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ABSTRACT
Recognition of an inferred Miocene marine incursion affecting 

areas from Colombia through Peru and Bolivia and into Argentina 
is essential to delineate the South American Seaway. In Bolivia, cor-
responding strata of inferred marine origin have been assigned to the 
late Miocene Yecua Formation. We carried out high-resolution δ13C 
and δ18O isotopic studies on 135 in situ carbonates from 3 outcrops, 
combined with detailed sedimentologic, paleontologic, and ichnologic 
analysis. Four less negative δ13C excursion levels were recorded that 
coincide well with beds containing marine body (barnacle) and trace 
(Ophiomorpha) fossils. These strata are interbedded with red-green 
beds containing mudcracks, plant roots, gypsum, and trace fossils of 
the continental Scoyenia ichnofacies. Our data are signifi cant in that 
they show for the fi rst time four possible short-lived marine incursions 
in the Bolivian central Andes during the late Miocene. The result is con-
strained by a new U-Pb date of 7.17 ± 0.34 Ma at the top of Yecua strata.

INTRODUCTION
The Miocene paleoenvironmental and paleogeographical history of 

the central Andes in particular and South America in general has been a 
matter of intense debate. There have been controversial views on possible 
marine connection from Colombia through Peru (Amazonia) and Bolivia 
into Argentina (Paranan) during the Miocene. Several authors proposed a 
north-south embayment system or seaway, on the basis of tidal signatures 
and faunal similarities (Räsänen et al., 1995; Lovejoy et al., 2006; Hernán-
dez et al., 2005; Hovikoski et al., 2005, 2007; Uba et al., 2005; Hulka et al., 
2006). In contrast, Wesselingh et al. (2002), Vonhof et al. (2003), and Hoorn 
et al. (2006) used stable isotopic, palynologic, and sedimentologic studies to 
suggest lacustrine and fl uvial settings. The proponents of the South Ameri-
can embayment system or seaway invoked the Bolivian late Miocene Yecua 
strata as the connecting route, thus highlighting its importance in reveal-
ing marine incursion in South America. Previously, the Yecua unit has been 
interpreted on the basis of sedimentology and foraminifera as a long-lived 
marine deposit (Hernández et al., 2005; Hulka et al., 2006) or a restricted 
marine-lacustrine deposit (Marshall et al., 1993; Uba et al., 2006). As a 
result of the different interpretations, the Yecua paleoenvironment and its 
implications for the South American Seaway remain unresolved.

The aim of this paper is to shed light on the Yecua paleoenvironment 
and the South American embayment or seaway system. To achieve this, we 
selected three sections in Bolivia where late Miocene marine and/or lacus-
trine strata crop out, and conducted sedimentologic, paleontologic, C-O 
isotopic, and ichnologic studies. Two of these sections have been studied 
previously and interpreted differently, i.e., ranging from marginal-marine, 
tidal, lacustrine, to fl uvial environments (Marshall et al., 1993; Uba et al., 
2005; Hulka et al., 2006). This is the fi rst study in using this integrated 
approach to unravel the depositional setting of the Yecua Formation.

STUDY AREA
The study area is situated along the Piray River (Angostura), and 

along the new Abapó and Camiri highway (Agua Buena, Fig. 1), where 

the Yecua Formation has good outcrops. In addition to these outcrops, 
we studied the Abapó section along the Grande River to complement 
the observation from the other two sections (see the GSA Data Reposi-
tory1). The upper Miocene deposit is as thick as 250 m, and is included 
stratigraphically within the Yecua Formation; it is correlated to the Pebas, 
Ipururo, and Nauta Formations (Peru), the Solimoes Formation (Brazil), 
and the Anta Formation (Argentina) (e.g., Hernández et al., 2005; Hoorn, 
2006; Hulka et al., 2006; Rebata et al., 2006; Hovikoski et al., 2007). The 
Yecua strata consist of mudstone, sandstone, and limestone arranged in 
repeated 1–8-m-thick sequences. In addition, many Miocene fossils from 
these outcrops, such as foraminifera, ostracods, gastropods, and bivalves, 
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Figure 1. Digital elevation map of central Andes with location of 
study area and measured sections. 1—Angostura (x: 0445136, y: 
7991158); 2—Abapó (x: 0455369, y: 7907089); 3—Agua Buena. Ver-
tical shaded area represents northern arm of the South American 
marine ingression (modifi ed from Räsänen et al., 1995); gray area 
indicates extent of Paranan Sea (after Marshall et al., 1993).
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have been documented (e.g., Marshall et al., 1993; Hernández et al., 2005; 
Hulka et al., 2006). The formation is estimated to be 12.4–8 Ma old on the 
basis of U-Pb chronologic dates (Uba et al., 2007).

METHODS
The data set consists of sedimentologic, stable isotopic, paleonto-

logic, and ichnologic analysis. A detailed sedimentologic analysis was 
carried out at the three sections, and hand samples were collected at 
~1–5 m intervals for petrography and geochemistry. Thin sections and 
polished slabs of representative samples of mostly limestone lithofacies 
were made and screened under microscopy to determine fossil compo-
nents. We selected 135 samples consisting predominantly of micritic 
limestone and carbonates from paleosols (alluvial sediments) for iso-
topic analysis. Between 0.2 and 2 mg of each of the powdered samples 
were analyzed using the Finningan GasBenchII with carbonate option 
coupled to a DELTAplusXL mass spectrometer at the Deutsches Geo-
Forschungs-Zentrum, Potsdam. (For the C-O analytical methods and 
results, see footnote 1.) The size and type of ichnotaxa of burrows were 
documented. In addition, zircons from a volcanic ash at the top of the 
Yecua strata at the Angostura section were dated by the U-Pb method 
using the Cameca IMS (ion mass spectroscope) 1270 at the University 
of California Los Angeles.

RESULTS

Angostura Section
This 250-m-thick section exposes a complete succession of the Yecua 

Formation, and consists of interbedded gray-green limestone, green-
purple-red mudstone, and light brown to yellow sandstone that extend 
laterally for several kilometers. The locally sandy limestone beds are 
10–100 cm thick and parallel laminated. The 10–40-cm-thick limestone 
beds mostly occur in the lower and middle interval of the section. The 
20-cm- to 7-m-thick mudstone intervals are dominantly horizontal lami-
nated, and contain plant roots (Fig. 2A), poorly to moderately developed 
paleosoils, mudcracks (Fig. 2B), and fl aser, lenticular, and wavy bedding. 
The mudstone is interbedded with 40–100-cm-thick, rippled, medium- to 
coarse-grained, calcareous, parallel-laminated sandstone that locally con-
tain fragments of bivalves and ostracods. At the upper part of the section, 
the sandstone beds locally show erosive surfaces.

This section contains foraminifera, bivalves, ostracods, and gastro-
pods (Hulka et al., 2006; Hernández et al., 2005). In addition to some 
of these fossils, we identifi ed barnacles and the foraminifera Ammonia 
(Figs. 2C and 2D). The bioturbation intensity increases upsection, but with 
low-diversity assemblages in the fi ner-grained mudstone. The trace fos-
sils observed include Ophiomorpha (Fig. 2E) and other crustacean burrow 
systems, Palaeophycus, and Taenidium (Fig. 2F); the latter is abundant in 
the upper part. The δ13C values fl uctuate between −3.2‰ and −16.7‰, 
and the δ18O between −6.5‰ and −13.7‰ (see the Data Repository). 
Whereas δ18O is more prone to diagenetic alteration, the δ13C signal is 
more diffi cult to alter (Banner and Hanson, 1990). At this section, the new 
U-Pb dating of zircon yields an age of 7.17 ± 0.34 Ma for the top of the 
Yecua Formation (Fig. 3).

Agua Buena Section
At Agua Buena (Fig. 2G), which is at the southernmost end of the 

study area, only a 130 m thickness of the Yecua unit is exposed. The strata 
consist of 10–50-cm-thick, sharp-based, parallel-laminated, green-gray 
limestone; 0.5–5-m-thick, red-green, horizontally laminated mudstone; 
and 20–60-cm-thick, light brown to light green, planar to lenticular fi ne- to 
coarse-grained sandstone. In the middle part of the section, an intercala-
tion of coquina-rich, wedge-shaped, quartzose, low-angle cross-bedded 
coarse-grained sandstone and subordinated thin-bedded green-gray mud-

stone (Fig. 2G) overlies the barnacle-containing unit (Figs. 2C and 2G). 
The sedimentary structures observed include wavy and fl aser bedding, 
climbing ripples, and trough cross-stratifi cation. Soft-sediment deforma-
tion structures are common in the upper half of the section.

In addition to some of the fossils previously recorded (see Hernán-
dez et al., 2005; Hulka et al., 2006), we identifi ed centimeter-scale 
columnar agglutinated stromatolites (Fig. 2D), barnacles, and the genus 
Ammonia (Fig. 2D), which is extremely abundant in this section. Biotur-
bation is generally low and the dominant ichnogenus is Ophiomorpha. 
The ichnogenus Taenidium occurs near the top of the section. Isotopic 
analysis shows δ13C values ranging between −2.25‰ and −15.1‰, 
whereas the δ18O fl uctuates between −4.96‰ and −11.1‰. It is interest-
ing that the C-O results from micritic limestone are similar to the δ13C 
and δ18O values obtained by Hulka (2005) from foraminifera and ostra-
cods calcite at the same outcrops.
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Figure 2. Outcrop and petrographic photos. A: Plant roots from An-
gostura. B: Mudcracks from Angostura. Hammer is 33 cm long. C: 
Tangential section of barnacle’s plate showing longitudinal tubes 
(opening toward left), and longitudinal and tangential septa. D: Detri-
tal quartz and foraminifera (Ammonia, black arrows) trapped within 
stromatolite growing laminae (white arrows). E: Ophiomorpha from 
Agua Buena (white arrow) showing typical pelletoidal wall. F: Tae-
nidium from Angostura (black arrows) characterized by meniscate 
backfi lled structure. Diameter of coin is ~2.5 cm. G: Cross-section 
view of Agua Buena (person for scale is 1.82 m tall). Lk—lake, M—
shallow marine, S—shoreface.
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DISCUSSION AND CONCLUSIONS

Yecua Paleoenvironment
Sedimentologic, isotopic, paleontologic, and ichnologic analyses 

from the three sections allow the interpretation of the Yecua unit as repeated 
intercalations of marginal-marine, lacustrine, and shoreline deposits 
(Fig. 3). A marginal-marine setting is supported by the presence of bar-
nacles, which are exclusively marine (Foster, 1987) as well as Neogene in 
age (Donovan, 1989; Doyle et al., 1996). This interpretation is further sup-
ported by the presence of stress-tolerant elements, such as stromatolites, 
Ammonia, and the ichnofossil Ophiomorpha. In particular, the latter two do 
not occur in fresh water (Pemberton and Wightman, 1992; Riding, 2000; 
Nikulina et al., 2007). The extremely low diversity of the trace-fossil suites 
and the presence of Ammonia indicate brackish-water conditions rather 
than normal-marine salinities. The brackish-water interpretation for these 
deposits is further supported by the close association of fl uvio-lacustrine 
and marginal-marine trace fossils and sedimentary facies (e.g., Hovikoski, 
et al., 2007). The late Miocene marine incursion into the central Andes is 
further enhanced by the relatively good correlation of the less negative δ13C 
(between −3.8‰ and −2‰) excursion levels with the shallow-marine fauna 
and trace fossils (Fig. 3). Although the δ13C data for the interpreted marine 
incursion do not show the typical positive values, the trend is signifi cant. 
Furthermore, Krull et al. (2004) and Gomez et al. (2007) showed that C-O 
values for shallow-marine carbonates could be negative.

The facies with mudcracks, primary gypsum, plant roots, and paleo-
soils are interpreted as lacustrine and alluvial-plain deposits. They locally 

contain ostracods and freshwater bivalves, and no foraminifera or other 
marine fossils were observed. This interpretation is further supported by 
the presence of elements of the freshwater Scoyenia ichnofacies (Taenid-
ium). Sedimentologic and ichnologic evidence indicates periodic subaerial 
exposure (e.g., Buatois and Mángano, 2007). In addition, this facies shows 
higher negative δ13C values, which range between −16.7‰ and −5‰.

The coarse-grained quartzose coquina-rich sandstone facies repre-
sents high-energy conditions, consistent with those of nearshore areas. 
This interpretation is further supported by the presence of the marine 
bivalve Tellina (Hulka, 2005), associated with barnacles, and the ichno-
genus Ophiomorpha. The coarsening-upward successions may suggest 
shoreline progradation, encompassing deposition in shoreface to fore-
shore settings under wave activity.

Our interpretation for the Yecua Formation is in agreement with 
that of Marshall et al. (1993), who suggested lacustrine and shallow-
marine settings. In addition, our data partly agree with Hulka (2005), 
who suggested short-lived marginal marine, shoreline, and coastal envi-
ronments. In contrast, the data presented here disagree with Hernández 
et al. (2005), who postulated a long-lived open marine setting in Bolivia 
during the late Miocene.

It is interesting that our data allow us for the fi rst time in the cen-
tral Andes to (1) distinguish marine from fl uvio-lacustrine conditions for 
late Miocene rock, and (2) document probably four short-lived marine 
ingressions. Although the C-O isotopic data are far from conclusive, the 
correlation of the less negative excursion levels with marine fauna and 
ichnofossils may strongly suggest periods of short-lived marine systems 
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in the central Andes during the late Miocene. Furthermore, the occurrence 
of continental ichnofossils and sedimentologic features close to marine 
fauna and ichnofossils in the Yecua strata probably indicates that mar-
ginal-marine–infl uenced strata represent short-lived cycles. Similar obser-
vations have been documented in the Pebas Formation in Peru (Hovikoski 
et al., 2007).

Alternatively, the alternation of environments may refl ect tectonic 
subsidence and pulses of progradation into a steady sea level. However, 
the thicknesses of these sections (as much as 250 m) argue for the inter-
pretation of multiple transgressions.

Implications for the Miocene South American Paleogeography
Our data allow the documentation of pulses of marine ingressions 

into the Bolivian central Andes. In light of the Miocene South American 
embayment or seaway controversy, the result from this study supports the 
proposal of a South American marine transgression (Räsänen et al., 1995; 
Hernández et al., 2005; Hovikoski et al., 2005; Uba et al., 2005; Hulka et 
al., 2006). In addition, the data partly support the lacustrine interpretation 
(Wesselingh et al., 2002; Vonhof et al., 2003; Hoorn, et al., 2006), although 
within the framework of repeated transitional marginal marine-freshwater 
systems (e.g., Hoorn, 2006, Lovejoy et al., 2006). It is important that the 
result presented here improves on the previous suggestion by Vonhof et al. 
(2003) of one marine incursion level. Although our data have some uncer-
tainty, they show that the Bolivian central Andes foreland basin may have 
undergone more than one marine ingression (Lovejoy et al., 2006), and 
probably as many as four transgressions during the late Miocene.

The data presented herein, however, cannot reconcile the debate on 
the pathway of the marine ingression into the central Andes. Nonethe-
less, we suggest two possible scenarios: (1) a northeastern source through 
Amazonia as proposed by Hulka et al. (2006), since Hovikoski et al. 
(2007) showed the unlikelihood of a northern connection (through south-
ern Peru and northern Bolivia), and (2) a southern connection from the 
Paranan Sea through southern Bolivia.
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