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The supercontinent cycle, by which Earth history is seen as having been punctuated by the episodic
assembly and breakup of supercontinents, has influenced the rock record more than any other geologic
phenomena, and its recognition is arguably the most important advance in Earth Science since plate
tectonics. It documents fundamental aspects of the planet’s interior dynamics and has charted the course
of Earth’s tectonic, climatic and biogeochemical evolution for billions of years. But while the widespread
realization of the importance of supercontinents in Earth history is a relatively recent development, the
supercontinent cycle was first proposed thirty years ago and episodicity in tectonic processes was
recognized long before plate tectonics provided a potential explanation for its occurrence. With interest
in the supercontinent cycle gaining momentum and the literature expanding rapidly, it is instructive to
recall the historical context from which the concept developed. Here we examine the supercontinent
cycle from this perspective by tracing its development from the early recognition of long-term epi-
sodicity in tectonic processes, through the identification of tectonic cycles following the advent of plate
tectonics, to the first realization that these phenomena were the manifestation of episodic superconti-
nent assembly and breakup.

© 2013, China University of Geosciences (Beijing) and Peking University. Production and hosting by

Elsevier B.V. All rights reserved.

1. Introduction

Although the existence of the supercontinent Pangea (Fig.1) was
first proposed a century ago (Wegener, 1912), the proposition that
other supercontinents existed prior to Pangea (e.g., Valentine and
Moores, 1970; Piper, 1974, 1975; Piper et al., 1976) has only
become widely accepted over the past two decades (e.g., Hoffman,
1989, 1991; Dalziel, 1991, 1992, 1997; Williams et al., 1991; Stump,
1992; Powell et al., 1993; Powell, 1995). This has led, in recent
years, to a rapidly widening recognition that much of Earth history
has been punctuated by the episodic amalgamation and breakup of
supercontinents (e.g., Zhao et al., 2002, 2004; Murphy and Nance,
2003, 2013; Rogers and Santosh, 2003, 2004; Santosh and Zhao,
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2009; Condie, 2011; Yoshida and Santosh, 2011; Huston et al.,
2012; Mitchell et al., 2012) with profound consequences to the
Earth’s geologic, climatic and biological records (e.g., Hoffman et al.,
1998; Hoffman and Schrag, 2002; Lindsay and Brasier, 2002;
Dewey, 2007; Condie et al., 2009, 2011; Goldfarb et al., 2010;
Hawkesworth et al, 2010; Santosh, 2010a,b; Bradley, 2011;
Hannisdal and Peters, 2011; Strand, 2012; Young, 2012a,b). This
history of episodic supercontinent assembly and breakup, which
constitutes the supercontinent cycle, has influenced the rock record
more profoundly than any other geologic phenomenon (e.g.,
Condie, 2011). Its existence points to fundamental aspects of the
Earth’s interior dynamics (e.g., Condie, 2003; Evans, 2003; Zhong
et al, 2007; Santosh et al.,, 2009; Zhang et al.,, 2009) and its
recent recognition is arguably the most important advance in Earth
Science since the advent of plate tectonics.

Yet the idea of a supercontinent cycle was first advanced thirty
years ago, and the notion of episodicity in tectonic processes
predates plate tectonics by decades. So while the widespread
recognition of the significance of supercontinents in Earth history is
a relatively recent phenomenon, a long history has led to this
fundamental realization. In this paper, we provide an historical
perspective to this important and rapidly growing development in
Earth Science by tracing the history of the supercontinent cycle
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Figure 1. The late Paleozoic supercontinent Pangea as envisioned by Wegener (1922)
(from Domeier et al., 2012).

from its beginnings in the many pre-plate tectonic ideas on epi-
sodicity in geologic processes to the first recognition that this
episodicity was a manifestation of the assembly and breakup of
supercontinents.

2. Episodicity prior to plate tectonics

Recognition of episodicity in tectonic processes occurred long
before plate tectonics provided the framework to account for its
occurrence. Of the many early advocates for such tectonic epi-
sodicity, one of the first, and certainly the most prescient, was the
Dutch geologist Johannes Umbgrove who was arguing for period-
icity in terrestrial processes more than two decades before the
seminal papers on sea-floor spreading by Dietz (1961), Hess (1962)
and Vine and Matthews (1963) ushered in the theory of plate
tectonics (Umbgrove, 1940). In his remarkably modern book, “The
Pulse of the Earth” Umbgrove (1947) complied a wealth of data in
support of a ~250 m.y. periodicity in Phanerozoic sea level, orogeny,
basin formation, climate and magmatic activity (Fig. 2). Consistent
with the assembly and breakup of a supercontinent, he further
argued that there were stages to this periodicity in which global sea
level regression accompanied by increased crustal compression,
continental erosion and climatic deterioration, was followed by
orogeny, granitoid magmatism and glaciation, and finally, by mafic
magmatism, global transgression and climatic amelioration.

Over the following two decades, tectonic episodicity was
advocated by some of the foremost geologists of the day and was
recognized in a wide variety of phenomena. For example, orogenic
episodicity was recognized in Precambrian fold belts by Holmes
(1951), Wilson et al. (1960) and Burwash (1969), and periodicity
in the formation of continental crust was proposed by Holmes
(1954) and further developed by Gastil (1960). Distinct peaks
were also noticed in early radiometric age compilations
(Voitkevich, 1958; Vinogradov and Tugarinov, 1962; Runcorn, 1962,
1965; Dearnly, 1966), and the notion of tectonic episodicity was
inherent in the cratonic sequences recognized by Sloss (1963),
whereby the late Precambrian to recent sedimentary record of
the continental interior of North America was shown to comprise
six major rock-stratigraphic units separated by regional
unconformities.

But of all the early advocates for tectonic episodicity, it was
Sutton (1963) who came closest to formulating a supercontinent
cycle. His “chelogenic cycles”, or global-scale shield-forming
events, called for the episodic clustering of continents. However,
rather than producing a supercontinent, the chelogenic cycle
resulted in the periodic recurrence of two antipodal continental
clusters, the assembly and breakup of which were held to be
responsible for the record of orogenic episodicity. The cycle was
thought to occur because small subcontinental convection cells
first resulted in continental clustering and orogeny in continental

interiors, but then coalesced into larger cells that fostered
continental breakup, orogenic quiescence, and the later
regrouping of the rifted continental blocks into two new antip-
odal clusters. According to Sutton, the cycle had a periodicity of
750—1250 m.y. and had been repeated at least four times during
Earth history.

3. Plate tectonics and tectonic cycles

Following the introduction of plate tectonics, the concept of
tectonic episodicity was specifically advocated by Wilson (1966) in
what are now known as the “Wilson cycles” of ocean opening and
closure. The concept was also employed in regard to evolutionary
biogenesis by Valentine and Moores (1970) and Hallam (1974) who
showed how Phanerozoic marine diversity and sea level fluctua-
tions could be related to patterns of continental fragmentation and
reassembly with close correspondence to the observed geological
record.

Episodicity was also observed in the pattern of Phanerozoic
sedimentary cycling by Mackenzie and Pigott (1981), who argued
that the cyclic nature of Phanerozoic sedimentary rock distribution
and material transfer among sedimentary reservoirs were
controlled by tectonic factors, and that a strong tectonically
controlled correlation existed between the long-term cyclicity in
the Phanerozoic global sea level curve and the distribution of
carbon and sulfur among the major exogenic reservoirs.

Tectonic episodicity was also identified in the distribution of
ore-forming processes through time by Meyer (1981), who linked
such episodicity to characteristic peaks in the abundance of specific
styles of metallic mineralization. Tectonic cycling was also recog-
nized in the Phanerozoic record of strontium isotopes by Burke
et al. (1982), whose curve for the variation of seawater 87Sr/%6sr
with time was shown to be strongly influenced by the history of
both plate interactions and sea-floor spreading. The episodicity in
orogeny observed by earlier workers also found support in
increasingly precise radiometric ages, most clearly illustrated in the
compilation (Fig. 3) of Condie (1982).

The case for episodicity in geologic phenomena was brought to
a culmination by Fischer (1981, 1984), who revived Umbgove’s
(1947) visionary model in a plate tectonic context. Using
a geologic timescale 100 m.y. longer than that employed by Umb-
grove, Fischer’s compilation of the available data made a compel-
ling case for two ~300 m.y. supercycles in the Phanerozoic record
of climate, sea level and granitoid magmatism (Fig. 4). He inter-
preted the “greenhouse” to “ice house” climatic supercycles as
reflecting variations in the levels of atmospheric CO, caused by
changes in the pattern of mantle convection recorded in concor-
dant variations in global sea level and the proxy record of felsic
volcanism in the emplacement of granitoids. Fischer further linked
oceanic aeration to periods of global cooling and showed that
several major biotic crises coincided with the boundaries between
climatic states.

4. Recognition of the supercontinent cycle

Despite compelling evidence for episodicity in geologic
processes, it would be seventy years after Wegener’s (1912) vision
of moving continents, and more than forty years following
Umbgrove’s (1940, 1947) insightful claim for periodicity in terres-
trial processes, that a case would be made that this long-recognized
history of tectonic episodicity was the manifestation of a long-term
cycle of supercontinent assembly and breakup. The case for such
a supercontinent cycle was first put forward by Worsley et al. (1982,
1984).
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Figure 3. Compilation of radiometric ages (chiefly Rb/Sr) for periods of major orogenesis in Earth history (after Condie, 1982). These data were taken by Worsley et al. (1984) to

document the “quasi-periodic” assembly of supercontinents.

4.1. A case presented

Since the amalgamation of supercontinents requires continents
to collide, whereas supercontinent breakup requires them to rift,
Worsley et al. (1984) argued that evidence of a supercontinent
cycle would be documented in the geologic record by episodic
peaks in collisional orogenesis and rift-related mafic dike swarms.
Using the available age data for such events (chiefly Rb/Sr and K/
Ar), then recently compiled by Condie (1976, 1982) and Windley
(1977, 1984), they suggested that such peaks could be distin-
guished and that global episodes of orogenic activity lagged
slightly by mafic dike swarms had punctuated Earth history at
relatively regular intervals of about 500 m.y. for at least the past
2.5 billion years.

Based on these data, Worsley et al. (1984) predicted the exis-
tence of four, and later five (Worsley et al., 1985; Nance et al., 1986),
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Figure 4. Outline of the two ~300 m.y. supercycles of Fischer (1981, 1884) in the
Phanerozoic record of climate, sea level (after Vail et al, 1977) and granitoid mag-
matism (after Engel and Engel, 1964).

pre-Pangean supercontinents at ca. 0.6, 1.1, 1.8—1.6, 2.0 and 2.6 Ga
(Fig. 5). From this compilation, they additionally recognized an
apparent coincidence of supercontinents with ice ages, and
a correspondence of supercontinent breakup with major evolu-
tionary events. This suggested a controlling connection between
supercontinents, climate and biogenesis, which they suggested was
a likely consequence of the profound effect of the supercontinent
cycle on sea level.

Worsley et al. (1984) attempted to model the cycle’s effect on sea
level by applying Parsons and Sclater’s (1971) age-versus-depth
relation for oceanic lithosphere to Berger and Winterer's (1974)
calculations for the average age of the world’s oceanic crust as
a function of the breakup of Pangea. These calculations determined
the changes in sea floor age and, hence, ocean volume, that would
occur when an entirely “Pacific-type” world ocean bordered by active
margins (i.e, supercontinentality) evolves toward one with
a uniformly increasing proportion of “Atlantic-type” ocean bordered
by passive margins (i.e., supercontinent dispersal). In this way, they
were able to broadly quantify the changes in global sea level that
might be expected to result from the supercontinent cycle’s inde-
pendent effects on ocean basin volume and continental elevation
(Fig. 6).

For supercontinental breakup, their calculations suggested (like
those of Heller and Angevine, 1985) that crustal extension and the
formation of young ocean basins would first cause sea level to rise,
only to fall as the floors of the new oceans aged. On the other hand,
during supercontinent assembly, subduction of old oceanic litho-
sphere coupled with the crustal shortening associated with
orogenesis would cause sea level to rise again.

In addition, drawing on Anderson’s (1982) assertion that
continental lithosphere should act as a thermal insulator to mantle
heat flow, Worsley et al. (1984) argued that supercontinents would
become epeirogenically uplifted as heat accumulated beneath
them. They suggested a minimum figure of 400 m for this epeiro-
genic uplift based on available data (Hay and Southam, 1977;
Harrison et al., 1981) for the present day thermal elevation of near-
stationary Africa. The resulting model curve (Fig. 6) simply
combined the sea floor and continental components.
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Frakes (1979) and Christie-Blick (1982).

Calibrated to the Phanerozoic using the known amalgamation
and breakup ages for Pangea, Worsley et al. (1984) were able to
show (Fig. 7) that their model sea level curve closely matched the
first-order sea level curve of Vail et al. (1977). The supercontinent
cycle so defined had a duration of about 440 m.y., and predicted
amalgamation of the next supercontinent in roughly 150 m.y.

4.2. A potential mechanism proposed

Worsley et al. (1984) suggested a potential driving mechanism
for the supercontinent cycle might be found in the counteracting
influences of the insulating effect of supercontinents on mantle
heat flow (Anderson, 1982), and the cooling effect of age on the
buoyancy of oceanic lithosphere (Parsons and Sclater, 1971; Hynes,
1982). They argued that the former might be expected to lead to
the eventual breakup of supercontinents as heat accumulated
beneath them, whereas the latter might be expected to result in
supercontinent assembly since it ensured that the new oceans
created by supercontinent breakup would eventually close (Nance
et al., 1988). This mechanism was based on the history of Pangea
and has come to be known as introversion (Murphy and Nance,
2003), which Worsley et al. (1984) preferred over extroversion,
by which supercontinents are assembled by the closure of the
exterior ocean (e.g., Gurnis, 1988), since this required the interior
oceans to age well beyond their maximum age in today’s world of
180 m.y.

4.3. Potential consequences examined

Worsley et al. (1985, 1986, 1991), Nance et al. (1986) and
Worsley and Nance (1989) subsequently explored the potential
influence of the supercontinent cycle on the Earth’s tectonic,
biogeochemical and paleoceanographic record (Fig. 8). Subdividing
the cycle into three main phases — supercontinentality, breakup
and dispersal, and supercontinent assembly — they identified
a variety of trends in tectonic activity, platform sedimentation,
climate, life, and the stable isotope record that might be expected to
accompany each phase.

Among these trends, they argued that, during super-
continentality: (1) tectonic activity should be dominated by epei-
rogenic uplift as trapped mantle heat accumulates beneath the
largely stationary supercontinent, (2) accretionary orogeny might
be expected at the margins of the exterior (Panthalassic) ocean,
now at its largest size, (3) with sea level at its lowest elevation,
terrestrial deposition should be enhanced, (4) sequestering of
isotopically light carbon in non-marine and organic-rich sediments,
and heavy sulfur in evaporites, might be expected to produce
a record of low 6'3C and 634S in the reciprocal marine platform
reservoir, (5) massive extinctions might be expected to accompany
loss of shallow marine habitat, and (6) cold climates (potentially
leading to continental glaciation) might be expected to develop as
CO, is removed from the atmosphere by the weathering of large
areas of subaerially exposed continental crust.

During supercontinent breakup and dispersal, they argued that:
(1) younging of the world ocean floor through rifting and the
opening of new (interior) ocean basins, coupled with subsidence of
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Figure 6. Tectonic components (ocean basin volume and continental elevation) of sea-
level change for the three main phases of the supercontinent cycle (breakup, assembly,
supercontinentality) and the model sea level curve obtained by their summation
(Worsley et al., 1982, 1984).
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Figure 7. Comparison of the calculated effect of the supercontinent cycle on sea level
(Worsley et al., 1982, 1984) with first-order eustasy (Vail et al., 1977) during the
Phanerozoic.
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Figure 10. Histogram of data from Google Scholar showing the responses by year to
a search using the keyword “supercontinent cycle”. The pioneering position of the
papers on the supercontinent cycle by T.R. Worsley and his co-authors are shown in
orange.

expected on the exterior ocean margins, (3) rapid biotic diversifi-
cation and enhanced preservation of platform sediments with
increasing high values of 6!3C and 634S should accompany conti-
nental drowning, and (4) warm, equable climates should develop
as continental flooding allows atmospheric CO; levels to build.
Finally, during supercontinent assembly, they argued that: (1)
accretionary and collision orogenesis should increase to a maximum,
(2) global sea level should first rise and then fall as subduction
consumes first the old and then the young floor of the interior
oceans (opening and then closing back-basins along their margins),
(3) active margin sedimentation should increase, and (4) atmo-
spheric CO; levels should fall, causing global climates to deteriorate.

5. Concluding remarks

Worsley et al. (1984) were by no means the first to suggest that
supercontinents had formed prior to Pangea. On the contrary, the
existence of a late Neoproterozoic supercontinent had already been
proposed on the basis of paleomagnetic data (Morel and Irving, 1978),
and had long since been implied on the basis of the fossil record
(Valentine and Moores, 1970) and the history of continental rifting
(Sawkins, 1976). Likewise, Piper (1974, 1975) had previously argued
for the existence of a single supercontinent throughout much of the
Proterozoic, although the evidence was disputed (McGlynn et al.,
1975). The model of the supercontinent cycle proposed by Worsley
et al’s (1984) was also necessarily simplistic, and it is apparent
from contemporary U-Pb age data (e.g., Hawkesworth et al., 2010;
Condie et al., 2011) that the cycle is not as regular as the Rb/Sr data
originally suggested (Fig. 9), assuming all pre-Pangean superconti-
nents have been identified. Likewise, the mechanism they proposed
for its operation lacked any detailed knowledge of mantle tomog-
raphy and the fate of subducting slabs (e.g., Condie, 2004; Maruyama
et al., 2007; Murphy and Nance, 2008).

Nevertheless, Worsley et al. (1982, 1984) were the first to
propose that the assembly and breakup of supercontinents had
occurred episodically throughout much of geologic time with
profound consequences to the course of Earth history. Of the five
supercontinents they predicted, four are now recognized as cor-
responding to the amalgamation of Pannotia (Gondwana), Rodinia,
Columbia (or Nuna) and Kenorland (Fig. 9). And while data in
support of the proposed effects of the supercontinent cycle on sea
level, climate and biogeochemical trends were limited at the time,
many of the effects predicted by Worsley et al. (1985, 1986) have
since been borne out by more sophisticated analyses of the
contemporary database (e.g., Eriksson et al.,, 2005, 2012, 2013;
Miller et al., 2005; Dewey, 2007; Bradley, 2008, 2011; Cogné and
Humler, 2008; Young, 2012a,b).

The concept of the supercontinent cycle has evolved signifi-
cantly in the thirty years since it was first proposed, largely as
a result of developments in mantle tomography (e.g., Zhao et al,,
2012) and significant advances in precise geochronology (e.g.,
Condie et al., 2009, 2011) and geophysical modeling (e.g., Yoshida
and Santosh, 2011; Rolf et al.,, 2012). This has led to a rapidly
widening interest in the supercontinent cycle and a near-
exponential increase in the literature (Fig. 10). A list of the many
milestones driving this trend would have to include: (i) the SWEAT
connection of Moores (1991) and the papers by Hoffman (1991) and
Dalziel (1991) that stemmed from this idea in the early 1990s;
(ii) the interest in supercontinents generated by the Snowball Earth
hypothesis (e.g., Hoffman et al., 1998; Kirschvink et al., 2000) in the
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late 1990s; (iii) Unrug and Powell’s highly successful project (IGCP
440) on Rodinia Assembly and Breakup, which culminated in the
consensus reconstruction of Li et al. (2008), and the investigation of
earlier supercontinents championed by Rogers and Santosh (2003,
2004) in the early 2000s; and (iv) a steady stream of provocative
papers throughout this period from Condie (1998, 2002, 2003).

With the rapidly emerging capability of using precisely dated
and paleomagnetically constrained mafic dike swarms as piercing
points for continental reconstructions (e.g., Ernst et al., 2011), and
the newly developed ability to visualize and manipulate both plate
tectonic reconstructions and the geological data on which they are
based through geologic time with programs such as GPLATES (e.g.,
Boyden et al., 2011; Gurnis et al., 2012), we are, for the first time,
close to developing reliable supercontinent reconstructions for the
Proterozoic. Coupled with increasingly sophisticated geophysical
modeling and increasingly sensitive seismic tomography, we also
stand poised at a comprehensive understanding of mantle
dynamics from which the mechanism of the supercontinent cycle
will doubtless emerge.

Yet the original tenet of the supercontinent cycle that post-
Archean Earth history has been punctuated by the episodic
assembly and breakup of supercontinents with profound conse-
quences to the geologic record has stood the test of time. In this
respect, the supercontinent cycle as it is currently envisaged
remains a prodigy (Fig. 10) of the pioneering contributions by
Worsley et al. (1984, 1985, 1986) and those that came before.
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