF STORED FAT TO THE BASIC PROTEIN-CHO BODY MASS. 
C 

DOUBLE PRECISION SZ(6) ,SIZE(6),FAT(6 ) 
DO 1 I=1,N 

1 SIZE(I)=SZ(I)+FAT(I ) 
RETURN 
END 

SUBROUTINE PRDAT (N,NF,SP,SZ,P,C,RATIO ,SUMP,PSUM,B,SK1,SK2,FAT, 
1ENERG*EBM,BIR,R,RATN,RATI0N,CSUM,IHETER,SAT) 
DOUBLE PRECISION SP(6),SZ(6),P(6,6),C(6,10)»RATIO(6),SUMP(6), 

IPSUM(6) ,B(6 ) ,SK1(6),SK2(6),FAT(6),ENERG (6),EBM(6),SATI A,SAT(6), 

WEATHR(S»F) 

-01 
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2ZFR0,CSUM(6),F(9),G(6),BIR(6),R(6,4),SDAD(6),SDEAD(6),RATN(6,6), 
3RATI0N(6) 

11 F0RMATU5X, »INPUT ERROR - POSITIVE SUM OF PRED RATES BY SP ·,Ι3) 
ZERO=O.DO 
ITERAT = ZERO 
IHETER = 1 
M = N+NF+2 
L = NF+2 
DO 10 1=1,N 
SUMP(I)=ZERO 
RATIO(I)=ZERO 
SAT(I) = ZERO 
CSUM(I) = ZERO 
G( I) = B I R U ) 

10 PSUM( I)=ZERO 
DO 2 1=1,N 
DO 5 11 = 1,L 

5 G(I)=G(I)*R(I,I1> 
K=I+NF+1 
DO 2 J=1,N 
C(J,K)=P(I,J)*SPU ) 
SUMP(J)=SUMP(J)+C(J,K) 

2 PSUM( I)=PSUM(I )+P(I ,J) 
DO 1 J=1,N 
IF(PSUM(J))1,3,12 

C 
C ** IHETER IMPOSES A RESTRICTION ON INPUT TO THE ECOSYSTEM MODC 
C THOSE SPECIES WHICH ARE AUTOTROPHIC MUST BE GIVEN THE LOW ORDER 
C SUBSCRIPTS, WITHOUT ANY HETEROTROPHIC SPECIES HAVING SUBSCRIPTS 
C LOWER THAN ANY AUTOTROPHIC SPECIES. IHETER IS NO. AUTOTROPHS +1. 
C 

3 IHETER = IHETER + 1 
GO TO 1 

12 WRITE(6,11)J 
STOP 

1 CONTINUE 
DO 4 I=IHETER,N 

C 
C ** SATIATION LEVEL REMAINS CONSTANT. 
C 

4 SAT(I)=SATIA(FAT,ErERG,B,SKl,SK2,I,EBM) 

DO 14 1=1,N 
DO 14 J=1,M 

C 
C ** DEATH RATES FOR THE INITIAL COMPUTATIONS ARE SET AT THEIR MAXIMUM. 
C 

14 CSUM(I)=CSUM(I)+C(I,J) 
DO 8 1=1,N 

C 
C ** SDEAD IS THE TOTAL DEATHS DURING THE INTERVAL. 
C 

I F ( D A B S ( G U )+CSUM(I ) ) - 0 . 1 D - 1 0 ) 2 5 , 2 6 , 2 6 
25 S D E A D ( I ) = ( - 1 . D 0 * C S U M ( I ) * S P ( I ) ) 

GO TO 8 
26 SDEAD(I)=(-1.D0*CSUM(I)/(G(I)+CSUM(I)))*SP(I)*(DEXP(G(I)+CSUM(I))-

11.DO) 
8 CONTINUE 

DO 6 I=IHETER,N 
DO 6 J=1,N 

C 
C ** THE MAXIMUM RATION, THAT WHICH WOULD OCCUR IF PREDATORS HUNTED TO 
C THEIR MAXIMUM CAPABILITY FULL TIME, IS USED IN THE INITIAL COMPUTA-
C TION. THE NAME"RATIO" IS RETAINED, EVEN THOUGH IT IS REDUCED. 
C THE UNIT OF MEASURE FOR "RATIO" IS BIOMASS. 
C 

6 RATIO(I)=RATIO(I)+P(I,J)/CSUM(J)*SDEAD(J)*SZ(J) 
DO 30 I=IHETER,N 

30 RATION(I)=RATIO(I ) 
20 ITERAT=ITERAT+1 

C 
C ** TEST TO PREVENT REMAINING IN LOOP IF THE COMPUTATIONS SHOULD NOT 
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C CONVERGE. THERE WILL BE A MAXIMUM OF 50 COMPUTATIONS. 
C 

I F ( I T E R A T . G E . 5 0 ) R E T U R N 
DO 9 I = I H E T E R , N 
K = I + N F + 1 

C 
C * * F (K) IS THE PROPORTIONAL REDUCTION IN THE MAXIMUM DEATH RATE DUE 
C TO PREDATION. THE REDUCTION IS BECAUSE OF ABUNDANT FOOD. THE 
C PREDATOR IS SPECIES I . 
C 

IF ( R A T I O U ) . E O . O . D O ) RAT 10 ( I ) = . 1D-9 
F ( K ) = S A T ( I ) / R A T I O ( I ) 
I F ( F < K ) . G T . 1 . D 0 ) F ( K ) = 1 . D 0 
DO 9 J = 1 , N 
C ( J f K ) s r ( K ) * C ( J f K ) 
RATN<I,J)=ZERO 

9 CONTINUE 
DO 13 J=1,N 
CSUM(J)=ZERO 

13 RATIO(J)=ZERO 
DO 15 K=1,M 
DO 15 J=1,N 

15 CSUM(J)=CSUM(J)+CU,K) 
DO 40 1=1,N 
IF(DABS(G(I)+CSUM(I))-0.1D-10)41,41,42 

C 
C ** RECOMPUTATION OF SDEAD(I) USING THE ADJUSTED PREDATION RATES. 
C 

41 SDEAD(I) = (-1.D0*CSUM(I )*SPU )) 
GO TO 40 

42 SDEAD(I)=(-1.D0*CSUM(I)/<G(I)+CSUM(I)))*SP(I)*(DEXP(G(I)+CSUM<I))-
11.DO) 

40 CONTINUE 
DO 18 I=IHETER,N 
K=I+NF+1 
DO 18 J=1,N 

C 
C ** RATN(I,J) IS THE NUMBER OF INDIVIDUALS ONE INDIVIDUAL OF THE I TH 
C POPULATION TAKES FROM THE J TH BY PREDATION. 
C 

RATN(I,J)=C(J,K)/(SP(I)*CSUM(J))*SDEAD<J) 
C 
C ** RECOMPUTATION OF RATIO AFTER FINDING THAT THE PREVIOUS RATIO WAS 
C TOO LARGE. 
C 

RAT 10(I)=RATIO(I )+C(J,K)/(SP(I)*CSUM(J))*SDEAD<J)*SZ(J) 
18 CONTINUE 

DO 19 I=IHETER,N 
K=I+NF+1 

C 
C ** IF THE NEWLY COMPUTED RATION APPROXIMATES THE SATIATION LEVEL FOR 
C ALL PREDATORS, THEN THE ITERATION IS COMPLETE AND THE PREDATION 
C MATRIX IS CORRECT IN ALL ENTRIES TO <=.01% IN THE ADJUSTMENT FACTOR 
C (DENSITY DEPENDENCY ADJUSTMENT) UNLESS THE FOOD SPECIES POPULATION 
C LEVELS ARE TOO LOW FOR THE PREDATOR·S MAXIMUM PREDATION RATE* τη Β Ε 

C EFFECTIVE. 
C 

IF(F(K).GT..9999D0)G0 TO 19 
GO TO 20 

19 CONTINUE 
RETURN 
END 

DOUBLE PRECISION FUNCTION SAT I A(FAT,ENERG,B,SKI,SK2,I,EBM) 
DOUBLE PRECISION FAT(6)»ENERG(6),SKI(6),SK2(6),B(6),EBM(6),E,F 
IF(ENERGU))1,1,2 

2 F=FAT(I) 
E = ENERG(I ) 
SATIA = (B(I)-SK2(I)*F**2)*(1.DO-DEXP(SKI(I )*(E-EBM(I ))/EBM(I))) 
IF(SATIA)1,3,3 

3 RETURN 
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I SATIA = O.DO 
RETURN 
END 

SUBROUTINE CALOR(N,NF,S,SZ,P,0,FL,G,E,B,SKI,SK2,FAT,PSUM,ENERG, 
1SUMP,RATI0,Y1,CSUM,C,EIND,Y) 

C 
C ** CALOR IS A SUBROUTINE TO COMPUTE THE ENERGY EXPENSE OF THE 
C ORGANISMS DUE TO BODY MASS, ABIOTIC FACTORS, REPRODUCTION, FEEDING, 
C AND ESCAPING THEIR PREDATORS. 
C 

DOUBLE PRECISION E(6,5,2),S(6),SZ(6),0(6,2,2),FL(2),G(6),RATI0(6), 
1B<6),SK1(6),SK2(6),ENERG(6),FAT<6),PSUM(6),Y(6,5),SUMP(6),EIND(6), 
2P(6,6),Y1(6),SATIA,SATLV,X,0PTMU,CSUM<6),C(6,10),FOOD(6),SBAR(6) 
IHETER = 1 
DO 98 1=1,N 
DO 99 J=l,5 

99 Y(I,J)=0.D0 
98 FOOD(I)=O.DO 

DO 11 1=1,N 
IF(PSUM(I))4,3,3 

4 SATLV=SATIA (FAT,ENERG ,B,SK1,SK2,I,Y1) 
C 
C ** ENERGY EXPENSE DUE TO BODY MASS 
C 

X = E( I,1,1)*SZU )**(2.D0/3.D0)*S(I ) 
Y(I,1)=X 
YKI)=Y(I,1)/S(I) 

C 
C ** ENERGY EXPENSE DUE TO ABIOTIC FACTORS 
C 

DO 2 J=1,NF 
OPTMU =.5D0*(0(I,J,1)+0(I,J,2)) 

2 X=X+E( I,2,J)*(DABS(FL(J)-0PTMU ))*SU) 
Y(I,2)=X-Y(I,1) 

C 
C ** ENERGY EXPENSE DUE TO REPRODUCING, NURSING, REARING YOUNG, ETC., 
C ASSUMED PROPORTIONAL TO PRODUCTION OF BIOMASS; AN AMT OF ENERGY IS 
C SPENT EQUAL TO 1.5 TIMES THE BIOMASS PRODUCED, BUT THAT IS NOT ALL 
C LOST, SINCE THE ENERGY OF NEW BIOMASS IS AN ENERGY GAIN. 
C 

X=X+E( 1,3,1 )*GU)*S(I)*EINDU ) 
Y(I,3)=X-Y(I,2)-YU,1) 

c 
C ** ENERGY EXPENSE DUE TO CAPTURING FOOD, PROPORTIONAL TO SATIATION 
C LEVEL AND INVERSELY PROPORTIONAL TO FOOD RATION POTENTIAL 
C 

IF (RATIOU ).EQ.O.DO) RAT 10 ( I ) =. 1D-9 
Y<I,4)=E(I,4,1)*SATLV*S(I)/RAT 10(I) 
IF(Y(I,4)/S(I ).GT.2.D0*Y1U ) ) Y ( I ,4 ) =Y 1 ( I )*S ( I )*2 .DO 
X=X+Y(1,4) 
GO TO 11 

3 X=O.DO 
IHETER=IHETER+1 

II ENERG(I)=X 
C 
C ** ENERGY EXPENSE DUE TO ESCAPING PREDATORS, PROPORTIONAL TO THE 
C AMOUNT OF ENERGY ALL PREDATORS EXPEND IN CAPTURING MEMBERS OF THIS 
C SPECIES 
C 

X=O.DO 
DO 28 1=1,N 
IF(DABS(G(I H-CSUMd ) ) - . 1D-10 ) 26 , 27 , 27 

26 SBAR(I)=S(I) 
GO TO 28 

27 SBAR(I)=SU)*(DEXP(G(I)+CSUM(I))-l.DO)/(G(I)+CSUM(I)) 
28 CONTINUE 

DO 21 1=1,N 
IF(SUMP(I))8,9,9 
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8 DO 29 JP=IHETER,N 
JPRED=JP+NF+1 
DO 6 JPREY=1,N 

6 FOOD(JP)=FOOD(JP)+C(JPREY,JPRED)*SBAR(JPREY) 
IF(FOOD(JP).NE.O.DO)Y(I,5)=Y(I,5)+C(I,JPRED)*SBAR(I)/FOOD(JP)* 

1Y(JP,4) 
29 FOOD(JP)=O.DO 

Y(I,5)=E(I,5,1)*Y(I,5) 
IF(Y(I,5)/S(I).GT.2.D0*Y1U ) ) Y U ,5 ) =Y1 ( I )*S( I )*2.D0 
GO TO 7 

9 Y(I,5)=O.DO 
7 X=Y(I,5) 

21 ENERGiI)=ENERG(I)+X 
DO 30 I=IHETER,N 

30 ENERGtI)=ENERG(I)/S(I) 
RETURN 
END 

SUBROUTINE FATLE(N,NF,S,D,FAT,CHO,STV,ENERG,DIGES,FFAMA,R,PSUM,PR, 
1SUMP,EBM,RATN,EIND,DIFF,DIFF1) 
DOUBLE PRECISION S(6 ) ,D(6,10),FAT(6),CHO(6),STV(6),ENERGi6), 
1FFAMA(6),R(6,4),PSUM(6),SUMP(6),SUMPD(6),PR(6),CAL(2),RATN(6,6), 
2EBM(6),DIGES,C,F,FOOD,UNTKN,E,FCL,FBAR,CCHO,CFAT,ENGDI,FENMA,ZERO, 
3EIND(6) ,DIFF1(6),DIFF(6),STRV 
ZER0=0.D0 
M=NF+2 
MN=N+NF+2 
CAL(1)=4.1D0 
CAL(2)=9.3D0 
DO 14 1=1,N 
R( I ,4) = 1.D0 
D( I,1)=0.D0 

14 SUMPD(I)=ZERO 
C 
C ** COMPUTATION OF THE NO. OF CALORIES IN AN INDIVIDUAL OF EACH SPECIES 
C (THIS INFO PASSED TO CALOR). 
C 

DO 30 1=1,N 
30 EIND( I)=CAL(1)*CH0U )+CAL ( 2 )*FAT ( I ) + CAL ( 1 )+PR ( I ) 

DO 1 1=1,N 
IF(PSUMU))6,1,1 

6 C=ZERO 
F=ZERO 
FOOD=ZERO 
NG=NF+1+I 
DO 7 J=1,N 
DO 13 K=1,MN 

13 SUMPD( J)=SUMPD(J)+DU,K) 
UNTKN=O.DO 
IF(SUMPD(J))15,7,7 

C 
C ** UNTKN = NUMBER OF PREY TAKEN BY ONE INDIVIDUAL PREDATOR. AMOUNT OF 
C FAT, CHO, PR, OR SZ TIMES UNTKN IS AMOUNT OF FAT, CARBOHYDRATE, 
C PROTEIN, OR BIOMASS (WET WEIGHT) TAKEN, RESPECTIVELY, BY THAT 
C INDIVIDUAL PREDATOR. 
C 

15 UNTKN=RATN(I,J) 
C 
C ** F, C, AND FOOD ARE THE AMOUNTS OF FAT, CHO, AND FOOD EATEN BY 
C SPECIES I, J IS PREY SPECIES, AND NG INDEXES THE APPLICABLE DEATH 
C RATE DUE TO PREDATION. 
C 

F=F+FAT(J)*UNTKN 
7 C=C+(CHO(J)+PR(J))*UNTKN 

FOOD=F+C 
E=ENERG (I> 

C 
C ** FCL IS AMOUNT OF UNDIGESTED FOOD MATERIAL. 
C 

FCL=FOOD*DEXP(DIGES) 
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C 
C ** FBAR IS MEAN FOOD AVAILABLE DURING THE CURRENT INTERVAL. 
C 

FBAR=(FCL-FOOD)/DIGES 
C 
C ** CCHO IS PROPORTION OF DIGES WHICH MULTIPLIES FBAR TO GIVE AMOUNT 
C OF CHO DIGESTED IN THE INTERVAL. 
Q 

IF((C+F).EO.O.DO) F=.lD-9 
CCHO=-DIGES*C/(C+F) 

C 
C ** CFAT IS PROPORTION OF DIGES WHICH MULTIPLIES FBAR TO GIVE AMOUNT 
C OF FAT DIGESTED IN THE INTERVAL. 
C 

CFAT=-DIGES*F/(C+F) 
C 
C ** ENGDI IS ENERGY EXPENDED MINUS FOOD CHO ENERGY. 
C 

ENGDI =E-CAL(l)*CCHO*FBAR 
C 
C ** FENMA IS ENERGY FROM TOTAL FAT AVAILABLE DURING THE INTERVAL AS 
C FREE FATTY ACIDS. 
C 

FENMA = CAL(2)*(CFAT*FBAR + FFAMA(I)*FAT(I)) 
DIFF(I)=ENGDI-FENMA 
DIFF(I)=E-DIFF(I) 
DIFFKI)=CAL(l)*CCHO*FBAR+CAL(2)*CFAT*FBAR 
IFCENGDI)8,8,9 

8 FAT(I)=FAT(I)+F-ENGDI/CAL<2) 
GO TO 10 

9 IF(FENMA-ENGDI)11,12,12 
11 FAT(I)=FAT(I)+F-FENMA/CAL(2) 

GO TO 10 
12 F A T ( I ) = F A T U ) + F-ENGDI/CAL (2 ) 
10 I F ( F A T < I ) ) 4 , 5 , 5 

4 FAT( I )=ZERO 
5 R ( I , M ) = D I F F 1 ( I ) / E - . l D O 

I F ( R ( I , M ) . G T . 1 . D 0 ) R ( I , M ) = 1 . D 0 
I F ( R ( I , M ) . L T . O . D O ) R ( I , M ) = O . D O 
S T R V s D I F F ( I ) / E - . 2 5 D 0 
IF (STRV.GT.1.D0)STRV=1.D0 
IF(STRV.LT..lD-02)STRV=.lD-02 
D(I,1)*STV(I)*DL0G(STRV) 

1 CONTINUE 
RETURN 
END 

SUBROUTINE SPACE(N,NF,S,T,A,R) 
DOUBLE PRECISION S(6 ) ,T(6»6 ),A(6),R(6t4),SUM(6) 
M=NF+1 
DO 1 1=1,N 
SUM(I)=O.DO 

1 R(I«M)«SUMU) 
DO 3 1=1,N 
DO 2 J=1,N 

2 SUM(I)sSUM(I)+T(J,I )*S(J) 
IF (SUMd ).GT.O.DO) SUM(I)=O.DO 

3 R(I,M)s(A(I)+SUM(I))/A(I) 
RETURN 
END 

SUBROUTINE ABIMOD(N,NF,A,B,F,R) 
DOUBLE PRECISION A(6,2,2),B(6,2,2),F(2),R(6,4),X 
DO 1 1=1,N 
DO 1 J=1,NF 
IF(F(J)-A(I,J,1))2,3,4 

A IF(F(J)-A(I,J,2))3,3,5 
2 X=B(I,J,1)*(F(J)-A(I,J,1))+1.D0 
GO TO 6 

5 X=B(I,J,2)*(F(J)-A(I,J,2))+1.D0 
6 IF(X)7,7,8 
7 R(I,J)=O.DO 
GO TO 1 
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8 
9 

3 
1 

IF(X-1.D0)9,9 
R«I,J)=X 
GO TO 1 
R«I,J)=1. 
CONTINUE 
RETURN 
END 

DO 

,3 

SUBROUTINE ABMORT(N,NF,P,S,F,C) 
DOUBLE PRECISION P (6 ,2 ,2 ) ,S «6 ,2 , 2 ) , C (6 , 10 ) , F ( 2 ) , B, X 
DO 11 1=1,N 
DO 11 J=1,NF 
IF(F(J)-P(I,J,1))2,3,4 

4 IF(F«J)-P«I,J,2))3,3,5 
2 B=S(ItJtl) 

X=F(J)-P«I,J,1) 
GO TO 6 

5 B=S«I,J,2) 
X=F<J)-P(I,J,2) 
GO TO 6 

3 C(I,J+1)=0.D0 
GO TO 11 

6 IF«(l.D0+B*X).LT.0.85D-02) GO TO 3 
C(I,J+1)=DL0G(1.D0+B*X) 

11 CONTINUE 
RETURN 
END 

SUBROUTINE ACT ION(N,NF,SP,R,C,BIR,Y,X) 
DOUBLE PRECISION SP (6 ) ,R (6 ,4 ) ,C (6 , 10) , BIR (6 ) ,X ( 6) ,Y ( 6) , A,E 
K=NF+2 
L=N+NF+2 
DO 1 1=1,N 
A=1.D0 
B=O.DO 
DO 2 J=1,K 

2 A=A*R(I,J) 
DO 3 J=1,L 

3 B=B+C(I,J) 
X(I)=BIR(I)*A+B 
Y( I)=X(I)-B 
SP(I) = SP(I )*DEXP(X(I)) 

1 IF(SP( I) .LT.l.DO) S P U ) = 1 . D 0 
RETURN 
END 

SUBROUT 
1KCALFD, 
COMMON 
DOUBLE 

1BI0MAS( 
DOUBLE 
INTEGER 
FORMAT« 
FORMAT( 
FORMAT« 
FORMAT! 
FORMAT« 
FORMAT« 
FORMAT« 

8 FORMAT 
9 FORMAT« 

10 FORMAT« 
11 FORMAT« 
12 FORMAT« 

18012.4) 
13 FORMAT« 
14 FORMAT« 
15 FORMAT« 

INE RECORD(N,LENGT,RATN,ETOT,FAT,R,D,S,SZ,FACLEV,E,AVCAL, 
CHG,SL) 
CK,DATRUN(9),IPAGE,STARS(3) 
PRECISION RATN(6),ET0T(6),FAT(6),R(6,4),D(6,10),S(6),SZ(6), 
6),FACLEV(2),E(6,5),AVCAL(6),CHG(6),SL(6) 
PRECISION KCALFD«6) 
CK(16) 
0 SATIATN LVL (GM)'8D12.4) 

RATION (GM) «8D12.4/) 
KCAL EXPENDED«/8X· BODY MASS·3X,8D12.4) 

ABIOT FACTRS'8012.4) 
REPR0DUCTI0N«8D12.4) 
FEEDING »8D12.4) 
ESCAPING '8D12.4) 

(· KCAL/INDIVIDUAL »8D12.4) 
0 TOT AVAIL KCAL «8D12.4) 

AVAIL KCAL FOOD «8D12.4) 
0 GMS STORED FAT «8D12.4) 
0 BIRTH PRPORTION-·/4X· ALITY CONSTANTS»/9X·WEATHER·5X, 

OTHER ABIOT »8D12.4) 
SPACE »8D12.4) 
FOOD LACK '8D12.4) 



438 RAY R. LASSITER AND DON W. HAYNE 

16 FORMATMO INSTANTANEOUS«/4X· DEATH RATES BY ·/9X«STAR VAT ION·, 
12X,8D12.4) 

17 FORMATI· WEATHER «8D12.4) 
18 FORMAT(« SP»I3,· PREDN«6D12.4) 
19 FORMATPO POPN RATE OF CHG« 8D12.4) 
20 FORMATi«0 NUMBER OF INDIV · 8D12.4) 
21 FORMATC BIOMASS (GM) «8012.4) 
22 FORMAT«« OTHER CAUSES' 8D12.4) 
23 FORMATC1 ECOSYS MODEL 2 UPDATED DEC 69·53X,9A1,4X,·PAGE·14) 
24 FORMAT(«0»35X,«ECOSYSTEM INFORMATION FOR INTERVAL NUMBER«16) 
25 FORMAT(·0·21Χ,24Α4) 
26 FORMATPO INFO FOR SPEC IES · I 7 ,7 112 ) 
27 FORMAT!«0«5X,«WEATHER MEASUREMENT:«D12.4,4X,·OTHER ABIOTIC FACTOR: 

1Ό12.4) 

28 FORMAT(15,6011.4) 

DO 100 1=1,N 
100 BIOMAS( I ) = SU )*SZ(I ) 

W R I T E ( 6 , 2 3 ) D A T R U N , I PAGE 
WRITE(6 ,24 )LENGT 
W R I T E ( 6 , 2 5 ) ( S T A R S , I = 1 , N ) 
W R I T E ( 6 , 2 6 ) ( I , 1 = 1 , N ) 
W R I T E ( 6 , 2 5 ) ( S T A R S , I = 1 , N ) 
IF (CK( 1 ) . E Q . 1 ) W R I T E ( 6 , D S L 
I F ( C K ( 2 ) . E Q . 1 ) W R I T E ( 6 , 2)RATN 
I F ( C K ( 3 Ï . E 0 . 1 ) W R I T E ( 6 , 3 H E U , 1 ) , I = 1 ,N) 
I F ( C K ( 4 ) . E Q . 1 ) W R I T E ( 6 , 4 ) ( E ( I , 2 ) , I = 1 , N ) 
I F ( C K ( 5 ) . E 0 . 1 ) W R I T E ( 6 , 5 ) ( E ( I , 3 ) , I = 1 ,N) 
I F ( C K ( 6 ) . E 0 . 1 ) W R I T E ( 6 , 6 ) ( E ( I , 4 ) , I = 1,N ) 
I F ( C K ( 7 ) . E Q . 1 ) W R I T E ( 6 , 7 ) ( E ( I , 5 ) , I = 1 , N ) 
I F ( C K ( 8 ) . E 0 . 1 ) W R I T E ( 6 , 8 )ET0T 
I F ( C K ( 9 ) . E Q . 1 ) W R I T E ( 6 , 9)AVCAL 
I F ( C K ( 1 0 ) . E 0 . 1 ) W R I T E ( 6 , 1 0 ) K C A L F D 
I F ( C K ( 1 1 ) . E Q . 1 ) W R I T E ( 6 , 1 1 ) F A T 
I F ( C K ( 1 2 ) . E 0 . 1 ) W R I T E ( 6 , 1 2 ) ( R ( I , 1 ) , I = 1 , N ) 
I F ( C K ( 1 2 ) . E Q . l ) W R I T E ( 6 , 1 3 ) ( R U , 2 ) , I = 1 ,N) 
I F ( C K ( 1 2 ) . E Q . 1 ) W R I T E ( 6 , 1 4 M R U , 3 ) , I = 1 ,N ) 
I F ( C K ( 1 2 ) . E Q . 1 ) W R I T E ( 6 , 1 5 ) ( R ( I , 4 ) , I = 1 , N ) 
I F ( C K ( 1 3 ) . E Q . 1 ) W R I T E ( 6 , 1 6 ) ( D ( I , 1 ) , I = 1 , N ) 
I F ( C K ( 1 3 ) . E 0 . 1 ) W R I T E ( 6 , 1 7 ) ( D ( I , 2 ) , I = 1 , N ) 
I F ( C K ( 1 3 ) . E 0 . 1 ) W R I T E ( 6 , 1 3 ) ( D ( I , 3 ) , I = 1,N ) 
DO 88 K = 1,N 
J = K+3 
I F ( C K ( 1 3 ) . E Q . 1 ) W R I T E ( 6 , 1 8 ) K , ( D ( I , J ) , I = 1 , N ) 

88 CONTINUE 
I F ( C K ( 1 3 ) . E Q . 1 ) W R I T E ( 6 , 2 2 X D ( I , 1 0 ) , I = 1 ,N) 
I F ( C K ( 1 4 ) . E Q . 1 ) W R I T E ( 6 , 1 9 ) C H G 
I F ( C K ( 1 5 ) . E Q . l ) W R I T E ( 6 , 2 0 ) S 
I F ( C K ( 1 6 ) . E 0 . 1 ) W R I T E ( 6 , 2 1 ) B I O M A S 
IF(CK(4).EQ.0.AND.CK(12).E0.0.AND.CK(13).E0.0)G0 TO 99 
WRITE(6,25MSTARS,I=1,N) 
WRITE(6,27)FACLEV 

99 WRITE(6,25)(STARS,1=1,N) 
RETURN 
END 
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L Introduction 

The assemblage of organisms living on the deciduous forest floor plays 
an important role in the decomposition and recycling of organic matter 
and nutrients (e.g., Van der Drift, 1951). Because of this function, an 
understanding of the dynamics of this subcommunity can make a major 
contribution to knowledge of the forest ecosystem as a whole. Bray (1961) 
has calculated that as much as 9 4 % of forest primary production may 
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cycle directly through the decomposers. Additionally, large decomposer 
components have been found in a number of other natural ecosystems 
(e.g., Odum, 1957). 

Describing the dynamics of cryptozoa has been a difficult task because 
they constitute a complex system with hundreds of populations and 
intricate trophic interactions (Burges and Raw, 1967). With the intro-
duction of high-speed computers and techniques of systems analysis, 
mathematical methods are becoming available to treat such systems. 
However, there remains a gap between theoretical development of the 
techniques and their application in simulating real situations. This 
problem is being solved, nevertheless, by simplifying the quantification 
of these systems and simulating behavior which deviates significantly 
from a simple equilibrium. 

The cryptozoa present several problems of particular interest. First, 
these organisms exhibit large seasonal fluctuations in numbers and 
energy flow. Such behavior is not described adequately by constant 
coefficient linear equations. Second, assigning values for material 
transfers within such a complex system is difficult and calls for develop-
ment of simplifying techniques. Third, the logic of compromising 
available modeling techniques and the usual paucity of available informa-
tion to produce a reasonable simulation never has been defined well. 
Approaches to these problems are being developed, and a sampling 
will be presented in this chapter. Extensive examples are used to demon-
strate how the methods can be used to solve real problems. An attempt 
also will be made to follow in some detail the logical steps needed to 
construct a preliminary working model of an entire cryptozoan system. 
The discussion will emphasize the balance which must be achieved 
between elegance of mathematical tools and limited empirical knowledge. 

IL Techniques for Simulating Large-Scale Fluctuations 

A. SEASONAL DYNAMICS 

Energy flow studies have recognized the importance of soil invertebrate 
dynamics. Attempts to estimate annual energy flow have been made in 
a number of natural populations such as mites (Engelmann, 1961), 
millipedes (Bocock et al.y 1967), isopods (Saito, 1965), and collembola 
(Healey, 1967). In these studies total energy entering the population 
through feeding was measured together with excretion and respiration 
losses. These studies represent a considerable advancement in knowledge 
of cryptozoa and also a significant development of methods for measuring 
energy flux dynamics. However, they largely ignored an important 
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aspect of temporal dynamics, the fluctuations which occur during the 
year. Such seasonal changes are often dramatic among soil populations 
and must be understood before the total system dynamics can be. 

This section will outline one method by which temporal dynamics 
can be modeled. The method involves treating energy transfer as a 
variable coefficient linear system. The variable coefficients are expressed 
as functions of a set of environmental variables, and the equations are 
represented economically in matrix notation. The method is then applied 
is an illustration to a study of seasonal energy fluctuations in a millipede 
population (O'Neill, 1968a). 

1. The Variable Coefficient Method 

Consider the simple system shown in Fig. 1, where X represents 
standing crop of the population (calories per unit area), / is input flux 
or ingested energy, E is output flux in excretions, and R is output flux as 
respiration. All three fluxes are in units of calories per unit area per unit 
time. Changes in standing crop are then defined by the difference 

R 

I 
X 

E 

FIG. 1. Simplified representation of energy flow through an animal population, 
where / represents energy ingested, E and R represent energy losses to excretion and 
respiration, respectively, and X represents standing crop of the population. 

between input and output fluxes. For simplicity, let us consider only one 
of the three fluxes, the respiratory output R, and assume that it can be 
represented as a simple linear function 

R = aX, (1) 

where a is a coefficient expressing the fraction of the energy pool lost per 
unit time (calories per calories-time). Assume for the moment that the 
other fluxes in Fig. 1 can be described by a similar function. (Further 
discussion of this point will be covered in the analysis of the millipede 
example below.) 
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If the transfer coefficient in Eq. (1) is expressed as a constant, the 
magnitude of the flux depends only on the standing crop of the population 
and the type of system employed will be similar to conventional studies of 
energy flow. That is, the model will be unable to account for seasonal 
changes in respiration rates. To account for such changes, the coefficient 
must be expressed as a function of a set of environmental variables 

a = /({*}), (2) 

where { j j is a set of such variables as rainfall, temperature, etc. The 
task then becomes one of discovering the appropriate variables and 
devising an expression for the function in Eq. (2). A variety of approaches 
is available but multiple regression recommends itself for several 
reasons. Multiple regression analyses have become familiar tools in 
ecological research, and discussions are available in a wide number of 
excellent statistical texts. As a result, the method is perhaps the most 
universally understood. In addition, the implementation known as 
stepwise multiple regeression permits determination of the appropriate 
variables as well as an expression for the function in Eq. (2). 

In general, this technique involves a factorial experiment or extensive 
field sampling in which a dependent variable a such as the transfer 
coefficient, is measured with a number, n — 1, of independent variables 
yi. The data are fitted to a linear model of the form 

n - l 
a = co + Σ Wi + €> (3) 

i=l 

where cQ is the additive constant, ci is the ith coefficient, yi is the ith 
variable, and e is an error term. In effect, the technique for a vector of 
coefficients minimizes the error of estimate. In stepwise multiple 
regression, independent variables enter the equation in the order of 
significance, i.e., the first variable to enter will account for the greatest 
variance in the dependent variable. Other variables enter the equation 
until further additions no longer reduce the error significantly. 

This method enables us to produce a workable expression for the 
function in Eq. (2). If the error term is assumed to be zero, we can 
express Eq. (3) more simply by matrix notation and definition of the dot 
product 

a = cy, (4) 

where c is a vector of coefficients and y is the vector of independent 
variables with unity as its first element (inclusion of the number one 
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corresponds to the inclusion of c0 as the first element of the coefficient 
vector). Both vectors are of dimension n (c is a row vector, y a column 
vector), where n is the number of independent variables plus one. 

If we assume that the population is at equilibrium, i.e., that the 
standing crop is constant, Eq. (4) can be substituted into Eq. (1) to yield 

R* = cy**> (5) 

where i?; is the respiratory flux at time j and y;· is the vector of environ-
mental variables measured at time j . If a more empirical expression is 
desired which does not assume equilibrium, then the constant X in 
Eq. (5) can be replaced by Xs, the standing crop measured at time j . The 
respiratory energy flux at time y would then be expressed as 

Ri = c y ^ (6) 

and the total energy flux for the year RT as 

RT = cYxAt, (7) 

where F is an n X m matrix of n — 1 independent variables measured 
at m successive intervals, x is an m X 1 vector of standing crop deter-
minations made at m successive intervals, and At is the length of time 
between samplings. Equation (7) expresses the total respiratory flux in a 
manner that explicitly accounts for fluctuations in the respiration transfer 
coefficient during the year. In addition, Eq. (6) can evaluate the flux at 
various times during the year and produce a vector r of fluxes for m 
successive periods. 

This method is a discrete time approximation. The changes that 
occur in nature are continuous, implying that At in Eq. (7) approaches 
zero and my the number of evaluated points in time, approaches infinity. 
The above formulation has the advantage, however, of being adapted to 
the digital computer which employs discrete time calculations, and is 
adequate to describe the typically discontinuous collection of data in the 
field. 

2. Application to a Study of Millipede Energetics 

In the millipede study mentioned above (O'Neill, 1968), measurements 
of feeding and excretion coefficients (calories per calories-day) were 
made with adult Narceus americanus. Temperature, relative humidity, 
and moisture content of the food were found to be primary variables 
determining these coefficients. Equation (1) provided a satisfactory 
model for the excretory flux since excretion depended only on the 
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standing crop of millipedes. The model was also an adequate description 
of ingestion flux, since the millipedes neither were limited by food nor 
displayed density-dependent limitations at the population levels studied. 
Therefore, the input flux depended only on the millipede population 
and not on size of the food supply or any powers of the millipede standing 
crop. 

The multiple regression techniques used in this study deviated from 
the procedure recommended in Section II.A.l and it is perhaps worth-
while to examine this alternative method for choosing the appropriate 
environmental variables. In the millipede study, the appropriate variables 
had been determined in preliminary trials. The problem then was to 
include sufficient power terms and cross-products to reach a predeter-
mined level of prediction and still set a practical upper limit on the total 
number of variables used. A prediction goal was set at a multiple 
correlation coefficient of 0.85. To achieve this, logical criteria were 
chosen for limiting variables. 

Experimental results revealed that the regression on temperature 
could be described as a cubic function. Therefore, temperature variables 
to the third power were included. Inclusion of the fourth power did not 
seem justified when an adequate description could be made with a cubic 
function. Only two humidities were used in the experiment and a linear 
function was sufficient to describe this relation. Three levels of food 
moisture were involved and a quadratic function sufficed. This was the 
basis used to determine the power to which each of the variables would 
be raised. These were included as independent variables along with the 
possible cross-products. In this way it was possible to include sufficient 
variables to achieve the degree of prediction desired. Inclusion of further 
terms might continue to improve the prediction slightly but would make 
the formula too cumbersome; furthermore, their inclusion could not be 
justified by the criteria just outlined. Table I summarizes the coefficients 
and variable vectors appropriate for use in Eqs. (6) and (7). 

By applying the variable coefficient method to these data, it was 
possible to determine the feeding and excretion fluxes at weekly intervals 
and compare the prediction with major features of the animals' life 
cycle. The original paper should be consulted for details of this analysis. 
It will suffice for our purposes to examine Fig. 2 and note that energy 
peaks occur in the spring during the mating season and in the fall when 
energy reserves are being deposited for hibernation. The predicted drop 
in mid-August corresponds to the period of annual molt. Of greater 
interest at present is the comparison between predicted excretory 
coefficients and actual coefficients measured in the field on a confined 
population. Figure 3 compares these values and indicates that the model 
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TABLE I 
VECTOR OF ENVIRONMENTAL VARIABLES AND COEFFICIENT VARIABLES FOR 

COMPUTATION OF INGESTION AND ELIMINATION PARAMETERS" 

Variable 
vector 

y& 
Hc 

Md 

rp2 

TH 
T2H 
T3H 
TM 
T2M 
T3M 
T2M2 

T*M2 

THM 
T2HM 
T*HM 
THM2 

T2HM2 

T*HM2 

M2 

HM 
HM2 

1 

Coefficient vector 
for ingestion 

-120 .4 
- 6 9 7 . 4 

+4347.9 
+ 16.2 

- 0 . 4 
+ 363.4 

- 3 8 . 6 
+ 1.0 

+ 148.6 
- 9 4 . 1 

+ 3.6 
+ 232.2 

- 9 . 8 
-3721.2 

+433.3 
- 1 1 . 5 

+ 9198.4 
-110 .5 

+ 30.1 
-12947.1 

+ 5680.7 
-21954.6 

+ 7.9 

Coefficient vector 
for excretion 

- 7 3 . 8 
- 3 6 9 . 4 

+4266.8 
+ 12.4 

- 0 . 4 
+ 253.9 

- 2 9 . 2 
+0.8 

+93.7 
- 8 4 . 8 

+ 3.4 
+ 211.2 

- 9 . 2 
-3147 .0 

+ 369.4 
- 9 . 9 

+ 7657.4 
-926 .2 

+ 25.6 
-12056.4 

+4392.4 
-9611 .0 

-131 .6 

a Data from O'Neill (1968). 
b T is temperature in degrees Centigrade. 
c H is relative humidity in fraction (99% = 0.99). 
d M is food moisture in fraction (dry weight per wet weight). 

was able to give a reasonable estimate of this parameter's fluctuation 
under field conditions. 

This method has been utilized implicitly in a limited number of energy 
studies (e.g., Healey, 1967; Berthet, 1967; White, 1968) and also in 
a study of nitrogen cycling by earthworms (Satchell, 1963). In these 
papers the form of the expression in Eq. (2) was determined by regression 
against temperature alone and was therefore a less complete representa-
tion of the natural systems. Equations (6) and (7) constitute a realistic and 
practical method for expressing temporal fluctuations of energy flow 
through natural populations. Figure 2 should provide some impression 
of the loss of information in regarding the transfer coefficient of Eq. (1) 
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FIG. 2. Values for energy intake, energy loss, and available metabolizable energy 
for a population of millipedes, Narceus americanus, in an Illinois woodland. 
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FIG. 3. Comparison of observed and predicted values for caloric excretory loss 
coefficient in a population of millipedes, Narceus americanus (from O'Neill, 1968). 
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as a constant. Use of the multiple regression technique to determine the 
function in Eq. (2) makes the method flexible and readily available to the 
researcher. In other studies, where seasonal changes in fluxes constitute 
an important component of the total system, this method could provide 
a useful tool. 

B. POPULATION DYNAMICS 

As mentioned in the Introduction, challenging problems of the 
forest floor ecosystem include understanding and predicting large 
fluctuations in population size. The techniques of simulation modeling 
are readily applicable to these problems. This section will elaborate on 
a method for simulating population fluctuations on the digital computer. 
We will make use of nonlinearities and the technique of variable transfer 
coefficients developed in the previous section to simulate system behavior 
under natural conditions. To illustrate the method, we will model a 
hypothetical collembola population and attempt to predict effects of 
ionizing radiation as a demonstration of applying the theory to the 
preliminary solution of a real problem. 

1. Basic Population Simulation Methods 

In order to model population fluctuations, it is necessary to divide 
the total population Nt into discrete age groups N{ so that 

Nt = t Ni > (8) 
i= l 

where n is the number of age groups. Each of the n age groups is then 
considered as a separate compartment whose changes with time are 
defined by 

dNi/dt = μ^ Nu - XiNi - μίΝί, (9) 

where i V ^ is the previous age group, μι_λ is the transfer coefficient 
which expresses the proportion of animals of age i — \ that will develop 
into the next age group during an interval of time, and λ̂  is the mortality 
coefficient of animals dying per animal of age i during the time interval. 
The population can then be represented as a compartment model 
(Fig. 4). 

Once the problem has been placed into this context, a number of 
different analytical approaches can be used. Differential equations such 
as Eq. (9) could be constructed for each compartment and the equations 



450 ROBERT V. O NEILL 

N, 

ADULTS 

JUVENILES 

μ2 " 2 

EGGS 

^ 

FIG. 4. Simplified compartment model of a cryptozoan population. Each compartment 
is represented as containing individuals of a particular age group and arrows represent 
maturation of individuals or mortality. The parameters of the system are explained in 
the text. 

solved for N^t) by analytical methods, by the use of an analog computer 
or by systems analytical techniques of matric calculus. We could also 
proceed by noting that Eq. (9) is analogous to a Poisson birth-death 
process and the transfer coefficients express the probability of an animal 
dying or maturing to the next age group. It is now possible to construct a 
stochastic model of the population. All of these methods require that the 
transfer coefficients remain constant. To make use of variable coefficients, 
we will proceed by developing an iterative simulation model appropriate 
for the digital computer. To implement this approach, Eq. (9) can be 
reformulated by the Euler method to obtain a difference equation to be 
solved at short intervals of time, 

N#) = N# - 1) - HN# - 1) - λ,Λ^ί - 1) 

+/*i_iJV4-i(i - 1) (« = 1.2 n). (10) 

The implementation makes it possible to express μ and λ as functions of 
environmental variables such that they are evaluated in the computer 
program before the set of equations is solved. 

Making use of the difference equation formulation, the system (Fig. 4) 
can be simulated. In this representation, the maturation coefficients can 
be expressed as reciprocals of the average development times. This might 
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be adequate for some purposes but is seriously lacking in one important 
respect. An examination of the figure will show that a fraction of eggs 
layed at time t will pass to the juvenile state at time t + 1 and, at time 
t + 2, a fraction of these will become adults. If the interval of cal-
culation is one day, the model would cause eggs laid on Monday to 
become adults on Wednesday even if development time were months in 
length. The problem is basically one of queueing, or allowing delays in 
the various developmental stages. This is circumvented by the simple 
device of defining age groups on the basis of the interval of calculation. 
If the model is iterated at intervals of one day, then the n of Eq. (8) is 
defined as one plus the average number of days required for an egg to 
become an adult. Considering a population that required three days 
for the egg to hatch and three more days for the juvenile to develop into 
an adult, we can redefine our system to contain seven compartments. In 
this representation, it is not until the seventh day that an egg can enter 
the adult compartment. This device also has simplified the calculations 
since, during the interval of one day, all the contents of an immature 
compartment are lost to maturation or mortality and the new members 
are simply the surviving members of the previous age group. This is 
equivalent to making the maturation rate equal to 1 — λ^. The equation 
defining an immature compartment then reduces to 

AW) = NU* - 1)[1 - λ,-J. (H) 

The adult population in this scheme must be handled somewhat 
differently since it contains individuals of different ages which are not 
maturing into another age group. The adult compartment ΝΛ can be 
described as 

Aa(i) = Na(t - 1)[1 + AJ + Nn(t- 1)[1 - λη], (12) 

where Nn is the oldest group of juveniles. The equation which describes 
the first day egg compartment iVx also must be modified to 

Nl = ocN&(t - 1), (13) 

where a is the fecundity rate in eggs per adult per day. 
Models of this general form have been used successfully to simulate 

laboratory populations of rotifers (King and Paulik, 1967) and Collembola 
(O'Neill and Styron, 1968). The real advantage of the method is its 
capacity to simulate natural propulations under variable environmental 
conditions. The model uses estimates of fecundity, mortality, and 
maturation measured in the laboratory and representing growth under 
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optimal conditions. Populations under natural conditions are prevented 
from reaching this ideal growth by environmental stresses. It should be 
possible, therefore, to fabricate limiting functions which serve to limit 
the laboratory model and simulate field conditions. This type of simula-
tion was performed on the CoUembola population mentioned above. We 
will examine this study in detail to see how this conversion to the field 
model was accomplished and to illustrate the type of information that 
can be obtained from the model. 

2. Applications to a Study of CoUembola Populations 

There are three types of limiting functions that can be applied to the 
basic model; each was used to simulate the hypothetical population and 
to study effects of ionizing radiation on this group of animals. 

The first type of limiting function describes intraspecific competition 
due to lack of space, accumulation of excrements, etc. To model this 
competition adequately it is necessary to introduce nonlinearities. The 
nonlinear term in this case is of the simplest type, i.e., one of the transfers 
is described by a cross-product term. A quantity K which represents the 
maximum population size of adults is defined and Eq. (12) is modified to 

N&{t) = (1 - \a)(Na(t - 1)) + [(1 - \n)(Nn(t - l))][K - Na(t - 1)/JC]. 
(14) 

This formulation contains the product AfniVa and produces the desired 
effect, since the increment to the adult compartment approaches zero as 
the number of adults approaches K. 

Interspecific competition is the second type of limitation and involves 
another nonlinearity. Here, also, we can employ a simple cross-product 
term, introduced by generating a predatory mite population M, This 
added mortality factor m can be introduced by evaluating the following 
function at each iteration of the model: 

m{t) = ßM{t\ (15) 

where ß is the proportion of the CoUembola compartment consumed 
per individual mite per day. The value for m(t) is added to the mortality 
constant λ̂  in each equation of the model. 

The third type of limitation involves the imposition of environmental 
stresses. The transfer coefficient parameters of the model are not 
constants but functions of environmental variables. Realism can, 
therefore, be introduced by the method of variable coefficients discussed 
above. In the present model, fecundity is regarded as a function of 
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temperature. A sine wave temperature function is generated and a Q10 

value measured in the laboratory provides the information needed. At 
each iteration a temperature value is generated and used to calculate the 
appropriate fecundity. 

The third type of limitation can be exemplified by the effect of ionizing 
radiation on the various model parameters. Quantitative effects of acute 
gamma radiation on the various transfer coefficients in the model had 
been measured in the laboratory (Styron and Dodson, 1968). In addition, 
recovery from irradiation insult occurred at low doses and could be 
quantified. Using the basic model and the three limiting functions 
discussed above, it was possible to generate a "control" population. 
The behavior of this population could then be compared to populations 
in which the adults had received various doses of acute gamma radiation. 

The control curve in Fig. 5 shows how the hypothetical population 

0 5 10 15 20 25 30 

TIME (MONTHS) 

FIG. 5. Simulated behavior of Collembola populations released to natural conditions 
after being subjected to various doses of acute gamma radiation. 

behaves under simulated field conditions at moderate prédation pressure 
for a period of several years. The population showed peaks during the 
summer months and lows during the winter. The population reached a 
fluctuating equilibrium with its environment after an initial delay of 
several months. Other curves in the figure show the predicted behavior of 
similar populations which had received various doses of radiation. It 
can be seen that at low doses, where recovery occurred rapidly, the 
population was capable of reaching control levels quite quickly. At 
higher doses, no significant recovery occurred and the population 
went to extinction. 
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Although this is a hypothetical population, it is apparent that the 
simulation technique could be applied to real field problems involving 
the prediction of population response to other forms of environmental 
stress. It would be necessary to formulate the basic model, measure the 
parameters of the model in the laboratory, and then construct realistic 
limiting functions to simulate field conditions. These limiting functions 
can be modified by field data until the investigator is confident that he 
has accounted for the major environmental limitations. It is then possible 
to introduce the treatment of interest and produce preliminary predic-
tions of system behavior. 

IIL Techniques for Estimating Parameter Values in Large Systems 

We have seen something of models which can be applied to animal 
populations and their energy dynamics. The next major challenge 
proposed in the Introduction remains to be discussed. It is useless to 
devise complex models of ecosystems if, practically, it is impossible to 
quantify them because of the number of parameters. If the modeling 
approach with its many advantages is to make an impact on the study of 
ecology, it is important to devise, within the context of systems ecology, 
methods and simplifications which will allow the ecologist to quantify the 
system with which he is concerned. A major difficulty lies in attempting 
to estimate fluxes between compartments. Conventional methods for 
measuring input flux, for example, would involve gravimetric measure-
ments of food available and food remaining after some period of time 
(e.g., Gere, 1956; Bocock et al., 1967). These measurements are time 
consuming and place complex systems beyond the reach of the experi-
menter. Let us examine two methods which have been developed to deal 
with this problem. 

A. QUANTIFYING COMPLEX PREDATOR-PREY RELATIONSHIPS 

The problem of estimating parameters is particularly difficult in a 
system containing complex food webs. In such a system one predator 
population may feed on a number of different species, and the task of 
evaluating the contribution from each prey is formidable. 

1. The Conditional Probability Method 

Let us consider a predator population xf feeding on members of several 
potential prey species. What is the probability that xf will feed on an 
individual of one prey population xi rather than another ? This prob-
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ability is directly proportional to the standing crop xi of the prey 
population (O'Neill, 1969). The more prey available, the more likely 
they are to be encountered and eaten. Once prey are encountered, 
palatability and defense mechanisms must be considered since a given 
prey may be encountered frequently but not always consumed. All the 
possible factors that could affect the probability of successful prédation 
can be combined into a single weighting factor w^ . Since we have 
accounted for differences in availability, this factor actually expresses the 
relative frequency or the ratio in which various prey would be eaten if 
they were present in equal standing crops. If species 2 is eaten twice as 
often as species 1 when both are equally available, we can assign the 
following values to w^: wxi = 1 . 0 and w2j = 2.0. 

Using this discussion as a basis, we can express the probability Ρΐ;· 
that predator j will feed on prey i as 

/ n 

Pii = Xi*>ii Σ *iWU ' (16) 
' i=l 

This parameter satisfies the criteria for a probability measure since 

0 < Pi5 < 1 (17) 

and 

f p « = l (i=l,2,...,n). (18) 

This formulation is analogous to a theorem of conditional probability 
known as Bayes' theorem. If we let #*/Σ?=ι X% equal P(#t), the probability 
that species i will be encountered, and «>ί;·/Σ£=ι Wy equal the conditional 
probability P(y | #t) that feeding will occur given that species / is 
encountered, then the probability, P{xi \ y), that it is species i that has 
been eaten given that something has been eaten, can be expressed as 

P(Xi | y) = P(y | *<) P(*<)/£ P{y \ x<) P(*<). (19) 

which can be seen as analogous to the expression in Eq. (16). 
We can now ask what proportion of the total diet of predator j is 

composed of members of species i and we can see that the expected value 
approaches P^ . We can then proceed to define the total diet from 
feeding experiments or more simply assume a steady state. Under the 
latter assumption, input to the predator population equals the output in 
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energy respired and excreted. This energy output is represented as Rf 

and the flux from population i would be P^Rj. 
An interesting by-product of the technique is an index of the prédation 

pressure on the various prey species. This estimate Zt can be calculated as 

Z, = P<Ä/*,. (20) 

The result of this analysis is a technique for the indirect estimation 
of fluxes into a predator compartment. We have achieved this result by 
introducing a new parameter wif. A basic limitation on use of the 
technique is the accuracy with which w^ can be estimated. The problem 
is relatively simple for cryptozoan organisms, since it is possible to 
construct reasonably realistic microcosms in the laboratory and present 
the predator with equal standing crops of prey populations. From the 
analogy between «0#/Σ?=ι «fy and the conditional probability P(y | Λ^), 
it is also possible to estimate toy as the proportion of i actually consumed 
from a number of observed encounters in the field or laboratory micro-
cosms. Where an adequate estimation of w^ can be achieved, the 
technique is applicable to the problem of quantifying complex predator 
relations. 

2. Applications to Predator Problems 

In a series of microcosm experiments, individual centipedes of the 
species Otocryptops sexspinosus were presented with equal biomasses of 
eight prey species (O'Neill, 1968). The prey were tagged with cesium-137 
so that it was possible to determine the number of prey consumed 
during the week-long trials. The percentage of available prey consumed 
is indicated in the third column of Table II. Even though prey species 

TABLE II 

INDIRECT ESTIMATES OF ENERGY FLOW TO A CENTIPEDE POPULATION" 

Prey 

Beetle larvae 
Spiders 
Centipedes 
Crickets 
Caterpillars 
Isopods 
Roaches 
Fly larvae 

Xi 

796.0 
956.0 
961.0 
272.5 
262.0 
375.0 
199.5 
127.0 

w« 

15.5 
8.5 
7.0 

18.4 
16.8 
8.6 
8.5 

12.0 

Pu 

0.287 
0.189 
0.156 
0.117 
0.102 
0.075 
0.039 
0.035 

PijRij 

15.56 
10.24 
8.46 
6.34 
5.53 
4.06 
2.11 
1.91 

α Methods of calculation are explained in the text. i?„ = 54.21 cal/m2. 
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were presented in independent trials, these precentages represent 
estimates of the weighting factor w{j. The centipede has rather simple 
behavioral patterns and, therefore, the weighting factor is determined 
only by ability of the centipede to subdue the prey and is not affected by 
presence or absence of other species. The average annual standing crop 
(calories per 10 square meters) was determined from 0.25 m2-quadrat 
samples and is shown in the second column of the table. The fourth 
column contains the precentage of the total centipede diet composed of 
each prey. The total energy requirement of the centipede population was 
estimated to be 54.21 cal from data on respiration rates. Knowing this 
total energy requirement, it was possible to calculate the annual fluxes 
from each prey species as shown in the last column. 

Another way of utilizing the technique can be illustrated by data on 
feeding relations of web spiders (Kajak, 1965). In this study, measure-
ments were made of the prey available to spiders by the use of sticky 
traps. These data represent xi of the model and are shown in the second 
column of Table III. In addition, measurements were made of the 

TABLE III 

CALCULATIONS OF PREDATOR-PREY DYNAMICS FOR A WEB SPIDER" 

Prey 

Diptera 
Homoptera 
Aphididae 
Hymenoptera 
Coleoptera 
Thysanoptera 

Xi 

155.9 
30.2 
23.2 

3.5 
8.0 
0.8 

PijRj 

60.7 
0.1 

11.1 
1.6 
0.4 
0.4 

Pa 

0.817 
0.001 
0.150 
0.022 
0.005 
0.005 

Wij 

0.524 
0.003 
0.646 
0.629 
0.062 
0.625 

° Calculations are explained in the text (from Kajak, 1965). 

numbers of individuals of several insect orders actually captured and 
eaten by spiders. These data represent the fluxes from prey to predator 
which were defined above as P^Rj. The total energy intake can then 
be calculated since, from Eq. (18), 

6 6 

Σ PijRj = Rj Σ Pa = Rj · (21) 

The sum of the values in column three of Table III can, therefore, be 
divided into each value in the column to produce the estimates of P^ 
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shown in the fourth column. Making use of Eq. (16), it is possible to 
set up six equations for w^ containing six unknowns 

6 / 
«to = pij Σ xiwü xi (' = !> 2>-> 6)· (22) 

i=l ' 

Placing this system of homogeneous equations into echelon form reveals, 
however, that there are more unknowns than nonzero equations, which 
implies that there are an infinite number of sets of wiS satisfying the 
equalities. This reflects the fact that the absolute values given to Wy 
can be arbitrary so long as the ratio between them remains constant. 
A unique solution to the set of equations can be obtained only by 
imposing further restrictions, i.e., introducing another equation into the 
system. The method used here was to set the quantity Σ?=ι x%w%j equal 
to an arbitrary number, 100. Column five in Table III shows the values 
of Wy calculated in this way. 

It is possible to use the technique to calculate values of w^ which 
express the relative susceptibility to capture of the prey species. In the 
present example, it is clear that homopterans must possess some 
mechanism which enables them to avoid capture in the spider webs. 

It will become more clear in later sections how valuable this simple 
model is for calculating energy fluxes through complex food webs with 
polyphagous predators. Because of its ability to simplify complex food 
web relationships, this technique has great potential for quantifying 
ecosystem processes. 

B. THEORETICAL DEVELOPMENTS IN RADIOISOTOPE TRACER METHODS 

Another set of techniques under extensive development during the 
last decade is the use of radioisotopes for measuring nutrient, trace 
element and energy transfers in ecosystems. These methods result in 
considerable economy in research time, and it is appropriate to discuss 
the most relevant developments at this point. Since our concern is 
methods for quantifying complex ecosystems, we will not describe the 
details of labeling and measurement, but will consider only developments 
of the theory which permit quantification of a flux with little information 
other than a series of whole-body counts on an animal. 

If an animal is labeled with a radioactive isotope and body burden is 
measured during subsequent time periods, radioactivity Q after some 
time interval t is given by 

Qt = Q#-k\ (23) 
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where Q0 is the initial radioactivity (dpm per animal) and k is the 
biological elimination constant (dpm per dpm · unit time = time-1). 
We will assume throughout discussion that the isotope has a long half-
life and physical decay can therefore be ignored. The biological elimina-
tion rate is related to the more commonly used biological half-life Tb by 
the expression 

7b = 0.693/*. (24) 

It was pointed out by Davis and Foster (1958) that if an animal is at 
equilibrium, i.e., if it has been feeding on a labeled medium for a suffi-
cient time, its body burden has become a constant. Then, the rate r at 
which the animal ingests the label is related to the equilibrium body 
burden Qe and the biological elimination rate as 

r = kQe/a, (25) 

where a is the fraction of ingested label that is assimilated and eliminated 
at rate k. Equation (25) states that at equilibrium, the rate at which an 
animal ingests the element must equal the rate at which it loses the 
element. 

Equation (25) can be used to estimate the rate of ingestion of a radio-
isotope if Qe and k are known. The biological elimination rate can be 
measured by feeding labeled food to an animal for some period and 
measuring the decreasing body burden when it is placed on normal food. 
If percentage retention is graphed against time on semilog paper, a 
straight line is produced since Eq. (23) can be written as 

\nQt = \nQ0-kty (26) 

which is the equation for a straight line. Equation (26) shows that the 
biological elimination rate can then be measured as the slope and 
estimated by linear regression. 

If body burden is measured after a single ingestion of radioisotope, it 
is common to find a two-component curve such as that shown in Fig. 6. 
It is possible to resolve this curve into two lines by extending the straight-
line portion of the curve back to t = 0, and subtracting this line from 
the original curve to yield a second straight line. A single net elimination 
constant is then calculated as (Reichle and Crossley, 1965) 

* = 0.693/(P1Tbl + P2Tb2), (27) 

where the subscripts refer to the first or second curve and P is the 
jy-intercept. 
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FIG. 6. Typical two-component curve for percent retention of a radioisotope following 
a single ingestion. The initial rapid loss at rate kx represents gut elimination. The slower 
loss at rate k2 represents elimination of the isotope which has been assimilated into 
the tissues. 

The equilibrium body burden can be measured by feeding the animal 
on labeled food for an extended period of time. About 97 % of equilibrium 
is reached in a period of time equal to five times the half-life. Since this 
period may be quite long, the equilibrium level can be calculated after a 
shorter interval, t, by the relationship (Crossley and Howden, 1961) 

Öe=2*/(1 -*"* ' ) . (28) 

It is possible to estimate both Qe and k> and calculate the rate of 
ingestion far more simply than by standard gravimetric techniques. 
This concept can be extended to measure the rate of food consumption 
R. If concentration of the label in food, dy is known, then R can be 
estimated as 

R = Qek/ad. (29) 
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This concept has been extended by Kevern (1966) to include animals 
feeding on a variety of foods of different concentrations, each food 
making up a fraction/^ of the total diet 

R = Qeh/t aidifi · (30) 

Having established these simple relationships, we are in a position to 
discuss additional techniques in terms appropriate to compartment 
modeling. If we consider the animal as a compartment with a constant 
input r, then we can describe the changes in body burden as 

dQ/dt = ra-kQ. (31) 

Solving this equation for Qe gives Eq. (25). If the equation is solved for 
Qt we arrive at 

Qt = {ralW-e*)+Q<r". (32) 

Assuming an initial radioactivity of zero, the second term on the right 
is eliminated, giving the expression presented by Crossley (1963). 
For the case of two or more components to the elimination rate, we can 
express the body burden as 

Qt = f (rPJk^l - e-**). (33) 

Equations (32) and (33) carry the analysis a step further since they make 
it possible to calculate intake without knowing the equilibrium level and 
the measurements can be made in a single experiment in which the 
labeled food is offered for a period of perhaps 24-48 hr to arrive at a 
value of Qt. Measurements are then made of the elimination from this 
body burden to estimate k and P by the graphic method outlined above. 

An additional technique has been outlined by Crossley and Reichle 
(1969) for a variable food supply losing radioactivity exponentially. The 
radioactivity of an animal feeding on this food will rise to a peak and 
then fall. The time to this peak, t , is related to the elimination 

c . r > m a x 

constants ot the two compartments 

imaX = - r - !
n r l n ^ ) Q0 = 0. (34) 

Λ<2 R>\ R>\ 

Knowing the rate of loss of the first compartment, kx, it is possible to 
calculate the second loss rate. Since Qt is measured, and assuming 
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n = P = 1.0, we can calculate ingestion from Eq. (33). The authors 
point out how this method can be used on field data when a radionuclide 
is introduced into the trophic base of an ecosystem. 

It can now be appreciated that radioisotope techniques can reduce 
quantifying a flux to consecutive measurements of body burden. Since 
this measurement is easily accomplished with modern counting equip-
ment and techniques, it is possible to measure fluxes in a number of 
animal populations with great economy of effort. The availability of 
radioisotopes and the accompanying mathematical theory represent 
a potential breakthrough in measuring the dynamics of complex 
ecosystems. 

IV* A Model for Radiocesium Movement on the Forest Floor 

As mentioned in the Introduction, our aim has been to develop methods 
for applying compartment models to the cryptozoan fauna. These 
methods, along with techniques of systems ecology discussed throughout 
this book, are presently being used to develop a generalized model of the 
cryptozoa. 

It will be helpful to consider in detail the logic underlying this effort 
since our emphasis has been on ways of actually applying models. We 
are not so much concerned with elegance of the mathematics, as with an 
appropriate balance between elegance and practicality as necessitated by 
limitations in available data. We consider how a model of radiocesium 
kinetics on the forest floor is formed and implemented on the digital 
computer, how the model's parameters are quantified, how the model 
can be used to perform simulations, and how such a model is capable 
of incorporating future developments. This exercise is intended to give 
the reader a better background for bridging the gap between theoretical 
developments and practical applications. The focus will be on principles 
involved in compromising, first, the model to reality (by accepting less 
than the best mathematical formulation), and second, reality to the 
model (by making assumptions that hamper one's ability to describe 
the real system). 

A. CHOOSING COMPARTMENTS FOR THE MODEL 

The first problem is deciding how to divide a cryptozoan community 
into reasonable compartments. The compartments must be distinct 
from each other and few in number so that realistic measurement of 
parameters is possible. Four alternatives are available. 
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1. Division by Species 

Probably, an optimum model would have each species of the system 
depicted as a separate compartment. Such a model can be constructed to 
yield good predictions as shown by the millipede study discussed above. 
It is possible to obtain excellent measurements of the relevant parameters 
and devise formulae for transfer which will mimic the real system 
realistically and account for a wide range of population densities and 
environment variables. 

Where this type of model is possible, there is little question of com-
partment division. In the case of the cryptozoa, however, this approach 
is out of the question. Here we encounter our first practicality barrier. 
The species involved in the cryptozoan community typical of a 
deciduous forest number in the hundreds; even lumping species that are 
ecologically similar would make the task of quantifying such a model 
formidable. In addition, although such a model might produce a fair 
degree of precision in simulating some particular configuration of species, 
it could not be applied directly to other configurations. This method of 
compartment division must be rejected therefore, since implementation 
would be prohibitive and applications would be limited. It is obvious, 
then, that the model has to be an approximation and species must be 
grouped into larger compartments. 

2. Division by Trophic Levels 

The concept of trophic levels has had a long and fruitful development 
since its introduction by Lindeman (1942). A division on this basis would 
reduce our model to a trophic base or producer compartment, an 
herbivore compartment and one or more levels of predator compartments. 
Static models of this type have been formulated by Macfadeyen (1963) for 
comparing soil ecosystems from different habitats. The data needed 
to quantify such a model are limited but the information which the model 
yields is correspondingly limited. Much more information is available 
than would be required for this simple model. Since we wish to make 
most efficient use of the available information, a trophic level division 
would not be best. The aim is to create as close an analogy to the real 
system as possible within limitations imposed by lack of information. 
The choice of trophic levels as the dividing line would compromise the 
degree of reality beyond that dictated by this basic limitation. 

A far more serious objection to the use of trophic levels is the weak 
applicability of the concept to cryptozoa. This community is a decom-
poser system, i.e., it is entirely within one of the major divisions of the 
trophic level scheme, and the real situation deviates significantly from 
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the original concept in several important respects. First there is a large 
and important feedback or cycling parameter, since excrements and dead 
bodies reenter the detritus pool and again become available to the 
system. Secondly, it would be extremely difficult to assign some of the 
component populations to a particular trophic level, since many popula-
tions will feed freely on detritus as well as capture and feed on other 
animal life. Thirdly, one of the most interesting aspects of the cryptozoan 
community is the interaction between populations. Such interactions 
would be disregarded if the populations were designated as belonging 
to the same trophic level. The stabilities which characterize the 
cryptozoan community would be lost. We must decide, then, on the 
basis of available data and the desire to approximate reality, that such 
a division is unrealistic. 

3. Division by Trophic Characteristics 

A more logical basis for lumping populations is by their trophic 
characteristics, i.e., placing all detritus-feeders into one compartment, 
moss-feeders into a second, and wood-feeders into a third. This produces 
a system with 15 or 20 compartments (Edward et al., 1969), but several 
problems still remain in application. Many compartments would contain 
several taxonomically distinct populations, unique in their responses to 
factors such as temperature and population density. In addition, there 
may be extensive interactions between these populations which would be 
disregarded by this analysis. Even more serious is that it would be quite 
difficult to assign populations to this classification. Many species would 
have to be divided among several compartments since they feed both on 
detritus and living material. Indeed, any individual animal might have 
to be assigned to different compartments during different intervals of its 
life history. It must be concluded, therefore, that this classification is not 
optimal. 

4. Division by Taxonomic Groups 

It would be possible to lump populations of similar taxonomic 
affinities: all millipedes, all molluscs, etc. This schema has several 
practical advantages. Biomass data are traditionally lumped in this 
manner and a large body of data would be applicable for use in the model. 
It is reasonable to assume that parameters of transfer which have been 
measured for one species would be good estimators for the parameters of 
similar species, and for responses to environmental variables such as 
temperature. At least this assumption would be more valid than a 
classification based on trophic characteristics. It is also possible to 
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account for most, though certainly not all, trophic interactions between 
species. Such a model, based on the major groups of animals, would have 
far wider application since the major groups are ubiquitous even though 
species compositions change. Because this seemed to be the most 
reasonable approach, compartments were devised as shown in Table IV. 

TABLE IV 

LIST OF COMPARTMENTS FOR PRELIMINARY MODEL OF 

FOREST FLOOR ARTHROPODS 

0. External source (litter) 8. Isopoda 
and external sink (soil) 9. Annelida 

1. Detritus 10. Collembola 
2. Formicidae 11. Coleoptera 
3. Diplopoda 12. Araneida 
4. Mollusca 13. Chilopoda 
5. Orthoptera 14. Acarina 
6. Lepidoptera 15. Predators external to system 
7. Diptera 

Readers familiar with the cryptozoa will be struck by the arbitrary 
nature of the divisions. Other choices could have been made and other 
taxonomic groups included. Therefore, we must regard this model as 
a first approximation and await further changes and improvements. 

B. CHOOSING FLUXES FOR THE MODEL 

It is necessary to account for interactions between compartments so 
that radionuclide routes can be traced through the system. This constiutes 
a major difficulty for two reasons. First, in the present state of knowledge, 
trophic interactions are quite unknown for many species and only 
general statements can be made about the diet and predators of any 
particular group. Secondly, many more interactions can be conceived in 
this complex ecosystem than can be quantified. It is necessary to limit 
the number of interactions based on some criterion such as "major" 
sources of food. This criterion is subjective and the interactions which 
may be chosen are subject to further improvements as knowledge 
increases. Meanwhile, a preliminary matrix of transfers can be con-
structed such as that shown in Table V. 

C. BUILDING THE MATHEMATICAL MODEL 

The next task is to formulate a mathematical representation of the 
system: the type of model and the form of expressions describing 
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TABLE V 

MATRIX OF TROPHIC TRANSFERS IN FOREST FLOOR ARTHROPODS0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

- + + + + + + + + + - + 
0 + 
1 + 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
— 
+ 
+ 
— 
-
+ 

+ 
+ 
+ 
— 
-
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
— 
+ 

+ + + 
+ + 

° Numbers refer to compartments listed in Table IV. A + indicates a positive transfer 
from the compartment at the end of the row to the compartment at the head of the column. 
A — indicates a transfer of less importance which has been ignored in the preliminary 
model. 

transfers and environmental interactions. In this step, as before, we will 
attempt to build the most realistic model that is consistent with our 
knowledge and data limitations. This step will be performed by adding 
refinements to a simple formulation. 

1. Constant Coefficient, Linear Model 

We will begin by noting that change in a compartment with time can 
be characterized by the equation 

dXj\dt = YjaliXl-XJY^ajlc, (35) 

where X$ is the compartment of interest, Xi is one of several (n) donor 
compartments, a^ is the transfer coefficient expressing the fractional 
transfer from the donor compartment to the compartment of interest, 
and ajk is the transfer coefficient from the compartment of interest to 
other compartments. This model represents a logical (e.g., Chapter 1) 
starting place. 
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2. Variable Coefficient, Linear Model 

In this step we will change the constants in Eq. (35) into variables 
dependent on the environment. Due to limitation in present knowledge, 
this relationship is limited to a simple Q10 relationship with temperature, 
where Q10 is taken as equal to 2 (Reichle, 1968). This predicts that 
biological processes will double in rate with a temperature increase 
of 10 C; it is sufficiently well established to be assumed for all parameters 
in the model. It also imposes significant limitations, however, which will 
be discussed in a later section. 

3. Nonlinear Model 

It was noted in the Collembola population study that faithful 
representation of a natural system requires the introduction of non-
linearity. This is obvious since feeding fluxes must depend on the 
amount of food available and the number of animals available to feed. 
Here is one of the severest restrictions on our ability to produce a 
realistic model. The simple cross-product term used to introduce 
nonlinearity into the Collembola model is unsatisfactory, and adequate 
formulations of nonlinear functions are largely unexplored. High 
and low density populations tend to reach asymptotes, and rates are 
not described adequately by the cross-product formulations, which 
do not account for these asymptotes. Watt (1968) has discussed 
this question in regard to population modeling and presents a large 
number of possible representations for the nonlinear terms. A smaller 
hierarchy appears in Chapter 1, Section III.G. 

Lack of knowledge about the exact form of these functions restricts 
our model to the variable coefficient, linear form. We shall soon see what 
limitations this decision places on applying the model to simulate 
experiments. 

4. Difference Equation Formulation 

The only further refinement needed is formulation of the discrete-
time-interval expression (Euler method) 

Xtf) = Xfr - 1) + £ a^Xlt - 1) - Xfr - 1) £ aik . (36) 

This formulation is appropriate for each system equation when the 
digital computer is used for calculation. Since the formulae will be 
iterated over short time intervals, the cumulative truncation errors 
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associated with the Euler approximation method (cf. Chapter 1, 
Section VII.C for discussion) should not represent a significant problem. 

5. Temperature Generator 

It was mentioned in Section IV.C.2 that advantage would be taken of 
the Q10 relationship to introduce seasonal fluctuations into the model. 
To introduce this aspect of the model, it is necessary to produce a 
function which simulates annual temperature fluctuations. A sine wave 
will be used for this purpose of the form 

T(t) = 12.5 sin(27Tt/365) + 12.5, (37) 

where T is temperature and t is the day of the year (1-365). Equation 
(37) generates a sine curve with a period of 365 days and a range from 
0 to 25 C. This represents a reasonable approximation of the annual 
temperature fluctuation in southeastern deciduous forests where the 
model will first be applied. 

6. Stochastic Elements 

Realism can be improved further by recognizing randomness as a 
common phenomenon in nature. It is possible to introduce such stochastic 
elements into several aspects of the model. In the present development, 
a random temperature function is introduced, i.e., annual temperature is 
best represented as a normal distribution of temperatures about a 
sine-wave model. When the entire model is recalculated under several 
different random temperature schemes, the effects of this random 
temperature can be evaluated and differences in the system due to 
changes in annual temperature regime can be investigated. In the 
simulations which follow, temperature has been varied from the sine-
wave model by adding a random variable with a normal distribution 
generated by the computer with a mean of zero and a variance of one. 

7. Computer Code 

We are now in a position to construct a computer program to perform 
simulations of the forest floor system. Mechanics of the model are 
illustrated by the flow chart seen in Fig. 7. Simulation is produced by 
generating a temperature for time t> evaluating the dependent variables 
at this temperature, and then using this value to evaluate fluxes in the 
system. These fluxes are then used to alter the state variable values 
(concentrations of radionuclide in the compartments), and the program 
proceeds to the next time period. After a number of years have been 
calculated, the computer prints the compartment values, plots them, 
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COMPUTE AVERAGE 
COMPARTMENT VALUES 
AND STANDARD ERROR 
OVER THE 20 RUNS FOR 

EACH TIME FROM 1 TO 720 

TIME = 1 1 

PRINT COMPARTMENT 
VALUES AT THIS 

TIME 

FIG. 7. Flow chart of a digital computer program to perform repeated simulations 
of radiocesium movement in forest floor arthropods under different random temperature 
regimes. 
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and proceeds to a new calculation which differs only in the set of random 
variables used to fluctuate temperature. A listing of essential features of 
the program appears in Table VI. 

TABLE VI 

SIMPLIFIED FORTRAN PROGRAM FOR CRYPTOZOAN MODEL** 

DIMENSION x(15,1000), A(15 ,15) , FI(15) , FO(15) 

DO 10, L = 1,20 
C READ INITIAL CONDITIONS 

READ 100, (X(l, 1), I = 1,15) 
C READ COEFFICIENT ARRAY 

DO 11,1 = 1,15 
READ 100, (A(l, J), J = 1,15) 

11 CONTINUE 

x = 13 
DO 12, K = 2,1000 

C GENERATE TEMPERATURE AND RANDOM VARIABLE 

T = FLOATF(l) 

TEMP = SINF(0.01 745329252 *τ ) * 12.5 + 12.5 

Y = RNORM(X) 

TEMP = TEMP + Y 

X = Y 

C CALCULATE VARIABLE COEFFICIENT ( Q 1 0 = 2 ) 

DO 13, M = 1,15 
DO 13, N = 1,15 

13 A(M, N) = A(M, N) * EXPF(TEMP * 0.693) 
C CALCULATE NEW COMPARTMENT VALUES 

DO 14, M = 1,15 
FI(M) = 0.0 

14 FO(M) = 0.0 
DO 15, M = 1,15 
DO 15, N = 1,15 
FI(M) = FI(M) + X(N, K — 1) * A(N, M) 

15 FO(M) = FO(M) + X(M, K — 1) * A(M, N) 

DO 16, M = 1,15 
16 X(M, K) = X(M, K — 1) + FI(M) — FO(M) 

1 2 CONTINUE 

C PRINT RESULTS 

DO 17, K = 1,1000 
PRINT 101, (x(i, K), I = 1,15) 

1 7 CONTINUE 

100 FORMAT(15F5.0) 

101 FORMAT(1H0, 15F5.2) 

1 0 CONTINUE 

END 

a Function RNORM used to generate random variable with normal distribution is not 
included and format statements are greatly simplified. 
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We are not yet ready to perform simulations. It will be necessary first 
to examine the limitations placed on our ability to make predictions. 

D. LIMITATIONS OF THE MODEL 

It should be clear at this point that the model is merely a mathematical 
analog of the real system, a partial representation. We must be aware, 
therefore, of its limitations. Only a narrow range of situations can be 
predicted with any degree of accuracy. These limits are dictated by the 
nature of the model itself and by the assumptions used in its construction. 
It is imperative that the constraints be clearly outlined so that the 
degree of confidence in any particular class of simulations is well defined. 

1. Equilibrium Constraint 

Flows between compartments have been assumed to be describable by 
simple linear functions, but we have pointed out that there is good reason 
to believe that these expressions should be nonlinear. The basic limitation 
which this assumption places on the model is that it only can describe 
situations within a narrow range of equilibrium. Within this range the 
behavior of nonlinear systems can be adequately represented as linear. 
This means that we must limit ourselves to the description of undisturbed 
situations in which an ecological equilibrium can be reasonably assumed. 

2. Environmental Constraint 

We have assumed that all seasonal fluctuations are functions of 
temperature and temperature alone. In mesic forests this is reasonable 
since rainfall is abundant and factors such as desiccation do not play a 
major role (Witkamp, 1966). This limits our simulations to areas where 
this assumption is reasonable. It would not be valid, for example, to 
simulate behavior of the millipede system in which seasonal drying 
of the leaf litter is common. 

3. Constraints from Choice of Compartments and Fluxes 

The choice of a method to lump compartments and the choice of fluxes 
is limited by practical restraints of available information and represents 
another major limitation. It is a well-established hypothesis that stability 
of a system and its sensitivity to fluctuations are a function of the number 
of interactions in the system (MacArthur, 1955). Our lumping procedure 
has severely limited the number of interactions represented, compared 
to a division by species. The model can only claim, therefore, the most 
meager ability to predict reactions to disturbances. Again we must limit 
ourselves to simulations of an equilibrium state. 
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A discussion of these principal limitations of the model does not 
constitute a complete analysis of the assumptions implied in the model. 
It is hoped, however, that their brief discussion will give the reader an 
appreciation of the types of limitation which can be expected, and of 
the value of this kind of exercise. 

E. QUANTIFICATION OF THE MODEL 

The model is presently being applied to the community on the floor of 
a Liriodendron forest in East Tennessee. A section of this forest was 
labeled with cesium-137 in 1962 and a general description of the radio-
nuclide dynamics is available (Olson, 1965). In these first stages the 
model is being designed to simulate only general characteristics of 
radiocesium transfer through the forest floor arthropods. 

Since we have emphasized methods which can be used to assign 
values to parameters of a complex model, it is appropriate to describe 
the methods used to arrive at values for the state variables X, the Xs 

of the system equations, and the transfer coefficients. The labeled 
forest provided a situation in which the state variables, Qe of Eq. (25), 
could be obtained from field data. Some of these results have been 
reported by Reichle and Crossley (1965) and Reichle (1968). Using these 
data and our assumption of an equilibrium state, it is possible to calculate 
values for the parameters of the system. Several possible cases arise 
which will be described briefly. 

1. Single Input and Output 

In this case the compartment has a single food source and a single 
loss function in excretion. The loss coefficient is equal to the biological 
elimination coefficient in this and all cases of excretion as demonstrated 
in Eq. (25). In the single input case, the input flux is set equal to the 
output and division by the appropriate donor compartment yields the 
desired value for a^ 

input: aiS = QMQei (38) 

output: ajk = QeikslQei = k,, (39) 

where j is the compartment of interest, feeding on comparment i and 
eliminating at a rate kf. 

2. Multiple Input or Output 

In other cases which involve multiple sources of food or prédation it is 
necessary to follow one of two paths: 
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(a) If the entire population is feeding on a number of potential 
prey (e.g., the centipede compartment), we can use the technique 
described in Section III.A provided we have measured values for Wy . 
For the centipede population the Rj of the model is the excretory flux. 
The input from species i at equilibrium is then 

«« = P»QMQ*i. (40) 

(b) When a compartment has more than one output, that is, both 
excretion and prédation, the population ingests sufficient amounts of the 
radionuclide for both losses and therefore 

/ m \ 
* / = & » ( * , + ! « » ) · (41) 

X fc=l ' 

Substituting into Eq. (40) we arrive at the expression for the transfer 
coefficient 

On = PaQei (*, + Σ ai*)/Qei. (42) 
X k=l '' 

By proceeding from the top predator of the system, Eqs. (38)-(42) can be 
used to calculate all transfer coefficients in the system, knowing the 
equilibrium body burdens, the biological elimination coefficients and the 
appropriate w^/s. 

F. SIMULATION EXPERIMENTS 

With the fully quantified system, it is possible to simulate situations 
of interest. To illustrate the type of information that can be obtained from 
the model we will simulate two such situations. In both cases we will be 
assuming an undisturbed condition in which the populations and the 
interactions remain constant or within a narrow range of fluctuations 
about this constant. This condition is consistent with the steady state 
assumption of the model. 

1. Pulse Input 

First we wish to predict the behavior of radiocesium in the forest 
floor community following a pulse input of the isotope to the litter. This 
mimics the situation in which a forested area is contaminated by a single 
event, such as a reactor accident. The information which the model must 
provide is the peak concentrations reached in the various compartments 
and the rates at which each loses radioactivity. Figure 8 shows the 
graphic response of three compartments of the ecosystem to the intro-
duction of 1000 units of radiocesium into the detritus compartment. It is 
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FIG. 8. Patterns of radionuclide movement through three components of a hypo-
thetical forest floor community. This behavior is predicted from the compartment model 
explained in the text following a pulse input of 1000 Ci to an extensive area of forest litter. 

easily seen that the desired information can be obtained from values 
generated by the model. 

2. Constant Input 

If the input to the system were constant, as might be expected from 
fallout contamination, the system would be expected to reach an 
equilibrium as shown in Fig. 9 with only seaonal fluctuations. 
Equilibrium time, maximal and minimal seasonal concentrations, and 
similar predictions can then be obtained from the model. A large number 
of other cases can be simulated based on different modes of introduction 
of the radionuclide to the system, elimination of certain components of 
the fauna, etc. The model is extremely versatile and represents the best 
possible prediction of radiocesium behavior in this portion of the 
ecosystem. 

G. FURTHER DEVELOPMENTS OF THE MODEL 

It is important to realize that construction of the model and its 
initial use in making predictions represents only part of the potential 
it possesses. As discussed elsewhere in this book, equilibrium 
sensitivity analysis (Kaye and Ball, 1969) and various stability indices 
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FIG. 9. Patterns of radionuclide concentration in three components of a hypothetical 
forest floor community. This behavior is predicted from the compartment model 
explained in the text when a constant input is applied to an extensive area of the litter 
compartment. 

(e.g., Patten and Witkamp, 1967) can yield additional information. 
Comparison of predictions generated by the model with data from real 
systems provides a positive feedback which can be used to correct and 
improve the model. In particular, it is possible to account for deviations 
from a steady state condition due to seasonal fluctuations in system 
parameters. The model can be developed in other directions if the caloric 
equivalent of the radiocesium concentrations can be determined (e.g., 
Reichle and Crossley, 1967). The radiocesium can then be used as a 
tracer to simulate energy flow through the system. 

The model should be regarded, therefore, not as an end product but 
as a tool to guide and orient future research. At any stage of a research 
program, a model represents a useable summary of all understanding 
gained up to that point in time, but it should always retain the potential 
to incorporate further information. 

V* Conclusions 

The emphasis of this chapter has been on practicality. An attempt 
has been made to apply techniques of mathematics and systems analysis 
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to actual prediction of ecological phenomena related to forest floor 
arthropods. The examples have been presented to demonstrate that these 
methods are successful in providing first approximations. It is felt 
that this approach is essential when ecologically related problems, 
such as population and pollution, demand a capability to produce 
approximations of ecosystem dynamics long before traditional ecological 
approaches can provide more detailed conclusions. 

At the present time, techniques of systems ecology can provide 
seemingly reasonable predictions based on limited available information. 
They are capable of drawing from available data implications, conclusions 
and insights which are otherwise obscured in the complexity of the 
system. In addition, modeling techniques provide a framework to which 
additional information can be added as it becomes available, and provide 
clues concerning the most important information to gather. 

Unfortunately, the mathematical tools used in this type of approach 
are often beyond the grasp of the working ecologist. It is hoped that our 
attempt to keep mathematical presentations as simple as possible and to 
present the methods needed to apply the modeling technique to actual 
problems involving field data will contribute toward bridging the gap 
between the theoretical developments of systems ecology and the 
applications of these techniques to important ecological problems of 
our day. 
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L Introduction 

The current trend in environmental biology toward the use of 
mathematics, statistics, and computer languages for description of 
experimental data raises the question of whether or not these methods 
are at variance with the traditional methods and concepts of ecology. Is 
it possible to place early classical ecological studies in a quantitative 
framework and preserve the values therein ? If so, are there advantages 
to be gained by a fresh look at classic data through the viewpoint of a 
mathematical treatment ? 

In an attempt to answer these questions, as well as to provide a 
starting point for modeling studies in an important phase of ecology, two 
classical studies of succession in abandoned cultivated fields (Billings, 
1938; Smith, 1940) have been used to develop systems of equations which 
reflect the observations and conclusions of the original authors. The data 
which were gathered in the two studies are primarily semiquantitative 
in form and not of a type which readily lends itself to objective measures 
of "goodness-of-fit," such as minimum squared error. Nevertheless, 
much of the progress in modern ecology and the understanding of 
mechanisms of environmental biology is based upon observations and 
data of this type. If the techniques of systems ecology are to supplement 
previous findings of ecologists, they must build upon traditional 
techniques rather than seek to supplant them. The main objective of this 
chapter is to show that quantitative methods can be made to intermesh 
in a workable manner with qualitative statements of hypotheses. The 
important aspect of a quantitative model is translation of the verbally 
stated mechanism into mathematical form; use of empirical numerical 
data to test the model statistically is only one of several ways of gaining 
confidence in its efficacy. We hope to demonstrate that the techniques of 
modeling and simulation are equally applicable to situations involving 
nonnumerical or semiquantitative data. 

A compartment model or system of ordinary, first-order differential 
equations has been chosen for the form of the simulation. Differential 
equations were used because the variables in question are basically 
continuous and many techniques are available for treating such systems. 
The equations are first order since the fundamental relations are between 
the time rates of change of the system variables and the state of the 
system. Time lag effects are considered too complex for the degree of 
development desired, so the use of difference equations can be avoided. 
The current development is without consideration of spatial variation in 
the dependent variables, hence the use of ordinary (nonpartial) differential 
equations in a "lumped parameter" system. 
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Intuitively, a compartment model is an abstraction of a system whose 
dependent variables can be thought of as describing the contents of 
various blocks or compartments between which a flow of material or 
energy, represented by interconnecting arrows, takes place. This concept 
is generalized to the point that we might consider using the block 
diagram to describe what happens when, in succession, the biomass of 
species A declines as that of species B increases. We are aware that no 
flow of organic material actually is taking place, however, the analogy is 
still useful in an abstract sense. The same mathematical form can be 
employed whether the flow is real or abstract. 

IL Mathematical Framework of the Model 

In order to present the mathematical framework into which the 
ecological model has been set, we will consider a series of forms of first-
order ordinary differential equations. Readers who do not wish to concern 
themselves with mathematical details of the model may go on to 
Section III. The forms will be presented in order of increasing complexity 
and generality. 

A. LINEAR CONSTANT-COEFFICIENT EQUATIONS 

The general form of a linear, constant-coefficient model for a system of 
n compartments is defined to be 

n 

3=1 

where x^t) is the content of the rth compartment as a function of time 
t> x^t) is the time derivative of the ith compartment with respect to 
time, and a^ is one of n2 constant coefficients which are parameters of the 
system. In matrix notation, 

x = Ax, (2) 

where x is a column vector of functions of time 

Γ *i(*) 1 

I i * 

L *n{t) J 

(1) 
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x is a column vector 

Γ *i(0 ] 

I I ' 

L *n(0 J 

and A is an n X n square matrix, 

au a12 ··· aln 

I #21 a22 "* a%n I 

L wl ^w2 *** ^nn_\ 

Two forms of linear constant-coefficient compartment models will be 
distinguished. 
1. Closed System 

By a "closed, linear, constant-coefficient, compartment model" is 
meant that the sum of all the compartment contents is constant in 
time, i.e., 

n 

£ x^t) = positive constant for t ^ 0. (3) 

As a consequence, some restrictions are placed on A. Equation (3) 
implies 

uTx = 0 (4) 

where u is the n X 1 unit vector, 

Γ 1 "j 
1 

Li J 
We obtain, combining (2) and (4) 

uTAx = 0. (5) 

Since x varies with time in w-dimensional space, Eq. (5) can be true 
only if 

uTA = 0, (6) 

or the columns of A must each sum to zero. In analogy to the use of 
compartment models in tracer kinetics experiments, it is desirable to be 
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able to interpret the off-diagonal elements of A, a^ for / Φ / , as flow 
rates from compartment j to compartment i. Therefore, we must have 

ati > 0 for i φ], i,j = 1,..., n. (7) 

Combining Eqs. (6) and (7), the following constraints on A are required 
for a closed system: 

an > 0 if ίφ], 

Σ an ' 
(8) 

3=1 

Thus, diagonal elements are nonpositive and nondiagonal elements are 
nonnegative and less than or equal to the absolute value of the diagonal 
element in their column. 

2. Open System 

For an "open, linear, constant-coefficient, compartment model*' 
(referred to hereafter as an open system) we can relax the restriction of 
Eq. (3). Intuitively, we think of an open system as one in which a 
substance can enter or leave that part of the system being modeled. If 
the diagonal terms of A> au , are thought of as the negative of the total 
flow rate from compartment /, then this must be greater than the sum of 
the individual flows from i to other compartments explicitly contained in 
the model. Thus we have as restrictions on A for an open system 

aif > 0 if ίφ), 

au > Σ (9) 
i= l 
ΟΦϊ 

3. Significance of A Matrix 

Notice that A can be interpreted as describing the directional arrows in 
a diagram such as Fig. 1. The 5 x 5 matrix corresponding to Fig. 1 
has the form 

A = 

au 
«21 

0 
0 

0 0 

a, 51 

0 
0 
0 
0 
0 

(10) 
"45 

&55J 
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*Ί r* *"1 

i l I 2_[ J 3 

4 5 

FIG. 1. Block diagram for a matrix whose zero components occur in the same positions 
as those in the matrix of Eq. (10). 

The zeroes correspond to those atj for which there is no arrow from 
compartment y to i. Compartment 4 is a "dead-end" or "sink," i.e., it 
has no arrows leaving it. Correspondingly, column 4 of A contains all 
zeroes. Intuitively, compartment 4 must eventually contain all the 
material in the closed system. If there were two "sink" compartments, 
eventually all of the material of the system would be divided (not 
necessarily equally) between them. 

When the dependent variables of the system do not allow use of a 
conservation law we will want to require that 

a« < 0 , i,j = 1,..., w, 
(H) 

with no restrictions on the relative sizes of the on- and off-diagonal 
elements. 

B. EQUATIONS WITH VARIABLE COEFFICIENTS 

In a more general case, A in Eq. (2) can be replaced by A* = [a%], 
i ,j = 1,..., w, where 

*<* = Λ « ^ ( Χ , f, d), (12) 

where a{j is a constant, d is an m X 1 vector of constants which are 
parameters of the system being modeled, x is as previously defined, and 
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gj is a real function which assumes the value one for some combination of 
values of its arguments. Thus a{j can be considered the "normal" value of 
afj corresponding to the simpler constant-coefficient model. 

An important case is where gj is related to the unit step function u{t)> 
defined by 

We might have 

<HJ S 

a% = aiou[±(t 

t > 0 
t < 0 

-h)] (13) 

to allow for the occurrence of threshold processes in time described by 
Holling (1966) as being important in biological models. A still 
versatile form of the step function is given by 

more 

&(x, f, d) = u[±(t - *0)] · u[±(Xi - 4 ) ] , (14) 

where dk is a constant value which the function x^t) takes on at some 
time tk; dk = Xi(tk). In this case the step is a function of both time and 
some state variable (χ{) of the system. This form is useful when a lack of 
detailed knowledge about the system enables one to say "a flow occurs 
under some conditions and not under others," but no information is 
available about the manner in which the transition occurs. 

If more information about the system is available, but still detail is 
lacking, the following piecewise-linear form (Fig. 2) may be useful 

FIG. 2. Graphical appearance of a piecewise-linear coefficient as defined by Eq. (15). 

gi = 
Xk — di 

-d, 

if xk ^ d2 

if dx ^ xk < d2 

if xk < dx . 

(15) 
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C. OTHER USEFUL EQUATION FORMS 

Variables which approach an asymptote for large values of time and 
have derivatives close to zero for time near zero are fairly common in 
ecology. This is an example of an approach to a limiting value, as 
described by Holling (1966). Provision for this type of variable is made by 
the following differential equation for the zth compartment. 

Xi = αΗχ{ — bip?, (16) 

where au ^ 0 and bu > 0. The solution to this equation has the 
s-shaped form known variously to biologists as the "Verhulst-Pearl" 
law of population growth (Lotka, 1924) or a "logistic" or "sigmoid" 
growth curve (Slobodkin, 1964). 

In general, and for purposes of this study, the compartmental 
differential equations may take any form which is first order and ordinary. 
If other differential equation forms are used, the compartment anafogy 
loses much of its meaning. The forms presented above are those which 
seem most useful from an historical point of view and which have 
proved useful in the examples of later sections. 

D. PROPERTIES OF LINEAR COMPARTMENT MODELS 

A treatment of the mathematical properties of Eq. (2) with the 
constraints of Eq. (9) is given by Hearon (1963). Bledsoe (1968) has 
reviewed and discussed these properties from the standpoints of ecological 
applications. The general solution to Eq. (2) is 

*<(*) = Σ PM ■ «*'*. (17) 
3=1 

where λ̂  is the / th distinct (complex) root of A having multiplicity m$, 
Pij(t) is a polynomial in t of maximum order titj — 1, and k is the number 
of distinct roots of A. This general solution can take a number of 
different forms depending upon the characteristics of A. These forms 
have been categorized by Brown (1968). 

Some of the properties of Eq. (17) can be summarized as follows: (1) 
the solution is bounded and approaches a constant nonnegative vector; 
(2) the solution is nonnegative if the initial condition vector, x(0), is 
nonnegative (Hearon, 1963); (3) if the relation in Eq. (9) is an equality 
the steady state vector is nonzero; (4) damped sinusoidal oscillations 
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will occur in the solution if A has complex roots. The frequency of the 
oscillations will be no greater than 

1 n 

όΦι 

(from Brauer, 1946); and (5) the solution will be a sum of exponential 
terms for all compartments if and only if both of the following are true: 
(a) all roots are real and (b) multiple roots have independent eigenvectors 
equal in number to their respective multiplicities. 

IIL Old-Field Succession in Central Oklahoma 

Smith (1940) studied succession of plants and animals and accom-
panying soil changes on abandoned farmland in central Oklahoma. 
Succession was studied on 30 sites which were categorized as being in 
one of six successional stages (termed A, B, C, D, E, and F) ranging 
from two to four years since abandonment to 20 to 30 years in subclimax 
Andropogon-Bouteloua grassland (bluestem-grama). The point was made 
by Smith that the term "successional stages" does not imply that 
succession is a discrete process, rather that this is merely a way of viewing 
a continuous phenomenon. One advantage of the proposed mathematical 
model is that it enables succession to be conveniently viewed as a 
continuous process for those ecologists who object to the "stage" 
point of view. 

Of 140 plant species recorded in the study, 36 were cataloged as most 
important and classified in an ascending scale of abundance from zero to 
five (only integers used) for each successional stage. These 36 species 
were arranged in order from those species most abundant in early stages 
to those most abundant in climax vegetation. Abundance, as used by 
Smith, is a subjective estimate of the relative percent cover of the 
vegetation type. By studying his tabulated data it is possible to visualize 
the transition in flora as succession progresses. From Smithes text 
certain dominant and subdominant species can be identified at the 
various stages and used to construct an initial model. 

A. CHOICE OF UNITS 

The problem of proper units for dependent variables of the model is a 
difficult one. The study on which the simulation is based does not 
involve quantitative vegetation estimates. It is not possible to determine 
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or even estimate the standing crop of a species in objective units such as 
grams of dry matter per square meter from the data given. It is also not 
possible to estimate the relative peak standing crop values of any two 
species. The data does indicate relative rates of increase and decline of 
standing crop and the time or range of times in which peak standing crop 
occurred for each species. For this reason the abcissas of the graphs 
which give simulation results are marked "arbitrary units." If estimates 
of the peak standing crop (grams per square meter) for each compartment 
could be made, experimentally or otherwise, then each curve could be 
multiplied by a unique factor allowing the graph to be labeled in objective 
physical units. 

It may be desirable to have the model results in other units such as 
percent cover. The same procedure can be used without implying that 
percent cover in an area must be proportional to standing crop. This is 
because the model results reflect a central tendency and can be expected 
to have a large amount of random error. Nevertheless, the error is not 
so large as to prohibit a clear view of the successional trend in Oklahoma, 
as Smith saw it. While standing crop may not be proportional to percent 
cover, the two variables are closely related for a given species in a given 
environment. 

B. IDENTIFICATION OF SERAL STAGES 

The first stage, A, "mixed weed," is characterized by weeds present on 
the land at the time of abandonment, chiefly Helianthus annuus (sun-
flower) and Digitaria sanguinalis (crabgrass). These two species will 
compose the first compartment. Stages B and C are dominated by 
Aristida oligantha (three-awn grass) and A. oligantha-A. basiramea 
(together), respectively. It is not necessary that the compartments 
correspond directly to the stages identified by Smith; however, the stages 
must be identifiable in the equation solutions if the model is to be an 
accurate reflection of the ecological conclusions drawn. Since compart-
ments 2 and 3 correspond to approximately the same time period, flow 
from compartment 1 will be to both 2 and 3, with a smaller coefficient 
for transfer from 1 to 3. 

Stage D is dominated by a combination of Eragrostis secundiflora 
(lovegrass) and the two Aristida species, with A, oligantha declining and 
A. basiramea reaching a peak. The fourth compartment will be identified 
with E. secundiflora and has a transfer only from compartment 3. Stage E, 
the subclimax, has no true dominants but is marked by decline of 
stage D dominants, and establishment of species which will dominate 
the climax grassland, i.e., Andropogon scoparius (little bluestem) and 
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Bouteloua curtipendula (sideoats grama). Compartment 5 will be identified 
with these two species and the final climax stage, F, will be marked in the 
simulation by the approach to constant size by this compartment. 

C. CONSTRUCTION OF THE INITIAL MODEL 

The model at this point is shown in Fig. 3 and a first approximation to 

1 

Ü 
qnnuus 
and 

D. 
sanguinalis 

2 

A 
oligantha 

5 

A 
scoparius 

and 
B. 

curtipendula 

t 
3| 

— 
basiramea 

7 
4 | 

— 
secundiflora 

FIG. 3. Form of the initial five-compartment model for succession of dominant 
species on abandoned cropland in central Oklahoma. 

the matrix of transfer coefficients, A, is given in Table I. Bledsoe and 
Van Dyne (1969) give a method for determining these initial coefficients. 

TABLE I 

INITIAL MATRIX OF COEFFICIENTS FOR COMPARTMENTAL TRANSFER FOR 

ANALOG COMPUTER MODEL OF SUCCESSION IN CENTRAL OKLAHOMA0 

To: 1 
2 
3 
4 
5 

From: 1 

- 1 . 0 
0.8 
0.2 
0.0 
0.0 

2 

0.0 
- 1 . 0 

1.0 
0.0 
0.0 

3 

0.0 
0.0 

- 1 . 0 
1.0 
0.0 

4 

0.0 
0.0 
0.0 

- 1 . 0 
1.0 

5 

0.0 
0.0 
0.0 
0.0 
0.0 

a A depiction is presented in Fig. 3. 
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Table I does not attempt to account for differences in the lengths of time 
each stage is present. Table II gives A in a first attempt to allow for the 

TABLE II 
A MODIFIED MATRIX OF TRANSFER COEFFICIENTS FOR AN ANALOG 

COMPUTER MODEL OF CENTRAL OKLAHOMA SUCCESSION0 

1 

1.0 
0.8 
0.2 
0.0 
0.0 

2 

0.0 
-1 .0 

1.0 
0.0 
0.0 

3 

0.0 
0.0 

-0 .7 
0.7 
0.0 

4 

0.0 
0.0 
0.0 

-0.8 
0.8 

5 

0.0 
0.0 
0.0 
0.0 
0.0 

α A depiction is shown in Fig. 3 incorporating a first attempt to introduce variable 
time delays between compartments. Figure 4 gives the system solution corresponding 
to this matrix. 

fact that floral changes in later periods of succession are slower than those 
in the earlier stages (as shown by Smith's data). The average age since 
abandonment for the study sites in each successional stage can be used 
as an index to times of maxima for the various species and the compart-
ments representing them (Table 29 of Smith, 1940). In constructing 
such an approximation, the approach to use is that the ith diagonal 
element will determine the rate at which the contents of the ith com-
partment decay into the connecting compartments. Thus, the last 
compartment has a zero diagonal since it does not decline at all. The 
remaining elements in each column are then adjusted by an appropriate 
factor so that the columns sum to zero. 

At this point the equations were solved on an analog computer and the 
coefficients adjusted to provide the best approximation of the qualitative 
description provided by Smith. Analysis by analog computer is very 
convenient at this stage when the equations are relatively simple and 
small in number. 

A digital computer program such as COMSYS 2 (Bledsoe and Van Dyne, 
1969) could be used in an alternative approach. A graph approximating 
the desired appearance of the equation solution would be prepared. Then 
the graph would be sampled for each compartment at an interval 
sufficiently fine to reflect the structure of the system. The sampled 
points would be used as input data for the optimization program which 
should predict appropriate coefficients on a minimum squared-error 
basis. 
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The analog results for the Smith study (based on the Table II 
coefficient matrix) are shown in Fig. 4. Figure 5 is the solution with 

Time (years,approximate) 

FIG. 4. Initial analog computer simulation of succession in central Oklahoma. 
Labels corresponding to compartment numbers are as given in Fig. 3. 

coefficients as given in Table III. Figure 5 contains two lines labeled 
compartment 5, one produced by the five-compartment system shown in 
Fig. 3 (labeled "5a") and a second produced by the insertion of an extra 
compartment between numbers 4 and 5 (labeled "5b"). The contents of 
this extra compartment do not correspond to a physical variable, but 
merely represent a device to introduce extra time delay into the model as 
suggested by Berman et al. (1962). This modified model is still an 
example of the linear constant-coefficient form as defined by Eq. (2). 

Because the data used are qualitative, because times and abundances 
are approximate in Smith's report, and because the object of the model is 
to depict general trends rather than exact relations, the scales of time and 
abundance are left as arbitrary units. Abundance could be interpreted as 
biomass density, energy, cover, or some qualitative measure of the 
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10 20 30 40 50 60 70 
Time(years,approximate) 

FIG. 5. Final analog computer simulation of succession in central Oklahoma. Labels 
corresponding to compartment numbers are as given in Fig. 3. The curve labeled "5b" 
is produced by inserting a time delay between compartments 4 and 5. Curve "5a" is 
compartment 5 without the delay. 

vegetation, as discussed above. The times at which peaks occur agree 
approximately with the results given by Smith. It is evident from the 
data that there is wide variation in these times. However, a general trend 
for the peaks to occur at more widely separated times during the latter 
stages can be seen. This trend is reflected in the model. 

D. INCLUSION OF MECHANISTIC EFFECTS 

At this point the model is simply a convenient way of empirically 
summarizing secondary succession in central Oklahoma. Improvement 
dictates addition of some mechanistic effects. A mechanistic model is one 
which reflects the observed phenomena and, to some degree, the under-
lying causal processes as well. A mechanistic model is the opposite of 
a "nude" model, in the sense used by Nooney (1965). 
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TABLE III 

FINAL MATRIX FOR ANALOG COMPUTER MODEL OF 

CENTRAL OKLAHOMA SUCCESSION 

To:° 

To:b 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 

From: 1 

- 2 . 0 
1.6 
0.4 
0.0 
0.0 

From: 1 

- 2 . 0 
1.6 
0.4 
0.0 
0.0 
0.0 

2 

0.0 
- 1 . 0 

1.0 
0.0 
0.0 

2 

0.0 
- 1 . 0 

1.0 
0.0 
0.0 
0.0 

3 

0.0 
0.0 

- 0 . 7 
0.7 
0.0 

3 

0.0 
0.0 

- 0 . 7 
0.7 
0.0 
0.0 

4 

0.0 
0.0 
0.0 

- 0 . 8 
0.6 

4 

0.0 
0.0 
0.0 

- 0 . 8 
0.0 
0.6 

5 

0.0 
0.0 
0.0 
0.0 
0.0 

5 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

6 

0.0 
0.0 
0.0 
0.0 
1.0 

- 1 . 0 

α Five-compartment form. 
b Six-compartment form. Extra compartment inserted to produce additional time delay. 

Figure 5 gives the system solution corresponding to this matrix. 

Smith emphasizes throughout his study the importance of the depth 
of the humus layer (i.e., litter) or the percentage of organic material in 
the soil as a factor in determining the time of invasion of the various 
species. Percent organic material in the soil can be identified as a 
compartment whose rate of increase is roughly proportional to time 
since abandonment, assuming that normal succession has been occurring. 
If data were available on the differential contributions of the various 
species to humus accumulation this could be incorporated. The effect 
of the increasing humus layer on the vegetation compartments can be 
incorporated by allowing the positive terms in each row of the coefficient 
matrix to be step functions of the humus compartment. There will be, 
for the ith vegetative compartment, a value, ci, of the sixth (humus) 
compartment when the off-diagonal elements of the transfer coefficient 
matrix become nonzero and assume the value given in Table IV. We 
have 

0 if ^ 6 < Ci 
αίά if Xo > ^ 

ij = 1,2,..., 5, (18) 

where a^ is the ith row, / th column entry in the matrix of Table IV and 
ci is the value of x% at some time, ti, when growth in the fth compartment 
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TABLE IV 
FINAL PARAMETERS FOR THE DIGITAL COMPUTER MODEL OF 

SUCCESSION IN CENTRAL OKLAHOMA0 

1 

0.1739 
0.4347 
0.1739 
0.0 
0.0 
0.0148 

: cx 

0.0 

2 

0.0 
-0.8695 
0.8695 
0.0 
0.0 
0.0870 

c2 

2.7 

3 

0.0 
0.0 

-0.0609 
0.1304 
0.0 
0.0870 

cs 

3.0 

4 

0.0 
0.0 
0.0 

-0.8695 
0.0522 
0.0870 

c4 

6.5 

5 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0870 

c5 

8.2 

6 

0.0 
0.0 
0.0 
0.0 
0.0 

-0.2609 

a The sixth compartment corresponds to the humus compartment; others are as 
labeled in Fig. 3. 

b Values of a^ . 

should start. The values of ci must be chosen to force the equation 
solutions to reflect the real situation. If more precise quantitative data 
were available, this would be done in a least-squares sense. 

It may be more realistic to make the a^ some other function of x% such 
as a piecewise-linear form like that shown in Fig. 2. It is doubtful whether 
the data available are sufficiently detailed to warrant such a refinement, 
making its inclusion merely speculation. 

Some limitations of the model of Table III can be avoided by the step 
function additions. Variation of the a^ values together with the ci values 
allows the experimenter a much greater control over the peak and 
duration times for the various serai dominants. In addition, the model 
is no longer completely nonmechanicstic, but reflects the knowledge of 
the ecologist concerning some of the causal relationships in the ecosystem. 
Notice that the relationships reflected involve a feedback mechanism: 
vegetation is responsible for the buildup of humus; amount of humus, 
through its modification of soil porosity, water holding capacity, etc. is 
responsible for the establishment of other species of vegetation. 

Figure 6 shows the results of computer experimentation with the 
modified equation system. The serai stages are clearly visible and 
marked. Table IV gives the values of the constants ci in the bottom part; 
in the top part, is the matrix of aiS values subsequently decided upon 
to give the most realistic results. It was no longer necessary to use the 
extra compartment to provide the time delay for compartment 5. The 

To:& 
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Time (year,approximate) 

FIG. 6. Results of digital computer simulation of succession on abandoned cropland 
in central Oklahoma. Labels corresponding to compartment numbers are as given in 
Fig. 3. Lettered line segments correspond to serai stages as described in the text. 

values were arrived at by the trial and error manipulation on the digital 
computer using the COMSYS 1 (Bledsoe and Olson, 1969) simulation 
program. It would be possible to modify COMSYS 2 or some other 
optimization algorithm to do the manipulation automatically and 
systematically. For the data in question, the trial-and-error method gave 
a satisfactory result. 

E. DIRECTIONS FOR FURTHER WORK 

Smith emphasizes that the dominant plants play the major role in 
central Oklahoma secondary succession as they interact with the soil. 
Animals play a secondary role and the nondominant plants do not exert 
a major effect on the dominants. Nevertheless it may be desirable to 
include some of the other plant and animal species in a more mechanistic 
model. Smith also emphasizes the importance of amount of rainfall in 
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influencing the rate of accumulation of the humus layer. Though no data 
are provided on rainfall, such an effect could be introduced by allowing 
the entries in rows 1 through 5 of column 6 of the coefficient matrix to 
become increasing linear functions of an annual rainfall parameter. 

Considerable data on arthropod populations are available for the area; 
their ecology is complex. Phytophagous species are present at times when 
their particular plant food is available. Parasitic or predaceous species are 
present when their food species are present. Some species are predaceous 
during part of their life cycle and phytophagous at other times. The 
presence of any insect species depends ultimately upon presence of 
specific plants and virtually every species would have to be given a 
separate compartment with its individual flow functions and feedback 
mechanisms. This would necessitate considerable extension of the plant 
part of the model. For example, the Colorado potato beetle, Leptinotarsa 
decimlineata, feeds on certain species in the Solanaceae which occur 
during the early forb stages. A compartment of these species, Solatium 
carolinense and Physallis heterophylla, would have to be formed and 
linked to compartment 1 as an associate of Helianthus annuus. An 
increase in this compartment would then trigger growth in the potato 
beetle compartment. Other Coleopterans are characteristic of different 
serai stages; sometimes two species in the same genus occur at quite 
different successional stages. 

Some 293 insect species were found by Smith (1940). A model which 
reflected each of their ecological habits might involve well over 300 
compartments if the interactions of each species were unique. If sufficient 
autoecological information were available for the species involved, such 
enormous models could be constructed and are within the simulation 
capabilities of present-day high-speed computers, although existing 
simulation programs would require considerable modification and 
streamlining. It should be apparent from the foregoing that construction 
of such a model would be tedious, but possible and straightforward, 
given sufficient data. 

IV* Old-Field Succession in the North Carolina Piedmont 

Billings (1938) explains the mechanisms of change in an old-field 
system of the North Carolina Piedmont from a grass-forb stage to a 
shortleaf pine stage and finally to a deciduous forest. A general compart-
ment model and possible transfer equations for some of the compartments 
are developed herein with explanations of how to experiment with the 
equations as a prelude to further empirical analysis. 
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A. GRASS, FORB, AND SHRUB COMPARTMENTS 

Upon abandonment, and after annual and perennial weed stages, old 
fields in this area are invaded primarily by broomsedge (Andropogon 
virginicus). It is at this point in time where the present model will 
commence. The live vegetation component of the broomsedge com-
munity we shall term xx, and an s-shaped logistic curve with respect to 
time would be expected for the biomass of broomsedge. This suggests 
a differential equation for the change of biomass in the first compartment 
as a function of time as given by Eq. (19), 

xx = α1λχλ — blxx^. (19) 

Constants au and 6 n in the above equation are positive constants to be 
determined experimentally. This equation will produce the desired 
s-shaped growth curve with the initial condition for compartment 1 set 
to some small positive quantity. The limiting value of this curve will be 
aiil^u > a n d t n e r a t e °f increase will be determined by allL alone. Solution 
to Eq. (19) is 

x1 = £±[l+ β-α^-^\-\ (20) 
" i l 

Here 

*o = — Μπητ-ΐ) (21) 

gives the initial conditions. Growth of subdominant forbs and woody 
shrubs (e.g., Viburnum, Aster, Plantago) accompanies the broomsedge 
community and can be modeled approximately by the equation for 
compartment 2, 

(22) 

Billings' data shows a gradual increase in organic matter in the soil as 
a result of dead and decaying vegetation in these first two compartments. 
This can be shown as a gradual buildup in compartment 3, soil organic 
matter. Humus, per se, according to Billings, is not present in any 
quantity until at least 20 years after abandonment. 

X3 = #3 ΐ# ι -\~ αΖ2Χ2 Γ a32X3 ' \^^J 

B. "SHADE" COMPARTMENT 

The taller forbs and shrubs have a shading effect upon the species of a 
lower growth form. Compartment 4 will represent this effect and might 
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be called "amount of shading in lower synusia" or simply the "shade" 
compartment. Equation (24) will govern compartment 4 

This compartment will be quite useful later. The equation for compart-
ment 1 can be modified to include this "shading" effect by replacing α1λ 

with oft , where 

a* = alx{dx - * 4 ) / ^ (25) 

for dx equal to some positive constant. This will force the value of x± 

down as xA increases; when xx is near zero with a^ negative, the quadratic 
term in Eq. (19) can be ignored and χχ will go asymptotically to zero as 
desired. This agrees with Billings' data which shows that many woody 
shrubs persist much longer than broomsedge. 

At this point the system is summarized in Fig. 7. The solid lines 
indicate a direct transfer of the compartment contents via a nonzero 
entry in the coefficient matrix A. The dotted lines indicate that one 
compartment affects the growth rate of another by modification of some 
parameter in the equation which governs the affected compartment. 

C. PINE COMPARTMENT 

Billings and others (e.g., McQuilkin, 1940) indicate that seed source is 
the major factor in invasion by Pinus echinata of old fields in this area, 
though organic matter accumulation has some effect. Accordingly we 
shall allow x5, the pine compartment, to commence growth when time 
t reaches a threshold value corresponding to a time when natural 
seeding occurs. The parameters of the x5 equation can be varied to 
simulate the effect of seed sources varying in quantity and quality if it 
is desirable. Equation (26) gives the form for x5 . 

*5 = «4*5 — è55*52· (26) 

Since the demise of pine is due to failure to reproduce under its own 
cover as a result of seedling mortality, the growth of x5 can be controlled 
by letting a£5 be a step function of two variables, one to initiate growth 
and one which causes growth to cease. Billings' data indicates that pine 
seedling mortality might be caused by insufficient root development to 

(24) 
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FIG. 7. Initial compartment model for early stages of succession in the North Carolina 
Piedmont. Solid lines indicate compartmental transfers achieved through nonzero entries 
in a transfer coefficient matrix. Dotted lines indicate that one compartment affects the 
contents of another by modification of one of its growth parameters, as in Eq. (25), 
where x4 affects the «Ji value for compartment 1. 

compete successfully with the roots of mature pines in the top 6-in. 
layer of soil. Thus we formulate a%b 

* 
*55 = 

if t > tx 

otherwise. 
and <d2 (27) 

As in the previous model, it might be more realistic to allow a%h to 
be a smoother function, such as piecewise-linear, to avoid unnaturally 
sudden changes in the model predictions. Again, because of lack of 
data to indicate the exact form such a function should take and because 
this is an initial model reflecting only the gross mechanisms involved, the 
step function will be adequate. 

At the same time that the growing pine stand is failing to reproduce 
due to intraspecific competition, it is also having a very important effect 
upon the litter of the forest floor. Compartment 5 should be contributing 
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greatly to the litter accumulation in compartment 3 and can be taken 
into account by a modification of Eq. (23) for x3 : 

^3 = Λ 3 Λ ~Γ û32^2 ~Γ a33XS \ aS5X5 ' ( 2 θ ) 

By the mechanisms of Eqs. (27) and (28) the pines will effect their own 
demise through litter buildup and its effect on seedling mortality. 
Actually, Billings attributes the mortality to soil factors which act on the 
root morphology of the pine seedlings. However, each of these soil 
changes is brought about by the action of the pine litter-fall. Thus, the 
parent factor is the litter accumulation which acts through other soil 
changes not explicitly represented in the model. 

D. FEEDBACK EFFECTS 

Compartment 3 should also have a reducing effect on the shrub-forb 
compartment due to inability of the light seeds to reach mineral 
soil and germinate. This can be effected by modifying a21 in inverse 
proportion to x3. Let a21 in Eq. (22) be replaced by a\\ : 

<4 = *2l(<*3 — Xs)ld3 · (29) 

This is analogous to the method of modification of an in Eq. (25). The 
constant d3 is to be determined by computer experimentation. 

Two other compartments, deciduous, climax-dominant overstory 
trees (oak-hickory) and deciduous trees such as Cornus florida and 
Acer rubrum which make up an understory in the hardwood climax forest, 
will be considered in this model. 

E. OAK-HICKORY COMPARTMENT 

The oak seedlings become established as soon as sufficient litter has 
developed to prevent dehydration of the acorns and the soil compaction 
has been reduced by accumulation of organic matter. The root 
morphology of the oaks is such that the seedlings are able to extract water 
from beneath the zone of intense pine root competition, i.e., the top 6-in. 
soil layer. Thus oaks do not suffer, through moisture stress, the adverse 
mortality effects reflected in the pine through Eq. (24). On the contrary, 
the attainment of a threshold in the #4 compartment initiates oak growth, 
rather then retarding it. 
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Let x6 be the oak-hickory variable. The following two equations 
summarize mathematically the statement of the preceeding paragraph. 

X6 = a66X6 ^ββ^β > (3") 

where 

( l/(d5 - #4) if xs > </4 and max(#2 , x5 , x6 , x7) 7^ #6 

6̂*6 = J he i f max(x2, x5 , *6 , x7) = xs (31) 
10 otherwise. 

The max function in the above equations assures that the largest of the 
several compartments, x2, x5 , xQ , or x7, produces the controlling shade 
effect on compartment six. If x6 is largest then the oaks cause no shading 
of themselves. Equation (24) must be modified to allow for shading by 
the pine compartment (#4) 

#4 = ^42^2 ~Γ #44#4 + #45^5 · \J^) 

F. UNDERSTORY SPECIES 

These species invade at about the same time as do the oak seedlings. 
Their growth is faster than the oaks but they too are suppressed by the 
pine canopy. According to Billings, mature oaks are larger than the 
mature maples. Since the pines do not die off significantly until both 
oaks and maples have formed a well-developed understory (with other 
species), the oaks, through shading, prevent dominance by maples. 
Alternatively, Billings raises the question of whether the maples might 
assume a temporary dominance if the pine were cut at a stage before the 
slowly growing oaks had reached a temporary equilibrium in the 
understory. With this in mind, compartment 7 can be formulated as 

Xn ttnnXn UnnXn , I J J I 

where 

!

l/(i/6 · #4) if x3 > d± and max(.x:2 , x5 , χ6 , χ7) ^φ χΊ 

b77 if max(#2 , #5 , χβ > χη) — χη (34) 

0 otherwise. 
Notice that dA is the same threshold used to initiate growth in x6 , the oak 
compartment. Since the maples grow more rapidly than oaks we have 

α7Ί > a66 · (35) 
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Adjustments must be made in b77 and i66 to provide for a higher steady 
state in xQ than x7 . Since the steady state is inversely proportional to the 
coefficient of the quadratic term, 

£fiß < K (36) 

is the desired relation. Constants d6 and d7 are chosen to produce 
appropriate intermediate threshold levels. Figure 8 summarizes the 
model at this point. 
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FIG. 8. Final compartment model for succession in the North Carolina Piedmont. 
Solid and dotted line conventions are the same as for Fig. 7. 

G. DETERMINATION OF COEFFICIENTS AND SIMULATION 

Determination of the proper coefficient values involves making rough 
initial guesses at constants related to the earlier stages, solving the model 
numerically, adjusting the coefficients, accordingly, and resolving the 
system of equations. The model already is too extensive for a small 
analog computer, but a large or medium size analog system could solve 
the problem easily without the difficulties and delay associated with 
a batch-processing digital machine. Alternatively, a time-shared remote 
computer terminal, as used by Parker (1969), would be useful at this 
stage. 

The equation governing the "shade" compartment has been modified 
to take account of the shading phenomenon throughout the successional 
period. A better name for this compartment might be "shade in the 
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secondary synusium." The principal cause of shading during the period 
when a particular compartment is dominant is that compartment itself. 
When that compartment ceases to be dominant, the principal source of 
shade in the understory must come from a new species association. 
This agrees with Cain (1934) and Billings (1938) that synusia are 
dependent upon an overstory but independent of its floristic composition. 
Shading has the same effect on the second story regardless of the source 
of the transfer into compartment 3. This mechanism is reflected in the 
equation for compartment 4. The equation governing #4 becomes 

#4 = #44#4 + aHxi y (37) 

where / is 2, 5, 6, or 7 depending upon which of these compartments is 
largest (i.e., / is a function of time). 

Figure 9a, b, and c gives the results of a straightforward simulation, 
using the COMSYS 1 program, of Eqs. (19), (22), (23), (26), (27), (30)-(34), 
and (37) which summarize the succession model described in the 
preceding section. Constants of the system, together with their values 
as determined by computer experimentation are listed in Table V. 

TABLE V 

CONSTANTS USED IN THE SIMULATION OF SUCCESSION ON THE 

NORTH CAROLINA PIEDMONT" 

A 

0.4595 
1.0 
0.1 
0.0 
0.0 
0.0 
0.0 

C l l 

-4 .5951 

dx 

60.0 

0.0 
- 1 . 0 

0.1 
1.0 
0.0 
0.0 
0.0 

C22 

0.0 

0.0 
0.0 

- 0 . 0 5 
0.0 
0.0 
0.0 
0.0 

C33 

0.0 

d2 

125.0 

0.0 
0.0 
0.0 

- 1 . 0 
0.0 
0.0 
0.0 

c44 

0.0 

d, 

30.0 

h = 

d4 

0.0 
0.0 
0.1 
1.0 
0.8700 
0.0 
0.0 

£55 

-0.0145 

3.0 

2.0 

db 

0.0 
0.0 
0.1 
1.0 
0.0 
0.7546 
0.0 

cee 

-0 .0084 

d* 

0.0 
0.0 
0.1 
1.0 
0.0 
0.0 
1.2667 

c77 

-0 .0181 

1.1044 0.4605 

0 The graph of Fig. 9 was generated with this data. 
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FIG. 9. Results of digital computer simulation of succession in the North Carolina 
Piedmont, (a) A. virginicus (1) and forb-shrub (2) compartments, (b) Soil organic 
matter (3) and "shade" (4) compartments. 
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FIG. 9 (c) Pine (5), oak-hickory (6), and maple (7) compartments. 

H. EXPERIMENTATION WITH THE MODEL 

Billings suggests that if the pine stand were cut at any early time in its 
development, the fast-growing maples would assume temporary 
dominance. The oaks, however, would eventually overtop the maples to 
produce the normal oak-hickory climax. By modifying optional sub-
routines in COMSYS 1 we can investigate effects of cutting the pine. The 
results, as shown in Fig. 10, predict this early maple dominance. 

The model coefficients need not be modified to predict the early 
dominance of maple; however, increase of the oak under the maple 
shading would require a more precise adjustment of coefficient values. 
This is not surprising, nor does it obviate the usefulness of the model for 
experimentation purposes, since data on which the solution curves are 
based are initially qualitative. The fact that maple increase could be 
predicted by the model purely on the basis of the qualitative conjecture 
that red maple grows faster than oak in the open is rather more surprising. 
The resurgent pine peak at t = 32 is due to the delay in oak and maple 
litter build-up. 

A mathematical experiment relative to the forb-humus interaction 
can be performed. It is asserted that die-off under a forest canopy of 
many herbaceous species (compartment 2) is due to failure of their light 
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10 20 30 40 
Time ( years,approximate) 

FIG. 10. Effect of pine removal at 18 yr on the oak-hickory and maple compartments 
of a model for succession in the North Carolina Piedmont. Labels corresponding to 
compartment numbers are as given in Fig. 8. The resurgent pine peak at 32 yr is due 
to delay in litter build-up from the deciduous compartments. 

seeds to reach mineral soil and proper germination conditions in the 
dense litter mat of the pine stand. Billings reports a high inverse corre-
lation (r = —0.97) between depth of litter and presence of old-field 
species and cites the work of Reed (1934) and Kawada (1931) in support 
of this argument. It is reasonable to suppose, and is suggested by the 
work of Kawada (1931), that artificial removal of litter from the forest 
floor during the pine stage would result in a resurgence of the herbaceous 
flora. This experiment was tried on the model by appropriate modifica-
tions to the subroutines of COMSYS 1; results are given in Fig. 11(a) 
and (b). 

In addition to the expected result, two other effects can be seen. The 
pine forest in Fig. 11(b) does not begin to die off until a later time 
(compare with Fig. 9). Also, the oak and maple compartments are 
delayed in their succession. The former effect can be expected since it is 
the litter compartment which controls lack of reproduction in the model. 
This is contrary to a later suggestion of Oosting and Kramer (1946) 
that it is the shading effect controlling the root morphology of pine 
seedlings which is responsible for their lack of production. Such a 
mechanism could be included but would be contrary to the aim of 
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30 
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FIG. 11. Effect of litter removal at 18 yr on the compartments of a model for succession 
in the North Carolina Piedmont. Labels corresponding to compartment numbers are 
as given in Fig. 8. (a) Grass, forb-shrub, and litter compartments, (b) Pine, oak-
hickory, and maple compartments. 
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reflecting Billings' conclusions. The latter effect is a consequence of 
the former. Whether pine litter removal would actually prolong 
succession of the oak and maple flora is a question for experimental work 
and a much more complex model. 

I. DISCUSSION OF THE PIEDMONT SUCCESSION MODEL 

A number of logical extensions of the model could be made. Since 
failure to reproduce in the pine compartment is such an important 
effect, this could be shown more specifically by subdivision of compart-
ment 5 into age cohorts with linear transfers between each cohort. 
Similarly, root competition plays a large role in this study and provision 
of a "root density'' compartment for the top 6-in. soil layer would 
provide far more explicit control of root interactions. The primary 
contributor to such a compartment would be the pines, since oaks and 
hickories are more deeply rooted species. A compartment whose variable 
was soil moisture in the top 6-in. layer might be profitably used. It 
would be contributed to by the litter, root density, and shading compart-
ment and would provide more realistic and explicit mechanisms for the 
initiation of growth in the oak-hickory compartment and the demise of 
the pines. 

As in the central Oklahoma grassland model, detailed results require 
that the general forest compartments be broken down into their 
component species with autoecological data reflected in their transfer 
functions. Thus, the climax understory, variously treated above as a 
pure maple compartment or as containing a mixture of species, should 
actually have explicit subcompartment variables for the faster-growing 
taller maples and the shorter dogwoods and redbuds. 

Again the problem of dimensionality of the model's dependent 
variables is raised. Billings' data is presented in terms of "stem density 
per unit area" as measured by a quadrat method. To provide an insight 
into the homogeneity of the vegetation, he also lists the frequency / of 
occurrence of each species as 

. number of quadrats containing a species 
total number of quadrats read 

Clearly, the number of stems of Andropogon or Viburnum on a site is not 
directly comparable to the number of pine stems. What has been 
reflected on the vertical axis of the graphs of model results can best be 
described as "degree of dominance X average height of species." The 
degree of dominance of a species is a qualitative variable which can be 
extracted from Billings' discussion and density data. Intuitively, it seems 

(38) 
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that the curve representing pine should rise higher than the curve 
representing Andropogon, though neither is "more or less dominant" 
than the other at the height of their serai stage. (This might be disputed, 
since Dansereau (1957) defines dominance of a species as attainment of 
"great spatial extent.") For this reason, the parameter "height of species" 
is included. 

V* General Discussion 

A. EMPIRICAL DATA AND RANDOM EFFECTS 

Many analysts might be dissatisfied with the subjectiveness of the 
measurements involved in what is ostensibly a mathematical model. 
Nevertheless, the measurements used are adequate and fulfill the purpose 
of this preliminary modeling study. The literature, especially the older 
material where many fundamental concepts are investigated, has a 
dearth of objectively measured quantitative information suitable for 
direct use in mathematical models. 

One value of the model is to illustrate the need for future studies 
wherein some variable such as standing crop (in calories per square 
meter) is the index to vegetation abundance. At the same time, it can be 
seen that qualitative information is far from incompatible with a model. 
Accompanying such quantitative data should be measures of the 
variability of the numbers involved. It is absurd to use a program such as 
COMSYS 2, requiring relatively large amounts of computer time, to fit 
coefficients of a model to four significant digits with data having, say, 
a 20 % coefficient of variation. 

It is possible to perform a type of sensitivity analysis on the model in 
which many simulations are completed, each with a set of input 
parameters selected at random from a collection having a specified 
probability density. The result will be an approximation to a distribution 
function for the réponse of the model. Comparison of the variances of 
empirical data with the model-response variance will yield another 
measure of model performance. 

B. APPLICATIONS OF A MODEL 

The usefulness of a complete model is not limited to a mere graphic 
representation of normal secondary succession. Properly manipulated, 
the model could be used to predict successional responses subsequent to 
fire, drought, application of a selective herbicide or pesticide, severe 
erosion, or other environmental stress. For example, the Oklahoma model 
might be specialized to study effects of a selective herbicide. The herbicide 
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would reduce certain compartment values to near zero, forcing down, 
in turn, the biomass of those insects dependent upon the species 
destroyed. This would trigger a chain of events among those predaceous 
species dependent upon the affected phytophagous insects. At the same 
time the rate of humus accumulation might be reduced if the plants 
affected were turf builders and succession would be slowed. Alternatively, 
if the plants were forbs such as Solidago, whose occurrence depends 
upon the existence of open spaces among bunchgrasses, rate of succession 
might be less affected. Yet the total percent cover would be reduced, 
affecting, in turn, soil moisture and triggering a different chain of events. 
Exactly what might occur is predictable only through construction of the 
detailed model and simulation of a particular initial occurrence. Such 
model development for a whole naturally-occurring ecosystem would 
require intensive literature study, consultations with ecologists of the 
area, field survey, and considerable mathematical experimentation. 

A complete ecosystem model is a vast mathematical machine for 
deducing the logical consequences of many individual but interacting 
mechanisms. The individual mechanisms can be understood by a 
single person but the simultaneous effect of many mechanisms requires 
the painstaking thoroughness of a computer for analysis. A scientist might 
then abstract the computer results into useful generalizations about 
ecosystems. 

C. MANPOWER AND HARDWARE REQUIREMENTS 

The studies reported herein required about six months of half-time 
effort with some help from student programmers. The work was done in 
a batch-processing computer environment (using Fortran IV imple-
mented on a Control Data 6400 computer). The use of an interactive 
computer terminal, time-shared among several users, enables the user 
to make the many test runs and parameter modifications much more 
rapidly than is possible in the batch environment. During the lag between 
program submission and return, the modeler loses touch with his train 
of thought, even if turnaround time is fast (say, \ hr). In addition, there 
is the problem of transportation of the program information to and from 
the computer center, which further increases effective turnaround time. 

The remote terminal method is much more efficient; the information 
transportation problem is solved electronically. Similar efficiencies can 
be achieved by using a medium or large scale analog computing system. 
Unfortunately, analog programming is not as versatile a tool as digital 
programming; however, once learned, analog methods are very appro-
priate and efficient for the types of models discussed above. 



8. SIMULATION OF SECONDARY SUCCESSION 511 

From an economic point of view, digital terminal fixed costs are 
of the same order of magnitude as for a medium sized analog facility. 
Operational costs for the analog are considerably smaller. Bledsoe (1968) 
discusses these points more thoroughly and provides references on the 
economics involved. 

The Fortran programs used in the numerical solution of the above 
equations are available from the authors or in an appendix of Bledsoe 
(1968). 

Acknowledgments 

Financial support for the literature and computer studies reported herein were obtained 
from Subcontract 2766 from Union Carbide Corporation (through the Oak Ridge 
National Laboratory's Radiation Ecology Section) and National Science Foundation 
Grants GZ-991 and GB-7824. Thanks are due to Dr. J. S. Olson for helpful discussion 
and suggestions early in this research. 

REFERENCES 

Berman, M., Weiss, M. F., and Shahn, E. (1962). Biophys. J. 2, 289-316. 
Billings, W. D. (1938). Ecol. Monogr. 8, 437-499. 
Bledsoe, L. J. (1968). Compartment models and their use in the simulation of secondary 

succession, M.S. Thesis, Colorado State Univ., Fort Collins, Colorado. 
Bledsoe, L. J., and Olson, J. S. (1969). COMSYS1: a stepwise compartmental simulation 

program. Oak Ridge National Laboratory TM-2413, 50 pp. 
Bledsoe, L. J., and Van Dyne, G. M. (1969). Evaluation of a digital computer method 

for analysis of compartmental models of ecological systems. Oak Ridge Nat. Lab. 
TM-2414. 

Brauer, A. (1946). Duke Math. J. 13, 387-395. 
Brown, M. R. (1968). Classification of solutions of the vector equation x ' = Ax. Masters 

Thesis, Colorado State Univ., Fort Collins, Colorado. 
Cain, S. A. (1934). Amer. Midi. Natur. 15, 529-566. 
Dansereau, P. (1957). "Biogeography—an Ecological Perspective." Ronald Press, New 

York. 
Hearon, J. Z. (1963). Ann. N. Y. Acad. Sei. 108, 36-68. 
Holling, C. S. (1966). Entomol. Soc. Can., Mem. 48, 1-86. 
Kawada, M. (1931). Bull. Imp. Forestry Exp. Sta. 31. 
Lotka, A. J. (1924). "Elements of Physical Biology." Williams and Wilkins, New York. 
McQuilkin, W. E. (1940). Ecology 21, 135-147. 
Nooney, C. G. (1965). J. Theor. Biol. 9, 239-252. 
Oosting, H. J., and Kramer, P. J. (1946). Ecology 27, 47-53. 
Parker, R. A. (1969). Biometrics 24, 803-821. 
Reed, J. F. (1934). Viable Seeds in the Forest Floor. Unpublished data. Duke Univ. 
Slobodkin, L. B. (1964). "Growth and Regulation of Animal Populations." Holt, New 

York. 
Smith, C. C. (1940). Ecol. Monogr. 10, 421-484. 



9 

Analog Computer Models 
of "The Wolves of Isle Royale" 

EDWARD J. RYKIEL, JR., AND NANCY T. KUENZEL 
INSTITUTE OF ECOLOGY AND DEPARTMENT OF ZOOLOGY, 

UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 

I. The Plant-Moose-Wolf Food Chain 514 
A. Introduction 514 
B. Basic Data 515 
C. Derivation of System Parameters 518 
D. Block Diagram 520 
E. General System Equations 521 

II. Description of Models 521 
A. Model Hierarchy 521 
B. The Linear Model 522 
C. Nonlinear Model I 525 
D. Nonlinear Model II 526 
E. Forcings 527 

III. Time Behavior of Models 527 
A. Free and Forced Responses 527 
B. Steady States 529 
C. Displacements from Steady State 533 
D. Selected Comparisons 536 

IV. Evaluation of Models 537 
References 541 

University of Georgia, Contributions in Systems Ecology, No. 5. 

513 



5 1 4 EDWARD J. RYKIEL, JR. AND NANCY T. KUENZEL 

L The Plant-Moose-Wolf Food Chain 

A. INTRODUCTION 

Ecologists more and more are describing natural communities as 
though they were systems in the engineering sense: mutual causal 
machinery with inputs, outputs, and holistic function. Such systems 
should, therefore, be amenable to mathematical description and modeling. 
Engineers, however, have never had to deal with systems of such 
complexity as those encountered in ecology, and current mathematical 
tools and perspectives allow for only crude analyses of oversimplified 
systems or subsystems of the larger ecosystem. 

Since methods of describing whole systems in a fashion which would 
permit completely realistic simulation modeling are not obvious at this 
time, all mathematical relationships thus far developed deal with one or 
another of the major subsystems of natural communities. Examples of 
classes of these major subsystems are mineral cycling and energy flow 
components, both of which contribute information necessary for proper 
understanding of the ecosystem as a whole. 

In this chapter an energy-flow subsystem of the Isle Royale National 
Park ecosystem is modeled. This system is the plant-moose-wolf food 
chain as described in L. David Mech's study, "The Wolves of Isle 
Royale" (Mech, 1966). The technique will consist in applying various 
mathematical functions to define energy transfers within this system, and 
testing the behavior of the resultant systems against known aspects 
of reality. 

The modeling problem was approached by first attempting to simulate 
steady state conditions on the analog computer based on information 
contained in Mech's paper. Following establishment of realistic steady 
states, certain hypotheses about both the analog computer models in use 
and the actual plant-moose-wolf trophic structure were tested. In 
making these comparisons, the following considerations of Mech 
provided guidance: 

(1) "The important question is whether wolves merely substitute for other 
mortality factors or whether they kill more animals than other factors would. The 
history of Isle Royale moose affords an answer. Before wolves became established, 
the herd increased to an estimated 1,000 to 3,000 animals in the 1930's, decreased 
drastically a few years later, and built up again in the late 1940's. The limiting 
factor was food supply. 
(2) "Apparently the Isle Royale wolf and moose populations have reached a state 
of dynamic equilibrium. Each is relatively stable, so any substantial fluctuation 
in one probably would be absorbed by the other until another equilibrium is reached. 
(3) "If some extraordinary factor suddenly reduced the moose population by half, 
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the wolves probably would have such difficulty killing enough animals that inferior 
individuals might not be allowed to share what prey is taken. 
(4) "Conversely, if the moose population increased significantly, wolves would find 
hunting easier and might eat only preferred parts of their prey (Mech, 1966)." 

Three implications important in testing our models can be derived 
from the above considerations: 

(1) Peaks in wolf population oscillations should follow peaks in the 
moose population. That is to say, there will be a lag in the response of 
wolves to changes in the moose population. The wolf population will 
reach a peak approximately when the moose population begins to 
decline from a peak. 

(2) If wolves exert some control over size of the moose population, 
the wolf population should fluctuate less violently than the moose. That 
is, fluctuations in the wolf population should involve a smaller percent 
change in population than should occur in the moose population. 
For example, doubling the moose population would be expected to 
increase the wolf population, but not to the point of doubling it. If, as 
Mech suggests, the wolves ate only preferred parts when moose were 
plentiful, the wolves would then kill many more moose and cause 
a greater rate of change in the moose population than in their own. 

(3) Any general model, which is not to be restricted to present 
conditions, must have more than one steady state, but also must have a 
unique steady state for a given set of conditions. (In this chapter, "steady 
state' ' will be used to indicate regular periodic nonincreasing or non-
decreasing functions as well as constant functions.) 

B. BASIC DATA 

Two types of data useful for modeling appear in Mech's paper: the 
histories of the moose and wolf populations and the amount of food 
passing through the chain. The histories were a particularly attractive 
feature because they enabled us to check the time behavior of our models 
with that actually recorded. 

Moose probably reached Isle Royale about 1905 by swimming from 
Canada. The herd was estimated at 200 animals in 1915. In the years 
following, the moose herd went through several population oscillations. 
For some 15 years from 1915 to 1930, the number of animals rose steadily 
from 200 to an estimated 1000-3000. About this time apparently, the 
carrying capacity of the environment was exceeded, and a crash occurred. 
The moose herd dwindled over the next 13 years to a nadir of 171 animals 
in 1943. Following this low point, the herd once again began to build 
and went through another smaller oscillation. This oscillation was 
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reduced in size, presumably because of previous damage to the vegetation 
by the large herd. A peak of about 800 animals was reached in 1949, 
and the number declined to about 290 in 1957. During the recovery 
period after this decline, wolves apparently developed into a significant 
factor (Fig. 1). 

315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 
Year 

FIG. 1. Histories of the Isle Royale moose ( · ) and wolf (O) populations. 

The existence of wolves on Isle Royale was first definitely established 
in 1952, although evidence had indicated their earlier presence. The 
wolf population increased from an estimated two animals in 1952 to at 
least 22 animals in 1961 (Fig. 1). During the period of Mech's study 
(1959-1961), wolf-moose interactions were strong. Mech concluded 
that moose were by far the most important energy source for the wolves, 
and that the moose and wolf populations had stabilized. 

The amount of food passing through the chain was estimated by Mech 
in several ways. He estimated the weight of vegetation consumed by a 
moose herd of 600 animals by extrapolating from data on the food 
consumption of a captive 800-lb moose. The herd was considered to 
consist of 564 * 'average* ' 800-lb moose. He estimated the weight of 
moose consumed by wolves by examining remains of wolf kills. Wolf 
weights were estimated by considering an ''average" wolf to weigh 72 lb; 
this figure was applied to a total of 21 "average" wolves on Isle Royale 
to obtain an estimate of population biomass. The important point to 
note here is that these calculations lead to a pyramid of energy transfer. 
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Figure 2 summarizes virtually all of the energy flow data available in the 
paper which was relevant to modeling the system. 

Table I lists the values of system parameters available directly from 

TABLE I 

KNOWN SYSTEM PARAMETERS 

Parameter 

Area of Isle Royale 

Wolf population weight 

Weight of moose eaten by 
wolves per year 

Weight of vegetation eaten 
112 average moose 

Number of average moose 
the herd 

by 

in 

Value 

210 square miles 
(544 X 10e m2) 

1512 1b 

89,425 lb 

1,156,4001b 

564 

Explanation 

72 lb/average0 wolf; 
21 average wolves 

112 average moose; 
800 lb/average moose 

β An average animal is the weight of one animal adjusted for age and sex distribution. 

the paper along with relevant qualifications employed in making the 
estimates. It can easily be seen from Fig. 2 and Table I that most of the 
system parameters needed for modeling had to be derived indirectly. 

Wolves 
782 X I03 kcal 

46,242 xl03kcal 

FIG. 2. Pyramid of energy content of Isle Royale plants, moose, and wolves (adapted 
from Mech, 1966). 
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C. DERIVATION OF SYSTEM PARAMETERS 

Lack of information on most system parameters required us to estimate 
needed values. This situation is common in ecological modeling since so 
few ecosystems have been studied adequately enough to provide measured 
parameter values. Consequently, our calculated values represent what 
are probably very gross estimates of actual conditions on Isle Royale. As 
originally conceived, our model would have contained five compart-
ments: plants, moose, other herbivores, wolves, and decomposers. 
However, it proved impossible to estimate contents of the other herbivore 
and decomposer compartments, although we were able to estimate losses 
to these compartments. As a result, we collapsed our system to a three-
compartment plant-moose-wolf model. 

1. Plants 

The important parameters associated with the plant compartment are: 
energy input, standing crop, respiratory energy loss, loss to other 
herbivores, loss to moose, and loss to decomposers. Direct information 
from Mech's paper was available for only one of these parameters—loss 
to moose. We were therefore obliged to follow an indirect route to the 
information needed. MacFadyen (1969) reported average net productivity 
for the northern hemisphere as 1 k g m - 2 yr_1, 4 X 103 kcal m~2 yr_1, or 
1.6 % of incident utilizable solar radiation, In addition, average gross 
productivity was given as 3.0% of incident utilizable solar radiation. 
These values are certainly high for Isle Royale in Lake Superior, and 
consequently represent maximum conditions. From these figures, it 
was possible to calculate average incident utilizable solar radiation by 
dividing net productivity energy by 0.016 (1.6%). It was then possible to 
estimate average gross productivity by taking 3.0% of the calculated 
average incident utilizable solar radiation. This value represents solar 
radiation actually utilized by plants, and was therefore used as energy 
input to the plant compartment. 

Plant respiration was taken as the difference between gross and net 
production. 

Total herbivore loss was estimated as 10% of net productivity 
(Odum, 1963). Mech's data yielded a value for loss to moose. This value 
was calculated by converting pounds of vegetation to kilograms of 
vegetation, multiplying by the average energy content of 1 kg of plant 
material (4 X 103 kcal), and dividing by the area of Isle Royale. Loss to 
other herbivores was taken as the difference between total herbivore loss 
and loss to moose. 
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Loss to decomposers was taken as the difference between net produc-
tivity and total herbivore loss. 

Plant standing crop was the most difficult parameter to estimate, and 
the following procedure was employed: Total moose browse was 
estimated as the amount of vegetation that would be consumed by 3000 
moose on the basis of Mech's estimate for an average 800-lb moose, plus 
the amount of vegetation that would be needed to support 171 surviving 
animals both for a period of one year. This value was then considered 
arbitrarily to be 1 % of the total plant biomass of Isle Royale. 

2. Moose 

Important parameters associated with the moose compartment are: 
standing crop, respiration, transfer to wolves, and energy loss through 
nonassimilation, nonwolf mortality, and remains from wolf kills. Data on 
standing crop and transfer to wolves were available from Mech's paper. 
The following procedure was used to calculate the standing crop and is 
an example of the type of calculations made for wolves also: Pounds of 
moose were estimated by considering the herd to consist of 564 average 
800-lb animals. This, value was converted to kilograms, and 20 % of the 
kilogram value was taken as the fresh weight protein content of the moose 
(see below). The protein content in kilograms was then multiplied by 
the average energy content of 1 kg of protein, 5.7 X 103 kcal/kg (Brody, 
1964), to yield an estimate of energy content of the moose herd. Brody 
(1964) gives beef protein values ranging from 16.2 to 21 .3% fresh 
weight for various body parts. Therefore, the assumption of 20 % overall 
for moose is probably high, but it helps to compensate for neglected 
carbohydrate and fat. Since the animals are probably 70-85% water, we 
feel that this protein value yields an adequate approximation of energy 
content. 

Moose respiration was estimated as 47 .5% of ingestion based on 
white-tailed deer (Smith, 1966). Ingestion, of course, is the energy 
transfer from plants to moose. 

Transfer to wolves was calculated using the weight of moose transferred 
as given by Mech and the protein equivalent. 

The loss attributable to unassimilated energy, nonwolf mortality, and 
remains from wolf kills was taken as the difference between ingestion and 
respiration plus transfer to wolves. 

3. Wolves 

The important parameters associated with the wolf compartment are: 
standing crop, respiration, and loss through nonassimilation and 
mortality. 
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Standing crop was calculated from Mech's data employing the protein 
equivalent. 

Respiration was taken as 9 0 % of ingestion, an average value for 
carnivores (Odum, 1963). 

The remaining loss was calculated as the difference between ingestion 
and respiration. 

The preceding calculations assume that no growth is occurring in the 
system; or put another way, net production is totally dissipated. In 
addition, all calculations are based on a time period of one year. Table II 
summarizes the derived estimates of system parameters. 

Forcing 

F01 : 7.5 X 103 

TABLE II 
DERIVED SYSTEM PARAMETERS0 

Plant 

xx 

F10 

F12 

^ 1 4 

12 x 103 

3.5 x 103 

3.6 x 103 

19.4 
380.6 

Moose 

x2 : 0.43 
F20 : 9.2 
F25 : 10.1 
F 2 3 : 0.085 

Wolf 

x3 : 0.0014 
F3 0 : 0.076 
^35 : 0.009 

α The F ' s are in kilocalories per square meter per year, and the x's are in kilocalories 
per square meter. 

D. BLOCK DIAGRAM 

Figure 3 represents the compartment model of the Isle Royale plant-
moose-wolf food chain as defined above. This model is quite obviously a 
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FIG. 3. Block diagram of Isle Royale system. 
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great oversimplification considering the ecosystem as a whole, but in 
terms of the predator-prey subsystem, we feel it reflects the actual 
situation sufficiently well to be utilized in a study of this type. The energy 
pathways and coupling of compartments are shown in a general way. 
A major assumption associated with the model is that no factors other 
than those indicated significantly affect the plant-moose-wolf relationship 
in terms of energy flow at the system level. 

E. GENERAL SYSTEM EQUATIONS 

General equations of state were developed by considering the balance 
between energy inputs and losses from each compartment. Thus, 
referring to Fig. 3, a suitable system of general equations is 

dxjdt = F01 - (F10 + F12 + F14 + F16) 
dx2\dt = F12 - (F20 + F23 + F2b) (1) 
dxjdt =F23-(F30+FZ5l 

where xx is plants, x2 is moose, and x3 is wolves. 
The remainder of this chapter will be concerned with consequences of 

representing these relationships by several different models, as revealed 
by an analog computer study. The computer used was an EAI TR-20. 

IL Description of Models 

A. MODEL HIERARCHY 

A series of equations describing the fluxes associated with each 
compartment can be generated. These flux equations can be grouped on 
the basis of linearity or nonlinearity, as outlined in Section III.G of 
Chapter 1. Flux functions involving only one compartment (donor or 
recipient) are generally linear, while functions involving two or more 
compartments (e.g., donor and recipient jointly) are nonlinear. 

Several equations from the Chapter 1 hierarchy were selected and 
applied to Eqs. (1) to define feeding functions, with the constraint that 
the feeding function for "other herbivores" was always assumed linear 
since the content of this compartment was unknown. All nonfeeding 
fluxes indicated in the block diagram of Fig. 3 were considered to be 
linear, i.e., the assumed form of these fluxes was a constant fraction of the 
donor compartment in each case. This pattern was followed for each 
model. In a more detailed study, nonfeeding fluxes could also be made 
to depend on more than one compartment or on one compartment in 
a nonlinear manner. 
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We assumed a priori, based on the rationale of each formulation as 
explained in Chapter 1, that models would better approximate reality 
in a sequence from linear to simple nonlinear to complex nonlinear 
feeding relations. Consequently, the following three forms were chosen 
for the feeding functions. 

Fa = Φαχί (2) 

F a = Φτοχΐχο (3) 

F a = ΦίΜ1 - aiJxi)· (4) 

The models were tested essentially on the basis of this hierarchy. 

B. T H E LINEAR MODEL 

The rationale of this donor-controlled formulation of feeding fluxes 
[Eq. (2)] seems grossly oversimplified for both grazing and predatory 
cases: the fluxes depend solely on sizes of the donor compartments. 
Consequently, we believed from the outset that this model would 
inadequately represent the system, and furthermore would be the poorest 
of those examined. The primary motivation for exploring it was to test 
the adequacy of the data and to gain experience in various techniques of 
analog computer simulation. Yet, because of its usefulness, we returned 
to it again and again. 

The set of differential equations describing the linear system is 

dxjdt = .F01 — (p10 + τ12 + τ14 + /x15) xx = F01 — L^ 

dxjdt = τ12χλ — (p20 + τ23 + λ25) x2 = τ12χ± — L2x2 (5) 

dX^jat = T23#2 (/>3o + A35) #3 = T23#2 ^ 3 ^ 3 · 

The p-coefficients signify respiration rates, τ represents feeding rates, 
μ mortality, and λ other energy loss rates. The summed loss rate 
coefficients of each respective compartment are ^ ,L2, and L3 . 

Taking flux [φ^ , Eq. (2)] and standing crop (xt) values calculated 
previously (Table II), rate constants φ^ were evaluated as φ^χ^Χι. 
Table III lists the rate constants calculated in this general manner 
(i.e., with appropriate modifications for the nonlinear systems) for all 
models. With all necessary data now available, voltage scaling of the 
system equations preparatory to analog programming can proceed. 

To simplify voltage scaling, a table similar to Table IV, which 
illustrates calculations for the linear model, is constructed. After the 
computer variables have been calculated, they are substituted into the 
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original unsealed differential equations. Amplifier gains then are evaluated 
by using the scale factor of the left-hand term as a multiplier and using 
scale factors of the right-hand terms as divisors of their respective terms 

TABLE III 
RATE CONSTANTS 

Constant Linear Nonlinear Ia Nonlinear 11° 

Pio 

/*15 

T1 4 

T l 2 

U 
P20 

^25 

T2 3 

u 
/>30 

^35 

L3 

0.292 
0.300 
0.0317 
0.00162 
0.625 

21.43 
23.49 

0.198 
45.12 
54.29 

6.43 
60.72 

a Blank entries in the nonlinear columns signify the same value as in the linear model. 

TABLE IV 
VOLTAGE SCALING 

State 
variable 

(kcal m - 2 ) 

Xl : 12.0 x 103 

x2 : 0.43 
x3 : 0.0014 

Forcing 
(kcal m - 2 yr_1) 

Estimated 
maximum 
(kcal m - 2 ) 

24.0 x 103 

1.80 
0.0070 

Estimated 
maximum 

(kcal m - 2 yr_1) 

Scale 
factor (at) 

(V/kcal m"2) 

10/24 x 103 = 0.417 x 10"3 

10/1.8 = 5.556 
10/0.007 = 1429 

Scale 
factor (σ) 

(V/kcal m-2 yr"1) 

Computer 
variable 

(V) 

[0.417 x l O " 3 ^ ] 
[5.556 x2] 

[1429 ^3] 

Computer 
variable 
(V yr"1) 

F01 : 7.5 x 103 10.0 x 103 10/10 x 103 = 1 x 10~3 [1 x 10"3F01] 

0.00376 0.00181 

141.67 0.198 
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(cf. Chapter 1, Section IV. A, for procedural details). The system 
equations can thus be rewritten as 

[0.417 x lO"3^] 

[5.556*2] 

[1429*3] 

Since gains of one and ten are those directly available on the TR-20 
analog computer, it is frequently necessary to combine the rate constant 
with the gain to obtain a number between zero and one that can be set 
on a potentiometer and appropriately amplified. Varying the setting can 
still be considered as varying only the rate since the gain is interpreted as 
constant. However, the potentiometer settings will not correspond to 
actual rate constants. In addition, the various loss rates can be program-
med individually or lumped into a single value. For convenience, loss 
rates are summed together in the following equations and in the analog 
computer programs. They are represented byZ^ (e.g., Table III), where i 
indicates the compartment incurring the loss. The final voltage-scaled 
equations for the linear model are 

[0.417 x 10-3^] = 0.417[1 x 10~3^01] - (1)(0.625)[0.417 X 10-8*J 

[5.556*2] = (13,324)(0.00162)[0.417 x 10"3^] - (1)(45.12)[5.556*2] 

[1429*3] = (257)(0.198)[5.556*2] - (1)(60.72)[1429*3]. (7) 

The initial condition settings of the various computer variables are 
now calculated by multiplying the scale factor times the state variable. 
The forcing must also be multiplied by its gain in order to obtain the 
correct setting. The program corresponding to Eqs. (7) is shown in 
Fig. 4a. 

Since no time scaling (Chapter 1, Section IV.B) was involved in the 
calculations, and since all data used were on the basis of one year, one 
second of computer time corresponds to one year of system behavior. 

0.417 x 10-3 

1 x 10-3 

0.417 x IP"3 

0.417 X lO"3 

5.556 

[1 X 10-3F01] 

(Pio + ria + r14 + /χ15)[0.417 x 10-**J 

0.417 x 10"3 

5.556 

-3-(r12)[0.417x KHaJ (6) 

5.556 

1429 
5.556 

(P20 + T23A25)[5-556tf2] 

(r23)[5.556x2] 
1429 
1429 (P3o + A35)[1429*3]. 
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FIG. 4. Analog computer programs of three models, (a) linear model, (b) nonlinear 
model I. (c) nonlinear model II. 

C. NONLINEAR MODEL I 

Nonlinear model I represents a system with cross-product interactions 
between compartments. In the natural system such interactions do, of 
course, occur, but the problem is how to represent them mathematically 
in system equations. Equation (3) was used as the form of feeding 
fluxes. It should be pointed out here that the biological nature of the 
interaction is not specified by this formulation. It simply states that the 
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flux depends in some manner on both donor and receiver compartments. 
The following equations, derived in the same manner as those of the 
linear system, describe the model: 

dxjdt = FQ1 — (p10 + T1 4 + /Χ15) Χλ — 712*2*!* 

aX^jut = Τ12#2ΛΊ V.P20 Γ ^25/ ^2 Τ23Λ'3Λ'2 \ * / 

dX^jdt = Τ 2 3 # 3 # 2 (^30 I ^3δ) Χ3 · 

The analog computer program resulting from these equations is shown 
in Fig. 4b. The asterisk is explained below. 

There are other differences between nonlinear model I and the linear 
model besides the fact that the former allows interaction between 
compartments. The feeding-rate constants, r12 and τ23 , must be recal-
culated since they now depend on two compartments. The term marked 
with an asterisk in Eqs. (8) was dropped from the first equation in 
programming because its value was too small to be set on a potentiometer. 
This situation may arise when a flux is small in respect to one compart-
ment, but large in respect to another. Thus, in Eqs. (8), F12 = τ12χ2χ1 = 
19.4 kcal m - 2 yr_1, which is a small fraction of total efflux from the 
plant compartment (F10 + F12 + F1 4 + F15 = 7500 kcal m - 2 yr_1, from 
Table II), but is the total influx to moose [Eq. (1)]. Also, the standing 
crop of plants is 12,000 kcal m - 2 versus only 0.43 for moose (Table IV). 
Thus, τ12χ2χ1 is negligible in the first equation but significant in the 
second. Dropping it is reflected in the computer program of Fig. 4b. 

D. NONLINEAR MODEL II 

In nonlinear model II, interaction between compartments again occurs, 
but differently than in nonlinear model I. This model is based on Eq. (4) 
which is analogous to the basic Lotka-Volterra competition relation. 
The nature of the interaction is specified somewhat better here in that its 
strength can be adjusted by varying atj, hence the terminology 
4 Controlled nonlinear' ' flow. Equation (4) is an attempt to show that the 
flux between compartments is primarily a function of the donor 
compartment, but with a negative feedback correction factor representing 
compartment interaction. Application of Eq. (4) yields the following 
descriptive equations: 

dxjdt = F01 — λ10χ± — τ12χτ* + τ12α12χ2χ^ 

aX2\(ll = Τ1 2#ι Τι2(Ζι2Χ2Χι Λ2ο#2 Τ23Λ'2 I T 22^22^2^ 2 (") 

UX^/dt = Τ 2 3 # 2 ^23^23^3^2 ^30Χ3 · 
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The analog computer program resulting from these equations is shown 
in Fig. 4c. 

In this model, values for ai}- are unknown for any natural system and 
were arbitrarily chosen to be 0.25. In addition, a{j was not varied in 
simulation since the intent was only to obtain a representative behavior 
for this model. Once again it is necessary to recalculate r12 and r23 on the 
basis of Eqs. (4). Negligible terms again are dropped, and this is reflected 
in the computer program of Fig. 4c. 

E. FORCINGS 

Energy input to the plant compartment is represented by the system 
forcing function. Several different types of forcings were employed on 
each model to observe their effects on system behavior. 

The first type was a constant input of the form JF01 = ky the estimate 
(Table II) of average annual gross productivity. The analog computer 
programs of Fig. 4 show this type. A constant forcing is adequate to 
examine the system on an average annual basis, but it cannot be used to 
generate a realistic yearly cycle of time behavior since gross production 
varies seasonally. 

The second type of forcing used was a "self-generating" input of 
the form F01 = gxx . The plant compartment is driven through 
a positive feedback loop by a constant fraction of its current energy 
content. A program to generate this type of forcing is illustrated in 
Fig. 5a. The self-generating input is realistic for certain kinds of growing 
systems, but again a yearly cycle is not inherent, and neither is stability. 

The third type of forcing was a sinusoidal function of the form 
F01 = A sin œt, which varied from zero input to twice the calculated 
value of the constant forcing. Twice the calculated value was used in 
order to yield an average value equivalent to the constant forcing. This 
function offered the possibility of crudely simulating the yearly cycle of 
energy input to the plant compartment, and was therefore adjusted to a 
period of one year. An analog program for generating it is shown in 
Fig. 5b. 

IIL Time Behavior of Models 

A. FREE AND FORCED RESPONSES 

Two general characteristics of dynamic systems are their free and 
forced responses. Free responses result when forcings on a system are 
zero. Forced responses result when initial conditions of the compartments 
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Inverter 

(a) 

Amplitude Zero adjust 

(b) 

FIG. 5. Programs for (a) self-generating and (b) sinusoidal forcing functions. 

are zero, and the system is forced. These responses are components of 
the general solution of differential equations (Distefano et al., 1967). 
Figure 6a presents these responses of the linear model. All graphs shown 
in Figs. 6-8 are taken from actual analog computer outputs as recorded 
by an XY-plotter. It should be kept in mind that values graphed are 
scaled, but that the actual values (obtained by utilizing the scale factors 
a{) would appear qualitatively the same. 

Both free and forced responses shown in Fig. 6a are characteristic 
of linear behavior. Each compartment goes through a period of transient 
behavior and approaches a steady state when inputs balance losses. All 
compartments of the system require about eight years to reach steady 
state, both in free and forced responses. This is true regardless of 
whether the constant or sine forcing is used. The phase and amplitude 
differences which can be observed in this and other sine-forced graphs 
will be discussed in Section III.D. 

Figure 6b shows the only response graph obtainable for nonlinear 
model I. The free response of this system differs from that of the linear 
model. Curves for the plant compartment are very similar. However, 
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the moose and wolf compartments show distinct differences in curvature. 
Two additional characteristics should be noted. The order in which the 
compartments approach zero is that which would be expected in nature 
should the situation ever occur. That is, wolves would disappear when 
there no longer were sufficient moose to support them and, in turn, the 
moose would disappear when there was no longer enough vegetation. 
The time response differs considerably from the linear model. The 
plant compartment requires longer to get close to zero, whereas both 
wolves and moose take less time. 

No forced response graph for nonlinear model I could be obtained, for 
two reasons. First, no behavior at all can be generated if the initial 
conditions are zero because of the double-product feature of Eq. (3) used 
to couple the compartments. Second, the system is stable only when 
precisely set at the calculated steady state values. Thus, no values 
greater than zero but less than initial conditions can be set which 
will allow a forced response. In essence, nonlinear model I cannot 
describe a system with a growth phase. In fact, this model does not 
possess a steady state under the conditions imposed by the Isle Royale 
data, as will be discussed further below. 

Figure 6c illustrates the type of behavior obtained from nonlinear 
model II. Free and forced responses are both very similar to those of the 
linear model. Nonlinear model II thus behaves dynamically essentially 
as a linear model despite the superior biological realism of the controlled-
flow rationale [Eq. (4)] on which it is based. This behavior is due to the 
circumstance that the nonlinear terms remaining in the equation again 
are of small magnitude when compared with the other terms. If the 
interaction coefficient (a^) is increased to a value that makes the term 
in which it occurs sufficiently large relative to the other terms, behavior 
of nonlinear model II will depart from the linear response. 

B. STEADY STATES 

Figure 7a shows the steady state behavior of the linear model with 
constant and sine forcings. The behavior of the sine-forced system is 
consistent with that noted earlier for the forced (sine) response. This 
type of behavior is well known for linear models of this kind. 

A self-generating input to the plant compartment was attempted. The 
plants proved very sensitive to this function (Fig. 8d). Since this input 
represents positive feedback of some fraction of the compartment's 
content, the plants increase or decrease unless input exactly balances 
losses. If the equilibrium value can be set, a steady state similar to that 
produced by constant forcing results. 
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Figure 7b shows the "best" behavior that could be obtained from 
nonlinear model I with self-generating and constant forcings. This 
system could not be sine-forced at all because it was too sensitive. The 
oscillations shown are inherent. Only the general form and outcome of 
the graphs are characteristic because behavior was difficult to duplicate. 
The system was observed to be so sensitive at several points that very 
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FIG. 6. Free and forced responses, (a) linear model, (b) nonlinear model I. 
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FIG. 6 (c) nonlinear model II. (See text for explanation). 
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different behavior could be obtained by changing a key parameter only 
slightly. Note also that these graphs represent relatively long time 
behavior. On short time scales behavior appears to stabilize, but this is 
only because the system has not run long enough either to blow up or 
run down. In general, if the plant compartment is increasing, even 
slightly, the system explodes. If the plant compartment is decreasing, 
the system collapses. Both of these types of behavior are obtained 
regardless of the type of forcing applied. It is extremely difficult to 
maintain the plant compartment constant. 

Williams (Volume II) states that there is no satisfactory steady state 
fora self-generating, three-compartment model of the type presented here. 
Our results substantially agree with this statement, however, on slightly 
different grounds. While admittedly estimated, our data are derived from 
a real ecosystem rather than theoretical considerations. This point is 
important because Williams' analyses show that a system of this type 
with either a constant forcing or a self-generating forcing has a mathe-
matically definable steady state. We could not produce such a steady 
state with nonlinear model I, however, because the data do not meet the 
requirements for stability as mathematically defined. 

Figure 7c shows the steady state behavior of nonlinear model II with 
constant and sine forcings. The behavior again is essentially similar 
to that of the linear model and, moreover, the self-generating input also 
produced behavior virtually identical to the linear response. 

C. DISPLACEMENTS FROM STEADY STATE 

Several tests involving displacements from steady state were performed 
on the analog computer. These tests centered on the linear model 
because nonlinear model I could not be displaced without blowing up 
and nonlinear model II behaved essentially like the linear model. 

Figure 8a shows the type of behavior obtained from the linear model 
with a constant forcing when the plant compartment was reduced from 
its initial condition level. Any displacements in the linear model initial 
conditions always result in return to the same steady state, as is well-
known from the theory of linear systems. In addition, uncoupling 
compartments starting from the last compartment has no effect on the 
preceding compartments. Thus, when the wolf compartment is 
uncoupled, plant and moose compartments respond exactly as if the 
wolves were still connected. This is one of the logic deficiencies of the 
linear model. 

Figure 8b shows the type of behavior obtained if a sine forcing is used. 
The initial conditions of the plant compartment were adjusted both 
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above and below the calculated steady state value. Again, as known from 
linear theory, all compartments return to the same steady state levels. 
Figures 6a, 7a, and 8a,b summarize the behavior of the linear model with 
constant and sine forcings. 

4 5 6 7 8 
Seconds = years 

(a) 

Plants 

12 

FIG. 8. Displacements from steady state, (a) linear model. Plants reduced by 
one-half original value. 

5 6 7 
Seconds = years 

(b) 

10 II 12 

FIG. 8 (b) linear model with sine forcing. Plant compartment increased above and 
decreased below steady state. 
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FIG. 8 (c) linear model. Forcings reduced to one-third original value. 

12 
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(d) 

15 20 25 30 

FIG. 8 (d) linear model and nonlinear model II. Self-generating forcing gxx plant 
compartment responses. 

Figure 8c illustrates the type of behavior obtained from the linear 
model by varying the forcing. All compartments come to new steady 
states, as predicted by steady state solutions of Eqs. (5). Readjustments 
also occur in the case of sine forcings. Thus, the linear model and 



5 3 6 EDWARD J. RYKIEL, JR. AND NANCY T. KUENZEL 

nonlinear model II have many steady states available depending on 
values of the forcing. 

Figure 8d shows results of varying the self-generating inputs to the 
linear model and to nonlinear model II. This type of behavior was 
mentioned earlier (Section III.B) when it was noted that the linear 
system was very sensitive to a self-generating input. This sensitivity is 
illustrated by the fact that the whole range indicated on the graph is only 
one-half of full scale forcing input. Furthermore, the three graph lines 
marked with an asterisk actually represent a range of variation of only 
3.5% of full scale. It appears that the plant compartment can be main-
tained only when the input gxx equals the loss L1x1 (i.e., g — Lx = 0). 
This condition also holds for nonlinear model I in that behavior is 
prolonged the better this condition is met. That is, as g — Lx deviates 
from zero either positively or negatively by a greater and greater amount, 
nonlinear model I blows up faster and faster. It thus seems charac-
teristic of self-generating inputs that there is a very narrow range of 
values which will allow a steady state. An important aspect of the types 
of forcings used in our models is that the self-generating forcing is 
density-dependent, whereas the constant and sine forcings are density-
independent. 

D. SELECTED COMPARISONS 

It was mentioned earlier (Section III.A) that phase and amplitude 
differences could be noted in the sine-forced systems. The phase shift 
occurs in the sequence: plant, moose, wolf. That is, peaks in plant 
oscillations follow those of the sine forcing in time, moose lag the plants, 
and wolves lag the moose (Figs. 6a, 7a, and 8a,b). There is, then, a 
phase shift between the input to each compartment and its responding 
output. For the type of system modeled, producer-herbivore-carnivore, 
the phase responses observed are not unrealistic. 

Nonlinear model I oscillates intrinsically and it is instructive to 
examine the phasing of these oscillations (Fig. 7b). In the self-generating 
system, a phase shift in the moose and wolf compartments occurs such 
that wolf peaks become aligned with moose troughs. In this situation, the 
system decays, and both moose and wolf compartments go to zero. 
With a constant forcing, the phase shift is such that wolf peaks become 
aligned with moose peaks, the system becomes self-amplifying, and 
blows up. Also mentioned earlier (Section III.B) was the fact that, 
regardless of the forcing, the system is unstable, exploding if the plant 
compartment is increasing, and decaying if it is decreasing. That is, 
if the plant compartment is increasing wolf peaks become aligned with 
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moose peaks, and if the plant compartment is decreasing, wolf peaks 
become aligned with moose troughs. 

Amplitude changes can also be noted in the same figures. For the 
linear model and nonlinear model II the amplitudes of oscillation decrease 
in the sequence: forcing, plant, moose, wolf. This decrease is absolute 
in the sense that it holds when scaling effects are taken into account. 
Oscillations occurring in the inputs are damped in the outputs. But a 
steady state oscillation is eventually developed in each compartment of 
these two systems because no further phase shift occurs (i.e., the phase 
angles are constant, as would be expected in a linear system lacking 
feedback). 

In nonlinear model I, however, amplitude changes occur through time 
representing both increases and decreases. The self-generating system 
behavior shown in Fig. 7b does, in fact, show both an increase and a 
decrease in compartmental amplitudes. Comparing the self-generating 
and constant forcings, initial oscillations in both cases are quite similar 
in phase and amplitude. The amplitude is increasing in both cases. 
However, in the self-generating system (plant compartment decreasing 
very slightly), the oscillations reach a maximum amplitude, then decline 
because the phase shift occurs as previously noted. That is, wolf peaks 
become aligned with moose troughs, and self-damping oscillations are 
produced. In the constant-forced system (plant compartment increasing 
very slightly), the amplitude continues to increase until blow-up occurs, 
again because of the phase relations. That is, wolf peaks become aligned 
with moose peaks, and self-amplifying oscillations are produced. In the 
case of this model, the phase angles are not constant and change with time. 

IV* Evaluation of Models 

The accepted yardstick for judging a model is how well its behavior 
conforms to that of the real system it is designed to represent. If the 
correspondence is good over a reasonably wide range of empirical 
observations, then it is assumed to hold also beyond this range and into 
the realm of prediction. 

Figure 9 depicts the plant-moose-wolf food chain of Isle Royale as an 
input-output block. The behavior of the system, y(t)> is related to 
forcings z(t), by a "transfer function" H which expresses how the system 
machinery processes input to generate output 

y(t) = H ■ z{t), 

where H is the output/input ratio, y(t)lz(t). 
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FIG. 9. The Isle Royale system as a functional block. 

In Section I.A, three implications for testing models of the Isle 
Royale system were developed from Mech's considerations of moose-
wolf interactions. The first two referred to oscillating systems which 
were judged to be more realistic than nonperiodic ones. In these, (1) 
wolf population peaks should lag those of their prey, and (2) the wolves 
should also fluctuate with smaller amplitudes than moose. The other 
implication was (3) that a unique steady state should exist for a given 
set of conditions. 

The linear model and nonlinear model II both showed a general 
capability to satisfy all three of these criteria. Under sinusoidal forcings 
wolves lagged the moose population and fluctuated with smaller ampli-
tudes. Both models also were "globally stable," i.e., came to new steady 
states when perturbed either by changes in forcings or parameters. In 
addition, free and forced response characteristics were reasonable: In 
Figs. 6a and c it was observed that moose and wolves both took about 
eight years either to become extinguished or to grow from zero to steady 
state (both models, incidentally, were capable of reproducing as steady 
states the observed standing crops of all three compartments). In the 
actual system it took 12 (1919-30) and 6 (1943-49) years for moose to 
develop from low to high populations on two occasions when analogs 
of forced responses could be observed (Fig. 1), and corresponding 
declines (analogous to free responses) took place in 13 (1930-43) and 
8 (1949-57) years, respectively. Similarly, the recorded history of the 
wolf population shows the essential forced response to have occurred in 
8 years (1952-60). 

Thus, on the basis of (1) ability to reproduce realistic standing crop 
levels as steady states, (2) moose-wolf relationships under periodic 
behavior, (3) reasonableness of free and forced responses, and (4) general 
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system stability, both the linear model and nonlinear model II appear 
to be satisfactory representations of the Isle Royale system. 

Nonlinear model I, on the other hand, is unacceptable. It did not 
possess a satisfactory steady state under conditions imposed by the basic 
data. In periodic behavior, its oscillations were inherent, with phase 
shifts determined by whether the plants were growing or declining, and 
the model in general proved unstable. A strict forced response could not 
be determined, and the free response of both moose and wolves (Fig. 6b) 
was more rapid than the actual data (Fig. 1) suggest. Hence, nonlinear 
model I, despite its superior biological logic in terms of representing 
plant-moose and moose-wolf interactions, must be rejected as a working 
model of the Isle Royale ecosystem. 

To say (above) that the linear model and nonlinear model II are both 
' 'satisfactory'' means that reasoned relationships between the functional 
compartments [Eqs. (1) and Fig. 3], and the expression of these relation-
ships in terms of derived numerical parameters (Tables II and III) 
produced a model with reasonable capability for simulating real system 
behavior, given appropriate inputs. In other words, the basic kinetic 
relations H of the system machinery have been captured in the model 
so that any desired performance y(t), e.g., that of Fig. 1, could be 
obtained by forcing the system with an appropriate input #(£). However 
complex the latter, it can in principle always be found 

z{t) = H-i - y{t) 

although its biological significance possibly may be obscure. 
Several questions remain in evaluating the relative merits of nonlinear 

model II and the linear model, both of which have similar dynamic 
responses over the range investigated. Nonlinear model II is biologically 
more appealing for several reasons. It is based on a traditional formulation 
of ecological interaction [Eq. (4)]. It acknowledges and represents that 
if the predator is removed, this will (unlike in the linear model) have an 
effect on the prey, and these in turn on the plants. This is basic biology, and 
to exclude it from a model of trophodynamics is to appear to be patently 
unrealistic. On the other hand, little was actually gained operationally 
in terms of dynamic characteristics or useful parameters to justify 
introducing the mathematical complications of a "superior" rationale. 
The fact is that in this case more is lost in moving beyond the realm of 
linear theory, which is technically the best-understood in systems 
science, than is gained by introducing nonlinear logic, since differences 
between the two models that do not begin to appear until outside the 
range of available data cannot be evaluated anyway. The linear model at 
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least has a complete theory behind it. In substituting other data into 
these models, however, one may find that their behaviors diverge. The 
feeding relations qualitatively may be identical with those of Isle Royale, 
but changes in parameter values might possibly alter the basic behavior 
pattern of nonlinear model II. This attribute of nonlinear model II 
illustrates that model behavior can depend upon system parameters. 

Thus, the problem of balancing mathematical and biological considera-
tions in simulation and systems analysis modeling in ecology has no 
general resolution at this time. It would seem that "empirical simulation" 
approaches which proceed purely on the basis of biological considerations, 
such as the experimental components analysis method of Holling 
(1965, 1966), produce no guarantees that "transfer" blocks based on 
selected mathematical functions and connected in complex patterns of 
mutual causality will, with fidelity, reproduce behavior of natural 
systems. It would almost be better to know with certainty the extent and 
conditions under which an oversimplified but theoretically understood 
model will not duplicate the real system's response. 

When a model is "oversimplified" is not entirely clear either. For 
example, the following characteristics may not be altogether unreasonable 
to expect as properties of many ecological systems. Consider, in the 
system of Fig. 9, responses to two different inputs, z1 and z2 . 

yi(t) = H · *x(0 
y2(t) = H · *8(f). 

If both inputs are applied together, then 

y(t) = H · (Zl(t) + *2(0), 

and if y(t) = y^t) + 3>2(0> t n e system H is said to have the property of 
additivity. Further, if some multiple m of an input is applied to the 
system, the response is 

^s(0 = H ' mz^t). 

If y*(t) = m ' Ji(0> t n e n t n e system is said to have the property of 
homogeneity. 

These two properties are not so unreasonable as potential charac-
teristics of a large class of ecological systems over a wide range of 
dynamic behavior: Additivity asserts that the response to a sum of 
inputs equals the sum of the separate responses to each; homogeneity 
says that the response to a constant multiple of any input equals the 
response to the input multiplied by the same constant: 

% Λ ( 0 + *»2*2(0) = mJJz^t) + m2Hz2(t). 
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These two properties together comprise the principle of superposition, 
which is both necessary and sufficient in systems science to define a linear 
system. 

Thus, it remains for the future to assess the relative merits of simple 
versus complex models and to evolve a general rationale for ecological 
simulation and systems analysis. In the present case of the Isle Royale 
ecosystem, simple models appear to embody many of the essential 
dynamic features that are of interest to the functional ecologist. 
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L Introduction 

In his final paper, "The trophic-dynamic aspect of ecology," 
Raymond Lindeman (1942) gave a new direction to ecological research 
by demonstrating the importance and broad applicability of two concepts, 
trophic level and energy flow, in the analysis of ecosystems. In this paper 
Lindeman also introduced some lasting ideas concerning energy flow— 
that the productivity of a lake is lowest during its senescence, and that the 
efficiency with which the energy in a given trophic level is transferred 
to the next trophic level increases with successive levels. Much of the 
information for this paper was drawn from his previous studies 
(Lindeman, 1941 a,b) of the ecosystem in a shallow Minnesota pond, 
Cedar Bog Lake. 

This chapter describes an attempt to convert Lindeman's ideas and 
observations concerning the flow and accumulation of energy in the 
Cedar Bog Lake ecosystem into a mathematical model. The purpose 
behind this attempt was to gain insight into the construction of ecosystem 
models. The model probably has little similarity to the ecosystem which 
Lindeman studied because only a fraction of the information needed to 
simulate accurately the Cedar Bog Lake ecosystem was available in 
Lindeman's publications or elsewhere, and these gaps in information 
were filled by means of educated guesses. Accordingly, the resulting 
model cannot yield any great insights into the functioning of ecosystems. 
However, an account of its construction may be of assistance to others in 
the development of workable ecosystem models. The detailed examina-
tion of Lindeman's data which the modeling required also led to a 
réévaluation of certain of his ideas. 

IL Lindeman's Study of Cedar Bog Lake 

The data on the ecosystem in Cedar Bog Lake were obtained from 36 
surveys irregularly spaced over a period of four years (Lindeman, 1941b). 
Lindeman identified and measured the standing crop of most of the 
common macroscopic organisms and many of the microscopic forms. 
He also investigated the food habits of many of the organisms and in 
part diagrammed these as a fairly complex network system (Fig. 1). 
His description of the ecosystem mentions additional groups of organisms 
and pathways not included in this figure. The data on standing crop were 
grouped into eight categories, nannoplankton, net plankton (plant), 
benthic plants (and their epiphytes), Zooplankton (chiefly rotifers), 
browsers (snails, insect larvae, etc.), plankton predators (Chaoborus 
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EXTERNAL 

FIG. 1. Food cycle relationships in Cedar Bog Lake (after Lindeman, 1941b). 

larvae), benthic predators (insects and leeches), and swimming predators 
(insects, leeches, and fish). The annual net production (in grams wet 
weight per square meter) of each of the categories except benthic plants 
was obtained by multiplying the average standing crop by its estimated 
number of turnovers per year. These estimates were drawn from the 
literature and from Lindeman's observations on the life histories of the 
organisms. Annual net production of the benthic plants was assumed 
equal to the average maximum standing crop. These values in terms of 
weight were converted to calories per square centimeter by use of factors 
drawn from the literature and pooled into a simple, unbranched system 
with three trophic levels, producer, primary consumer (herbivore), and 
secondary consumer (carnivore) (Table I and Fig. 2). He apparently 
felt that his data was insufficient to implement the more complicated 
network system suggested by his study of food habits. 

In the trophic-dynamic paper Lindeman (1942) added to his previously 
obtained values for production (now called "uncorrected productivity") 
estimates of the losses due to respiration and prédation, and called the 
sums "corrected productivity'' (Table I). He divided the calories ingested 
by the consumer trophic levels into "prédation," the amount assimilated, 
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TABLE I 
MEAN ANNUAL VALUES FOR ENERGY FLOW (cal cm_2yr_1) IN THE 

CEDAR BOG LAKE ECOSYSTEM0 

Compartment 

Net or 
uncorrected 
productivity 

Respira-
tion Prédation 

Decom-
position 

Gross or 
corrected 

productivity 

Nannoplankton 
Net phytoplankton 
Pond weeds 

Plants 
Zooplankton 
Browsers 

Herbivores 
Plankton predators 
Benthic predators 
Swimming predators 

Carnivores 

16.7 
9.1 

44.6 
70.3 

6.1 
0.8 
7.0 
0.8 
0.2 
0.3 
1.3 

23.4 14.8 2.8 

4.4 3.1 0.3 

1.8 0.0 0.0 

111.3 

14.8 

3.1 

1 Values taken from the data of Lindeman (1941b, 1942). 
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Y 
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FIG . 2. Lindeman's (1941b) analysis of energy flow in the Cedar Bog Lake ecosystem. 

and "decomposition," the amount not assimilated. From comparison of 
the corrected productivity of each trophic level with the energy available 
to it either from the sun or from the preceeding trophic level, he calculated 
progressive efficiencies (Table II); his values for these are still widely 
quoted. Lindeman finally compared his corrected productivities and 
progressive efficiencies for Cedar Bog Lake with corresponding values 
for Lake Mendota, Wisconsin [calculated from the data of Juday (1940)] 
and with other data in the literature, and drew generalizations concerning 
the behavior of ecosystems. 
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TABLE II 
EFFICIENCY WITH W H I C H ENERGY AVAILABLE IN A TROPHIC LEVEL IS 

TRANSFERRED TO THE SUCCEEDING TROPHIC LEVEL0 

Transfer 

Plant/sun 
Herbivore/plant 
Carnivore/herbivore 

Percent efficiency 

(1941b) 

0.1 
9.6 

18.5 

(1942) 

0.1 
13.3 
22.3 

a From the data of Lindeman (1941b, 1942). 

The importance of Lindeman's work lies in the concepts he developed 
and not in the data from which the concepts were abstracted nor in the 
precise methods by which the data were obtained and analyzed. The 
data is scanty. In Cedar Bog Lake only the standing crop of organisms 
was measured. All values for net production and respiration of the various 
trophic levels were estimates drawn from the literature and from general 
observations on the pond and its biota. These values thus appear to be 
little more than educated guesses. 

His mode of calculating total or gross production is also seriously in 
error, as pointed out previously by Slobodkin (1962). Lindeman's 
uncorrected productivity or turnover X standing crop is equivalent to 
yield or net production. Losses to prédation are a part of yield and thus 
should not be added to net production when computing gross production. 
In addition no consideration was given to production in the form of 
reproduction, i.e., eggs, etc., or to the loss in observable benthic plant 
production due to grazing. 

IIL General Approach to Modeling the Cedar Bog Lake Ecosystem 

It is thus clear that there are too many gaps in the observational data 
in Lindeman's papers to construct an energy flow model for the ecosystem 
existing in Cedar Bog Lake, and there is little in other publications on 
the area (Marshall, 1964) to fill these gaps. Models described below are 
based on Lindeman's picture of average values for energy flow in Cedar 
Bog Lake. His values, reasonable or unreasonable, are accepted as far as 
possible and altered only when they contain some obvious and easily 
corrected error in logic or arithmetic. Quantities needed for the construc-
tion of these models and not available in the literature were given 
reasonable arbitrary values. 
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The final nonlinear network model of the Cedar Bog Lake ecosystem 
was developed in a series of steps. First a linear model of Lindeman's 
simple, plant-herbivore-carnivore ecosystem was prepared by abstracting 
the necessary data from his papers. Next, the values for this unbranched 
system were reworked into a network model in which the compartments 
were joined in the manner which seemed most compatible with 
Lindeman's opinions and data. Next this linear model was converted into 
a simple nonlinear model involving only donor compartment X recipient 
compartment transfers. Then environmental effects, temperature, light, 
and time of year, were introduced, and finally the behavior of the model 
was stabilized by replacing many of the simple nonlinear transfers with 
more complex nonlinear functions. Simulation of the three-compartment 
linear system was done on an EAI TR-48 analog computer; the simulation 
of the various network systems was accomplished with a digital computer 
by use of a matrix type program, COMSYS 1 (Bledsoe and Olson, 1970). 

IV* A Linear Three-Compartment System 

A. STRUCTURING THE SYSTEM 

Figure 3 portrays a forced linear system analogous to Lindeman's 
plant-herbivore-carnivore ecosystem. The value of each compartment 
is equal to the average standing crop of the corresponding trophic level. 
The system is considered to be in a dynamic equilibrium such that the 

RESPIRATION RESPIRATION RESPIRATION 

SOLAR ENERGY 
CAPTURED BY 
PHOTOSYNTHESIS 

f 

'pXp 

PLANTS 

Xp 

λρΧρ 

1 

^phxp 

, 
ρΛ 

HERBIVORES * h c * h 

* h xh 

1 

' c * c 

CARNIVORES 

Xc 

X cXc 

» 
LOSS LOSS LOSS 

FIG. 3. A forced linear model of energy flow in a plant-herbivore-carnivore 
ecosystem. 
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input per unit time into each compartment equals the loss from it. The 
input for the system, the forcing function, is the light energy utilized in 
photosynthesis, which, of course, equals gross photosynthesis. Some of 
this energy which enters the plant compartment via photosynthesis is 
dissipated in respiration and some transferred to the next trophic level, 
the herbivores; the remainder, thus, must be lost in some unspecified 
manner. This loss might, for example, be to the metabolism of bacteria 
and other decomposers, or to sediment which is gradually filling the 
pond. However, no particular set of destinations is implied. The loss 
flow is not part of Lindeman's formulation, but is necessary for balancing 
outflow against input. Energy transferred into the herbivores similarly is 
either dissipated in respiration, transferred into the next trophic level, 
or drained away as loss. Energy transferred into the final trophic level, 
the carnivores, is removed either as respiration or loss. In a linear system 
the amounts transferred or lost per unit time from a compartment are 
expressed as fractions of the standing crop in the compartment, and these 
fractions are called "transfer rates." The amount transferred along any 
given path per unit time is thus the product of standing crop X a transfer 
rate (Fig. 3). Calculation of the forcing functions and transfer rates is a 
central problem in developing a linear model. 

B. CALCULATING THE FORCING FUNCTIONS AND TRANSFER RATES 

Numerical values for the forcing function and transfer rates needed to 
complete this linear model were obtained from Lindeman's data in seven 
steps. First, usable data (values for net production and rates of turnover) 
were summarized (Table III) and mean standing crops of all but benthic 
plants were calculated by dividing net production by turnovers per 
year. Second, respiration flows for the carnivores were calculated by 
multiplying net production by 1.40 (Lindeman, 1942, p. 404), and were 
added to the values for net production to obtain gross productions. 
Since there were no secondary carnivores in the system, all carnivore 
net production was relegated to the loss flows. Third, an arithmetic 
inconsistency was eliminated from the herbivore data (Table I) by 
arbitrarily adding 0.1 cal cm - 2 to Zooplankton net production. Respiration 
rates and gross productions for the herbivores were then calculated in 
the same manner as for the carnivores, except that respiration was 
assumed equal to 0.623 X net production flow (Lindeman, 1942, 
p. 403). Net production of the herbivore level was divided into transfer 
(or prédation), a flow equal to the gross production of the succeeding 
carnivore level, and a remainder, loss. Prédation within the two parts of 
the herbivore level, Zooplankton and browsers, was assumed propor-



TABLE III 

VALUES FOR THE CONSTRUCTION OF A THREE-COMPARTMENT LINEAR MODEL OF ENERGY FLOW 
IN THE CEDAR BOG LAKE ECOSYSTEM" 

Compartment 

Solar energy 
Net phytoplankton 
Nannoplankton 
Benthic plants 

Plants 
Zooplankton 
Browsers 

Herbivores 
Plankton predators 
Benthic predators 
Swimming predators 

Carnivores 

Net 
production 
(cal cm - 2 

yr-1) 

9.1 
16.7 
46.2 
72.0 

6.2 
0.8 
7.2 
0.8 
0.2 
0.3 
1.3 

Number 
of 

turnovers 
(yr-1) 

36.5 
36.5 

2.0 
— 

26.0 
2.0 
— 

3.0 
2.0 
1.0 
— 

Average 
standing 

crop 
(cal cm- 2) 

0.249 
0.458 

23.1 
23.8 
0.238 
0.400 
0.638 
0.267 
0.100 
0.300 
0.667 

Transfer (φ) 

Flow 
(cal cm - 2 

yr-1) 

1.4 
2.7 
7.3 

11.4 
2.7 
0.4 
3.1 
0.0 
0.0 
0.0 
0.0 

Rate 
(yr-1) 

5.80 
5.80 
0.32 
0.48 

11.3 
0.89 
4.85 
0.0 
0.0 
0.0 
0.0 

Respirât 

Flow 
(cal cm - 2 

yr-1) 

3.1 
5.6 

15.2 
23.9 

3.9 
0.5 
4.4 
1.11 
0.28 
0.41 
1.80 

ion (p) 

Rate 
(yr-1) 

12.3 
12.3 
0.66 
1.00 

16.4 
1.25 
6.90 
4.16 
2.80 
1.37 
2.70 

Loss (λ) 

Flow 
(cal cm - 2 

yr-1) 

7.6 
14.1 
38.9 
60.6 

3.5 
0.4 
3.9 
0.8 
0.2 
0.3 
1.3 

Rate 
(yr-1) 

30.7 
30.7 

1.68 
2.55 

14.7 
1.11 
6.12 
3.00 
2.00 
1.00 
1.95 

Gross prod 

Flow 
(cal cm - 2 

yr-1) 

118,625 
12.2 
22.3 
61.4 
95.9 
10.1 

1.3 
11.4 

1.91 
0.48 
0.71 
3.10 

uction 

Rate 
(yr-1) 

48.8 
48.8 

2.66 
4.03 

42.4 
3.25 

17.87 
7.16 
4.80 
2.37 
4.65 

a Values taken from the data of Lindeman (1941b, 1942). 
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tionate to their net productions. Fourth, Lindeman's value for benthic 
plant production was augmented by the loss due to browsers. The 
correction, 1.25 X browers' gross production, was based on Lindeman's 
(1942, p. 405) estimate of 2 0 % indigestible matter in pond weeds, and 
increased benthic plant production by less than 4 % . In addition, the 
average standing crop of benthic plants was assumed to be one-half the 
annual net production; this yielded an arbitrary turnover rate of twice 
per year. Fifth, the flows for respiration, gross production, prédation, 
and loss were calculated for the producer level in the same manner as for 
the herbivore level. Respiration was computed as 0.333 X net production, 
because this corresponds to Lindeman's (1942, Table 2) calculations. 
It is, however, contrary to his statement (1942, p. 403) that plant 
respiration is one-third of gross photosynthesis. Sixth, the forcing 
functions, here amounts of light energy utilized in photosynthesis, were 
set equal to the gross plant productions. Lastly, transfer rates were 
obtained by dividing each flow by the standing crop of its donor 
compartment. 

C. T H E COMPLETED MODEL 

Values for the forcing functions, standing crops, and transfer rates 
(Table III) were assembled into a model depicting annual energy flow in 
Cedar Bog Lake (Fig. 4). This model can be expressed mathematically 
by its system equations [Eqs. (l)-(3) and Table IV], differential equations 
describing change with time in the values of the compartments. 

Plant Xv = f - (pp + λρ + <£Ph) ^p 
= 95.9 - (1.00 + 2.55 + 0.48) Xp 

Herbivore Xh = φ^Χρ — (ph + Ah + <f>hc) Xh 

= 0.48*p - (6.90 + 6.12 + 4.85) Xh 

Carnivore Xc = φγ^Χγι — (pc + K) XQ 

= 4.85Xh - (2.70 + 1.95) Xc. 

In every case change equals input into the compartment minus loss from 
it. With the system at steady state and change equal to zero, system 
equations serve no immediate purpose. However, when a model is used 
to simulate change in a natural system, for example, seasonal cycles in 
abundance, the system equations provide a means for computing these 
changes. 

Solar radiation which forms the input into the system was, of course, 
not constant throughout the year, but rather followed an approximately 

(1) 

(2) 

(3) 
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PpXp 

23.9 
Ph Xh 
4.4 1.8 

f 

95.9 

1.00 

Xp 

23 8 

λρ 

2 55 
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^ph 

48 

r'phXp 

114 

6.90 

, 

Xh 

638 

Xh 

6.12 

' 

*hc 

485 

^ n c X h 

3.1 

Pc 
2.70 

> 

.667 

Xc 
1.95 

' 
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XhXh 

3.9 

XCXC 

1.3 

FIG. 4. A three-compartment forced linear model of energy flow in the Cedar Bog 
Lake ecosystem. The value for each flow rate (per year) is placed near the base of its 
arrow, and the value for the flow generated (calories per square centimeter per year) 
near the tip of the arrow. In the compartment is the value for average standing crop 
(calories per square centimeter). 

TABLE IV 
FORCING FUNCTION AND FLOW RATES FOR A THREE-COMPARTMENT LINEAR 

MODEL OF ENERGY FLOW IN THE CEDAR BOG LAKE ECOSYSTEM" 

Compartment 

Photo-
synthesis ( / ) 

(cal cm - 2 yr - 1) 

Transfer 
rate (φ) 
(yr-1) 

Respiration 
rate (p) 
(yr-1) 

Loss 
rate (λ) 
(yr-1) 

Plants Xv 

Herbivores Xh 

Carnivores Xe 

95.9 0.48 
4.85 

1.00 
6.90 
2.70 

2.55 
6.12 
1.95 

° Values computed from Eqs. (l)-(3). 

sinusoidal cycle. The amplitude of this fluctuation at Cedar Bog Lake was 
taken from data on a nearby area, Lake Mendota, Wisconsin (Juday, 
1940). Lindeman used Juday's data to estimate the annual solar input 
into Cedar Bog Lake. The annual cycle in solar radiation was simulated 
with Eq. (4) in which t is time in radians, a year equals 2π radians and 
the yearly cycle begins, i.e., t = 0, at the vernal equinox. 

/ = 95.9 X (1 + 0.635 X sin t). (4) 
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The operation of this linear three-compartment system with a sinusoidally 
fluctuating input was simulated on an analog computer. The compart-
ments showed small sinusoidal fluctuations in value (Fig. 5) in no way 

CL 
o 
cr 
υ 

2 δ 
Û < 

< 
I -

er ο > 
er < 

CO 
LU 
er 
ο > 
er 

< 

eoz o>-
ctreo oo 

h-o 
X 
CL 

0.6 

0.7 

100 

YEARS 

FIG. 5. Behavior of the three-compartment forced linear model of energy flow in 
the Cedar Bog Lake ecosystem. Fluctuations in standing crop in the compartments 
are induced by sinusoidal fluctuation in the forcing function, gross photosynthesis. The 
fluctuation in the forcing function corresponds to the seasonal cycle in insolation. 

comparable in either amplitude or time of maxima and minima with the 
observed behavior of the Cedar Bog Lake ecosystem. This linear system, 
while adequate as a bookkeeping device to balance input and outflow, 
made no provision for the interactions between groups of organisms 
which generate so much of the dynamic behavior of ecosystems. 

V* A Ten-Compartment Network System 

A. STRUCTURING THE SYSTEM 

Lindeman's (1941b) observations on the qualitative food cycle 
relations of Cedar Bog Lake were converted to a network system (Fig. 6) 
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I I I 

T 
50 0 

FIG. 6. A ten-compartment forced linear model of energy flow in the Cedar Bog 
Lake ecosystem. The values near the arrows and the value in compartment 1 are flows 
(calories per square centimeter per year). Values in the other compartments are average 
standing crops (calories per square centimeter). 

similar to that in Fig. 1. Compartments and flows were excluded from 
the network if there were no usable data on them (e.g., a neuston 
compartment and a flow from browsers to plankton predators), or if 
Lindeman considered them of minor importance (e.g., air breathing 
tetrapods), or if energy transfer was not involved (e.g., dissolved 
nutrients). A ten-compartment system resulted. Solar energy was treated 
as a compartment because this facilitated subsequent use of the digital 
computer program, COMSYS 1, for simulation of the system. The flow 
from net plankton to plankton predators (turning them into omnivores) 
was based on a statement that Chaoborus, the chief component of the 
plankton predators, feed in part on Ceratium, the chief component of the 
net plankton. The Zooplankton were chiefly rotifers, organisms too small 
to feed on Ceratium; therefore there was no flow from net plankton to 
Zooplankton. Flows from the ooze, i.e., the sediment underlying the lake, 
to the Zooplankton and the browsers were based on statements that both 
groups fed indiscriminately on living and dead organic matter. Flows 
from plankton and benthic predators to swimming predators (converting 
them to top carnivores) were based on Fig. 1 and statements that the 
former two were preyed on by the latter. 
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B. CALCULATING THE FLOWS AND TRANSFER RATES 

The numerical values needed to convert this network into a linear 
system were drawn as far as possible from Table III. Additional calcula-
tions were made to estimate values for the ooze compartment, to divide 
loss (other than respiration) from the living components of the system 
(compartments 2-9) into two parts, loss to the ooze (μ) and loss to 
outside the system (λ), and to determine the individual input flows for 
compartments receiving more than one input. 

Lindeman gave the ooze at the bottom of the pond a central position 
in the food web (Fig. 1) but provided little information concerning the 
ooze. Accordingly the necessary values for including ooze in this network 
system were created through a series of assumptions. The maximum 
depth in the ooze accessible to the browsers was assumed to be 2 cm. 
The ooze compartment thus consists of the upper 2 cm of sediment; this 
layer of dead organic matter and its associated microorganisms is 
treated as a unit. The material forming the upper 2 m of sediment is 
9 7 % water (Lindeman, 1941a). Assuming a specific gravity of one, the 
upper 2 cm contain 600 g m~2 organic matter. The caloric content of 
this organic matter was assumed to be somewhat below that of any of 
the pond organisms (Lindeman, 1941b, Table III) and set at 2000 cal g- 1 . 
Thus the caloric content of the 2-cm layer available to the browsers was 
120 cal cm- 2. Feeding by the Zooplankton was assumed limited to the 
upper 1 mm of sediment; therefore the caloric content of the portion of 
ooze accessible to Zooplankton was 6 cal cm- 2 . 

The respiration of ooze was estimated in a single experiment in which 
ooze was treated as sewage, and its biological oxygen demand obtained 
by techniques described in "Standard Methods for the Examination of 
Water and Sewage," 1936 edition (Lindeman, 1941b, p. 650). The 
biological oxygen demand of the ooze is given as 4.7 mg O2/liter/50 mg 
dry sediment/5 days, at 20 C. The size of bottles used in this measure-
ment is not stated, so they are assumed to be the size specified in 
"Standard Methods," 300 ml. This assumption yielded a respiration of 
0.0056 mg 02/mg dry sediment/day. Assuming an average temperature 
of 10 C and a Q10 of 2.5, the respiration at the average temperature was 
0.002 mg 02/mg dry sediment/day. The ooze compartment contains 
30 mg cm - 3 dry sediment. Assuming that only the upper 1.0 mm of 
ooze is involved in respiration, daily respiration for the ooze is 
0.006 mg 0 2 cm"2. Using Ivlev's (1934) value of 3.38 cal/mg 0 2 , this is a 
flow of 7.4 cal cm - 2 yr_1. 

Cedar Bog Lake was underlain with 10 m of postglacial sediment; the 
lower 8 m were consolidated peat and marl and the upper 2 m uncon-
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solidated ooze (Lindeman, 1941a). Radiocarbon dating (Flint and 
Deevey, 1951) indicated that the deepest deposits in Cedar Bog Lake are 
approximately 8000 yr old. Assuming that the upper 2 m of unconsolidated 
ooze was relatively recent, the average rate of deposition for consolidated 
sediment was 1 m/1000 yr. Assuming that the consolidated sediment was 
75 % water, 2 m of unconsolidated material would compress to 24 cm, 
and thus represent 240 years' accumulation. This 2-m layer contained 
12,000 cal cm- 2. The rate of sediment accumulation was thus 12,000 
cal/cm2 per 240 yr, or 50 cal cm - 1 yr - 1 . This value represented one of 
the losses (λ) from the ecosystem. 

The other loss from the ecosystem was based on the consideration that 
aquatic insects have aerial stages in which they travel widely and suffer 
heavy mortality. Since the quantity of insects leaving the pond and dying 
at some distance from it was undoubtedly greater than the quantity 
hatched elsewhere which died over the pond, insect emergence 
represented a net loss. Fish which form the bulk of the swimming 
predators may be captured by birds, and thus also removed from the 
ecosystem. Therefore the compartments made up preeminently of 
insects or fish, the browsers and the plankton, benthic and swimming 
predators, were assumed to be points at which energy left the ecosystem 
through a loss flow (λ). In the absence of any information on the relative 
magnitude of the two losses, μ and λ, the total loss from each of the 
four compartments was divided about equally between them (Table V). 
The remaining compartments representing plants and Zooplankton 
were considered having loss only to the ooze. 

To calculate the flows into compartments receiving multiple inputs, 
feeding was assumed to be unselective, i.e., feeding by a recipient 
compartment on each of its donor compartments was directly propor-
tionate to the standing crop of that donor. Thus, since the standing crop 
of nannoplankton was 0.439 cal cm - 2 and the standing crop of ooze 
(available to Zooplankton) was 6.0 cal cm- 2 , Zooplankton drew 0.439/6.439 
of their sustenance from plankton and 6.000/6.439 from detritus. This 
approach was applied to all compartments (except ooze) with multiple 
inputs: Zooplankton, browsers, plankton predators, and swimming 
predators (Fig. 6 and Table V). 

The resulting model achieved by combining the data of Lindeman 
with these many assumptions had an annual flow into the ooze (i.e., 
the gross production for the ooze) of 75.77 cal cm - 2 and losses from the 
ooze of 67.82 cal cm- 2 . This difference was eliminated by increasing ooze 
respiration from 7.4 to 15.35 cal cm"2, which is equivalent to assuming 
that the upper 2.1 mm of ooze, rather than 1.0 mm are involved in 
respiration. 



T A B L E V 

V A L U E S FOR T H E C O N S T R U C T I O N O F A T E N - C O M P A R T M E N T M O D E L O F E N E R G Y F L O W I N T H E CEDAR B O G L A K E E C O S Y S T E M 

Compartment 

Solar energy 
Net phytoplankton 
Nannoplankton 
Benthic plants 

Plants 
Zooplankton 
Browsers 

Herbivores 
Plankton predators 
Benthic predators 
Swimming predators 

Carnivores 
Ooze 

Xl 
X* 
X* 

xt 

X, 
X. 

X-, 
Xs 
X, 

^ 1 0 

Net 
produc-

tion 
(cal cm - 2 

yr-1) 

9.8 
16.0 
46.2 
72.0 

6.2 
0.8 
8.0 
0.8 
0.2 
0.3 
1.3 

60.42 

Number 
of 

turnovers 
(yr-1) 

36.5 
36.5 

2.0 
— 

26.0 
2.0 
— 
3.0 
2.0 
1.0 

— 
0.50 

Average 
standing 

crop 
(cal cm- 2) 

0.268 
0.439 

23.1 
23.8 

0.238 
0.400 
0.638 
0.267 
0.100 
0.300 
0.667 

120.0 

Transfer (φ) 

Flow 
(cal cm - 2 

yr-1) 

1.01 
0.68 
0.21 
1.90 
1.07 
0.76 
1.83 
0.19 
0.07 

— 
0.26 

10.42 

Rate 
(yr-1) 

3.77 
1.56 
0.0091 
0.08 
4.48 
1.90 
2.87 
0.71 
0.71 

— 
0.39 
0.087 

Respiration (p) 

Flow 
(cal cm - 2 

yr-1) 

3.30 
5.40 

15.20 
23.90 

3.90 
0.50 
4.40 
1.11 
0.28 
0.41 
1.80 

15.35 

Rate 
(yr-1) 

12.30 
12.30 
0.66 
1.00 

16.40 
1.25 
6.90 
4.16 
2.80 
1.37 
2.70 
0.127 

LOSS (λ + μ) 

Flow 
(cal cm - 2 

yr-1) 

8.79 
15.32 
45.99 
70.10 

5.13 
0.04 
5.17 
0.61 
0.13 
0.30 
1.04 

50.0 

Rate 
(yr-1) 

32.73 
34.94 

1.99 
2.95 

21.52 
0.10 
8.10 
2.29 
1.30 
1.00 
1.56 
0.416 

Gross production 

Flow 
(cal cm"2 

yr-1) 

118,625 
13.1 
21.4 
61.4 
95.9 
10.1 

1.3 
11.4 

1.91 
0.48 
0.71 
3.10 

75.77 

Rate 
(yr-1) 

48.8 
48.8 

2.66 
4.03 

42.4 
3.25 

17.87 
7.16 
4.80 
2.37 
4.65 
0.63 
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C. T H E COMPLETED MODEL 

The final linear model, summarized in Fig. 6, Eqs. (5)—(14), and 
Tables V and VI was tested on a digital computer and achieved the 
computed steady state values for the compartments. 

* 1 

X, 

X* 

X, 

A 
* e 

χη 

X, 
χ9 

^10 

= 365 x 325 = 118,625 

= / i2 — ^2(^2 + μ-2 + Φ27) 

= / l 3 — ^s(P3 + M-3 + ^35) 

= / l4 — ^4(^4 + /*4 + &β) 

= ^35^3 + ^10,5^10 — ^5(P5 + /*5 + ^57 + Φδϊ) 

= ΦΜΧ^ + φ10,ΒΧι0 — Χβ(ρβ + μ-β + λ6 + Φβζ + ΦΜ) 

= φ27Χ2 + ΦπΧδ — ΧΊ{ΡΊ + ^7 + λ7 + 7̂9) 
= ^68^6 — ^β(Ρ8 + ^8 + ^8 + ^89) 

= ^59^5 + ^69^6 + ^79^7 + ^89^8 — ^θ(Ρ9 + ^9 + Κ) 

= μ2
Χ2 + Ρ<3Χ3 + ^ 4 ^ 4 + ^5Χ5 + p6X6 + Ρ<ΊΧΊ + PsX8 

+ /V^9 — ^ιο(Ριο + Ko + Φ10.5 + Φιο,β)-

(5) 
(6) 
(7) 
(8) 
(9) 

(10) 

(Π) 
(12) 
(13) 

(14) 

Although the model maintained in general the flows and average 
compartment values specified by Lindeman (Table I), inclusion of the 
ooze compartment and the assumption of nonselectivity in feeding made 
the model both quantitatively and qualitatively different from his 
plant-herbivore-carnivore system. Since the ooze compartment contained 
most of the organic matter in the ecosystem, the herbivores fed chiefly 
on ooze and the plant production thus went chiefly to the ooze rather 
than directly to the herbivores. The major food chain was thus plant-
detritus-herbivore-carnivore. The assumption of nonselectivity also 
directs most of the Zooplankton net production into detritus and most 
of the browser net production into carnivores, because browsers have 
a greater standing crop than Zooplankton although a much smaller net 
production (Table V). 

VI* Conversion of the Linear System to a Nonlinear System 

A. STRUCTURING THE SYSTEM 

The linear model was converted to a nonlinear model by altering 
control of the flows which could reasonably be thought dependent on the 
size of both donor and recipient compartments or on the size of the 
recipient compartment alone (Fig. 7). These were the flows into all the 



TABLE VI 

FORCING FUNCTIONS AND FLOW RATES FOR A TEN-COMPARTMENT LINEAR MODEL OF ENERGY FLOW 

IN THE CEDAR BOG LAKE ECOSYSTEM" 

Compartment 

Net phytoplankton 
Nannoplankton 
Benthic plants 
Zooplankton 

Browsers 

Plankton predators 
Benthic predators 
Swimming predators 
Ooze 

X* 
X, 
X* 
Xs 

X. 

X, 

x* 
X» 
- ^ 1 0 

Forcing ( / ) 

(cal 
Flow 

cm - 2 yr_1) 

13.1 
21.4 
61.4 

Transfer^) 

Path 

2,7 
3,5 
4 ,6 
5,7 
5,9 
6,8 
6,9 
7,9 
8,9 

10,5 
10,6 

Rate 
(yr-1) 

3.77 
1.56 
0.0091 
3.77 
0.71 
1.2 
0.71 
0.71 
0.71 

0.078 
0.0091 

Respiration (/>) 

Rate 
(yr-1) 

12.3 
12.3 
0.66 

16.4 

1.25 

4.16 
2.80 
1.37 
0.127 

Loss to ooze (μ) 

Rate 
(yr-1) 

32.73 
34.94 

1.99 
21.52 

0.05 

1.13 
0.70 
0.50 

Loss to outside (λ) 

Rate 
(yr-1) 

0.05 

1.16 
0.60 
0.50 
0.416 

° Values computed from Eqs. (6)-(14). 
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FIG. 7. A ten-compartment nonlinear model of energy flow in the Cedar Bog Lake 
ecosystem. Flow linear with donor compartment controlling 7; flow approximately 
linear with recipient compartment controlling pr> ; simple nonlinear flow ►; 
complex nonlinear flow » — ► . 

living compartments, the forcing functions (/) and all transfers (φ), i.e., 
all transfers between compartments except transfers into the ooze; the 
ooze was not considered living in the same sense as compartments 2-9 
even though it contained microorganisms and had a respiration flow. 
The remaining flows, respiration (p), loss to the ooze (μ,), and loss to 
outside (λ), were more reasonably left linear with the donor compartment 
controlling. 

B. SELECTING TRANSFER FUNCTIONS 
AND CALCULATING THEIR CONSTANTS 

The steady state equilibrium of the linear system (Fig. 6) was preserved 
in the nonlinear system. With the compartments at their steady state 
values, the nonlinear functions and constants yielded flows identical to 
those of the linear system. The flow into each plant compartment was 
divided into two parts, a small flow linear with the donor compartment, 
solar energy, and nonlinear flow two or three orders of magnitude 
larger under steady state conditions (Fig. 7, Eqs. (16)—(18), and 
Table VII). The linear flow was considered to represent the residuum 
of plant tissue, e.g., spores, seeds, or rhizomes, always present and ready 
to commence growth regardless of the presence or absence of actively 
photosynthesizing plant material in its compartment. The linear flow 
thus prevented plant compartments from ever being driven to zero and 
permanently destroyed. Values for the residuum b were calculated (as 
described below) so that at steady state they generated flows (φοΧ^ of 



TABLE VII 

FLOW RATES, SELF-INHIBITIONS, AND RESIDUUMS FOR A TEN-COMPARTMENT NONLINEAR MODEL OF 
ENERGY FLOW IN THE CEDAR BOG LAKE ECOSYSTEM0 

Compartment 

Net phytoplankton 
Nannoplankton 
Benthic plants 
Zooplankton 

Browsers 

Plankton predators 

Benthic predators 
Swimming predators 

Ooze 

X, 
X. 
X, 

X, 

X, 

X-, 

Xs 
; A 9 

- ^ 1 0 

Path 

1,2 
1,3 
1,4 
3,5 

10,5 
4 ,6 

10,6 
2 ,7 
5,7 
6,8 
5,9 
6 ,9 
7 ,9 
8 ,9 

Transfer 

(Φ) 

Rate 
(yr-1) 

0.000474 
0.000549 
0.0000315 
6.55 

42.4 
0.0228 
3.25 

14.1 
14.1 
12.0 
2.37 
2.37 
2.37 
2.37 

Respiration 

(p) 

Rate 
(yr-1) 

12.3 
12.3 
0.66 

16.40 

1.25 

4.16 

2.80 
1.37 

1.27 

Loss to ooze 

GO 

Rate 
(yr-1) 

32.73 
34.94 

1.99 
21.52 

0.05 

1.13 

0.70 
0.50 

Loss to outside 
(λ) 

Rate 
(yr-1) 

0.05 

1.16 

0.60 
0.50 

0.416 

Self-inhibition 
(a) 

Rate 
(yr-1) 

0.520 
0.572 
0.0126 

Residuum 
(b) 

Rate 
(yr-1) 

0.000178 
0.000154 
0.0794 

° Values computed from Eqs. (16)-(24). 
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0.01 into the phytoplankton compartments and 0.3 into the benthic 
plants (Fig. 7). 

The nonlinear transfer rates for the plants were divided into two 
parts, φΧτΧ2 and (φΧ1Χ2) X (—aX2). The first term represents a 
nonlinear flow controlled by the product of donor X recipient, and the 
second term the degree to which the population size of the recipient 
inhibits that flow (cf. Chap. 1. III . G). This formulation, in which the 
flow into population X is a function of X(\ — aX)> is based on equations 
for interaction between competing species (Gause and Witt, 1935). The 
inclusion of terms for self-inhibition is supported by the fact that plant 
populations as they grow inhibit themselves through shading, reduction 
of available nutrients, etc. The constant a represents the amount by which 
each unit of plant population reduces the quality of the environment and 
thus the ability of each unit of plant population to capture solar 
energy. The constants φ and a were calculated for each plant compart-
ment such that they—in conjunction with b—yielded the average gross 
production with the average standing crop (Table V) and a gross 
production equal to respiration at a standing crop approximating the 
largest value listed by Lindeman (1941b). 

The regulation of flows from ooze to herbivores appeared entirely 
dependent on sizes of the herbivore compartments because the large 
amount of organic matter in the ooze provided herbivores with a food 
supply far beyond their needs. The problems in setting reasonable values 
for the rates of flow into the herbivore compartments were resolved by 
assuming that the herbivores ate living plants in proportion to their 
availability, and ate detritus to an extent sufficient to meet the remainder 
of their nutritional needs [Eqs. (19)-(20)]. The nonlinear transfer rates 
from living plants to herbivores (Table VII) were obtained by dividing 
the linear rates by the size of the recipient (herbivore) compartments. 
The flow rates from ooze to herbivores were obtained by setting <£'s 
equal to the gross productions of herbivore compartments. The flows 
from ooze were made equal to the standing crop of herbivore compart-
ments x their needs, i.e., their gross productions minus flows from 
living plants, or 

(9ooze,herbivore) (0plant.herbivore^plant^herbivore) 

The nonlinear flows in the carnivore compartments (plankton predators 
were still considered a member of this group despite their omnivorous 
diet) were computed simply by dividing each linear flow by the size of 
its recipient compartment. Observations by Holling (1966) on predator-
prey relationships among invertebrates suggest that the resulting flow 
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into the predators, prey X φ X predator, approximated the behavior of 
some natural populations [Eqs. (21)—(23)]. 

C. T H E COMPLETED MODEL 

The completed nonlinear model is summarized below in Eqs. (15)—(24) 
and in Fig. 7 and Table VII. 

Xx = 118,625 (15) 

X2 = X^12[b2 + X2(l — a2X2)] — X2(p2 + μ2+ φ21Χη) (16) 

Xs = X^ls[b3 + Xz(l — asXs)] — X3(Pz + /χ3 + ^35^5) (I7) 

J?4 = X^u[b^ + X4(l — ß4X4)] — X^pt + μ4 + Φ*βΧβ) (18) 

^ 5 = Χδ[Φζ5Χ3 + (Φΐ0,5 ~ ΦζΆ) ~ (ph + /*5 + ^57^7 + ^ A ) ] (19) 

^ 6 = ^6^46^4 + (̂ 10,4 ~ ^46^4) ~ (pG + ^6 + \ + Φ*8Χ8 + ^ Α ) ] (20) 

Χη = ΧΊ[φ2ΊΧ2 + φ51Χ5 — (ρ7 + μ7 + λ7 + φ79Χ9)] (21) 

^8 = Χϋ[Φβ8Χ6 ~ (Ρδ + ^8 + Κ + ^βΑ)] (22) 

^ 9 = ^9^59^5 + ^69^6 + ^79^7 + ^89^8 ~ (̂ 9 + ^9 + Κ]) (23) 

Χ10 = μ2Χ2 + /Χ3^3 + ^4^4 + ^5Χ5 + /*6^6 + ^7^7 + ΙΗΧ% + /V^9 

— [^1θ(ΡΐΟ + λ10) + Χ6(φ10,δ — ̂ 35^3) + ^βΟ Ι̂Ο,β — ̂ 46^4)]· (24) 

The stability of this model was tested with constant solar energy input 
and the following initial conditions: the ooze at its average value, the 
nannoplankton at five times its average value, and the remaining 
compartments at one-half their average values. Much of the model 
proved both sluggish and unstable (Fig. 8). Net plankton, Zooplankton, 
and plankton predators oscillated both widely and slowly (approximately 
1 cycle/yr). Browsers first increased greatly, and then dropped to less than 
the initial condition. Benthic predators first increased markedly and then 
were almost exterminated. Swimming predators, the top carnivores, 
increased irregularly and at the end of the computer run, simulating 
4 yr, were 20 times their initial value. Benthic plants slowly increased, 
but after the simulated 4 yr were still 4 % below their calculated steady 
state value. Nannoplankton was the sole compartment which moved 
promptly to approximately the desired standing crop and stayed there. 
The model obviously needed further modification to simulate an 
ecosystem. 
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^ 2 0 

FIG. 8. Behavior of the ten-compartment nonlinear model (Eqs. (15)-(24) and 
Table VII) started with the ooze compartment at its average value, nannoplankton at 
five times its average value, and the remaining compartments at half their average values. 
Values on the ordinate for the ooze are multiplied by 0.1, for benthic plants by 1.0, 
and for the remaining compartments by 10.0. 

VIL Controlling the Nonlinear Model 

Control of the nonlinear model was achieved in two steps. The flux 
into swimming predators was regulated first by changing it from the 
general form φΧ1Χ2 to (φΧχΧ2) X (1 — aX2), thereby adding a term for 
self-inhibition like that used with the plant compartments [Eq. (36)]. 
The constants a and </> were selected to yield the average flow at the 
average standing crops of recipient and donor compartments, a flow 
approximating respiration of the recipient at the average standing crop 
of the donors, and the maximum standing crop which Lindeman 
observed for the recipient. 

This modified nonlinear model had markedly improved behavior. 
Expansion of the swimming predator compartment was partially 
controlled and both browser and benthic predator compartments 
maintained larger populations. Net phytoplankton, Zooplankton, and 
plankton predator compartments continued to oscillate widely in response 
to one another. The low plankton predator value allowed net plankton 
and Zooplankton to increase. This increased food supply caused plankton 
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predators to increase, driving down net plankton and Zooplankton. 
The flows into both Zooplankton and olankton predator compartments 
were controlled with terms for self-inhibition, in the same manner as the 
flows into swimming predators [Eqs. (32) and (34)]. Besides stabilizing 
the model by causing the compartments to move to their equilibrium 
values with minimum oscillation, this modification of the nonlinear 
transfers also increased the speed with which equilibrium was 
approached. The presence of the inhibition term in the controlled 
nonlinear relationship necessitated increases of 12% to 4 0 % in the 
transfer rates φ (Table VIII). Control of the flows into browsers and 
benthic predators seemed unnecessary because the remainder of the 
model was controlled and thus served as a mechanism to regulate those 
compartments. 

The stable and responsive model obtained through modification of the 
equations for three compartments was suitable for reworking into a 
final form. Its general structure was preserved (see Fig. 10) despite the 
many changes in the system equations necessitated by the introduction of 
seasonal cycles in light and temperature. 

VIII ♦ The Addition of Environmental Effects 

Effects of the annual cycle in light and temperature were introduced 
into the model by rewriting the equations defining the system. The 
amount of insolation was considered to affect only the plants and to affect 
them in a one-to-one manner. Insolation ranged from about 16,392 
cal cm - 2 during July to 3586 during December. This seasonal cycle was 
approximated by introducing a sine function into the solar energy 
compartment [Eq. (25)] similar to that used previously with the three-
compartment linear model 

Xx = 118,625(1.00 + 0.635 x sin t). ^25) 

Lindeman provided little temperature data for Cedar Bog Lake, so the 
values of Dineen (1953) for a similar nearby pond were used. Dineen's 
pond reached 27-29 C in July and, like Cedar Bog Lake, was frozen 
from about December to April. The temperature cycle was simulated 
with a modified sine function [Eq. (26)] in which negative values 
generated by the sine curve were set equal to 0 C. 

(11.00 + 1.37 X sin(* — 30) when computed C > 0 
~~ (0 when computed C < 0. ^ ' 



TABLE VIII 

FLOW RATES, SELF-INHIBITIONS, AND RESIDUUMS FOR A TEN-COMPARTMENT CONTROLLED NONLINEAR MODEL OF 
ENERGY FLOW IN THE CEDAR BOG LAKE ECOSYSTEM" 

Compartments 

Net phytoplankton 
Nannoplankton 
Benthic plants 
Zooplankton 

Browsers 

Plankton predators 

Benthic predators 
Swimming predators 

Ooze 

X, 

x, 
xt 
x* 

x> 
Xi 

X* 
X, 

- ^ 1 0 

Transfer 

Path 

1,2 
1,3 
1,4 
3,5 

10,5 
4 ,6 

10,6 
2,7 
5,7 
6,8 
5,9 
6,9 
7,9 
8,9 

(0 

Rate 
(yr-1) 

0.000474 
0.000549 
0.0000315 
7.42 

47.4 
0.0228 
3.25 

15.8 
15.8 
12.0 
3.38 
3.38 
3.38 
3.38 

Respiration 

(p) 

Rate 
(yr-1) 

12.3 
12.3 
0.66 

16.40 

1.25 

4.16 

2.80 
1.37 

0.122 

Loss to ooze 

M 

Rate 
(yr-1) 

32.73 
34.94 

1.99 
21.52 

0.05 

1.13 

0.70 
0.50 

Loss to outside 
(λ) 

Rate 
(yr-1) 

0.05 

1.16 

0.60 
0.50 

0.416 

Self-inhibition 
(a) 

Rate 
(yr-1) 

0.520 
0.572 
0.0126 
0.520 
0.444 

0.418 
0.418 

1.00 
1.00 
1.00 
1.00 

Residuum 
(b) 

Rate 
(yr-1) ( 

0.000178 
0.000154 
0.0794 

Average 
standing 

Gross 
produc-

tion 
crop (cal cm"2 

(cal cm- 2) 

0.249 
0.361 

18.9 
0.133 

0.387 

0.330 

0.096 
0.392 

242.0 

yr-1) 

37.54 
46.59 

126.45 
10.21 

2.01 

5.56 

0.79 
1.44 

153.31 

α Values were obtained from Eqs. (29)-(37). 
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Temperature was considered to act uniformly on all the flows in the 
model, except loss from the ooze to the permanent sediment. This loss 
to the sediment was considered unaffected by temperature. The action of 
temperature was assumed to be a multiplication of the flows by a Q10 

factor, symbolized in the equations by Q. A Q10 of 2.25 was selected, 
and 10 C taken as the reference temperature, i.e., temperature at which 
0 equalled one. 

Q = 2.25t(C-10)/1°]. (27) 

It seemed unlikely that the seasonal change in light and temperature 
could oscillate the benthic plant compartment between approximately 
zero in winter and its summer maximum because turnover for this 
compartment was relatively slow. A third environmental factor was 
therefore added; loss from benthic plants to the ooze (/x4), was multiplied 
by a factor, kxx, reflecting the change in daily insolution. This factor was 
set equal to 1 — cosine time (1 yr = 2π rad). 

kxx = 1 — cos t. (28) 

Thus, the loss rate from benthic plants to the ooze, (kx1 X /x4), ranged 
from zero at the vernal equinox to twice the steady state value of /x4 at the 
autumnal equinox. The variation in the loss rate seemed justified because 
benthic plants were growing in the spring and dying in the fall under 
similar conditions of light and temperature. This environmentally 
regulated model is summarized in Eqs. (25)-(37), Table VIII, and 
Fig. 9. 

Xj, = 118,625(1.00 + 0.635 sin t) (25) 

* 2 = 0 [ * U * l ( * l + * 2 0 - « 2 * 2 » - *2(/>2 + 1*2 + ^ τ θ - «7*7»] (29) 

* 3 = ΟίΦηΧ&, + * 3 0 - «3*3)) - X*{Pz + μ*+ *»*.(1 - «35*5))] (30) 
* 4 = Q[<£l4*#4 + * 4 0 - «4*4)) - *,0>4 + &Ί/*4 + ^4β*β)] (31) 

XS = 0 * 5 ^ 3 5 * 3 ( 1 — Λ35Χ;) + (<£10,5(1 — 010,5*5) —^35*3(1 - «35*5)) 

- 0>5 + μ, + ^57*7(1 - «7*7) + «^59*9(1 ~ «9* 9 )) ] (32) 

* β = £?*β|#4β*4 + (ΦΐΟ,β — ^4β*4) — (Ρβ + Μβ + λβ + <£β8*8 

+ ψβ 9*9(1-«„*„))] (33) 
* 7 = 0*7[^27*2(1 — «7*?) + <As7*5(l ~ «7*7) ~ 0>7 + lh + λ7 

+ φηΧΑ1-α9Χ,))] (34) 
* 8 = "3*8[^68*β — 0>8 + ^8 + λ8 + «^89*9(1 ~ «9*9))] (35) 

* 9 = 0 * 9 ^ 5 9 * 5 ( 1 — a9X9) + ·£β 9*β(1 — α 9 * 9 ) + ^79*7(1 — «9*9) 

+ «^89*8(1 — «9*9) — (ft> + M9 + λ»)] (36) 
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^10 = Qi^^ + ^Ά + kx^X^ + μ5Χ5 + μ6Χ6 + μΊΧΊ + μ8Χ8 + μ9Χ9 

— (^ΙΟ.δ^δΟ — ^ΙΟ,δ^δ) — ^35^3^5(1 — Ο35^δ) + ^10,6^6 

— φΑβΧ^Χ6 + Ριο-^ιο)] — Κο^κ (37) 

In addition to faulty seasonal cycles and average standing crops, the 
model had about twice the proper energy flow (Table VIII). This flow 
which stemmed from an average Ql0 factor (Q) of 1.55 was not, however, 
accompanied by a proportionate elevation in the content of any of the 

30 

BENTHIC PLANTS 

INSOLATION 
L200 

100 

o 

< 

o 

o 

YEARS 

FIG. 9. Behavior of the ten-compartment, environmentally regulated, controlled 
nonlinear model (Eqs. (25), (26), and (29)-(37), and Table VIII). The year starts at the 
vernal equinox. Values on the ordinate for the ooze are multiplied by 0.1, for insolation, 
temperature and benthic plants by 1.0, for the predator compartments by 10.0, and 
for the remaining compartments by 20.0. 
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compartments except the ooze because, as mentioned above, temperature 
acted uniformly on all flow rates except loss from the ooze. 

IX* Final Adjustment of the Model 

A. GENERAL APPROACH 

This environmentally regulated controlled nonlinear model was 
adjusted by a trial-and-error technique (i.e., many computer runs) to 
approximate parts of Lindeman's picture of the Cedar Bog Lake 
ecosystem. The degree of approximation was evaluated by the accuracy 
with which the models duplicated (1) average size of the compartments as 
listed in Table V, (2) total yearly energy flow (gross production) of the 
compartments as listed in Table V, and (3) seasonal cycles in compart-
ment size where such cycles were explicitly mentioned by Lindeman. To 
facilitate the evaluation of trial models by these criteria, the COMSYS 1 
program was modified to compute for the final year of simulated four-
year runs the average value of each compartment, the total amount 
transferred, and the average flow rate of each flow. The initial simulated 
three years of operation permitted the model to approach equilibrium 
before the recording of flows and standing crops was begun. 

The total flow through the model was first reduced by bringing the 
average value for the Q10 factor down from 1.55 to approximately one 
(1.033). This was done by changing the reference temperature for the 
calculation of O from 10 C to 15 C, i.e., by replacing Eq. (26) with 

Q = 2.25t(c-15)/1°3. (38) 

This change, however, brought the total energy flow from about 100% 
too great down only to about 50% too great; the model incorporating 
this change is referred to below as the "15-degree" model. 

B. PLANTS 

Adjustment of two of the primary producer compartments, nanno-
plankton and benthic plants, required much experimentation. The 
nannoplankton had 50 % too great a gross production, 11 % too small 
an average standing crop and a seasonal cycle reversed from that 
observed by Lindeman in Cedar Bog Lake. In the model the influx into 
nannoplankton was in part a direct function of available solar energy, 
and thus the seasonal cycle in nannoplankton standing crop followed the 
solar energy cycle (Fig. 9). The reverse cycle, with highest standing crop 
when solar energy was low, observed by Lindeman in Cedar Bog Lake 
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was obtained by changing the equation defining solar energy influx. 
The presence of a large standing crop during the period of minimum 
solar energy suggested that nannoplankkton utilized low levels of light at 
least as effectively as high levels. Accordingly, the energy influx into 
nannoplankton was disconnected from the seasonal solar energy cycle 
and instead was based on a uniform amount of solar energy equal to the 
annual average insolation rate. The reduction in nannoplankton standing 
crop coincided with the increase in net plankton standing crop, suggesting 
that the net plankton inhibit the nannoplankton. Accordingly the 
inhibition term of the equation defining influx into nannoplankton was 
made a function of the standing crop of both net plankton and nanno-
plankton, and the transfer and inhibition constants readjusted to this 
change [Eq. (39) and Table IX]. 

X, = £[325<M*3 + X*(l - a,(X2 + *8))) - ^sfo + μ* + ΦΜΙ - ^ 5 ) ) ] . 
(39) 

These changes brought the average standing crop within 3 % of the 
desired value, and in doing so depressed the gross production 39% 
below its desired value (Table X). In a population whose standing crop 
is negatively correlated with temperature, the bulk of the population's 
metabolism will occur when the Q10 factor is much less than one. Thus 
with the nannoplankton—or any similar population in this model—the 
gross production finally obtained will be less than that initially proposed 
on the basis of average standing crop. The reverse is, of course, true of 
populations whose abundance is positively correlated with temperature. 

In the 15-degree model benthic plants had a slight excess of 
gross production (being most abundant in summer) and approximated 
the desired standing crop, but fluctuated between a midsummer 
maximum 50% higher than the average and a midwinter minimum 50% 
lower than the average. The desired seasonal cycle—approximately zero 
from late fall through early spring, a maximum reached in midsummer 
and maintained until October, and an abrupt drop back to the winter 
level during October and November—was reached only by radically 
altering the initial assumptions for the compartment. A more pronounced 
seasonal cycle than that obtained with the 15-degree model required 
both more rapid growth during spring and summer and more rapid 
death during the fall. More rapid growth was obtained by multiplying 
the transfer rate, </>14 , for the 15-degree model by 12/5 (Table IX) 
because appreciable growth by the benthic plants should be limited 
to five months per year. Similarly, since the loss from the benthic plants 
to the ooze occurred mainly during two months of the year, the loss rate, 
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μ,4 , was multiplied by 12 for the 60 days following the autumnal 
equinox, and set at an arbitrary trivial value of 0.1 during the remainder 
of the year. The loss rate was multiplied by 12 rather than by 6 because 
the average biomass from which the loss took place was about one-half that 
at the beginning of the loss period. Since the loss rate was no longer 
related to temperature, this rate was disconnected from the Q10 factor. 

^4 = 0[*14*l(*4 + *4(1 - *4*4)) - *4(/>4 + Φ^β)] ~ /*4*4 · (40) 

Finally, the self-inhibition coefficient was adjusted by trial-and-error to 
obtain the desired annual gross production (Table IX). The average 
standing crop in the final model, 11.1 cal cm - 2 (Table X), was less than 
half that in the initial formulation of the Cedar Bog Lake model 
(Table III), in part because the benthic plants were abundant only in 
warm weather when the Q10 factor is greater than one, and in part 
because of an erroneous assumption in the initial formulation. It was 
assumed initially that the annual average standing crop lay midway 
between the maximum and minimum. However, the minimum persists 
for about seven months and the maximum for but two months per year; 
accordingly the annual average should have been considerably less 
than the mean of maximum and minimum. In the final model kxx, 
the factor reflecting change in amount of insolation, was thus discarded, 
and the portion of the computer program used to calculate kx± was 
modified into a clock to control the switching between the two loss rates 
to the ooze. The factor kxx was made a cosine function [Eq. (41)] and 
examined with an IF statement—such that if kx1 were less than or 
equal to 0.14, /x4 = 24, but if kx1 were greater than 0.14, μ4 = 0.1. 

kxx = 1 + cos(i — 30). (41) 

The net plankton compartment required no adjustment [Eq. (29)]. 
In the 15-degree model its average standing crop was 7 % below the 
desired value, but its gross production was nearly twice that of the linear 
model (Table V). This excess flow was the result of maximum abundance 
in warm weather and a decision to aim for duplication of the average 
standing crop of the linear model (Table V) in preference to its annual 
gross production. The adjustment of the plankton predator compartment 
(described below) further slightly elevated both the average standing 
crop and gross production of net plankton. 

C. HERBIVORES 

Like the net plankton, neither of the herbivore compartments required 
any direct adjustment. The browsers were satisfactory in the 15-degree 



T A B L E I X 

F L O W R A T E S , S E L F - I N H I B I T I O N , AND R E S I D U U M S FOR A T E N - C O M P A R T M E N T , E N V I R O N M E N T A L L Y R E G U L A T E D , 

C O N T R O L L E D N O N L I N E A R M O D E L OF E N E R G Y F L O W I N T H E CEDAR B O G L A K E E C O S Y S T E M 0 

Compartments 

Net phytoplankton 
Nannoplankton 
Benthic plants 

Zooplankton 

Browsers 

Plankton predators 

Benthic predators 
Swimming predators 

Ooze 

X, 
Xz 
X, 

X, 

X, 

X, 

x> 
X, 

X\o 

Transfer 

Path 

1,2 
1,3 
1,4 

3,5 
10,5 
4 ,6 

10,6 
2,7 
5,7 
6,8 
5,9 
6,9 
7,9 
8,9 

(Φ) 

Rate 
(yr-1) 

0.000474 
0.000721 
0.000759 

7.42 
47.4 

0.0228 
3.25 

15.8 
15.8 
12.0 
3.38 
3.38 
3.38 
3.38 

Respiration 

(P) 

Rate 
(yr-1) 

12.3 
12.3 
0.66 

16.40 

1.25 

4.16 

2.80 
1.37 

0.122 

Loss to ooze 

(μ) 

Rate 
(yr-1) 

32.73 
34.94 
0.1* 

24.0b 

21.52 

0.05 

1.13 

0.70 
0.1 Ie 

1.70e 

Loss to outside 
(λ) 

Rate 
(yr-1) 

0.05 

1.16 x Q2·4 

0.60 
0.50 

0.416 

Self-inhibition 

(«) 

Rate 
(yr-1) 

0.520 
0.539 
0.0244 

0.520 
0.443 

0.418 
0.418 

1.00 
1.00 
1.00 
1.00 

Residuum 
(b) 

Rate 
(yr-1) 

0.000178 
0.000117 
0.0333 

1 Calculated from Eqs. (29), (32), (33), (35), (39), (40), (42)-(44). 

μ* 0.1 
= 24.0 

μ9 = 0.17 

if 
if 
if 

= 1.70 if 

T < Sept. 22 or > Nov. 21, kxx > 0.14 
T > Sept. 22 and < Nov. 21, kxx < 0.14. 
C > 0 
C = 0. 
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TABLE X 

VALUES FOR THE FLOW AND ACCUMULATION OF ENERGY IN THE CEDAR BOG LAKE ECOSYSTEM GENERATED 

BY A TEN-COMPARTMENT, ENVIRONMENTALLY REGULATED, CONTROLLED NONLINEAR MODEL" 

Net Number 
production of 
(cal cm - 2 turnovers 

Compartment yr-1) (ΥΓ_1) 

Solar energy 
Net phytoplankton 
Nannoplankton 
Benthic plants 

Plants 
Zooplankton 
Browsers 

Herbivores 
Plankton predators 
Benthic predators 
Swimming predators 

Carnivores 
Ooze 

Χχ 

X* 
X* 
X* 

X, 
X, 

X, 

Xs 
! X, 

^ 1 0 

19.77 
9.71 

42.82 
72.30 

6.54 
0.79 
7.33 
1.81 
0.19 
0.31 
2.31 

60.84 

68.41 
22.67 

3.85 
— 

27.71 
1.95 
— 
7.04 
2.02 
1.06 
— 
0.51 

0.289 
0.428 

11.130 
11.847 
0.236 
0.405 
0.641 
0.257 
0.094 
0.293 
0.644 

118.791 

2.00 
0.42 
0.19 
2.61 
1.08 
0.75 
1.83 
0.19 
0.07 
— 
0.26 

11.41 

6.92 
0.98 
0.02 
0.22 
4.58 
1.85 
2.85 
0.72 
0.71 
— 

0.40 
9*10 

6.68 
3.27 

13.65 
23.60 

4.17 
0.52 
4.69 
1.10 
0.27 
0.41 
1.78 

14.22 

23.09 
7.64 
1.23 
1.99 

17.64 
1.28 
7.32 
4.29 
2.85 
1.41 
2.76 
0.12 

17.77 
9.29 

42.63 
69.69 

5.46 
0.04 
5.50 
1.62 
0.12 
0.31 
2.05 

49.43 

61.43 
21.70 

3.83 
5.88 

23.14 
0.10 
8.58 
6.30 
1.32 
1.04 
3.18 
0.42 

118,625 
26.45 
12.98 
56.47 
95.90 
10.71 

1.31 
12.02 
2.91 
0.46 
0.72 
4.09 

75.06 

91.43 
30.31 

5.07 
8.09 

45.38 
3.23 

18.75 
11.32 
4.89 
2.46 
6.35 
0.63 

° The values for transfer represent transfer into compartments other than ooze. The rates for each compartment are the quotients of its 
flows divided by the average standing crop, and thus correspond to the linear rates in Table V. 

Transfer (φ) Respiration (p) Loss (λ + μ) Gross production 
Average 
standing Flow Rate Flow Rate Flow Rate Flow Rate 

crop (cal cm - 2 (yr-1) (cal cm - 2 (yr-1) (cal cm - 2 (yr-1) (cal cm - 2 (yr-1) 
(cal/cm2) yr-1) yr- 1) yr-1) yr_1) 
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model. The low average standing crop and gross production of the 
Zooplankton in the 15-degree model were corrected by adjustment of the 
plankton predators. 

D. CARNIVORES 

The excessive gross production and average standing crop of the 
plankton predators had undesirable effects not only on Zooplankton but 
also on the swimming predators. The summer maximum of the net 
plankton produced a slightly delayed maximum in the plankton predators 
at a time when Lindeman reported that the plankton predators were near 
their minimum—apparently due to emergence of adult stages. This 
increase in plankton predators not only acted directly to reduce the 
Zooplankton below the desired level but caused an increase in the 
swimming predators which still further reduced the Zooplankton. The 
plankton predators were forced into the desired seasonal cycle (summer 
minimum and winter maximum) and average standing crop by making 
their loss rate to the outside a function of the O10 factor (λ7 X £)2·4). 

*7 = QXM*X& - αΊΧΊ) + φ&7Χ,(\ - a7X7) - (P7 +μι+ λ7ρ*·* 

+ φΊ9Χ9(\-α9Χ9))]. (42) 

Thus, the loss rate to the outside was maximum in summer, the period of 
maximum emergence, and minimum in winter. This change, which 
corrected the average standing crop and the seasonal cycle, only slightly 
reduced the excessive gross production. Minimum standing crop implied 
minimum self-inhibition. The combination of high temperature, 
abundant food, and minimum self-inhibition generated a large flow of 
energy into the plankton predators, despite their small standing crop. The 
large flow was drained away via loss to the outside, maintaining the small 
standing crop. This elevated gross production resulted from imposing 
the basic assumptions of the model onto a population which undergoes 
its minimum value when its food is abundant. 

Although standing crop and gross production of the swimming 
predators were satisfactory following the adjustment of the plankton 
predators, the seasonal cycle of the swimming predators still had a 
summer minimum and a winter maximum. Lindeman reported an 
opposite cycle and attributed the winter loss to deoxygenation of the 
water following freezing of the pond. The rate for loss from the swimming 
predators to the ooze was made a function of water temperature such that 
adout three-fourths of the annual loss occurred during the three months 
that the pond was frozen (i.e., while the water was 0 C) and one-fourth 
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during the remainder of the year. This was done by separating the loss 
rate μ,9 from Q and attaching it to an IF statement such that the loss rate 
was 1.70 when the water temperature was 0 C and 0.17 when the 
temperature was above 0 C. 

+ ^ A ( l — a9Xd) — (ft + K)] — /V*9 · (43) 

Like the browsers on which they fed, the benthic predators approxi-
mated the desired values for standing crop and gross production in the 
15-degree model. Reduction of the size of the swimming predator com-
partment through adjustment of the plankton predators slightly elevated 
the standing crop and gross production of the benthic predators and 
produced a still closer agreement between the desired values and those 
obtained. 

E. OOZE 

The ooze compartment also required no special adjustment. 

^10 = Q[lX2X2 + ^3^3 + H<5X5 + H<ßX<i + HX7 + / Ά ] + ^ Ä + ^9^9 

— ÖI^IO.ÄO — Λ10,5^δ) — ΦΜΧΖΧΪ>{\ ~ aZbXb) + ΦΐΟ,βΧ6 

— φ^Χ^Χβ + p10X10] — λ10Χ10. (44) 

Once the other compartments were adjusted—benthic plants in 
particular—the ooze approximated the standing crop and gross produc-
tion of the linear model. 

F. T H E FINAL MODEL 

This final model is summarized in Eqs. (25), (26), (38), (41), (29), 
(39), (40), (32), (33), (42), (35), (43), (44), Figs. 10 and 11, and Tables IX 
and X. 

Χλ = 118,625(1.00 + 0.635 sin t) (25) 
_ (11.00 + 1.37 sin(i — 30) when computed C > 0 (26) 

(0 when computed C < 0 
Q = 2.25[(C-15)/1°] (38) 

kx1 = 1 + cos(i — 30) (41) 

^ 2 = Qttl2Xl(t>2 + *2(1 - * A ) ) - X2(P2 + ^2 + ^ 2 7 ^ ( 1 ~ *7*7»] Φ) 

* 3 = Ö[325<£13(*3 + *8(1 - <X2 + X*))) 

- x*(p* + Ms + ^35^5(1 - «35^5))] (39) 
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*4 = 0[*1A(*4 + ^4(1 - «4*4» - *4<P4 + ΦΜ] - /*4*4 (40) 
^5 = 0^5^35^3(1 — aZ5X5) + (^10i6(l — Ι̂Ο,δ^δ) — ΦζΑ(\ — β3δ^δ)) 

- (p5 + K + ^57^7(1 - <h*i) + « ( 1 - «Ä) ) ] (32) 
^ 6 = 8^β[^46^4 + (<AlO,6 — ̂ 46^4) — (Ρβ + ^6 + K + ^68*8 

+ <£6Ä(1-*Ä))] (33) 
X7 = QX^27X2(l - a7X7) + φ5ΊΧ5(1 - αΊΧΊ) - fa + μΊ + X7Q™ 

+ <A7Ä(1-«Ä))] (42) 
^ 8 = QX%[<I>S%XS — 0>8 + /*8 + λ8 + ^ Α ί 1 " Ö Ä ) ) ] (35) 

^9 = Ö ^ ^ A t 1 — Λ Α ) + ̂ Α ( ! — ΛΑ) + ̂ Α ί 1 — aA) 
+ ^8Ä(1 — ß Ä ) — (P9 + λθ)] — M Ä (43) 

^10 = Q[^X2 + M3̂ 3 + /V^6 + /V^6 + ^7^7 + A*Ä] + /*4*4 + / * Ä 
— ô[^10,5^s(l — Λ10,δ*δ) — ̂ 35^3^5(1 ~ Ο35^δ) + ΦΐΟ.ΒΧ6 

— ^46^4*6 + Ρΐ(Αθ] — λ 1 ( Α θ · (44) 

FIG. 10. The final nonlinear model of energy flow in the Cedar Bog Lake ecosystem. 
The values near the arrows and (the value in compartment 1 are flows (calories per square 
centimeter per year). Values in the other compartments are average standing crops 
(calories per square centimeter). Flow linear with donor compartment 7\ flow 
approximately linear with recipient compartment ^ ; simple nonlinear flow ► ; 
complex nonlinear flow »—*·; complex nonlinear flow independent of donor com-
partment »-^. 
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FIG. 11. Behavior of the final model (Eqs. (25), (26), (29), (32), (33), (35), (38)-(44), 
and Table IX). The year starts at the vernal equinox. Values on the ordinate for the 
ooze are multiplied by 0.1, for insolation, temperature and benthic plants by 1.0, for the 
predator compartments by 10.0, and for the remaining compartments by 20.0 

In response to simulated annual cycles in light, temperature, and season, 
this model yielded annual cycles in the energy flow and standing crop 
of its compartments. Lindeman's data and descriptive comments 
suggested the form of the seasonal cycles in the standing crops of five 
of the compartments, benthic plants, net plankton, nannoplankton, 
plankton predators, and swimming predators, and these cycles were to 
some degree duplicated by the model. All the compartments of the model 
approximated the average standing crops suggested by Lindeman's 
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data. Except for benthic plants, the average standing crops lay within 
7 % (average 3%) of those initially calculated (Tables V and X). The 
average standing crop of benthic plants was about half that originally 
calculated, but this represented an initial misconstruing of Lindeman's 
observations rather than a failure of the model. The model also yielded 
gross productions in most compartments within a few percent of the 
calculated values (Tables V and X). Three compartments, net plankton, 
nannoplankton, and plankton predators, could not be adjusted to yield 
both the desired average standing crop and the desired gross production. 
By control of input, the phytoplankton compartments were forced into 
pronounced seasonal cycles in standing crop correlated either inversely 
or directly with temperature. The average metabolic rates for these 
populations were thus either much greater or much less than the 
metabolic rates occurring at the mean effective temperature of the 
ecosystem. The model, however, is based on the concept that the annual 
average metabolic rate for a population approximates the rate at the 
mean effective temperature of the system. The plankton predator 
compartment had excessive gross production despite the fact that it was 
forced into a seasonal cycle in standing crop inversely correlated with 
temperature. The difference between this compartment and the phyto-
plankton compartments lay in the manner in which standing crop was 
controlled. The plankton predators were regulated by manipulating 
loss from the compartment rather than input into it. The small standing 
crop minimized self-inhibition, and this combined with high temperature 
and abundant food generated a large input during the summer despite 
the small standing crop at this time. 

When summed by trophic level, the deviations from desired values 
for gross production somewhat cancelled one another (Table X). The 
final model yielded average gross productions of 95.9, 12.1, and 
4.1 cal/cm2 yr_ 1 for primary producers, herbivores and carnivores, 
respectively. Lindeman's data (Table III) suggested gross productions 
of 95.9,12.0, and 3.1 cal cm_ 2yr_ 1 , respectively, for these trophic levels. 

X. Utility of the Model 

Although the various models of energy flow in the Cedar Bog Lake 
ecosystem are in part based on data, none of them can be employed in 
speculations concerning the nature of ecosystems—because the principal 
foundation for much of this modeling was educated guesses. The final 
model has pedagogical rather than analytical value. This model possesses 
desirable attributes, stability, and responsiveness to simulated environ-
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mental changes, and thus offers insights into the construction of workable 
nonlinear ecosystem models. 

The ten-compartment nonlinear models functioned passably well even 
when relationships between compartments were very imperfect, and 
showed considerable stability when subjected to extensive tinkering. 
This stability is probably derived from three decisions in the initial 
structuring of the model: (1) unselective feeding, (2) the interposition of 
an ooze compartment between the plants and the herbivores, and (3) 
an ooze to herbivore flow controlled solely by the herbivores. Unselective 
feeding directed most of the plant production into the ooze which then 
served as a reservoir for plant production. The presence of this reservoir 
and a recipient-controlled flow from it gave the herbivores an almost 
unlimited food supply, precluding any important direct interaction 
between the plants and herbivores. Thus, fluctuations in the plant 
compartments had minimal effect on the herbivore compartments, and 
vice versa. With abundant food available to herbivores, their regulation 
became a function of carnivore abundance. The ecosystem was thus split 
into two largely isolated parts, the plants and the animals, and the 
animals split into the subordinate herbivores and the dominant carnivores. 
The plankton predators which fed directly on net phytoplankton 
consumed only 10 % of the net production of this compartment and there-
fore had little effect on it. This dividing of the ecosystem into isolated parts 
gave the model stability and simplified its adjustment. The plant and 
animal ends of the system could be simultaneously subjected to 
experimentation, and imperfect behavior by one part of the model, 
buffered by the ooze compartment, was not transmitted throughout the 
system. 

The regulation of nonlinear flows with self-inhibition functions gave 
the model both stability and increased responsiveness. The presence of 
some restraint on the nonlinear flows appears essential in the constructing 
of workable nonlinear models. The first nonlinear models of the Cedar 
Bog Lake ecosystem lacked adequate control of the interaction among 
compartments. The stimulus provided by the annual variation in solar 
energy caused some compartments to fluctuate widely in response to one 
another. With the interaction (i.e., the flows among compartments) 
regulated by self-inhibition, the compartmental values remained within 
suitable bounds and responded smoothly to the annual energy cycle. 

Since each nonlinear flow has the ability to produce far-reaching effects 
in a model and requires complex regulation, the construction of a non-
linear model is speeded and simplified by minimizing the number of 
nonlinear flows, and as far as possible separating them from one another. 
This separation can be effected by interposing between two nonlinear 
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flows either a large compartment with slow turnover or two compartments 
joined by a linear flow. Both methods were used in the Cedar Bog 
Lake model. 

One aspect of the final model serves no useful purpose. The residuums 
do not save any of the plant compartments from extinction because none 
are so threatened. Even at their lowest standing crops the plant compart-
ments receive no more than 1 to 5 % of their input via the residuums. 

XL Reconsideration of Lindeman's Work 

Lindeman's conclusion that the productivity of lakes is lowest during 
senesence was based on his comparison of two bodies of water, Cedar 
Bog Lake and Lake Mendota (Wisconsin). Neither his own study of 
Cedar Bog Lake nor Juday's (1940) study of Lake Mendota contained 
any measurements of plant production. In both studies phytoplankton 
production was inferred from data on standing crop by use of arbitrary 
rates of turnover, and the rates used do not agree with current notions. 
Data of Kristiansen and Mathiesen (1964) on the phytoplankton of a small 
Danish lake, for example, suggest an annual gross production at the 
most favorable depth at least 274 times the average standing crop. 
Cedar Bog Lake is shallow enough to be illuminated to the bottom. 
Assuming—as Lindeman did—that net production is three-fourths of 
gross production, this yields an average turnover time of 1.8 days. Use 
of such a turnover time would have increased the estimates of phyto-
plankton production in Cedar Bog Lake by five-fold. Lindeman appears 
also to have underestimated benthic plant production. He equated 
annual production of pond weeds and their epiphytes with the maximum 
standing crop. These algal epiphytes presumably turned over more 
often than once a year. Since values of zero were recorded during the 
winter it is likely that his measurements of standing crop did not include 
roots, and these are often a substantial part of total plant biomass 
(Westlake, 1966). Lindeman also ignored the emergent plants, Typha 
and Decodotiy in his measurements of biomass in Cedar Bog Lake. 
Comparisons of plant productivity by Westlake (1963) indicate that the 
productivity of lakes rises during senescence. Submerged pond weeds 
are on the average at least as productive as fresh-water phytoplankton 
communities, and emergent species—which characterize the transition 
from aquatic to terrestrial—are far more productive than phytoplankton. 

When reworked into a network system, the observations of Lindeman 
no longer support his suggested general principle that the efficiency with 
which energy assimilated by one trophic level is transferred to the next 



10. COMPUTER SIMULATION OF ENERGY FLOW 5 8 1 

increases with successive trophic levels. Lindeman is correct to the 
extent that the efficiency of the first transfer, i.e., the efficiency with 
which solar energy is captured via photosynthesis, is low in natural 
communities. Neither studies of other ecosystems (Kozlovsky, 1967), 
nor the network model of the Cedar Bog Lake ecosystem (Table XI), 
show any consistent increase in the efficiencies of the transfers for 
succeeding levels. 

TABLE XI 
EFFICIENCY WITH W H I C H ENERGY ASSIMILATED BY TROPHIC LEVELS IS 

TRANSFERRED TO A SUCCEEDING TROPHIC LEVEL" 

Percent efficiency 

Transfer Linear model Final model 

Plants/sun 0.1 0.1 
Browser/benthic plant + ooze 0.9 1.0 
Zooplankton/nannoplankton + ooze 10.4 12.2 
Plankton predator/net plankton + 8.2 7.8 

Zooplankton 
Benthic predator/browser 36.9 35.1 
Swimming predator/browser + Zooplankton 5.1 4.7 

+ plankton predator + benthic predator 

α From data for the ten-compartment linear model (Table V) and from the results 
obtained with the final nonlinear model (Table X). 

The fact that nearly thirty years of research have revealed flaws 
in some of the conclusions Lindeman drew from his pioneer study in no 
way detracts from the stature and importance of his work. His basic 
conclusion, that trophic level and energy flow are key factors in the 
analysis of ecosystems, stands. 
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Coda 

Nothing seems more natural, perhaps, after a half century or so of biological 
analysis devoted to understanding organisms by understanding their parts, 
than to try in synthesis to put the understood parts back together again. This 
rationale has dominated the modeling represented in this volume, which might 
be characterized as "mechanistic'' modeling. It doesn't work—not yet—especially 
not for ecosystems, and the fundamental wisdom of attempting to achieve 
realistic simulations by stringing together large sets of arbitrarily derived 
equations representing mechanisms seems open to question. As H. T. Odum 
[1971. "Environment, Power and Society." Wiley (Interscience), New York] 
has suggested, it is difficult to see a forest when the trees stand out so clearly; 
perhaps what we need is smoked glass in our macroscope. 

Modeling spans a spectrum from isomorphic formulations, in which com-
ponents and interactions of systems are captured on a one-to-one basis, to 
homomorphic representations where details are collapsed many-to-one into 
lumped variables and parameters. The former emphasize realism and detail, 
while the latter grade into abstraction and generality. The trick of effective 
modeling is somehow to strike a balance between the two extremes that is 
appropriate for what should be explicitly defined goals and objectives. Moreover, 
within a given investigation different models may serve different purposes, and 
the title of this book is intended to suggest that these may broadly be considered 
simulation and systems analysis. Models for simulation tend to be realistic and 
concerned with details (isomorphic), whereas systems analysis models may 
possibly lean more to the abstract (homomorphic). The general cybernetic 
model for feedback control can be used to diagram how these two approaches 
might logically complement one another in a given macrosystem study. 
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Output 1 corresponds to the ultimate objective of performing a systems 
analysis on a general model representing the "core" dynamic characteristics 
of the real system. The analysis may include transient and frequency response, 
sensitivity analysis, stability, optimization, etc., and it is suggested that for many 
purposes, particularly when the system is in a well-defined operating state, 
linear models may serve usefully to express the general features of that state. 
Output 2, on the other hand, is associated more with realism and the simulation 
rationale. Mechanistic models, linear or nonlinear, may be studied for their 
heuristic value in refining concepts and identifying data needs. Simulation 
models do not have to reproduce dynamic behavior realistically to be useful in 
the feedback loop ; the thought that goes into them may be their greatest value. 

In accordance with this scheme, the first section of Volume II presents a series 
of papers concerned more with dynamic analysis of ecosystems than with 
simulation. This is followed by sections on theory and applications, culminating 
in a visionary chapter outlining the exciting prospects for ecological systems 
modeling in the future. 
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in compartment model, 480 
first-order, 130, 172, 480 
forced and unforced, 40 
formulation of, 130-169 
in lumped-parameter system, 480 
matrix exponential (Paynter) method, 

81-82 
Model III rotifer system and, 106 
numerical methods for, 74-82 
for pine-mor food web, 165-167 
predictor methods for, 76-78 
solutions and solution behavior of, 

170-188 
steady-state response of, 40 
transient response of, 40 

Digestive efficiency, in largemouth bass, 
328 

Digital computer, 45-51 
arithmetic-logic in, 48 
card reader and, 47 
compared to analog, 45-46, 69-70 
compiler program in, 50 
control unit in, 48 
data-control cards in, 50-51 
data deck and, 50 
ecological model and, 147-161 
end-of-job cards for, 51 
execution cycle in, 48 
Fortran IV and, 49-70 
functional units of, 46-49 
IBM card and, 47 
input unit of, 47 
instruction cycle in, 48 
job-control cards in, 50-51 
object deck in, 50 
object program in, 50 
magnetic tape and, 47 
memory capacity of, 48 
memory storage in, 48 
monitor control cards in, 50 
output in, 49 
in pine-mor food program, 158-161 
printer for, 49 
programming of, see Computer pro-

gramming 
simulation with, 3-119 

source program in, 50 
special-purpose program with, 70-74 
subprograms in, 50 
translating system language in, 49 
words or cells in, 48 

Digital simulation, 3, 70-95 
Digital simulation languages, 84-95 

see also Digital computer 
Digitaria sanguinalis, 488 
DIMENSION statement, 64 
Diode function generator (DFG), 27 
Dirac delta function, 292 
Disk storage, in digital computer, 48 
DO loop, 155,. 158, 180 
Donor compartments, 36 
Donor nodes, 32 
DO statement, 67-69, 155 
Dot notation, 23 
Dynamic ecological models, 123-191 

analysis in, 169-191 
formulation of equations for, 130-169 

Dynamic regulation, 370 
Dynamic state variables, 136 

calculation of, 158 
equations for, 142-143 

Dynamic systems, 6-8, 164 
DYNAMO language, 85 

E 

Ecological bioenergetics, 269-321 
quantities and transfers in, 273 
systems analysis and, 272-275 

Ecological coupling, 29-30 
Ecological energetics, mass energy exchange 

and, 387 
Ecological model 

see also Ecosystem model(s) 
analog computer simulation in, 167-169 
analysis of, 169-191 
approximated states in, 163 
frequency response in, 174 
predictions in, 169 
primer for, 3-119 
stability in, 175 
systems analysis in, 167 
time lags in, 140 
transport lags in, 141 

Ecological system 
see also Ecosystems 
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compartmentalized, 33 
defined, 370-371 
dynamic modeling of, 4-16, 123-191 
dynamic state measurements in, 162-163 
energy flow in, 269 
modeling and, 123-191 
real-world, 176 

Ecology 
energy flow in, 271-272 
suboptimization in, 370 
trophic-dynamic aspect of, 544 

ECOSYS program, 374 
Ecosystems 

see also Ecological system 
as closed structures, 371 
energy relations in, 271 
as open system, 370 
organism identity in, 371 
simulation of, 365 fT. 
single-species dynamics and, 199 

Ecosystem model(s), 28-40, 544-581 
abiotic factors in, 403-406 
age-class effect in, 413 
biotic factors in, 375-403 
Cedar Bog Lake system and, 547-548 
characteristics of, 408-413 
computer program for, 430-438 
contingency vs population change in, 414 
crowding and competition in, 375-376 
deficiencies in, 413 
density-dependent modifying factor in, 

376 
discussion of, 414-418 
energy dynamics in, 380-381 
energy expense budget in, 387-391 
forcing function and transfer rates in, 

549-551 
general population model and, 372-374 
herbivore effects in, 409 
input formats for, 422-428 
parameter changes and, 413 
plant-moose-wolf chain in, 514-521 
sample output for, 429 
simulation through, 368-438 
simulation trials in, 406-408 
symbiosis in, 379-380 

Ecosystem simulation, finite-difference 
model of, 367-438 

Eigenvalues, in linear model, 293 
End-of-job card, 51 

END statement, 56-59 
Energetics model, in predator-prey rela-

tionships, 328 
Energy 

control of in ecosystems, 271 
desired growth rate and, 280-281 

Energy accumulation, process of, 297-298 
Energy assimilation, by trophic levels, 581 
Energy content pyramid, Isle Royale, 517 
Energy deficit, effects of, 384-387 
Energy dissipation, in bioenergetics model, 

302-312 
Energy-dissipation process, model of, 303 
Energy dissipation rate, body weight and, 

276 
Energy dynamics, ecosystems model and, 

380 
Energy expense budget 

computer routine subsystems in, 402-
403 

in ecosystems model, 387-391 
population increase and, 388-389 
prédation and, 396-402 
satiation level and, 394 

Energy flow 
biology and, 270 
Cedar Bog Lake model of, 551-553 
computer simulation of, 543-581 
nonlinear model of, 572-573 
ten-compartment linear and nonlinear 

models of, 557, 565-569 
three-compartment linear model of, 

548-552 
trophic line and, 547, 581 

Energy intake 
in ecosystems model, 381-385 
starvation and, 384 

Energy partitioning, dynamics of, 272 
Energy regulation, models of, 275-278 
Energy relationships, whole-ecosystem, 271 
Energy transfer 

food availability and, 371 
between individuals, 371 

Environment 
carrying capacity of, 16 
in prédation energetics, 360 
in ten-compartment nonlinear model, 

565-568 
Environmental variables, 199 

in biogenetics model, 312-313 
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Equation forms, control diagram and, 137 
see also Differential equations 

Equilibrium body burden, 460 
Equilibrium state, trajectory and, 182 
Eragrostis secundiflora, 488 
Error index, 189 
Escherichia coli, 199 
Ethology, modeling in, 276 
E-time, in digital computer, 48 
Euler's method, 161, 179 

in arthropod system analysis, 467 
with differential equations, 74-82 
in mathematical model, 154 
in Silver Springs linear system program-

ming, 74 
Evaporation, actual vs potential, 141, 144 
Eventual stability, concept of, 186-187 

see also Stability 
Explanatory model, 139 
Exponential growth, coefficient of, 286 
Experimental growth equation, 14-15 
Extensive population variables, 200 
Extensive properties, model for, 230-247 

F 

FATLE, 402 
Fat store or depot 

reduction of, 384 
satiation level of, 394 

Feedback 
in bioenergetics model, 281-282 
control systems and, 30-31 
in coupled systems, 28 
defined, 19 
negative, 30, 278 
in systems analysis, 273-274 

Feedback control systems, 30 
in simulation model, 370 

Feedback effects, in secondary succession 
models, 500 

Feedback/impedance ratio, 18-19 
Feedback loops 

in biological systems, 279 
collapse of, 292 

Feeder, biomass of, 139 
Feeding behavior, in prédation studies, 

348, 356-360, 409 
Feeding fluxes, 139 

Finite-difference model, in ecosystems 
simulation, 367-438 

First-order differential equations, 130, 172, 
480 

Floating point numbers, 52 
Flowcharts, in computer programming, 

63-64, 67, 107-108 
Flow rate 

in algal population studies, 219-220 
in compartment model, 34 
square wave cessation of, 242-243 
ten-compartment linear model and, 

355-356, 559 
Flux, in compartment model or system, 

33-34 
feeding, 139 

Food 
see also Nutrient demand 
assimilation rate in, 276 
consumption regulation in, 381, 391— 

396 
radioisotope tracing of, 458-459 

Food availability and feeding behavior, in 
prédation studies, 348, 356-360, 409, 
415-416 

Food chain 
in Isle Royale study, 514-521 
model of, 37-40 

Food deprivation, meaning of, 304 
Food exposure, coefficient of exponential 

growth and, 305 
Food intake 

biométrie limit of, 391-392 
control of, 381, 391-396 
glucostatic and lipostatic regulation of, 

391 
satiation level in, 393 

Food supply 
control of, 140 
herbivores and, 417 
population control and, 415-417 

Forb compartment, 497 
Forced behavior, 39-40 
Forced dynamic systems, 31 
Forcing function 

in ecosystem model, 549-551 
in ten-compartment linear model, 559 

Forcings 
defined, 31 
in Isle Royale system, 527 
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Forest floor 
radiocesium movement on, 462-475 
radionuclide concentration in, 475 

Forest-floor arthropods 
see also Cryptozoa 
population dynamics of, 449-454 
systems approaches to, 441-476 
variable coefficient method for, 443-445 

FORMAT statement, 56, 59, 155, 159 
Formicidae, 161 
Fortran IV language, 49-51 

computer programming with, 51-70 
constants and variables in, 52 
statements in, 51 
variables in, 52 

Fortran IV programming, 51-70 
arithmetic assignment statements in, 

54-56 
for cryptozoan model, 470 
DO statement in, 67-69 
ecological model and, 154 
flowcharts in, 63-64, 67 
input and output in, 56-59 
MATEXP program and, 82-84 
mathematical functions in, 54 
mixed-mode expressions in, 53 
numerical approximation from, 180 
operations and expressions in, 53-54 
for pine-mor food web model, 156-158 
population model and, 374 
statements in, 51 
S/360 CSMP simulation language and, 86 
subscripted variables in, 64-67 
transfer of control in, 59-62 
vector-matrix notation in, 65-66 

Fourth-order Runge-Kutta method, 179 
see also Runge-Kutta method 

Frass, 13 1 
Frequency response, ecological model 

and, 174 
Functions 

definite and semidefinite, 184 
in simulation language, 87 

FUNCTION subprograms, 69 
Function switches, 27 

G 

Gain flux 
mor moisture and, 144-145 

pine litterfall as, 145 
in state variable expression, 137 

Gambusia, 330 
Generation time, in model cell, 245, 251 — 

252 
Geometric theory, of ordinary differential 

equations, 164 
Glucostatic regulation, 391 
Gompertz equation, 276 
GO TO statement, 59 
GPSS language, 85 
Grass compartment, 497 
Grazing influences, 7 
Green's functions, stochastic, 188 
Growth 

caloric deficiencies and, 303 
coefficient of, 286 
control and evaluation mechanisms in, 

277, 282 
exponential, 286, 305 
feedback mechanism in, 277 
models of, 275-278 
nutrient demand and, 263 
nutritional state and, 303 
output vs input in, 290 

growth control 
mechanisms in, 277, 282 
rate-sensitive, 282 

Growth performance, errors in, 300 
Growth rate 

age and, 288 
cell size distribution and, 253 
"desired," 280, 284, 290, 319 
"memory loss" in, 304 

Growth rate feedback loop, 305 
Guppies, as prey for largemouth bass, 

329-330 
Gut capacity 

as growth factor, 298-301 
in prédation studies, 348 

Gut contents, in prédation studies, 346 

H 

Helianthus annus, 488, 496 
Herbivore-carnivore relations, in Cedar 

Bog Lake studies, 545, 548, 573-575 
Herbivores 

food supply and, 417 
predators of, 417 
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in ten-compartment nonlinear 
571-574 

Hollerith card, 47 
Hollerith field, 69, 155 
Homogeneity, property of, 540 
Homomorphism, 10 
HP matrix, 82 
Hunger, model for, 395 
Hypothalamus 

food intake and, 391-392 
regulatory system and, 283 
thermorégulation and, 279 

Hypothesis-testing techniques, 162 

I 

IBM card, 47 
IBM System/360 Continuous System 

Modeling Program, 85-95 
Ideals cells, defined, 248 
Ideal performance, 278 
Ideal size density function, 257 
Ideal size distribution, 260 

growth rage and, 256 
hypothesis testing with, 261 
model cell and, 252-257 

IF statements, 60-61 
Impulse-response optimization, 190 
Input formats, for ecosystems model, 

422-428 
Input variables, 134 
Integer, defined, 51 
Integer variables, 52 
Integrating amplifier, 21-23 
Intensive population variable, 200 
Intensive properties, model cell and, 

247-264 
Invertebrates, control systems in, 283 
Inverter, 20 
Ionizing radiation, population dynamics 

and, 453 
Isle Royale National Park (Canada), 

ecosystem of, 514-51 7 
Isle Royale plant-moose-wolf chain 

basic data for, 515-521 
block diagram of, 520 
computer models of, 513-541 
free and forced responses in, 527-529 
linear model of, 522-525 
model evaluation in, 537-541 

model hierarchy in, 521-522 
nonlinear models of, 525-527 
steady states in, 529-533 
system parameters in, 518-519 
time behavior in, 527-537 

Isochrysis, 220-221 
Isopod 

"forgetting" of food history in, 311 
muscular activity in, 302 
radionuclide loss in, 298 

I-time, in digital computer, 48 

j 

Jacobian matrix, 183 
Job-control cards, 50 
Joined system, 29 

K 

Keypunch, 47 
Kirchhofes law, 18 

L 

Lag phase, in model cell batch culture, 
230-231, 239-240 

Laplace transform, 1 70 
in linear model, 289 

Largemouth bass 
see also Micropterus salmoides 
digestive efficiency in, 328 
prédation energetics in, 325-361 

Large-scale fluctuations, simulation of, 
442-454 

Large systems, parameter values in, 454-
462 

Lebistes reticulatus, 328-329 
Leptinotarsa decimlineata, 496 
Lienard-Chipart simplification, 178 
Life process, control in, 271 
Limit cycle, 182 
Linear approximation, 289 
Linear compartment models, 486-487 
Linearity, in nature, 288 
Linear model 

in bioenergetics, 288-312 
block diagram for, 291 
conversion to nonlinear, 558-564 
in Isle Royale system, 522-529 
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Linear systems 
denned, 170-171 
equation types and, 171 
transient analysis for, 173-174 

Linear three-compartment system, Cedar 
Bog Lake, 548-553 

see also Ten-compartment linear model 
Lipostatic control, 391 

satiation level and, 394 
Liriodendron forest, 472 
Lithobiomorpha, 161, 183 
Litterfall 

denned, 135 
as variable, 131 

Litter removal, in secondary succession 
model, 507 

Logical IF statement, 59-60 
Logistic equation, 276 
Lotka-Volterra assumption or equations, 

29, 140 
Lotke-Volterra population interaction, 62 
Lotke-Volterra system, 108 

flow in, 35 
Lumped parameters, in digital program-

ming, 88, 99, 101 
Lyapunov function or theorem, 184-185 
Lyapunov method, 178, 184 
Lyapunov stability, 176-177 

M 

Machine language, defined, 49 
Magnetic tape, 47 
Malthusian equation, population change 

and, 372 
Mammals 

feedback controls in, 283 
temperature control in, 279 

Markov chains, 129 
Mass action law, 140 
MATEXP program, 82-85, 112-119 
Mathematical models, 123-130 

see also Model 
advantages of, 368 
classification in, 130 
constants in, 146 
Euler's method in, 74-82, 154, 161, 179, 

467 
formulation of, 130-147 
nature of, 124-126 

nonexplanatory or noncausal, 171 
numerical solution in, 147-161 
predictions in, 126 
real-world variables and, 126-127 
simulation with, 70-95, 368-369, 406-

408, 473-474 
stability criteria for, 177-178 
state variable expressions in, 137-138 
subhypotheses and, 126 
"system" and, 127 
system identification in, 162 
testing of, 125-126 
theory in, 124-125 
types of, 127-130 
variables in, 125 

Mathematical theory, nature of, 124 
Matrix exponential method, 81 
Maximum principle, 191 
Mean air temperature, 135 
Mechanistic model, in secondary succes-

sion studies, 492 
see also Model 

Memory, of food deprivation, 304 
Memory capacity and storage, in digital 

computer, 48 
Metabolism, active, 350-356 
Metabolic measurements, in prédation 

energetics, 330-334, 337-346, 350-356 
Microbial populations 

algal population studies and, 200-230 
approach to, 199-200 
dynamics of, 197-265 
exponential phase in, 230 
lag phase in, 230 
model for extensive properties in, 

230-247 
stationary phase in, 231 
study rationale in, 198-199 

Micropterus salmoides, 327, 330, 344, 360 
Mictic eggs, 1 1 
MIDAS language, 85 
Mikhailov method, 178 
Millipedes 

caloric excretory loss in, 448 
energy values for, 448 
studies of, 445-449 

Milne method, 93 n., 154 
MIMIC language, 85 
Mixed-mode expressions, in Fortran IV 

programming, 53-54 
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Model(s) 
see also Mathematical models 
additivity in, 540 
"all purpose," 274 
bioenergetics, see Bioenergetics model 
cause-and-effect, 139 
of cell, see Model cell 
compartment, 32-37 
defined, 8-12, 368 
of dynamic ecological systems, 123-191 
ecological, 3-119 
ecological bioenergetics and, 272-275 
of energy regulation and growth, 275-278 
explanatory, 139 
generalized bioenergetics and, 278-288 
homogeneity in, 540 
linear compartment, 486-487, 557, 565-

569 
many-one correspondence in, 9 
mathematical, 123-130 
"oversimplified," 540 
point of view in, 368 
purpose of, 274 
or radiocesium movement on forest 

floor, 462-475 
vs real system, 274-275, 368 
of rotifer systems, 11-12 
superposition in, 541 
yardstick for, 537 

Model ceil, 231-233 
see also Chlorella 
age density function in, 247-248 
balanced growth in, 253 
batch culture in, 238-241, 248-250 
biomass maximum and, 237-238 
cell size and, 242 
chemostat culture of, 250-251 
chemostat transients in, 241-244 
discussion and critique of, 246-247 
environmentally entrained synchrony in, 

244-245 
fitting data in, 257-260 
generation time correlations in, 245 
growth curves for, 255-256 
ideal size distributions in, 252-257 
intensive properties in, 247-264 
nutrient drain in, 260 
populations of, 233-234 
properties of, 234 
relative age distribution in, 252 

size distributions in, 255-257 
steady-state precision in, 234 
steady-state size distributions in, 255-256 
steady-state turnover rate in, 235 
synchronous population in, 257 
temperature effects and, 236-238 
variable generation times in, 251-252 

Model constants, evaluation of, 146 
Model food chain, 37-40 
Model III rotifer system, 106, 109 
Molting, growth rate and, 287 
Monte Carlo techniques, 187 
Moose, in Isle Royale ecosystem, 514-519 
Moose-wolf interactions, model evaluation 

in, 515, 537-541 
Mor 

as dynamic state variable, 144 
potential evaporation from, 141 

Mor moisture, 144 
Mor respiration rate, 144, 147 
Mortality rates 

population size and, 377 
prédation rate and, 398 

Motion pictures, in prédation studies, 
334-337 

Multiple regression techniques, 446 
Multiplier 

analog computer, 26-27 
quarter-square, 26 

Muscular activity, respiration rate and, 302 

N 

Nannoplankton, 544 
Narceus americamis, 445 
Negative feedback, 30, 278 
Net plankton, 544, 571 
Node, defined, 32 
Nonautonomous systems, 165 
Nondynamic state variables, 136, 159 

equations for, 142 
Nonlinear bioenergetics model, 312-321 

acclimation in, 314-315 
first-order lead-lag system in, 315-317 
in Isle Royale system, 527-529 
isopod as, 309-310 

Nonlinear flows, regulation of, 579 
Nonlinearity 

desired growth rate as, 319 
in nature, 288 
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Nonlinear stability analysis, 184 
Nonlinear systems, 178-181 
North Carolina piedmont 

discussion of model for, 508-509 
experimentation with model of, 505-508 
initial compartment model for, 499 
old-field succession in, 496-509 
simulation constants in, 503 

Numerical approximation, computer pro-
gram and, 70 

Numerical solution, in ecological model, 
147-161 

Nutrient concentrations, in algal population 
growth, 213 

Nutrient deficit, energy storage and, 396 
Nutrient demand 

see also Food 
cell growth and, 232-233 
cyclic changes and, 264 
plankton paradox and, 263 
photoperiod and, 264 

Nutrient drain, in model cell studies, 260 
Nutrient measurement, radioisotopes in, 

458 
Nutritional state, in linear model, 303 
Nyquist method, 178 

O 

Oak-hickory compartment, 500 
Object deck, 50 
Object program, 50 
Ohm's law, 18 
Oklahoma, old-field succession in, 487-496 

see also North Carolina piedmont 
Ooze, in ten-compartment nonlinear 

model, 575 
Open-air precipitation, 141 
Open-loop control system, 30, 290-297 
Open system, 370 

in secondary succession model, 483 
Operational mathematics, 288 

see also Differential Equations; Mathe-
matical models 

Operational thermodynamics, 124 
Optimization criterion, 189 
Optional control, defined, 188 
Ordinary differential equations, 164-169 

see also Differential equations 

Organism 
defined, 271 
energy control by, 271 

Oscillations, in algal population growth, 
221-224 

Otocryptops sexspinosus, 456 
Output, system and, 29 
Oxygen consumption 

in prédation energetics, 331, 339-342 
velocity and, 354-356 

P 

PACTOLUS language, 85 
Parameter estimation, 146, 162, 454-462 
Partial difference equations, 129 
Partial fractions, 293 
Path, defined, 32 
Paynter's method, 81 
Perturbation method, in growth rate 

studies, 284 
Phase-plane analysis, 181-182 
Photoautotrophs, plankton paradox and, 

262-623 
Photoperiod, nutrient demand and, 263-264 
Photoperiod synchronized population, 225-

227 
Photosynthesis, in model food chain, 38 
Physallis heterophylla, 496 
Physioecological system, model of, 276, 380 
Phytoplankton, multispecies associations 

in, 262 
Piedmont succession models, 487-509 
Pine compartment, 498 
Pine litterfall 

defined, 135 
as gain flux, 145 
as variable input, 160 

Pine-mor food web model, 130-133 
constants in, 148-153 
differential equations for, 165-167 
Fortran computer program for, 156-158 
Runge-Kutta method for, 154 
variables in, 136 

Pine removal, effect of, 506 
Pinus eschinata, 147, 160, 498 
Plankton biomass, 135 
Plankton paradox, 262-264 
Plankton predator, 544-545 
Plantago, 497 
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Plant-herbivore-carnivore ecosystem, 548, 
571-575 

Plant-moose-wolf food chain, 514-521 
Plants 

in Isle Royale ecosystem, 518-519 
in ten-compartment nonlinear model, 

569-571 
Population 

ecosystem models of, 28-40 
of model cell, 233-234 
rate constants in, 13 
taxonomic groups in, 464-465 
trophic characteristics of, 464 

Population change 
birth or death rates in, 373 
contingency and, 414 

Population competition, 29-30 
Population control, factors in, 415-418 
Population dynamics 

in arthropod systems analysis, 449-454 
computer routine for, 374 
denned, 414 
equation for, 372-374 

Population growth 
see also Growth 
abiotic factors in, 403 
differential models in, 13 
energy expenditure in, 388-389 
equation for, 13-15 
exponential, 13-15 
food and, 415-416 
logistic, 15-16, 59 
predator-prey relations and, 415-418 
S-shaped curve of, 16 
upper limit of, 417 

Population model 
Malthusian equation and, 372 
state in, 141 

Population simulation methods, for forest-
floor arthropods, 449-450 

Population studies, of algae, 200-230 
Population variables, extensive and in-

tensive, 200 
Porcellio scaber, 276 
Porkilotherm, in energy-dissipation pro-

cess, 303 
Potential evaporation curve, 141 
Potentiometer, 23-26 

mutual dependency on, 100-101 
Precipitation retention, ratio of, 144 

Prédation 
caloric flux and, 326 
defined, 396-397 
"diminishing returns" in, 399 
energy expenditure and, 396-402 
food intake and, 381 
herbivore-carnivore relations in, 549-551 
population control and, 415-417 
switching in, 415-417 
in ten-compartment nonlinear model, 

564-565 
time vs energy in, 325-326 
total food ingested in, 400 

Prédation energetics 
active metabolism in, 350-356 
computer model results in, 347 
cover in, 360 
environmental factors in, 360 
experimental animals in, 329-330 
feeding behavior parameters in, 348 
filmed experiments in, 334-337, 356—361 
hunger and, 395 
in largemouth bass, 325-361 
materials and methods in, 329-337 
metabolism measurements in, 330-333, 

350-356 
model of, 327-329 
model sensitivity in, 346-356 
oxygen consumption in, 331-332, 339— 

342, 354-356 
prey extermination in, 359 
prey mortality in, 398 
routine metabolism in, 337-346 
sensitivity test and, 347 
temperature in, 341-343 
velocity vs oxygen consumption in, 

354-356 
Prédation fluxes, 145 
Prédation matrix, 397 
Predator(s) 

control by, 140 
food-limited, 417 
satiation of, 416 

Predator growth, food availability and, 409 
Predator ingestion rates, 145-147 
Predator population, conditional prob-

ability method in, 454-456 
Predator-prey relationships, 326, 398 

energetics model and, 327-329 
prey density and, 415 
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quantifying of, 454-458 
web spiders and, 457 

Predator survival factors, 327, 415-417 
Predictions, in mathematical models, 126 
Predictor-corrector methods, with differen-

tial equations, 78 
Prey, extermination of, 359 

see also Predator-prey relationships 
Prey density, in prédation control, 415-417 
Prey mortality rate, 381 
PRDAT, 402 
Privileged body weight, 396 
Probabilistic models, 129, 187-188 
Probability, vs determinism, 128 
Productivity 

corrected and uncorrected, 545 
Lindeman's views on, 545-546, 580 

Programming, see Computer programming ; 
Digital computer; Fortran IV pro-
gramming 

Protein destruction, starvation and, 384 
Protein metabolism, model for, 384 
Pütter equation, 276-277 

Q 

Qualitative theory, 164 
Queuing, 129 

R 

Radiation, effect of on population dyna-
mics, 453 

Radiocesium movement model, 462—475 
building of, 465-466 
computer code in, 468-471 
constant-coefficient linear, 466 
constraints in, 471-472 
difference equation formulation in, 467 
fluxes for, 465 
further developments of, 474-475 
inputs and outputs in, 472-473 
limitations of, 471-472 
nonlinear, 467 
quantification of, 472-473 
simulation experiments with, 473-474 
stochastic elements in, 468 
variable-coefficient linear, 467 

Radioisotope tracer methods, 458-462 
Radionuclide loss, in isopods, 298-299 

Radionuclide patterns, in forest-floor com-
munity, 475 

Ramp function, 28 
Randomness, probability and, 128 
Random systems or outputs, 187 
Rate notations, in compartment model, 36 
Rate parameters, in analog computer 

model, 43-44 
Rational algebraic fraction, 292 
READ statement, 56-58, 65, 155, 158-159 
Real arithmetic, in Fortran IV program-

ming, 54 
Real number, 52 
Real variable, 52 
Real-world data, 127, 160, 176 
Receptor nodes, 32 
Rectangular (Euler) method, for differen-

tial equations, 74-82 
Reference level, amplifier and, 17 
Relative age distribution, in model cell, 252 
Reproduction, energy expended in, 389 
Respiration rate, 144 

in bioenergetics model, 290 
body size and, 315 
lead-lag model of, 315-316 
muscular activity and, 302 
temperature and, 317 

RNORM function, 470 
Rotifer population models, 11-12, 35-36, 

106 
Routh-Hurwitz method, 178 
Routine metabolism, in prédation studies, 

337-346 
Runge-Kutta method, 79-80, 154, 161, 

179-180 

S 

Saddle point, defined, 182 
Salmonellat 238 
SATIA, 402 
Satiation, of predator, 416 
Satiation level 

fat depot and, 394 
in food intake, 393 

Seasonal dynamics, simulation of in 
forest-floor studies, 442-449 

Secondary succession model, 479—511 
applications of, 509-510 
coefficients and simulation in, 502-505 
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experiments with, 505-508 
feedback effects in, 500 
general discussion of, 509-511 
initial form of, 489-492 
linear constant-coefficient equations in, 

481-484 
litter removal in, 507 
manpower and hardware requirements 

in, 510-511 
mathematical framework of, 481-487 
in old-field successions, 487-496 
pine removal in, 506 
serai stages in, 488-489 
understory species in, 501-502 
units in, 487-488 
variable coefficients in, 484-485 

Selenastrum, 203, 214, 216, 222, 224, 227, 
264 

batch culture growth cycle for, 215 
in chemostat, 217-218 
flow rate for, 220 
population studies with, 201 

Self-loop, 8 
Semidefinite function, 184 
Semistable cycle, 182 
Sensitivity analysis, 82, 146 

defined, 191 
Serai stages, identification of, 488 
Shade compartment, 497-498 
Shrub compartment, 497 
Signal flow(s), 33 

graph of, 32, 134 
Silver Springs (Fla.) ecosystem model, 

37-40, 43 
analog program for, 44-45 
special-purpose digital programming in, 

70-74 
S/360 CSMP program for, 91-95, 110-111 

Simpson's rule method, 79 
Simulation 

digital, 70-95 
ecosystems model and, 406-408 
mathematical models for, 368-369 
in radiocesium model, 473-474 
of secondary succession, 479-454, 502-

505 
Simulation languages 

data and control statements in, 88-91 
digital computer and, 84-95 
program structure in, 88 

Sine-cosine generator, 28 
Single-species dynamics, 199 
Solatium carolinense, 496 
Solar radiation, in energy flow model, 

381, 551 
Solidago, 510 
Source deck, 50 
Source node, 32 
Source program, 50 
Sowbug, see Armadillidium vulgäre) Iso-

pods 
Specification statements, in Fortran IV 

program, 51 
Stability 

criteria for, 177-178 
defined, 175-177, 182 
degree of, 178 
ecological significance of, 176 
eventual, 186 
linear approximation of, 183 
in linear and nonlinear systems, 178-181, 

184 
Lyapunov, 177 
in nonautonomous systems, 186 
in nonlinear systems, 178-181, 184 
population control and, 417 
practical, 186-187 
structural, 191 
total, 186 

Starvation 
defined, 384 
"memory" of, 304 
model of hunger and, 395 

State 
argument and, 5 
change of, 5-6 
defined, 5 
rate and change in, 6 

State determinacy, defined, 28 
State set, 5 
State variables, 32, 134 

constant forcing function and, 138 
defined, 5 
dynamic and nondynamic, 136 
equations for, 138, 142-143 
as function of time, 5 
in linear bioenergetics model, 308 
model analysis and, 169 
nondynamic, 135, 141 
for pine-mor food web, 166-168 
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State-variable sets, 6 
State vector, 32 
Static systems, 6-8 
Stationary phase, in model cell growth, 

231-232, 239-240 
Steady state, 7, 39 

see also Model cell 
cell size and, 242 
displacement from, 533-536 
in Isle Royale system, 529-533 
transient response and, 171 
variabilities in, 205 

Steady-state regulation, in algal population 
studies, 204-206 

Steady-state size distribution, model cell 
and, 255 

Steady-state specific growth rate, for algal 
populations, 208 

Stem density factor, 508 
Stemflow, 141 
Stochastic Green's functions, 188 
Stochastic systems, 6, 187-188 
STOP statement, 56-59 
S/360 CSMP simulation language, 85-95 
Structural stability, 191 
Suboptimization, in ecology, 370 
Subprograms, for digital computer, 50 
Subprogram statements, in Fortran IV 

programming, 51 
Subroutines, in energy expenditure com-

puter calculations, 402-403 
SUBROUTINE subprograms, 69 
Subscripted variables, in Fortran IV 

programming, 64-67, 107 
Succession system, 7 
Summing amplifier, 19 
Sun, in energy production, 381, 551 
Superposition, principle of, 541 
Superposition integral, 172 
Switching, in prédation, 416-417 
Symbiosis 

in ecosystems model, 379 
plankton paradox and, 262 

System 
behavioral graph and, 6-7 
coupled or joined, 29 
defined, 4, 370 
dynamic, 8 
as mapping, 127 
models of 8-12 

open or closed, 370 
state of, 4-5 
static or constant, 8 
subsystems and, 370 

System identification 
defined, 188, 273 
in ecological model, 167 
models and, 8-12, 126 
system design and, 190 

System optimization, optimal control and, 
188-191 

System optimization path, 190 
Systems analysis 

defined, 272 
in ecological bioenergetics, 272-275 
in ecological model, 167-168 
feedback in, 273-274 

T 

Taxonomic groups, population lumping 
by, 464-465 

Taylor series, 154 
Temperature 

acclimation and, 318-319 
in algal population growth, 210-211, 221 
model cell and, 236-238 
in prédation studies, 341-343 
regression on, 446 
respiration rate and, 317 
in ten-compartment nonlinear model, 

567 
Temperature control, in mammals, 279 
Temperature generation, in radiocesium 

model, 468 
Ten-compartment linear model, environ-

mental effects and, 486-487, 557, 
565-569 

Ten-compartment network system, Cedar 
Bog Lake, 553-558 

Ten-compartment nonlinear model 
control of, 564-565 
energy flow in, 561-563 
final adjustment of, 569-578 
stability and, 563 
utility of, 578-580 

Terminal node, 32 
Terrestrial isopod, ecological bioenergetics 

of, 269-321 
Tetrahymena> 211, 238 
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Theorems, defined, 124 
Theory, in mathematical models, 124-125 
Thermodynamics 

biology as, 270 
boundary conditions and, 270 
models and, 124 

Thermoregulator, hypothalamus as, 279 
"Threshold" switches, 320 
Throughfall, 131, 141 
Time, changes in, 129 
Time lag effects, difference equations and, 

480 
Time lapse photography, 334 
Trajectory, equilibrium states and, 182 
Transfer function 

constants for, 560-563 
defined, 170 
in linear model, 292, 306-307 
optimization of, 190 
physical factors in, 281 
in systems analysis, 274 
vector and scalar, 174 

Transfer rates 
in ecosystems model, 549-551 
in ten-compartment model, 553 

Transformation matrix, 7 
Transformation table, 10 
Transient analysis, linear system, 173-174 
Transient population behavior, in algal 

studies, 214-222, 229 
Transient response, 40, 160, 171 
Transient states, 7 
Transient system, 39 
Transition matrix, 174 
Translating system language, 49 
Transmission function, 32 
Trapezoidal method, for differential equa-

tions, 80 
Trophic characteristics, population lump-

ing by, 464 
Trophic levels 

energy assimilation by, 581 
transfer in, 371 

Turnover rate 
algal population growth and, 210 
in model cell, 235 

Typha, 580 

U 

Ultrathin Millipore Filter, 203 
Understory species, 501-502 
Unforced behavior, 40 
Unforced systems, 31, 139, 210 
Universe, deterministic, 128 

V 

Vanguard motion analyzer, 335 
Variable array, 64 
Variable coefficient method 

in forest-floor studies, 443-445 
in secondary succession model, 485 

Variables 
classification of, 134 
environmental, 199 
in microbial populations, 199-200 
operational definitions of, 134 

Variables of interest 
control diagrams and, 132 
first causes and, 132 
specification of, 131 

Variable step-size method, 78 
Variational equations, 183 
Vector-matrix notation, in Fortran IV 

programming, 65-66 
Vegetation states, 7 
Viburnum, 497', 508 
Voltage scaling, in analog computer pro-

gramming, 17, 40-41, 44 
von Bertalanffy equation, 276 

W 

Wasatch Plateau, vegetation states in, 7 
Weather Bureau records, 135 
Web spiders, feeding relations of, 457 
Weight, active metabolism and, 351 
Winkler titration method, 331-332 
Wolves of Isle Royale, 513-541 

see also Isle Royale plant-moose-wolf 
chain 

WRITE statement, 56-58 

Z 

Zooplankton, 544 


