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Evolution by natural selection: more evidence than ever before

Evolución por selección natural: más evidencias que nunca
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ABSTRACT

The modern evolutionary theory, understood as the integration of the empirically-demonstrated theoretical
foundations of organic evolution, is one of the most pervasive conceptual frameworks in biology. However,
some debate has arisen in the Chilean scientific community regarding the legitimacy of natural selection as a
mechanism that explains adaptive evolution. This review surveys the recent evidence for natural selection and
its consequences on natural and artificial populations. In addition to the literature review, I present basic
conceptual tools for the study of microevolution at the ecological scale, from a quantitative point of view. The
outcome is clear: natural selection can be, is being, and has been quantified and demonstrated in both the field
and in the laboratory,not many, but hundred of times during the past decades. The study of evolution by
natural selection has attained maturity, which is demonstrated by the appearance of several syntheses and
meta-analyses, as well as “evolutionary applications” where evolution by natural selection is used to resolve
practical problems in disciplines other than pure biology. Caution is required when challenging evolutionary
theory. The abundant evidence supporting this conceptual body demands a careful examination of available
evidence before dogmatically critizing its theoretical foundations.

Key words: evolution, natural selection, adaptations, heritability, directional selection differential, artificial selection.

RESUMEN

La teoría moderna de la evolución, entendida como la integración del conocimiento teórico y empírico de la
evolución orgánica, desarrollado desde Darwin hasta ahora, es uno de los cuerpos conceptuales más impor-
tantes en biología. Sin embargo, cierto debate ha surgido en el medio científico local en torno a la validez
de la selección natural como mecanismo explicativo de la evolución adaptativa. Este artículo revisa las
evidencias recientes sobre el rol de la selección natural en poblaciones naturales y artificiales. Además, se
presentan algunas herramientas conceptuales básicas necesarias para el estudio de la microevolución a
escala ecológica, las que se discuten a la luz de la información mostrada desde un punto de vista cuantitati-
vo. El resultado es claro: la selección natural puede ser, está siendo y ha sido medida y demostrada en el
campo y en el laboratorio, no muchas, sino cientos de veces durante las últimas décadas. El estudio de la
evolución por selección natural ha alcanzado una fase de madurez que es demostrada por la aparición de
varias síntesis y metaanálisis así como también por el comienzo de “aplicaciones evolutivas”, donde la
evolución por selección natural es utilizada para resolver problemas prácticos en disciplinas diferentes a la
biologia básica. Se concluye que se necesita cautela cuando se cuestiona la teoría evolutiva. La gran
cantidad de evidencia disponible exige un esfuerzo serio por leer y analizar dicho conocimiento antes de
criticar sus fundamentos teóricos.

Palabras clave: evolución, selección natural, adaptaciones, heredabilidad, diferencial de selección
direccional, selección artificial.

INTRODUCTION

In recent years there have been claims –in the daily
press, on television, and by retired cosmologists–
that Darwin may have been wrong… However, to
see Darwinism as being under serious threat
would, I think, be a false perception.

John Maynard-Smith

The scientific method relies on skepticism,
experiments and demonstration. To be accepted
in the scientific community, new hypotheses
must be based on strong proofs. Only then, the
hypothesis becomes a theory. This is the way
by which science progresses: upon a permanent
and recursive self-validation (Sagan 1979,
Levins & Lewontin 1985). One of the most
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pervasive theories in biological sciences is
modern evolutionary theory1, with natural
selection as the main mechanism explaining
adaptations (Williams 1966, Stenseth 1999,
Gould 2002). However, as with other theories
in biology, the modern theory of evolution is a
conceptual body of knowledge that integrates
several interdisciplinary fields. This modern
synthesis has been developed during more than
150 years, from Darwin to the present, and
integrates Mendelian genetics, systematics,
paleontology, and ecology into a coherent
theory of evolution. More recently, modern
synthesis also combines the theory of natural
selection with the emerging understanding of
how genes are transmitted from one generation
to another (Stenseth 1999). This framework
involves verbal propositions, metaphors,
mathematical models and statistical methods
(e.g., Michod 1999, Gould 2002). Depending
on the timeframe, spatial and organizational
level of study, the analysis of evolution takes
different approaches, although common
features persist. The main mechanism of
adaptive evolutionary change (sensu Williams
1966) is natural selection, which can act at
different organizational levels (Lewontin 1970,
Vrba & Gould 1986, Nunney 1999, Weber
2000). In most cases, specially at the ecological
time scale, the evidence suggests that the
organism is the main unit  of selection
(Williams 1966, Maynard-Smith & Price 1973).
Hence, the raw material for selection is
intraspecific variability (Fisher 1930, Haldane
1932, Wright 1988).

Felsenstein (1988) pointed out that:
“Systematists and evolutionary geneticists
don’t often talk to each other, and they
routinely disparage each other’s work as being
of little relevance to evolution. Systematists
sometimes invoke the punctuationist argument
that most evolutionary change does not occur
by individual selection and hence that within-
population phenomena are largely irrelevant to
evolution… Evolutionary geneticists in turn
dismiss the idea that studies comparing species
anciently diverged, using morphological

characters far removed from the level of the
gene and using nonquantitative methods, can
either be sound in their inferences of pattern or
can shed much light on evolutionary
processes”. Although this is a caricaturized
view of two different schools in evolutionary
biology (i.e., systematics versus evolutionary
genetics), some of this confrontation is present
in the Chilean style of teaching evolution
where, I believe, the former (systematics)
approach prevails.

There is a long tradition of evolutionary
thinking in Chile (Manríquez & Rotthammer
1997), however, undergraduate courses of
evolution have been markedly biased to favor
the systematic-taxonomical and historical view
of evolution (Camus 1997, Manríquez &
Rotthammer 1997). Popular topics in courses of
evolution are the vitalism-evolutionist debate,
the origin of life on Earth, biogeography,
phylogenetics and comparative methods, and
phyletic gradualism versus saltationism. This
may provide an adequate picture of the history
of systematic evolutionary thought, but it is not
a realistic picture of current research in
evolutionary biology. In these evolution
classes, natural selection –the mechanism of
adaptive evolutionary change–, and the analysis
of variation –the raw material for natural
selection– are usually mentioned directly from
Darwin words or anecdotic and qualitative
examples2. These concepts are not taught along
with the well-established quantitative tools
developed to measure them. In short, the proofs
for natural selection or evolution itself are
usually not teached in Chilean undergraduate
courses. As a consequence, it is common to
hear comments such as “…nobody can prove
evolution…” or “…it is impossible to measure
natural selection…” in classrooms, and even in
scientific meetings2, 3. Moreover, one may see
publications in local scientific media, which
give naïve and qualitative examples, such as
birds feeding in suboptimal food patches, to
claim that evolutionary theory is obsolete
because it does not explain such apparently
non-adaptive behavior (Marone et al. 2002).
Worse yet, some biologists appear to recall past
and expired controversies, such as the obsolete
dogma “one gene, one trait” as actual
limitations to evolutionary theory (Maturana &
Mpodozis 2000). In short, any course of

1 This theory is understood as the integration of the empi-
rically demonstrated theoretical knowledge of organic
evolution developed from Darwin to present. I do not
agree with the idea of a single “evolutionary theory” or
theories that are mutually exclusive in explaining the
same evolutionary processes as Manríquez & Rothham-
mer presented it (1997, see the criticism by Camus 1997).
Similarly, changes in the names and adjectives (e.g.,
“modern”, “neodarwinian”, “synthesis”) used to describe
this knowledge are a matter of preference, but it does not
help to avoid jargon.

2 Direct experience of the author in undergraduate courses
at P. Universidad Católica de Chile and Universidad de
Chile from 1995 to 2000.
3 Reunión conjunta de las sociedades de ecología de Ar-
gentina y Chile, see also Marone et al. (2002).
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evolution should take care of the whole body of
theoretical and empirical knowledge
accumulated during the last 150 years, and
it  may include some less well  known
mechanisms as long as some minimum
evidence supports them.

There is a general problem of ignorance of
science and especially regarding the facts of
evolution. Many people, including scientists and
the lay public, are unaware of the relevancy of
evolutionary biology. Furthermore, the attacks to
supress the teaching of evolution have received
widespread support at the local level in the USA
(Antolin & Herbers 2001, Bull & Whichman
2001). This is just a consequence of a crisis
which is affecting evolutionary biology and is
evidenced in simple facts. For example, 35 % of
American college graduates think that “the
earliest humans lived at the same time as
dinosaurs” and 42 % indicated that they did not
think “human beings, as we know them today,
developed from earlier species of humans”
(Alters & Nelson 2002). These authors suggest
that such ignorance follows from deficient
methods of undergraduate teaching.

What the last paragraph, regarding
missconceptions of evolution facts in the USA,
has to do with former discussions about the
Chilean teaching of evolution? I believe both are
epiphenomena of the same general problem:
incorrect teaching of evolution. For example, it
is not surprising to find out that both graduate
and undergraduate Chilean students of ecology
and evolution believe that evolution cannot be
tested experimentally2. Moreover, some
biologists strongly believe that natural selection
is not a mechanism that explain adaptations
(Maturana & Mpodozis 2000, Marone et al.
2002). In fact, some of them proposed a new
evolutionary theory, the so-called “natural drift”
(Maturana & Mpodozis 1992, 2000), which in
part, stimulated this commentary.

Among other arguments,  Maturana &
Mpodozis (2000) claim that modern
evolutionary theory fails to explain adaptations,
or that i t  has been misinterpreted.
Unfortunately, the work of Maturana &
Mpodozis (2000) is weak in at least three basic
aspects of any new hypothesis. First, the poor
and tautological writing makes it hard to
follow, a point that has been criticized in detail
elsewhere (Gallardo 1997, Manríquez &
Rothhammer 1997). Second, it ignores at least
30 years of ecological-evolutionary research,
which explains why they find so many facts
that modern evolutionary theory cannot account
for (e.g., non-adaptive traits, constraints to
evolution, neutral change). These criticisms are

mentioned by Gallardo (1997) and Manríquez
& Rothhammer (1997), but mostly from the
systematic perspective. Third, in nearly 50
pages (and 28 references, six of which are self
citations), they do not present a single case that
supports the natural drift  (Maturana &
Mpodozis 2000). This last point has not been
discussed in detail before. Obviously, empirical
evidence is the most important structural
support for any hypothesis that is posed to
become a theory.

This review is directed to students and
young biologists in Chile, and was motivated
by the general problem of a lack of knowledge
about evolution, and the challenge placed by
Maturana & Mpodozis (2000) to modern
evolutionary theory. In science all new ideas
must be open to debate. However, students of
science need to be presented with proofs of
what they are learning. Many new ideas are
interesting and appealing, but if not subjected
to verification by systematic research, they are
no longer scientific and become dogmatic (e.g.,
Fischer 2001, see review in Gallardo 2001).
Dogmas are dangerous when taught as truths.
Even worse, teaching that a well established
theory, such as evolution by natural selection,
is simply wrong (Antolin & Herbers 2001), as
it occurs in Chile (Maturana & Mpodozis
2000), could have devastating consequences in
the formation of new scientists.

Here, I offer a short, representative review
of the recent evidence for natural selection
from the perspective of quantitative genetics
and phenotypic selection. In this review I
defend that (1) a conceptual framework to
study evolution experimentally does exist; (2)
that natural selection is the main force of
adaptive change in natural populations, and that
(3) both natural selection and evolution can be,
are being and have been measured and
demonstrated both in the field and in the
laboratory, not a few times, but hundreds of
times during the past decades.

CONCEPTUAL FRAMEWORK

Three critical elements must be kept in mind
when studying evolution by natural selection: (i)
that a trait exhibits intraspecific variation, (ii) that
this variation is heritable, and (iii) that the trait is
the target of natural selection. To characterize
these processes, some formalizations are needed.

In a large enough population, a metric trait
is distributed in a continuous fashion. These
kinds of traits are usually codified by several
genes of small effects (Roff 1997). Assuming
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that natural (or sexual) selection acts
directionally over this trait (Fig. 1A), there will
be a number of individuals surviving the
selective event. The important point here is that
this process modifies both the variance and the
mean of the distribution. Both effects have
profound consequences to the population: the
mean is changed by a value, “S”, and the
variance is reduced. In the next generation, the
offspring of selected individuals will present

the changed mean only if resemblance in the
trait exists between parents and offspring.

Formally, S is defined as the selection
differential, such that:

S = µ - µo (1)

where µo and µ are the population means before
and after selection, respectively (Fig. 1A). If the
trait is completely inherited, µ1, the population

Fig. 1: (A) Directional selection acting on the right tail of a distribution of a metric trait in a large
population. Large and small curves represent the distribution of the trait before and after selection.
Similarly, µo and µ represent the mean populational values before and after selection. (B) Directio-
nal selection differential (S) and response to selection (R) in a hypotetical trait with narrow-sense
heritability (h2) close to one. The mean populational values before and after selection are represen-
ted as µo and µ, respectively. The mean of the trait in the descendents of the selected individuals is
µ1. (C) Directional selection differential (S) and response to selection (R) in a hypothetical trait
with narrow-sense heritability (h2) of intermediate value. (D) Directional selection differential (S)
and response to selection (R) in a hypothetical trait with narrow-sense heritability (h2) close to zero.
(A) Selección direccional actuando en la cola derecha de la distribución de un rasgo métrico en una gran población. Las
curvas grandes y pequeñas representan la distribución del rasgo antes y después de la selección. Similarmente, µo y µ
representan las medias poblacionales antes y después de la selección. (B) Diferencial de selección direccional (S) y
respuesta a la selección (R) en un rasgo hipotético con heredabilidad en sentido estricto (h2) cercana a uno. La media
poblacional antes y después de la selección son representadas como µo y µ, respectivamente. La media poblacional del
rasgo en los descendientes de los individuos seleccionados es µ1. (C) Diferencial de selección direccional (S) y respuesta a
la selección (R) en un rasgo hipotético con heredabilidad en sentido estricto (h2) de valor intermedio. (D) Diferencial de
selección direccional (S) y respuesta a la selección (R) en un rasgo hipotético con heredabilidad en sentido estricto (h2)
cercana a cero.
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mean of the offspring of selected individuals will
be close to µ (Fig. 1B). On the contrary, a trait for
which the genetic contribution is too low (i.e.,
only environmentally determined) will have a µ1
very close to µo (Fig. 1D). This measure is called
the narrow-sense heritability (h2) (0 ≤ h2 ≤ 1).

Hence, if h2 ≈ 1, then µ1 ≈ µ; similarly if
h2 ≈ 0, µ1 ≈ µo (see Fig. 1B, 1C, and 1D).
Narrow-sense heritability indicates the relative
proportion of additive genetic variance to
phenotypic variance. Additivity of gene effects
relates to the fact that each gene is inherited
individually.  In evolutionary terms, the
important fact is the individual contribution of
each gene to the phenotype. Effects that depend
on the interaction among genes (e.g. ,
dominance, epistasis) are less important in the
long term (and in large, panmitic populations)
because these are properties of genotypes, not
of genes. The additive genetic variance (VA)
contains the variance of breeding values which
are those properties of individual genes.
Together, VA and VP make up h2:

h2 = VA / VP (2)

Phenotypic variance (Vp) becomes

VP = VA + VD + VI + VE (3)

where VD = dominance variance, VI = variance
from interaction among loci (epistasis) and VE =
environmental variance. Variance components
can be visualized graphically as in Fig. 2, where
VA is usually a small fraction of VP.

From equation (1), and considering the
introduced notation, it is possible to establish a
measure of evolutionary change. We define S as
the selection differential that measures the
strength of natural selection, R is the difference
between the mean trait value of the offspring of
the selected individuals (µ1) and the mean before
selection (µ); R = µ - µ1 (Fig. 1B, 1C, 1D).

R = h2S (4)

Equation (4), known as the “breeders
equation”, shows that natural selection
translates into evolution only if there is some
degree of inheritance in the selected trait. The
breeders equation has been empirically
demonstrated and its components in many cases
are different from zero (i.e., evolution by
natural selection is occuring) (Falconer &
Mackay 1997). Two of the most important
advances in evolutionary theory are the
Fundamental Theorem of Natural Selection
(Fisher 1930) and the Robertson-Price Identity

Fig. 2: Diagramatic representation of compo-
nents of variance in a hypothetic trait (and a
large population) with mean µ and variance VP.
Additive genetic variance (VA) accounts for va-
riation in breeding values and, hence, is inclu-
ded as a small proportion of the genotypic va-
riance (VG). The areas representing variance
components are only for diagramatic purposes
and cannot be taken as quantitative representa-
tions since variances are squared deviations
(which technically cannot be represented
diagramatically).
Representación esquemática de los componentes de varian-
za en un rasgo hipotético (y una población grande) con
media µ y varianza VP. La varianza genética aditiva (VA)
da cuenta de la variación en los valores de cría y, por lo
tanto, está incluida como una pequeña proporción de la
varianza genotípica (VG). Las áreas representando los
componentes de varianza son solo para propósitos diagra-
máticos y no pueden ser consideradas como representacio-
nes cuantitativas dado que una varianza es una desviación
al cuadrado (que técnicamente no puede ser representada
diagramáticamente).

(Robertson 1966, Price 1970), also referred as
the Secondary Theorem of Natural Selection
(Caswell 1989)4. The important contributions
of these models are that S can be equated to the
covariance between a trait of interest (z), and to
relative fitness (w) (see Appendix),

S = Cov (z,w) (5)

The usefulness of this equation is clear from
the fact that it is not necessary to measure the
trait before and after natural selection, which
can be very difficult, especially when selection
occurs continuously over t ime and with
overlapping generations. Equation (5) indicates
that it is sufficient to measure the trait in each
individual,  along with a measure of the
reproductive contribution of individuals to the

4 Actually, the Robertson-Price Identity is more general
than the Fundamental Theorem since the latter can be deri-
vated from the former (see Appendix 1).
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population, and to standardize these measures
according to the average contribution of the
total population (e.g., the mean number of
offspring that attain sexual maturity). This
univariate reasoning was extended to multiple
traits and multivariate selection by Lande &
Arnold (1983, see also Arnold 1983, 1988).
When multivariate selection and inheritance are
considered, h2 is transformed into an additive
genetic variance-covariance matrix (the G
matrix, which includes genetic correlations
among traits), S is changed into a vector of
partial selection coefficients, termed the
directional selection gradient (the ß vector),
and R is transformed into a vector of partial
responses to selection (the ∆z  vector).
Although it is not necessary to repeat this
derivation here, it is enough to make the point
that G, ß and ∆z are equivalent to h2, S and R,
respectively, when dealing with several traits
(Lande & Arnold 1983).

I found that at least ninety studies carried
out during the last five years demonstrate the
existence of strong selection differentials, high
heritabilities, differential fitness and/or large
responses to selection in natural and artificial
populations of living organisms. Any person
who is not convinced of the evidence that
natural selection as an adaptive evolutionary
agent, should analyze and criticize, in detail,
each of these studies, not to mention the
intensive research done and published by
paleontolists,  population geneticists and
ecologists during last century after Darwin (see
Haldane 1932, Provine 1985).

DISCUSSION

Natural selection, artificial selection and quan-
titative genetics

The evidence for natural selection is neither new
nor scarce (Hoekstra et al. 2001, Kingsolver et
al. 2001). In fact, Haldane in 1932 mentioned at
least ten cases of phenotypic divergence due to
natural selection in both wild and domestic
species of plants and animals. Other known
examples of early measurements of natural
selection include the storm sparrows of Bumpus,
and the industrial melanism of Kettlewell
(Bumpus 1899, Kettlewell 1955, Grant 1999).
More recently, several syntheses, reviews and
meta-analyses have been published that include
hundreds of studies dealing with heritability,
natural selection, artificial selection and
experimental evolution in both, artificial and
natural settings (Endler 1986, Roff & Mousseau

1986, Brodie et al. 1995, Roff 1997, Gibbs 1999,
Conner 2001, Fairbairn & Reeve 2001, Hoekstra
et al. 2001, Kingsolver et al. 2001, Reznick &
Travis 2001, Stirling et al. 2002).

Classical works such as those by Haldane
(1932), Endler (1986) and Lande & Arnold
(1983) have shown how natural selection can
be measured in the field via a number of
procedures.  Statistical methodologies to
determine natural selection dealing mostly with
correlational statistics and fitness surfaces that
make use of the Robertson-Price identity
(equation 5, Appendix 1) have received a
thorough analysis elsewhere (Lande & Arnold
1983, Brodie et al. 1995, Fairbain & Reeve
2001, Reznick & Travis 2001, Appendix 1). A
summary of recent evidences of natural
selection using these applications is shown in
Table 1, along with studies where the evidence
of natural selection has been detected from
mapping molecular structures and then
inferring periods of adaptive change (Chen et
al. 2000, Grossman et al. 2001). These studies
are restricted to taxa where individuals are
available in large numbers and amenable to
experimental manipulation (e.g., flies, birds,
humans, plants, reptiles, fishes and small
mammals, see Table 1). The traits studied are
similarly biased, with researchers focusing on
either easy-to-measure traits (e.g., morphology)
or survival-related traits (e.g., life histories)
(Table 1, see also Hoekstra et al. 2001).
However, natural or sexual selection can only
be measured when significant variation in a
trait can be detected. Since populations and
organisms have existed during long time
periods before present day, and since selection
reduces genetic variation (see Appendix 1), the
measurability of current natural selection
should be low. In fact, the meta-analysis by
Kingsolver et al. (2001) shows that the power
of directional selection analyses is rather low,
which means that a sample size below 135
individuals will  yield poor estimates of
selection differentials or gradients. Strong
directional selection is not common in natural
populations either, as compared with sexual
selection (Hoekstra et al. 2001, Kingsolver et
al. 2001). Despite these limitations, it is notable
that natural selection can indeed be measured
and demonstrated.

Quantitative genetic studies that account for
the existence of additive genetic variance or
narrow-sense heritability are quite common,
probably more so than any other kind of
evidence (Table 2). This is due, in part, to
historical reasons: domestic animal and plant
breeding programs began long before
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TABLE 1

Recent studies of natural or sexual selection measured in natural populations of living
organisms. Natural selection was assessed by estimating the directional selection differential (S)

(or the selection gradient if multiple traits) in a cross-sectional study (see equation 1),
unless stated otherwise. Molecular reconstruction means that the trait was mapped

along with molecular data, and then the period of adaptive change was inferred from this
information in the selected lineage. Indirect evidence is stated when historical information,

along with correlational evidence, strongly suggest (but does not demonstrate)
that natural selection is the main source of evolutionary change

Estudios recientes sobre selección sexual o natural, medidas en poblaciones naturales de organismos vivientes.
Cuando no se especifique lo contrario, la selección natural se determinó a través del diferencial

de selección direccional (S) (o el gradiente en el caso de múltiples rasgos) en un estudio transversal (ecuación 1).
La reconstruccion molecular significa que el rasgo fue mapeado junto con caracteres moleculares,

y un período de cambio adaptativo fue inferido a partir de esta información en el lineaje seleccionado.
Se indica evidencia indirecta cuando la información histórica junto a la evidencia correlacional sugieren

(pero no demuestran) a la selección natural como la principal fuente de cambio evolutivo

Organism Trait Reference

Red deer (Mammalia) Body size Schmidt & Hoi (2002)

Marine snail (Gastropoda) Shell coloration Parsonage & Hughes (2002)

Fruitfly (Insecta) Codon bias (molecular reconstruction) Hey & Kliman (2002)

Collared flycatcher (Aves) Body condition and body mass Merila et al. (2001a)

Human (Mammalia) Fascial paedomorphosis Wehr et al. (2001)

Teleost fish (Actinopterygii) Triphosphate isomerase (molecular reconstruction) Merritt & Quattro (2001)

Marine snake (Reptilia) Morphology related with mate recognition Shine & Shetty (2001)

Human male (Mammalia) Height (measuring fitness) Mueller & Mazur (2001)

Human female (Mammalia) Life histories (measuring fitness) Kirk et al. (2001)

Human (Mammalia) Aerobic metabolism leading to encephalic enlargement Grossman et al. (2001)

Atlantic cod (Actinopterygii) Pantophysin I locus (molecular reconstruction) Pogson (2001)

Seed beetle (Insecta) Egg size Fox (2000)

Freshwater turtle (Reptilia) Body size Bodie & Semlitsch (2000)

Gecko (Reptilia) Morphology (molecular reconstruction) Gubitz et al. (2000)

Marine bird (Aves) Morphology relarted with mate recognition (indirect evidence) Szekely et al. (2000)

Lizard (Reptilia) Life histories (measuring fitness) Sinervo & Zamudio (2001)

Fern (Halophita) External morphology(indirect evidence) Kentner & Mesler (2000)

Domestic rat (Mammalia) Resistence to poison (molecular reconstruction) Kohn et al. (2000)

Angiosperm Sexual structures Parra-Tabla & Bullock (2000)

Fruitfly (Insecta) Genome region (molecular reconstruction) Chen et al. (2000)

Cliff swallow (Aves) Morphology Price et al. (2000)

Angiosperm Tolerance to herbivory Juenger et al. (2000)

Passerine Bird (Aves) Morphology relarted with mate recognition Balmford et al. (2000)

Passerine Bird (Aves) Arrival date for reproduction Brown & Brown (2000)

Lizard (Reptilia) External morphology (molecular reconstruction) Malhotra & Thorpe (2000)

Angiosperm Floration date (measuring fitness) Kelly & Levin (2000)

Angiosperm Floral phenology Pilson (2000)

Lizard (Reptilia) Egg size and density-dependent selection Svensson & Sinervo (2000)

Giant petrel (Aves) Body size Barbraud (2000)

Columnar Cactus (Angiosperm) Resistance to parasitism Medel (2000)

Lizard (Reptilia) Male throat coloration (in relation to sexual selection) Sinervo & Zamudio (2001)

Deer mouse (Mammalia) Maximum aerobic metabolism Hayes & O’Connor (1999)
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TABLE 2

Quantitative genetic studies that demonstrate the existence of additive genetic
variation or narrow-sense heritability (h2) in natural populations of organisms,

and that suggest a potential for evolutionary change on these organisms and traits.
Authors that report both natural selection and additive genetic

variance are presented in Table 1 as well
Estudios genético-cuantitativos que demuestran la existencia de variación genética aditiva o

heredabilidad en sentido estricto (h2) en poblaciones naturales de organismos, sugiriendo potencial
para el cambio evolutivo en estos organismos y rasgos. Los autores que reportan selección natural

y variación genética aditiva se presentan en la Tabla 1 también

Organism Trait Reference

Cricket (Insecta) Sperm length Keller et al. (2001)

Wild mouse (Mammalia) Life span Klebanov et al. (2001)

Marine snail (Gastropoda) Shell size Carballo et al. (2001)

Frog (Amphibia) Life histories Watkins (2001)

Darwin’ finch (Aves) External morphology Ryan (2001)

Teleost fish (Actinopterygii) Secondary sexual characters Karino & Haijima (2001)

Lizard (Reptilia) Territoriality (related with sexual selection) Sinervo & Zamudio (2001)

Passerine bird (Aves) Migratory behavior Pulido et al. (2001)

Butterfly (Insecta) Morphological Saccheri et al. (2001)

Bird (Aves) Migratory behavior Moller (2001)

Daphnia (Crustacea) Life histories Pfrender & Lynch (2000)

Passerine bird (Aves) Offspring solicitation (behavioral) Kolliker et al. (2000)

Passerine bird (Aves) Body condition and body mass Gosler & Harper (2000)

Wild sheep (Mammalia) Life histories Reale & Festa-Bianchet (2000)

Cricket (Insecta) Life histories Roff & Bradford (2000)

Weed (Angiosperm) Life histories Motten & Stone (2000)

Leaf beetle (Insecta) Performance in host exploitation Ballabeni & Rahier (2000)

Passerine bird (Aves) Fledging body mass Merila et al. (2001a)

Passerine bird (Aves) Body condition and body mass Merila et al. (2001b)

Human female (Mammalia) Life histories Kirk et al. (2001)

Angiosperm Tolerance to herbivory Juenger & Bergelson (2000)

Blue fox (Mammalia) Tolerance to human presence (behavioral) Kenttamies et al. (2002)

Fruitflie (Insecta) Body size Gockel et al. (2002)

Suedish common Frog (Amphibia) Larval growth Uller et al. (2002)

Caterpillar (Insecta) Inmune function Cotter & Wilson (2002)

Colias butterfly (Insecta) Wing cryptic coloration Ellers & Boggs (2002)

Guppy (Actinopterygii) Mate selection behavior Brooks & Endler (2001a)

Guppy (Actinopterygii) Male ornaments Brooks & Endler (2001b)

Great Tit (Aves) Laying date Van der Jeud & McCleery (2002)

Dung fly (Insecta) External morphology Blanckenhorn (2002)

Common bee (Insecta) External morphology Monteiro et al. (2002)

Human (Mammalia) Aerobic capacity and explosive power Calvo et al. (2002)

Medicinal leech (Annelida) Reproductive traits Utevskaya & Atramentova (2002)
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evolutionary studies (Haldane 1932, Falconer &
Mackay 1997, Roff 1997, Lynch & Walsh
1998). Additionally, quantitative genetic
analyses can be done in experimental settings,
which makes easier such research. From Table
2, it is clear that birds, insects, fishes and plants
are the preferred models for measuring h2 in
wild populations. As seen in natural selection
studies, easy-to-measure traits in the laboratory
also are the norm in studies of heritability
(morphology, behavior and life histories). Yet
low statistical power (i.e., large sample size is
needed) is also a common problem of these
studies. In quantitative genetic analyses the null
hypothesis is that h2 = 0. Hence, when the real
value of h2 is near to zero (e.g., as in life history,
behavioral and physiological traits, see Roff
1997), hundreds or even thousands, of data
records (individuals) are needed to demonstrate
significant heritabilities. Physiological traits are
a especially dramatic case since these traits are
difficult to measure, and generally exhibit low

values of h2 (Tsuji et al. 1989, Hoffman 2000,
Dohm et al. 2001, Nespolo et al. 2003). In spite
of these limitations, hundreds of high values of
h2 have been reported to date (see Table 2 and
references therein).

A fourth line of evidence that supports the
occurrence of natural selection comes from
artifical selection experiments (Table 3) where
the researcher selects the parental individuals
that will produce the next generation according
to their extreme phenotypes (i.e., the researcher
acts as the selection differential). Since S is
known (imposed by the experimenter) the rate
of evolution can be estimated directly from R
and h2, now called “realized heritability”, is
computed after solving equation (4) (Gibbs
1999). In contrast to artificial selection, studies
of experimental evolution (Table 4) allow
laboratory populations to evolve in an specific
environment (Gibbs 1999, Stearns et al. 2000).
These experiments have provided spectacular
evidence for evolution, since the population

TABLE 3

Artificial selection studies. A significant change in the mean phenotype is induced
over several generations in organisms subjected to a strong imposed selection.

The researcher actively selects individuals with the extreme phenotype and breeds them.
The selected lines are compared after several generations of artificial selection

Estudios de selección artificial. Un cambio significativo en la media fenotípica es inducido durante
varias generaciones, en organismos sujetos a una fuerte selección impuesta. El experimentador activamente

selecciona a los individuos con el fenotipo extremo y los reproduce. Las líneas seleccionadas
se comparan luego de varias generaciones de selección artificial

Organism Trait Reference

Fruitfly (Insecta) Recombination rate Rice & Chippindale (2001)

Fruitfly (Insecta) Developmental time and ammonium tolerance Borash et al. (2000)

Chinook salmon (Actinopterygii) Age at maturity Quinn et al. (2002)

Butterfly (Insecta) Phenotypic plasticity in wing pigmentation Wijngaarden et al. (2002)

Cricket (Insecta) Sperm morphology Morrow & Gage (2001)

Measles virus Glycoprotein conformation Woelk et al. (2001)

Pyrococcus furiosus (bacteria) Enzyme activity Roovers et al. (2001)

Sheep (Mammalia) Sexual performance Bench et al. (2001)

Guppy (Actinopterygii) Color visual sensibility related to mate recognition Brooks & Endler (2001a)

Laboratory rat (Mammalia) Aerobic capacity Koch & Britton (2001)

Whole microbian ecosystem Any desired property of the ecosystem Swenson et al. (2000)

Fruitfly (Insecta) Reverse evolution of life histories Teotonio & Rose (2000)

Laboratory mouse (Mammalia) Nest building behavior Bult & Lynch (2000)

Aphid (Insecta) Survival rate in a monodiet Beck & Toft (2000)

Poecilid fish (Actinopterygii) Heat stress resistance Baer & Travis (2000)

Fruitfly (Insecta) Parasitoid resistance Fellowes et al. (1999)

Angiosperm Proportion of flowering rosetes Van Kleunen et al. (2002)

Laboratory mouse (Mammalia) Voluntary locomotion Swallow et al. (1999)

Fruitfly (Insecta) External morphology Sanchez et al. (1999)
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can “choose” evolutionary solutions to some
imposed environmental regime. Since not all
solutions are available, this approach gives
valuable knowledge regarding constraints on
evolution. Some notoriuos examples of both
artificial selection and experimental evolution
include the experimental phenotypic
displacement in bristle count of Drosophila
(Thoday & Gibson 1962), the abrupt changes
induced by experimental isolation in natural
populations of guppies (Reznick et al. 1990,
1997), and the elegant evolution experiments
where fitness was clearly determined as a
central cause of adaptations in Escherichia coli
(Lenski et al. 1991, Leroi et al. 1994, Travisano
et al. 1995, see also Tables 3 and 4). Actually,

the role of fitness as a real and meaningful (i.e.,
non-arbitrary) measure of reproductive
potential has been tested several times (Sinervo
& Huey 1990, Sinervo et al. 1992, Kruuk et al.
2000, Huey & Berrigan 2001).

Applied evolution

The success of natural selection in explaining
adaptive change has inspired its use to solve
practical problems in a number of disciplines.
Classic examples of applied evolution are the
use of artificial selection to improve animal and
plant production for human consumption
(Wood & Orel 2001). More recently, the use of
the tree of l ife in comparative methods

TABLE 4

Experimental evolution. Experimental populations are faced with contrasting
environments and evolution (character displacement or change in allele frequencies)

is demonstrated after several generations (Stearns et al. 2000)
Evolución experimental. Poblaciones experimentales son enfrentadas con ambientes contrastantes

y la evolución (desplazamiento de caracteres, o cambio en la frecuencia alélica)
se evidencia luego de varias generaciones (Stearns et al. 2000)

Organism Imposed environment Resulted change Reference

Escherischia coli Glucose- and maltose- Fitness variation Travisano (1997)
(Bacteria) limited medium

Soil bacterium Liquid versus Morphological changes Riley et al. (2001)
agar medium in cell envelope

Pyrococcus furiosus Low temperature Enzyme temperature Roovers et al. (2001)
(Bacteria) activity profile

Escherischia coli Glucose-limited medium Novel mutations Schneider et al. (2000)
(Bacteria)

Ribozyme (catalitic Oligonucleotic media DNA cleavage activity Hanczyc & Dorit (2000)
RNA molecule)

Fruitfly (Insecta) Cadmium rich medium Resistance to cadmium Shirley & Sibly (1999)
by changes in life histories

Fruitfly (Insecta) High adult mortality Changes in lifespan, growth, Stearns et al. (2000)
maturation and reproduction

Escherischia coli Glucose-limited medium Mainteinance of genetic Rosen & Lenski (2000)
(Bacteria) polymorphisms

Escherischia coli Cold environment A cold-adapted protease Taguchi et al. (1999)
(Bacteria)

Fruitfly (Insecta) Experimental sympatry Reproductive character Higgie et al. (2000)
displacement in mate recognition

Apple maggot (Insecta) Artificial introduction of Sympatric speciation in progress Filchak et al. (2000)
a new population

Drosophila (Insecta) Thermally varying cultures Polymorphism of a heat-shock Bettencourt et al. (1999)
protein

Escherischia coli Thermally varying cultures Cromosomal changes Berthorsson & Ochman (1999)
(Bacteria)
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permited the tracking of diseases in molecular
epidemiology (Bull & Wichman 2001).
Directed evolution, or the manipulation of
molecules to evolve (e.g., in vitro replication of
nucleic acids) (Wichman et al. 2000) is a
common technique thought to produce artificial
molecules for medical use, such as the DNA
enzyme that cleaves RNA molecules,
developed to limit arterial damage from
angioplasty (Santoro & Joyce 1997), or the
cold-adapted protease engineered by
experimental evolution (Taguchi et al. 1999,
Table 4).

One of the best tests of a model is to allow
it to work in an artificial or virtual setting, and
evolution by natural selection works, as
revealed by several artificial systems that were
allowed to evolve and produced solutions that
could not have been attained if natural selection
was not opperating. This is the case of
evolutionary computation in artificial
inteligence (Freedman 1994). Evolutionary
computation is an interesting application that
lies completely outside the biological sciences.
This approach uses the replication of specific
aspects of natural selection to develop
programs that solve problems in unexpected
ways. Usually, a collection of variant solutions
or programs (i.e., the “population”) is subjected
to selection by imposing some measure of
“fitness”. The best solutions are selected as
“parents” for the next generation, which
“reproduce” (with mutation and recombination)
to produce a new population that is subjected to
selection and so forth (Bull & Wichman 2001).
Although evolutionary computation algorithms
can be applied to any computational problem,
they are best suited to problems for which there
are no other efficient solutions. These
evaluation-based algorithms tend to be more
robust than user-created programs (Bull &
Wichman 2001).

Is natural drift a novel hypothesis of evolution?
The daisyworld parable

The basic proposal of natural drift is that
natural selection is not the main mechanism
that explains adaptations. According to
Maturana & Mpdozis (2000), the notion of the
environment selecting organisms is misleading
since the environment is continuously modified
by organisms at the same time. They defend
this posture with common-place examples, such
as the gas composition of the atmosphere
(which is full of oxygen due to photosyntetic
organisms) and cases of coevolution where the
evolution of one species modifies, and is

modified by, the evolutionary change of
another species. In these cases, the so-called
“drift” of organisms and environment, occurs
making impossible to predict evolutionary
consequences. Maturana & Mpodozis (2000)
claim that natural selection is a consequence of
this drift, being natural drift the ultimate cause
of evolution. Hence, natural selection would be
an epiphenomenon of evolution. Here, I
transcribe their main points: (1) “the history of
living systems on Earth is the history of the
arising, conservation, and diversification of
lineages through reproduction, and not of
populations; (2) biological reproduction is a
systemic process of conservation of some
genetic constitution; (3) a lineage arises in the
systemic reproductive conservation of an
ontogenic-phenotype/ontogenic-niche relation,
and not in the conservation of a particular
genotype; (4) although nothing can happen in
the life history of a living system that is not
permitted by its total genotype, whatever
happens in it arises in an epigenetic manner,
and it is not possible to properly claim that any
feature that arises in the life history of an
organism is genetically determined; (5) that is
behavior what guides the history of living
systems, not genetics.”

It is extremely difficult to test this hypothesis
with prevalent theories and models for evolution
since the writing of Maturana & Mpodozis (2000)
is vague. To give just an example, anyone who
wishes to understand the first point would ask
what do the authors mean with “lineage”, a
reasonably doubt since Maturana & Mpodozis
(2000) use a completely redefined vocabulary.
Then this person would go to the glossary where
the term “lineage” is defined as “a phylogeny
defined by the conservation of a particular
ontogenetic phenotype/ontogenic niche relation
through systemic reproduction”. Thus the new
definition actually increased the number of
unkown terms by two (“ontogenetic phenotype”
and “ontogenic niche”). So, we now need to
search in the glossary two more terms to
understand “lineage”, after which new unknown
terms appear within each definition. Exponential
growth models tell us that if each new search
yields, in average, two more new terms, the
increase in terminology quickly becomes
enormous. Clearly, iterating this process will
make any reader to miss the original point, and
the hypothesis becomes virtually impossible to
understand with precission. Morevoer, the main
body of Maturana & Mpodozis’s hypothesis is
largely a descriptive-qualitative essay, full of
truisms, with few, mostly anecdotal examples.
Arguments are written in a self-invented language
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that re-defines several terms and concepts that
current botanists, zoologists, paleontologists,
systematicists, developmental biologists,
microbiologists, geneticists, ecologists and
evolutionary biologists already know.

A more conceptual crit icism is that
Maturana & Mpodozis (2000) confound
temporal and spatial scales with different
organizational levels. They rarely confront
populations and organisms on an intraspecific
level where most natural selection and
microevolutionary mechanisms apply,
according to the proponents of the modern
evolutionary theory (Fisher 1930, Haldane
1932, Lande & Arnold 1983, Wright 1988).
The natural drift  hypothesis avoids any
quantitative reference to individuals in
populations, polymorphisms, intraspecific
variability or reproductive success, all of which
are fundamental concepts in the genetical
theory of natural selection (Fisher 1930), the
shifting balance theory (Wright 1988), and the
multivariate selection theory (Lande & Arnold
1983), just to mention a few. The concept of
natural drift also is very hard to understand
because the wording of Maturana & Mpodozis
(2000) cannot clarify where is the unsolved
issue in modern evolutionary theory (see
Gallardo 1997 for a detailed criticism of the
natural drift).

Besides problems of phraseology, the notion
of modification of the environment by organisms
is interesting. Unfortunately to Maturana &
Mpodozis (2000), this is not a new concept at
all. For example, ecologists have defined
“ecosystem engineers” as those organisms that
modify drastically their immediate environment
through their life processes (Estes & Palmisano
1974). Developmental system theory, on the
other hand, uses the idea that organisms should
be seen as constructing their environment
(Maynard-Smith 2001). Similarly, the general
idea proposed by Maturana & Mpodozis (2000)
–that the mechanism of evolution could operate
at different organizational levels (i.e., individual,
groups, lineages and species)– has received
many throughout analyses (Hamilton 1964,
Williams 1966, Lewontin 1970, Maynard-Smith
1982, Nunney 1999, Gould 2002).

As it is, the daisyworld parable of
Watson & Lovelock (1983) seems useful in this
context.  The daisyworld is a model for
evolution that does not involve natural
selection; instead it proposes an idea similar to
that of natural drift, but with equations.
Daisyworld is a hypothetical planet in orbit
around a star. The entire planet is composed of
two species of daisies, one black and one white.

Since both species could exist and grow within
narrow temperature limits, and since black
daisies decrease the albedo (i.e., warming up
the environment; while white daisies make it
colder), there is a feedback between the planet
environment and daisy growth. According to
Saunders (1994) this model shows how
regulation can arise without natural selection.
Furthermore, Lansing et al. (1998) developed
the so-called “system-dependent selection”, a
sophistication of the daisyworld parable where
changes in the distribution of phenotypes
resulting from selection alter an environmental
parameter in ways that vis-à-vis, modify
selection pressures. Here, the Fundamental
Theorem of Natural Selection (see Appendix 1)
was included explicitly in the simulation,
which caused functional organization at the
level of the system as a whole, rather than at
the level of the individual organism. Lansing
et al. (1998) also provided some real examples
of  this  kind of  evolut ionary dynamics.
However, these authors recognized that this
type of dynamics is unusual. As in the case of
group selection and evolutionarily stable
strategies ,  these evolut ionary dynamics
depend on fitness rewards in the long term
which are not always, the case (Maynard-Smith
1982, 2001).  Natural drift  proposes an
argument that is similar to the Watson &
Lovelock’s (1983) model, but it lacks scientific
foundations, predictive power, and a thorough
literature review. Last, but not the least, it is
important to note that Maturana & Mpodozis
(2000) proposed their hypothesis 17 years after
Watson & Lovelock (1983)! Nonetheless, if
arguments of natural drift come similar to those
of Watson & Lovelock’s (1983) hypothesis, its
predictions should be similar and therefore,
open to experimental testing.

Concluding remarks

It might remain the impression that my
commentary was focused from a rather extreme
selectionist perspective. However, nothing could
be more misleading than to believe in natural
selection as the unique cause of evolution
(Gould & Lewontin 1979). Several models
coexist with natural selection to explain
evolutionary change (e.g., Schlichting &
Pigliucci 1998, Lewontin 2000). Non-adaptive
processes are common place in nature. For
instance, genetic drift occurs in small
populations and is driven by the random fixation
of alleles, which in turn could generate non-
advantageous structures (Wright 1988). Genetic
correlations, on the other hand, are the genetic
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association among traits due to linkage or
pleiotropy, and may produce changes in traits
that are not the target of natural selection or
even counteract selection if correlations are
negative (Lande & Arnold 1983). Similarly,
developmental constraints and epigenetics have
been presented as important restrictions to
adaptive evolution since the final phenotype is a
series of integrated responses of regulatory
genes during development (Gould 1989,
Schlichting & Pigliucci 1998). Neutral evolution
remarked that a great proportion of mutations
are completely neutral (i.e., of no effect on the
phenotype) since the actual rate of evolution is
two orders of magnitude smaller than that
calculated in terms of nucleotide substitutions
(Kimura 1968). As Kimura (1968) stressed, if
neutral mutations are produced in each
generation at a very high rate, then the role of
genetic drift in finite populations would be
determinant to the genetic structure of
populations (and hence, to evolutionary change).

In short, the scientific literature discussed
shows that alternative explanations are always
welcome to discussion as long as they fit the
minimum requirements of any scientific
hypothesis (Gould 2002). Does natural drift
accomplish them? From the information and
discussion presented in this review, I trust the
reader will find the answer to this question.
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APPENDIX 1

The fundamental theorem of natural selection and the Robertson-Price identity

El teorema fundamental de la selección natural y la identidad de Robertson-Price

The selection differential, defined as in equn (1) has few practical applications. However, Robertson (1966) and Price
(1970) found that there is a general equivalence between S and the covariance between fitness and the trait of interest.
From the definition, S = µs - µ, and using the parametric mean, µ = ∫ zp(z)dz, integrated over the entire range of phenotypic
values, with p(z) being the probability density function of the trait z. Hence, supposing that a fitness function, W(z) exist,
the probability density of z after the selective event, ps(z), can be defined as

W(z)p(z)
µs(z) = (A1)

 ∫ W(z) p(z)dz

The denominator of this equation is the average population fitness, W and w (relative fitness) = W / W. Then, by the
definition of the parametric mean,

µs = ∫ zps(z)dz = ∫ zw(z) p(z)dz (A2)

hence, S is equal to:

S = ∫ zw(z) p(z)dz - ∫ zp(z)dz (A3)

By the definition of expectation, ∫ zw(z) p(z)dz = E[z w(z)]. Notice that,

W 1
w = E(w) = ∫ w(z) p(z)dz = ∫      (z) p(z)dz =       ∫ W(z) p(z)dz = W / W = 1 (A4)

W W

Also, it is possible to express S in terms of expectations,

S = E[z w(z)] - E(z)E(w) (A5)

which is equivalent to the covariance between the trait and relative fitness,

S = Cov [z,w(z)] (A6)

This is the Robertson-Price Identity (Lynch & Walsh 1998, pp. 46). This equivalence says, among other things, that the
selection differential can be estimated by regressing fitness values and trait values in a random sample of individual from a
population.
Now recall the breeders equation in (4), R = h2S. This is a general equation for any trait (i.e., z), such that

R(z) = h2(z)S(z) (A7)

Where h2(z) = VA (z) / VP (z).

Then, if the trait of interest is fitness (W), the breeders equation can be expressed as

VA (W)
R(W) = S(W) (A8)

VP (W)

Recall that S = Cov [z,w(z)] and w = W / W, thus

VA(W)S(W) 1 VA(W) Cov(W, W)
R(W) = = (A9)

VP(W) W VP(W)

Since the covariance between a variable with itself is the variance,

1 VA(W)VP(W)
R(W) = (A10)

W VP(W)

Hence,
1

R(W) = VA(W) = VA(w) (A11)
W

Using the formal notation (R(W) = ∆W and VA = s2),

∆W = s2
w (A12)

In other words, the mean change in fitness in a population is the same as the additive genetic variance in relative fitness at
this moment. This is also known as the Fundamental Theorem of Natural Selection (Fisher 1930) and it main consequence
is that relative fitness cannot be reduced in a population (since variances are always positive). Given that a great amount of
additive genetic variance in fitness would mean strong response to selection, and directional selection reduces variance, the
theorem predicts that traits close to fitness will present low additive genetic variance, as is the case with life history traits
(Roff 1997, Kruuk et al. 2000).


