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PREFACE

Basic Methods of Structural Geology is a textbook
designed to serve two purposes. First, it is intended to
serve as an accompaniment to techniques-based courses in
structural geology or as an accompaniment to the
laboratory portion of an undergraduate structural geology
course. Second, the book is intended to serve as a
reference source for information on structural geology
methods. Thus, it should continue to be useful to
undergraduates in other courses and to graduate students
and professionals. The book provides detailed explana-
tions of methods and worked-out examples of problems.
Our intention is to focus on the "how-to" part of
structural geology, and thus we do not exhaustively
duplicate the definitions and theory covered in general texts
like Principles of Structural Geology (Suppe, 1985).
Throughout Basic Methods of Structural Geology,
the description of techniques is presented in a
problem/method format. A specific problem is addressed
and the step-by-step method for how to solve that problem
is outlined; these examples are best understood when the
student works through the steps and tries to duplicate the
solution. Realistic exercises are included at the ends of the
chapters to allow students to perfect their understanding
and to see the application of specific methods. Chapters
10 and 16 challenge the student to complete the
interpretation of the data presented in the body of the text.
Chapters are arranged approximately in order of increasing
of difficulty and/or complexity of subject matter; it is
intended that the information available in the earlier
portions of the book will provide a foundation of

experience that the student can use to help in
understanding the later chapters.

The text is divided into two parts. Part I begins at an
elementary level so that the book is accessible to students
early during their geological training. It discusses
measurement and description of lines and planes, the use
of a compass, analysis of contour maps, the use of
trigonometry and orthographic projection for the solution
of geometric problems in structural geology, and the use
of stereonets and equal-area nets. We hope that Part I will
hone the student's ability to visualize structures in three
dimensions and to communicate descriptions of structures
to others. Appendix 1 can serve as an introduction to Part
I, as it provides a concise review of the concepts of maps
and cross sections, in case the student is rusty on these
subjects.

Part II includes eight contributed chapters, each
dealing with the methods used in a subdiscipline of
structural geology. This part covers map interpretation,
analysis of rock-deformation experiments, analysis of
fracture arrays, analysis of mesoscopic and microscopic
structures, construction and balancing of cross sections,
strain analysis, and interpretation of polydeformed terranes.
The chapters of Part II include both introductory and
advanced material and are self contained. Despite the
diversity of subject matter in Part IT, we have attempted to
achieve a degree of uniformity in style of presentation to
make the book easier to use; towards this goal, SM
revised and reformatted much of the contributed material
for Part II.
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In order for the book to be comprehensive, it
intentionally includes more material than can be covered in
the laboratory portion of a standard one-semester structural
geology course. Therefore, we suggest that instructors
provide focused assignments from the book rather than
swamp the student with reading. For example, the book
covers several different approaches to the same problem,
but a student can understand the concept by studying only
one. Itis not intended that the student work through each
technique; the instructor should assign only one or two
that exemplify the concept. The remaining techniques
should be considered a resource for future reference.

A standard introductory structural-geology course
should cover most of the material in Part I and a selection
of material from four or five of the chapters in Part II.
Material not covered in an introductory course could be
assigned in a more advanced structural geology course. The
book contains many exercises, and instructors can, if they
wish, design a curriculum that uses only exercises from
the book. However, the book can also be used accompany
original exercises that are put together by individual
instructors. For example, Chapter 9 on geologic map
interpretation can serve as an introduction to a series of
exercises involving published U.S.G.S. geologic
quadrangle maps, and Chapter 10 could be used as an
introduction to a laboratory demonstration.

As this is a first edition, we would appreciate
comments and corrections provided by users of this book.
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ELEMENTARY
TECHNIQUES

This part of the book introduces the fundamental tools of structural geology. The first
four chapters are designed to accustom students to visualizing the attitude, location, and
dimensions of geologic structures. (Appendix 1 outlines elementary aspects of maps
and cross sections and thus provides an optional introduction to these chapters). We
discuss how to measure and describe lines and planes, how to use a compass, how to
create and interpret contour maps, how to calculate the attitude of planes from point
data, and how to calculate the thickness and depth of layers. Through the study of these
subjects, the student learns how to apply descriptive geometry and trigonometry to
problems in structural geology. The second four chapters focus on the use of
equal-angle (stereographic) and equal-area projections for the solution of geological
problems and for the representation of geological data. These chapters discuss practical
applications of these projections to the field study of fabrics and folds, and to the
analysis of drill-hole data.






CHAPTER

1

MEASUREMENT
OF ATTITUDE
AND LOCATION

1-1 INTRODUCTION

Imagine that you are a field assistant on an expedition to
map the remote highlands of Brazil. On the second day the
chief geologist of the expedition sends you on a solo
traverse to find the contact, or boundary surface, between a
white sandstone unit and a grey limestone unit in the
northeast corner of the map area. All morning you trudge
through the brush of a broad plateau on which there are
only isolated outcrops of rock. By studying the outcrops,
you discover that the limestone is more weathered than the
sandstone. Then at lunchtime you come to a deep
north-south trending gorge and descend to the stream at its
bottom to cool your feet and eat. The rock along the
stream bed at your lunchspot is sandstone. Looking
upstream, you see a weathered ledge and think, based on
your experience, "It's probably limestone.

LIMESTONE! Wait a minute! That contact must be
between me and that ledge.” You run upstream and find the
contact perfectly exposed in the wall of the gorge (Fig.
1-1). The bedding on opposite sides of the contact is not
parallel, and the contact appears to be covered with
scratches (slip lineations) and is bordered by a thin zone of
breccia; you conclude that the contact is a fault. Happy
with your discovery, you sit down to write notes, and ask
yourself, "What important features about this outcrop will
the chief want to know?" Your list includes the following:

1. Location (Where is the exposure of the fault?)
2. Attitude (What is the orientation of the fault?)
3. Appearance (What does the fault look like?)

The discipline of structural geology frequentily deals with
such questions. Now the challenge (and the fun) begins;
how do you answer them? You are a bit worried because
this is only the second day on the job and your compass
skills are minimal. Nevertheless, you decide to rely on a
very useful asset - common sense, and quickly get to work.

This chapter focuses on the first two questions in the
preceding list by introducing the methods and conventions
used by geologists to describe the attitude and location of
geologic structures. We begin with the concept of a
reference frame, which is implicit in all such descriptions.
Then we discuss the format that geologists use to specify
attitude, and we illustrate how a compass is used to
measure attitude. Finally, we show how a compass can be
used to find locations. Our discussion assumes that you are
familiar with the basic concepts of maps and cross-

-sections, and that you can read a map to find a location. If

not, please study Appendix 1. Suggestions for describing
the appearance of a structure are presented in Chapter 11.

Perhaps the most important skill of a structural
geologist is to be able to visualize objects or features in
three-dimensional space. We will emphasize again and
again that when you describe the attitude of a geologic
structure, you must create an image of the structure in your
mind, and you must keep track of whether the structure is a
volame, a plane, or a line.

1-2 REFERENCE FRAME

A reference frame in three-dimensional space is a set of
three mutually orthogonal coordinate axes. The point at
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which the three axes join is the origin. A plane containing
any two axes is called a coordinate plane. In this context
we can define the location of a point by specifying its
coordinates with respect to the three axes, and the attitude
of a line or plane as the angle that a line or plane makes
with respect to each coordinate axis. In a three-axis
reference frame, a line can be resolved onto a coordinate
plane (Fig. 1-2) by tracing the tip of the line along a path
parallel to the axis that is perpendicular to the coordinate
plane. The resulting line, which lies on the coordinate
plane, is called the projection of the line.

z

o}
Figure 1-2. The orientation of a line (OA) in
space can be described with reference to three
mutually perpendicular axes (X, Y, and Z). The
projection of line OA onto the horizontal (X-Y)
plane is labeled OA'. Point A moves down
along the dotted line to point A'. Line AA' is
parallel to the vertical (Z) axis.

For a given point on or near the earth's surface, the
three axes that are used to define the reference frame are (1)
the line of longitude (which trends north-south; see
Appendix 1), (2) the line of latitude (which trends
east-west; see Appendix 1), and (3) a vertical line. The
coordinate plane containing the lines of latitude and
longitude at a point is the horizontal plane at the point. A
"vertical line" is parallel to the radius of the earth at the
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Figure 1-1. Geologic discovery!
A fault exposed in a stream cut.
Note that the marble layers to the left
(north) of the zone are not parallel to
the fault or to the sandstone layers
to the right. The stream flows due
south. The fault surface is covered
N, with scratches (slip lineations) that
are parallel to the intersection
between the fault plane and the
vertical gorge wall.

point (Fig. 1-3) and is, of course, perpendicular to the
horizontal plane. Positions along a vertical line are
specified by elevations. Because of the curvature of the
earth's surface, the absolute orientation of the three axes
changes from point to point around the globe. Remember
the fault exposure mentioned in Section 1-1? To describe
the location of this outcrop in your notes, you record its
latitude, longitude, and elevation. This information can be
read from a map (see Appendix 1).

Longitude

Lat;:j;géij;EZi
-
Equa};&%
S

Figure 1-3. Three coordinate axes defining a
reference frame at the surface of the earth.
Line X is tangent to a line of latitude, line Y is
tangent to a line of longitude, and line Z is
perpendicular to the surface of the earth and is
parallel to a radius vector.

1-3 ATTITUDES OF PLANES

Many geologic structures (e.g., faults, beds, joints, veins,
cleavages, foliations, dikes, contacts, and unconformities)
can be represented as planes. The attitude of a plane can be
specified simply by a pair of numbers. Two alternative
number pairs can be used; the first is strike and dip and the
second is dip and dip direction. The use of dip and dip
direction measurement is treated in Section 1-4.



Chapter 1 Measurement of Attitude and Location

Strike of a Plane

A horizontal line on a plane is called a strike line. A strike
line on a structure can be visualized as the intersection
between an imaginary horizontal plane and the structure.
Remember that the intersection between two planes is a
line; in geology, the line of intersection is called a trace.
To help visualize a strike line, imagine a cliff rising from a
calm sea; the intersection of the sea surface with the cliff is
a strike line on the cliff face (Fig. 1-4). The trace of the
breccia zone on the horizontal bed of the stream in Figure
1-1 is a strike line. The strike of a plane at a given
location is the angle between the strike line and true north.
In other words, strike is the angle between a horizontal line
on a plane and true north. Memorize this definition!
Strike is an angle that is measured in degrees with a
compass. Any angle measured with a compass is called an
azimuth.

Figure 1-4. Intersection of the'sea surface
(horizontal plane) with a cliff face. The shore-
line defines a strike line on the cliff face. Cliff A
strikes north-south, cliff B strikes northeast-
southwest, and cliff C strikes east-west.

The strike of a plane can be described in two ways.
The first way to describe sirike is known as the quadrant
convention. In this convention, the range of possible
directions is divided into four quadrants (NE, SE, NW, and
SW) of 90° each (Fig. 1-5a), and the strike is specified by
a given number of degrees east or west of north. If the
strike line on a plane is parallel to the N-S compass
direction, the plane has a sirike, in the quadrant convention,
of NOOCE. If the strike line on the plane is parallel to the
E-W compass direction, the plane has a strike of N90O°E (or
N90°W). A strike line that points NE is oriented N45°E.

N
(N45°WINW
(N9O° WIW
Figure 1-5. Conventions for spec-
ifying strike. (a) Quadrant con- (S45°WISW

vention; (b) azimuthal convention. S
ltems in parentheses are alternative
expressions of the same direction. (a)

A strike of N32CE is read, "north thirty-two degrees east."
Note that a strike of N20°W is exactly the same as a strike
of S20°E, because there is no need to differentiate between
the ends of a horizontal line. It is common praciice,
however, to specify strikes in the quadrant system with
respect to north. Look again at Figure 1-1. The trace of
the fault on the stream bed is perpendicular to the
north-south stream. Thus, even without using a compass,
you were able to estimate that the favlt strikes N9(OCE.

The second way to represent strike is known as the
azimuthal convention. In this convention the range of
possible directions on a horizontal plane is divided into
3609, with the direction of due north being assigned a
value of 000° or 360° (Fig. 1-5b). Strike in the azimuthal
convention can be specified entirely by a number. For
example, if the strike line points exactly northeast, the
strike is 045°. An azimuth of NOO°W in the quadrant
convention translates to 000° in the azimuthal convention.
A strike of N320E is identical to a strike of 0329, a strike
of N32°W is identical to 3289, and a strike of S24°E is
identical to 156°. Notice that in the azimuthal convention,
a strike should always be specified by three digits, even if
some of the digits are 0 (e.g., 056°). You can indicate the
strike of the fault in Figure 1-1 as 090°.

Dip of a Plane

The true dip of a plane is the angle between the plane and a
horizontal plane as measured in a unique vertical plane.
This unique vertical plane is oriented such that it is exactly
perpendicular to the strike line (Fig. 1-6a). In Figure 1-1
the dip of the fault in the vertical wall of the gorge is the
true dip of the fault, because the strike of the fault is
perpendicular to the wall. You could probably estimate the
dip of the fault if you did not know how to measure it
exactly; the fault looks like it dips about 70°. The true dip
is always the steepest possible slope on the given plane,
and the true dip direction is the azimuth that is exactly
perpendicular to the strike. The true dip direction is always
specified as the downslope direction; the fault in Figure 1-1
dips south (downstream). A dip angle measured in any
vertical plane that is not exactly perpendicular to the strike
line is called an apparent dip (Fig. 1-6b). The dips of the
limestone and sandstone beds that you see in the gorge wail

360°
000°
NE(N45°E) 315°
045°
E(NG0°E) 2708 090°
é 135°
SE(S45°E) 225
180°
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Figure 1-6. Block diagram showing the
meaning of dip. The vertical reference plane is
ruled. (a) True dip (¢), with arrowhead
indicating dip direction; (b) apparent dip (9).
The angle B is the angle between true strike

and the bearing of the plane in which the
apparent dip was measured.

of Figure 1-1 are apparent dips, because the beds do not
strike perpendicular to the gorge wall. The magnitude of
an apparent dip must always be less than that of the true
dip; the apparent dip measured in the vertical plane that
contains the strike line is always equal to 00°.

Dip is specified as an angle between 00° and 90°. A
plane with a 00° dip is a horizontal plane, whereas a plane
with a 90° dip is a vertical plane. Generally, dips in the
range of 00° to 20° are considered shallow dips, those in
the range of 20° to 50° are moderate dips, and those in the
range of 50° to 90° are steep dips (Fig. 1-7). These
divisions are arbitrary and vary depending on author. In
circumstances where the stratigraphic younging direction
(the direction in which the beds get younger) of a sequence
of rocks is known, and the beds have been tilted past
vertical, the beds are said to be overturned. In such cases,
the specified dip is still a number less than 90°, but a
different map symbol is used.

Specification of the strike and the dip angle alone does
not uniquely define the attitude of a plane. For example,
an east-west striking plane can dip either north or south,
and a plane that strikes N40°E can dip to the southeast or
the northwest (Fig. 1-8). If the fault in the gorge of Figure
1-1 dipped to the north instead of to the south, its surface

[13° (Shallow)

(Steep)8o®

'66° (Overturned)
Younger

25° (Moderate)
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040°,49°NW 040°,49°SE

7

>

A
Figure 1-8. Convention for specification of
dip direction. Note that the two inclined planes
have opposite dips but the same strike.

would slope upstream instead of downstream. If planar
orientations are specified by strike and dip, the general
direction of dip must be specified. The exact direction is
not needed, for the true dip direction is always exactly 90°
from the strike. Thus, it is sufficient to say that a N30°E
plane is dipping, say, 24°NW. The true dip direction of
this plane is automatically known to be N60°W. Note
that it is impossible for a plane to dip in the same direction
that it strikes. The N30CE-striking plane cannot dip
northeast or southwest; the dip direction must lie in one of
the quadrants to either side of the strike quadrant. Visualize
a plane and convince yourself that this rule holds! The
fault in Figure 1-1 cannot dip east or west.

Representation of Planar Attitudes

The attitude of a plane is completely specified when the
strike, dip, and general dip direction are indicated. For
example, the attitude of the east-west striking plane that
dips 30°N can be written as 090°,30°N or as
N90°E,30°N. Some geologists prefer to substitute a
semicolon or a slash for the comma (e.g., N90°E;30°N).
Note that the strike number is written first and the dip
number second. Generally, you should specify the quadrant
toward which the plane is dipping (e.g., N42°W, 23°NE)
unless the strike is within about 10° of north-south or
east-west (e.g., NO8®E,34°E). You should now be able to
concisely specify the approximate orientation of the fault
in Figure 1-1; it is N9O°E,70°S.

Planar attitudes can be specified not only by pairs of
numbers but also by symbols on a map. The use of such
symbols makes the geomeltry of a structure on a map easier
to visualize. Symbols for various planar features are
displayed in Figure 1-9. The strike is indicated by a short

Figure 1-7. Adjectives used to
describe dip of a layer. The example
shows an overturned fold. The
arrows indicate stratigraphic young-
ing direction.

———0°dip
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Figure 1-9. Basic symbols com-
monly used for specification of strike
and dip of a planar structure on a
map. Note that the numbers are
always written in the same
orientation.
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Bedding Foliation

line segment drawn parallel to the strike line, and the dip is
indicated by a tick pointing in the dip direction. The angle
of dip is written next to the tick. Dip numbers on a map
should all be written in the same orientation (usually
parallel to the base of the map and to the words of the
legend), regardless of strike, so that they are easy to read
without having to constantly rotate the map. Symbols for
joints and cleavage are used differently by different authors.
If several sets of foliations are present, the author of a map
may invent symbols. Because of the variety of symbols
that are used, it is important that symbols be defined in the
map explanation.

Notice that in the azimuthal system strikes are always
specified by three-digit numbers (with no letters needed) and
dips by two-digit numbers plus a dip-direction
specification. Some geologists use a shorthand system of
specifying strike and dip, called the right-hand rule. When
following this rule, you must choose the strike azimuth
such that the plane dips to your right when you are facing
in the direction of the azimuth (Fig. 1-10a). On the dial of
the compass, this rule is equivalent to saying that the dip
direction is found by moving 90° clockwise around the dial

(a)

clockwise

~TN

strike to dip

045520° 225%20°

(b)

Figure 1-10. Mustration of the right-hand
rule convention for specification of strike and
dip. (a) Plane dips to the right of the line of
sight. (b) Dip number lies to the right of the

strike number on the compass.

x

Joint

Y $ by ® W
30
Vertical Alternate
Vertical Foliation Overturned Horizontal Cleavage
Bedding or Cleavage Bedding Bedding Symbol

from the sirike azimuth to the dip direction (Fig. 1-10b).
The advantage of the right-hand rule is that attitudes can be
expressed entirely by numbers, which is especially
convenient when attitude data are to be entered in a
computer file.

1-4 ATTITUDES OF LINES

Many geologic features (e.g., scratches on a fault surface,
the intersection of two planes, elongate minerals and
pebbles, flute casts, fold hinges) can be pictured as lines.
Linear structures related to deformation of rock are called
lineations. The attitude of a linear structure cannot be
represented by strike and dip. Instead, linear attitudes are
represented by a pair of numbers called plunge and bearing.
If the line occurs on a plane of known attitude, its
orientation may be give by a single number called the rake
or pitch.

Plunge and Bearing of a Line

The plunge of a line is the angle that the line makes with
respect to a horizontal plane as measured in a vertical plane
(Fig. 1-11). Values for plunge range between 00° and 90°;
a plunge of 00° refers to a horizontal line, and a plunge of
90° refers to a vertical line. If the bearing of the lineation
is exactly parallel to the dip direction of the plane, the
plunge must equal the dip (visualize the scratches on the
fault in Figure 1-1). Generally, plunges of between 00° to
20° are considered shallow, those between 20° to 50° are
considered moderate, and those between 50° to 90° are
considered steep.

The bearing (also called irend) of a line is the azimuth
of the projection of the line onto a horizontal coordinate
plane. The line and its projection must both lie in the
same vertical plane (Fig. 1-11). A bearing can be specified
using either the quadrant or azimuthal conventions,
depending on preference. A line that is exactly parallel to a
strike line on a plane has a bearing that is equal to the
strike.

When specifying a bearing, it is very important that
the azimuth indicated gives the direction in which the line
plunges. A line plunging due east is not the same as a line
plunging due west; these two lines plunge in opposite
directions. The scratches on the fault surface in Figure 1-1
are perpendicular to the strike of the fault and are parallel to
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the dip direction of the fault. The scratches therefore
plunge due south; they could not possibly plunge due
north.

Dip and Dip Direction

As noted earlier, strike and dip are not the only means by
which the attitude of a plane can be specified. The attitude
of a plane can be specified by giving the plunge and
bearing of the line on the surface of the plane that is
exactly perpendicular to the strike. The values of the
plunge and bearing for this line are the dip and dip
direction. We could specify the orientation of the fault in
Figure 1-1 by saying that its dip is 70° and its dip
direction is 180° (i.e., its dip and dip direction are:
70°,1800°).

Rake of a Line

The rake of a line (sometimes referred to as the pitch of a
line) is the angle between the line and the horizontal as
measured in the plane on which the line occurs (Fig. 1-12).
The rake is an angle between 00° and 90°. If the bearing
of the lmneauon 1S paraiiel [0 e SUIKe Of UIE piane, e
rake must equal 00°. If the bearing of a lineation is
perpendicular to the strike, the rake is 90°. The scratches
on the fault surface of Figure 1-1, for example, have a rake
of 90°. Any lineation whose bearing is between the strike
and dip direction of the plane on which it occurs must have

Figure 1-12. Block diagram illustrating the
meaning of rake and the relation of rake to
plunge and bearing. Ruled plane is inclined and
the stippled plane is vertical. r = rake
(measured in the inclined plane); B = bearing
(measured in the horizontai piane); @ = true dip
of the plane, 8 = plunge of the line.
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Figure 1-11. Definition of the
plunge and bearing of a line. The
horizontal plane is shaded and the
N vertical plane is ruled. B is the angle
of bearing. (a) Line plunging to the
east; (b) line plunging to the west.
Note that the bearing of the two lines

is different even though the mag-

& /’ nitude of the plunge (0) is the same
(b) and both lines lie in the same plane.

a rake that is intermediate in value between 00° and 90°.
Try to visualize why this rule is true. The direction of rake
must be indicated. Imagine that the plane shown in Figure
1-12 strikes northeast-southwest (i.e., the arrow that points
from O to A points northeast). The line in the dipping
plane that runs from O to D pitches to the northeast and a
line from A to C (not shown) pitches southwest.

A rake angle alone does not completely describe the
attitude of a line in space. To completely specify the
attitude of the line both the rake of the line and the strike
and dip of the plane on which it lies must be indicated. We
will see in Chapters 3 and 6 how to calculate the plunge
and bearing of a line if its rake and the strike and dip of the
plane on which it occurs are known.

Representation of Linear Features

The attitude of a line is completely specified by the plunge
and bearing. The plunge (a two-digit number) is written
first, followed by the bearing (a three-digit number). For
example, a linear attitude would be written 48°,021° or
48°,N21°E (meaning a plunge of 48° in the direction
north 21° east). The scratches on the fault surface in
Figure 1-1 are oriented 90°,180°. Many geologists
substitute an arrow or a semicolon for the comma.
Remember, in contrast, that a planar attitude by the
right-hand rule would be written with the three-digit
number first (e.g., 021°,48°).

The map symbol for a linear attitude is an arrow drawn
parallel to the bearing. A number is written at the tip of
the arrow to indicate the angle of plunge. Often, the arrow
is drawn to originate from a planar attitude symbol that
indicates the strike and dip of the plane on which the
lineation was observed (Fig. 1-13). Rakes are rarely shown
on maps. If rakes are measured in the field, they are
usually converted to plunge and bearing before being
transferred to a map (see Chapters 3 and 5).

1-5 USE OF A COMPASS
In the scenario presented in Section 1-1 we suggested that

your compass skills were minimal. Thus, you relied on
common sense to determine a way to describe the attitude
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(a) /Plunge

Dip
Plunge

(b}

Plunge
(c) Dip
Figure 1-13. Common symbols used for
repre- senting the plunge and bearing of a line
on.a map. Orientation of the arrow gives the
bearing; the number at the end of the arrow
gives the plunge. (a) Lineation alone; (b)
lineation on a bedding plans; {(c) lineation on a
foliation plane.

of the fault to the chief. Realizing that the north-south

stream trace and the vertical gorge wall provided an ideal
three-axis reference frame, you estimated the attitude of the
fault. The chief is pleased with your effort, but requires
more exact measurements in the future, and thus spends the
next few hours training you in the use of a compass.

The traditional instrument used by geologists for
measurement of the attitudes of structural features is the
Brunion compass, though in recent years other types of
compasses (e.g., the Silva compass) have come into favor,
and in areas of magnetic rocks a sun compass must be
used. The discussion that follows is keyed to use of the
Brunton-style compass, but the principles can be applied to
any compass. Practice with a compass will help you
develop the ability to visualize lines and planes in three-
dimensional space.

Elements of a Compass
A compass (Fig. 1-14) is composed of a magnetized needle

that is balanced on a pin so that the needle can rotate easily
and becomes aligned with the magnetic field lines at the

magnetic
field
lines

Figure 1-15. Sketch showing the orientation
of a compass with respect to a magnetic field
line.

location of measurement (Fig. 1-15). The white painted end
of the needle points to the north magnetic pole. A
magnetic pole (there are two, north and south) is a point on
the surface of the earth where the lines of magnetic force
are vertical (Fig. 1-16). On the outer circumference of the
compass face is a scale graduated in degrees. This scale is
called a compass card. On old-style "mariner's” compasses,
the compass card was divided into 16 increments (N, NNE,
NE, ENE, E, ESE, etc.). More modern "surveyor's"
compasses are divided by degrees in one of two ways. The
compass card of quadrant compasses is divided into four
quadrants of 90° each; north and south are each assigned a
value of 00°, and east and west are each assigned a value of
90°. On an azimuthal compass, the card is divided into
360°, with 000° (360°) coinciding with north, 090°
corresponding to east, 180° corresponding to south, and
270° corresponding to west.

A fold-out metal pointer projects from the Brunton
compass. When the white end of the compass needle lies
on 000°, this pointer, when folded out, is pointing due
north. Likewise, when the white end of the needle lies on
0459, the pointer is pointing northeast, and so forth.

Though values for azimuth increase clockwise from
north on the surface of the earth (e.g., if you are facing

Cover Mi Clinometer
irror level Compass card
BL:II's leye Fold-out
eve i -0u
6 - Index pin pointer
Folding sight — -
Q,
2 0 Slot

Sighting window

Screw for

adjusting declination

Compass needle

Figure 1-14. Sketch of a Brunton compass, with the key components

labeled. Adapted from Compton, 1962.
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TS MS
Figure 1-16. Earth's magnetic field lines.
MN = magnetic north; TN = true north; MS =
magnetic south; TS = true south. (Adapted
from Judson, Kauffman, & Leet, 1987.)

north and want to face east, you turn clockwise), the
numbers representing azimuth on the compass card increase
in the counterclockwise direction. Likewise, on the
compass card of a quadrant compass, east and west are
reversed. While this convention may seem confusing at
first, it actually makes use of the compass much easier.
This is because as you rotate the compass (and therefore the
compass card and pointer) clockwise from north to east, the
compass needle actually remains fixed in space; the needle
continues to be aligned with the magnetic field line (Fig.
1-15). Therefore, in the reference frame defined by the
compass body, the needle appears to rotate counter-
cloclwice  Tn arder for the white end of the needle ta lie on
090° when the compass pointer is pointing due east, the
azimuthal numbers on the compass card must increase in a
counterclockwise direction. On a quadrant compass,
imagine that the compass pointer is directed exactly NE.
On the compass card, you simply read off "north 45° east.”
The word "east" is written on the card to the left of north
so that you can read off the word east without thinking.

In addition to the compass needle, the compass also
contains a "bull’s-eye" level (a circular chamber containing
a bubble), which tells you when the base of the compass is
horizontal, and a clinometer (an elongate cylinder
containing a bubble; the cylinder is attached to a movable
arm), which allows measurement of dip or plunge angles.

Magnetic Declination

The magnetic field of the earth can be represented by an
array of lines that run from one magnetic pole to the other
(Fig. 1-16). At a given locality on the earth, the moving
element of the compass, the magnetized needle, aligns
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itself with the magnetic field line at that locality. The
needle is usually balanced so that it lies parallel to the
horizontal plane at the point of measurement and therefore
gives the horizontal component of the magnetic field.
Averaged over long periods of time, the magnetic dipole of
the earth corresponds to the spin axis of the earth, so that
the magnetic poles are the same as the geographic poles
(the geographic poles are the points at which the spin axis
pierces the earth). At any given time, however, the
magnetic poles may be located at a distance from the true
poles. Today, for example, the north magnetic pole is
located in northern Canada. The acute angle between the
direction of true north (a line of longitude) and the direction
that the compass needle points in the present-day magnetic
field is called magnetic declination. A declination of 12°
east means that the angle between true north and magnetic
north is 129, and that true north lies 12° counterclockwise
from magnetic north. Values for magnetic declination at a
given time in the United States can be plotted on a map
(Fig. 1-17). The magnetic pole drifts slightly every year,
so such maps must be constantly updated.

As we noted earlier, the reference frame used to specify
locations and orientations on the earth's surface is keyed to
the geographic poles. Therefore, a correction must be made
in order to account for magnetic declination. By making
this correction, the compass pointer is pointing to true
north when the white end of the needle is lying on 0°, even
if the needle is not parallel to the pointer. A Brunton
compass may be set for the magnetic declination of a map
area by turning the screw on the side of the compass; this
screw rotates the compass card with respect to the pointer.
Figure 1-18 shows compasses set for two different
magnetic declinations.

Measurement of Planes with a Compass

In this section we describe the practical methods that you
can use to measure the attitude of a plane with a compass.
You will learn these methods more easily if you work
through them with someone who is experienced in the use
of a compass.

(a) Direct Measurement of Strike: If the plane
you are measuring is well exposed and fairly smooth, it is
possible to lay the compass directly on the surface of the
plane to measure its strike. Make sure your hammer or
steel clipboard is not near the compass. With the side edge
of the compass flush against the bed surface, move the
compass so that the level bubble is in the bull's-eye. Note
that a different edge is used depending on whether the
surface is upward-facing or downward-facing (i.e., use the
top edge of the compass to measure under an overhang).
When the bull's-eye level indicates that the plane of the
compass is horizontal, the edge of the compass in contact
with the surface defines the horizontal intersection line
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Figure 1-17. Map of the dec-
lination lines for the United States for
1980. At a location along one of
these lines the declination is equal to
the number of degrees indicated.
(Adapted from Brunton compass
instruction book.)
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LINES OF EQUAL MAGNETIC DECLINATION 1980

True North True North

A I

Declination Setting = 15°W Declination Setting = 15°E

(a) (b)
Figure 1-18. Sketches showing the dial of a
compass set to correct for magnetic dec-
lination. (a) Declination of 15°W; (b) dec-
lination of 15CE. Each compass is shown
pointing due north. Note that the needle is not
parallel to the fold-out pointer. Angles are
exaggerated.

Figure 1-19. Sketch illustrating
the position of a compass during
measurement of strike. Note that
the bottom side edge is flush with the
dipping surface. (a) Block diagram.
Stippled plane is vertical and is
perpendicular to strike. (b) View of
compass looking along strike for an
upward-facing surface. True dip is @.
(c) View of compass looking along
strike for a downward-facing sur-
face. (d) Top view of compass
showing bubble centered in
bull's-eye.

between the compass and the surface and is, therefore, a
strike line on the surface (Fig. 1-19). Either end of the
compass needle gives the value of strike, though usually
the end closer to north is specified. Remember, if the
compass needle reads 315° (= N45°W), the pointer is
pointing 315°.

Because of the design of the Brunton compass (a
circular metal ridge projects from the bottom to protect the
clinometer adjustment lever), it is difficult to measure
strike directly for planes with dips of less than about 12°.
For such shallowly dipping planes, it is easier and more
accurate to first determine dip direction and then calculate
strike. Very slight undulations of a shallowly dipping
plane can drastically change the strike, so extra care must
be taken in measuring such planes. Remember that a
unique strike cannot be specified for a horizontal plane.

(b) Direct Measurement of Dip: Direct deter-
mination of the dip of a surface can be done in two ways.

(d)
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The first way is to indicate a perpendicular to the strike line
on the plane using string or a stick. Be sure not to make a
permanent mark that would disfigure the outcrop! Place
the side of the compass on the surface, making sure that
the compass is not upside-down. Note that a different side
of the compass is placed against the surface depending on
whether the surface is upward-facing or downward-facing,
because the clinometer dial is only on one half of the
compass face (Fig. 1-20). Using the lever on the back of
the compass body, move the clinometer so that the bubble
is centered. The angle indicated by the clinometer is the
dip. The second way, which does not require prior
knowledge of the strike direction, is to lay the side of the
compass on the surface parallel to your best estimate of the
dip direction, center the clinometer bubble, and swing the
compass back and forth slightly (all the while keeping the
side in contact with the surface) so that it swings through a
narrow range of apparent dip directions (indicated by the
arrows in Fig. 1-20a). If, during this operation, the bubble
moves out of center such that you must adjust the
clinometer to a steeper dip to recenter the bubble, your
original estimate was an apparent, not a true dip. The
direction in which the compass is oriented when the
clinometer indicates the steepest slope is the true dip.

(¢) Use of a Compass Plate: If the exposed
portion of the surface to be measured is too small or is
slightly irregular, such that it is not possible to lay the
edge of the compass directly on the surface, a direct strike
measurement may still be possible with the aid of a
compass plate. A compass plate is a smooth sheet of
wood or aluminum that provides an adequate base for the
compass to contact. When making a compass plate, it is
best to cut a large notch out of one corner (Fig. 1-21) in
order to facilitate meacurement of nlanec that intercect the

corner of an outcrop. Standard clipboards, which have steel
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20cm

-—12cm —
Figure 1-21. The surface of a compass
plate. The notch is to facilitate measurement
of planes that intersect corners. [f the plate is
made of aluminum, it should be about 0.3 cm
thick.

clips, or soft notebooks do not make appropriate compass
plates. If only a small ledge is available for measurement,
the plane of the ledge can be extended by holding the plate
firmly against the ledge (Fig. 1-22a). The compass can
then be placed on the plate. If no ledge is available, but
the intersection between the plane and the outcrop face is
visible on two nonparallel planes that join at a corner, a
measurement can be made by aligning the two edges of the
notch in your compass plate with the two intersection lines
on the comer (Fig. 1-22b). The two lines define the plane
to be measured. Make sure the two lines lie in the plane of
the compass plate, and then make a measurement.

(d) Shooting a Strike and Dip: The attitude of
a plane can also be determined from a distance, using the
following steps (the procedure is commonly called
"shooting a strike and dip;" Fig. 1-23): (1) Position
yourself so that your are able to sight along a strike line on
the plane. This means that your line of sight should be a
strike line on the nlane and von shonld not he looking

down on the surface of the plane or up to the backside of

(a)
Figure 1-20.

(b) (c)

Sketch illustrating the position of a compass during

measurement of true dip. (a) Block diagram. Stippled plane is per-
pendicular to strike. The arrows indicate movement of the compass
during the operation to confirm that the dip measured is the steepest
possible dip on the surface. The pencil points in the direction of true
dip; (b) view looking down strike showing the proper position of the
clinometer for an upward-facing surface; (c) view looking down strike
showing the proper position of the clinometer for a downward-facing

surface.
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(a) (b)
Figure 1-22. Use of a compass plate. (a)
Extension of the surface of a bed at a ledge.
The stippled box is the edge of a compass; (b)
measurement of a plane defined by two line- -
ations on a corner.

the surface. (2) Hold the compass away from your eyes
(about half arm's length). (3) Fold up the mirrored cover of
the compass so that you can see through the small window
at the base and can see the reflection of the compass dial.
Level the base of the compass with the bull's-eye level; (4)
Line up the tip of the metal pointer, the tick mark in the
window, and the strike line on the plane with your line of
sight. (5) By looking in the mirror, check the bull's-eye
bubble and relevel if necessary. Realign your line of sight
with the pointer, the tick mark, and the strike line and read
off the strike; (6) To determine the dip, maintain your
position with your line of sight parallel to a strike line.
Hold the compass at arm's length perpendicular to the
strike direction. Make sure it is at the same elevation as
your line of sight. Tilt the compass so that the edge of the
compass parallels the plane being measured, center the
clinometer bubble, and read off the dip. Shooting a strike
and dip is inherently less accurate than making a direct
measurement on a surface but may be necessary because an
outcrop is inaccessible or because the layering to be
measured is wavy. If the the layering is wavy, a single
measurement directly on the surface may not indicate the
average attitude of the layer.

Measurement of Lines with a Compass

There are three approaches to measurement of the bearing
of a lineation with a Brunton compass. The first two
methods work best for lineations that are on shallowly
dipping planes, and the third method works best for
lineations that are on steeply dipping planes.

Figure 1-23. Shooting a strike and ~
dip. (a) Position of observer with -
respect to plane; (b) configuration of i

compass. (a)
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(a) Bearing Method A: Fold out the metal
pointer (Fig. 1-24a). Notice that there is a slot in the
pointer. Hold the compass at chest height and align the
compass with the line to be measured such that the line is
visible in the slot and the pointer is pointing in the plunge
direction. If the line is hard to see, you may lay a pencil
along it. Do not draw on outcrops. Level the compass
with the bull's-eye level. The bearing is the azimuth
indicated by the white end of the needle .

(b) Bearing Method B: Align the edge of your
compass plate along the line and place the side of the
compass on the surface of the plate such that the metal
pointer is pointing down-plunge. Adjust the orientation of
the plate so that it is vertical and the bull's-eye level in the
compass indicates horizontal (Fig. 1-24b). With the
compass in this position, the needle indicates the bearing
of the line.

(¢) Bearing Method C: Place two points of the
edge of the compass on the lineation (Fig. 1-24c); one
point should be a comner of the compass body and the other
a corner of the compass cover. The contact point on the
body should be down the plunge of the line from the cover
contact point. Center the bull's-eye level and read the
bearing. The edge of the compass defines a vertical plane.
Therefore, the azimuth indicated on the compass dial is the
bearing of the line. This method works only for lineations
that are on overhangs.

(d) Shooting a Bearing: If it is necessary to
determine the bearing of large linear feature (such as a
highway, a river, or the path between two points), you
may shoot a bearing. One way to do this is to configure
your compass as shown in Figure 1-23b. Level the
compass and point it toward a point in the distance along
the line that you are measuring. The point should be at
eye level (e.g., it could be your field partner standing in the
distance. Look through the window of the compass cover
so that you see the distant point. Read the black end of the
needle (because the compass is pointing toward you) to
determine the bearing of a line pointing away from you.
An easier, but less accurate, way of shooting a bearing is
to hold the horizontal compass at waist level or chest level
and simply point it toward the distant point. The white
end of the needle gives an approximate bearing to the
point.

(e) Plunge Measurement: To determine the
plunge of the line, lay the side of the compass along the

(b3
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(a)

lineation (or along the edge of the compass plate that is
aligned with the lineation). Make sure that the plane of the
compass is vertical, then use the clinometer to measure the
plunge. Be sure that the scale of the clinometer is
right-side up. Notice that bearing is usually measured
before plunge, even though plunge is written in front of
the bearing.

(f) Rake Measurement: Measurement of rake is
Aone with a nrniractor Tlcea vonr comnace tn determine the
strike line. Position the protractor so that it is lying
against the surface and so that its base is parallel to the
strike line (Fig. 1-24d). Lay your pencil on top of the
protractor so that it passes through the center point of the
protractor and is parallel to the lineations. Measure the
rake off the protractor scale. Use your compass to
determine the direction of rake. On a steeply dipping
surface, it is easier to measure the rake of a lineation than
it is to measure its plunge and bearing. Remember that
plunge and bearing can be calculated from rake only if the
strike and dip of the plane on which the line occurs is
known.

1-6 LOCATING POINTS WITH A COMPASS

After you have learned how to make measurements with a
compass, the chief asks you to produce a detailed map
showing the positions of limestone and sandstone outcrops
in the region near the gorge described in Seciion i-1. Such
a map will help you to trace the fault across the

==

(b}

Figure 1-24. Measurement of a
lineation. (a) Looking down on a
compass with the lineation in the
pointer siot; (b) use of a compass
plate; (c) two-point contact method
for overhangs; (d) determination of
(d) rake (r is the angle of rake).

countryside. Unfortunately, a detailed topographic map of
the area does not exist, so you have no base map on which
to plot the outcrop locations. A base map is any map at
an appropriate scale on which geologic measurements can
be plotted. The chief suggests that you use your compass
and do a simple survey. So, armed with this book, you set
out through the brush once again.

Below, we introduce a few simple surveying methods
that can be done with a Brunton compass. Simple
surveying with a compass helps students to practice
compass skills.

Tape and Compass Mapping

A map showing the approximate positions of points on the
ground surface can be constructed using only a tape and a
compass. Using a tape and compass, you can determine
the distance and direction between a starting point and a
second point.

Problem 1-1 (Tape-and-compass mapping)

Construct a map showing the relative positions of four
outcrops (A, B, C, and D). The ground surface in the map
area is horizontal.

Method -1

Step 1: Plot the position of outcrop A on a sheet of
paper. Position point A so that all other points can be
represented on the paper. In this example, we place point
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Figure 1-25. Construction of a tape and
compass map. Point A is the starting point,
and the positions of points B, C, and D must be
located. The distance A - A' is the closure
error.

A in the corner of the proposed map area (Fig. 1-25).
Estimate the size of the area that you are to map, and
choose an appropriate scale so that you can fit the map on
the sheet of paper. Draw a north arrow and the scale.

Step 2: Have your partner stand at point A (or place
a visible marker on point A). Then walk to outcrop B.
Stretch a tape between A and B to determine the length of
line AB. The length of line AB is 26 m. If a tape is not
available, you can estimate the length by counting the
number of paces that it took for you to walk from A to B.
If you know the length of your pace, you can determine the
length of the traverse line by simple multiplication. This
modification is called the pace-and-compass method.

Step 3: Next, shoot the bearing of line between
outcrops A and B. Be sure to read the correct end of the
needle! The bearing of a line running from A to B is
N58°E. The bearing of a line running from B to A is
S58°W.

Step 4: Once you know the bearing and length of
line AB, plot the position of outcrop B on your map sheet.
Use a protactor to determine the orientation of line AB
with respect to the north arrow (the angle should be 589),
and use the map scale to determine the length of line AB.
If you make an attitude measurement at outcrop B, plot the
structural symbol at the position of point B on your map
sheet.

Step 5: You may locate other outcrops from point
A (e.g., the position of outcrop C), or you may stay at
outcrop B and locate additional points from outcrop B (e.g.,
outcrop D).

Step 6: It is best that your traverse ultimately loops
back, so that the final outcrop that you locate is your
starting outcrop (A). Such a loop allows you to assess the

accuracy of your map. The author of the map in Figure .

1-25 shot a bearing from outcrop D to outcrop A and
obtained a measurement of S74°W, then he paced from D
to A and found the distance to be 28.5 m. However, when
he drew a 28.5- m-long S74°W bearing line from point D
on the map, he did not return to point A, but instead
located point A'. The discrepancy between the location of
the original point A on the map and the position of point
A measured from your final surveyed location (i.e., point
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A") is called the closure error of the map. On the map, the
closure error is line AA', which is about 3 m.

The accuracy of a tape-and-compass map depends on
the care with which the measurements are made. The best
tape-and-compass maps are possible in areas where ground
surface is level, and there are no obstacles between points.
If the ground surface is sloped, the line between two points
on the ground surface does not represent the horizontal

- distance between two points, and calculation of the map

distance between two points is more complicated (see
Chapter 2).

Two-Point or Three-Point Sighting

Sometimes it is not feasible to directly measure the length
of an oriented traverse line. It is still possible, fortunately,
to determine the position of a point on the ground, if you
have a few landmarks on your map. This is done by
sighting from the unknown point to two or, better, three
landmarks (Fig. 1-26). The procedure is as follows:

Problem 1-2 (Three-point sighting)

You have a map on which the localities of three
landmarks (a house, a telephone pole, and a sign) are
located (Fig. 1-26). You are standing on an outcrop in the
map area but do not know exactly where the outcrop is.
Call the position of this outcrop "point X." Determine the
location of the outcrop with respect to the three landmarks,
so that you can plot point X on the map

Method 1-2

Step 1: Stand on the outcrop. Point the compass
toward you, level the compass and sight through the cover
window at the house (landmark A). Read the white end of
the needle. The bearing that you read (S43°E) is the
bearing of a line that points from the house to your
position. Draw this line on your map, starting at landmark
A (Fig. 1-26). You must estimate the length of the line.
The position of the outcrop on the map must lie on this

Figure 1-26. Determination of a location by
three-point sighting. Point X is the unknown
point, and points A, B, and C are landmarks.
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line, but you do not know the exact distance between the
house and the outcrop.

Step 2:  Shoot a bearing to the telephone pole
(landmark B). Draw a line from landmark B parallel to this
bearing (S19°E) back toward the outcrop (Fig. 1-26). The
position of point X on the map should be at the location
where the line from B crosses the line from A. The
position of point X is the position of the outcrop.

Step 3: Usually, your measurements are not exact,
so a better constrained position is obtained if you shoot a
bearing to a third landmark. A line from the sign
(landmark C) to the outcrop has a bearing of S55°W. If all
your measurements are perfect, the three bearing lines
intersect at point X. Usually, however, the intersections of
the three lines define a small triangle (Fig. 1-26). Assume
that the position of the outcrop is at the center of this
triangle.

Triangulation

Most surveyed maps are constructed using the technique of
triangulation (see Appendix 1). Accurate triangulation
requires accurate surveying instruments, but rough
triangulation can be accomplished with a Brunton compass.

Problem 1-3 (Triangulation)

Locate the map position of an outcrop at Z, given the
positions of two landmarks. One landmark is at A and the
other is at B.

Method 1-3

Step 1: Define the line between landmarks A and B
as a base line (Fig. 1-27). A base line is a line of known
nogition_ orientation. and length. Draw line AB on your
map; define a scale and north arrow. The outcrop at point
Z is too far away to be located by one step of triangulation,
so you must first find two intermediate points, called X and
Y.

Step 2: Place a flag at point X so that it is easily
visible. Shoot a bearing from A to X, and shoot a bearing
from B to X.

Step 3: As shown in Figure 1-27, your bearing

Figure 1-27. Determination of positions by
triangulation. AB is the original base line.
Point X is the first unknown location. XY is the
second base line. Z is the outcrop position.
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measurements define the angles ¢ and B. From these
measurements you can calculate the angle p.:

K =180°- (g +8B) (Eq. 1-1)

and from p you can calculate the length of AX (or BX),
using a simple trigonometric identity (see Appendix 2):

AB sin 8 = AX sin

AX = (AB sin B)/sin (Eq. 1-2).

Step 4: Once you have determined the position of
X, you can calculate the position of a new point (Y) by
establishing XB as a new base line. You can then
establish line XY as a base line from which you can
establish the location of the outcrop at point Z (Fig. 1-27).
Note that when you have finished the procedure, there are
several points on the map. Such a network of points is
called a triangulation net.

We return one last time to your experience as a field
assistant in the brush of the Brazilian highlands. You have
decided that the most appropriate technique for locating
outcrops in this region is the pace-and-compass method.
You return to the gorge in which the fault was exposed and
trace the fault up the east side of the gorge to the plateau.
You place this point at the west edge of the map, define a
scale, and draw a north arrow. Then you shoot a bearing at
an outcrop in the distance, mark the bearing in your notes,
and pace toward the outcrop. You measure the strike and
dip of the outcrop and mark the appropriate symbol on
your map. By the end of the day you have located 20
outcrops and have the beginnings of a map that shows the
trace of the fault across the countryside as well as a fold
whose presence had been unknown before drawing the map
(Fig. 1-28).
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Figure 1-28. Simple outcrop map of the area
in the vicinity of the outcrop shown in Figure
1-1. Heavy line is the trace of a fault, dashed
line is the trace of a fold hinge, and the irregular
shapes represent outcrops.
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Measurement of Attitude and Location

EXERCISES

Questions 1-8 are intended to give you a little practice in thinking about and
visualizing attitude measurements. In these questions it may help to use your hand
to simulate the plane or line in question. Lay a pencil on the table in front of you
to simulate north.

Translate from the azimuthal convention to the quadrant convention, or vice-versa,
as is necessary.

(a) N43°E (b) N43oW © NOOOW
(d 0870 (€) S20°E (® 355°
(8) S620W (h) N62°E () 127°
() 241° &) 270° (1) dueS
(m) 617° (n) 2640 (0) 0920
(p) 180° @ S58°E ) 000°
(s) 1120 1) S47°W

. Circle those attitudes in the list below that are impossible (i.e., a bed with the

indicated strike cannot possibly dip in the direction that is indicated).

(a) N23°W,57°SE (b) N46°W,56°NE (©) N45°W,78°NW
(d) 089°,43°W (e) N34°W,14°N (f) 089°,43°E
(g) 089°,43°N (h) 341°,84°NE (i) 324°,67°NW

. Translate the following attitudes into number pairs according to the right-hand rule.

(a) N30°W,34°NE (b) N4B8OE,56°SE (c) 078°,76°SE
(d) 067°,74°NW (e) 234°43°NW (f) 117°,21°NE

. Draw an isometric block diagram of a cube (see Appendix 1). Within the volume

of this cube, draw a plane whose attitude is 045°,30°NW. Next to the drawing
indicate the orientation of the three coordinate axes that define your reference frame.
Use a ruler to keep your lines straight.

. Translate the following strike and dip measurements into equivalent dip and dip

direction measurements.

(@) N34°W 38°NE (b) 087°21°N (c) N48°E,57°SE
(d) 2450 419NW (&) 117°,33°NE (® S64°E210SW

Draw an isometric block diagram of a line whose attitude is 60°,045°. Your
drawing should include three Cartesian axes to define three-dimensional space
(vertical, north-south, and east-west). Use a ruler to keep your lines straight.
Indicate the bearing angle (8) in the horizontal plane and the plunge angle (d) in the
vertical plane.

Imagine a fault surface on which there are four different overprinted sets of slip
lineations. The surface is oriented N39°W 47°NE. A geologist recorded the
following measurements to describe the four sets of lineations.

479 N51°E (lineation 1)
68°,due N (lineation 2)
470 N51°W (lineation 3)

340 due N (lineation 4)

17
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(@) Assuming that the planar attitude was measured correctly, determine which
lineation measurements are impossible. In other words, which lineation(s) cannot
possibly lie in the specified plane. (Indicate why for each).

(b) Assuming that the measurement of lineation 1 is a correct, what is its rake?
(© Assuming that the measurement of lineation 1 is correct, does it indicate
movement parallel to the strike of the fault (strike-slip movement) or movement
parallel to the dip of the fault (dip-slip movement)?

. Construction of a simple field geologic map. Your instructor will arrange a set of

five or six rock slabs in an open space of about 400 m2. Each rock slab is a
measurement station. (If real rock outcrops are accessible, they will be used
instead). Construct a map showing the distribution of the rock slabs (outcrops).
Use a scale that is appropriate to draw your map on a single sheet of paper. Be
sure to draw a scale and a north arrow on your map to provide the reference frame.
Determine the orientation of each slab, and using appropriate symbols, plot the
strike and dip of each slab on your map in the correct position. If a simple
structure is indicated by the map pattern, your instructor will help you to interpret
it. You may use whichever method of locating points suits you.

Part |



CHAPTER

2

INTERPRETATION
AND CONSTRUCTION
OF CONTOUR MAPS

2-1 INTRODUCTION

In many applications it is important to be able to describe
the spatial variation of a physical or a statistical parameter.
Such variations can be illustrated on maps through the use
of contour lines. Recall from earlier courses in geology
that a contour line is a line representing the locus of points
in the map area of equal value for a specific parameter. For
example, on the familiar topographic map each contour
line represents the locus of points with a given elevation.
A contour line on a topographic map can be envisioned as
the intersection of a horizontal plane with the ground
surface (Fig. 2-1). Any map that employs contour lines to
represent spatial variations in the value of a parameter is
called a contour map. In some books, the term isoline
map is used as a general term for a map that employs
contours, and the term contour map is restricted to maps
that show variation in elevation. We prefer to use contour
map as the general term.

In this chapter we review the principles of contour
mapping, explore a range of applications of contour maps
to structural geology, and learn how to create contour maps
from point data. Work with contour maps provides an
excellent opportunity to develop three-dimensional
perception. With practice you may be able to visualize the
shape portrayed by the spacing and form of the contour
lines on a map. These days, computers can assist in
creating a visual image of a contour map by producing
block diagrams from topographic data; on such diagrams
the form of the contoured surface is simulated by a grid of

lines (Fig. 2-2). (Note: You may wish to defer studying
portions of this chapter until you have learned the
terminology used to describe folds and faults. It is beyond
the scope of this book to provide a detailed discussion of
these terms).

2-2 ELEMENTS OF CONTOUR MAPS
Gradients and Contour Intervals

The difference in the value of a parameter represented by
adjacent contour lines is called the contour interval. For
example, on a topographic map the contour interval
represents the difference in elevation between two contour
lines. The usefulness of a contour map is greatly increased
if the contour interval is constant because then the gradient
(rate of change) of a parameter in a given direction is
directly proportional to the spacing of the contour lines.
Closely spaced contours represent steep gradients, and
widely spaced contours represent gentle gradients (Fig.
2-3).

The contour interval must be selected so that
variations in the morphology of the parameter can be
represented in adequate detail. The choice of a contour
interval for a specific map depends on three factors: the
detail that you wish to portray, the quality of the data that
you have to work with, and the scale of the map.

The required detail on a contour map is a value
judgement. If the contour interval is too large and there are
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0 500

Contour interval =20 m

(b)
Figure 2-1. The shape of a hill represented
by a topographic contour map. (a) Block
diagram of a hill. The horizontal plane indicated
by dashed lines intersects the hill at an
elevation of about 200 m. (b) Contour map of a
hill. Note that the index contours are darker.

m

too few contours in the map area, small variations in the
parameter will not be resolved. If the contour interval is
too small, there will be so many contours on the map that
they will merge with one another, and it will become
impossible to distinguish adjacent contours from one
another. The quality of the data available for constructing
the map controls the contour interval in that if control
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parameter has been made - are widely spaced and are at
greatly different elevations, you will not be able to resolve
local topographic details even if you use a small contour
interval. Finally, scale affects your choice of a contour
interval. For example, on a standard U.S.G.S.
1:24,000-scale topographic quadrangle map, the width of
the ink line of a contour on the map represents about a
4-m-wide belt on the ground; clearly, there is no point in
trying to resolve features that are less than about 10 m in
diameter.

@
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Figure 2-2. Computer simulation of topo-
graphy. (a) Computer-generated contour map;
(b) perspective diagram of the same area
employing a grid of lines to create the illusion of
relief. Y-direction is north, X-direction is east,
Z is the vertical axis. (Courtesy of Radian,
Inc.)

Commonly, to make a contour map easier to read,
every fifth contour line is defined as an index contour. An
index contour is indicated by a thicker ink line and is
labeled with the value ot the parameter. 1The contour
interval is usually indicated at the bottom of a map, but if
not, the contour interval may be determined by dividing the
difference between two adjacent labeled index contours by
5.

To calculate the gradient along a specific traverse line
(Note: the term traverse line is used in this book to refer to
any line drawn between two points on a map) of a known
length, draw the traverse line, measure its length, and count
the number of contour lines that cross it. Multiply the
number of contour lines by the contour interval to obtain

100
%meters
0

Flgure 2-3. llustration of the rela-

(b)

—— 40— |
40—
20
40— |

40

60—

tionship between gradient and the
o 0 100  spacing of contour lines. (a) Cross
N Ll .
meters section of slope; (b) contour map of
slope.
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the change in value of the parameter. If the ends of the
traverse line do not fall precisely on a contour line, the
change in value of the parameter will be a little greater than
the simple multiplication yields, so you must increase the
value accordingly. The gradient can be represented either
by the angle of slope, by a slope fraction, or by the grade
(Fig. 2-4). An angle of slope is the angle between the
horizontal and the sloping surface; it can be determined
either by making a scaled drawing or by a simple
trigonometric formula

arctan —(parameter change) slope angle

(horizontal traverse length) (Eq. 2-1).

A slope fraction is merely the ratio of rise (vertical
change) over run (horizontal change). A grade is a
percentage that specifies the number of units of rise for
every 100 units of horizontal distance.

run-
Figure 2-4. Definition of slope angle and
grade. @ = slope angle; rise/run = slope
fraction; (rise X 100)/run = grade.

Problem 2-}

A traverse line (AA") is indicated on the topographic
map of Figure 2-1. Determine the gradient along this line
and express this gradient as angle of slope, grade, and slope
fraction.

Method 2-1

The length of the traverse line, by the map scale, is
210 m. The traverse line starts on the 120-m contour line
and terminates on the 200-m contour line, so it crosses a
vertical elevation change of 80 m.

slope angle = arctan(80 m/210 m) = 20.9°
slope fraction = 80 m/210 m = 1/2.63

grade = (80 m X 100)/210 = 38.1%.

Problem 2-2

The scale of a map is 1:10,000 (i.e., 10 cm = 1 km)
and the contour interval is 200 m. A N45°E-trending
traverse crosses five contour lines over a distance of 20 cm
on the map. The lowest elevation is at the northeast end of
the traverse. What is the slope of the traverse line?

Interpretation and Construction of Contour Maps
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Method 2-2

The elevation change (rise) is 1 km over a horizontal
distance (run) of 2 km, so the average slope in this interval
is arctan(0.50) = 26.69.

General Constraints on Contour Maps

There are several general rules that constrain the
construction of contour maps. We list the major rules and
describe acceptable exceptions. For additional constraints
see Bishop (1960) and Badgley (1959).

(a) The contour interval on a map Iis
constant: The difference in the value of a parameter
represented by any two adjacent contour lines should be the
same everywhere on a map. If the contour interval is not
constant, it is difficult to calculate gradients. The only
exception to this rule occurs for maps that encompass
domains of both very steep and very shallow gradients. On
such maps two contour intervals can be used. A large
contour interval is selected to accommodate domains of the
map in which there are steep gradients. In the domains
where gradients are shallow, however, intermediate
contours can be added to provide greater resolution of
features. For example, imagine that a topographic map
covers a region in which steep hills border a flat flood
plain. A 40-ft contour interval might be used in the hilly
domain of the map, but such a large contour interval could
not be used to define features in the flood plain.
Intermediate contours could be added in the flood plain
domain to make the contour interval in the flood plain only
20 ft. Intermediate contours should be dashed.

(b) Contour lines generally should not
merge or cross: If contour lifies cross one another or
join and become one, the map may be wrong. There are
only two acceptable situations in which contour lines can
merge or cross: (1) Contour lines appear to cross on
topographic maps or structure-contour maps where there is
an overhang (Fig. 2-5); the contours on the underside of the
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meters

Figure 2-5. Pattern of contours for an
overhang. Note that the contours below the
overhang are dashed.
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overhang should be dashed. (2) Contour lines merge into a
single line if a gradient is infinite (i.e., the contoured
surface on the map is vertical). Contour lines appear to
merge on many maps where there are steep gradients,
because of the finite width of inked contour lines on the
map sheet. '

(c) Contour lines either close within the
area of the map or are truncated by the edge of
the map or by a structure: 1t is impossible for a
contour line to simply stop if the surface being represented
is a continuous feature. For example, on a topographic
map of a hill, you will always be able to trace a line of
constant elevation around the hill so that it connects with
itself or closes on the other side. If this line extends off
the end of the map, it will be truncated by the edge of the
map. Exceptions to this rule occur on certain types of
contour maps. For example, on a structure-contour map
we will see that the contour lines can be truncated within
the map area by a fault, and contour lines on a fault surface
need not close.

(d) Contour lines are repeated to indicate
reversals in gradient direction: If, along a traverse
line, the direction of a gradient reverses, the lowest (or
highest) contour crossed before the reversal must be
repeated after the reversal. This statement is best illustrated
by an example on a topographic map. If you walk down a
slope, cross the 200-m contour, cross a saddle, and then
walk up another slope, you must again cross the 200-m
contour line.

(e) A reference frame for a contour map is
defined by specifying a datum plane: A datum
plane, also called a reference plane, for a contour map is an
imaginary surface on which the parameter described by the

Resistant unit

=\ Non-resistant
A« unit

Eroded core of
anticline
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map has a value of 0. For example, on a topographic map,
the datum plane is mean sea level. Elevations are specified
by a distance above or below mean sea level.

2-3 INTERPRETATION
OF TOPOGRAPHIC MAPS

We have described topographic maps already at several
points in this chapter. In this section we discuss how
geologic structures can be studied with the aid of

topographic maps.

Structures on Topographic Maps

The shape of the ground surface commonly indicates the
distribution of lithologies, which, in turn, are controlled by
the geometry of geologic structures. Different units may
have different topographic expressions, and thus contacts
between units can be mapped by identifying the boundary
between two topographic domains. A particularly resistant
unit (e.g., a quartzite) may stand out in relief and trace out
a structure. Geologic mapping using topographic maps is
often done in conjunction with study of stereo pairs of air
photographs.

Characteristic topographic patterns are associated with
certain structural geometries (Fig. 2-6). Horizontal strata
may be indicated by flat-topped plateaus or mesas bounded
by steplike escarpments. On such escarpments, steep cliffs
are backed by resistant strata, and gentle slopes are
underlain by nonresistant strata. Dipping beds lead to the
formation of asymmetric ridges. If the strata are steeply
dipping, the asymmetry is not pronounced and the ridge is

Less steep (escarpment)

2

L\ More steep

,(dip slope

1<

g Fault-line scarp
7’

S

N

l><
—40— |
40—
40
100
| ————120—]

Figure 2-6. Topographic patterns of simple structures. (a) Horizontal
strata; (b) dipping strata; (c) broken-crested anticline; (d) fault-line
scarp between granite and tilted strata.
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called a hogback. If the strata are shallowly dipping, the
ridge is highly asymmetric, with one steep slope and one
shallow slope, and is called a cuesta.

On many asymmetric ridges the topographic surface of
the more gently dipping face of the ridge corresponds to the
plane of bedding or foliation. Such a surface is called a
dip slope. If the surfaces of synclines and anticlines are dip
slopes, synclines will cup valleys, and anticlines will arch
over ridges. Commonly, however, the crests of anticlines
erode away, so an anticline will appear as two oppositely
facing ridges that are separated from one another by a
valley. If the fold is plunging, the ridges will join and
define a single U-shaped or V-shaped ridge, depending on
the shape of the fold hinge zone. The Valley and Ridge
Province of Pennsylvania contains spectacular examples of
topographically defined plunging folds (Fig. 2-7).

Igneous structures may also be reflected by
topographic patterns. For example, the composition of a
dike rock is usually very different from that of the country
rock that it intruded. If the dike rock is less resistant to
weathering, it will preferentially erode and underlie a
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trough. If the dike rock is more resistant, it will stand up
as a ridge. Granitic intrusions have a very distinctive
knobby topographic expression because of their tendency to
weather by exfoliation.

Topographic expression of faults occurs for several
reasons. Faulting breaks up the rock, thereby creating a
zone of weak rock, and this zone of weakness
preferentially erodes. Alternatively, if the fault was a zone
of fluid circulation and mineralization, the fault breccia
may become betier indurated than surrounding country rock
and therefore will stand out in relief. If a fault displaces the
ground surface, it results in a fault scarp that will have a
topographic expression. Even if the fault scarp itself is no
longer visible, topographic features, such as faceted
mountain fronts, uplifted terraces, or a rejuvenated stream,
may attest to fault movements. The traces of strike-slip
faults can be recognized by the offset of other topographic
features, such as stream beds, and may be marked by local
ridges and depressions.  Significant cumulative
displacements on faults can result in creation of mountain
ranges that stand high relative to adjacent areas and
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Figure 2-7. Topography of portion of the Valley and Ridge province of
Pennsylvania, at the Susquehana River near Harrisburg. The resistant
ridges define the form of plunging upright folds. (Adapted from Hamblin

and Howard, 1986.)



24

represent horsts, tilted fault blocks, or thrust sheets.
Grabens may be represented by topographic troughs.
Likewise, windows and klippen in thrust-faulted regions are
topographically delineated if the hanging-wall sheet is
composed of a different rock type than the footwall sheet.
If a fault juxtaposes lithologies of different erodability, the
fault trace can become an erosional scarp, called a fault-line
scarp, in which the land underlain by the more resistant
rock steps down to the land underlain by the less resistant
rock.

Joints represent planes of weakness along which
blocks of rock preferentially break off. As a consequence,
the faces of ridges are often parallel to joints, and streams
often take sudden angular bends as they follow joints.
Joints also zones of enhanced weathering, and thus may
evolve into narrow linear troughs.

The structural grain of a region refers to the orientation
of the dominant deformation elements in an area. This
grain may represent the trends of folds, fractures, or
metamorphic foliation. Because topography reflects
structure, the structural grain of a region may stand out on
a topographic map. In Figure 2-7 the structural grain of
the Appalachian foreland is defined by the topographic
pattern.

Finally, note that the geometry of sea-floor structures
(e.g., spreading ridges, transform faults, and trenches) is
indicated by topographic patterns. Maps that show the
topography of sea floor or of a lake floor are called
bathymetric maps. Contour lines on bathymetric maps are
called isobaths and are specified not as elevations above
mean sea level, but rather as depths beneath the surface of
the overlying body of water.
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(Rule of V's)

The trace of the intersection of one plane with another is a
straight line. For example, where a planar contact
intersects a perfectly horizontal ground surface, the trace of
the contact is a straight line. If the contact is not planar
(e.g., it is folded) the trace is a curved line. Likewise, if
the ground surface is not planar but wraps around hills and
valleys, the trace of a non-vertical contact on the ground
surface is a curved line even if the contact itself is planar.
In other words, the trace of a contact shown on a map is
determined both by the shape of the contact and the
topography of the map area.

For some students visualization of the pattern
resulting from the intersection of a contact with the ground
surface comes naturally, but for others it does not. The
easiest way to develop the ability to visualize such
intersections is to use your hands. Start by trying to
visualize the outcrop pattern that results where an
imaginary bed of sandstone crosses a valiey. Let your right

Elementary Techniques Part |

hand represent the bed of sandstone (call this your "bed
hand") and let your left hand represent a V-shaped valley
(call this your "valley hand"). Imagine that the floor of the
valley is a gently plunging line and that a stream runs
down it (Fig. 2-8). As you read the following paragraphs,
physically use your hands to duplicate the described
situation.

Figures 2-8 and 2-9 present several intersection
patterns between the bed and the the valley. The strike of
the bed is perpendicular to the bearing of the valley axis.
Note that in several examples the intersection is V-shaped.
As a consequence, the relationship between bed dip and
valley-floor plunge is commonly referred to as the Rule of
V’s. Please do not memorize the patterns of these figures

(a)

o

—
—

(b)

(c)
Figure 2-8. Intersection of a horizontal
plane with topography. (a) Block diagram; (b)
cross section along the axis of the valley; (c)
map view showing that the outcrop trace is
paraiiel to coniour lines.
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(a)

(c)

Figure 2-9. Intersection of non-
horizontal planes with topography.

Left column is map view, right column
is cross-sectional view. (a) Plane

(d)

dipping upstream; (b) vertical plane;
(c) plane dipping downstream at an
angle greater than the stream
gradient; (d) plane dipping down-

stream at an angle equal to the stream
gradient; (e) plane dipping down-
stream at an angle less than the

stream gradient.

as if they are a rule; rather, practice visualizing the
geometry of bed-valley intersections.

Start by holding your hand horizontally and allow it to
intersect the valley hand. Your hand traces a V that is
identical to the trace of a topographic contour line (Fig.
2-8). Remember that a topographic contour line, by
definition, represents the intersection of a horizontal plane
with the ground surface. Rotate your bed hand around the
strike so that it dips into your valley hand (i.e., dips in the
direction opposite to the flow of the stream). Notice that

(e)

the intersection of your hands now forms an
upstream-pointing V (Fig. 2-9a). Keep rotating your bed
hand until it is vertical, then look straight down on the
intersection. The trace of the intersection, were it to be
projected on a map plane, would be a straight line (Fig.
2-9b). Vertical planes "ignore" topography and will always
appear as a straight line on the map. Continue rotating
your bed hand until it is dips downstream and dips more
steeply than the plunge of the stream. The intersection of
your bed hand with your valley hand is a V, but the V
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points downstream (Fig. 2-9c). If the dip of the bed is
precisely the same as the slope of the valley floor, the
point of the V disappears, and the intersection of the bed
with the valley is represented by two lines, one running
down each side of the valley parallel to the floor of the
valley (Fig. 2-9d). If the dip of the bed is less than the
slope of the valley floor, the intersection of the two isa V
that points upstream (Fig. 2-9¢). V patterns also arise as a
consequence of the intersection between a layer and a ridge.
In effect, a ridge can be visualized as an inverted valley.

In the preceding examples the strike of the bed was
perpendicular to the bearing of the valley floor. As a
consequence, all the V patterns described were symmetrical.
If the strike of the bed is oblique to the trough of the
valley, the pattern of the intersection between the bed and
the valley floor is not symmetrical.

Map
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Intersection of Folds with Topography

There are no simple "rules” to follow when describing the
intersection of folds with topography because folds can
have a variety of forms and orientations. The map pattern
of a fold depends on the attitude of the hinge, the shape of
the hinge area, the amplitude and wavelength of the fold,
the attitude of the axial plane, the angle between the limbs
of the folds, variation in thickness of a unit around the
fold, and the pattern of topography. We can give only a
few examples to help you see how to think about the
intersection of folds with topography (Fig. 2-10).

An upright nonplunging anticline whose hinge
overlies and is parallel to the trace of the valley floor
intersects the valley as an upstream-pointing V. In such a
case it may be difficult to recognize the map pattern as that

60
40
20

0

Figure 2-10. Examples of maps
showing the intersection of a fold with
topography. Cross-sectional view of
each map is also shown. (a) Syncline
intersecting a valley. Hinge of the fold
is oblique to the valley floor. Both top

and bottom contacts of the unit are
shown. The trace of the vertical axial
plane is also shown. (b) Nonplunging
anticline intersecting a valley. The
trace of the axial plane is coaxial with
the trace of the valley floor. (c)
Nonplunging anticline intersecting a
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of a fold instead of just a dipping planar bed. A plunging
fold whose hinge coincides with the trace of the valley
floor also defines a V, but the direction in which the V
points depends on the magnitude and direction of the
plunge. For example, a plunging anticline whose axis
plunges in the direction opposite to the plunge of the
valley floor will form a V upstream. If the axis of the
anticline plunges in the same direction as the valley floor,
then the V points downstream. The pattern for a syncline
is the reverse of that for an anticline. An asymmetric fold
defines an asymmetric V in a valley. A unit defining a fold
whose axis is perpendicular to the axis of a valley appears
as two outcrop belts. Depending on the limb dips, one
limb may form a V upstream and the other may form a V
downstream. If the axis of a fold is oblique to a stream,
the outcrop pattern may be quite irregular.

In regions of complex topography, folds may be
difficult to recognize, especially if a single unit cannot be
traced around the hinge. In such cases, it is perhaps easiest
to study attitude data plotted on the map to determine if any
folds are present. If attitude data are not available, the
occurrence of a repeated unit (i.e., the same unit crosses a
valley or a ridge twice) is a clue that a unit has been folded.
Of course, reverse faulting can also repeat a unit, so it is
important that you check for evidence of faulting in the
map area before concluding that a fold is present.
Remember that another clue to the presence of a fold can be
obtained by application of the rule of V's. Limbs with
different dips and/or dip directions will display different V
pattemns.

The interplay of topography and structure can
sometimes lead to very unusual outcrop patterns that do
not resemble the pattern that the structure would have on a
featureless plain. This is particularly true in regions where
there are dip slopes. In such regions the erosion pattern of
the bed becomes the dominant factor in controlling the
outcrop pattermn.

Interpretation and Construction of Contour Maps
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2-4 STRUCTURE-CONTOUR
AND FORM-LINE CONTOUR MAPS

Representation of Key Horizons
on Structure-Contour Maps

A structure-contour map is a map on which contour lines
represent lines of equal elevation on a structurally
significant surface. The surface that is being contoured is
called the key horizon and may be a marker bed, contact,
unconformity, or fault. A marker bed is simply a
distinctive bed that can be easily recognized. The contour
lines of a structure-contour map are similar in meaning to
topographic contours, in that they represent distances above
or below a datum plane, but the geometry that is portrayed
on a structure-contour map is that of a geologic feature, not
that of the ground surface. Generally, structure-contour
maps are used to describe subsurface features. Thus, the
data used to construct a structure-contour map can be
presented either in terms of elevations above (or below) sea
level or in terms of depths below the ground surface.
Because of the variety of data sources used to define
structure contours (e.g., measurements of depth below
ground surface, depth below sea level, or elevation above
sea level), it is critical that you define the datum plane on
every structure-contour map. If the ground surface is not
horizontal, and data are provided as depth below ground
surface, a correction must be applied so that all points
represent depth below the same datum plane. Mean sea
level is the most common datum plane for
structure-contour maps.

On a structure-contour map a horizontal key horizon
does not have any contour lines crossing it. A dipping,
but planar, key horizon looks like a slope and is
represented by parallel contour lines spaced in proportion to
dip. Structural domes look like hills (Fig. 2-11), synclines
look like valleys, and anticlines look like ridges. Basins
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appear as bowl-shaped depressions. Often the key horizon
used to define a major sedimentary basin is the
nonconformity between crystalline basement and
sedimentary cover.

The form and extent of closure of a structure can be
calculated from the contour map of the structure. The term
"closure” in this context refers to the distance between the
highest point on the structure and the lowest contour line
on the structure that is closed.

Problem 2-3
Calculate the closure of a dome shown in Figure 2-11.

Method 2-3

The highest point on a dome is at an elevation of
about 110 m, and the lowest closed contour line around a
dome is at an elevation of 40 m. Thus, the closure of a
dome is about 70 m.

Representation of Faults
on a Structure-Contour Map

Faults are the most challenging structure to portray on a
structure-contour map. Vertical faults appear as single
lines at which contours are missing and/or are truncated
(Fig. 2-12a, b). If the fault trace is parallel to the
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contours, offset on the fault results in a step in the
elevation of the key horizon; if the vertical component of
movement, called the throw of the fault, is greater than the
contour interval, one or more contour lines will be absent.
The number of missing contour lines reflects the throw. If
the fault trace is oblique to the contours, contours are
truncated (Fig 2-12a, b).

If the fault is not vertical, the trace of its intersection
with a nonplanar key bed is not a straight line (Figs.
2-12c, d, e). The pattern of a dipping fault intersecting a
nonplanar key bed is comparable to the map pattern of a
dipping plane intersecting hilly ground. Nonvertical
normal faults are indicated on structure-contour maps by
two parallel lines, one defining the intersection of the fault
plane with the downthrown block and one indicating the
intersection of the fault plane with upthrown block (Fig.
2-12c¢). No contour lines on the key horizon can be present
in the area between the two traces of the fault. This gap in
contours is called the fault gap. Nonvertical reverse faults
can be indicated by either two parallel lines or by one line.
If two lines are used to represent the fault, the contours of
the hanging wall overlap the contours of the footwall in
the interval between the two fault traces (Figs. 2-12d). If a
single line is used to represent a reverse fault, it is drawn
where the fault intersects the key horizon of the hanging
wall (Fig. 2-12¢).

7

(a)

(d)

(e)

Figure 2-12. Structure-contour sketch maps of faults. Contours are
elevations above mean sea level. (a) Vertical fault, northeast side is
up; (b) vertical fault, southwest side is up; (c) nonvertical normal fault,
showing a fault gap; (d) nonvertical reverse fault represented by two
lines and overlapping contours; (e) nonvertical reverse fault

represented by a single line.

Note that the fault traces shown in

examples c, d, and e are bent, because the fault plane is dipping and

the key horizon is not planar.
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The placement of a fault on a structure-contour map
may be required by drill-hole and outcrop observations or
by seismic profiling. On many structure-contour maps,
however, the drawing of a fault trace merely represents an
interpretation of data on depth to the key horizon. A map
of the same data could be constructed by substituting a
zone of closely spaced contours for a fault. Commonly, a
structure-contour map is first constructed with no faults and
then is reexamined to determine if any faults may be
present. Geologic intuition or knowledge of regional
structural style may suggest that sudden changes in contour
spacing or in contour strike on the map indicate the
presence of a fault. If a linear zone of very closely spaced
contours must be drawn in order to accommodate data, it is
possible that the linear zone is a fault parallel to the
contours along which the key horizon was displaced (Fig.
2-13a). If contours suddenly change strike along a linear
zone, it is possible the zone represents a fault oblique to
the contours on the key horizon (Fig. 2-13b).

The point of intersection between a drill hole and a
fault is called a cut point. Recognition of a cut point is
definitive in describing a fault. The fault plane itself can
be contoured from a number of cut points. Contour lines
on the fault plane are dashed to distinguish them from the
contours on the key horizon. Fault-plane contours may be
open-ended; where they are, they intersect the trace of the
intersection between the fault plane and the key horizon
(Fig. 2-14). The trace of the fault plane may close or
change trend if the fault plane is curved or if the fault cuts
topography (Fig. 2-14). The fault trace may also close if
the displacement of the fault decreases to zero along the
strike of the fault in the map area.

Certain fault-related structures yield distinctive patterns
on structure-contour maps. For example, grabens may be
indicated by elongate depressions, and horsts by elongate
highs. Complex faulting affecting the strata above salt
domes shows up very clearly on structure-contour maps
(Fig. 2-15). ‘

Form-Line Contour Maps

For some places, data on the attitude of a unit are available
but the actual depth of a key horizon is not known; it may
be that the stratigraphic sequence contains no marker beds
that can be recognized with confidence in drill holes or
outcrops. The form or shape of the structure involving the
unit cannot be indicated by a structure-contour map because
the data necessary for construction of such a map are not
available, but the structure can be indicated by a form-line
contour map. On a form-line contour map the contour
lines represent approximate lines of equal elevation but
cannot be assigned specific values. Therefore, visually, a
form-line contour map indicates the form of a structure,
just as a structure-contour map does, but a form-line
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Figure 2-13. Alternative interpretation of
faults. Contours are elevations above mean
sea leval. (a) Closely spaced contours versus
fault; (b) bent contours versus oblique fault.
Note that the contour map alone does not
provide sufficient data to determine direction of
slip on the fault.

contour map is qualitative;, whereas a structure-contour map
is semiquantitative.

Form-line contour maps are constructed from attitude
data. The contour lines at a given locality are parallel to
strike, and the spacing of the contour lines is roughly
proportional to dip (Fig. 2-16). If contour lines are more
closely spaced, the dip of the interval being contoured is
steeper.
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Figure 2-14. Structure contours on a fault.
Contours are elevations above mean sea level.
(a) Geologic map showing the trace of a dipping
planar thrust fault intersecting a hill slope; (b)
cross section along line AA'. A folded bed is
shown by the thin solid line above the fault; (c)
contours truncated at the trace of the fault.
Dashed contours are on the fault plane; solid
contours are on the bed.

2-5 ISOPACH AND ISOCHORE MAPS

Isopach and isochore maps are used to indicate variations in
the thickness of a unit, and thus the contours on these
maps are quite different in meaning than those on either
topographic or structure-contour maps. An isopach map
represents variations in true thickness of a specified unit as
measured perpendicular to the bedding in the unit (Fig.
2-17a, b). The contour lines on an isopach map represent
lines along which the true thickness of a unit is constant,
and the contour interval represents a change in true
thickness. An isochore map represents apparent thickness
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Figure 2-15. Structure-contour map of the
top of a sandstone unit overlying a salt dome.
Contours are depths below mean sea level
(adapted from Bader, 1949). The faults, shown
by heavier lines, developed to accommodate
extension as the sandstone was arched over a
rising salt diapir.

N
507/
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Figure 2-16. A form-line contour map. Note
that the spacing of the contour lines is roughly
proportional to the dip of the contoured layer,
and that no exact elevation values are
indicated.

of a unit as measured in the vertical direction (Fig. 2-17a,
c). The contour lines on an isochore map represent lines
along which the vertical thickness of a unit is constant, and
the contour interval represents a change in the vertical
thickness. On some isopach or isochore maps the mapped
unit disappears within the area of the map, so that there are
domains in the map area where the thickness of the unit is
zero. The boundary between the area where the unit is
present and the area where it is absent is called the zero
isopach or zero isochore, depending on which type of map
is being used.

Original variations in thickness of a unit represent
variations in the pattern of deposition during creation of a
unit. The thickness of a unit may be modified during
deformation by faulting (Fig. 2-18) or by ductile flow.
The true thickness of a unit indicated on an isopach map
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Figure 2-17. Thickness representation with
a contour map. (a) Cross section showing a
sand layer that pinches out to the east. Line 1
is perpendicular thickness. Line 2 is vertical
thickness; (b) isopach map of of the sand
layer; (c) isochore map of the sand layer. Note
that at a given locality the isochore shows a
greater thickness than does the isopach.
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reflects both variations in original depositional thickness
and variations in thickness due to deformation.

If the beds of the unit under consideration are
horizontal, then the thicknesses indicated by an isochore
map will be identical to those on an isopach map at a
given locality. However, if the beds of a unit are dipping,
the thickness of the unit as indicated on an isochore map
will be greater than the thickness of the same unit indicated
on an isopach map. In fact, if the unit is folded, an
isochore map may indicate variations in thickness that are
not a consequence of original variations in unit thickness,
but rather reflect variations only in dip (Fig. 2-19).

Isopach maps are usually preferable to isochore maps
because variations in original thickness are of more interest
in subsurface mapping studies. But isopach maps are more
difficult to construct than are isochore maps because they
cannot be constructed until variations in thickness resulting
from variations in dip have been corrected for. Dip
variations are indicated by a structure-contour map of the
area or by direct measurement of subsurface attitude using a
dipmeter (see Chapter 7). Where dips are low, the
difference between an isochore and isopach is not large.
For example, a dip of 5° results in only a 4% error in
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Figure 2-18. Modification of unit thickness.
(a) Cross section showing thickening of a unit
by thrust faulting; (b) cross section showing
thinning by normal faulting. In each case the
thickness in well B of the unit will not be the
original depositional thickness. Thicknesses
measured in wells A anc C are correct.

thickness, and most information on the stratigraphic
thickness of a unit is not even known to within 4%.

Isopach maps are of great value in regional geologic
studies. They are commonly used to provide data on
variations in unit thickness resulting from the original
pattern of deposition. Such information defines the shape
of sedimentary basins. Detailed isopach maps may display
the patterns of ancient river systems and of
paleo-topography, which is the shape of the ground surface
at the time of deposition. Isopach maps may also lead to
the discovery of important unconformities and faults and of
stratigraphic traps. Stratigraphic traps occur where a
reservoir bed such as a porous sandstone thins and finally
pinches out against an impermeable bed and thus are
represented by the position of the zero isopach.
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Figure 2-19. The effect of folding on the
isochore pattern. (a) Cross section of a
sandstone layer of constant original thickness;
(b) isochore map of the top of the sand layer.



32
2-6 CONSTRUCTION OF CONTOUR MAPS
Data Sources

The method used to construct a contour map depends on the
data that are available. If the map is to represent
ground-surface topography, two data sources are available;
air-photo images and surveyed point data (measurements at
one point). If the map is to represent subsurface features,
it must be constructed primarily from point data.

Most modern topographic maps are constructed using
techniques of photogrammetry (the study of aerial
photographs). The cartographer obtains stereoscopic pairs
of vertical aerial photographs of the map area. Such
photographs are usually made during precisely navigated
flights that follow an array of parallel flight lines. These
flight lines are designed so that the photos overlap by
about 60%-80% along the line of flight and by 20%-30%
perpendicular to the line of flight (Dickinson, 1979).

Once stereopairs of vertical air photos are available,
the stereopairs are viewed with an instrument called a
stereoscopic plotter. When using a steroscopic plotter, the
observer sees a three-dimensional image of the ground
surface as well as a light spot called a floating point. The
apparent elevation of the floating point above a surveyed
reference point, called a datum, can be adjusted with a
micrometer scale. The observer adjusts the floating point
so it is at the elevation of a desired contour line, then
manually moves the floating point laterally to make the
point appear to lie on the ground surface in the field of
view. A contour line can be traced by moving the floating
point so that it remains in contact with the image of the
ground surface. Either the floating-point controls are
f!!?'.'!‘;—?;!'!i'f?,!!}’ connactad tn a nen. which tracee ont a
contour line on a map sheet, or the movements of the
floating point are digitized and stored in a computer file,
which can subsequently be used to reproduce the map
electronically.

For localities where air photos are not available or
where more detail is needed than can be provided by air
photos, data for construction of surface topography maps
are obtained by on-ground surveying. The surveyor
determines the location and elevation of points on the
ground surface and plots the surveyed control points as dots
on the map sheet with an elevation written next to each
dot. The contour map is produced by drawing lines that
best accommodate the point data, using methods discussed
later. The surveyor measures more elevation points in
topographically complex areas, in order to achieve better
control, and measures fewer points in simpler areas, to save
time. The surveyor places extra points along
topographically significant features, such as ridge crests or
valley floors.

Structure-contour and isopach/isochore maps are
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always constructed from point data. If the unit described by
the map is exposed in outcrops, the point data can be
obtained by field examination of the outcrops. In many
situations, however, it is necessary to construct maps of
units that are present only in the subsurface. In such
circumstances point data are obtained primarily from well
logs or seismic-reflection records.

A key fact to remember when constructing a contour
map from point data is that it is impossible to produce an
absolutely true map. In order to have perfect control and
no uncertainty on the map, it would be necessary to have
an infinite number of data points. Real contour maps must
always be constructed from limited data. The lack of
adequate control is particularly troublesome when
constructing maps of subsurface data, because the spacing
of subsurface control points may not reflect the complexity
of the surface. As a consequence, more than one map can
be drawn to accommodate a given set of point data, and the
choice of which map best reflects reality may depend only
on intuition.

Contouring Point Data

Once point data have been plotted and a contour interval
selected, the next task in construction of the the contour
map is the production of the contour lines themselves. It
is possible to digitize the point data and have a computer
draw the contour lines according to a specified set of rules,
but in this book we consider methods for contouring point
data by hand so that you will understand the basis of
contouring. Different contour maps can be produced from
the same set of point data, depending on what technique is
used. Three common techniques of contouring are
described below. For additional description and alternative
methods see Rettger (1929), Bishop (1960), and Dennison
(1968).

(a) Objective ('"mechanical’) contouring:
The basis of this technique is the assumption that the slope
between two adjacent control points is constant. Therefore,
between any two control points it is possible to interpolate
to determine the position of specific elevations. To
determine interpolated elevation points, draw a traverse line
between each pair of points. Assume that the gradient
between the two points along the traverse line is constant,
then use Method 2-4a or 2-4b to locate specific elevations
along the line. Once you have located the points that fall
on designated contour lines throughout the map area, you
can draw smoothed contours.

(b) Parallel contouring: Contours are drawn so
that adjacent contour lines are as parallel to one another as
possible. The spacing of contours between two control
points need not be constant.

(c) Interpretive contouring: In this technique
the author of the map recognizes that poini data are merely
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a random sampling of information and that there is no need
for gradients to be constant between adjacent points or for
contours to be parallel to one another. The author therefore
draws the map freehand, taking care that contour lines
accommodate the control points. On an interpretive map
the contour pattern is drawn to emphasize geologic or
topographic features that are thought to occur in the map
area. For example, on a structure-contour map, a fault line
that truncates contour lines can be drawn in place of a zone
of very closely spaced contours.

Problem 2-4 (Interpolation between two points)

Figure 2-20a shows the elevation of two control
points, X and Y. A contour map, with a contour interval
of 20 m, is to be drawn of the area that includes these
control points. Interpolate to determine the position of the
contour lines that lie between X and Y.

Method 2-4a (Use of an arbitrary scale)

The difference in elevation between points X and Y in
Figure 2-20a is 100 m. The contour interval is 20 m, so
the 20-m, 40-m, 60-m, 80-m, and 100-m contours must
pass between points X and Y.

Step 1: Draw a traverse line between points X and
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Figure 2-20. Interpolation between points.
(a) Arbitrary-scale method of interpolation; (b)
graphic method of interpolation.
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Y. Assume that the gradient of the traverse line is
constant.

Step 2: Measure the distance between the endpoints
of the traverse line on the map with a convenient engineer's
scale. The number of units between X and Y measured on
the scale depends on the scale of your drawing and on the
spacing of the units of the engineer's scale that you happen
to use. In Figure 2-20a the distance between points X and
Y happens to be 4.7 units. Thus, 4.7 units represent 100
m of elevation difference, 0.047 unit represents 1 m of
elevation difference, and 0.94 unit represents 20 m of
elevation difference.

Step 3: From the scale created in step 2 the spacing
between contour lines in the interval must be 0.94 unit.
The 20-m contour line crosses the traverse line at a distance
of 0.047 X 5 = 0.24 unit from the 15-m endpoint. The
40-m contour line intersection is at a distance of 0.24 +
0.94 = 1.18 units from the 15-m endpoint, and so forth.
Note that the map scale is not used in the calculation. You
can now indicate the positions at which the contour lines
will cross the traverse line between X and Y.

Method 2-4b (Graphic interpolation)

Step 1: Draw line XA from point X; line XA is
perpendicular to XY. Select a convenient scale to represent
100 units; the length of a line that is 100 units long at
your chosen scale should be slightly longer than the length
of line XY in your drawing.

Step 2: Draw a line from point Y that is 100 units
long at the chosen scale. This line crosses line XA at
point Z (Fig. 2-20b). The angle between YZ and XY is a
function of the scale used and need not be measured.

Step 3: Line YZ forms the hypotenuse of the right
triangle XYZ. Each unit along line XZ is automatically
equal to 1 m. Mark the position of point M at a distance
of 5 units along YZ from Y, N at a distance of 25 units, O
at a distance of 45 units, P at a distance of 65 units, and Q
at a distance of 85 units from Y. Draw MM', NN', OO',
PP', and QQ' parallel to ZX (i.e., perpendicular to XY).
The points M', N', O', P', and Q' correspond to the
interpolated positions of 20-, 40-, 60-, 80-, and 100-m
contour lines respectively. Think about why the method
works!

Problem 2-5 (Construction of a simple
contour map)

A surveyor determined the elevation and relative
positions of seven control points on the ground in the
vicinity of Rymer Pass along Katcubb Ridge in the
Appalachian Valley and Ridge province (Fig. 2-21a). He
gives the data to you and asks you to produce two contour
maps, to display different interpretations of the data. You
produce one map by objective contouring, and one map by
parallel contouring.
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Figure 2-21. Variability of contour maps from the same data set. (a)
Positions of control points on the ground. Numbers next to the control
points are elevations in meters. (b) Interpolated contour positions; (c)
objective contour map; (d) parallel contour map; (e) interpretive contour

map.

Method 2-5a (Objective contouring)

Step 1: Draw lines between each pair of control
points. Select an appropriate contour interval. In this
case, you choose a contour interval of 20 m.

Kton 2: Tleing either Mathad 7.4a ar 7.4h, determine
the interpolated positions of the contours between each pair
of the control points. These positions are indicated by tick
marks on the traverse lines in Figure 2-21b. Clearly, if
there are many control points, interpolation is tedious; that
is why it is usually done by computer.

Step 3: Draw contour lines that pass through the
appropriate interpolated positions. Inititally, draw the
contours in pencil, because you will probably find it
necessary to modify contour lines as you work.

Step 4: Examine your initial map. Make sure that
no "contouring rules” are violated unnecessarily. Also, if
you are making a structure-contour map, at this stage think
about whether any faults are indicated. If you are satisfied
with your interpretation, ink in the map; use a heavier line
for every fifth contour, and label every fifth contour (Fig.
2-21¢).

Method 2-5b (Parallel contouring)

If you have an objectively contoured map to start with,
it may be easiest t0 produce the parallei-contoured map by
modifying the objectively contoured map until the contour
lines are as parallel to one another as possible. If an

objectively contoured map is not available, start by trying
to draw one complete contour through the map area, such
that it accommodates the control points. Sketch in other
contour lines so that an appropriate number of contours fit
between control nainte. Ry trial and error, smonth nut the
contours and modify them so that adjacent contours are
parallel. Figure 2-21d provides a parailel-contoured map of
the control points from Figure 2-21a. Note how different
this map looks from the one shown in Figure 2-21c.

Method 2-5¢ (Interpretive contouring)

The surveyor returns to check your maps and is
dismayed because the maps give a completely erroneous
impression of the topography at Rymer Pass. The map of
Figure 2-21d does not even show a pass, and neither map
shows Katcubb Ridge! The surveyor shows you where the
ridge and the pass are, relative to the control points, and
asks you to produce an interpretive contour map that
emphasizes the ridge and the pass. You produce the map of
Figure 2-21e by simply drawing contour lines freehand so
that they accommodate the point data and show Rymer
Pass and Katcubb Ridge. During the process of drawing
the map, you find it necessary to make many modifications
by triai and error. You finish this exercise with the solid
understanding that there is no unique contour map for a
given finite set of control points.
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Interpretation and Construction of Contour Maps

1.

EXERCISES
Figure 2-M1 shows the topography alon'g Catskill Creek in New York State.

(a) Draw a section line that runs from point D to the eastern edge of the map (D")
and follows a trend of S60°E. You must locate D'.

(b) What is the contour interval of this map?

(c) What is the maximum relief crossed by section DD'?

(@ On a sheet of tracing paper construct a topographic profile with no vertical
exaggeration along the line of section. What is the steepest slope along your line
of section? Express your answer as grade, slope fraction, amd slope angle. Use a
protractor to check your slope angle. Indicate the position of the steepest slope on
your section line.

(&) Construct a second profile along the same line of section. This profile should
have 4X vertical exaggeration. Go to the same point along your profile that you
used for your measure of slope in problem 1d. Use a protractor and measure the
angle in this exaggerated profile. By what factor must you divide this angle to

\J

obtain the true slope at this locality?

Catskill Creek

200

feet

Figure 2-M1.Portion of a contour map of an area along Catskill Creek,
New York.

. Figure 2-M2 shows the Kiskatom Escarpment. J. Bass & Co., an engineering

geology company, must determine how to run the rail line from Flatville to
Bonview so that the grade of the railbed does not exceed 4%. Draw the route by
connecting 500 m-long line segments. The obtuse angle between two connecting

35
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line segments should not be less than 120°. The route does not need to be the
shortest possible route. What is the gradient of the steepest part of the path
represented as slope fraction?

Bonview
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Q
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Figure 2-M2.Topographic map of the region between Bonview and

Flatville.

3. Figure 2-M3 shows the topography of an area near Kingston, New York, where
topography is controlled to some extent by the structure of the underlying strata.
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Figure 2-M3.Topography near Lake Katrine, north of Kingston, New
York. FH = Fox Hollow.
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(a) What is the trend of the "structural grain" in the map area?

(b) Field studies indicate that the ground surface on either side of Fox Hollow
(FH) is a dip slope. Based on this observation, what is the major structural feature
that surrounds and underlies Fox Hollow?

4. The structure-contour maps shown in Figure 2-M4 represent basic types of
structures. The numbers given are depths below mean sea level. Interpret each map
and identify the structure depicted by the map. Estimate the attitude of the
contoured surface at point X on each map.

.

(a) ()
w
100 o o
® © o
X —
i

(c) (d)
Figure 2-M4.Structure-contour 200

maps of simple structures. Contours Oh_—-'
are depths below mean sea level. m

Contour Interval =10m

5. Points in Figure 2-MS5 are plumb-iine measurements of water depth in Dawersport
Harbor. Numbers given are depth below mean sea level.

(a) Interpolate between points and produce an objective bathymetric map.
(b) Construct a bathymetric map of the same points using parallel contouring.

140
109 :
6.2
N
® @
220 20
Figure 2-M5. Plumb-line measure- 0
ments of depths in Dawersport 290 Dawersport Harbor
Harbor. Numbers are depths below meters Depth below mean sea level.

mean sea level. Contour interval=20m.
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. The numbers on Figure 2-M6 represent the depths below sea level of an

unconformity separating crystalline metamorphic basement from Mesozoic cover
strata in Bloomer County. The cover strata are horizontal.

(a) Construct an interpretive (freehand) structure-contour map of the
basement/cover unconformity.

(b) What is the approximate attitude of the unconformity below well C1?

(c) At what depth does well C1 penetrate basement?

(@ Explain the geologic meaning of this structure-contour map.

Part |

®108 ®20 0 200
060 1 B
meters
®
o 11
° O] 10 . Bloomer County
60 ®,g 20 Contours on top of basement.
Contour interval=20m.
el N
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®50 519 Figure 2-M6.Point data on depths
below horizontal ground surface of
®1o 80 Precambrian/ Mesozoic contact in
L] 106 Bloomer County.
7. The numbers on Figure 2-M7 are the depths below sea level of the base of the
Bayou Sandstone intersected by drilling above a salt dome in the Sidi Bashrig field.
Make an interpretive structure-contour map of this area using a 20-m contour
interval. Assume any faults in the area are vertical, and indicate on the map which
is the upthrown and which is the downthrown side.
[ *100 .90 100 ] ) o
.100 A} v Juu
<70 <70 <90 meters
*70 40-
90- 40 100 .40 .80 .90 o o
100 100 Sidi Bashrig Field
.70 ) . -40
*50 0 100 .80 N
70
90° 100 . <90
-80 ) 70 . 90 _
100 ‘70 Figure 2-M7.Point data to the top
. . 0 . . <110 of the Bayou Sandstone in the Sidi
110 100 70 100 Bashrig ol field. Numbers are depths
100~ -120 below mean sea level.
8. Figure 2-M8 shows a portion of the Dry Gully Quad. The solid lines are

formation contacts, and the dashed lines are the traces of kink-fold hinges. Below
the map is a cross section of the quad drawn perpendicular to strike.

(a) Construct an isochore map of the Snehal Shale.
(b) Construct an isopach map of the Snehal Shale.

() Explain the difference between your isopach and isochore maps.
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9. Figure 2-M9 shows strike and dip data collected from outcrops of the James
Formation (composed dominantly of mudstone, which forms a good trap) in the
vicinity of Stanton. The James Formation overlies the Michael Sandstone, which
is a potential reservoir rock and has a true thickness of 80 m. Construct a
form-line contour map of the Michael/James contact, based on the attitude data.
k40
o 1 40 Fao
S
km ‘I I‘TO
10
3
F20 30 N
Structural data on James Formation. }'20 E
. . 20
Figure 2-M9.Attitude data needed
for construction of a form-line contour
map of the James Formation.

10. Geologists of Flyhi Oil & Gas are checking an oil play in the Wainesborough
Field. None of the rocks are exposed, and the ground surface in the field is
essentially horizontal and is at sea level. The geologists have assembled the
drilling data and have plotted it on Figure 2-M10. The dots are the localities of the
wells, and the numbers next to the wells provide the following information. The
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numbers are depths measured from the ground surface. (Hint: All units strike
east-west).

* Depth to the base of the Cowlick Volcanics (Jrc)

* Depth to the base of the Franklin Shale (Df)

* Depth to the base of the Boneyard Sandstone (Db)

* Depth to the base of the Churchville Shale (Oc)

* Depth to the base of the Figaro Sandstone (Of)

* Depth to the bottom of the drill hole (basal unit of the hole)

The dash (-) means that either the unit was not found in the hole or that the base of
the unit was not intersected, even though the unit was present. The unit at the
bottom of the hole is indicated in parentheses next to the last number in the list.
The symbol Ot stands for the Treyne Formation, which is stratigraphically below
the Figaro Sandstone.

(@ On separate sheets of tracing paper, create the following maps.

* Interpretive structure-contour map of the base of Cowlick Volcanics.

* Interpretive structure-contour map of the base of the Figaro Sandstone.

* An isochore map of the Figaro Sandstone.
(b) What is the attitude of unit Jrc beneath point X? Assume that the bedding of
this unit is parallel to its basal contact.
(¢) Draw a stratigraphic column to scale for the stratigraphic section that appears
beneath point X. Use the apparent thicknesses that appear in the well.
(d What type of structure defines the base of the Cowlick Volcanics?

i - ®
600 500 -
) ®|1750 610
2450 1850
1000(Db) 3000(01) ® -
B 2000(0c)
350
— 1590
i 210U
2850
1380 3100(01)
1770
2490
2600(01) o] 160
1200
300 250 1440 N
- 350 ol - 2150
1590 400 1420 2600(01)
1710 1850 1580 [ )
2400 1940 2270 300
2600 2400(01t -
3500(01) ° 1500
3000(01), ”
1710 =1000m
2400
460
500 830 3000(0 1)
1040 X
2600 2300 1o
® 13180 - o
3250(01) 2610(01)
L
L)
A Wainesborough Field

Figure 2-M10. Drilling data from the Wainesborough Field.
Numbers are depths below horizontal ground surface.
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(© Draw a cross section of the map area that starts at point A and runs
perpendicular to the structural grain of rocks in the map area. Remember that all
units strike E-W. Your cross section should have no vertical exaggeration. Show
your line of section on the map.

(f) Describe the geologic history that led to the development of the relationships
that occur in the subsurface of the map area.

() Which well or wells have the best prospect of yielding oil, and at what depth
would the oil be? (Ask your instructor for information on oil reservoirs and traps
if this information is unfamiliar to you).

11. Figure 2-M11 is a structure-contour map of the top of the Katgol Quarizite.
Notice the prominent fault within the map area. The dashed contour lines are
contours on the fault surface, and the solid contour lines are at the top of the
quartzite. The contours are depths below sea level.

(@ Draw a cross section perpendicular to strike to help you visualize the structure.
(b) Does this fault display normal or reverse offset?

(© What is the dip of the fault plane?

(d What is the throw of the fault?

km
Contour interval =20m

Contours on Katgol Quartzite
Solid contours on Katgol Quartzite.
Dashed contours on fault plane.

Figure 2-M11. Structure contours
on the Katgol Quartzite. Dashed
contours are on the fault plane.

12. The numbers in Figure 2-M12 are depths below sea level of the Ransome
Bentonite in the vicinity of Edmundale. Remember that there are many ways to
draw a contour map that accommodates the given data. Construct two interpretive
contour maps of this data. ’

@225
.40 @70
@
100
0 1 ®
1 1 270 75
km ®
® 0'0° @125
Cont t fR Bentonit 310 2.70
ontours on top o ansome Bentonite )
Contour interval=50m 120 160
Numbers given are depth below sea level. 3.50 .330 175 ®
® ® ® 225
o 350 - 175 200 [ ]
Figure 2-M12. Point data on the 380 330 €210 260
top of the Ransome Bentonite. ®
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(a) Construct a map that contains a north-northwest-trending fault.
(b) Construct a map that does not contain any faults.
(c) Which map do you think is a more reasonable interpretation? Why?

13. Figure 2-M13 shows the trace of a fault on a structure-contour map. The contour
lines are on the Prendow unconformity. The cut point at which Well 46 intersects
the fault is at a depth of 50 m below the level at which the well crosses the
unconformity. The cut point at which Well 50 intersects the fault is at a depth of
300 m below the unconformity.

(@) What type of fault is shown?

(b) What is the attitude of the fault?

(©) Assuming that the slip direction on the fault is parallel to the dip of the fault,
what is the magnitude of displacement on the fault?

0 200 Prendow Unconformity Figure 2-M-13. Contours on the
e — i
m Numbers are depths below sea level. Prendow unconformity.
4 Ticuzs 2 MIA 1o o tonmnoranhin Bannall ¥noh A fanlt ic chawn in thic

A Te LiBULV & iTAL T AU W SUpUBAspacse  ~— watiaoas o

interpretation. The dashed lines are contours on the fault plane.

(@ What is the attitude of the fault plane?
(b) Draw a cross section perpendicular to strike of the fault plane showing
topography and the fault plane.

0 = i = ° T i 0
400 Bonnell Knob gure 2-M14. Topographic map of

m Bonnell Knob.
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15.

16.
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Barany Creek 0 _ 3Q0
m

-

Figure 2-M15. Topographic map of the Barany Creek Quad.

On the accompanying topographic map of the Barany Creek area (Figure 2-M15)
sketch the outcrop traces of veins with the orientations listed below. Assume that
each vein passes through point X, and assume that each vein is so thin that it can
be represented by a single line. Label each vein on the map. Your answers should

be quick sketches; do not calculate outcrop traces. (Hint: Determine the stream
gradient first).

Vein A: N30°E,20°NW
Vein B: N30°E,10°SE
Vein C: N50°E,90°
Vein D: N30°E,50°SE

The course of the Pohz River in Prajikistan is quite straight for a distance of 1 km
between the villages of Nimla and Gradu. The two villages lie on the river bank.
The river flows down a V-shaped valley. The plunge and bearing of the river bed is
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20°,210°. The slopes of the opposing walls of the valley are about 45° and are
perpendicular to the river. The valley is about 100 m decp.

(a) Draw a topographic sketch map of the valley between Nimlia and Gradu. Be
sure that the contour spacing on the map indicates the proper slopes. Use a map
scale of 1 cm =20 m and a contour interval of 20 m. (Hint: Creation of this map
requires that you determine the spacing of the intersection of the contour lines with
the stream floor, so that you know how to draw the V-shape of the contours where
they cross the stream.)

(b) A number of dike sets were measured in the area. Following are the
orientations of the different dike sets. On your map, sketch one dike from each set.
Your map should show seven dikes total. They do not all have to pass through the
same point. Use a different colored pencil for each dike. Remember, these are to
be sketches - do not calculate outcrop traces.

Set A: N60°W ,20°08W
Set B: 300°,20°NE
Set C: 240°,90°

Set D: 110°,01°

Set E: 300°,40°S W
Set F: N60°W,10°8W
Set G: N60°W ,60°NE

Set H: N60°W,10°NE

Part |



CHAPTER

GEOMETRIC METHODS I
ATTITUDE
CALCULATIONS

3-1 INTRODUCTION

In the previous chapter we developed the concept of a
reference frame and showed how the position and attitude of
lines and planes can be specified with respect to a reference
frame. So far, however, we have primarily described
situations in which linear or planar geologic elements
could be directly observed and measured. In many
circumstances, direct measurement of a geologic feature is
not possible, and the attitude of the feature must be
calculated by other means. Say, for example, that you are
mapping a limestone formation in a humid region where
outcrops are weathered. In such a location bedding planes
are not distinct, and the strike and dip of the formation
cannot be measured directly with a compass. In this
chapter we introduce basic geometric methods that can be
used to calculate the attitudes of lines and planes when
direct measurement is impossible. You will find that the
stereographic technigues introduced in Chapter 5 permit
more efficient solution of many of the problems posed in
this chapter. We encourage you to study the geometric
methods introduced here, however, because they help you
to further develop the skill of visualizing shapes and
attitudes, and they will ultimately make it easier to
understand stereographic techniques and to appreciate the
relative ease of using them.

3-2 PROJECTIONS
AND DESCRIPTIVE GEOMETRY

A projection, like a shadow, is a representation of a
three-dimensional object on a two-dimensional plane. It is

constructed by drawing projection lines from points on the
object to a projection plane (the surface on which the
projection is being created). The shape of the projection is
affected by the orientation of the projection lines with
respect to the projection plane. These lines may emanate
from a point source (e.g., light rays from a nearby small
bright bulb; Fig. 3-1a), or they may be parallel to one
another (e.g., light rays from a distant star; Fig. 3-1b).
Parallel projection lines can be perpendicular to the
projection plane (Fig. 3-1b) or oblique to the projection
plane (Fig. 3-1c). If the projection lines are parallel to one
another and are perpendicular to the projection plane, the
resulting projected image is called an orthographic
projection (Fig. 3-1b). The use of orthographic projections
for solving problems involving the lengths of lines, the
areas of planes, and the angles between lines and planes is
the subject of descriptive geometry. The solution of
problems in descriptive geometry involves measurement of
angles and lengths in a scaled drawing, which depicts the
geometry of a structure to scale.

It is most common for projection planes to be either
horizontal or vertical; the former is called a map projection
or a plan-view projection, and the latier is called a
cross-sectional projection. In regions of plunging
structures, structures may be projected onto a nonvertical
projection plane that is perpendicular to the plunge of the
structure so that the geometry of the structure is not
distorted (see Appendix 1 and Chapter 13). Vertical
cross-sectional projections are typically oriented either
parallel to or perpendicular to the strike or bearing of a
given geologic structure.

Two nonparallel projection planes join along a folding
line, which can be pictured as a hinge connecting the two
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(a)
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Figure 3-1. Projections of a cube onto a plane. (a) Point source of
projection lines; (b) parallel projection lines that are perpendicular to the
screan; (c) parallel projection lines that are inclined to the screen.

projection planes (Fig. 3-2a). A step in the solution to
many problems of descriptive geometry involves the
rotation of a vertical cross-sectional projection plane around
a folding line by 90° so that it lies in the same plane as
the horizontal map projection plane (Fig. 3-2b). In some
cases it is useful to specify the altitude of the map
projection plane and therefore the altitude of the folding
line. When a rotation around a folding line has been
completed, the representation of the once-vertical
cross-sectional plane on the horizontal plane is called a
rotated projection; lines that connect a point on the original
map projection with the the equivalent point on the rotated
projection are called connecting lines (Fig. 3-3).
Connecting lines must be perpendicular to the folding lines
that they cross.

Imagine an object suspended at the center of a
bottomless cardboard box. An image of the object can be
projected onto the top and onto the four sides of the box
(Fig. 3-4a). Each intersection of the top of the box with a
side of the box is a horizontal folding line, and the edges of
the box are vertical folding lines. Notice that when the

4 Folding line

(b)

Figure 3-2. Concept of a folding line. (a)
Map projection and cross-sectional projection
connected along a horizontal "hingslike" folding
line; (b) rotation of cross section into the map
projection plane.

sides have been rotated around horizontal folding lines so
that all sides lie in the same horizontal plane as the top of
the box, once-adjacent sides are no longer connected by a
folding line. In other words, two vertical projection planes
that join along a vertical folding line cannot be connected
by a horizontal folding line. Thus, the rotated projections
on the two planes cannot be joined by connecting lines.
The images on two rotated projection planes can be
connected, however, by segments of circular arcs (Fig.
3-4b), here called connecting arcs. The center of the
connecting arcs is the intersection of the two orthogonal
horizontal folding lines.

Graphic solutions to some problems requires use of
two reference planes. A reference plane (RP) is merely an
imaginary horizontal plane parallel to the map projection
plane. For example, we can let RP1 be the ground surface
and RP2, which is parallel to RP1, lie at a depth d below
the ground surface. It is possible to locate the position of
the intersection of a structure with each reference plane as
we will see in subsequent problems.

The solution of problems involving descriptive

'/Folding line
Sz ez
Connecting line

(b)

Figure 3-3. Concept of connecting lines.
(a) Cube projected onto two orthogonal planes;
(b) connecting lines between the map
projection and the rotated cross-sectional
projection.
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F1 (I
J —
D F1 ] /,
D—— —7 VNN
— —|—~" Connecting
arc
(a) (b)

Figure 3-4. Concept of connecting arcs.
(a) Projections of a cube onto three mutually
orthogonal planes; (b) connecting arcs
between two rotated projections.

geometry requires selection of a projection plane in which
an angle or a line length is not distorted. For example,
measurement of a dip angle must be done in a vertical
projection plane that is perpendicular to strike, and
measurement of a true line length must be done in a
vertical projection plane that is parallel to the bearing of
the line (Fig. 3-5). It is also useful to keep in mind that
solutions obtained using descriptive geometry are limited
in accuracy by the care used in constructing scaled
drawings. To improve the accuracy of your calculations,
use a sharp, hard pencil and well-made protractors and
scales for making scaled drawings, and make your drawing
big enough to work with. As a rule of thumb, drawings
used to answer problems in this book should fit on about a
half of a sheet of paper.

[

Figure 3-5. Significance of the orientation
of a projection plane with respect to a
structure. The true dip of the plane (@) can be
represented only on a plane that is
perpendicular to the strike of the plane. Line
AA' is parallel to strike. The length of line AB
can be measured only on a projection plane
that is parallel to a plane that contains the line.
Therefore, the length of AB can only be
measured in a vertical plane that is
perpendicular to strike; it can not be measured
in the map plane. [AB] = [A'B], but [AB}= {AC];
the square brackets mean "lengi::."
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3-3 THREE-POINT PROBLEMS
Use of Point Data

In this section we learn how to calculate the attitude of
planes from knowledge of the map coordinates and
elevation of three points on the plane. Such problems,
appropriately, are called three-point problems. The data
necessary to set up a three-point problem may be obtained
from a geologic map on a topographic base or from survey
measurements. Calculation of planar attitudes from three
points is based on the fundamental theorem of geometry
that three points define a plane. We will treat two cases:
first, the case where two points on the plane are at the
same elevation, and second, the case where all three points
are at different elevations. The method is presented in
somewhat of a "cookbook fashion" so that it is easier to
follow the steps, but please do not treat it as a cookbook.
Think through each step and be sure you understand why it
is done.

Problem 3-1 (Two points at same elevation)

Imagine a distinctive white tuff bed that is interlayered
between dark massively bedded volcanic agglomerates. The
sequence is homoclinally dipping (i.e., there are no changes
in layer attitude within the area of concemn), but because the
tuff is friable, meaning that it breaks up easily into little
pieces, it is impossible to find a well-defined bedding plane
in the unit on which to make a direct compass
measurement. The locations and elevations of three points
on the basal contact of the tuff bed have been surveyed
(Fig. 3-6a). Points X and Y are at an elevation of 100 m,
and point Z is at an elevation of 60 m. Determine the
attitude of the basal contact of the tuff layer. Plane XYZ is
the plane that defines the base of the wff layer.

Method 3-1 ‘

Step 1: Make a scaled drawing that depicts the three
points projected onto a map plane that lies at an elevation
of 100 m (Fig. 3-6a). Be sure to indicate your scale and
north arrow. Label the three points X, Y, and Z'. We use
Z' instead of Z because the real point Z does not lie in the
projection plane, but points X and Y do.

Step 2: Connect X and Y with a straight line (line
XY). Because these points are at the same elevation, this
line is a strike line on plane XYZ, and its orientation is the
strike of the plane (Fig. 3-6b).

Step 3: Using a protractor or a triangle, draw the
perpendicular to line XY so that it passes through point Z'.
Let the point at which this perpendicular line intersects line
XY be called Q. Line Z'Q, which runs from a higher point
toward the projection of the lower point, is, by definition,

. parallel to the dip direction. Create folding line F1 parallel

to Z'Q and rotate the cross-sectional plane up to horizontal
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(Fig. 3-6b). The vertical scale in the cross section must be
the same as the horizontal scale in the map. Locate point
Z on the rotated projection plane; Z is at a depth of 40 m
below Z'Q. Draw line ZQ, which is the trace of the
contact in the rotated cross-sectional projection plane. The
angle @. the true dip. can be measured with a protractor (=
349) or can be calculated with the equation

¢ = arctan([ZZ')/[Z'Q]) = arctan(40/60) = 34° (Eq. 3-1)
where the numbers in the square brackets are line lengths in
your scaled drawing.

Problem 3-2 (Three points
at different elevations)

Determine the attitude of a homoclinal bed given the
location and elevation of three points on the bed. The three
points are L, M, and N. L is at an elevation of 200 m, M
is at an elevation of 160 m, and N is at an elevation of 100
m.

Method 3-2

In this problem the three points are at different
elevations. Therefore, in order to determine the orientation
of a strike line on the bed, it is necessary to first define two
points at the same clevation.

Step 1: Make a scaled drawing that depicts the map

projection of the three points. Let the projection plane be
at an elevation of 200 m (Fig. 3-6¢). Therefore, the true
position of point L is depicted, but only the projections of
points M and N can be depicted; the projections of these
points are labeled M' and N, respectively.

Step 2: Draw line LN' connecting the highest point
and the projection of the lowest point. Somewhere along
line LN’ there must be a point Q' that is the projection of a
point Q onto the 200-m-elevation projection plane. Point
Q. whose location is not yet known, is defined to be a
point at the same elevation as point M. Since point Q is
at the same elevation as point M, line QM is a strike line
on the bed at an elevation of 160 m. Line Q'M' is the
projection of this strike line onto the map plane. Steps 3a
and 3b provide alternative methods of locating point Q'

Step 3a: Draw a line N'V at any orientation starting
from N', which is the projection of the point of lowest
elevation (Fig. 3-6d). It is best if line N'V is oriented at an
angle of about 20°-40° from LN' and is a little longer, say
20%, than line LN'. Using your engineer's scale, carefully
tick off a distance on line N'V that represents the difference
in elevation between point L (highest) and point N
(lowest); the scale you use can be arbitrary. Note that in
Figure 3-6d the difference in elevation between L and N is
100 m, so we started at N' and located 10 ticks along N'V,
each representing a change of 10 m. Connect the point on
N'V that represents the elevation of L, call it point F, to
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point L. Line FL is not necessarily perpendicular to LN'.
Now find the point along line N'V that, according to your
arbitrary scale, represents the elevation of point M. Call
this point E. Draw a line from point E to line LN"; this
line must be parallel to line FL. The intersection between
the line drawn from point E and line LN’ is point Q. You
can now draw line Q'M', which is the strike line.
Remember, be sure to understand why this method works!

Step 3b: Create a folding line (F1) that passes
through point L and runs along LN' (Fig. 3-6¢). Rotate
the cross-sectional projection into the horizontal projection
plane. F1 is a horizontal line at an elevation equal to point
L (the highest point). On the rotated cross-sectional plane
draw a line perpendicular to F1 through point N'. Using
the same scale as your map view, lay off increments until
the true depth of point N can be shown. Mark point N,
and draw line LN. The angle 0 between LN' and LN is an
apparent dip angle. Now, find the point along line LN that
is at the same depth as point M, and call this point Q.
Draw a connecting line from point Q parallel to NN' to
where it intersects line LN'. This intersection defines point
Q', and you can now draw line Q'M', which is the
projection of the strike line.

Step 4: Once the projection of the strike line (Q'M’)
has been determined, it is necessary to determine the dip
direction. The dip direction is perpendicular to the strike
line and points in the direction of the point with the lowest
elevation. Draw a line from N' (the projection of the point
at lowest elevation) that is perpendicular to Q'M' (Fig.
3-6f). This line intersects line Q'M' at D. Line DN',
which is perpendicular to the projection of the strike line
on the map plane, gives the direction of true dip.

Step 5: The final step is to determine the dip angle.
To avoid confusion, do this with a separate cross section.
Draw a cross-sectional projection along line DN' at the
same scale as the map (Fig. 3-6g). Put the horizontal
reference line at 160 m. On this reference line draw line
DN, so that it is the same length as DN' in Figure 3-6f.
Point N' is the projection of N onto a horizontal plane at
an elevation of 160 m. Locate point N at an elevation of
100 m directly below point N'. Draw line DN, which is
the trace of the plane in cross section. The true dip angle ¢
can be measured directly from this figure.

Steps 3a and 3b reflect the fact that the position of Q'
on line LN' is determined by the equation (square brackets
indicate length):

[N'Q1] = [LN) altitude of M - aliiude of N . 3.2).
Q ] altitude of L - altitude of N Eq )

A proof of the preceding equations is not immediately
obvious (see Dennison, 1968, pp. 62-64, for the
derivation).
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Use of Outcrop Patterns for
Three-Point Problems

So far we have used point data for calculating layer attitude.
A map pattern, if carefully drawn, also provides sufficient
data for calculation of layer attitude. Three points on the
line of intersection between a contact and topography can
be used to set up a three-point problem, since the position
and elevation of each point is known. Once the three
points on the plane have been selected, the same procedures
as described above can be used to calculate the attitude.

Problem 3-3

The trace of the contact between two formations is
shown on a map (Fig. 3-7). From the map pattern of the
contact, determine the orientation of the contact.

Method 3-3

Choose three points along the contact (points A, B,
and C). To make the solution easier, it is best to choose
points at locations where the contact crosses contour lines.
If possible, choose two points so that they lie on the same
contour line. Once you have located the points, follow the
same procedure used in the three-point problem. In the
example of Figure 3-7 two points (A and B) were chosen to
lie on the 40-m contour, and the third point (C) lies on the
60-m contour. A line connecting A and B strikes
east-west, so the contact strikes east-west. Completion of
the three-point calculation yields a dip of 38°N.

2

0 100
a1

m

Figure 3-7. Map showing three points on a
contact to illustrate problems involving calcula-
tion of attitude from a map pattern.

3-4 CALCULATION OF OUTCROP TRACE
FROM ATTITUDE DATA

In regions where exposure is poor and outcrops are sparse,
it may not be possible to walk out a contact and thereby
determine its map trace. However, if you are able to
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measure the attitude of the contact (or of adjacent units) at a
single outcrop and are confident that the attitude does not
change in the area of interest, it is possible to calculate the
trace of the outcrop belt.

Problem 3-4

A topographic base map of an area is available. A
distinctive sandstone bed crops out at point A in the
northwest comer of the map (Fig. 3-8). The attitude of the
bed is 090°,20°S. Assuming that the attitude of the bed is
uniform throughout the map area, plot the outcrop belt of
the bed on the map.

Method 3-4

Step 1: Draw afolding line (F1) perpendicular to the
strike direction of the bed and rotate the cross-sectional
view into the plane of the map projection (Fig. 3-8). Put
the folding line outside the map area so that the rotated
cross-sectional view does not overlap the map.

Step 2: On the rotated view of the cross section,
draw a scale perpendicular to the folding line at the same
scale as the map. The cross-sectional scale represents
elevations. Draw lines parallel to the folding line at
intervals along the scale separated by a distance equivalent
to the contour interval on the map. Each of these lines
represents a reference plane equivalent in elevation to a
contour line in the map area. The highest elevation on this
section should be above the highest elevation in the map
area, and the lowest elevation should be below the lowest
elevation in the map area.

Step 3: Draw a line parallel to strike (i.e.,
perpendicular to F1) from point A so that it intersects the
one reference plane in the rotated cross section that is
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surface at point A. Label the point of intersection A'.
Draw a line in the cross-sectional plane so that it makes an
angle with respect to F1 equal to the true dip of the bed and
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so that it passes through point A'. This line represents the
trace of the bed in cross section. Be sure the bed dips in
the correct direction.

Step 4: Mark a dot at each point where the bed
crosses a reference plane in the cross section. From one of
these dots, extend a line that is parallel to strike back
across the map area. Mark a dot on the map at each point
where this line crosses a contour line equivalent in
elevation to the reference plane at which the dot occurs in
cross section. Repeat the procedure for all other dots.

Step 5: You can now construct the outcrop trace by
connecting the dots. Do not connect the dots blindly. Take
care to account for local variations in topography between
the dots by remembering the rule of V's.

If your task is to draw the outcrop pattern of a bed of
known thickness, make sure that your original point A lies
on either the top or bottom contact of the bed. Draw the
true thickness of the layer on your cross-sectional plane.
Mark the points along both top and bottom contacts where
the contacts cross the reference planes. Finally, draw the
chords from these points across the map area to locate the
map traces of the top and bottom contacts.

3-5 TRUE AND APPARENT DIPS

In Chapter 1 we defined the true dip of a bed as the dip
angle measured in a vertical plane that is oriented
perpendicular to strike, and the apparent dip as the dip angle
measured in a vertical plane that is not perpendicular to
strike. In many circumstances true dip cannot be measured
directly, but an apparent dip can be measured. As an

nvamnlp roncider a nnarry in which dlnnln(r dikes are

exposed on vertical walls (Fxg 3-9). The angle that the
dikes make with horizontal in a quarry wall that is not
perpendicular to strike is an apparent dip. If the quarry wall

O o o
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L, Figure 3-8. Map used to illustrate

the calculation of outcrop patterns.
Heavy dark line is the outcrop
trace.
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Figure 3-9. Intersection of dikes (heavy
lines) with the walls of a quarry. Note that the
strikes of the dikes are not perpendicular to the
quarry walls; therefore, the angle between the
trace of the dikes and horizontal line in the
quarry walls is an apparent dip. @ is the true
dip; p is an apparent dip in an east-west
trending wall; 0 is an apparent dip in a
north-south trending wall.

is parallel to strike, the apparent dip is 0°. We will
introduce graphical, trigonometric, and nomographic
methods for calculation of true dip from apparent-dip data.
We provide several different examples to illustrate different
situations and different methods, but really all the examples
are simply variations on the same theme, namely, that if
you know the orientation of two lines on a plane, you can

(a)
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calculate the attitude of the plane. The two lines can be
either a strike line and the trace of the plane in a vertical
plane (e.g., quarry wall) or two nonparallel traces of the
plane in vertical planes.

True Dip From Strike and Apparent Dip

Imagine that a quarry with vertical walls has been cut in a
region where the original ground surface was horizontal.
The trace of the intersection between a dipping bed and the
ground surface is, by definition, the strike of the bed. The
true dip can be calculated if this strike is known, if the
apparent dip in one vertical wall is known, and if the angle
in map view between the wall and the strike line is known.
The direction of apparent dip is the trend of the quarry wall.

Problem 3-5

Given the strike of a bed (330°) and the apparent dip
(25°) in the direction (260°), determine the true dip. Three
different methods are presented.

Method 3-5a (Descriptive geometry)

Step 1: Visualize the problem (Fig. 3-10a). Define
two reference planes, RP1 and RP2, at a distance d apart
(i.e., BB'= CC'=d). RP2 is below RP1. Let ¢ be the true
dip, 9 the apparent dip, and B the angle in RP1 between the
true dip direction and the apparent dip direction.

Step 2: Make a graphic construction. Start by
drawing north-south and east-west coordinate axes in a
map-view plane at the level of RP1 (Fig. 3-10b). Let

North

(b)

Figure 3-10. Graphic solution for calculation of true dip from strike
and apparent dip. (a) Block diagram of the problem. Shaded surface is
the dipping bed; RP1 and RP2 are upper and lower reference planes,
respectively. d is the apparent dip; o is the true dip; B is the angle
between the true dip direction and the apparent dip direction; d is the
distance between reference planes; (b) solution on a map projection
plane. Stippled triangles are the rotated cross-sectional views.
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point A be located at the intersection of these axes. Draw a
line PQ representing a strike line on the bed at the same
elevation as point A, Draw line AB parallel to the
apparent dip direction.

Step 3: Let AB become folding line F1, and rotate
the cross-sectional projection (quarry wall) into the map
projection plane. Draw line AN so that it makes an angle
o with respect to AB, and draw the perpendicular to AB so
that it intersects AN and defines the position of point B'.
Point B lies in RP1, and B’ lies in RP2. The length of
BB' defines the distance d.

Step 4: Draw line XY so that it is parallel to the
strike line and passes through point B. Draw a line from A
so that it is perpendicular to strike and intersects XY. The
intersection defines point C (line AC is parallel to the true
dip direction).

Step 5: Find point C', which lies a distance d below
C. Let AC be folding line F2, and rotate the
cross-sectional plane around this folding line into the map
projection plane. In this rotated projection, C lies in RP1.
Point C', which is in RP2, must lie along XY because AC
(true dip direction) is perpendicular to PQ (strike line).
The length of CC' must equal the length of BB' (= d). Use
your scale and measure a distance d along XY to find C'.
Draw a line from A to C'. The angle CAC', which you
now measure with a protractor, is the true dip angle ¢ (=
269).

Method 3-5b (Trigonometry)

From the block diagram (Fig. 3-10a) it is possible to
derive a trigonometric formula for calculation of true dip.
One solution is provided here; this solution employs the
fact that BB' = CC'.

BB/AB =tan d

CC/AC=tan ¢
ABtand=BB'=CC'=ACtang
(ACtan g)/AB =tan d

tan ¢ = (tan d)AB/AC

AC/AB =cos B

AB/AC = 1/cos 8

tan ¢ = tan d(1/cos B)

tan ¢ = tan d/cos B

¢ = arctan(tan d/cos B) (Eq. 3-3)
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where, again, ¢ is the true dip, d the apparent dip, and B the
angle in RP1 between the true dip direction and the
apparent dip direction (i.e., 20°).

To determine the true dip for Problem 3-5, you can
substitute the appropriate values into Equation 3-3:

@ = arctan(tan 25°/cos 20°) = 26°.
True Dip from Two Apparent Dips

If the strike of a plane is not known, it is possible to
determine the true dip and strike of the plane if the apparent
dips in two nonparallel vertical sections are known. The
graphical procedure is similar to the preceding one and
works both when the true dip direction lies between the
two apparent dip directions and when it does not.

Problem 3-6

Given the apparent dip (25°) in the direction 240° and
the apparent dip (20°) in the direction 170°, determine the
true strike and dip. Three different methods are presented
for the solution of this problem.

Method 3-6a (Descriptive geomeiry)

Step 1: Visualize the problem (Fig. 3-11a). Line
AC is perpendicular to strike, so its orientation is the true
dip direction. Lines AB and AD are apparent dip directions;
A is the angle between AB and true strike, and A is the
angle between AB and AD. Both A and A are measured in
RP1. 9 is the apparent dip in the direction of AB, i is the
apparent dip in the direction of AD, and ¢ is the true dip.

Step 2: Draw north-south and east-west coordinate
axes so that they intersect at point A (Fig. 3-11b). Draw

tina AR narallal tn tha fircet annarent din direction and line
T T e T . T Taa T T Ta T - - c

AL parallel to the second apparent dip direction (these lines
are of arbitrary length).

Step 3: Using AB as folding line F1, rotate the
cross-sectional plane that contains the first apparent dip up
into the map projection plane. In the rotated projection
draw line AN so that it makes an angle of d (= 25°) with
respect to AB.

Step 4: Draw a line from B so that it is
perpendicular to AB and intersects AN at B'. The distance
BB’ defines d (the distance between RP1 and RP2).

Step 5: Using AL as a folding line F2, rotate the
cross-sectional plane parallel to the second apparent dip
direction into the map projection plane. Draw line AM in
the rotated projection so that it makes an angle p (= 20°)
with respect to AL.

Step 6: You must now find the position of D. To
do this, draw a line between lines AL and AM that is
perpendicular to AL and is the same length as BB'. This
line is DD'. Note that the positions of D and D' are not

arbitrary.
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$=27°.
Strike = 305°
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Figure 3-11. Solutions for calculation of true attitude from two

apparent dips. (a) Block diagram of the problem. Shaded surface is the
dipping plane. d and p are apparent dips, @ is the true dip, A is the angle
between strike and one apparent dip direction; (b) graphic solution, on
map projection plane; (c) angles used in trigonometric solution; (d)
tangent vector method; (e) cotangent vector method.

Step 7: You can now draw strike line BD on the
upper reference plane; the orientation of BD with respect to
your north coordinate axis is the strike. Draw AC, the
direction of true dip, perpendicular to the strike line. Let
AC be a folding line, and rotate the cross-sectional plane
that contains the true dip around AC into the map
projection plane. Lay off line CC' so that it is the same
length as BB' and DD'. Angle CAC' (¢ = 27°) is the true
dip.

Method 3-6b (Trigonometry)

In this method we determine the strike by calculating
the angle between one of the apparent dip directions (in this
case, AB) and the strike line (angle A in Figure 3-11a).
Below is an equation for determining the angle A, given
two apparent dips (d in the direction AB and W in the
direction AD). To simplify the calculation, first calculate
the angle x (Fig. 3-11c), where x = (90 - ). The distance
between RP1 and RP2 is d.
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AB = d/tan ¢
AD =dftan n
Now, remember the identity cos(90 - A) = sin A.
AC/AB =cos x = sin A
AC/AD = cos(A - x)
AC = AB cos x = AD cos(A -x)

Now, use the formula for the cosine of the difference
between two angles.

AB cos x = AD(cos A cos x + sin A sin x)
(d/tan d)cos x = (d/tan jL)(cos A cos x + sin A sin x)

(1/tan d)cos x = (1/tan p)(cos A cos x)
+ (1/tan p)(sin A sin x)

1/tan 9 = (1/tan pfcos A + (sin A tan x)]
tan /tan d = cos A + sin A tan x
sin A tan x = (tan p/tan d) - cos A

tan x = tan(90 - A) = [tan W/(sin A tan d)] - cot A

A = 90° - arctan{[tan J/(sin A tan d)] - cot A} (Eq. 3-9)
where A is the angle between strike and the apparent dip in
the direction of AB. u is the apparent dip angle (20°) in the
direction of AD (bearing of 170°), d is the apparent dip
angle (25°) in the direction AB (bearing of 24(0°), and A is
the angle between AB and AD (= 70°). Now that we have
Equation 3-4, we can illustrate the solution.

Step 1: To determine the strike, first calculate the
angle A using Equation 3-4.

A =909° - arctan([tan 20°/(sin 70°tan 25°)] - cot 70°}

A =65°

strike = 240° + 65° = 305°.

Step 2: Once strike has been determined, the true dip
can be determined by using Equation 3-3. First, calculate
B, which is the angle between the true dip direction and the

appparent dip in the direction of AB. The true dip direction
is

305° - 50° = 215°
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B = 240° - 215° = 25,
Now, substitute the appropriate values into Equation 3-3:
true dip = ¢ = arctan(tan 25°/cos 25°) = 27°.

Method 3-6c (Tangent vector method):

Hubbert (1931) and Ragan (1985) showed that the
tangent of the apparent dip can be treated like a vector and
thus that the true dip can be calculated as follows.

Step 1: Draw north-south and east-west coordinate
axes to intersect at point P (Note: We use P instead of A to
indicate the origin in this figure to emphasize that it
displays vectors, not lines and planes, as did Figure 3-11b)
and define an arbitrary scale (Fig. 3-11d). Draw vector EP
in the direction of AB. The length of EP is equal to the
tangent of the apparent dip angle in the direction of AB. In
other words,

[EP] = tan J = tan 25° = 0.47 units

where the square brackets indicate length. The line
representing EP in Figure 3-11d is 0.47 unit long at the
scale of the figure.

Step 2: Draw vector FP in the direction of AD.
The length of FP is equal to tan .

[FP] = tan p = tan 20° = (.34 unit.

The line representing FP in Figure 3-11d is 0.34 unit long
at the scale of the figure.

Step 2: Draw perpendiculars to both vectors. These
perpendicular lines cross at point S. Vector SP indicates
the direction of the true din. The length of SP is 0.51
unit. The value of true dip is given by

true dip = ¢ = arctan[SP] = arctan(0.51) =27° (Eq. 3-5).

Using this tangent vector method will yield more accurate

-results than the graphical method, especially for small dip

angles.

Method 3-6d (Cotangent vector method)

This method is similar to that of Method 3-5c¢, but
now we use the cotangents of the apparent dip angles rather
than the tangents.

Step 1: Draw coordinate axes that intersect at P
(Fig. 3-11e). Draw vector EP so that it is parallel to AB
and is equal in length, using the scale of the drawing, to
the cotangent of the apparent dip d in that direction (cot
25° = 2.15). Draw vector FP so that it is parallel to the
direction of AD and is equal in length to the cotangent of
the apparent dip W in that direction (cot 20° = 2.75).

Step 2: Draw vecior EF, which connects the ends
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of EP and FP. Draw a vector from P so that it is
perpendicular to EF; call this vector NP. The length of
vector NP (= 1.96), measured by the scale, is the cotangent
of the true dip. Therefore,

¢ = arccot[NP] = arccot(1.96) = 27° (Eq. 3-6).

Apparent Dip Determined From True Dip

Perhaps the most common application of calculations
involving true and apparent dips occurs in the construction
of geologic cross sections. As noted earlier, if the line of
section is drawn to be perpendicular to strike of the beds
that cross the line, then the dip of the beds shown in the
section will be true dips. If the line of section is oblique
to strike, then the dip of the beds shown in the line of
section must be an apparent dip. Next we offer a few
geometric methods for determination of apparent dip if the
trend in which the apparent dip is desired is given, and the
true strike and dip are known.

(a)
N North
—n —n
NH FN 2=18°
L
H P East
0.0 0.5 1.0
L L L i I ) I i i L J
(c)
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Problem 3-7

Given the strike and dip of the bed (N45°W,30°SW),
determine the apparent dip (d) in the direction N8O°W.
The trend of the requested apparent dip direction may
represent a line of section. Three alternative methods to
solve this problem are given below. To visualize the
problem, refer to the block diagram of Figure 3-12a. We
wish to determine d, given ¢ = 30° and B = 559, where ¢ is
the true dip and B is the angle between the apparent dip
direction and the true dip direction.

Method 3-7a (Descriptive geometry)

Step 1: Draw north-south and east-west coordinate
axes that intersect at point A (Fig. 3-12b). Draw line AC
of arbitrary length parallel to the true dip direction (i.e.,
perpendicular to the strike). Draw line SR so that it passes
through point C and is parallel to the direction of strike.
SR is the projection of a strike line onto RP1.

Step 2: Let AC be a folding line F1. Rotate the
cross-sectional view into the map projection plane. Draw

B’ North
S
F2_ _ o
Q i ‘ ' 9=18
B- o
East
¢
c R
K
Q CI
R
(b)
North
2=18°
J —
PJ
P
East
a——
PR
R
0 2 4
SO T TN TN VNS N WA VS N0 N N WA U NN W S N A |
(d)

Figure 3-12. Solutions for calculating apparent dip from true attitude.
(a) Block diagram. d is the apparent dip; @ is the true dip; B is the angle
between true dip and apparent dip directions; (b) graphic solution; (c)
tangent vector method; (d) cotangent vector method.
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line AC' so that it makes an angle of ¢ (=30°) with AC.
Point C' in the rotated projection must lie along line SR.
The distance CC' defines the distance d between the upper
and lower reference horizons (RP1 and RP2).

Step 3: Draw line AQ so that it is parallel to the
specified direction of the apparent dip (N80°W) and crosses
line SR at B. Consider AB to be folding line F2. Rotate
the cross section around F2 into the map projection plane.
On the rotated projection draw line BB' so that it is
perpendicular to AB and has a length of d. Now that B' is
located, you can draw AB'. The angle between AB and AB'
is the apparent dip (d = 18°) in the direction AB.

Method 3-7b (Trigonometry)
We can derive a trigonometric formula by referring to
Figure 3-12a.

tan d = tan @ cos B

d = arctan[tan g cos 8) (Eq. 3-7)
where, again, d is the apparent dip in the direction AB, @ is
the true dip, and B is the angle between the true dip
direction and the apparent dip direction. Substituting
appropriate angles into Equation 3-7 yields

d = arctan(tan 30° cos 55°) = 18°.

Method 3-7c¢ (Tangent vector method)

Step 1: Draw coordinate axes that intersect at P,
and specify a scale (Fig. 3-12c; note that the scale provided
in this figure is arbitrary and units do not matter.).

Step 2: Draw vector PN in the direction of true
atrike eaual in length to the tangent of the true dip (tan
30° = 0.577) at the scale of your drawing. Draw line PL
in the direction of the desired apparent dip direction.

Step 3: Draw a line from N that joins PL and is
perpendicular to PL. This line is vector NH. The length
of NH, at the scale of the figure, is the tangent of the
apparent dip in the direction of PL. The length of NH is
0.32, so,

d = arctan[NH] = arctan(0.32) = 18° (Eq. 3-8).
Method 3-7d (Cotangent vector method)

A construction using cotangents may also be used in
the solution of this problem (Ragan, 1985). To help
visualize this solution, refer to Figure 3-12a, and imagine
that d (=BB' and CC) is set to be 1 unit long. Note that if
d =1, tan ¢ = 1/AC, so that cot ¢ = AC. Likewise, cot d
= AB. This fact permits a quick construction to determine
the apparent dip (Fig. 3-12d).

Step 1: Draw coordinate axes so that they intersect
at P. Draw vecior PR perpendicular io the strike and in
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the direction of true dip; make PR equal in length to the
cotangent of the true dip (cot ¢ = 1.73) according to the
scale of the figure.

Step 2: Draw line PL parallel to the desired apparent
dip direction. Draw a vector from the tip of PR that is
perpendicular to PR and joins PL at J. The length of
vector PJ is the cotangent of the apparent dip in the
direction of PL. PJ is 2.97 units long in Figure 3-12d at
the scale of the figure, therefore,

d = arccot[PJ] = arccot[3.0] = 18° (Eq. 3-9).

Nomograms for Apparent Dip Calculations

A nomogram is a graphical tool that permits quick
solution to equations. It is basically a graphical solution
to a single formula (see Palmer, 1919; Billings, 1972).
The type of nomogram that we introduce here is an
alignment diagram used for true and apparent dip
calculations (Fig. 3-13). The diagram consists of three
columns; column one represents true dip, column two
represents apparent dip, and column three represents the
angle between the apparent dip direction and the strike.
The plane in which the apparent dip is measured is called
the projection plane. These columns represent quantities in
an equation that relates true dip to apparent dip. To use the
apparent dip nomogram of Figure 3-13, simply mark off
values on two of the columns and draw a straight line
through these two points so that it crosses the third
column. The intersection of the line with the third column
gives the value of the third variable. Any two values can
be used to calculate the third.

A circular nomogram, the apparent dip computer (Fig.
3-14). is used in a similar wav. Mount the outer scale on a
piece of cardboard and cut out the inner scale so that it can
rotate. Knowledge of any two values allows the third to be
determined.

These nomograms are most useful when many
calculations are to be done quickly, such as when
constructing a geologic cross section that is not
perpendicular to strike. They cannot be used for
determining true dip from two apparent dips.

3-6 CALCULATION OF LINEAR ATTITUDES
Determination of Rake

It is often possible to measure the rake of a lineation
directly in the field. However, if direct measurement is not
possible, the rake of a lineation can be calculated either
trigonometrically or by descriptive geometry if the attitude
of the plane on which the lineation occurs is known and
the bearing of the lineation is known.



Chapter 3  Geometric Methods I: Attitude Calculations

True dip
89°—
85° -
80°
70°3
60°3
Soo—g ////
ao’d
30
20°3
10°

]

5°

Figure 3-13. Linear nomogram |
for calculation of true dip given the

apparent dip on a vertical plane N
(projection plane) that is inclined to
the strike direction. (Adapted from

Palmer, 1919). 1o

Problem 3-8

The attitude of a slip lineation on a fault surface is
20°,538°W. The fault-plane attitude is N10°E 40°N'W
(i.e., » = 40°). The angle between the fault strike and the
bearing of the lineation is, therefore, oo = 28°. What is the
rake (A) of the lincation?

Method 3-8a (Descriptive geometry)

Step 1: Draw a map representing the fault trace and
the projection of the lineation on a horizontal plane (Fig.
3-15a). Specify points A, B, C, and D, which all lie in the
map projection plane. Consider the map projection to
define an upper reference plane (RP1). Line AD represents
the fault trace in RP1, line AC is the projection of the
lineation onto RP1, lines AB and DC are drawn parallel to
the dip direction of the fault. Line BC is the projection of
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the trace of the fault in a lower reference plane (RP2) up
onto RP1. The plane ABCD is the projection of a
dipping plane on the horizontal map plane. In order to
determine the rake (an angle measured in the fault plane),
first rotate the fault plane up to horizontal.

Step 2: Let line AB be a folding line (F1). Draw
line AJ (Fig. 3-15b), which represents the trace of the fault
on the rotated plane (g is the true dip of the fault). Locate
point K along AJ; K lies in RP2 and therefore lies
vertically below point B.

Step 3: Now rotate the fault plane into the map
projection plane. To do this, use a compass and draw a
connecting arc from K to L; point L lies along folding line
F1 and point A is the center of the circle. The length of
line AL equals the length of line KL.

Step 4: Construct rectangle ALMD (Fig. 3-15b).
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Figure 3-14. Circular nomogram or "apparent
dip computer” for calculating true dip when
given the apparent dip and the angle between
the strike of the bed and the strike of the
vertical plane on which the apparent dip was
mentioned. The inner scale can be cut out and
rotated with respect to the outer scale.
(Adapted from Satin, 1960.)

(a)

Figure 3-15. Graphic solution for calculation
of rake. (a) Map projection of four points on the
fault plane. « is the bearing of lineation; (b)
use of connecting arcs to permit rotation of
fault plane into map projection. @ is the true
dip; A is the rake; a is the angle between the
bearing of the line and the strike of the plane.

(b)

digd LN3YvYddYv

Elementary Techniques  Part |
This plane is the portion of the fault between the two
reference planes after it has been rotated into the map
projection plane. Remember, ABCD was only the
projection of the plane. Line AM is therefore the lineation
in the plane, and the angle A is the rake of the lineation; A
= 340,

Method 3-8b

Trigonometric formulas for specifying rake can be
written in two ways. The formulas written below refer to
lines and angles in Figure 3-16. Plane ABC is a horizontal
plane, plane ABDE is the plane on which the lineation
occurs, AD is the lineation, BA is a strike line, AC is the
bearing of the lineation, ¢ is the true dip, A is the rake, o
is the angle between strike and bearing of the lineation, and
d is the plunge of the lineation.

Formula 1 (Rake in terms of plunge and angle
between bearing and strike):

AB/AD =cos A

AB/AC =cos a

AC/AD = cos d

AB = AC(cos o)

AD = ACfcos d

cos A = AC(cos a)/(AC/cos d) = cos & cos d
A = arccos(cos @ cos d) (Eq. 3-10).
Substitution of appropriate values for the angles yields

A = arccos(cos 28° cos 20°) = 34°

C /%E’

D
E
Flgure 3-16. Angles used for trigonometric
calculation of rake from plunge and bearing.
AD is the line in question; A = rake; o = true
dip; o = angle between strike of plane ABDE
and the bearing of line AD; 0 = plunge of line
AD.
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Formula 2 (Rake in terms of dip and angle between
bearing and strike):

BD/BA =tan A

CB/BA=tano
"CB/BD = cos ¢

BA = CB/tan o0

BD =CB/cos ¢

tan A = (CB/cos ¢)/CB/tan o) = tan o/cos @

A = arctan(tan o/cos @) (Eq. 3-11).

Substitution of appropriate values for the angles yields
A = arctan(tan 28°/cos 40°) = 34°

where, again, ¢ is the true dip, A is the rake, o is the angle
between strike and bearing of the lineation, and 0 is the
plunge of the lineation.

Attitude of the Intersection of Two Planes

If two planes of known attitude cross, the line of
intersection is called an intersection lineation. The attitude
of an intersection lineation can be determined both from
descriptive geometry and from trigonometry. We provide
only the descriptive geometry solution here, because it
helps students to visualize the problem.

Problem 3-9

Two nonparallel dikes intersect each other at point A.
Dike 1 is oriented N40°E,30°SE and dike 2 is oriented
N70°W,60°NE. What is the attitude of the line defined by
the intersection of the two dikes?

Method 3-9 (Descriptive geometry)

Step 1: Draw the map traces of the two dikes at a
convenient scale so that they intersect at point A (Fig.
3-17a). Indicate the dip directions with tick marks. The
map trace of the intersection lineation must lie between the
traces of the two dikes, and the dip tick marks on each dike
point toward the trace of the lineation.

Step 2: Draw folding line F1 perpendicular to dike 1
and folding line F2 perpendicular to dike 2. Rotate the
cross-sectional planes into the map projection plane.
Define a lower reference plane at a distance d below the
map plane and draw the cross-sectional representations of
dikes 1 and 2. The dip angles shown in the rotated
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(c)

Figure 3-17. Graphic solution for deter-
mining the orientation of an intersection
lineation formed where two dikes cross. (a)
The dikes and their rotated cross-sectional
projections; (b) rotated projection of the plane
containing the intersection lineation; (c) angles
used in trigonometric calculation of plunge.

projections are the true dips of the dikes. In Figure 3-17a
the trace of dike 1 in the rotated projection is line ZW, and
the trace of dike 2 in the rotated projection is line XY.

Step 3: Draw lines YN and WM. These lines
represent the projection on the map plane of strike lines
along the dikes in the lower reference plane. YN and WM
intersect at point A’. Point A'is the projection on the map
plane of the point at which the dikes intersect in the lower
reference plane. Line AA' is therefore the projection in the
map plane of the intersection lineation. The bearing of
this line (S85°E) is the bearing of the lineation.
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Step 4a: You now know the bearing of the
intersection lineation, but you still need to determine its
plunge. To determine the plunge of AA', let AA' be
folding line F3. F3 is offset and redrawn in Figure 3-17b
to simplify the figure. Rotate the cross-sectional plane
into the map projection plane, and locate the lower
reference plane at a distance d below F3. Draw AB, which
is the profile of the lineation. Angle y, which can be
measured from the figure by using a protractor, is the
plunge of the intersection lineation; y = 25°.

Step 4b: It is faster to use a simple trigonometric
formula to determine the plunge. In Figure 3-17¢ if you
setd=1 (i.e., AB=1),then
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tan y = A'B/AA’

v = arctan(1/AA’) (Eq. 3-12)

where y is the plunge and AA’ is measured from Figure
3-17b. Return to Figure 3-17b. At the scale of this
figure, A'B is 2.1 units, and AA" is 4.25 units. You must
divide by 2.1 to get the appropriate value of AA' for
Equation 3-17; 4.5/2.1 =2.1.

v = arctan(1/2.1) = 25°.

Thus, the attitude of the intersection lineation is
25°,S85°E.

1.

EXERCISES

A distinctive sandstone bed crops out at three localities in a corner of the
Edmundsville Quadrangle. Outcrops A and B are on the 340-m contour line, and
point C is on the 280-m contour line. Outcrop B is 400 m to the N40OCE of
outcrop A, and outcrop C is 240 m to the N20°W of outcrop A. Assuming that
the sandstone bed is homoclinal, what is its strike and dip?

A basalt sill is exposed at three localities within an area being surveyed by a
geologist. The geologist collected the following data concerning the three outcrops
of the sill. (Locations are specified with respect to a reference point, X. The first
number is the distance from X, and the second number is the azimuth from X):

Locality Location Altitude
A 200 m; 070° 700 m
B 100 m; 330° 900 m
C 100 m; 210° 1200 m
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(b) Repeat the problem using a different method.

Three wells have been drilled in Chatalkqua County by the Beanbody Coal
Company in order to find the thick Queen Mother coal seam. In order to track the
seam into the next county, the company geologists must know the strike and dip
of the seam. The following data were obtained by the well-site crew. The wells
were positioned at the corners of a square that is 500 m on a side. Two edges of
this square trend north-south, and two edges trend east-west.

Well number Location
459 NE
460 NwW
461 SE

Ground elevation
730 m

850 m
760 m

Depth to top of coal
220 m

410 m
340 m

What is the strike and dip of the coal seam?

Fred Spear is attempting to determine the regional tilt of a peneplain surface (a
peneplain is a region that has been beveled flat by erosion). Such information will
tell him about postunconformity epeirogenic movements. The term epeirogeny
refers to gentle regional vertical movements of continental crust. He accurately
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measured the altitude of the peneplain at three comers of a square mile section, and

his data are listed below.
Locality Altitude
NE comer 1400 ft
NW corner 1700 ft
SW comer 1900 ft

(a) By how much has the peneplain tilted since it formed, assuming that it was
initially horizontal? Assume no curvature to the earth.
(b) Around what axis did it rotate?

5. Some rock units display massive bedding, meaning that, as a consequence of
bioturbation or of other characteristics of the depositional environment, the unit
does not contain distinct bedding planes. The upper 10 m of the Becram
Limestone is massively bedded, and its attitude cannot be measured with a
compass. Three outcrops of the upper Becram Limestone are located on Figure
3-M1.

(a) What is the strike and dip of the unit in the map area, assuming it is
homoclinal in the map area?

(b) Detailed mapping in the map area indicates that between points A and B there
is a syncline hinge. The amplitude of the syncline is 80 m. Keeping this
observation in mind, reconsider your preceding calculation. Do you think your
answer to (a) is worth plotting on the map? (Explain.)

120
®
°320
e
260
Figure 3-M1. Outcrop positions
i - 0 100
of t‘he Becram Limestone. Ele Numbers are elevations above sea level. meters I
vations of the outcrops are
indicated. Outcrop locations of Becram Limestone

6 . The true attitude of a basalt dike is N40PE,30°NW. What is the apparent dip of
this dike as exposed in a vertical cliff face that trends N70°E?

7 . The strike of bedding on the horizontal floor of a limestone quarry is N43°E. The
apparent dip of the bedding in a north-south trending quarry wall is 32° toward the
south. What is the true dip of the bedding?

8. A prospector has dug two small trenches, which are not parallel to one another, at
the base of Tabor Ridge in order to expose a thick vein of gold-bearing bull quartz.
The walls of the pits are vertical. In the first pit the apparent dip of the vein is
240 N17C°E, and in the second pit the apparent dip of the vein is 56°,N39°W.
What is the orientation of a shaft that lies in the plane of the vein and parallel to
the true dip of the vein?
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9. Cross beds can be used to determine paleocurrent directions. Such information is
of great value in regional stratigraphic study. Often, however, cross beds are not
fully exposed, and their true attitude must be calculated from data on apparent dip.
Consider a cross bed in sandstone that is exposed on two vertical nonparallel joint
faces. On one face the apparent dip of the cross bed is 10°,016°, whereas on the
other it is 28°,082°,

(a) What is the attitude of the cross bed?

(b) Assume that the current direction is parallel to the true dip direction of the
cross bed. What was the orientation of the current direction during deposition of
the sandstone?

(c) What is the orientation of a joint face on which the apparent dip of the cross
bed is the maximum possible value?

10. An east-west line of section in the Rusty Ridge Quadrangle cuts across a folded
sequence of Carboniferous strata. A portion of the line of section is shown in
Figure 3-M2. In order to draw a cross section along this line, it is necessary to
determine the apparent dip in the direction of the line of section and project these
measurements down-plunge onto the fold.

(a) Calculate the apparent dip in the line of section for each measurement given on
the map. Identify your results by specifying station number. (A station is merely
a location where a measurement was made).

(b) Draw a cross-sectional sketch along the line of section, using the above data
and projecting onto the line. Assume the ground surface is horizontal.

inco Fm. ‘
Pada Fm
L] N
Nila Fm. '
u <<
Slug Fm. <
<<
<<
<<
<<
< <
Figure 3-M2. Geologic map of a
0 200 . .
w,x,y,z are measurement stations. L meters ) portion of the Rusty Ridge Quad-
rangle. Attitude measurements at
Rusty Ridge Quadrangle points x, y, z, and w are given.

11. In an exposure of Precambrian granite in the Hudson Highlands north of New York
City, there are many mesoscopic faults on which there are well-developed slip
lineations. The slip lineations are composed of fibrous chlorite. A geologist
measured the rake of lineations on the faults. Below are some measurements from
her field notebook.

(a) Calculate, using trigonometry, the plunge and bearing of the lineations on the
faults and fill in the table. Do you think that the movement on the different faults
might have occurred during the same tectonic event? Why or why not?

(b) Divisions between the fault classes can be made according to the following
criteria: dip slip (90° = rake > 70°), oblique slip (70° = rake = 207}, or sirike
slip (20° > rake > (°). Indicate how the geologist would classify the faulis.
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12.

Fault attitude Rake Plunge and bearing  Fault class
3590,72°E 80° S

3159,84°NE 68° SE

272°,80°8 72°E

3139°,08°SW 90° NW

0329 40°NW 12° SW

076°,129SE 350 SW

(b) About 3 km southeast of the outcrop that contains the above mesoscopic
faults, there is an exposure of the Rakesh fault. The Rakesh fault, which is a
major structure in the region, is oriented N45°E,70°SE. There is evidence for two
periods of movement on the fault; the first period is strike slip and is evidenced by
slip lineations that are oriented 08°,5S42°W; the second period is dip slip and is
evidenced by slip lineations oriented 69°,S62°E. Do you think there is a
relationship between movement on the Rakesh fault and the movement on the
mesoscopic faults described above? (Why?)

Foliation at a locality near the town of Ouro Preto in the highlands of Brazil is
oriented N10°E,70°E. There are two lineations visible on foliation planes. One
is a mineral lineation that trends N20°E, and the other is a crenulation that trends
N75°E.

(a) What is the rake of each lineation? (Use descriptive geometry for your
calculation).

(b) Does the rake increase or decrease as the angle between strike of the plane and
bearing of the lineation increases?

(c) What is the bearing of the lineation that has the maximum possible plunge on
this foliation plane?

13. A chevron fold is one in which the hinge is very angular, so that in profile the fold

14.

15.

has the shape of a V. A beautiful chevron fold crops out in Four Day Canyon in
British Columbia. The attitude of one limb of this fold is N20°W,30°NE, and of
the other limb is N50°E,60°NW. What is the plunge and bearing of the hinge?

A high concentration of uranium occurs at the intersection of a 040°,60°NW fault
and a 350°,40°NE sandstone bed. The intersection of the bed and the fault crops
out in a wash north of the True Blue Mine in western Arizona. The owners of the
mine have decided to explore the uranium play by drilling it. If they start the hole
at the outcrop, what should be the bearing and plunge of the drill hole such that the
hole follows the intersection lineation (and stays in the play)?

A thick quartz vein can be observed in Carlisle Canyon. The vein occurs in
granitic gneiss and is parallel to the foliation in the gneiss. In the map area there
is no surface on which a compass can be placed to make a direct measurement of
foliation. The only way to determine the attitude of foliation in the gneiss is to
use the quartz vein as a marker horizon and to calculate the attitude of the vein
from its outcrop pattern. A map showing the trace of the quartz vein is provided in
Figure 3-M3. From this map, determine the attitude of the vein (and therefore of
the foliation in the gneiss). The dot-dash line is the trace of a stream.
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/ / Y 390
/ / Figure 3-M3. Map of a portion of

the Carlisle Canyon region. The

O| | Carlisle Canyon thick line is the outcrop trace of the
m ‘ contour interval is 10 m quartz vein.

16.Figure 3-M4a shows the map of the Sheep Hollow anticline as it may have
appeared in the vicinity of Cresty Ridge before the area was dissected by rivers.
The black lines represents the traces of a marker bed on opposite limbs of the fold.
Figure 3-M4b shows the current topography of the Cresty Ridge area. Draw the
map pattern of the fold as it would appear on Figure 3-M4b. Assume that the
ground above the 160 m contour is still horizontal and is at an elevation of 161 m.

40

\ \
40 \
\00
0 100 contour interval
is 10 m
m
(a) (b)

Figure 3-M4.(a) Hypothetical geologic map of the Sheep Hollow
anticline in the Cresty Ridge area before river erosion (assume that the
ground surface is horizontal). The two lines are the traces of a marker
horizon on opposite limbs, and the dashed line is the trace of the fold
hinge; (b) present-day topography of the Cresty Ridge area.

17. The base of the Plower Formation is exposed at the 1000-m contour interval on
the slope of Jacob's Peak (Figure 3-M5). At this locality, and throughout the
map area, the formation is 100 m thick and has a dip of 0°. The Duke's Ranch
fault is oriented N40°W ,90°NE and passes through BM 800 on the map. The net
slip on the fault is 240 m along a vector oriented 60°,S40°E. The southwest side
of the fault is down. Complete the map by showing the trace of the Duke's Ranch
Fault and the outcrop belt of the Plower Formation.
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Figure 3-M5. Map of a portion of
the Jacob's Peak area. The Plower
Formation crops out at point P.

18. A map of the portion of the Burnish Corners quadrangle is presented as Figure
3-M6. The trace of the Green Hollow fault is shown as well as mapped outcrops
of the contact between the Freiburg Gneiss and the Baxter Schist. The Green
Hollow fault offsets a basaltic sill.

(a) Assume that the Freiburg/Baxter contact is homoclinal throughout the map

Jacobs
Peak

1200

~— 600

~~—400

0 1
 I—

km

Map of Plower Fm.

area. From the outcrop data given, calculate the attitude of the the contact.

(b) Complete the map of the Freiburg/Baxter contact. (Calculate the contact

position.)

(c) What is the attitude of the Green Hollow fault? Measured slip lineations
indicate that movement on the fault is parallel to the dip on the fault. Which side
of the fault moved down? What is the approximate magnitude of net slip on the

fault?

@ Sill
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Burnish Corners
contour interval is 20 m

Figure 3-M6. Map of a portion of the Burnish Corners quadrangle.
Part of the Freiburg/Baxier contact is shown.

\
N Contact

Sf Freiburg
Sb Baxter
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19. Assume the base of the Judith Formation is exposed at point P in the Twin Peaks
quadrangle (Figure 3-M7). The attitude of the formation is N90°E,35N. Assume
that the formation is 30 m thick. Draw the outcrop belt of the formation. A
rotated cross section plane graduated in 10 m intervals is provided.

60 0]
N N
TN\

0 100 Twin Peaks Quadrangle L
L"'“'ﬂ;‘""“" Contour interval=10m.

Figure 3-M7. Map of a portion of the Twin Peaks Quadrangle. The
base of the Judith Formation crops out at point P.
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CHAPTER

4

GEOMETRIC METHODS II:
DIMENSION
CALCULATIONS

4-1 INTRODUCTION

We noted earlier that it is often easier to use stereographic
projections to solve attitude problems than it is to use
geometric methods. Stereographic projections, however,
cannot be used to represent dimensions (e.g., lengths and
arcas) of geologic features. Thus, when calculating
thickness of a bed, depth to a horizon below the ground
surface, length of a line, or area of a plane, you must use
descriptive geometry or trigonometry. Problems requiring
such calculations arise quite commonly during the course
of both resource exploration and academic studies. For
example, construction of stratigraphic columns depends on
knowledge of unit thickness; the thickness of a unit can be
measured directly at some localities, but commonly it is
necessary to calculate stratigraphic thickness from indirect
measurements. In this chapter we outline methods for
solving problems in structural geology that require
specification of a dimension. As before, remember to
visualize the problems that are described before trying to
solve them. For simplicity, we will refer to sedimentary
beds in the problems described in this chapter, although the
same methods can be used with reference to any type of
rock layer.

4-2 DEPTH TO A PLANE
Depth in a Vertical Hole
If the attitude of a planar structure (e.g., a bedding surface

or a fault) is known, the depth at which the structure will
be reached below the ground surface at a given locality can

be determined from two pieces of information. First, we
must know the location of one point where the plane
intersects the ground surface (e.g., the location of an
outcrop) and second, we must know the attitude of the
plane. The formulas and constructions used for solving
depth problems depend on whether the ground surface is
horizontal or not and on whether the traverse line (a line on
the ground surface between two points) connecting the
outcrop and the point at which the depth is to be
determined is perpendicular to or oblique to the strike of the
plane. Different situations will be handled individually
below. Note that in our descriptions we use the ground
surface and the position of an outcrop to provide a reference
frame. For some of the situations we provide only a
trigonometric solution. Problems 4-1 through 4-4 all
describe variations of the same general theme.

Problem 4-1 (Ground surface horizontal;
traverse line perpendicular to strike)

A sandstone bed crops out at point O (Fig. 4-1a). The
attitude of the bed is N-S,30°W. A vertical hole is drilled
at point J. At what depth will this hole intersect the bed?
Assume that the ground surface is horizontal and that point
J is 100 m due west of point O. The traverse line is OJ.

Method 4-la (Descriptive geometry)

Step 1: Visualize the problem (Fig. 4-1a).

Step 2: Draw a map-view projection showing the
relative positions of O and J at a convenient scale (top half
of Fig. 4-1b). For convenience, locate the points at the
south edge of the map area. Line OJ is the traverse line.

Step 3: Draw folding line F1 parallel to the traverse
line and rotate the cross-sectional view into the plane of the
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(a)
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(b)

Figure 4-1. Depth calculation with trav-
erse line perpendicular to strike and ground
surface horizontal. (a) Block diagram; (b) map
view and rotated cross-sectional view. @ = true
dip, JT = true depth, OJ = traverse line.

(a)
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map projection (bottom half of Fig. 4-1b). On the
cross-sectional plane draw line OP (the length of OP is
arbitrary) starting at the outcrop and making an angle equal
to the true dip (@) of the sandstone bed with line OJ.

Step 4: Draw line JT so that it is perpendicular to
line OJ and intersects line OP at point T. The length of
line JT, measured with your map scale, is the depth to the
horizon. JT = 58 m.

Method 4-1b (Trigonometry)

In the cross-sectional plane (Fig. 4-1b) note that
triangle OJT is a right triangle. Therefore, the length of
line JT can be determined trigonometrically from the dip
angle ¢ and the length of line OJ using Equation 4-1.

JT/OJ = tan ¢
depth = JT = 100 tan(30°) = 58 m (Eq. 4-1).

Problem 4-2 (Ground horizontal; traverse not
perpendicular to strike)

A sandstone bed crops out at point O (Fig. 4-2a). The
attitude of the bed is N-S,30°W. A vertical hole is drilled
at point K. At what depth will this hole intersect the bed?
The ground surface is horizontal, and the traverse line KO
is oriented N50°W and is 139 m long.

Method 4-2a (Descriptive geometry)

Step 1: Visualize the problem (Fig. 4-2a).

Step 2: Draw a map-view representation of the
problem (top half of Fig. 4-2b). Using one of the methods

(b) Ne

Figure 4-2. Depth calculation with traverse line oblique to strike
and ground surface horizontal. (a) Block diagram; (b) map view and
rotated cross-sectional view. 9 = apparent dip, @ = true dip, KM = true

depth, KO = traverse line.
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described in Chapter 3, determine the apparent dip () of the
horizon in the traverse direction. d = 24°.

Step 3: Draw folding line F1 parallel to KO, and
rotate the cross-sectional plane into the map projection
plane (bottom haif of Fig. 4-2b). Draw line OP so that it
makes an angle of d (= apparent dip) with respect to KO.

Step 4: Draw line KM perpendicular to KO so that
it intersects OP at point M. The length of line KM is the
depth to the horizon. KM = 61 m.

Method 4-2b (Trigonometry)

Two formulas can be applied to this problem (refer to
Fig. 4-2a). First, the depth can be calculated in terms of
the apparent dip by the equation

depth = KM = KO(tan 24°) =61 m (Eq. 4-2)
where KO is the traverse length (= 138 m by the map
scale), and 9 is the apparent dip. Second, the depth can be
calculated in terms of the true dip. Note that in this
derivation, KM = JT. Note that the length of OJ in this

problem is not the same as the length of OJ in Problem
4-1.

JT/OJ=tan g

JT=0Jtan ¢

OJ/KO =cos B

OJ=KOcos 8
depth=KM = JT=(KOcos B)(iang)= 61m (Eq.4-4)
where KO is the traverse length, B is the angle between dip

direction and the traverse direction (40°), and ¢ is the true
dip (30°).
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Problem 4-3a (Ground surface inclined in the
direction opposite to dip; traverse perpendicular
to strike)

A sandstone bed crops out at point O (Fig. 4-3a). The
attitude of the bed is N-§,30°W. A vertical hole is drilled
at point J, 104 m upslope in a direction due west of point
O. At what depth will this hole intersect the bed? The
ground surface slopes at an angle of A = 15 to the east. In
this situation the total depth must incorporate both the
distance from the ground surface to a horizontal plane as
well as the distance from the horizontal plane to the bed.

Method 4-3a

If the ground slopes in the direction opposite to the dip
of the bed, reference to Figure 4-3b yields the following
formulas. (A scale drawing like Figure 4-3b could also
provide the answer; if line ON = 100 m, then line OJ =
104 m, and line JT = 85 m):

IJN/OJ = sin A

JN = OJ(sin A)

NT/ON = tan ¢

NT = ON(tan g)

ON/OJ =cos A

ON = Gl(cos A)

depth = JT = JN + NT = OJ(sin A) + OJ(cos A)(tan @)
depth = JT = OJ[(sin A) + (cos A)(tan @)] = 85 m (Eq. 4-6)

where A is the slope of the traverse line, O is the traverse
line on the ground surface, ON is the projection of the

E w E

Figure 4-3.

(b) (c)

Depth caiculation with traverse line perpendicular to

slope. (a} Block diagram; (b) cross-sectional view of case in which
slope is opposite to dip; (c) cross-sectional view of case in which slope
is in the same direction as the dip but is shallower than the dip. A =
slope of ground, g = true dip, JT = true depth, JO = traverse line.
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traverse line on a horizontal plane, and ¢ is the true dip of
the sandstone bed.

Problem 4-3b (Ground surface inclined in the
same directior as dip; traverse perpendicular to
strike)

This problem is identical to Problem 4-3a, except that
the ground surface (OJ) slopes in the same direction as the
bed (i.e., OJ slopes 15° W, and the bed dips 30°W).
Again, ON = 100 m, and OJ = 104 m, A = 15°, and ¢ =
30e.

Method 4-3b

Reference to Figure 4-3c yields the following formulas:

NI =0Jsin A

NO=0Jcos A

NT =NO tan ¢ = OJ(cos A)(tan ¢)

depth = JT = NT - NJ = [OJ(cos A)(tan @)] - OF sin A
depth = JT = OJ{{cos A)(tan @) - (sin A)] =31 m (Eq.4-7).

Note that Equation 4-7 differs from Equation 4-6 only in
the sign of one term.

Problem 4-4 (Sloping ground surface; traverse
not perpendicular to strike)

A sandstone bed crops out at point O (Fig. 4-4). The
attitude of the bed is N-S,30°W. A vertical hole is drilled
at point K. At what depth will this hole intersect the bed?
The hearing of the traverse line is NSOOW. the length of
the traverse line (KO) is 100 m, and the traverse line (KO)
plunges at A = 15° toward the southeast.

Method 4-4 (Trigonometry)

Remember that bearings are measured in a horizontal
plane. Therefore, the angle 8 between the dip direction and
the traverse bearing is measured in the horizontal plane, not
on the slope. The slope angle, along traverse line KO, can
be measured from a topographic map, or by a compass
sighting along the traverse line, or by a calculation similar
to that demonstrated in Problem 3-7.

Case A (The ground slopes to the east,
opposite to the direction of bed dip):

Reference to Figure 4-4 yields the following formulas.

KP/KO = sin A

KP=KOsin A

OP/KO=cos A
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OP=KOcos A

ON/OP = cos 8

ON = OP cos B = (KO cos A)cos 8

NT/ON = tan @,

NT = ON tan g = [(KO cos A)cos B]tan @

depth = KM = KP + PM;
however, PM = NT, so:
depth = NT +KP = [(KO cos A)cos B]tan ¢ + (KO sin A)
depth = KO[(cos A cos B tan g)+ sin A] =62 m (Eq. 4-8).

Case B (The ground surface slopes to the
west, in the same direction as bed dip):

The sign of (sin A) used in Equation 4-8 is opposite,
so the formula to be used is
depth = KO[(cos A cos B tan @) - sin A] =10 m (Eq. 4-9).

In Equations 4-8 and 4-9, KO is the traverse length, A
is the slope of the traverse line, B is the angle between dip
direction of the bed and the bearing of the traverse line, and
@ is the true dip of the bed.
Depth in Inclined Drill Holes
The geometry of depth problems becomes more
complicated if the distance from the ground surface to the
structural plane (e.g., bedding surface) of interest is

measured in an inclined drill hole (i.e., a hole that is not
vertical). We consider two cases: first, the case in which

Figure 4-4.

Block diagram for depth calcu-
lation with traverse line oblique to strike, and
ground surface sloping in the direction
opposite to the dip direction of the layer. A =
plunge of the traverse line, g = true dip, B =
angle between trus dip direction and traverse
ling, KM = true depth.
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the plunge of the hole is in the same direction as the
apparent dip of the bed, and second, the case in which the
plunge of the hole is opposite (o the apparent dip of the
bed. In the two problems described below, the ground
surface is assumed to be horizontal. The "apparent dip”
refers to the apparent dip of the bed in the direction parallel
to the bearing of the drill hole.

Problem 4-5 (Inclined hole; bearing of the hole
is in the same direction as the apparent dip of
the plane)

A sandstone bed intersects the ground surface at point
N and has an attitude of N-8,30°W (Fig. 4-5a). A hole is
drilled at point O (it will intersect the bed at point J).
Point O is 105 m in the direction N42°W from point N
(i.e., line ON, which is not shown, is 105 m long). The
hole attitude is 50°,N60°W. How far must the hole be
drilled before it intersects the sandstone bed?

Method 4-5a (Descriptive geometry)

One method to solve this problem combines
descriptive geometry with trigonometry (following Ragan,
1985).

Step 1: Calculate the apparent dip of the bed () in
the direction parallel to the bearing of the hole (using the
methods of Chapter 3); d = 27°.

Step 2: Construct a map view showing the position
of points O and N (middle of Fig. 4-5b). Let N be at the
corner of the map area. Line NV defines the intersection of
the bed with the ground surface (the trace of the bed).
Extend a line parallel to the bearing of the drill hole in
both directions from point O. This line intersects the
outcrop belt at point Q. Line OQ makes an angle of o =
60° with respect to line NV. 7

Step 3: Draw folding line F1 parallel to OQ, and
rotate the cross-sectional plane into the map projection
(bottom of Fig. 4-5b). In the rotated cross-sectional plane
draw line QS to represent the trace of the bed. QS makes
an angle of d (= apparent dip) with respect to the ground
surface. Draw line OT so that it makes an angle of Q (=
plunge of drill hole) with respect to the ground surface.

Step 4: Lines OT and QS intersect at point J in the

subsurface. Point J is, therefore, the point at which the
drill hole intersects the bed. The projection of point J
onto the ground surface is point J'. Therefore, line JJ' (at
the map scale) is the depth below the ground surface,
measured along a vertical line, at which the drill hole
intersects the bed. JJ' = 66 m. Line OJ is the required
length of the drill hole (90 m).

Method 4-5b (Trigonometry)

Reference to Figure 4-5b yields the following
formulas. Note that in order to solve the problem, it is
necessary to draw folding line F2 (parallel to the dip
direction) through point O (top of Fig. 4-5b). Rotate the
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(b)

Figure 4-5. Depth calculation from data in
an inclined hole. The bearing of the hole is in
the same direction as the apparent dip
direction. (a) Block diagram; (b) map view and
rotated cross-sectional views. € = plunge of
the hole, 0 = apparent dip of the bed in the
direction of the hole, o = angle between the
bearing of the hole and the strike of the bed, o
= trus dip, JJ' = true depth, OJ = the length of
the drill hole.

cross-sectional plane around F2 into the map projection.
In this rotated plane the trace of the bed intersects the
ground surface at D. Draw line DM so that it makes an
angle of @ (true dip) with respect to folding line F2. In
the map view, point J' projects along strike onto F2 at
point F. Plot point F on the rotated cross section. Point
H lies on the trace of bedding vertically below F, and point
G lies on the trace of bedding vertically below O. Point [
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lies vertically below F at an elevation equal to that of G.

Note that JJ' = FH.
OJ/OJ = cos Q
OJ' = OJ(cos Q)
OF/0J' =sin a0
OF = OJ'(sin o) = OJ(cos Q)(sin o)
IH/OF = tan g;
IH = OF(tan g)= OJ(cos Q)(sin o)(tan @)
JJ'/OT' = tan Q
JJ' = OJ'(tan Q) = OJ(cos L2)(tan )

OG =1J' - IH = [OJ(cos Q)(tan Q)]
- [OJ(cos Q)(sin a)(tan @)]
0J = OG/(cos Q)[(tan Q) - (sin o)(tan @)] (Eq. 4-10).
In these equations @ is the true dip, o is the angle
between the bearing of the hole and the strike of the bed, 9
is the apparent dip of the bed in the direction of the bearing
of the hole, Q is the plunge of the hole, and OG is the
vertical distance between the origin of the hole and the bed.
It is assumed that the length of OG is easily determined
using some other method (e.g., Method 1a or 1b); in this
problem OG = 40 m. Note that the apparent dip d is not

needed in the trigonometric formula.

If we substitute the approoriate values into Eauation
4-10, we find

OJ = 40/(cos 50°)[(tan 50°) - (sin 60°)(tan 30°)] = 90 m.

Problem 4-6 (Inclined hole; bearing of the hole
opposite to the apparent dip direction of the
bed)

A sandstone bed intersects the ground surface at point
N and has an attitude of N-S,30°W (Fig. 4-6a). A hole is
drilled at point C (it will intersect the bed at point E).
Point C is 215 m in the direction N53°W from point N.
The hole attitude is 30°,S60°E. How far must the hole be
drilled before it intersects the sandstone bed?

Method 4-6a (Descriptive geometry)

This method is almost identical to Method 5a, so we
will outline the steps in abbreviated form.

Step 1: Construct a map view with the hole starting
at point C (middle of Fig. 4-6b). The hole plunges toward
- point O. Folding line F1 is parallel to the true dip
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Figure 4-6. Depth calculation from data in

an inclined hole. (a) Block diagram; (b)
descriptive-geometry solution. The bearing of
the hole opposite to the apparent dip direction.
g = true dip, o = angle between strike and
bearing of the hole, CE = length of hole, OE =
true depth, stippled plane is vertical.

direction of the bed, and folding line F2 is parallel to the
bearing of the hole. The extension of line CO intersects
line NV (the trace of the bed) at point Q. CQ makes an
angle of a with respect to NV,

Step 2: Rotate a cross-sectional plane around F1
into the plane of the map projection (top of Fig. 4-6b; F1
has been moved so that the figure is not cluttered). In this
cross-sectional plane draw the trace of the bed (DH) and the
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trace of the hole (CG). Note that CG does not represent
the true length of the hole. Angle g is the true dip of the
bed in this cross- sectional plane.

Step 3: Now rotate a cross-sectional plane around
F2 into the plane of the map projection (bottom of Fig.
4-6b). Draw line CJ down from point C; CJ is
perpendicular to CQ and is the same length as CH. Now
you can draw the trace of the bed (QJ) in this
cross-sectional plane. QJ makes an angle d with respect to
QC; d is the apparent dip of the bed in the direction parallel
to the plunge direction of the hole.

Step 4: The hole intersects the trace of the bed (QJ)
at point E. The projection of point E on the ground
suzface is at point O. The length of OE is the vertical
distance from the ground to the intersection at the map
scale (52m). The length of CE gives the distance between
the ground and the bed in the hole at the map scale (104 m)

Method 4-6b (Trigonometry)
Reference to Figure 4-6b yields the following
formulas. Note that CF = IG.
OC/CE = cos {2
OC = CE(cos £2)
CF/OC = sin o
CF = OC(sin @ ) = CE(cos {})(sin o)
IH/CF = tan g;
IH = CF tan ¢ = CE(cos £2)(sin o)(tan @)
QE/OC = tan 2
OE = OC(tan Q) = CE(cos Q)(tan Q)
Ci=CH=CI+IH
CE=FG=C(I

Cl = OE + IH = CE(cos Q)(tan Q)
+ CE(cos Q)(sin a)(tan @)
CE = CJ/(cos Q){(tan Q) + (sin ar)(tan @)} (Eq. 4-11).
In these equations CE is the length of the drill hole,
and CJ is the vertical distance between the ground surface
and the bed below point C. (The value of CJ must be
determined by Method 4-1, once the length of traverse line
CD has been measured; CJ = 97 m.) Q is the plunge of
the hole, a is the angle between the bearing of the hole and
the strike of the bed, ¢ is the true dip of the bed. The angle
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d, the apparent dip of the bed in the direction parallel to the
bearing of the hole, is not needed.

If we substitute the appropriate values into Equation
4-11, we find that

CE = 97/(cos 30°)[tan 30° + (sin 60°)(tan 30°)] = 104 m.

4-3 CALCULATION OF LAYER THICKNESS

The most straightforward way of calculating layer thickness
is by direct measurement. Direct measurement is, of
course, only possible at locations where there is either a
complete exposure of the unit on a plane that is
perpendicular to the bedding of the unit, or a drill hole that
is oriented perpendicular to the bedding of the unit (Fig.
4-7). If the bedding is inclined, the outcrop face or drill
hole must also be inclined. Localities at which direct
measurement is possible are relatively rare. Usually, the
angle between the outcrop face or the drill hole and the
bedding of the unit is not 90°. In such circumstances, the
true thickness, which is measured perpendicular to the
bedding, must be calculated. Thickness measurements can
be obtained at the outrcrop cither with a Jacob's staff, or
with a tape and compass. Thickness can also be calculated
from the outcrop pattern on a map or from drill data.

Thickness Determination Using a
Jacob’'s Staff

Problem 4-7

A unit whose orientation is north-south is exposed on
a slope that dips to the east. A profile of the unit, drawn
perpendicular to strike, is illustrated in Figure 4-7c.
Measure the unit thickness with a Jacob's staff.

Method 4-7

The base of the staff is placed on the outcrop at the
base of the unit (point A) and the staff is inclined from
perpendicular by an amount equal to the true dip of the
strata (g). The geologist visually sights in a direction
perpendicular to the strike direction across the top of the
staff to a point on the outcrop (point B). Point B is
stratigraphically above point A by an amount equal to the
height of the staff. The base of the staff is then moved up
to point B, and the procedure is repeated until the top of the
unit of interest is reached. The total thickness of the unit
is the sum of the increments.

If it proves impossible to follow a traverse that is
itself perpendicular to sirike, the geologist can sidestep
along the ground at a specific stratigraphic level until an
appropriate place to proceed upsection can be found (Fig.
4-Td).
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(a) (b)
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(c)

Figure 4-7. Direct measure-
ment of layer thickness. (a) Cross
section showing measurement of
horizontal beds on a vertical scarp;
(b) cross section showing measure-
ment of vertical beds on a horiz-
ontal pediment; (c) cross section
showing measurement with a
Jacob's staff; (d) map showing
offset of a traverse line. Dots
represent measurement stations.
Geologist sidesteps the hill from
point E to point F.
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Thickness Determination from

Tape-aiiu-Suinpass vi map Cawa

The thickness of a unit can be determined if the positions
of the top and bottom of the unit are known, and the
attitudes of the unit and of the traverse line are known.
The distance between the top and bottom, measured with a
tape (in the field) or with a scale (on a map) along the
traverse line, is an apparent thickness. The attitude of the
unit and of the traverse line is determined with a compass.
The graphic and trigonometric solutions used for
converting tape-and-compass or map-and-compass data into
true layer thickness depend on the orientation of the
traverse line with respect to strike and on whether the
ground surface is horizontal or planar. Several situations
are described separately below.

Problem 4-8 (Horizontal ground surface;
traverse line is perpendicular to strike)

The base of a distinctive sandstone bed is exposed at
point O and its top at point T in an area of no relief (Fig.
4-8). The bed attitude is N-S,30°W. A geologist uses a

tape to measure the distance on the ground surface on a
iravorse linc Goiwoeii G aad T, Tho alidiude of e @averse
line between O and T is 00°,270°. What is the true
thickness of the sandstone bed?

Method 4-8
Reference to Figure 4-8 yields the formulas

TB/OT =sin ¢

TB = OTsin g (Eq. 4-12)

where TB is the true thickness, OT is the apparent
thickness measured along the traverse, and ¢ is the true dip.

Problem 4-9 (Horizontal ground surface;
traverse line is oblique to strike)

A sandstone bed, whose attitude is N-S,30°W, is
exposed in a region of no relief. A geologist measures its
apparent thickness along traverse line KO, which trends
N45°W (Fig. 4-9). What is the true thickness of the bed?
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E

Figure 4-8. Thickness measurement with
traverse line perpendicular to strike and ground
surface horizontal. Cross-sectional view is
shown. @ = true dip, TB = true thickness, OT =
traverse length.

Method 4-9
Reference to Figure 4-9 yields the following formulas:

OT/KO = sin o
OT =KO sin
TB =0T sin g

TB = KO sin o sin ¢ (Eq. 4-13)
where TB is the true thickness, KO is the length of the
traverse line, OT is the projection of the traverse line onto
a line drawn perpendicular to the strike, @ is the true dip of
the bed, and o is the angle between the traverse line and the
strike of the bed. ‘

Problem 4-10 (Traverse line slopes; traverse
line is perpendicular to strike)

A sandstone bed is exposed on a slope (Fig. 4-10). A
geologist measures the apparent thickness (OT) of the bed
on a traverse that trends perpendicular to the strike of the
bed. What is the true thickness (TB) of the bed?

Method 4-10

There are three variations of this problem, depending
on whether the bed dip is greater or less than traverse-line
slope, and on whether the dip direction is the same as or
opposite to traverse-line slope. We will provide only
trigonometric solutions. The equations refer to angles and
lines shown in Figure 4-10. In these figures ¢ is the true
dip, and A is the slope of the traverse line. Note that it
does not matter whether the strike of the ground slope is
parallel to the strike of the bed, as long as the bearing and
slope of the traverse line are known.

Case A (Traverse line slopes in dip
direction; plunge < dip): The layer attitude is
N-S,60°E. The base of the bed is exposed at point O and
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Thickness measurement with

Figure 4-9.
traverse line oblique to strike and ground
surface horizontal. Block diagram is shown.
KO = traverse length, a = angle between
traverse bearing and the strike of the bed, & =
true dip, TB = true thickness.

the top of the bed at point T. The traverse line is oriented
30°,090°. Reference to Figure 4-10a yields the following
formulas:

TB/OT = sin(g - A)

TB = OT[sin(g - A)] (Eq. 4-14).

Case B (Traverse line slopes in the dip
direction; plunge > dip): The layer attitude is |
N-S,10°E. The base of the bed is exposed at point O and
the top of the bed at point T. The traverse line is oriented
30°,090°. Reference to Figure 4-10b yields the following
formulas:

TB/OT = sin(A - ¢)

TB = OT([sin(A - ¢)] (Eq. 4-15).

Case C (Traverse-line slope is opposite to
dip direction): The layer attitude is N-S,30°W. A
traverse line (OT) running from the base to the top of the
bed is oriented 50°,090°. Note that O is at the base of the
bed in this example. Reference to Figure 4-10c yields the
following formulas:

TB/OT = sin(g + A)

TB = OT[sin(g + A)] (Eq. 4-16).
Problem 4-11 (Ground surface is sloping;
traverse is not perpendicular to strike)

A sandstone bed, whose attitude is N-S,30°E, is
exposed on the face of a hill that slopes toward the west
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(a)

(b)

(c)

Figure 4-10. Thickness measurement on
a slope with traverse line perpendicular to
strike. Cross-sectional views are shown. (a)
Dip is in the same direction as traverse-line
slope, and dip is greater than slope; (b) dip is
in the same direction as traverse-line slope,
and dip is less than slope; (c) dip is in the
direction opposite to traverse-line slope. A =
slope, @ = true dip, OT = traverse length, TB =
true thickness.

(Fig. 4-11). A traverse line (OT) running from the base to
the top of the bed is oriented 50°,315° and is therefore
inclined to the strike of the bed. What is the true thickness
of the bed?

Method 4-11
Noie that angle o (between the sirike and the bearing
of the traverse line) must be measured in a horizontal
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Figure 4-11. Thickness measurement on
a slope with traverse line that is oblique to
strike and dips in a direction opposite to the
traverse-line bearing. Block diagram is shown.
A = plunge of traverse line, a = angle between
bearing of traverse line and strike, @ = true dip,
TB = true thickness, OT = traverse length.

plane. In order to solve the problem, we must create line
T'B', which is equal to the true thickness (TB) but does not
intersect the ground surface. Reference to Figure 4-11
yields the following formulas (after Mertie, 1922 and
Ragan, 1985):

TX/OT =sin A
TX=0Tsin A

OX/OT =cos A

FaS id ~r

YX/OX = sin o
YX = OX sin a = OT(cos A)(sin o)
XB/YX =sin g
XB'= YX sin ¢ = OT(cos A)(sin ot)(sin @)
TX/TX =cos @
T'X = TX cos ¢ = OT(sin A)(cos @)
TB = T'B' = T'’X + XB' = OT[(cos A)(sin o))(sin @)

+ (sin A)(cos @)]
(Eq. 4-17)

where TB is the true thickness, OT is the traverse length, A
is the plunge of traverse, « is the angle between traverse
bearing and strike, and ¢ = true dip of the bed. Note that if
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the bed dips in the same direction as the slope, the sign in
Equation 4-17 becomes negative.

Thickness Determination from Drill Data

Modern down-hole logs (e.g., gamma-ray and electric logs)
make it possible to recognize strata in a drill hole without
requiring expensive core recovery. If strata are horizontal
and the drill hole is vertical, the distance measured in the
hole between the top and bottom of a unit is the true
thickness of the unit. Below we discuss two additional
situations: first, the case where a vertical hole intersects
inclined bedding (which is identical to the case where an
inclined hole intersects horizontal bedding) and second, the
case where an inclined hole intersects inclined bedding.

Problem 4-12 (Thickness in a vertical hole
cutting inclined bedding)

From field evidence it is known that the bedding
beneath well C-6 is oriented N-S,30°E (Fig. 4-12). Well
C-6 is a vertical hole that intersects the top of a distinctive
sandstone bed at a depth of 100 m and the base of the bed at
a depth of 220 m below ground surface. What is the true
thickness of the bed?

Method 4-12

From a cross-sectional view drawn perpendicular to the
strike of the layer (Fig. 4-12), we obtain the following
formulas:

TB/OT = cos ¢
TB = OT(cos @) (Eq. 4-18)

where TB is the true thickness, OT is the thickness as
measured in the drill hole, and ¢ is the true dip of the layer.

w Well C-6 E

Figure 4-12. Thickness measurement of
an inclined bed in a vertical hole.
Cross-sectional view is shown. OT = thickness
as measured in hole, TB = true thickness, o =
true dip of the bed.
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Note that knowledge of the strike of the bed is not actually
needed for the calculation, as long as the true dip angle is
known.

Problem 4-13 (Thickness in an inclined hole
cutting inclined bedding)

A bed of sandstone is oriented N-S,40°W. A hole is
drilled on horizontal ground. The hole is oriented
60°,S30°W. The hole penetrates the bed at point M in the
subsurface and passes through the bed entirely in the
subsurface (Fig. 4-13). The thickness of the bed as
measured in the hole (line ML) is 100 m. What is the true
thickness of the bed?

Method 4-13

Figure 4-13 illustrates this problem. The top surface
of the block shown in Figure 4-13 is a horizontal plane in
the subsurface that intersects the top of the bed along line
MP. The dashed line (ML) represents the segment of the
drill hole that passes through the stippled bed. Line ML
lies entirely within the stippled bed, though this could not
be easily represented on the figure. As indicated in Figure
4-13,

TB/LT = sin(90° - ¢)
TB = LT sin(90° - g) (Eq. 4-19)

where TB is the true thickness, LT is the thickness in a
vertical hole, and ¢ is the true dip of the bed. In the

Thickness calculation of an

Figure 4-13.
inclined bed in an inclined hole. Block diagram
is shown. ML = thickness measured in hole, TB
= true thickness, @ = ture dip, A = plunge of the
hole, o = angle between bearing of the hole and
the strike of the bed.
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problem, however, the value of LT is not known. It is
calculated as follows:

MK = ML cos A

MP = MK cos a = ML cos A cos o

KP = MP tan o = ML cos A cos o tan o

KT = KP tan ¢ = ML cos A cos o tan o tan ¢
KL = ML sin A

LT =KL - KT = (ML sin A)
- (ML cos A cos 0. tan o tan @)
(Eq. 4-20).

Substitution of Equation 4-20 into Equation 4-19 yields

TB = [ML(sin A - cos A cos o tan o tan g)][sin (90° - g)]
(Eq. 4-21).

Note that Equation 4-20 involves only the true
thickness (TB), the thickness measured in the drill hole
(ML), the plunge of the drill hole (A), the angle between
the bearing of the drill hole and the strike of the bed (o),
and the true dip of the bed (@), all of which are numbers
that were provided in the problem.

Thickness of Folded or Nonuniform Layers

In all the situations described above, we assumed
parallelism between the top and bottom of the layer whose
thickness we wiched to determine  Snch an acenmntion ic
not always reasonable. In many localities a particular unit
thins in a given direction either because of truncation by an
unconformity or because of variation in sediment supply
during deposition. Variation in thickness can also be a
consequence of ductile stretching or shortening. Thickness
measurements on folds are difficult, because it is not
always clear how to specify dip. In the hinge zone of the
fold the measured dip on the top surface of a layer may not
be the same as the measured dip on the bottom surface of
the layer, even if the true thickness of the layer is constant
around the fold.

Nonparallel Layer Boundaries

If the boundaries of the layer under consideration are not
parallel to one another (Fig. 4-14), then it is not possible
to measure a true thickness that is perpendicular to both the
upper and lower boundaries. An estimate of the thickness
is possible by averaging the strike and dip of the upper and
lower boundaries and using this as the layer attitude in the
calculations described above:
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(Eq. 4-22)

(Eq. 4-23).

dipaverage = [dip, + dip,]/2

strike,yerage = [Strikey + strike,]/2

The area over which this averaging is done depends on
the degree to which the layer boundaries deviate from
parallelism and thereby converge; the greater the deviation,
the smaller the area for which an average value can be
assumed.

Figure 4-14. Cross section showing con-
vergence of two layer boundaries. The dips of
the two contacts are not the same. @ = dip of
top surface, @5 = dip of the bottom surface.

Thickness of a Folded Layer

Folded layers present a special problem because the layer
boundaries are curved. First, it is necessary to decide what
is meant by "thickness." Ideally, we would like to know
the thickness of the layer before folding. For parallel folds,
the layer thickness does not change, but for other types of
folds (see Chapter 13) layers do change. Three measures of
thickness are commonly used in reference to folded layers
(Fig. 4-15). The first is vertical thickness, which is the
thickness of a layer as it would occur in a vertical drill hole
(such a measure will usually deviate greatly from the
Ullgllldl uuuulcba} lllb obvuuu ID ur lleUll“l u'u.u\ncou,
which is the thickness along a line drawn perpendicular to
both the upper and lower boundaries. The third is isogonal
thickness, which is the thickness measured along a line
connecting points on the boundaries that have equal dips.

(a) (b)

Figure 4-15. Thickness measurement in a
fold profile. (a) Vertical thickness is line AB,
and orthogonal thickness is line AC; (b)
isogonal thickness is line AB. Dip at point A is
the same as the dip at point B.
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The second and third methods refer to thickness measured in
a profile plane drawn perpendicular to the axis of the fold.

Because of the complications apparent from the
preceding discussion, the thickness of a folded layer must
generally be considered to be an estimate. Geometric and
trigonometric solutions are possible for determining the
thickness of folded layers (see Hewett, 1920; Mertie, 1940;
Ragan, 1985), but generally an adequate approach is to
draw an accurate down-plunge projection with no vertical
exaggeration (see Chapter 13). Any desired measure of
thickness can be derived by directly measuring such a
drawing.

NMomograms for Calculating Layer Thickness

As was the case for solution of true and apparent dip
problems, nomograms have been developed for solving
certain types of thickness problems. The nomogram
presented in Figure 4-16 permits calculation of thickness if
the traverse is perpendicular to strike. Note: (1) If the
ground surface is sloped, and the slope and dip directions
are opposite to one another, then the dip angle to be used
in column 1 must be the sum of the dip angle and the

Outcrop width

1,000
900E
GOO—%
700—5
wod
soo—z
400
300—:
200—~
Figure 4-16. Nomograms for ]
thickness calculations. (Adapted 1
from Palmer, 1919.} 100 -
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slope. (2) If the ground surface is sloped and the slope and
dip directions are not opposite to one another, the dip angle
to be used in column 1 must be the difference between the
slope and dip.

4-4 DETERMINATION OF LINE LENGTH

It is often necessary to determine the distance in the
subsurface between two features as measured along a line of
known orientation. For example, imagine that the top of a
mineralized horizon occurs at a known depth below the
ground surface, but that for technical reasons it must be
reached in an inclined mine shaft. The length of the shaft
must be known in order to calculate its cost. Such
problems can readily be solved with the geometric methods
that you have leamed already.

Problem 4-14

A fold hinge is exposed at point A on the ground
surface and is intersected at point B in a mine tunnel at a
depth of 400 m below the ground surface (Fig. 4-17).
From existing maps of the mine tunnels it is known that

True thickness Dip
800 I
7003 T = 50°
600 e =
5003, . 40
400 3
T E E30°
e 3003 3
o T e RIS e — o — 20

1003

703

[T RERTS T

e
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Figure 4-17. Map view and rotated cross-
sectional view showing how to measure the
length of a line. A = plunge of the line, AB =
true length of the line.

point B lies directly below point B' (point B' is on the
ground surface at a distance of 800 m to the N40°W of
point A). How long is the linear geologic structure
between points A and B?

Method 4-14a (Descriptive geometry)

Step 1: Draw a map to scale showing the positions
of points A and B' (Fig. 4-17). Draw folding line F1 along
AB'. Note that AB' is parallel to the bearing of the linear
feature.

Step 2. Rotate the cross-sectional view around F1
into the plane of the map projection, and locate point B in
the cross-sectional plane. Line BB' is 400 m long at the
map scale. Line AB is a representation of the linear
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map scale. AB is 898 m long.

Method 4-14b (Trigonometry)

Step 1: In order to solve this problem, we must first
determine the plunge (A) of the linear feature. Reference to
Figure 4-17 yields the following formulas:

BBY/AB'=tan A
arctan(BB/B'A) = A (Eq. 4-24).
Step 2: Now that the plunge is known, it is
possible to determine the length of AB, using the
following formulas:
cos A= AB'/AB
AB = AB'/(cos A) (Eq. 4-25).

Step 3: Applying Equations 4-24 and 4-25 to the
data in this problem yields:
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arctan(400/800) = A = 27°

AB = 800/cos 27° = 898 m

4-5 AREA OF A DIPPING PLANE

Problems involving calculation of the area of a plane arise
in circumstances where, ultimately, the volume of a layer
(e.g., a seam of coal) must be determined.

Problem 4-15

A bed is oriented N20°E,40° NW. The bed crops out
in a region of no relief at point A (Fig. 4-18). At a
distance of 200 m to the N45° E of point A there is an
exposure of a vertical fault trending N60°W. At a distance
of 200 m to the S45°W of point A there is an exposure of
a vertical fault trending N90°W. What is the area of the
bed between the two faults above a depth of 200 m below
the ground surface?

Method 4-15

In order to solve this problem, you must first obtain a
projection of the plane of the bed.

Step 1: Draw a map to scale showing the position
of the points identified above and the traces of the two
faults and of the bed on the ground surface (right half of
Fig. 4-18). Let line XY represent the trace of the bed and
lines YN and XM represent the traces of the two faults.
The angle B (= 10°) is the angle between YN and the
perpendicular to strike, and angle d (= 20°) is the angle
between XM and the perpendicular to strike.

Step 2: Locate the map projection of the bed in the
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draw folding line F1 perpendicular to the bed strike through
point P. (In Figure 4-18 we have extended the bedding
trace XY out to point P so that the figure will not be
cluttered.) Rotate the cross-sectional view into the plane of
the map projection and draw the cross-sectional trace of the
bed to a depth of 200 m; the cross-sectional trace of the bed
is line PK. Angle ¢ is the true dip of the bed. The
projection of K onto the ground surface is K'; line KK' is
200 m long.

Step 3: To determine the area of the plane you must
now rotate the bed itself into the map plane. To do this,
let PK be folding line F2. Rotate the bed around F2 into
the plane of the map projection (left half of Fig. 4-18). In
this representation PR is the intersection of the ground
surface with the bed, and SK is the intersection of the bed
with the lowepreference plane. Mark off a segment of line
PR that is equal in length to XY; this segment of PR is
labeled X'Y'".

Step 4: Draw lines Y'N' and X'M' so that they make
the same angles with respect to PR as YN and XM do to
PY, respectively. Y'N' intersects SK at Z', and X'M'
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Figure 4-18. Map view, rotated
cross-sectional view, and layer-
normal view showing how to
measure the area of a plane. XA is
the trace of the bed, YN and XM are
the traces of faults, the stippled
area is the the area of the bed.

intersects SK at W'. The area Z'Y'X'W' (stippled) is the
area of the plane in question. To measure this area quickly,
divide it into two triangles and one square, as shown in the
figure. Note that the projection of this plane onto the
horizontal ground surface is ZYXW. At the scale of the
figure, the area of plane Z'Y'X'W" is about 225,000 m2,

4-6 DESCRIPTIVE-GEOMETRY ANALYSIS
OF FAULT OFFSET

The net slip on a fault is the postmovement distance,
measured in the plane of the fault, between two points that
were adjacent prior to faulting but are now on opposite
sides of the fault (Fig. 4-19a). The dip-slip component of
movment is measured in the direction parallel to the dip of
the fault, and the strike-slip component is measured in the
direction parallel to the strike of the fault. A fault on which
displacement is primarily dip-slip is a dip-slip fault, a fault
on which the displacement is primarily strike-slip is a
strike-slip fault, and a fault on which the displacement has
both dip-slip and strike-slip components is called an
oblique-slip fault. .

- If the fault plane is not vertical, the term hanging-wall
block can be used to refer to the rock above the fault plane
and the term footwall block can be used to refer to the rock
below the fault plane. If the hanging wall moves up dip
with respect to the footwall, then the fault is a reverse fault
or thrust fault. If the hanging wall moves down dip with
respect to the footwall, then the fault is a normal fault.
Note that in these definitions, the ground surface is used as
a reference frame. Recently, the term contractional fault
has been used to refer to faults whose movement has
resulted in shortening of the crust, and extensional fault has
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been used to refer to faults that result in stretching or

“lengthening of the crust (Fig. 4-19b).

The term separation, when used in the context of
describing movement on a fault, refers to the distance
between displaced parts of a marker as measured in a
specified direction (Dennis, 1987). Strike separation, for
example, is the distance between the two displaced ends of
a marker (e.g., an offset dike), as measured along the strike
of the fault at a specified elevation (Fig. 4-20a).

The apparent displacement across a fault that is
indicated by a map pattern is usually the strike separation.
If the offset marker is vertical, the strike separation is the
strike-slip component of displacement. It is not possible
to determine strike-slip and dip-slip components of
displacement from the separation of only one marker, if the
dip of the offset marker is less than 90°. For example,
imagine a normal fault that offsets a dipping bed. After
erosion has removed the fault scarp, a map of the fault
displays strike separation (Fig. 4-20b).

Measurement of the strike separation of two
nonparallel markers that have been offset along a fault
does, however, permit the net slip on a fault to be
calculated. In this section we briefly outline a descriptive
geometry procedure that can be used to calculate the true
offset on a vertical fault plane. A more efficient method of
solving such fault problems is presented in Chapter 6. In
Chapter 6 we also introduce a technique for determining net
slip on an inclined fault.

Problem 4-16

Imagine that a vertical fault occurs in a region of no
relief. The fault strikes N70°W. The fault cuts a dike
oriented N20°W,40°NE and a contact oriented
N30°E,70°NW. The intersections of these structures with
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Figure 4-19. (a) Terminology
used to describe displacement on a

Contraction

fault. NS = net slip; DS = dip slip
component; and SS = strike slip
strike slip component; (b) cross
sections illustrating the contrast
between contraction faults and
extension faults. Note that the
distance between the end points A

Extension

i

and B on the black marker layer as
measured in a projection plane
parallel to the marker layer
decreases as a consequence of
contraction faulting and increases

(b)

the fault are shown in Figure 4-21a. Prior to movement
on the fault, points A and B were adjacent, and points C
and D were adjacent. Determine the bearing, plunge, and
magnitude of the net slip, and determine the dip-slip and
strike-slip components of displacement.

Method 4-16
Step 1: Draw a scaled map-view of the fault and of
the offset structures, and label points A, B, C, and D (Fig.

AA'= strike separation

(b)

Figure 4-20. lllustration that the strike
separation across a fault indicated by a single
offset marker does not uniquely define the net
slip on the fault. (a) Displaced dike before
erosion. Movement on the fault is pure dip-slip;
(b) strike separation displayed after erosion.
Points A and A’ were originally adjacent.

as a consequence of extension
faulting.

4-21b). Extend the lines representing the dike and the
contact on the south side of the fault out to a convenient
distance,

Step 2: Draw folding line F1 perpendicular to the
dike trace. Let the elevation of F1 (and of all folding lines
in this problem) be the same as the ground surface. Rotate
the cross-sectional view around F1 into the plane of the
map projection. Draw a line representing the lower
reference plane at a distance d below F1 in the
cross-sectional view. Draw line NN' so that N lies at the
ground surface and N' lies in the lower reference plane.
Line NN' must make an angle of 40° (equal to the dip of
the dike) with respect to F1. Remember, it must dip to the

norineast. Line ININ Ieprescnis tic Cioss SeCuvii ol e
dike.

Step 3: Draw folding line F2 perpendicular to the
contact trace, rotate the cross-sectional view around F2 into
the map projection plane, and draw a line representing the
lower reference plane at the same distance d below F2.
Construct line MM’ to represent the cross section of the
contact. Note that MM' must make an angle of 70° with
respect to F2 and must dip toward the northwest.

Step 4: Let the fault trace be folding line F3.
Rotate the cross-sectional view around F3 into the plane of
the map projection and draw the trace of the lower reference
plane at a distance d below F3. This cross section
represents the plane of the fault.

Step 5: Draw a dashed line from point N' so that it
intersects F3 at R. Draw a line perpendicular to F3 down
to the lower reference plane in the fault plane and locate
point R'. Repeat the procedure and locate P'. Point R
represents the position at which the cross-sectional trace of
the dike crosses the lower reference plane in the plane of
the fault on the southwest side of the fault. Point P'
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Figure 4-21. Determination of
fault offset from the map pattern.
(a) Map showing the fault truncating
a dike and a contact (the fault plane
is vertical); (b) descriptive
geometry construction.

represents the point at which the contact crosses the lower
reference plane in the plane of the fault on the southwest
side of the fault.

Step 6: Exiend a line from A through R', and

extend a line from D through P'. AR' and its extension
represent the trace of the intersection between the dike and
the fault in the southwest wall of the fault. DP’ and its
extension represent the trace of the intersection between the
contact and the fault in the southwest wail of the fault.
These two lines intersect at Y, which represents the
intersection of the dike and the contact in the southwest
wall of the fault.

Step 7: Draw a line from B that is parallel to AY,
and a line from C that is paraliel 10 DY. These lines

represent the traces of the dike and the contact in the
northeast side of the fault. The lines intersect at X. Prior
to movement on the fault, points X and Y were adjacent.
Thus, a line connecting X to Y represents the net slip on
the fault. As the fault plane is vertical, the bearing of the
net-slip line is S70°E, and its plunge (9) is measured from
vertical. The dip slip and strike-slip components of
displacement can be determined by resolving the net-slip
line into components parallel to and perpendicular to the
fault trace. The dip-slip component is XY sin d, and the
strike-slip component is XY cos d. Note that in this
example, the fanlt was an oblique-slip fault, and that the
larger component of movement was dip-slip.

EXERCISES

1. A fault is exposed in outcrop at point A. For each of the situations defined below,
determine the distance (depth) between the ground surface at point B and the fault
plane. In each case, the traverse length betwen points A and B is exactly 200 m,
and the traverse bearing between the two points and the elevation difference

between the two points is specified.
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Fault attitude Traverse bearing  Elevation difference between A and B
(@ N-S,30°E 090° 0
(b) N-S,30°E 060° 0
(¢) N-S,30°E 090° 50 (A is higher than B)

@ N-S,30°E 060° 50 (A is higher than B)

. Karen Freer is mapping a heavily forested slope. The stratigraphic sequence on the

slope is (from top to bottom) Gomez Creek Shale, Race Point Limestone, Hunter
Formation. As a consequence of the vegetation, outcrops are hard to come by.
She finds, however, an exposure of the contact between the Gomez Creek Shale
and the Race Point Limestone at point A on the hillslope. The attitude of the
contact is 300°,40°NE. From drilling data at a nearby well, she knows that the
Race Point Limestone is 50 m thick. A straight path runs from the Race
Point/Gomez Creek outcrop at point A down the slope of the hill. Karen sights
down the path with her compass and finds that the path is oriented 15°,S40°E.
How far must she walk down the path before she will find the contact between the
Race Point Limestone and the Hunter Formation? (Assume that the bedding is
homoclinal.)

. It is common during offshore drilling for many holes to be drilled from a single

platform. The holes are inclined so that they fan out from the platform and thus
cover a broader area of the reservoir. Consider a platform located at point A in the
Straits of Vermouth. A new hole drilled from this platform is oriented 60°,340°.
The drilling target is a reservoir sandstone formation that lies beneath a horizontal
unconformity. A salt layer above the unconformity provides an effective seal. The
unconformity lies at a depth of 1200 m below the sea floor. Water depth below
the platform is 100 m. How long will the drill stem be when it penetrates the
unconformity?

. Bill Nelson is mapping a small region in western Nevada (Figure 4-M1). He

found the contact between the Figaro Sandstone and the underlying Jarbidge
Volcanics at BM 98 (el. 98 m). The attitude of the contact is 360°,30°W. He

R TR -7 N [ P R (v JSnvie R I SRR IR RSy S

VY GLRAS & T BiR uuv vvw; @i Uos nwu;] BV ALAUREMGE BEUWIRE GiIl AU Wil Wisiiladve U v

Figaro Sandstone with the overlying Franklin Shale. In order to cross the Franklin
Shale, heavy brush forced him to run his traverse in the direction N45°W (also
along horizontal ground). He found the top of the Franklin Shale at the 100-m
contour line. Bill then began to climb Pointop Ridge. The lowest unit on the
ridge is the Rufus Springs Formation. Bill was able to traverse this formation in
the direction N90°W and found its top at an elevation of 330 m. He then found a
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Figure 4-M1. Sketch map of the
Pointop Ridge region in Nevada.
Contours are shown by solid lines,

and the crest of the ridgse is

o NN TEEEEER .s0m

indicated by the dashed line.
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convenient sheep trail that crossed the overlying Milo Formation. The bearing of
the trail is SS0°W. Bill crossed 150 m of Milo Formation before finding its top
contact with the Pointop Dolomite. The Pointop Dolomite is exposed all the way
to the crest of Pointop Ridge. The crest of the ridge is indicated by the dashed line
in Figure 4-M]1, and is at an elevation of 525 m.

(a) Complete the geologic map (Fig. 4-M1) by adding the contacts and by labeling
the different units. Assume that all contacts are oriented 360°,30°W.

(b) Calculate the thicknesses of the Figaro Sandstone, Franklin Shale, Rufus
Springs Formation, and Milo Formation (show your work). Assume that bedding
attitude is constant throughout the map area.

(c) Construct a scaled stratigraphic column of units exposed in the map area.
Choose your own scale.

(d) Old man Thompson the hermit, whose cabin is located at point T on the map,
wants to drill a water well. The Figaro Sandstone is known to be a good aquifer.
How deep will Thompson have to drill a vertical well in order to reach the top of
the Figaro Sandstone?

5. In western Nevada a recent fault offset the ground surface and displaced a fence. A
somewhat forgetful geologist drove for five hours across rough dirt roads to get to
the site of the offset fence in order to measure the net slip on the fault. The net
slip, as defined by Ried et al. (1913) is "the distance, measured on the fault surface,
between two originally adjacent points situated, respectively, on opposite sides of
the fault.” When the geologist arrived at the fault, he found that he had not
brought a tape measure. Though forgetful, he was not stupid, because he cleverly
determined the net slip by surveying the difference in elevation (6 m) of the ground
surface on opposite sides of the fault and by measuring the plunge and bearing of a
line connecting the two ends of the fence (70°,N30°W). What is the net slip in
the plane of the fault?

6. A 3-m-thick conglomerate layer oriented N30°W,40°SW contains placer gold.
Initial assays suggest that the conglomerate is worth $50.00 per cubic meter.
Backyard Mining Company has the ability to excavate down to a depth of 50 m.
The property that they own and the outcrop trace of the layer are shown in Figure
4-M2. What is the total value of the gold that they will be able to obtain,
assuming they excavate the entire layer within their property?

Figure 4-M2. Sketch map of the N
prospect being exploited by
Backyard Mining Company. The
thin lines indicate property
boundaries, and the thick line
represents the outcrop trace of the
conglomerate layer (its thickness is
exaggerated). '

40 l

m

7. A geologist is completing a map of regional-scale folds involving the Itabirita
Formation. This formation contains major iron deposits and has been drilled
extensively during exploration. During folding, the ductile rocks of the formation
did not maintain a uniform thickness. The geologist is trying to determine
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whether regional variations in thickness are associated with the folding or predated
the folding. To do this, she is calculating the thickness of the unit at various
localities and plotting the results on a map showing the attitude of lithologic
layering (it is not clear if original bedding has been preserved) and the position of
the folds (Figure 4-M3).

B oo
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300 60959 0°W
75.N50w

Figure 4-M3. Sketch map of the ltabirita Formation. Points A, B, C,
and D are measurement stations where the attitude and thickness of the
formation could be determined.

(a) Next to each attitude measurement on Figure 4-M3 we indicate the thickness (in
meters) of the Itabirita Formation measured in the hole and the plunge and bearing
of the hole. Assuming that the top and bottom contacts of the formation are
parallel, calculate the thickness of the bed at each locality.

(b) Based on the above results, do you think that the thickness variations are
associated with the development of the folds or that they developed during an earlier
independent deformation event? Explain your answer.

A wartiral fanlt ctribes NONOE acence a horizontal nlain. A telenhnne nale hanneng
to be planted exactly on the fault trace, and two nonparallel veins are offset by the
fault. The strike separation of the veins as measured on the ground surface is
described in the following table. All distances are measured to the west of the the
telephone pole.

Part |

Dike

Attitude

Distance between telephone pole and inter- Distance between telephone pole and inter-
section of the dike with the S side of fault section of the dike with the N side of fault

A

B

340°,30°NE 600 m 400 m

040°,500NW 100 m 300 m

(a) What is the bearing, plunge, and value of the net-slip line that characterizes
movement on the fault?

(b) Which side of the fault moved relatively up, prior to erosion and creation of the
present ground surface?

(c) Is this a dip-siip, obiique-siip, or strike-siip fauii?



CHAPTER

INTRODUCTION

TO STEREOGRA

PROJECTIONS

5-1 INTRODUCTION

Representation and manipulation of structural data by the
geometric methods introduced in the previous chapters
becomes cumbersome and difficult if we have to analyze a
large number of measurements. In this chapter we
introduce the concept of the stereographic projection, which
has become widely used by structural geologists during the
last 50 years (Bucher, 1944) and provides a simple and
quick alternative way to represent tliree-dimensional data in
two dimensions. Although data plotting using a
stereographic projection may seem abstract at first, once
you are used to it you will find that the methods are
powerful and allow you to solve many types of structural
problems easily. Computers are increasingly being used to
plot structural data on stereographic projections, but you
will not be able to interpret computer output if you are not
adept at plotting data by hand. In fact, you will find that
the cardboard stereonet itself is versatile and quick and can
easily be carried with you to the field, even if you are
backpacking intc a remote area.

5-2 CONCEPT OF A
STEREOGRAPHIC PROJECTION

We can understand stereographic projections more easily if
we first think about spherical projections. Imagine an
observer standing at the center of a large hollow glass
sphere. Any direction can be specified by marking a dot on

the surface of the sphere. For example, the direction "due
west"” can be indicated by a dot on the equator of the sphere
that is due west of the observer, and a point that is
"straight up” will be a dot on the surface of the sphere that
is directly over the head of the observer. Early astronomers
displayed the relative positions of stars by plotting the
stars as white dots on the surface of a blackened sphere
whose center was the earth. The resulting representation
was called the celestial sphere. Note that the relative
distances of the stars from the earth cannot be represented
on the celestial sphere. A spherical surface on which
positions are indicated is called a spherical projection.
Remember, only orientations, not distances, can be
represented on spherical projections!

Spherical projections can be used to represent the
orientations of a line or a plane if the line or plane is
positioned so that it passes through the center of the
sphere. A line that is so positioned intersects the surface
of the sphere at two points, and a plane that is so
positioned intersects the surface of the sphere along a circle
(Fig. 5-