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A prime objective of genomic medicine is the identification of

disease-causing mutations and the mechanisms by which such

events result in disease. As most disease phenotypes arise not

from single genes and proteins but from a complex network of

molecular interactions, a priori knowledge about the molecular

network serves as a framework for biological inference and

data mining. Here we review recent developments at the

interface of biological networks and mutation analysis. We

examine how mutations may be treated as a perturbation of the

molecular interaction network and what insights may be gained

from taking this perspective. We review work that aims to

transform static networks into rich context-dependent

networks and recent attempts to integrate non-coding RNAs

into such analysis. Finally, we conclude with an overview of the

many challenges and opportunities that lie ahead.
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Introduction
Genome-wide association studies (GWAS) have ident-

ified numerous risk loci for common complex diseases,

and next-generation sequencing (NGS) based association

strategies are now emerging to characterize the contri-

bution of rare variants to human genetic disorders [1,2].

While these studies have provided useful insights into the

heritability of diseases, prediction of disease risk from

genetic information remains challenging. In addition,

Open access under CC BY-NC-SA license.
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without a basic understanding of the biological mechan-

isms by which most of the candidate loci cause disease, it

remains difficult to develop therapeutic strategies for

countering them.

The phenotypic effects of genetic alterations result from

disruptions of biological activities within cells. These activi-

ties arise from the coordinated expression and interaction of

various molecules such as proteins, nucleic acids and metab-

olites [3–7]. Networks can provide a framework for visualiz-

ing and performing inference on the set of intracellular

molecular interactions and are a promising intermediate

for studying genotype–phenotype relationships.

In the ideal case, a candidate locus can be linked to

phenotype using canonical ‘pathways’ curated from the

biomedical literature, that is, sequences of experimentally

characterized molecular interactions that give rise to a

common function. For example, Lee et al. identified can-

didate de novo somatic mutations in cases of hemimega-

lencephaly (HME) [8] and found an enrichment of

mutations in genes encoding key proteins in the canonical

PIK3CA-AKT-mTOR pathway in the affected brain tis-

sue. On the basis of structure of this well-studied pathway,

they applied an assay to detect pathway activity down-

stream of the mutation events and determined that the de
novo mutations were associated with elevated mTOR

activity. Their findings further suggest that patients with

HME may benefit from treatment with mTOR inhibitors.

In most cases, candidate genes implicated by GWAS or

NGS-based studies are not well characterized and their

products are not included in available canonical signaling

pathways; furthermore, canonical pathways are likely to

be incomplete and may even be inaccurate [7]. Systema-

tic screens of the proteome suggest that canonical path-

ways capture only a fraction of the true protein–protein

interactions that occur within the cell [9] and many such

interactions may depend on tissue and condition-specific

factors [10]. In addition, new classes of molecule such as

microRNAs and lincRNAs are increasingly implicated in

regulating the activity of protein coding genes [7,11–14].

In contrast to canonical pathways, network models are

often built from systematic experimental screens, broad

surveys of the literature or public databases of molecular

interactions. These models can easily be extended to

incorporate new molecular species or different types of

relationship between molecules and represent essential

tools for biological inference. Nonetheless, it is important

to be aware that networks are subject to various ascertain-

ment biases including those introduced by measurement
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A hierarchical perspective of biological interactions mediating genotype–phenotype relationships. Protein activity is determined by protein amino acid

sequence and structure. Proteins contribute to biological processes through interactions with other molecules in the cell. Biological processes arise

from coordinated groups of molecular interactions, and in turn can interact to mediate higher order cellular behaviors and responses to environmental

cues. Advances in several areas of network research are improving our understanding of how the organization of biological systems mediates

genotype–phenotype relationships. This knowledge will be essential for identifying mutations underlying disease associations and their mechanisms of

pathogenesis.
technologies, selection of proteins for systematic study or

due to variation in the number of experiments or studies

performed for particular genes.

Modeling genotype–phenotype associations will

require understanding the consequences of genetic

alterations at multiple scales (Figure 1), several of

which can be modeled with networks. Genetic altera-

tions impacting the abundance or activity of individ-

ual molecules will affect the interactions in which

those molecules participate. If the affected inter-

actions are an important component in the larger

network mediating a critical biological process or

cellular behavior, a disease phenotype is more likely

to occur. Here, we review developments in modeling
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molecular interactions within the cell, how mutations

impact molecular interactions and biological processes

in disease phenotypes, and how this knowledge can

be exploited to elucidate key genotype–phenotype

relationships.

Networks for biological inference
Networks provide a framework for deriving information

from a set of relationships among biological entities. In

models of subcellular biological processes, network nodes

are typically genes, proteins, nucleic acids or metabolites,

and edges represent physical interactions or a rich variety

of functional associations (Table 1). Hybrid networks that

are mixtures of different types of relationships are preva-

lent as well.
www.sciencedirect.com
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Table 1

A summary of several common varieties of biological network and some examples.

Network type Nodes Edges Example

Protein–protein interaction (PPI) Proteins Physical interactions HPIN [26�]

Structurally resolved PPI Protein Physical interactions HSIN [26�], SIN [58],

Interactome3D [44], INstruct [45]

Protein–DNA interaction Transcription factors Transcription factor DNA binding [91,92]

Co-expression Proteins Common expression [93]

Genetic interaction (GI) Genes Common function [18,69]

Difference Genes Differential function [66]

Metabolic Enzymes, metabolites Biochemical reactions [94]

Non-coding RNAs miRNA, lincRNA, asRNA,

target genes

Physical interactions,

common function

[95]

Integrated Any Any HumanNet [54], BioGrid [96]

Hierarchical Any Any Nexo [90��]
Biological network models can be constructed from sys-

tematic genome-wide unbiased screens or focused interrog-

ation of distinct biological functions. For complex disorders

that are poorly characterized, mapping candidate genes and
Table 2

Summary of recent network-based strategies for identifying biologica

into two types: Exploratory Methods evaluate biological trends relating

specific mutation, gene or biological pathway underlying a specific 

DE = differential expression, eQTL = expression quantitative trait locu

Type Goal Data 

Exploratory Network for analysis of disorders

associated with blood vessels

Protein interactions, prot

domains

Network for analysis of HIV host

cell defense evasion

mechanisms

Affinity-tagging purificatio

spectrometry

Explore network properties of

LoF tolerant genes

Gene annotations, interac

multiple network databas

Explore molecular basis of

genotype–phenotype

relationships

Mutation databases, PPI 

Explore the relationship between

network state and cellular

outcome

TP53 signaling network, 

specific cellular outcome

Evaluate how a network motif

contributes to cell fate decisions

Cell cycle pathway, yeas

to mating pheromones

Explore how drugs rewire

biological networks

Time series gene express

cellular response, growth

signaling and DNA dama

response pathways

Explore how SNPs effect gene

expression in different tissues

Microarray based SNP a

expression measurement

Organize genetic interaction as a

hierarchical network

Genetic interaction scree

Organize interaction edges in a

hierarchical ontology of terms

Physical and genetic inte

mRNA co-expression
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mutations implicated by association studies onto holistic

network models can implicate underlying biological pro-

cesses (Table 2). In a recent GWAS of coronary artery

disease (CAD), Deloukas et al. identified subnetworks
l mechanisms underlying genetic disorders. Methods are grouped

 genotype to phenotype, while Analytic Methods seek to uncover a

disorder (LoF = loss of function, PPI = protein–protein interaction,

s).

Strategy References

ein GeneHits: method based on graph kernel

diffusion

[16]

n/mass MiST: uses information about protein

abundance, reproducibility and specificity

across replicate experiments

[17]

tions from

es

Use custom Multinet to investigate

statistical correlation between genes and

network properties, fit a linear model to

separate essential and LoF tolerant genes

using network properties

[58]

databases Build a PPI network with structurally

resolved protein interaction interfaces for

analysis of mutations in inherited diseases

[25,26�]

condition

 data

Build a Boolean model of simplified TP53

signaling, map model dynamics to cellular

outcomes, use the model to simulate how

removing genes affects cellular outcome

[28��]

t response Generate hypotheses based on network

structure, test experimentally and build

differential equation models

[29��]

ion,

 factor

ge

Identify candidate genes from pathways or

DE after drug exposure, select a subset of

genes based on prior knowledge or

pathway structure, use time series data for

genes model signaling to cellular outcome

[31��]

nd

s

Combine eQTL analysis with a sampling

approach to detect tissue specific SNP

effects on expression

[64�]

ns in yeast A minimum description length criteria is

minimized using greedy and local search

methods from an initial clustering.

[67]

ractions, Combine probabilistic clustering with an

ontology alignment method to produce

robust hierarchical structure directly from

experimental measurements and networks.

[41,90��]

Current Opinion in Genetics & Development 2013, 23:611–621
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Table 2 (Continued )

Type Goal Data Strategy References

Analytic Identify biological pathways

underlying

hemimegalenchephaly

De novo somatic mutations,

pathway gene sets

Map onto canonical pathways [8]

Identify disease genes from de

novo CNVs in autism cases

De novo CNVs, protein architecture,

function, and expression, pathways

Identify genes across CNVs implicated in

similar phenotypes

[19]

Identify biological pathways

underlying CAD

CAD GWAS loci, commercial

network database

Identify subnetworks from GWAS

implicated genes, annotate subnetworks,

identify overlap with canonical pathways

[15]

Identify genes underlying type 1

diabetes

GWAS loci, protein interaction

network, gene expression

Identify subnetworks from GWAS

implicated genes, map DE onto

subnetworks and test for statistical

enrichment of DE genes

[56]

Identify genes underlying autism De novo somatic mutations, protein

interaction network

Identify connected subnetworks based on

de novo mutated genes, functionally

annotate subnetworks

[57]

Identify genes that regulate

plasma insulin levels

Genotypes, clinical traits,

transcriptional, hybrid network

Identify subnetworks from eQTLs in

different tissues, prioritize genes that

participate in inter-subnetwork edges

[59]

Identify cancer related genes

and pathways

Gene expression data and SNP data A set-cover based approach is used to

identify subnetworks which explain an

eQTL relationship between causal genes

and potential targets

[81]
enriched for genes implicated by variable expression with

or physical proximity to SNPs in a larger protein–protein

interaction (PPI) network [15]. Subsequent gene set

analysis to determine functional enrichment of the subnet-

works, and analysis of subnetwork overlap with canonical

pathways implicated crosstalk between lipid metabolism

and inflammatory pathways as underlying the pathogenesis

of CAD.

If the disease is better understood, focused models may

enable development of specific biological hypotheses

about the mechanisms by which alterations cause disease.

For example, Chu et al. constructed a network of protein

interactions involved in angiogenesis, which they dub

‘the angiome’, in order to study diseases related to irre-

gular blood vessel formation [16]. In another example, a

network of human-HIV protein complexes constructed

by affinity tagging and purification mass spectrometry has

provided a near-comprehensive view of how HIV evades

host cell defenses [17]. While focused approaches

represent only a partial view of the cell, the resulting

networks provide an intelligent framework for constrain-

ing hypothesis testing to proteins most relevant to a

disease. On the other hand, focused screens may miss

systems level trends, for example cross-talk between

biological processes, that can play a role in disease [18].

Network edges can also represent abstract relationships

derived from biological knowledge. Gilman et al. built a

network where all pairs of proteins are connected by a

weighted edge representing the a priori expectation that

the proteins participate in the same phenotype. Edge

weights were based on evidence sources such as tissue-

specific expression, pathway membership, common func-

tional annotations and similar domain composition [19].
Current Opinion in Genetics & Development 2013, 23:611–621 
They then searched over this network to identify the

most functionally similar genes affected by de novo copy

number variants (CNVs) in autism cases.

Mutations as network perturbations
The majority of known disease mutations annotated in

the Human Gene Mutation Database (HGMD) cause

changes to the amino acid sequence of proteins [20].

These changes can have a spectrum of consequences

ranging from completely abrogating protein activity to

having no effect at all, and a variety of computational

strategies have been developed to predict the functional

consequences of mutation at the protein level [21–23].

Changes to a protein’s activity are indirectly linked to

altered cellular behaviors by the network of molecular

interactions in which it participates. Thus it has been

proposed that to understand genotype–phenotype

relationships it will be necessary to quantify the effects

of mutations on molecular networks [24].

To investigate how interaction networks mediate pheno-

typic effects of mutations, Zhong et al. experimentally

profiled protein interactions for twenty-nine alleles

associated with five genetic disorders [25]. This profiling

suggested that mutations could have three distinct effects

for the PPI network: they could eliminate all interactions,

remove a subset of interactions, or have no effect on

interactions. To more systematically study how mutations

affect physical interaction networks, Wang et al. con-

structed a high quality PPI network with structurally

resolved interaction interfaces [26�]. Using this network,

they analyzed disease-associated mutations from OMIM

[27] and HGMD and demonstrated enrichment for in-

frame mutations such as or in-frame insertions and

deletions at interaction interfaces. They also found that
www.sciencedirect.com
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mutations occurring at distinct interaction interfaces in

the same protein could explain many cases where a single

gene is involved in multiple disorders (i.e. pleiotropy) or

in disorders with multiple distinct modes of inheritance

[25,26�].

Models of how PPIs are rewired by mutations, some-

times referred to as ‘network perturbation models’,

may present a useful strategy for functionally prior-

itizing candidate disease mutations and developing

hypotheses about biological processes underlying

pathogenesis  [4,25]. These models can also be used

to analyze the combined effects of multiple mutation

and expression changes. For example, TP53 signaling

is associated with cell cycle arrest and apoptosis in

response to cell damage. Choi et al. used a simplified

model of the TP53 signaling network to map combi-

natorial network perturbations to cellular outcome

[28��]. They then used this model to explore how

fixing the activation of specific molecules constrained

the cellular behaviors available and what parts of the

network could be targeted with therapeutics to force

the apoptotic state. Relatedly, Doncic and Skotheim

recently  found that a simple three-gene motif

embedded within a more complex network structure

was sufficient to explain yeast cellular state decisions

in response to mating pheromone, suggesting that it

may not be necessary to model the full complexity of

biological networks to capture molecular determinants

of cellular behaviors [29��].

In addition to the effects on individual edges in the

network, downstream processes in the cell may be

rewired to maintain homeostasis in the face of pertur-

bations [30]. Intriguingly, Lee et al. showed that delib-

erate perturbation of networks to achieve specific

rewiring could serve as a therapeutic strategy in cancer

[31��]. Triple negative breast cancer cells exposed to an

EGFR inhibitor before chemotherapy showed increased

sensitivity to genotoxic therapy. The timing of exposure

to EGFR inhibitor greatly influenced sensitivity to sub-

sequent chemotherapy suggesting that temporal

dynamics of network rewiring are a determinant of cel-

lular response to environment.

In studies of inherited disease, causal mutations are often

buried in a list of candidate variants uncovered by

sequencing of risk loci or disease exomes [32], and in

cancers, the majority of detected somatic mutations are

thought to be neutral ‘passenger’ events [33,34]. It has

also been suggested that most post-translational modifi-

cations may not affect protein activity [35]. Information

about protein sequence and structure provides important

clues for discriminating effects of distinct alterations to

proteins [21–23]. Thus integrated approaches combining

protein sequence and structural information with net-

works may provide a powerful framework for identifying
www.sciencedirect.com 
disease mutations and reasoning about their molecular

mechanisms.

The biophysical mechanisms by which mutations alter

protein interactions are diverse and are usually not cap-

tured in the abstractions provided by simple interaction

networks [36,37]. Mutations altering protein confor-

mation or binding affinity can contribute to disease phe-

notype without removing network edges [38–40].

Furthermore, highly connected proteins in the network

are unlikely to interact with all partners simultaneously,

as interaction interfaces often overlap [41,42]. Network

representations that capture mutual exclusivity of bind-

ing may be helpful for predicting the functional con-

sequences of mutations [37,42,43].

Structurally resolved interaction networks are becoming

available for several species through databases such as

Interactome3D and INstruct [44,45]. Studying candidate

disease mutations in the context of these networks may

provide important clues as to how mutations affect bio-

logical processes. Because of the limited availability of co-

crystallization protein structures [46] strategies have been

developed to predict structure at protein interfaces using

homology models [26�]. Nonetheless, this type of analysis

will only be possible for a subset of candidate disease

mutations.

Joint study of co-evolution of amino-acid residues at

protein interfaces and network structure may provide

insights into which residues are essential for maintain-

ing interactions [40,47,48]. Fridman et al. found that

affinity-altering mutations in proliferating cell nuclear

antigen (PCNA) could have more severe consequences

for DNA replication and repair than mutations com-

pletely abolishing interactions [40]. Their findings

suggest that even within interfaces, mutations are

likely to have distinct phenotypic consequences. Thus

it may be important to include manipulation of specific

interactions as part of mutagenesis studies when

experimentally evaluating candidate disease genes.

Emerging genome engineering strategies provide

exciting opportunities for experimentally characteriz-

ing domain specific effects of mutations on network

activities [49].

Network properties of human disease genes
The non-random organization of biological networks

suggests that their topology may encode information

about how molecular interactions contribute to biological

phenotypes [50]. Molecular interaction networks within

the cell tend to be modular; that is, proteins related to the

same biological activities often form connected modules

within networks [5–7,50,51]. Goh et al. showed that this

phenomenon extends to disease genes as well; genes

implicated in the same diseases often cluster within

PPI networks [52,53].
Current Opinion in Genetics & Development 2013, 23:611–621
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The existence of functional and disease modules within

interactome networks supports a ‘guilt-by-association’

(GBA) strategy for identifying novel disease-associated

genes [5,54]. GBA has been used to intelligently reduce

the list of candidate disease genes in association studies

[54,55]. Bergholdt et al. combined PPI network overlap

with genes located at GWAS risk loci and subnetwork-

based enrichment for differential expression to identify

new candidate type I diabetes disease genes [56]. Identi-

fication of network modules enriched for mutation or

variable expression under disease conditions can point to

specific biological processes disrupted in disease. For

example, analysis of the network distribution of de novo
mutations in sporadic cases with autism spectrum disorders

implicated a highly interconnected subnetwork of proteins

involved in b-catenin/chromatin remodeling [57].

Goh et al. also investigated differences in network connec-

tivity of three classes of genes: essential, inherited and

somatic disease genes [52,53]. They reported that essential

genes were more likely to have a large number of inter-

action partners and therefore be central in the network,

while inherited disease genes generally had fewer inter-

action partners and were more peripheral. By contrast,

somatic disease genes often looked more like essential

genes. Khurana et al. further explored gene essentiality and

selection in the context of different types of biological

network (PPI, metabolic, post-translational modification,

regulatory, etc.) as well as in a pooled network and found

that highly connected genes are more likely to show strong

signatures of selection [58]. Using topological and selection

properties of genes, they built a logistic regression model

capable of distinguishing essential genes from genes tol-

erant to loss-of-function events, suggesting that these

properties could be useful for selecting candidate genes

for sequencing and follow-up studies. Tu et al. used topo-

logical location at the interface between subnetworks with

differential expression (DE) mediated by plasma-insulin

associated genetic loci to implicate an Alzheimer’s related

gene, App, in type 2 diabetes [59].

These applications demonstrate how characteristics of

biological networks such as topology and modularity can

be used to prioritize candidate disease genes implicated

by association studies. Inference based on network archi-

tecture may be particularly sensitive to the previously

noted ascertainment biases that can affect network models;

highly studied genes are more likely to have a large

number of edges in the network than less frequently

studied genes [4,5,18]. This is less of an issue for networks

derived from systematic experimental screens [4,7,60],

although technology-specific biases are suspected to exist

[61].

Lessons from cross-species network analysis
Mounting evidence from both the study of model organ-

isms [62�,63��] and GWAS [64�,65,4] suggests that much
Current Opinion in Genetics & Development 2013, 23:611–621 
of the ‘missing heritability’ of genetic disease may result

from genetic interactions (GIs). GI maps have been

widely used to study epistatic phenomena in model

organisms [29��,51,66,67] and have more recently been

applied to mammalian species and human cell lines.

The most comprehensive GI networks to date have

been generated from systematic screens in model organ-

isms. For this reason, it is of interest to determine

whether studies of orthologous proteins in model organ-

isms could inform missing interactions in human net-

works. In a recent attempt to experimentally address

this question on a systems level, two evolutionarily

diverged yeast species were compared: the budding

yeast Saccharomyces cerevisiae and the fission yeast Sac-
charomyces pombe, which are separated by an estimated

400–800 million years of evolution (an evolutionary

distance greater than the divergence between humans

and fish). Comparison of systematic pairwise genetic

interaction screens conducted in both species [18,68,69]

showed a hierarchical conservation of network modules,

with highest conservation observed for interactions

within protein complexes (68–70%), lower conservation

of interactions within biological processes (38–58%) and

lowest conservation of interactions between distinct

biological processes (15–19%) [18]. In some cases, there

was functional ‘repurposing’ of complexes between

species [69].

Interestingly, although globally only a small fraction of

the specific interactions between biological processes

were conserved, the total number of interactions was

similar, suggesting that coordination of biological pro-

cesses may be a design principle in eukaryotic systems

[18]. Because of the aforementioned divergence between

these yeast species, Ryan et al. suggest that these trends

will most likely pertain to other eukaryotic species as

well. These studies provide compelling evidence that

cross-species networks can aid our understanding of

human disease proteins and the biological processes in

which they participate.

A uniquely informative perspective is afforded by exam-

ining ‘difference networks’, which are emerging as an

exciting strategy to examine the broader effects of per-

turbations on biological processes in the cell [30]. Differ-

ence networks can be derived from systematic mapping of

interactions in cells under different conditions. In these

networks, edges represent the interactions that differ

between the tested conditions and can capture more

dynamic effects of particular (e.g. drug) or environmental

(e.g. heat) perturbations on the network [66,70].

Regulatory networks and non-coding DNA
Most GWAS-implicated risk variants occur outside of

protein coding genes [71–73]. Recently it has been

suggested that the majority of the genome is involved
www.sciencedirect.com
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in biochemical and regulatory activities, not just the 1.5%

encoding proteins [74]. Non-coding genetic alterations,

even those affecting non-coding RNA (ncRNA)

sequence, are suspected to mediate phenotypic effects

primarily by altering the abundance of proteins in the cell

and thus perturbing PPI networks through stoichiometric

effects [75–77]. Indeed, many variants detected by

GWAS are located at DNA regulatory elements [78��].
An early investigation of the tissue-specific effects of

genetic variants on gene expression uncovered surpris-

ingly complex relationships, suggesting that network

models may be essential for dissecting phenotypic con-

sequences of non-coding variation [64�].

An analysis conducted as part of the Encyclopedia of

DNA Elements (ENCODE) project [79] compared the

genome-wide binding patterns of 119 distinct transcrip-

tion and DNA binding factors (TFs) across five different

cell lines [80]. These data were used to construct a

hierarchical representation of transcription factor regula-

tion onto which protein and non-coding RNA interaction

data as well as post-translational modifications were inte-

grated. The combined network suggested the existence

of three tiers of transcriptional regulation with distinct

properties and architectures. Kim et al. used an interaction

network of similar composition to implicate genes and

network paths capable of mediating disease-related

expression changes downstream of copy number variants

[81].

Increasing evidence points to an important role for

ncRNAs in complex disorders. On the level of mutations,
Figure 2
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microRNAs (miRNAs) have been shown to play a

mechanistic role in the effects of often ignored synon-

ymous mutations [14]. A recent work has shown that a

network of microRNAs may play a key role in the epi-

thelial to mesenchymal transformation of ovarian cancers

[82�]. The importance of other ncRNA species have also

been highlighted, such as the role of anti-sense RNAs on

PTEN regulation [83], broad epigenetic effects of

HOTAIR a long intergenic ncRNA (lincRNA) in breast

cancer [12], and the role of PCAT-1, another lincRNA, on

the progression of prostate cancer [13].

Future challenges: context, dynamics and
hierarchies
Biological network models still fall short of capturing

many important aspects of biological systems. Cells exhi-

bit dynamic responses to environmental stimuli [84] and

cells of different tissue types are characterized by distinct

gene expression patterns [10,64�]. These properties are

key determinants of phenotype but are not captured by

the standard static network models that are prevalent in

the field.

Attempts to estimate the completeness and accuracy of

existing protein interaction data suggest that 92% or more

of binary human PPIs remain to be uncovered [3,85].

These estimates do not account for the possibility that

distinct protein isoforms participate in different inter-

actions. In addition, new molecular species are still being

discovered and have not yet been incorporated into net-

work models [7]. Constructing network models that accu-

rately capture the molecular composition and interactions
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in specific cell types and under distinct conditions will be

essential for effectively modeling genotype–phenotype

relationships.

New experimental techniques are rapidly emerging that

will enable systematic screens of molecular interactions in

mammalian cells. Mass spectrometry (MS)-based tech-

niques promise to enable systematic cell type-specific

screens of the proteome and protein post-translational

modifications [61]. Proteomics may also aid in discovery

of as yet undiscovered protein coding genes [86]. Until

now, the majority of GI screens have been performed in

model organisms, especially yeast, by exhaustively

knocking out pairs of genes and measuring the effects

on colony size. Novel approaches using RNAi technol-

ogies are now enabling systematic mapping of GIs in

mammalian cells [87–89].

New strategies for network construction and visualization

will also aid the search for disease causing genes and

mutations. Reformulating interactomes as hierarchies can

provide representations of biological information that are

easier to interpret than the typical ‘hairball’ that results

when thousands of interactions are simultaneously dis-

played [41,90��] (Figure 2). Mapping molecular measure-

ment data onto such hierarchies will provide novel

biological hypotheses about the pathogenesis of complex

inherited disease. Furthermore, the hierarchical structure

can highlight inconsistent edges likely to be false posi-

tives or of lesser importance, and suggest new relation-

ships among distinct biological complexes and processes.

Aside from a few pioneering efforts, the space of hier-

archical network modeling remains largely unexplored.

Conclusions
Biological networks are increasingly being applied to

study the mechanisms by which genetic alterations cause

phenotypic changes at the cellular level. Network organ-

ization and structure can help explain many disease

phenomena such as locus heterogeneity, variable pene-

trance, pleiotropy, inheritance models and comorbidity.

We believe these efforts are in their infancy. Limited

knowledge of the dynamic and context-specific interplay

of molecules within cell and our incomplete understand-

ing of the makeup of the human genome has prevented

effective modeling of the heritable contributions to

human disease. Advances in experimental measurement

technologies will soon enable large-scale screens to fill in

much of our missing knowledge.
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