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PREFACE 

Basic Methods of Structural Geology is a textbook 
designed to serve two purposes. First, it is intended to 
serve as an accompaniment to techniques-based courses in 
structural geology or as an accompaniment to the 
laboratory portion of an undergraduate structural geology 
course. Second, the book is intended to serve as a 
reference source for information on structural geology 
methods. Thus, it should continue to be usefül to 
undergraduates in other courses and to graduate students 
and professionals. The book provides detailed explana
tions of methods and worked-out examples of problems. 
Our intention is to focus on the "how-to" part of 
structural geology, and thus we do not exhaustively 
duplicate the definitions and theory covered in general texts 
like Principles of Structural Geology (Suppe, 1985). 

Throughout Basic Methods of Structural Geology, 
the description of techniques is presented in a 
problem/method format. A specific problem is addressed 
and the step-by-step method for how to solve that problem 
is outlined; these examples are best understood when the 
student works through the steps and tries to duplicate the 
solution. Realistic exercises are included at the ends of the 
chapters to allow students to perfect their understanding 
and to see the application of specific methods. Chapters 
10 and 16 challenge the student to complete the 
interpretation of the data presented in the body of the text 
Chapters are arranged approximately in order of increasing 
of d.ifficulty and/or complexity of subject matter; it is 
intended that the information available in the eadier 
portions of the book will provide a foundation of 

experience that the student can use to help in 
understand.ing the later chapters. 

The t.ext is d.ivided. into two parts. Part I begins at an 
elementary levei so that the book is accessible to students 
early during their geological training. It discusses 
measurement and description of lines and planes, the use 
of a compass, analysis of contour maps, the use of 
trigonometry and orthographic projection for the solution 
of geometric problems in structural geology, and the use 
of stereonets and equal-area nets. We hope that Part I wm 
hone the student's abifüy to visualize structures in three 
dimensions and to comrmmicate descriptions of structures 
to others. Appendix l can serve as an introduction to Part 
I, as it provides a concise review of the concepts of maps 
and cross sections, in case the student is rusty on these 
subjects. 

Part II indudes eight contributed chapters, each 
dealing with the methods used in a subdiscipline of 
structural geology. This part covers map interpretation, 
analysi.s of rock-deformation experiments, analysis of 
fracture arrays, analysis of mesoscopic and microscopic 
structures, construction and balancing of cross sections, 
strain analysis, and interpretation of polydeformed terranes. 
The chapters of Part n include both introductory and 
advanced material and are self contained. Despite the 
diversity of subject matter in Part n, we have attempted to 
achieve a degree of uniformity in style of presentation to 
make the book easier to use; towards this goal, SM 
revised and reformatted much of the contributed material 
forPartU. 

xiii 



xiv 

ln order for the book to be comprehensive, it 
intentionally includes more material than can be covered in 
the laboratory portion of a standard one-semester structural 
geology course. Therefore, we suggest that instructors 
provide focused assignments from the book rather than 
swamp the student with reading. For example, the book 
covers several different approaches to the same problem, 
but a student can understand the concept by studying only 
one. It is not intended that the student work through each 
technique; the instructor should assign only one or two 
that exemplify the concept. The remaining techniques 
should be considered a resource for future reference. 

A standard introductory structural-geology course 
should cover most of the material in Part 1 and a selection 
of material from four or five of the chapters in Part II. 
Material not covered in an introductory course could be 
assigned in a more advanced structural geology course. The 
book contains many exercises, and instructors can, if they 
wish, design a curriculum that uses only exercises from 
the book. However, the book can also be used accompany 
original exercises that are put together by individual 
instructors. For example, Chapter 9 on geologic map 
interpretation can serve as an introduction to a series of 
exercises involving published U.S.G.S. geologic 
quadrangle maps, and Chapter 10 could be used as an 
introduction to a laboratory demonstration. 

As this is a first edition, we would appreciate 
comments and corrections provided by users of this book. 
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This part of the book introduces the fundamental tools of structural geology. The first 
four chapters are designed to accustom students to visualizing the attitude, location, and 
dimensions of geologic structures. (Appendix 1 outlines elementary aspects of maps 
and cross sections and thus provides an optional introduction to these chapters). We 
discuss how to measure and describe lines and planes, how to use a compass, how to 
create and interpret contour maps, how to cakulate the attitude of planes from point 
data, and how to calculate the thickness and depth of layers. Through the study of these 
subjects, the student leams how to apply descriptive geometry and trigonometry to 
problems in structural geology. The second four chapters focus on the use of 
equal-angle (stereographic) and equal-area projections for the solution of geological 
problems and for the representation of geological data. These chapters discuss practical 
applications of these projections to the field study of fabrics and folds, and to the 
analysis of drill-hole data. 





CHAPTER 

1 
M SORE ENT 
OF ATTITODE 

AND L TION 

1·1 INTRODUCTION 

Imagine that you are a field assistant on an expedition to 
map the remote highlands of Brazil. On the second day the 
chief geologist of the expedition sends you on a solo 
traverse to find the contact, or boundary surface, between a 
white sandstone unit and a grey limestone unit in the 
northeast comer of the map area. AH moming you trudge 
through the brush of a broad plateau on which there are 
only isolated outcrops of rock. By studying the outcrops, 
you discover that the limestone is more weathered than the 
sandstone. Then at lunchtime you come to a deep 
north-south trending gorge and descend to the stream at its 
bottom to cool your feet and eat. The rock along the 
stream bed at your hmchspot is sandstone. Looking 
upstream, you see a weathered ledge and think, based on 
your experience, "It's probably limestone. . . 
LIMESTONE! Wait a minute! That contact must be 
between me and that ledge." Y ou run upstream and find the 
contact perfectly exposed in the wall of the gorge (Fig. 
1-1). The bedding on opposite sides of the contact is not 
parallel, and the contact appears to be covered with 
scratches (slip lineations) and is bordered by a thin zone of 
breccia; you condude that the contact is a fault. Happy 
wüh your discovery, you sit down to write notes, and ask 
yourself, "What important features about this outcrop '."'ill 
the chief want to know?" Y our list indudes the followmg: 

1. Location (Where is the exposure of the fault?) 
2. Attitude (What is the orientation of the fault?) 
3. Appearance (What does the fault look lik.e?) 

The discipline of structural geology frequently deals with 
such questions. Now the challenge (and the fon) begins; 
how do you answer them? You are a bit worried because 
this is only the second day on the job and your compass 
skills are minimal. Nevertheless, you decide to rely on a 
very useful asset - common sense, and quickly get to work. 

This chapter focuses on the first two questions in the 
preceding list by introducing the methods and conve~tions 
used by geologists to describe the attitude and location of 
geologic structures. We begin with the conce~t _of a 
reference frame, which is implicit in all ~uch descnptio~s. 
Then we discuss the fonnat that geolog1sts use to spec1fy 
attítude, and we illustrate how a compass is used to 
measure attitude. Finally, we show how a compass can be 
used to find locations. Our discussion assumes that you are 
familiar with the basic concepts of maps and cross
sections, and that you can read a map to find a Iocation. If 
not, please study Appendix 1. Suggestions for describing 
the appearance of a structure are presented in Chapter 11. 

Perhaps the most important skiH of a structural 
geologist is to be able to visualize objects ?r feat~res in 
three-dimensional space. We will emphas1ze agam and 
again that when you describe the attitude of a g~ologic 
structure, you must create an image of the structure m your 
mind, and you must keep track of whether the strncture is a 
volume, a plane, or a line. 

1m2 REFERENCE FRAME 

A reference frame in three-dimensional space is a set of 
thre,e mutuaUy orthogonal coordinate axes. The point at 
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which the three axes join is the origin. A plane containing 
any two axes is called a coordinate plane. ln this context 
we can define the location of a point by specifying its 
coordinates with respect to the three axes, and the attitude 
of a line or plane as the angle that a line or plane makes 
with respect to each coordinate axis. ln a three-axis 
reference frame, a line can be resolved onto a coordinate 
plane (Fig. 1-2) by tracing the tip of the line along a path 
parallel to the axis that is perpendicular to the coordinate 
plane. The resulting line, which lies on the coordinate 
plane, is called the projection of the line. 

z 

1 
A 

····-.:_·;;·-::.~A' 

"""'~~~~-"--~~x 

Figure 1-2. The orientation of a line (OA) in 
space can be described with reference to three 
mutually perpendicular axes (X. Y, and Z). The 
projection of line OA onto the horizontal (X-Y) 
plane is labeled OA'. Point A moves down 
along the dotted line to point A'. Line AA' is 
parallel to the vertical (Z) axis. 

For a given point on or near the earth's surface, the 
three axes that are used to define the reference frame are (1) 
the line of longitude (which trends north-south; see 
Appendix 1), (2) the line of latitude (which trends 
east-west; see Appendix 1), and (3) a vertical line. The 
coordinate plane containing the lines of latitude and 
longitude at a point is dle. horizontal p!ane at the point. A 
"vertical line" is parallel to the radius of the earth at the 
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Figure 1-1. Geologic discovery! 
A fault exposed in a stream cut. 
Note that the marble layers to the lett 
(north) of the zone are not parallel to 
the fault or to the sandstone layers 
to the right. The stream flows due 
south. The fault surface is covered 
with scratches (slip lineations) that 
are parallel to the intersection 
between the fault plane and the 
vertical gorge wall. 

point (Fig. 1-3) and is, of course, perpendicular to the 
horizontal plane. Positions along a vertical line are 
specified by elevations. Because of the curvature of the 
earth's surface, the absolute orientation of the three axes 
changes from point to point around the globe. Remember 
the fault exposure mentioned in Section 1-1? To describe 
the location of this outcrop ín your notes, you record its 
latitude, longitude, and elevation. This information can be 
read from a map (see Appendix 1). 

Longitude N 

s 
Figure 1-3. Three coordinate axes defining a 
reference frame at the surface of the earth. 
Line X is tangent to a line of latitude, line Y is 
tangent to a line of longitude, and line Z is 
perpendicular to the surface of the earth and is 
parallel to a radius vector. 

1-3 ATTITUDES OF PLANES 

Many geologic structures (e.g., faults, beds, joints, veins, 
cleavages, foliations, dikes, contacts, and unconformities) 
can be represented as planes. The attitude of a plane can be 
specified simply by a pair of numbers. Two alternative 
number pairs can be used; the first is strike and dip and the 
second is dip and dip direction. The use of clip and clip 
direction measurement is treated in Section 1-4. 
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Strike of a Plane 

A horizontal line on a plane is called a strike line. A strike 
line on a structure can be visualized as the intersection 
between an imaginary horizontal plane and the structure. 
Remember that the intersection between two planes is a 
line; in geology, the line of intersection is called a trace. 
To help visualize a strike line, imagine a cliff rising from a 
calm sea; the intersection of the sea surface with the cliff is 
a strike line on the cliff face (Fig. 1-4). The trace of the 
breccia zone on the horizontal bed of the stream in Figure 
1-1 is a strike line. The strike of a plane at a given 
location is the angle between the strike line and true north. 
In other words, strike is the angle between a horizontal line 
on a plane and true north. Memorize this definition! 
Strike is an angle that is measured in degrees with a 
compass. Any angle measured with a compass is called an 
azimuth. 

Figure 1-4. lntersection of the · sea surface 
(horizontal plane) with a cliff face. The shore
line defines a strike line on the cliff face. Cliff A 
strikes north-south, cliff B strikes northeast
southwest, and cliff C strikes east-west. 

The strike of a plane can be descríbed in two ways. 
The füst way to describe strike is known as the quadrant 
convention. In this convention, the range of possible 
directions is divided into four quadrants (NE, SE, NW, and 
SW) of 90° each (Fig. l-5a), and the strike is specified by 
a given number of degrees east or west of north. If Lhe 
strike line on a plane is parallel to the N-S compass 
direction, the plane has a strike, in the quadrant convention, 
of N00°E. If the strike line on the plane is parallel to the 
E-W compass direction, the plane has a strike ofN90°E (or 
N90°W). A strike line that points NE is oriented N45°E. 

N 
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A strike of N32°E is read, "north thirty-two degrees east." 
Note that a strike of N20°W is exactly the same as a strike 
of S20°E, because there is no need to differentiate between 
the ends of a horizontal line. It is common practice, 
however, to specify strikes in the quadrant system with 
respect to north. Look again at Figure 1-1. The trace of 
the fault on the stream bed is perpendicular to the 
north-south stream. Thus, even without usíng a compass, 
you were able to estimate that the fault strikes N900E. 

The second way to represent strike is known as the 
azimuthal convention. ln thís convention the range of 
possible directions on a horizontal plane is divided into 
360°, with the direction of due north being assigned a 
value of 000° or 360° (Fig. 1-Sb). Strike in the azimuthal 
convention can be specified entirely by a number. For 
example, if the strike line points exactly northeast, the 
strike is 045°. An azimuth ofN00°W in the quadrant 
convention translates to 000° in the azimuthal convention. 
A strike of N32°E is identical to a strike of 032°, a strike 
of N32°W is identical to 328°, and a strike of S24°E is 
identical to 156°. Notice thai in the azimuthal convention, 
a strike should always be specified by three digits, even if 
some of the digits are 0 (e.g., 056°). You can indicate the 
strike of the fault in Figure 1-1 as 090°. 

Dip of a Plane 

The true dip of a plane is the angle between the plane and a 
horizontal plane as measured in a unique vertical plane. 
This unique vertical plane is oriented such that it is exactly 
perpendicular to the strike line (Fig. 1-6a). ln Figure 1-1 
the dip of the fault in the vertical wall of the gorge is the 
true dip of the fault, because the strike of the fault is 
perpendicular to the wall. You could probably estimate the 
dip of the fault if you did not know how to measure it 
exactly; the fault looks like it dips about 700. The true dip 
is always the steepest possible slope on the given plane, 
and the true dip direction is the azimuth that is exactly 
perpendicular to the strike. The true dip direction is always 
specified as the downslope direction; the fault in Figure 1-1 
dips south (downstream). A dip angle measured in any 
vertical plane that is not exactly perpendicular to the strike 
line is called an apparent dip (Fig. l-6b). The dips of the 
limestone and sandstone beds that you see in the gorge waU 

(N45°WJNW NECN45°EJ 

360° 
000° 

(N90° WJW ECN90° EJ 270°*::0° 
figure 1-5. Conventions lor spec-

ífying strike. (a) Ouadrant con- cs4s 0 wJSW SECS45'EJ 
vention; (b) azimuthal convention. s 
ltems in parentheses are alternative 
expressions of the same direction. (a) 

2 2 3 5' 

1 80° 

(b) 
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(a) 

(b) 

Flgure 1-6. Block diagram showing the 
meaning of dip. The vertical reference plane is 
ruled. (a) True dip (<!> ), with arrowhead 
indicating dip direction; (b) apparent dip (d). 
The angle B is the angle between true strike 
and the bearing of the plane in which the 
apparent dip was measured. 

of Figure 1-1 are apparent dips, because the beds do not 
strike perpendicular to the gorge wall. The magnitude of 
an apparent dip must always be less than that of the true 
dip; the apparent dip measured in the vertical plane that 
contains the strike line is always equal to 00°. 

Dip is specified as an angle between 00° and 90°. A 
plane with a 00° dip is a horizontal plane, whereas a plane 
with a 90° dip is a vertical plane. Generally, dips in the 
range of 00° to 20° are considered shallow dips, those in 
the range of 20° to 50° are moderate dips, and those in the 
rang e of 50° to 90° are steep dips (Fig. 1-7). These 
divisions are arbitrarv and vary depending on author. ln 
circumstances where the stratigraphic younging direction 
(the direction in which the beds get younger) of a sequence 
of rocks is known, and the beds have been tilted past 
vertical, the beds are said to be overturned. ln such cases, 
the specified dip is still a number less than 90°, but a 
different map symbol is used. 

Specification of the strike and the dip angle alone does 
not uniquely define the attitude of a plane. Far example, 
an east-west striking plane can dip either north or south, 
and a plane that strikes N40°E can dip to the southeast or 
the northwest (Fig. 1-8). If the fault in the gorge of Figure 
1-1 dipped to the north instead of to the south, its surface 

CSteep) ao' 

Younger 

Older 
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040°,49°NW 040° ,49° SE 

A B 

Figure 1-8. Convention for specification of 
dip direction. Note that the two inclined planes 
have opposite dips but the same strike. 

would slope upstream instead of downstream. If planar 
orientations are specified by strike and dip, the general 
dírection of dip must be specified. The exact direction is 
not needed, far the true dip direction is always exactly 90° 
from the strike. Thus, it is sufficient to say that a N30°E 
plane is dipping, say, 24°NW. The true dip direction of 
this plane is automatically known to be N60°W. Note 
that it is impossible far a plane to dip in the same direction 
that it strikes. The N30°E-striking plane cannot dip 
northeast or southwest; the dip direction must lie in one of 
the quadrants to either side of the strike quadrant. Visualize 
a plane and convince yourself that this rule holds! The 
fault in Figure 1-1 cannot dip east or west 

Representation of Planar Attitudes 

The attitude of a plane is completely specified when the 
strike, dip, and general dip direction are indicated. Far 
example, the attitude of the east-west striking plane that 
dips 30°N can be written as 090°,30°N or as 
N90°E,30°N. Some geologists prefer to substitute a 
semicolon or a slash far the comma (e.g., N90°E;30°N). 
Note that the strike number is written füst and the dip 
number second. Generally, you should specify the quadrant 
toward which the plane is dipping (e.g., N42°W, 23°NE) 
unless the strike is within about 10° of north-south or 
east-west (e.g., N08°E,34°E). You should now be able to 
concisely specify the approximate orientation of the faµlt 
in Figure 1-1; it is N90°E,70°S. 

Planar attitudes can be specified not only by pairs of 
numbers but also by symbols on a map. The use of such 
symbols makes the geometry of a structure on a map easier 
to visualize. Symbols far various planar features are 
displayed in Fígure 1-9. The strike is indicated by a short 

-----... --0°dip 

Figure 1-7. Adjectives used to 
describe dip of a layer. The example 
shows an overturned fold. The 
arrows indicate stratigraphic young
ing direction. 
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Figure 1-9. Basic symbols com-
monly used for specification of strike 
and dip of a planar structure on a /20 51 

~ 

map. Note that the numbers are 
always written in the same 
orientation. Bedding Foliation 

line segment drawn parallel to the strike line, and the dip is 
indicated by a tick pointing in the dip direction. The angle 
of dip is written next to the tick. Dip numbers on a map 
should aH be written in the same orientation (usually 
parallel to the base of the map and to the words of the 
legend), regardless of strike, so that they are easy to read 
without having to constantly rotate the map. Symbols for 
joints and cleavage are used differently by different authors. 
If several sets of foliations are present, the author of a map 
may invent symbols. Because of the variety of symbols 
!:hat are used, it is important that symbols be defined in the 
map explanation. 

Notice that in the azimuthal system strikes are always 
specífied by three-digit numbers (with no letters needed) and 
dips by two-digit nurnbers plus a dip-direction 
specification. Some geologists use a shorthand system of 
specifyíng strike and dip, called the right-hand rule. When 
following this rule, you must choose the strike azimuth 
such that the plane dips to your right when you are facing 
in the direction ofthe azimuth (Fig. 1-lOa). On the dial of 
the compass, this rule is equivalent to saying that the dip 
direction is found by moving 900 dockwise around the dial 

045~20° 

/ 
/ 

(a) 

clockwise 

~ 
strike to dip 

(b) 

2 2 5~20° 

Figure 1-10. lllustration of the right-hand 
rule convention for specification of strike and 
dip. (a) Plane dips to the right of the line of 
sight. (b) Dip number lies to the right of the 
strike number on the cornpass. 

~ 
Joint 
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Vertical Allerna te 

Vertical Folialion Overturned Horizontal Cleavage 

Bedding or Cleavage Bedding Bedding Symbol 

from the strike azimuth to the dip direction (Fig. 1-lOb). 
The advantage of the right-hand rule is that attitudes can be 
expressed entirely by numbers, which is especially 
convenient when attitude data are to be entered in a 
computer file. 

1~4 ATTITUDES OF LINES 

Many geologic features (e.g., scratches on a fault surface, 
the intersection of two planes, elongate minerals and 
pebbles, flute casts, fold hinges) can be pictured as lines. 
Linear structures related to deformation of rock are called 
lineations. The attitude of a linear structure cannot be 
represented by strike and dip. Instead, línear attitudes are 
represented by a pair of numbers called plunge and bearing. 
If the line occurs on a plane of known attitude, its 
orientation may be give by a single number called the rake 
or pitch. 

Piunge and Bearing of a Une 

The plunge of a line is the angle that the Hne mak:es with 
respect to a horizontal plane as measured in a vertical plane 
(Fig. 1-11). Values for plunge range between 00° and 90°; 
a plunge of 00° refers to a horizontal line, and a plunge of 
90° refers to a vertical line. If lhe bearing of the líneation 
is exactly parallel to the dip direction of the plane, the 
plunge must equal the dip (visualize the scratches on the 
fault in Figure 1-1). Generally, phmges ofbetween 00° to 
20° are considered shallow, those between 20° to 500 are 
considered moderate, and those between 50° to 90° are 
considered steep. 

The bearing (also called trend) of a line is lhe azimuth 
of the projection of the line onto a horizontal coordinate 
plane. The line and its projection must both lie in the 
same vertical plane (Fig. 1-11 ). A bearing can be specified 
using either the quadrant or azimuthal conventions, 
depending on preference. A line that is exactly parallel to a 
strike line on a plane has a bearing that is equal to the 
strike. 

When specifying a bearing, it is very important that 
the azimuth indicated gives the direction ín which the line 
plunges. A line plunging due east is not the sarne as a line 
plunging due west; these two lines plunge in opposite 
dírections. The scratches on the fault surface in Figure 1-1 
are perpendicular to the strike of the fault and arc parallel to 
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(a) 

the dip direction of the fault. The scratches therefore 
plunge due south; they could not possibly plunge due 
north. 

Dlp and Dlp Directlon 

As noted earlier, strike and dip are not the only means by 
which the attitude of a plane can be specified. The attitude 
of a plane can be specified by giving the plunge and 
bearing of the line on the surface of the plane that is 
exactly perpendicular to the strike. The values of the 
plunge and bearing for thís line are the dip and dip 
direction. W e could specify the orientation of the fault in 
Figure 1-1 by saying that its dip is 70° and its dip 
direction is 180° (i.e., its dip and dip direction are: 
70°,180°). 

Rake of a Llne 

The rake of a line (sometimes referred to as the pitch of a 
line) is the angle between the line and the horizontal as 
measured in the plane on which the line occurs (Fig. 1-12). 
The rak:e is an angle between 00° and 90°. If the bearing 
ot tne uneation IS parauei m me si.nKt uf 1.úe pim1e, ihe 
rake must equal 00°. lf the bearing of a lineation is 
perpendicular to the strike, the rake is 90°. The scratches 
on the fault surface ofFigure 1-1, for example, have a rake 
of 900. Any lineation whose bearing is between the strike 
and dip direction of the plane on which it occurs must have 

flgure 1-12. Block diagram illustrating the 
rneaning of rake and the relation of rake to 
plunge and bearing. Ruled plane is inclined and 
the stippled plane is vertical. r = rake 
(measured in the inclined plane); B = bearing 
(measured in the horizontal plane); 0 = true dip 
of the plane, e = plunge of the line. 

(b) 
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figura 1-11. Definition of the 
plunge and bearing of a line. The 
horizontal plane is shaded and the 
vertical plane is ruled. B is the angle 
of bearing. (a) Line plunging to the 
east; (b) line plunging to the west. 
Note that the bearing of the two lines 
is different even though the rnag
nitude of the plunge (8) is the sarne 
and both lines lie ín the sarne plane. 

a rake that is intermediate in value between 00° and 90°. 
Try to visualize why this rule is true. The direction of rake 
must be índicated. Imagine that the plane shown in Fígure 
1-12 strikes northeast-southwest (i.e., the arrow that points 
from 0 to A points northeast). The line in the dipping 
plane that runs from 0 to D pitches to the northeast and a 
line from A to C (not shown) pitches southwest. 

A rake angle alone does not completely describe the 
attitude of a line in space. To completely specify the 
attitude of the line both the rake of the líne and the strike 
and dip of the plane on which it lies must be indicated. We 
will see in Chapters 3 and 6 how to calculate the plunge 
and bearing of a líne if its rake and the strike and dip of the 
plane on which ít occurs are known. 

Representatlon of llnear Features 

The attítude of a line is completely specified by the plunge 
and bearing. The plunge (a two-digit number) is written 
first, followed by the bearing (a three-digit number). For 
example, a linear attitude would be written 48° ,021° or 
48° ,N21°E (meaning a plunge of 48° in the direction 
north 21° east). The scratches on the fault surface ín 
Figure 1-1 are oriented 90°, 180°. Many ge0Iog1sts 
substitute an arrow or a semícolon for the comma. 
Remember, in contrast, that a planar attitude by the 
right-hand rule would be written with the three-digit 
number first (e.g., 0210,48°). 

The map symbol for a linear attitude is an arrow drawn 
parallel to the bearing. A number is written at the tip of 
the arrow to indicate the angle of plunge. Often, the arrow 
is drawn to originate from a planar attitude symbol that 
indicates the strike and dip of the plane on which the 
lineation was observed (Fig. 1-13). Rakes are rarely shown 
on maps. If rakes are measured in the field, they are 
usually converted to plunge and bearing before being 
transferred to a map (see Chapters 3 and 5). 

1-5 USE OF A COMPASS 

ln the scenario presented in Section 1-1 we suggested that 
your compass skills were minimal. Tnus, you relied on 
common sense to detennine a way to descríbe the attitude 
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(a) ~Plunge 

CbJ .{oip 
Plunge 

) L-Plunge 
(e ~Dip 

Figura 1·13. Common symbols used for 
repre- senting the plunge and bearing of a line 
on a map. Orientation of the arrow gives the 
bearing; the number at the end of the arrow 
gives the plunge. (a) lineation alone; (b) 
lineation on a bedding plane; (e) lineation on a 
foliation plane. 

of the fault to the chief. Realizing that the north-south 
strearn trace and the vertical gorge wall provided an ideal 
three-axis reference frame, you estimated the attitude of the 
fault. The chief is pleased with your effort, but requires 
more exact measurements in the future, and thus spends the 
next few hours training you in the use of a compass. 

The traditional instrnment used by geologists for 
measurement of the attitudes of structural features is the 
Brunton compass, though in recent years other types of 
compasses (e.g., the Silva compass) have come into favor, 
and in areas of magnetic rocks a sun compass must be 
used. The discussion that follows is keyed to use of the 
Brunton-style compass, but the principles can be applied to 
any compass. Practice with a compass wm help you 
develop the ability to visualize lines and planes ín three
dimensional space. 

Elements of a Compass 

A compass (Fig. 1-14) ís composed of a magnetized needle 
that is balanced on a pin so that the needle can rotate easily 
and becomes aligned with the magnetic field lines at the 

Folding sight 

Screw for 
adjusting declination 

--::::;:::.-,--
~ 

magnetic 
tieid 
lines 

Flgure 1-15. Sketch showing the orientation 
of a compass with respect to a magnetic tieid 
line. 

9 

location of measurement (Fig. 1-15). The white painted end 
of the needle points to the north magnetic pole. A 
magnetic pole (there are two, north and south) is a point on 
the surface of the earth where the lines of magnetic force 
are vertical (Fig. 1-16). On the outer circumference of the 
compass face is a scale graduated in degrees. This scale is 
called a compass card. On old-style "mariner's" compasses, 
the compass card was divided into 16 increments (N, NNE, 
NE, ENE, E, ESE, etc.). More modem "surveyor's" 
compasses are divided by degrees in one of two ways. The 
compass card of quadrant compasses is divided into four 
quadrants of 900 each; north and south are each assigned a 
value of 00°, and east and west are each assígned a value of 
90°. On an azimuthal compass, the card is divided into 
360°, with 000° (3600) coinciding with north, 090° 
corresponding to east, 180° corresponding to south, and 
27()0 corresponding to west. 

A fold-out metal pointer projects from the Bmnton 
compass. When the white end of the compass needle lies 
on 000°, this pointer, when földed out, is pointing due 
north. Likewise, when the white end of the needle lies on 
045°, the pointer is pointing northeast, and so forth. 

Though values for azimuth increase clockwise from 
north on the surface of the earth (e.g., if you are facing 

Compass card 

Figure 1·14. Sketch of a Brunton compass, with the key components 
labeled. Adapted from Compton, 1962. 
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TS 
Figure 1-16. Earth's magnetic tieid lines. 
MN = magnetic north; TN = true north; MS = 
magnetic south; TS = true south. (Adapted 
from Judson, Kauffman, & Leet, 1987.) 

north and want to face east, you turn clockwise), the 
numbers representing azimuth on the compass card increase 
in the counterclockwise direction. Likewise, on the 
compass card of a quadrant compass, east and west are 
reversed. While this convention may seem confusing at 
first, it actually makes use of the compass much easier. 
This is because as you rotate the compass (and therefore the 
compass card and pointer) clockwise from north to east, the 
compass needle actually remains fixed in space; the needle 
continues to be alígned with the magnetic field line (Fig. 
1-15). Therefore, in the reference frame defined by the 
compass body, the needle appears to rotate counter-

090° when the compass pointer is pointing due east, the 
azimuthal numbers on the compass card must increase in a 
counterclockwise direction. On a quadrant compass, 
imagine that the compass pointer is directed exactly NE. 
On the compass card, you simply read off "north 45° east." 
The word "east" is written on the card to the left of north 
so that you can read off the word east without thinking. 

ln addition to the compass needle, the compass also 
contains a "bull's-eye" levei (a circular chamber containing 
a bubble), which tells you when the base of the compass is 
horizontal, and a clinometer (an elongate cylinder 
containing a bubble; the cylinder is attached to a movable 
arm), which allows measurement of dip or plunge angles. 

Magnetic Declination 

The magnetic field of the earth can be represented by an 
array of lines that run from one magnetic pole to the other 
(Fig. 1~16). ,A.t a given locality on the ea.'"Lli, the moving 
element of the compass, the magnetized needle, aligns 
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itself with the magnetic field line at that locality. The 
needle is usually balanced so that it lies parallel to the 
horizontal plane at the point of measurement and therefore 
gives the horizontal component of the magnetic field. 
A veraged over long periods of tim e, the magnetic dipole of 
the earth corresponds to the spin axis of the earth, so that 
the magnetic poles are the same as the geographic poles 
(the geographic poles are the points at which the spin axis 
pierces the earth). At any given time, however, the 
magnetic poles may be located at a distance from the true 
poles. Today, for example, the north magnetic pole is 
located in northern Canada. The acute angle between the 
direction of true north (a líne of longitude) and the direction 
that the compass needle points in the present-day magnetic 
field is called magnetic declination. A declination of 12° 
east means that the angle between true north and magnetic 
north is 12°, and that true north lies 12° counterclockwise 
from magnetic north. V alues for magnetic declination at a 
given time in the United States can be plotted on a map 
(Fig. 1-17). The magnetic pole drifts slightly every year, 
so such maps must be constantly updated. 

As we noted earlier, the reference frame used to specify 
locations and orientations on the earth's surface is keyed to 
the geographic poles. Therefore, a correction must be made 
in order to account for magnetic declination. By making 
this correction, the compass pointer is pointing to true 
north when the white end of the needle is lying on 0°, even 
if the needle is not parallel to the pointer. A Brunton 
compass may be set for the magnetic declination of a map 
area by tuming the screw on the side of the compass; this 
screw rotates the compass card with respect to the pointer. 
Figure 1-18 shows compasses set for two different 
magnetic declinations. 

Measurement of Planes with a Compass 

In this section we describe the practical methods that you 
can use to measure the attitude of a plane with a compass. 
You will leam these methods more easily if you work 
through them with someone who is experienced in the use 
of a compass. 

(a) Direct Measurement of Strike: If the plane 
you are measuring is well exposed and fairly smooth, ít is 
possible to lay the compass directly on the surface of the 
plane to measure its strike. Make sure your hammer or 
steel clipboard is not near the compass. With the side edge 
of the compass flush against the bed surface, move the 
compass so that the level bubble is in the bull's-eye. Note 
that a different edge is used depending on whether the 
surface is upward-facing or downward-facing (i.e., use the 
top edge of the compass to measure under an overhang). 
When the bull's-eye levei indicates that the plane of the 
compass is horizontal~ L'1e. edge of the compass in contact 
with the surface defines the horizontal intersection line 
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Flgure 1-17. Map of the dec
lination lines for the United States for 
1980. At a location along one of 
these lines the declination is equai to 
the number of degrees indicated. 
(Adapted from Brunton compass 
instruction book.) 
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E - DECUNA TION - W 

UNES OF EQUAL MAGNETIC DECUNATION 1980 

True North 

Declínation Setting: 15°W 

(a) 

True North 

Declínation Setting : 15°E 

(b) 

Figura 1-18. Sketches showing the dial of a 
compass set to correct for magnetic dec
lination. (a) Oeclination of 1sow; (b) dec
lination of 15°E. Each compass is shown 
pointing due north. Note that the needle is not 
parallel to the fold-out pointer. Angles are 
exaggerated. 

Flgure 1-19. Sketch illustrating 
the position of a compass during 
measurement of strike. Note that 
the bottom side edge is flush with the 
dipping surface. (a) Block diagram. 
Stippled plane is vertical and is 
perpendicular to strike. (b) View of 
compass looking along strike for an 
upward-facing surface. True dip is 0. 

(e) View of compass looking along 
strike for a downward-facing sur
fa.ce. (d) Top 11iew of compass 
showing bubble centered in 
bull's-eye. (a) 

between the compass and the surface and is, therefore, a 
strike line on the surface (Fig. 1-19). Either end of the 
compass needle gives the value of strike, though usually 
the end closer to north is specified. Remember, if the 
compass needle reads 315° (= N45°W), the pointer is 
pointing 315°. 

Because of the design of the Brunton compass (a 
circular metal ridge projects from the bottom to protect the 
clinometer adjustment lever), it i.s difficult to measure 
strike directly for planes with dips of less than about 12°. 
For such shallowly dipping planes, it is easier and more 
accurate to füst determine dip direction and then cakulate 
strilce. Very slight undulations of a shaUowly dipping 
plane can drastically change the strilce, so extra care must 
be taken in measuring such planes. Remember that a 
unique sl:r:ike crumot be specified for a horizontal plane. 

(b) Direct Measurement of Dip: Direct deter
mination of the dip of a surface can be done in two ways. 

(b) 

(d) 



12 

The first way is to indicate a perpendicular to the strike líne 
on the plane using string or a stick. Be sure not to make a 
permanent mark that would disfigure the outcrop! Place 
the side of the compass on the surface, making sure that 
the compass is not upside-down. Note that a different side 
of the compass is placed against the surface depending on 
whether the surface is upward-facing or downward-facing, 
because the clinometer dial is only on one half of the 
compass face (Fig. 1-20). Using the lever on the back of 
the compass body, move the clinometer so that the bubble 
is centered. The angle indicated by the clinometer is the 
dip. The second way, which does not require prior 
knowledge of the strike direction, is to lay the side of the 
compass on the surface parallel to your best estimate of the 
dip direction, center the clinometer bubble, and swing the 
compass back and forth slightly (all the while keeping the 
side in contact with the surface) so that it swings through a 
narrow range of apparent dip directions (indicated by the 
arrows in Fig. l-20a). If, during this operation, the bubble 
moves out of center such that you must adjust the 
clinometer to a steeper dip to recenter the bubble, your 
original estimate was an apparent, not a true dip. The 
direction ín which the compass is oriented when the 
clinometer indicates the steepest slope is the true dip. 

(e) Use of a Compass Plate: If the exposed 
portion of the surface to be measured is too small or is 
slightly irregular, such that it is not possible to lay the 
edge of the compass directly on the surface, a direct strike 
measurement may still be possible with the aid of a 
compass plate. A compass plate is a smooth sheet of 
wood or aluminum that provides an adequate base for the 
compass to contact. When making a compass plate, it is 
best to cut a large notch out of one corner (Fig. 1-21) in 
nr-d_~.,. tn fq,....1lit~tP. mP~~nrPmPnt nf nlanP:~ th~t int~r~rt thf'_ 

---- - --- --- A-

comer of an outcrop. Standard clipboards, which have steel 

·:: :"-'· .·. :.- :~: . ;: 
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20cm 

--12cm-

Figure 1-21. The surface of a compass 
plate. The notch is to facilitate measurement 
of planes that intersect corners. lf the plate is 
made of aluminum, it should be about 0.3 cm 
thick. 

clips, or soft notebooks do not make appropriate compass 
plates. If only a small ledge is available for measurement, 
the plane of the ledge can be extended by holding the plate 
firmly against the ledge (Fig. l-22a). The compass can 
then be placed on the plate. If no ledge is available, but 
the intersection between the plane and the outcrop face is 
visible on two nonparallel planes that join at a comer, a 
measurement can be made by aligning the two edges of the 
notch in your compass plate with the two intersection lines 
on the comer (Fig. l-22b). The two lines define the plane 
to be measured. Make sure the two lines lie ín the plane of 
the compass plate, and then make a measurement. 

(d) Shooting a Strike and Dip: The attitude of 
a plane can also be determined from a distance, using the 
following steps (the procedure is commonly called 
"shooting a strike and dip;" Fig. 1-23): (1) Position 
yourself so that your are able to sight along a strike line on 
the plane. This means that your line of sight should be a 
\:trilri" linl' nn thl' pl:mf'< anrl yon ~honlrl not he looking 

down on the surface of the plane or up to the backside of 

·;:.:[:~·:};":\){i/.:°:: 

;\:)i:/;:;;.~.:.:::;:;.:Y:":'.::: 

(a) (b) (e) 

Flgure 1-20. Sketch illustrating the position of a compass during 
measurement of true dip. (a) Block diagram. Stippled plane is per
pendicular to strike. The arrows indicate movement of the compass 
during the operation to confirm that the dip measured is the steepest 
possible díp on the surface. The pencil points in the direction of true 
dip; (b) view looking down strike showing the proper position of the 
clinometer for an upward-facing surface; (e) view looking down strike 
showing the proper position of the clinometer for a downward-facing 
surface. 
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(a) (b) 

Flgure 1 ·22. Use of a compass plate. (a) 
Extension of the surface of a bed at a lsdge. 
The stippled box is the edge of a compass; (b) 
measurement of a plane defined by two line
ations on a corner. 

the surface. (2) Hold the compass away from your eyes 
(about half arm's length). (3) Fold up the mirrored cover of 
the compass so that you can see through the small window 
at the base and can see the reflection of the compass dial. 
Levei the base of the compass with the bull's-eye level; (4) 
Line up the tip of the metal pointer, the tick mark in the 
window, and the strike line on the plane with your line of 
sight. (5) By looking in the mirror, check the bull's-eye 
bubble and relevel if necessary. Realign your line of sight 
with the pointer, the tick mark, and the strike line and read 
off the strike; (6) To determine the dip, maintain your 
position with your line of sight parallel to a strike line. 
Hold the compass at arm's length perpendicular to the 
strike direction. Make sure it is at the same elevation as 
your line of sight Tilt the compass so that the edge of the 
compass parallels the plane being measured, center the 
clinometer bubble, and read off the dip. Shooting a strike 
and dip is inherently less accurate than maldng a direct 
measurement on a surface but may be necessary because an 
outcrop is inaccessible or because the layering to be 
measured is wavy. If the the layering is wavy, a single 
measurement directly on the surface may not indicate the 
average attitude of the layer. 

Measurement of Unes with a Compass 

There are three approaches to measurernent of the bearing 
of a lineation with a Brunton compass. The füst two 
methods work best for lineations that are on shallowly 
dipping planes, and the third rnethod works best for 
lineations that are on steeply dipping planes. 

Figure 1-23. Shooting a strike and 
dip. (a) Position of observer with 
respect to plane; (b) configuration of 
compass. 

/ 
/ 

(a) 
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(a) Bea.ring Method A: Fold out the metal 
pointer (Fig. l-24a). Notice that there is a slot in the 
pointer. Hold the compass at chest height and align the 
compass with the line to be measured such that the line is 
visible in the slot and the pointer is pointing in the plunge 
direction. If the iine is hard to see, you may lay a pencil 
along it. Do not draw on outcrops. Levei the compass 
with the buH's-eye levei. The bearing is the azimuth 
indicated by the white end of the needle . 

(b) Bearing Method B: Align the edge of your 
compass plate along the line and place the side of the 
cornpass on the surface of the plate such that the metal 
pointer is pointing down-plunge. Adjust the orientation of 
the plate so that it is vertical and the bull's-eye level in the 
compass indicates horizontal (Fig. l-24b). With the 
compass in this position, the needle indicates the bearing 
of the line. 

(e) Bearing Method C: Place two points of the 
edge of the compass on the lineation (Fig. l-24c); one 
point should be a comer of the compass body and the other 
a comer of the compass cover. The contact point on the 
body should be down the plunge of the line fmm the cover 
contact point. Center the buU's-eye level and read the 
bearing. The edge of the compass defines a vertical plane. 
Therefore, the azimuth indicated on the compass dial is the 
bearing of the line. This method works only for lineations 
that are on overhangs. 

(d) Shooting a Bearing: If it is necessary to 
determine the bearing of large linear feature (such as a 
highway, a river, or the path between two points), you 
may shoot a bearing. One way to do this is to configure 
your compass as shown in Figure l-23b. Levei the 
compass and point it toward a point ín the distance along 
the line that you are measuring. The point should be at 
eye levei (e.g., it could be your field partner standing in the 
distance. Look through the window of the compass cover 
so that you see the distant point. Read the black end of the 
needle (because the compass is pointing toward you) to 
determine the bearing of a line pointing away from you. 
An easier, but less accurate, way of shooting a bearing is 
to hold the horizontal compass at waist level or chest levei 
and simply point it toward the distant point. The white 
end of the needle gives an approximate bearing to the 
point. 

(e) Plunge Measurement: To determine the 
plunge of the line, lay the side of the compass along the 

~--

(b) 
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(a) 

lineation (or along the edge of the compass plate that is 
aligned with the lineation). Make sure that the plane of the 
compass is vertical, then use the clinometer to measure the 
plunge. Be sure that the scale of the clinometer is 
right-side up. Notice that bearing is usually measured 
before plunge, even though plunge is written in front of 
the bearing. 

if) Rake Measurement: Measurement of rake is 
r1,..,..„ mith " nrnt:r<>rtnr T T<:i> vnnr rnmnl'!<:<: to ~tP.rmine the ----- -- _a----- = ____ , '* - ~ ----... -- - -

strike line. Position the protractor so that it is lying 
against the surface and so that its base is parallel to the 
strike line (Fig. l-24d). Lay your pencil on top of the 
protractor so that it passes through the center point of the 
protractor and is parallel to the lineations. Measure the 
rake off the protractor scale. Use your compass to 
determine the direction of rake. On a steeply dipping 
surface, it is easier to measure the rake of a lineation than 
it is to measure its plunge and bearing. Remember that 
plunge and bearing can be calculated from rake only if the 
strike and dip of the plane on which the line occurs is 
known. 

1-6 LOCATING POINTS WITH A COMPASS 

After you have leamed how to make measurements with a 
compass, the chief asks you to produce a detailed map 
showing the positions of limestone and sandstone outcrops 
in the region near the gorge described ín Section 1-1. Such 
a map will help you to trace the fault across the 

(b) 

(d) 
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Figure 1-24. Measurement of a 
lineation. (a) looking down on a 
compass with the lineation in the 
pointer siet; (b) use of a compass 
plate; (e) two-point contact method 
tor overhangs; (d) determination of 
rake (r is the angle of rake). 

countryside. Unfortunately, a detailed topographic map of 
the area does not exist, so you have no base map on which 
to plot the outcrop locations. A base map is any map at 
an appropriate scale on which geologic measurements can 
be plotted. The chief suggests that you use your compass 
and do a simple survey. So, armed with this book, you set 
out through the brush once again. 

Below, we introduce a few simple surveying methods 
that can be done with a Bnmton comnass. Simole 
surveying with a compass helps students to practice 
compass skills. 

Tape and Compass Mapplng 

A map showing the approximate positions of points on the 
ground surface can be constructed using only a tape and a 
compass. Using a tape and compass, you can determine 
the distance and direction between a starting point and a 
second point. 

Problem 1-1 (Tape-and-compass mapping) 
Construct a map showing the relatíve posítions of four 

outcrops (A, B, C, and D). The ground surface ín the map 
area is horizontal. 

Method 1-1 
Step 1: Plot the position of outcrop A on a sheet of 

paper. Posüion point A so that all other points can be 
represented on the paper. ln this example, we place point 
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Figure 1-25. Construction of a tape and 
compass map. Point A is the starting point, 
and the positions of points B, C, and D must be 
located. The distance A - A' is the closure 
error. 

A in the comer of the proposed map area (Fig. 1-25). 
Estimate the size of the area that you are to map, and 
choose an appropriate scale so that you can fü the map on 
the sheet of paper. Draw a north arrow and the scale. 

Step 2: Have your partner stand at point A (or place 
a visible mark.er on point A). Then walk to outcrop B. 
Stretch a tape between A and B to determine the length of 
line AB. The length of line AB is 26 m. If a tape is not 
available, you i;an estimate the length by counting the 
number of paces that it took for you to walk. from A to B. 
If you know the length of your pace, you can determine the 
length of the traverse line by simple multiplication. This 
modification is called the pace-and-compass method. 

Step 3: Next, shoot the bearing of line between 
outcrops A and B. Be sure to read the correct end of the 
needle! The beating of a line running from A to B is 
N58°E. The bearing of a line rumüng from B to A is 
S58°W. 

Step 4: Once you k:now the bearing and length of 
line AB, plot the position of outcrop B on your rnap sheet 
Use a protactor to deterrnine the orientation of líne AB 
with respect to the north arrow (the angle should be 58°), 
and use the map scale to deterrnine the length of line AB. 
If you make an attirude measurement at outcrop B, plot the 
structural symbol at the position of point B on your map 
sheet. 

Step 5: You may locate other outcrops from point 
A (e.g., the position of outcrop C), or you rnay stay at 
outcrop B and locate additional points from outcrop B (e.g., 
outcrop D). 

Step 6: It is best that your traverse ultimately loops 
back, so that the final outcrop that you locate is your 
starting outcrop (A). Such a loop aUows you to assess the 
accuracy of your map. The author of the map in Figure 
1-25 shot a bearing from outcrop D to outcrop A and 
obtained a rneasurement of S74°W, then he paced from D 
to A and found the distance to be 28.5 m. However, when 
he drew a 28.5- m-long S74°W bearing line from point D 
on the map, he did not retum to point A, but instead 
located point A'. The discrepancy between the kx:ation of 
the original point A on the map and the position of point 
A measured from your final surveyed location (i.e., point 
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A') is called the closure error of the map. On the map, the 
closure error is line AA', which is about 3 m. 

The accuracy of a tape-and-compass map depends 011 

the care with which the measurements are made. The best 
tape-and-compass maps are possible in areas where ground 
surface is levei, and there are no obstacles between points. 
If the ground surface is sloped, the line between two points 
on the ground surface does not represent the horizontal 
distance between two points, and calculation of the map 
distance between two points is more complicated (see 
Chapter2). 

Two-Point or Three=Polnt Sightlng 

Sometimes it is not feasible to directly measure the length 
of an oriented traverse line. It is still possible, fortunately, 
to determine the position of a point on the ground, if you 
have a few landmarks on your map. This is done by 
sighting from the unknown point to two or, beuer, three 
landmarks (Fig. 1-26). The procedure is as follows: 

Problem 1-2 (Three-point sighting) 
You have a map on which the localities of three 

landmarks (a house, a telephone pole, and a sign) are 
located (Fig. 1-26). You are standing on an outcrop in the 
rnap area but do not k.now exactly where the outcrop is. 
CaU the position of this outcrop "point X." Determine the 
location of the outcrop with respect to the three landmarks, 
so that you can plot point X on the map 

Method 1-2 
Step 1: Stand on the outcrop. Point the compass 

toward you, levei the compass and sight through the cover 
window at the house (landmark A). Read the white end of 
the needle. The bearing that you read (S43°E) is the 
bearing of a line that points from the house to your 
position. Draw this line on your map, starting at landmark 
A (Fig. 1-26). You must estimate the length of the line. 
The position of the outcrop on the map must lie on this 

A, ' 
' 

O f •OO 
'------' m 

Figure 1-26. Determination of a location by 
three-point sighting. Point X is the unknown 
point, and points A, B, and C are landmarks. 
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line, but you do not know the exact distance between the 
house and the outcrop. 

Step 2: Shoot a bearing to the telephone pole 
(landmark B). Draw a line from landmark B parallel to this 
bearing (SI9°E) back toward the outcrop (Fig. 1-26). The 
position of point X on the map should be at the location 
where the line from B crosses the line from A. The 
position of point X is the position of the outcrop. 

Step 3: Usually, your measurements are not exact, 
so a better constrained position is obtained if you shoot a 
bearing to a third landmark. A line from the sign 
(landmark C) to the outcrop has a bearing of S55°W. If all 
your measurements are perfect, the three bearing lines 
intersect at point X. Usually, however, the intersections of 
the three lines define a small triangle (Fig. 1-26). Assume 
that the position of the outcrop is at the center of this 
triangle. 

Triangulation 

Most surveyed maps are constructed using the technique of 
triangulation (see Appendix 1). Accurate triangulation 
requires accurate surveying instruments, but rough 
triangulation can be accomplished with a Brunton compass. 

Problem 1-3 (Triangulation) 
Locate the map position of an outcrop at Z, given the 

positions of two landmarks. One landmark is at A and the 
other is at B. 

Method 1-3 
Step 1: Define the line between landmarks A and B 

as a base line (Fig. 1-27). A base line is a line of known 
pnsition orientation. and lem!th. Draw line AB on vour 
map; define a scale and north arrow. The outcrop at point 
Z is too far away to be located by one step of triangulation, 
so you must first find two intermediate points, called X and 
Y. 

Step 2: Place a flag at point X so that it is easily 
visible. Shoot a bearing from A to X, and shoot a bearing 
from B to X. 

Step 3: As shown in Figure 1-27, your bearing 

z 

20 

figura 1-27. Determination of positions by 
triangulation. AB is the original base line. 
Point X is the first unknown location. XY is the 
second base line. Z is the outcrop position. 
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measurements define the angles 0 and B. From these 
measurements you can calculate the angle µ: 

µ = 1800 - (0 + B) (Eq. 1-1) 

and from µ you can calculate the length of AX (or BX), 
using a simple trigonometric identity (see Appendix 2): 

AB sin B = AX sin µ 

AX = (AB sin B)/sin µ (Eq. 1-2). 

Step 4: Once you have determined the position of 
X, you can calculate the position of a new point (Y) by 
establishing XB as a new base line. Y ou can then 
establish line XY as a base line from which you can 
establish the location of the outcrop at point Z (Fig. 1-27). 
Note that when you have finished the procedure, there are 
several points on the map. Such a network of points is 
called a triangulation net. 

W e retum one last time to your experience as a field 
assistant ih the brush of the Brazilian highlands. You have 
decided that the most appropriate technique for locating 
outcrops in this region is the pace-and-compass method. 
Y ou return to the gorge in which the fault was exposed and 
trace the fault up the east side of the gorge to the plateau. 
You place this point at the west edge of the map, define a 
scale, and draw a north arrow. Then you shoot a bearing at 
an outcrop in the d.istance, mark the bearing in your notes, 
and pace toward the outcrop. You measure the strike and 
dip of the outcrop and mark the appropriate symbol on 
your map. By the end of the day you have located 20 
outcrops and have the beginnings of a map that shows the 
trace of the fault across the countryside as well as a fold 
whose presence had been unknown before drawing the map 
(Fig. 1-28). 
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figure 1-28. Simple outcrop map of the area 
in the vicinity of the outcrop shown in Figure 
1-1. Heavy line is the trace of a fault, dashed 
line is the trace of a fold hinge, and the irregular 
shapes represent outcrops. 



Chapter 1 Measurement of Attitude and Location 

1. 

2. 

EXEACISES 

Questions 1-8 are intended to give you a fütle practice ín thinking about and 
visualizing attitude measurements. ln these questions it may help to use your hand 
to simulate the plane or line in question. Lay a pencil on the table in front of you 
to simulate north. 

Translate from the azimuthai convention to the quadrant convention, or vice-versa, 
as is necessary. 

(a) N43°E (b) N43°W (e) N900W 
(d) 087° (e) S20°E (f) 355° 
(g) S62°W (h) N62°E (i) 127° 
(j) 241° (k) 2700 (1) dueS 
(m) 617° (n) 264° (o) 092° 
(p) 180° (q) S58°E (r) 000° 
(s) 112° (t) S47°W 

Circle those attitudes in the list below that are impossible (i.e„ a bed with the 
indicated strike cannot possibly dip ín the direction that is indicated). 

(a) N23°W,57°SE (b) N46°W ,56°NE (e) N45°W,78°NW 
(d) 089°,43°W (e) N34°W,14°N (f) os9°,43°E 
(g) 089°,43°N (h) 341°,84°NE (i) 324°,67°NW 

3. Translate the following attitudes into number pairs according to the right-hand rule. 

(a) N30°W,34°NE 
(d) 067° ,74°NW 

(b) N48°E,56°SE 
(e) 234° ,43°NW 

(e) 078° ,76°SE 
(f) 117° ,21°NE 

4. Draw an isometric block diagram of a cube (see Appendix 1). Within the volume 
of this cube, draw a plane whose attitude is 045°,30°NW. Next to the drawing 
indicate the orientation of the three coordinate axes that define your reference frame. 
Use a ruler to keep your Iines straight. 

5. Translate the following strike and dip measurements into equivalent dip and dip 
direction measurements. 

(a) N34°W,38°NE 
(d) 245°,41°NW 

(b) 087°,21°N 
(e) 117°,33°NE 

(e) N48°E,57°SE 
(f) S64°E,21°SW 

6. Draw an isometric block diagram of a Iine whose attitude is 60° ,045°. Your 
drawing should include three Cartesian axes to define three-dimensional space 
(vertical, nonh-south, and east-west). Use a ruler to keep your lines straight. 
Indicate the bearing angle (B) in the horizontal plane and the plunge angle (Cl) ín the 
vertical plane. 

7. Imagine a fault surface on which there are four different overprinted sets of slip 
lineations. The surface is oriented N39°W ,4 7°NE. A geologist recorded the 
following measurements to describe the four sets of lineations. 

47°,N51°E 
68°,dueN 
47°,NSI0 W 
34°,due N 

(!ineation 1) 
(lineation 2) 
(hneation 3) 
(lineation 4) 

17 
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(a) Assuming that the planar attitude was measured correctly, determine which 
lineation measurements are impossible. ln other words, which lineation(s) cannot 
possibly lie in the specified plane. (Indicate why for each). 
(b) Assuming that the measurement of lineation l is a correct, what is its rake? 
(e) Assuming that the measurement of lineation 1 is correct, does it indicate 
movement parallel to the strike of the fault (strike-slip movement) or movement 
parallel to the dip ofthe fault (dip-slíp movement)? 

8 . Construction of a simple field geologic map. Your instructor will arrange a set of 
five or six rock slabs in an open space of about 400 m2. Each rock slab is a 
measurement station. (If real rock outcrops are accessible, they will be used 
instead). Construct a map showing the distribution of the rock slabs (outcrops). 
Use a scale that is appropriate to draw your map on a single sheet of paper. Be 
sure to draw a scale and a north arrow on your map to provide the reference frame. 
Determine the orientation of each slab, and using appropriate symbols, plot the 
strike and dip of each slab on your map in the correct position. If a simple 
structure is indicated by the map pattern, your instructor will help you to interpret 
it. You may use whichever method of locating points suits you. 
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D C NSTROCTION 
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2~1 INTRODUCTION 

In many applications it is important to be able to describe 
the spatial variation of a physical or a statistical parameter. 
Such variations can be illustrated on rnaps through the use 
of contour lines. Recall from earlier courses in geology 
that a contour line is a line representing the locus of points 
in the map area of equal value for a specific parameter. For 
example, on the familiar topographic map each contour 
Hne represents the locus of points with a given elevation. 
A contour line on a topographic map can be envisioned as 
the intersection of a horizontal plane with the ground 
surface (Fig. 2-1). Any map that employs contour lines to 
represent spatial variations in the value of a parameter is 
called a contour map. In some books, the term isoline 
map is used as a general term for a map that employs 
contours, and the term contour map is restricted to maps 
that show variation in elevation. W e prefer to use contour 
map as the general term. 

ln this chapter we review the principles of contour 
mapping, explore a range of applications of contour maps 
to structural geology, and leam how to create contour maps 
from point data. Work with contour maps provides an 
exceUent opportunity to develop three-dimensional 
perception. With practice you may be able to visualize the 
shape portrayed by the spacing and form of the contour 
lines on a map. These days, computers can assist in 
creating a visual image of a contour map by producing 
block diagrams from topographic data; on such diagrams 
the form of the contoured surface is simulated by a grid of 

lines (Fig. 2-2). (Note: You may wish to defer studying 
portions of this chapter until you have leamed the 
tenninology used to describe folds and faults. It is beyond 
the scope of this book to provide a detailed discussion of 
these terms). 

2·2 ElEMENTS OF CONTOUR MAPS 

Gradlents and Contour intervals 

The difference in the value of a parameter represented by 
adjacent contour lines is called the contour interval. For 
example, on a topographic map the contour interval 
represents the difference in elevation between two contour 
lines. The usefulness of a contour map is greatly increased 
if the contour im.erval is constant because then the gradient 
(rate of change) of a parameter in a given direction is 
directly proportional to the spacing of the contour lines. 
Closely spaced contours represent steep gradients, and 
widely spaced contours represent gentle gradients (Fig. 
2-3). 

The contour interval must be selected so that 
variations in the morphology of the parameter can be 
represented in adequate detail. The choice of a contour 
interval for a specific map depends on three factors: the 
detail that you wish to portray, the quality of the data that 
you have to work with, and the scale of the map. 

The required detail on a contour map is a value 
judgement. If the contour interval is too large and there are 

1 9 
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(a) 

~ 
N 

1 

Contour interval = 20 m ? m 5~0 

(b) 

flgure 2·1. The shape of a hill represented 
by a topographic contour map. (a) Block 
diagram of a hill. The horizontal plane indicated 
by dashed lines intersects the híll at an 
elevation of about 200 m. (b) Contour map of a 
hill. Note that the index contours ara darker. 

too few contours in the map area, small variations in the 
parameter will not be resolved. If the contour interval is 
too small, there will be so many contours on the map that 
they will merge with one another, and it will become 
impossible to distinguish adjacent contours from one 
another. The quality of the data available for constructing 
the map controls the contour interval in that if control 
p~in:~ ~~~ ;~~!!!~ ~~ ~~'h;ch g rli!'e~t ~~~~~~~~~~ cf the 
parameter has been made - are widely spaced and are at 
greatly different elevations, you will not be able to resolve 
local topographic details even if you use a small contour 
interval. Finally, scale affects your choice of a contour 
interval. For example, on a standard U .S .G .S. 
1:24,000-scale topographic quadrangle map, the width of 
the ink line of a contour on the map represents about a 
4-m-wide belt on the ground; clearly, there is no point ín 
trying to resolve features that are less than about 10 m in 
diameter. 

(a)~ 

(b) 1 f f 1 1 1 

ITTll 
W1J 
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figura 2·2. Computer simulation of topo
graphy. (a) Computer-generated contour map; 
(b) perspective diagram of the same area 
employing a grid of lines to create the illusion of 
relief. Y-direction is north, X-direction is east, 
Z is the vertical axis. (Courtesy of Radian, 
Inc.) 

Commonly, to make a contour map easier to read, 
every fifth contour line is defined as an index contour. An 
index contour is indicated by a thicker ink line and is 
Iabete<t w1m me value of the parameter. Tlle contour 
interval is usually indicated at the bottom of a map, but if 
not, the contour interval may be detennined by dividing the 
difference between two adjacent labeled index contours by 
5. 

To calculate the gradient along a specific traverse line 
(Note: the tenn traverse line is used in this book to refer to 
any line drawn between two points on a map) of a known 
length, draw the traverse line, rneasure its length, and count 
the number of contour lines that cross it. Multiply the 
number of contour lines by the contour interval to obtain 

~100 

t ~eters 

0 100 
1 1 1 1 1 1 

meters 

Figura 2·3. lllustration of the rela
tionship between gradient and the 
spacing of contour lines. (a) Cross 
section of slope; (b) contour map of 
slope. 
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the change in value of the parameter. If the ends of the 
traverse line do not faU predsely on a contour line, the 
change 1n value of the parameter wm be a little greater than 
the simple multiplication yields, so you must increase the 
value accordingly. The gradient can be represented either 
by the angle of slope, by a slope fraction, or by the grade 
(Fig. 2-4). An angle of slope is the angle between the 
horizontal and the sloping surface; it can be determined 
either by making a scaled drawing or by a simple 
trigonometric fonnula 

arctan (parameter change) = slope angle 
(horizontal traverse length) (Eq. 2-1). 

A slope fraction is merely the ratio of rise (vertical 
change) over nm (horizontal change). A grade is a 
percentage that specifies the number of units of rise for 
every l 00 unirn of horizontal distance. 

l 
rise 

! 
---~~run~~~-.. 

Figurei 2-4. Definition of slope angle and 
grade. o "" slope angle; rise/run "' slope 
fraction; (rise X í 00)/run "'grade. 

Pro!Jlem 2-1 
A traverse line (AA') is indicated on the topographic 

map of Figure 2- i. Determine the gradient along this line 
and express this gradient as angle of slope, grade, and slope 
fraction. 

Method 2-1 
The length of the traverse line, by the map scale, is 

210 m. The traverse line starts on the 120-m contour line 
and tenninates on the 200-m contour line, so it crosses a 
vertical elevation change of 80 m. 

slope angle = arctan(80 m/210 m) = 20.9° 

slope fraction == 80 m/210 m = 1(2.63 

grade = (80 m X 100)/210 = 38.l %. 

Problem 2-2 
The scale of a map is 1:10,000 (i.e., 10 cm= 1 km) 

and the contour interval is 200 m. A N45°E-trending 
traverse crosses five contour lines over a distance of 20 cm 
on the map. The lowest elevation is at the northeast end of 
the traverse. What is the slope of the traverse line? 
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Method 2-1 
The elevation change (rise) is l km over a horizontal 

distance (run) of 2 km, so the average slope in this interval 
is arctan(0.50) == 26.60. 

General Constraints on Contour Maps 

There are several general mles that constrain the 
construction of contour maps. We list the major rules and 
describe acceptable exceptions. For additional constraints 
see Bishop (1960) and Badgley (1959). 

(a) The contour interval on a map is 
constant: The difference in the value of a parameter 
represented by any two adjacent contour lines should be the 
same everywhere on a map. If the contour interval is not 
constant, it is difficult to calculate gradients. The only 
exception to this rule occurs for maps that encompass 
domains of both very steep and very shallow gradients. On 
such maps two contour intervals can be used. A large 
contour interval is selected to accommodate domains of the 
map in which there are steep gradients. ln the domains 
where gradients are shaHow, however, intermediate 
contours can be added to provide greater resolution of 
features. For example, imagine that a topographic map 
covers a region in which steep hills border a flat flood 
plain. A 40-ft contour interval might be used in the hilly 
domain of the map, but such a large contour interval could 
not be used to define features in the flood plain. 
Intermediate contours could be added in the flood plain 
domain to make the contour interval in the flood plain only 
20 ft. Intennediate contours should be dashed. 

(b) Contour lines genually should not 
merge or cross: If contour lihes cross one another or 
join and become one, the map may be wrong. There are 
only two acceptable situations in which contour lines can 
merge or cross: (1) Contour lines appear to cross on 
topographic maps or structure-contour maps where there is 
an overhang (Fig. 2-5); the contours on the underside of the 

0 
0 
<;\.! 

0 100 

meters 
Flgurn 2-5. Pattem of contours for an 
overhang. Note that the contours below the 
overhang ars dashoo. 
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overhang should be dashed. (2) Contour lines merge into a 
single line if a gradient is infinite (i.e., the contoured 
surface on the map is vertical). Contour lines appear to 
merge on many maps where there are steep gradients, 
because of the finite width of inked contour lines on the 
map sheet. 

(e) Contour lines either close within the 
area of the map or are truncated by the edge of 
the map or by a structure: It is impossible for a 
contour line to simply stop if the surface being represented 
is a continuous feature. For example, on a topographic 
map of a hill, you will always be able to trace a line of 
constant elevation around the hill so that it connects with 
itself or closes on the other side. If this line extends off 
the end of the map, it will be ttuncated by the edge of the 
map. Exceptions to this rule occur on certain types of 
contour maps. For example, on a structure-contour map 
we will see that the contour lines can be truncated within 
the map area by a fault, and contour lines on a fault surface 
need not close. 

(d) Contour lines are repeated to indicate 
reversals in gradient direction: If, along a traverse 
line, the direction of a gradient reverses, the lowest (or 
highest) contour crossed before the reversal must be 
repeated after the reversal. This statement is best illustrated 
by an example on a topographic map. If you walk down a 
slope, cross the 200-m contour, cross a saddle, and then 
walk up another slope, you must again cross the 200-m 
contour line. 

(e) A reference frame for a contour map is 
defined by specifying a datum pia ne: A dat u m 
plane, also called a reference plane, for a contour map is an 
imaginary surface on which the parameter described by the 
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map has a value of 0. For example, on a topographic map, 
the datum plane is mean sea levei. Elevations are specified 
by a distance above or below mean sea level. 

2-3 INTERPRETATION 
OF TOPOGRAPHIC MAPS 

We have described topographic maps already at several 
points ín this chapter. ln this section we discuss how 
geologic structures can be studied with the aid of 
topographic maps. 

Structures on topographlc Maps 

The shape of the ground surface commonly indicates the 
distribution of lithologies, which, in turn, are controlled by 
the geometry of geologic structures. Different units may 
have different topographic expressions, and thus contacts 
between units can be mapped by identifying the boundary 
between two topographic domains. A particularly resistant 
unit (e.g., a quartzite) may stand out in relief and trace out 
a structure. Geologic mapping using topographic maps is 
often done in conjunction with study of stereo pairs of air 
photographs. 

Characteristic topographic pattems are associated with 
certain structural geometries (Fig. 2-6). Horizontal strata 
may be indicated by flat-topped plateaus or mesas bounded 
by steplike escarpments. On such escarpments, steep cliffs 
are backed by resistant strata, and gentle slopes are 
underlain by nonresistant strata. Dipping beds lead to the 
formation of asymmetric ridges. If the strata are steeply 
dipping, the asymmetry is not pronounced and the ridge is 

(b) 

(d) 

0 ... 

More steep 
Less steep (escarpment) 

, (dip slope) / 

x~ ""' <. „. '. :::9'.-.. :„ 

~ .~ ;g . :--~· ~ :': :- ~ .. ~/~~ 

Fault-line scarp 

!po x' 

Flgure 2-6. Topographic patterns of simple structures. (a) Horizontal 
strata; (b) dipping strata; (e) broken-crested anticline; (d) fault-line 
scarp between granite and tilted strata. 
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caUed a hogback. If the strata are shallowly dipping, the 
ridge is highly asymmetric, with one steep slope and one 
shallow slope, and is called a cuesta. 

On many asymmetric ridges the topographic surface of 
the more gen!ly dipping face of the ridge corresponds to the 
plane of bedding or foliation. Such a surface is called a 
dip slope. If the surfaces of synclines and antidines are dip 
slopes, synclines will cup valleys, and anticlines will arch 
over ridges. Commonly, however, the crests of anticlines 
erode away, so an anticline will appear as two oppositely 
facing ridges that are separated from one another by a 
valley. If the fold is plunging, the ridges will join and 
define a single U-shaped or V-shaped ridge, depending on 
the shape of the fold hinge zone. The Valley and Ridge 
Province of Pennsylvania contains spectacular examples of 
topographically defined plunging folds (Fig. 2-7). 

Igneous structures may also be reflected by 
topographíc pattems. For example, the composition of a 
d.ike rock is usually very different from that of the country 
rock that it intruded. If the dik.e rock is less resistant to 
weathering, it will preferentially erode and underlie a 
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trough. If the dik.e rock is more resistant, it wm stand up 
as a ridge. Granitic int:rusions have a very distinctive 
knobby topographic expression because of their tendency to 
weather by exfoliation. 

Topographic expressíon of faults occurs for several 
reasons. Faulting breaks up the rock, thereby creating a 
zone of weak rock, and this zone of weakness 
preferentially erodes. Altematively, if the fault was a zone 
of fluid circulation and mineralization, the fault breccia 
may become better indurated than surrounding country rock 
and l.herefore will stand out in relief. If a fault displaces the 
ground surface, it results in a fault scarp that will have a 
topographic expression. Even if the fault scarp itself is no 
longer visible, topographic features, such as faceted 
mountain fronts, uplifted terraces, or a rejuvenated stream, 
may attest to fault movements. The traces of strike-slip 
faults can be recognized by the offset of other topographic 
features, such as stream beds, and may be marked by local 
ridges and depressions. Significant cumulative 
displacements on faults can result in creation of mountain 
ranges that stand high relative to adjacent areas and 

8 
km 

e 1 equal 100' 

figura 2-7. Topography of portion of the Valley and Ridge province of 

Pennsylvania, at the Susquehana River near Harrisburg. The resistant 
ridges define the form of plunging upright folds. (Adapted from Hamblin 
and Howard, 1986.) 
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represent horsts, tilted fault blocks, or thrust sheets. 
Grabens may be represented by topographic troughs. 
Likewise, windows and klippen in thrust-faulted regions are 
topographically delineated if the hanging-wall sheet is 
composed of a different rock type than the footwall sheet. 
If a fault juxtaposes lithologies of different erodability, the 
fault trace can become an erosional scarp, called afault-line 
scarp, in which the land underlain by the more resistant 
rock steps down to the land underlain by the less resistant 
rock. 

Joints represent planes of weakness along which 
blocks of rock preferentially break off. As a consequence, 
the faces of ridges are often parallel to joints, and streams 
often take sudden angular bends as they follow joints. 
Joints also zones of enhanced weathering, and thus may 
evolve into narrow linear troughs. 

The structural grain of a region refers to the orientation 
of the dominant deformalion elements in an area. This 
grain may represent the trends of folds, fractures, or 
metamorphic foliation. Because topography reflects 
structure, the structural grain of a region may stand out on 
a topographic map. ln Figure 2-7 the structural grain of 
the Appalachian foreland is defined by the topographic 
pattern. 

Finally, note that the geometry of sea-floor structures 
(e.g„ spreading ridges, transform faults, and trenches) is 
indicated by topographic patterns. Maps that show the 
topography of sea floor or of a lake floor are called 
bathymetric maps. Contour lines on bathymetric maps are 
called isobaths and are specified not as elevations above 
mean sea levei, but rather as depths beneath the surf ace of 
the overlying body of water. 

T,...nnNr!'.1.r'\ho 
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(Rule of V's) 

The trace of the interseclion of one plane with another is a 
straight line. For example, where a planar contact 
intersects a perfectly horizontal ground surface, the trace of 
the contact is a straight line. If the contact is not planar 
(e.g„ it is folded) the trace is a curved line. Likewise, if 
the ground surface is not planar but wraps around hills and 
valleys, the trace of a non-verlical contact on the ground 
surface is a curved line even if the contact itself is planar. 
ln other words, the trace of a contact shown on a map is 
determined both by the shape of the contact and the 
topography of the map area. 

For some students visualization of the pattern 
resulting from the intersection of a contact with the ground 
surface comes naturally. but for others it does not. The 
easiest way to develop the ability to visualíze such 
intersections is to use your hands. Start by trying to 
visualize the outcrop pattern that results where an 
imaginary bed of sandstone crosses a valley. Let your right 
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hand represent the bed of sandstone (call this your "bed 
hand") and let your left hand represent a V-shaped valley 
(call this your "valley hand"). Imagine that the floor of the 
valley is a gently plunging line and that a stream runs 
down it (Fig. 2-8). As you read the following paragraphs, 
physically use your hands to duplicate the described 
situation. 

Figures 2-8 and 2-9 present several intersection 
patterns between the bed and the the valley. The strike of 
the bed is perpendicular to the bearj.ng of the valley axis. 
Note that in several examples the intersection is V-shaped. 
As a consequence, the relationship between bed dip and 
valley-floor plunge is commonly referred to as the Rule of 
V's. Please do not memorize the pattems of these figures 

(a) 

A 

(b) 

---
--

_... _... 

(e) 

Figura 2-8. lntersection of a horizontal 
plane with topography. (a) Block diagram; (b) 
cross section along the axis of the valley; (e) 
map view showing that the outcrop trace is 
parallel to contour lin~s. 
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Figure 2-9. lntersection of non
horizontal planes with topography. 
left column is map view, right column 
is cross-sectional view. (a) Plane 
dipping upstream; (b) verticai plane; 
(e) plane dipping downstream at an 
angle greater than the stream 
gradient; (d) plane dipping down
stream at an angle equal to the stream 
gradient; (e) plane dipping down
stream at an angle less than the 
stream gradient 

as if they are a rule; rather, practice visual.izing the 
geometry of bed.-val.ley intersections. 

Start by holding your hand horizontaHy and allow it to 
intersect the val.ley hand. Your hand traces a V that is 
identical. to the trace of a topographic contour line (Fig. 
2-8). Rernember that a topographic contour line, by 
definition, represents the intersection of a horizontal. plane 
with the ground swface. Rotate yow: bed hand around the 
strike so Ihat it dips into your valley hami (i.e., dips in the 
direction opposite to the flow of the stream). Notice !:hat 
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(aJ 

ErJ 
(b) 

(e) 

(d) 

(e) 

the intersection of your hands now forms an 
upstream-pointing V (Fig. 2-9a). Keep rotating your bed. 
hand 1.mtil it is vertical, then look straight down on the 
intersection. The trace of the intersection, were it to be 
projected on a map plane, would be a straight line (Fig. 
2-9b). Vertical planes "igoore" topography and will always 
appear as a straight line on the rnap. Continue rotating 
your bed hand 1.mtil it is dips downstream and dips more 
steeply than the phmge of the stream. The intersection of 
your bed hand with your valley hand i.s a V, but ilie V 
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points downstream (Fig. 2-9c). If the dip of the bed is 
precisely the same as the slope of the valley floor, the 
point of the V disappears, and the intersection of the bed 
with the valley is represented by two lines, one running 
down each side of the valley parallel to the floor of the 
valley (Fig. 2-9d). If the dip of the bed is less than the 
slope of the valley floor, the intersection of the two is a V 
that points upstream (Fig. 2-9e). V pattems also arise as a 
consequence of the intersection between a layer and a ridge. 
ln effect, a ridge can be visualized as an inverted valley. 

ln the preceding examples the strike of the bed was 
perpendicular to the bearing of the valley floor. As a 
consequence, all the V pattems described were symmetrical. 
If the strike of the bed is oblique to the trough of the 
valley, the pattem of the intersection between the bed and 
the valley floor is not symmetrical. 
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Elementary Techniques Part 1 

lntersectlon of Folds wlth Topography 

There are no simple "rules" to follow when describing the 
intersection of folds with topography because folds can 
have a variety of forms and orientations. The map pattem 
of a fold depends on the attitude of the hinge, the shape of 
the hinge area, the amplitude and wavelength of the fold, 
the attitude of the axial plane, the angle between the limbs 
of the folds, variation in thickness of a unit around the 
fold, and the pattem of topography. We can give only a 
few examples to help you see how to think about the 
intersection of folds with topography (Fig. 2-10). 

An upright nonplunging anticline whose hinge 
overlies and is parallel to the trace of the valley floor 
intersects the valley as an upstream-pointing V. ln such a 
case it may be difficult to recognize the map pattem as that 
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Figure 2-10. Examples of maps 
showing the intersection of a fold with 
topography. Cross-sectional view of 
each map is also shown. (a} Syncline 
intersecting a valley. Hinge of the fold 
is oblique to the valley floor. Both top 
and bottom contacts of the unit ara 
shown. The trace of the vertical axíal 
plane is also shown. (b) Nonplunging 
anticline intersectíng a valley. The 
trace of the axial plane is coaxíal with 
the trace of the valley floor. (e) 
Nonplunging anticline intersecting a 
valley. frace of me axia1 piane 1s 

perpendicular to the trace of the 
valley floor. 

1--~~~~~..::-~~~~-;-50 
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of a fold instead of just a dipping planar bed. A phmging 
fold whose hinge coincides with the trace of the valley 
floor also defines a V, but the direction in which the V 
points depends on the magnitude and direction of the 
plunge. For example, a plunging anticline whose axis 
plunges in the direction dpposite to the plunge of the 
valley floor will form a V upstream. If the axis of the 
anticline plunges in the same direction as the vaUey floor, 
then the V points downstream. The pattem for a syncline 
is the reverse of that for an anticline. An asymmetric fold 
defines an asymmetric V in a valley. A unit defming a fold 
whose axis is perpendicular to the axis of a vaHey appears 
as two outcrop belts. Depending on the limb dips, one 
limb may form a V upstream and the other may fönn a V 
downstream. If the axis of a fold is oblique to a stream, 
the outcrop pattern may be quite irregular. 

ln regions of complex topography, folds may be 
difficult to recognize, especiaHy if a single unit crumot be 
traced around the hinge. In such cases, it is perhaps easiest 
to study attítude data plotted on the map to determine if any 
folds are present. If attitude data are not available, the 
occurrence of a repeated unit (i.e., the same unit crosses a 
valley or a ridge twice) is a due that a unit has been földed. 
Of course, reverse faulting can also repeat a unit, so it is 
important that you check for evidence of faulting in the 
map area befon~ concluding that a fold is present 
Remember that another clue to the presence of a fold can be 
obtained by application of the rule of V's. Limbs with 
different dips and/or dip directions will display different V 
pattems. 

The interplay of topography and stmcture can 
sometimes lead to very unusual outcrop patterns that do 
not resemble the pattern that the structure would have on a 
featureless plain. This is particularly true in regions where 
there are dip slopes. In such regions the erosi.on pattem of 
the bed becomes the domimmt factor in controlling the 
outcrop pattem. 
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Flgurl!l 2-11 .Structure-contour map o 
of ideal dome-and-basin structure. ..._ _ _,..k_m_......1 

2-4 STRUCTURE-CONTOUR 
AND FORMellNE CONTOUR MAPS 

Representatlon of Key Horlzons 
on Structme~Contour Maps 
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A structure-contour map i.s a map on which contour lines 
represent lines of equal elevation on a structuraily 
significant smface. The smface that is being contoured is 
called the key horizon and may be a marker bed, contact, 
unconformity, or fault A marker bed is simply a 
distinctive bed that can be easily recognized. The contour 
lines of a structure-contour map are similar in meaning to 
topographic contours, in that they represent distances above 
or below a datum plane, but the geometry that is portrayed 
on a structure-contour map is that of a geologic feature, not 
that of the ground surface. Generally, structure-contour 
maps are used to describe subsurface features. Thus, the 
data used to construct a structure-contour map can be 
presented either in terms of elevations above ( or below) sea 
level or in terms of depths below the ground surface. 
Because of the variety of dat.a sources used to define 
structure contours (e.g., measurements of depth below 
ground surface, depth below sea levei, or elevation above 
sea levei), it is critical that you define the datum plane on 
every structure-contour map. If the ground surface is not 
horizontal, and data are provided as depth below ground 
surface, a correction must be applied so that all points 
represent depth below the same datum plane. Mean sea 
level is the most common datum plane for 
structure-contour maps. 

On a structure-contour map a horizontal key horizon 
does not have any contour lines crossing it. A dipping, 
but planar, key horizon looks Hke a slope and is 
represented by parallel contour lines spaced in proportion to 
dip. Structural dornes look Hke hills (Fig. 2-11), synclines 
!ook like valleys, and anticlines look like ridges. Basins 
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Contour interval is 20m. 
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appear as bowl-shaped depressíons. Often the key horizon 
used to define a major sedimentary basin is the 
nonconformity between crystalline basement and 
sedimentary cover. 

The form and extent of closure of a structure can be 
calculated from the contour map of the structure. The term 
"closure" in this context refers to the distance between the 
highest point on the structure and the lowest contour line 
on the structure that is closed. 

Pro/Jlem 2-3 
Calculate the closure of a dome shown in Figure 2-11. 

Method 2-3 
The highest point on a dome is at an elevation of 

about 110 m, and the lowest closed contour line around a 
dome is at an elevation of 40 m. Thus, the closure of a 
dome is about 70 m. 

Representatlon of Faults 
on a Structure-Contour Map 

Faults are the most challenging structure to portray on a 
structure-contour map. Vertical faults appear as single 
lines at which contours are missing and/or are truncated 
(Fig. 2-12a, b ). If the fault trace is parallel to the 

(d) 
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contours, offset on the fault results in a step in the 
elevation of the key horizon; if the vertical component of 
movement, called the throw of the fault, is greater than the 
contour interval, one or more contour lines will be absent. 
The number of missing contour lines reflects the throw. If 
the fault trace is oblique to the contours, contours are 
truncated (Fig 2-12a, b). 

If the fault is not vertical, the trace of its intersection 
with a nonplanar key bed is not a straight line (Figs. 
2-12c, d, e). The pattern of a dipping fault intersecting a 
nonplanar key bed is comparable to the map pattem of a 
dipping plane intersecting hilly ground. Nonvertical 
normal faults are indicated on structure-contour maps by 
two parallel lines, one defining the intersection of the fault 
plane with the downthrown block and one indicating the 
intersection of the fault plane with upthrown block (Fig. 
2-12c ). No contour lines on the key horizon can be present 
in the area between the two traces of the fault. This gap in 
contours is called the fault gap. Nonvertical reverse faults 
can be indicated by either two parallel lines or by one line. 
If two lines are used to represent the fault, the contours of 
the hanging wall overlap the contours of the footwall in 
the interval between the two fault traces (Figs. 2-12d). If a 
single line is used to represent a reverse fault, it is drawn 
where the fault intersects the key horizon of the hanging 
wall (Fig. 2-12e). 

(e) 

(e) 

Figura 2-12. Structure-contour sketch maps of faults. Contours are 
elevations above mean sea levei. (a) Vertical fault, northeast side is 
up; (b) vertical fault, southwest side is up; (e) nonvertical norma! fault, 
showing a fault gap; (d) nonvertical reverse fault represented by two 
lines and overlapping contours; (e) nonvertical reverse fault 
represented by a single line. Note that the fault traces shown in 
exainplas e, d, and e are bent, because the fault plane is dipping and 
the key horizon is not planar. 
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The placement of a fault on a structure-contour map 
may be required by drill-hoie and outcrop observations or 
by seismic profiling. On many structure-contour maps, 
however, the drawing of a fault trace merely represents an 
interpretation of data oo depth to the key horizon. A map 
of the same dat.a could be constructed by substituting a 
zone of dosely spaced contours for a fault Commonly, a 
structure-contour map is füst constructed with no fault.s and 
then is reexamined to determine if any faults may pe 
present. Geologic intuition or knowledge of regional 
structural style may suggest that sudden changes in contour 
spacing or in contour strike on the map indicate the 
presence of a fault. If a linear zone of very dosely spaced 
contours must be drawn in order to accommodate data, it is 
possible that the linear zone is a fault parallel to the 
contöurs along which the key horizon was displaced (Fig. 
2-13a). If contours suddenly change strike along a linear 
zone, it is possible the zone represents a fault oblique to 
the contours on the key horizon (Fig. 2-Bb ). 

The point of intersection between a drill hole and a 
fault is called a cut point. Recognition of a cut point is 
definitíve ín describing a fault. The fault plane itself can 
be contoured from a number of cut points. Contour fü1es 
on the fault plane are dashed to distinguish them from the 
contours on the key horizon. Fault-plane contours may be 
open-ended; where they are, they intersect the trace of the 
intersection between the fault plane and the key horizon 
(Fig. 2-14). The trace of the fault plane may dose or 
change trend if the fault plane is curved or if the fault cuts 
topography (Fig. 2-14). The fault trace may also close if 
the displacement of the fault decreases to zero along the 
strike of the fault in the map area. 

Certain fault-related structures yield distinctive pattems 
on structure-contour maps. For example, grabens may be 
indicated by elongate depressions, and horsts by elongate 
highs. Complex faulting affecting the strata above salt 
domes shows up very cleady on structure-contour maps 
(Fig. 2-15). 

Form-llne Contour Maps 

For some places, data on the attitude of a unit are available 
but the actual depth of a key horizon is not known; it may 
be that the stratigraphic sequence contains no marker beds 
that can be recognized with confidence in drill holes or 
outcrops. The fönn or shape of t:he structure involving the 
unit cannot be indicated by a structure-contour map because 
the data necessary for construction of such a map are not 
available, but the structure can be indicated by aform-line 
contour map. On a form-line contour map the contour 
lines represent approximate lines of equal elevation but 
cannot be assigned specific values. Therefore, visually, a 
form-line contour map indicates the form of a structure, 
just as a structure-contour map does, but a form-line 
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Figura 2-13. Alternative interpretation of 
faults. Contours ara elevations above mean 
sea leval. (a) C!osely spaced contours versus 
fault; (b) bent contours versus oblique fault. 
Note that the contour map alone does not 
provide sufficient data to determine direction of 
slip on the fault. 
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contour map is qualitative; whereas a structure-contour map 
is semiquantitative. 

Fonn-line contour maps are construcl.ed from attitude 
data. The contour lines at a given locality are parallel to 
strike, and the spacing of the contour fü1es is roughly 
proportional to dip (Fig. 2-16). If contour lines are more 
dosely spaced, the dip of the interval being contoured is 
steepero 
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figure 2-14. Structure contours on a fault. 
Contours are elevations above mean sea leve!. 
(a) Geologic map showing the trace of a dipping 
planar thrust fault intersecting a hill slope; (b) 
cross section along line AA'. A folded bed is 
shown by the thin solid line above the fault; (e) 
contours truncated at the trace of the fault. 
Dashed contours are on the fault plane; solid 
contours are on the bed. 

~5 ISOPACH AND ISOCHORE MAPS 

Isopach and isochore maps are used to indicate variations in 
the thickness of a unit, and thus the contours on these 
maps are quite different in meaning than those on either 
topographic or structure-contour maps. An isopach map 
represents variations in true thickness of a specified unit as 
measured perpendicular to the bedding in the unit (Fig. 
2-17a, b). The contour lines on an isopach map represent 
lines along which the true thickness of a unit is constant, 
and the contour interval represents a e hang e in · true 
thickness. An isochore map represents apparent thickness 
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contour interval 200 feet 
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Figure 2-15. Structure-contour map of the 
top of a sandstone unit overlying a salt dome. 
Contours are depths below mean sea levei 
(adapted from Badar, 1949). The faults, shown 
by heavier lines, developed to accommodate 
extension as the sandstone was arched over a 
rising salt diapir. 

figure 2-16. A form-line contour map. Note 
that the spacing of the contour lines is roughly 
proportional to the dip of the contoured layer, 
and that no exact elevation values are 
indicated. 

of a unit as measured in the vertical direction (Fig. 2- l 7a, 
e). The contour lines on an isochore map represent lines 
along which the vertical thickness of a unit is constant, and 
the contour interval represents a change in the vertical 
thickness. On some isopach or isochore maps the mapped 
unit disappears within the area of the map, so that there are 
domains in the map area where the thickness of the unit is 
zero. The boundary between the area where the unit is 
present and the area where it is absent is called the zero 
isopach or zero isochore, depending on which type of map 
is being used. 

Original variations in thickness of a unit represent 
variations in the pattem of deposition during creation of a 
unit. The thickness of a unit may be modified during 
defonnation by faulting (Fig. 2-18) or by ductile flow. 
The true thickness of a unit indicated on an isopach map 
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figure , 2-17. Thickness representation with 
a contour map. (a) Cross section showing a 
sand layer that pinches out to the east. line 1 
is perpendicular thickness. line 2 is vertical 
thickness; (b) isopach map of of the sand 
layer; (e) isochore map of the sand layer. Note 
that at a given locality the isochore shows a 
greater thickness than does the isopach. 

reflects both variations in original depositional thickness 
and variations in thickness due to deformation. 

If the beds of the unit under consideration are 
horizontal, then the thicknesses indicated by an isochore 
map will be identical to those on an isopach map at a 
given locality. However, if the beds of a unit are dipping, 
the thickness of the unit as indicated on an isochore map 
will be greater than the thickness of the same unit indicated 
on an isopach map. ln fact, if the unit is földed, an 
isochore map may indicate variations in thickness that are 
not a consequence of original variations in unit thickness, 
but rather reflect variations only in dip (Fig. 2-19). 

Isopach maps are usually preferable to isochore maps 
because variations in original thickness are of more interest 
in subsurface mapping studies. But isopach maps are more 
difficuh to construct than are isochore maps because they 
cannot be constmcted until variations in thickness resulting 
from variations in dip have been corrected for. Dip 
variations are indicated by a structure-contour map of the 
area or by direct measurement of subsurface attitude using a 
dipmeter (see Chapter 7). Where dips are low, the 
difference between an isochore and isopach is not large. 
For example, a díp of 5° resuh.s in only a 4% error in 

~ 
(a) 

e?fi 
(b) 

figure 2-18. Modification of unit thickness. 
(a) Cross seciion showing thickening of a unit 
by thrust faulting; (b) cross section showing 
thinning by normal faulting. ln each case the 
thickness in well B of the unit will not be the 
original depositional thickness. Thicknesses 
measured in wells A anc C are correct. 
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thickness, and most informati.on on the stratigraphic 
thickness of a unit is not even known to within 4%. 

Isopach maps are of great value in regional geologic 
studies. They are commonly used to provide data on 
variations in unit thickness resulting from the original 
pattem of deposition. Such ínforrnation defines the shape 
of sedimentary basins. Detailed isopach maps may display 
the patterns of ancient river systems and of 
paleo-topography, which is the shape of the gro1md surface 
at the time of deposition. Isopach maps may also lead to 
the discovery of important unconformities and faults and of 
stratigraphic traps. Stratigraphic traps occur where a 
reservoir bed such as a porous sandstone thins and finally 
pinches out against an impermeable bed and thus are 
represented by the position of the zero isopach. 
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Figura 2-19. The effect of folding on the 
isochore pattern. (a) Cross section of a 
sandstone layer of constant original thickness; 
(b) isochore map of the top of the sand layer. 
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2-6 CONSTRUCTION OF CONTOUR MAPS 

Data Sources 

The method used to construct a contour map depends on the 
data that are available. If the map is to represent 
ground-surface topography, two data sources are available; 
air-photo images and surveyed point data (measurements at 
one point). If the map is to represent subsurface features, 
it must be constructed primarily from point data. 

Most modem topographic maps are constructed using 
techniques of photogrammetry (the study of aerial 
photographs). The cartographer obtains stereoscopic pairs 
of vertical aerial photographs of the map area. Such 
photographs are usually made during precisely navigated 
flights that follow an array of parallel flight lines. These 
flight lines are designed so that the photos overlap by 
about 60%-80% along the line of flight and by 20%-30% 
perpendicular to the line of flight (Dickinson, 1979). 

Once stereopairs of vertical air photos are available, 
the stereopairs are viewed with an instrument called a 
stereoscopic plotter. When using a steroscopic plotter, the 
observer sees a three-dimensional image of the ground 
surface as well as a light spot called afloating point. The 
apparent elevation of the floating point above a surveyed 
reference point, called a datum, can be adjusted with a 
micrometer scale. The observer adjusts the floating point 
so it is at the elevation of a desired contour line, then 
manually moves the floating point laterally to make the 
point appear to lie on the ground surface in the field of 
view. A contour line can be traced by moving the floating 
point so that it remains in contact with the image of the 
ground surface. Either the floating-point controls are 
~~ch~~~c-~Hy ~0nne!'•~!i- t0 #,) r~!!. ,_.,hich tr~c~s ont ~ 

contour line on a map sheet, or the movements of the 
floating point are digitized and stored in a computer file, 
which can subsequently be used to reproduce the map 
electronically. 

For localities where air photos are not available or 
where more detail is needed than can be provided by air 
photos, data for construction of surface topography maps 
are obtained by on-ground surveying. The surveyor 
determines the location and elevation of points on the 
ground surface and plots the surveyed control points as dots 
on the map sheet with an elevation written next to each 
dot. The contour map is produced by drawing lines that 
best accommodate the point data, using methods discussed 
later. The surveyor measures more elevation poínts in 
topographically complex areas, in order to achieve better 
control, and measures fewer points in simpler areas, to save 
time. The surveyor places extra points along 
topographically significant features, such as ridge crests or 
valley floors. 

Structure-contour and isopach/isochore maps are 
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always constructed from point data. If the unit described by 
the map is exposed ín outcrops, the point data can be 
obtained by field examination of the outcrops. ln many 
situations, however, it is necessary to construct maps of 
units that are present only in the subsurface. ln such 
circumstances point data are obtained primarily from well 
logs or seismic-reflection records. 

A key fact to remember when constructing a contour 
map from point data is that it is impossíble to produce an 
absolutely true map. ln order to have perfect control and 
no uncertainty on the map, it would be necessary to have 
an infinite number of data points. Real contour maps must 
always be constructed from limited data. The lack of 
adequate control is particularly troublesome when 
constructing maps of subsurface data, because the spacing 
of subsurface control points may not reflect the complexity 
of the surface. As a consequence, more than one map can 
be drawn to accommodate a given set of point data, and the 
choice of which map best reflects reality may depend only 
on intuition. 

Contourlng Polnt Data 

Once point data have been plotted and a contour interval 
selected, the next task in construction of the the contour 
map is the production of the contour lines themselves. It 
is possible to digitize the point data and have a computer 
draw the contour lines according to a specified set of rules, 
but in this book we consider methods for contouring point 
data by hand so that you will understand the hasis of 
contouring. Different contour maps can be produced from 
the same set of point data, depending on what technique is 
used. Three common techniques of contouring are 
described below. For additional descrivtion and altemative 
methods see Rettger (1929), Bishop (1960), and Dennison 
(1968). 

(a) Objective ("mechanical") contouring: 
The basis of this technique is the assumption that the slope 
between two adjacent control points is constant. Therefore, 
between any two control points it is possible to interpolate 
to determine the position of specific elevations. To 
determine interpolated elevation points, draw a traverse line 
between each pair of points. Assume that the gradient 
between the two points along the traverse line is constant, 
then use Method 2-4a or 2-4b to locate specific elevations 
along the line. Once you have located the points that fali 
on designated contour lines throughout the map area, you 
can draw smoothed contours. 

(b) Parallel contouring: Contours are drawn so 
that adjacent contour lines are as parallel to one another as 
possible. The spacing of contours between two control 
points need not be constant. 

(e) lnterpretive contouring: ln this technique 
the author of the map recognízes thai: point data arc merely 
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a random sampling of information and that there is no need 
for gradients to be constant between adjacent poi.nts or for 
contours to be parallel to one another. The author therefore 
draws the map freehand, taking care that contour lines 
accommodate the control points. On an interpretive map 
the contour pattem is drawn to emphasize geologic or 
topographic features that are thought to occur in the map 
area. For example, on a structure-contour map, a fault line 
that truncates contour lines can be drawn in place of a zone 
of very closely spaced contours. 

Problem 1-4 (lnterpolation between two points) 
Figure 2-20a shows the elevation of two control 

points, X and Y. A contour map, with a contour interval 
of 20 m, is to be drawn of the area that includes these 
control points. Interpolate to determine the position of the 
contour lines that lie between X and Y. 

Method 2-4a (Use of an arbitrary scale) 
The difference in elevation between points X and Y in 

Figure 2-20a is 100 m. The contour interval is 20 m, so 
the 20-m, 40-m, 60-m, 80-m, and 100-m contours must 
pass between points X and Y. 

Step 1: Draw a traverse line between points X and 
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Figure 2-20. lnterpolation between points. 
(a) Arbitrary-scale method of interpolation; (b) 
graphíc mathod of interpolation. 
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Y. Assume that the gradient of the traverse Hne is 
constant. 

Step 2: Measure the distance between the endpoints 
of the traverse line on the map with a convenient engineer's 
scale. Th~ number of units between X and Y measured on 
the scale depends on the scale of your drawíng and on the 
spacing of the units of the engineer's scale that you happen 
to use. ln Figure 2-20a the distance between points X and 
Y happens to be 4.7 units. Thus, 4.7 uníts represent 100 
m of elevation difference, 0.047 unit represents l m of 
elevation difference, and 0.94 unit represents 20 m of 
elevation difference. 

Step 3: From the scale created in step 2 the spacing 
between contour lines in the interval must be 0.94 unit. 
The 20-m contour line crosses the traverse line at a distance 
of 0.047 X 5 = 0.24 unit from the 15-m endpoint. The 
40-m contour line intersection is at a distance of 0.24 + 
0.94 = 1.18 units from the 15-m endpoint, and so forth. 
Note that the map scale is not used in the calculation. Y ou 
can now indicate the positions at which the contour lines 
will cross the traverse line between X and Y. 

Method 2°4b (Graphic interpolation) 
Step 1: Draw line XA from point X; líne XA is 

perpendicular to XY. Select a convenient scale to represent 
100 units; the length of a line that is 100 units long at 
your chosen scale should be slightly longer than the length 
of line XY in your drawing. 

Step 2: Draw a line from point Y that is 100 units 
long at the chosen scale. This line crosses line XA at 
point Z (Fig. 2-20b). The angle between YZ and XY is a 
function of the scale used and need not be measured. 

Step 3: Line YZ forms the hypotenuse of the right 
triangle XYZ. Each unit along line XZ is automatically 
equal to l m. Mark the position of point M at a distance 
of 5 units along YZ from Y, N at a distance of 25 units, 0 
at a distance of 45 units, P at a distance of 65 units, and Q 
at a dístance of 85 unüs from Y. Draw MM', NN', 00', 
PP', and QQ' parallel to ZX (i.e., perpendicular to XY). 
The points M', N', O', P', and Q' correspond to the 
interpolated positions of 20-, 40-, 60-, 80-, and 100-m 
contour lines respectively. Think about why the method 
works! 

Problem 2-5 (Construction of a simple 
contour map) 

A surveyor determined the elevation and relatíve 
positions of seven control points on the ground in the 
vicinity of Rymer Pass along Katcubb Ridge in the 
Appalachian Valley and Ridge province (Fig. 2-2la). He 
gives the data to you and asks you to produce two contour 
maps, to display different interpretations of the data. Y ou 
produce one map by objective contouring, and one map by 
parallel contouring. 
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(a) (b) (e) 

(d) (e) 

Figure 2-21. Variability of contour maps from the same data set. (a) 
Positions of control points on the ground. Numbers next to the control 
points are elevations in meters. (b) lnterpolated contour positions; (e) 
objective contour map; (d) parallel contour map; (e) interpretive contour 
map. 

Method 2-Sa (Objective contouring) 
Step 1: Draw lines between each pair of control 

points. Select an appropriate contour interval. ln this 
case, you choose a contour interval of 20 m. 

~fon ? • fT„;n<J PithPr MPthorl ?-A'<! nr 'L4h rlptprrn;n,,. 
~--... - --~- --~--------~ -~ . --

the interpolated positions of the contours between each pair 
of the control points. These positions are indicated by tick 
marks on the traverse lines in Figure 2-2lb. Clearly, if 
there are many control points, interpolation is tedious; that 
is why it is usually done by computer. 

Step 3: Draw contour lines that pass through the 
appropriate interpolated positions. Inititally, draw the 
contours in pencil, because you will probably find it 
necessary to modif y contour lines as you work. 

Step 4: Examíne your initial map. Make sure that 
no "contouring rules" are violated unnecessarily. Also, if 
you are making a structure-contour map, at this stage think 
about whether any faults are indicated. If you are satisfied 
with your interpretation, ink in the map; use a heavier line 
for every fifth contour, and label every fifth contour (Fig. 
2-2lc). 

Method 2-Sb (Parallel contouring) 
If you have an objectively contoured map to start with, 

it may be easíest to produce the parallel-contoured map by 
modifying the objectively contoured map until the contour 
lines are as parallel to one another as possible. If an 

objectively contoured map is not available, start by trying 
to draw one complete contour through the map area, such 
that it accommodates the control points. Sketch in other 
contour lines so that an appropriate number of contours fit 
~h-u~.ai.n r.n.nt ... n1 ~-intc;," Ru tri~l .anri Pttnr '-'ml"V\th nnt thP 
----- ---· -- -- - .a-·--- --~.,j • ~---

contours and modify them so that adjacent contours are 
parallel. Figure 2-2ld provides a parallel-contoured map of 
the control points from Figure 2-2la. Note how different 
this map looks from the one shown in Figure 2-2lc. 

M ethod 2-Sc (Interpretive contouring) 
The surveyor retums to check your maps and is 

dismayed because the maps give a completely erroneous 
impression of the topography at Rymer Pass. The map of 
Figure 2-21d does not even show a pass, and neither map 
shows Katcubb Ridge! The surveyor shows you where the 
ridge .and the pass are, relative to the control points, and 
asks you to produce an interpretive contour map that 
emphasizes the ridge and the pass. You produce the map of 
Figure 2-2le by simply drawing contour lines freehand so 
that they accommodate the point data and show Rymer 
Pass and Katcubb Ridge. During the process of drawing 
the map, you find it necessary to make many modifications 
by trial and error. You finish this exercise with the solid 
understanding that there is no unique contour map for a 
given finite set of control points. 
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EXERCISES 

1. Figure 2-Ml shows the topography along Catskill Creek in New York State. 

(a) Draw a section line that runs from point D to the eastem edge of the map (D') 
and follows a trend of S6QOE. You must locate D'. 
(b) What is the contour interval of this map? 
(e) What is the maximum relief crossed by section DD'? 
(d) On a sheet of tracing paper construct a topographic profile with no vertical 
exaggeration along the line of section. What is the steepest slope along your line 
of section? Express your answer as grade, slope fraction, amd slope angle. Use a 
protractor to check your slope angle. Indicate the position of the steepest slope on 
your section line. 
(e) Construct a second profile along the same line of section. This profile should 
have 4X vertical exaggeration. Go to the same point along your profile that you 
used for yom measure of slope in problem ld. Use a protractor and measure the 
angle in this exaggerated profile. By what factor must you divide this angle to 
obtain the true slope at this locality? 

Catskill Creek 200 0 200 

feet 

figure :MVl1. Portion of a contour map of an area along Catskill Creek, 
New York. 

2. Figure 2-M2 shows the Kiskatom Escarpment. J. Bass & Co., an engineering 
geology company, must determine how to run the rail line from Flatville to 
Bonview so that the grade of the railbed does not exceed 4%. Draw the route by 
connecting 500 m-long line segments. The obtuse angle between two connecting 
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line segments should not be less than 120°. The route does not need to be the 
shortest possible route. What is the gradient of the steepest part of the path 
represented as slope fraction? 

Bonview 
111 

500m 
~ 

111 
Flatville 

Flgure 2-M2. Topographic map of the region between Bonview and 
Flatville. 

~ 
N 

1 

3. Figure 2-M3 shows the topography of an area near Kingston, New York, where 
topography is controlled to some extent by the structure of the underlying strata. 

1 
N 

1 

0 
Lake Katrine Area, NY km 

Contour interval:so" 

Flgure 2-M3. Topography near laka Katrine, north of Kingston, New 
York. FH = Fox Hollow. 
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(a) What is the trend of the "structural grnin" in the map area? 
(b) Field studies indicate that the ground surface on either side of Fox HoHow 
(FH) is a dip slope. Basoo on this observation, what is the major structural feature 
that surrounds and underlies Fox Hollow? 

4. The structure-contour maps shown in Figure 2-M4 represent basic types of 
structures. The numbers given are depths below mean sea levet Interpret each map 
and identify the structure depicted by the map. Estimate the auitude of the 
contoured surface at point X on each map. 

({§JJX 0 
co 

(a) 

•X 

0 
c:o 

(b) 

Figura 2-M4. Structure-contour 
maps of símple structures. Contours 
are depths below mean sea levei. 

0 

m 

(e) 

200 
Contour lnterval =1 Om 

(d) 

S. Points in Figure 2-M5 are plumb-line measurements of water depth in Dawersport 
Harbor. Numbers given are depth below mean sea levet 

(a) Interpolate between points and produce an objective bathymetric map. 
(b) Construct a bathymetric map of the same points using parallel contouring. 

Figura 2-M5. Plumb-line measure
ments of depths in Dawersport 
Harbor. Numbers are depths below 
mean sea levei. 

100 „ 

e 
220 

0 

62 
11> 

140 
19 

• 20 

200 Dawersport Harbor 
....... _m_e_t_e_r_s_......,lj Depth below mean sea ievel. 

Contour interval =20m. 
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6. The numbers on Figure 2-M6 represent the depths below sea level of an 
unconformity separating crystalline metamorphic basement from Mesozoic cover 
strata in Bloomer County. The cover strata are horizontal. 

(a) Constmct an interpretive (freehand) structure-contour map of the 
basement/cover unconformity. 
(b) What is the approximate attitude of the unconformity below well Cl? 
(e) At what depth does well Cl penetrate basement? 
(d) Explain the geologic meaning of this structure-contour map. 

•20 0 

• 11 

meters 

200 

C1 

• ~ 
Bloomer County 

8 28 20 Contours on top of basement. 
Contour interval =20m. 

• N 
66 

8 20 Figure 2-M6. Point data on depths 
below horizontal ground surface of 
Precambrian/ Mesozoic contact in 

110. Bloomer County. 

7. The numbers on Figure 2-M7 are the depths below sea level of the base of the 
Bayou Sandstone intersected by drilling above a salt dome in the Sidi Bashrig field. 
Make an interpretive structure-contour map of this area using a 20-m contour 
interval. Assume any faults in the area are vertical, and indicate on the map which 
is the upthrown and which is the downthrown side. 

'100 .90 100 . 
~ • , v v .JVv 

·70 •70 •90 meters 

·70 40· 

.40 
100 .40 90 ~ . •80 . 

Sidi Bashríg Field 
.100 100 

•70 ·40 
•50 ·100 N 

·70 ·80 

100 ·90 
90 •70 90 

70 Figure 2-M7. Point dat a to the top 

• 110 of the Bayou Sandstone in the Sidi 
70 70 . 

100 100 Bashrig oil field. Numbers are depths 
100. .120 

below mean sea leve!. 

8. Figure 2-M8 shows a portion of the Dry Gully Quad. The solid lines are 
formation contacts, and the dashed lines are the traces of kink-fold hinges. Below 
the map is a cross section of the quad drawn perpendicular to strike. 

(a) Constmct an isochore map of the Snehal Shale. 
(b) Construct an isopach map of the Snehal Shale. 
(e) Explain the difference between your isopach and isochore maps. 
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Figure 2-MS.Contour map and 
cross section of the Dry Gully 
quadrangle. Ory Gully Ouad 

0 

9. Figure 2-M9 shows strike and dip data collected from outcrops of the James 
Formation (composed dominantly of mudstone, which forms a good trap) in the 
vicinity of Stanton. The James Formation ovedies the Michael Sandstone, which 
is a potential resenroir rock and has a trne thickness of 80 m. Construct a 
form-line contour map of the MichaeVJames contact, based on the attítude data. 

r4o 404 l-40 
km t-10 

~20 ~30 
Structural data on James Formation. r2o 

Figure 2-M9.Attitude data needed 
for construction of a form-line contour 
map of the James Formation. 

10. Geologists of Flyhi Oil & Gas are checking an oil play in the Wainesborough 
Field. None of the rocks are exposed, and the ground surface in the field is 
essentially horizontal and is at sea levet The geologists have assembled the 
drilling data and have plotted it on Figure 2-MlO. The dots are the localities of the 
wells, and the numbers next to the wells provide the following information. The 
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N 
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cn 
cn 
0 ...... 
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numbers are depths measured from the ground surface. (Hint: AH units strike 
east-west). 

* Depth to the base of the Cowlick Volcanics (Jrc) 
* Depth to the base of the Franldin Shale (Df) 
* Depth to the base of the Boneyard Sandstone (Db) 
* Depth to the base of the Churchville Shale (Oc) 
* Depth to the base of the Figaro Sandstone (Ot) 
* Depth to the bottom of the drill hole (hasal unit of the hole) 

The dash (-) means that either the unit was not found in the hole or that the base of 
the unit was not intersected, even though the unit was present. The unit at the 
bottom of the hole is indicated in parentheses next to the last number in the list. 
The symbol Ot stands for the Treyne Formation, which is stratigraphically below 
the Figaro Sandstone. 

(a) On separate sheets of tracing paper, create the following maps. 
* Interpretive structure-contour map of the base of Cow lick V olcanics. 
* Interpretive structure-contour map of the base of the Figaro Sandstone. 
* An isochore map of the Figaro Sandstone. 

(b) What is the attitude of unit Jrc beneath point X? Assume that the bedding of 
this unit is parallel to its hasal contact. 
(e) Draw a stratigraphic column to scale for the stratigraphic section that appears 
beneath point X. Use the apparent thicknesses that appear in the well. 
(d) What type of structure defines the base of the Cowlick Volcanics? 

500 
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2450 
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1850 

1 OOO[Db) 3000[01) 

~ ,1(1 -- 180 
14 10 
1850 

• 140 
1380 
1770 
2490 
2600(01) 21 50(01) 

300 

1590 
• 1710 

2400 
3500(0 t) 

500 
1040 
2600 

350 
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1850 
1940 
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3000[0!). 

• 3180 
3250C0t) 

• 

x 

A 

250 

1420 
1580 

2270 
2400(01) 

2000(0c) 

I" 1 JU ,-
2850 
3100[0!) 
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1200 
1440 N 
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2300 
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• 

2150 
2600(0!) 

300 

1590 
1110 f' = 1 OOOm 
2400 
3000(0 t) 

Wainesborough Field 

Figura 2-M10. Drilling data from the Wainesborough Field. 
Numbers are depths below horizontal ground surface. 
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0 

(e) Draw a cross section of the map area that starts at point A and rnns 
perpendicular to the structural grain of rocks in the map area. Remember that aU 
units strike E-W. Your cross section should have no vertical exaggeration. Show 
your line of section on the map. 
(t) Describe the geologic history that led to the development of the relationships 
that occur in t.he subsurface of the map area. 
(,g) Which well or wells have t.he best pmspect of yielding oil, and at what depth 
would the oil be? (Ask your instructor for information on oil reservoirs and traps 
if this infonnation is unfamiliar to you). 

11. Figure 2-Ml l is a structure-contour map of the top of t.he Katgol Quartzite. 

km 

Notice the prominent fault within the map area. The dashed contour lines are 
contours on the fault surface, and the solid contour lines are at the top of the 
quartzite. The contours are dept.hs below sea level. 

(a) Draw a cross section perpendicular to strike to help you visualize the structure. 
(b) Does this fault display normal or reverse offset? 
(e) What is the dip of the fault plane? 
(d) What is the throw of the fault? 

Contour interval: 20m 

Contours on Katgol Quartzite 
Solid contours on Katgol Quartzite. 
Dashed contours on fault plane. 

Flgure 2-M11. Structure contours 
on the Katgol Quartzite. Dashed 
contours are on the fault plane. 

12. The numbers in Figure 2-Ml2 are depths below sea leve! of the Ransome 
Bentonite in the vidnity of Edmundal.e. Remember that there are many ways to 
draw a contour map that accomrnodates the given data. Construct two interpretive 
contour maps of this data. 
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120 Contour interval' 50m 
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(a) Construct a map that contains a north-northwest-trending fault. 
(b) Construct a map that does not contain any faults. 

Elementary Techniques Part 1 

(e) Which map do you think is a more reasonable interpretation? Why? 

13. Figure 2-Ml3 shows the trace of a fault on a structure-contour map. The contour 
lines are on the Prendow unconformity. The cut point at which Well 46 intersects 
the fault is at a depth of 50 m below the levei at which the well crosses the 
unconformity. The cut point at which Well 50 intersects the fault is at a depth of 
300 m below the unconformity. 

200 

(a) What type of fault is shown? 
(b) What is the attitude of the fault? 
(e) Assuming that the slip direction on the fault is parallel to the dip of the fault, 
what is the magnitude of displacement on the fault? 

r~ ...... ~~~-
_.. •f;üi.V 

Prendow Unconformity 
Numbers are depths below sea levei. 

"~K1A .;,... ""~ .... -.--!?,......, .... h~ro n...,.'"'....,.'°'11 Vn,....h ,,,;.,,--1..-.a..a. .- .... u .._ ......... yv-0 „.;... .... -;,..A ... ~ ~----;...~i~-.;.~ -~..:=:~~. 

N 

1 

interpretation. The dashed lines are contours on the fault plane. 

(a) What is the attitude of the fault plane? 

Flgure 2-M-13. Contours on the 
Prendow unconformity. 

cihou1n 1n thic 

(b) Draw a cross section perpendicular to strike of the fault plane showing 
topography and the fault plane. 

400 
Bonnell Knob 

m 

N 

1 

Figure 2-f.114. Topographic map of 
Bonnell Knob. 
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N 

Barany Creek 0 300 

m 

Figure 2-M15. Topographic map of the Barany Creek Quad. 

15. On the accompanying topographic map of the Barany Creek area (Figure 2-MlS) 
sketch the outcrop traces of veins with the orientations listed below. Assume that 
each vein passes th.rough point X, and assume that each vein is so thin that it can 
be represented by a single line. Label each vein on the map. Your answers should 
be quick s.ketches; do not calculate outcrop traces. (Hint: Determine the stream 
gradient first). 

Vein A: 
Vein B: 
Vein C: 
Vein D: 

N300E,200NW 
N30°E,10°SE 
NSOOE,900 
N300E,500SE 

1 6 . The course of the Pohz River in Prajildstan is quite straight for a distance of l km 
between the villages of Nimla and Gradu. The two villages lie on the river bank. 
The river flows down a V-shaped valley. The plunge ami bearing of the river bed is 
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20°,210°. The slopes of the opposing walls of the valley are about 45° and are 
perpendicular to thc river. The valley is about 100 m decp. 

(a) Draw a topographic sketch map of the valley between Nimla and Gradu. Be 
sure that the contour spacing on the map indicates the proper slopes. Use a map 
scale of 1cm=20 m and a contour interval of 20 m. (Hint: Creation of this map 
requires that you determine the spacing of the intersection of the contour lines with 
the stream floor, so that you know how to draw the V-shape of the contours where 
they cross the stream.) 
(b) A number of dike sets were measured in the area. Following are the 
orientations of the different dike sets. On your map, sketch one dike from each set. 
Y our map should show seven dikes total. They do not all have to pass through the 
same point. Use a different colored pencil for each dike. Remember, these are to 
be sketches - do not calculate outcrop traces. 

Set A: 
SetB: 
Set C: 
Set D: 
Set E: 
Set F: 
Set G: 
SetH: 

N60°W ,2ü°SW 
300°,20°NE 
240°,900 
110°,01° 
300°,40°sw 
N60°W,100SW 
N60°W,600NE 
N6ü°W,100NE 
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3-1 INTRODUCTION 

ln the previous chapter we developed the concept of a 
reference frame and showed how the position and attitude of 
lines and planes can be specified with respect to a reference 
frame. So far, however, we have primarily described 
situations in which linear or planar geologic elements 
could be direcl.ly observed and measured. In rnany 
circumstances, direct measurement of a geologic feature is 
not possible, and the attitude of the feature must be 
calculated by other means. Say, for example, that you are 
mapping a limestone formation in a humid region where 
outcrops are weathered. ln such a location bedding planes 
are not distinct, and the strike and díp of the formation 
cannot be measured directly with a compass. ln this 
chapter we introduce hasi.e geometric methods that can be 
used to cakulate the attitudes of fü1es and planes when 
direct measurernent is impossible. You wm find that the 
stereographic techniques introduced in Chapter 5 permit 
more efficient solution of many of the problems posed in 
this chapter. We encourage you to study the geometric 
methods introduced here, however, because they help you 
to further develop the skiH of visualizing shapes and 
attitudes, and they wiH uitimately make it easier to 
1.mderstand stereographic techniques and to appreciate the 
relatíve ease of using them. 

3c2 PROJECTIONS 
AND DESCRIPTIVE GEOMETRV 

A projection, like a shadow, is a representation of a 
thrce-dimensional object on a two-dimensional plane. It is 

constructed by drawing projection lines from points on the 
object to a projection plane (the surface on which the 
projection is being created). The shape of the projection is 
affected by the orientation of the projection lines with 
respect to the projection plane. These lines may emanate 
from a point source (e.g., light rays from a nearby small 
bright bulb; Fig. 3-la), or they may be parallel to one 
another (e.g., light rays frorn a distant star; Fig. 3-lb). 
Parallel projection lines can be perpendicular to the 
projection plane (Fig. 3-lb) or oblique to the projection 
plane (Fig. 3-lc ). If the projection lines are parallel to one 
another and are perpendicular to the projection plane, the 
resulting projected image is called an orthographic 
projection (Fig. 3-lb). The use of orthographic projections 
for solving problems involving the lengths of lines, the 
areas of planes, and the angles between lines and planes is 
the subject of descriptive geometry. The solution of 
problems in descriptive geometry involves measurement of 
angles and lengths in a scaled drawing, which depicts the 
geometry of a structure to scale. 

It is most common for projection planes to be either 
horizontal or vertical; the former is caHed a map projection 
or a plan-view projection, and the latter is called a 
cross-sectional projection. ln regions of plunging 
structures, structures may be projected onto a nonvertical 
projection plane that is perpendicular to the plunge of the 
structure so that the geometry of the structure is not 
distorted (see Appendix 1 and Chapter 13). Vertical 
cross-sectional projections are typícally oriented either 
parallel to or perpendicular to the strike or bearing of a 
given geologic structure. 

Two nonparalJel projection planes join along a folding 
line, which can be pictured as a hinge connecting the two 
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(a) (b) (e) 

flgure 3·1. Projectíons of a cube onto a plane. (a) Point source of 
projection lines; (b) parallel projection lines that ara perpendicular to the 
screen; (e) parallel projection lines that are inclined to the screen. 

projection planes (Fig. 3-2a). A step in the solution to 
many problems of descriptive geometry involves the 
rotation of a vertical cross-sectional projection plane around 
a folding line by 900 so that it lies in the same plane as 
the horizontal map projection plane (Fig. 3-2b). ln some 
cases it is useful to specify the altitude of the map 
projection plane and therefore the altitude of the folding 
line. When a rotation around a folding line has been 
completed, the representation of the once-vertical 
cross-sectional plane on the horizontal plane is called a 
rotated projection; lines that connect a point on the original 
map projection with the the equivalent point on the rotated 
projection are called connecting /ines (Fig. 3-3). 
Connecting lines must be perpendicular to the folding lines 
that they cross. 

Imagine an object suspended at the center of a 
bottomless cardboard box. An image of the object can be 
projected onto the top and onto the four sides of the box 
(Fig. 3-4a). Bach intersection of the top of the box with a 
side of the box is a horizontal folding line, and the edges of 
the box are vertical folding lines. Notice that when the 

~ Folding line 

(b) 

flgure 3-2. Concept of a folding line. (a) 
Map projection and cross-sectional projection 
connected along a horizontal "hingelike" folding 
line; (b) rotation of cross section into the map 
projection plane. 

sides have been rotated around horizontal folding lines so 
that all sides lie in the same horizontal plane as the top of 
the box, once-adjacent sides are no longer connected by a 
folding line. ln other words, two vertical projection planes 
that join along a vertical folding line cannot be connected 
by a horizontal folding line. Thus, the rotated projections 
on the two planes cannot be joined by connecting lines. 
The images on two rotated projection planes can be 
connected, however, by segments of circular arcs (Fig. 
3-4b), here called connecting arcs. The center of the 
connecting arcs is the intersection of the two orthogonal 
horizontal folding lines. 

Graphic solutions to some problems requires use of 
two reference planes. A reference plane (RP) is merely an 
imaginary horizontal plane parallel to the map projection 
plane. For example, we can let RPl be the ground surface 
and RP2, which is parallel to RPl, lie at a depth d below 
the ground surface. It is possible to locate the posítion of 
the intersection of a structure with each reference plane as 
we will see in subsequent problems. 

The solution of problems involving descriptive 

(a) 

/Folding line 

/LZ=Efz:7/ 
Connecting l1ne 

(b) 

Flgure 3-3. Concept of connecting lines. 
(a) Cube projected onto two orthogonal planes; 
(b) connecting lines between the map 
projection and the rotated cross-sectional 
projection. 
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E F2 

0 

(a) 

~F1 I 1 

D ____ / /~ 

(b) 

__ -/ Connecting 
arc 

flgur11 3-4. Concept of oonnecting arcs. 
(a) Projeciions of a cube onto three mutually 
orthogonal planes; (b) connecting arcs 
betwean two rotated projections. 

geometry requires selection of a projection plane in which 
an angle or a line length is not distorted. For example, 
measurement of a dip angle must be done in a vertical 
projection plane that is perpendicular to strike, and 
measurement of a true line length must be done in a 
vertical projection plane that is parallel to the bearing of 
the line (Fig. 3-5). It is also useful to keep in mind that 
solutions obtained using descriptive geometry are limited 
in accuracy by the care used in constructing scaled 
drawings. To improve the accuracy of your calculations, 
use a sharp, hard pencil and well-made protractors and 
scales for maldng scaled drawings, and make your drawing 
big enough to work with. As a rule of thumb, drawings 
used to answer problems in this book should fü on about a 
half of a sheet of paper. 

flgure 3-5. Significance of the orientation 
of a projection plane with respect to a 
structure. The true dip of the plane (0) can be 
represented only on a plane that is 
perpendicular to the strike of the plane. Une 
AA' is parallel to strike. The length of line AB 
can be measured only on a projection plane 
that is parallel to a plane that contains the line. 
Therefore, the length of AB can only be 
measured in a verticai plane that is 
perpendicular to strike; it can not be measured 
in the map plane. [AB] "' [A'B'J, but [AB]* [AC]; 
the square brackets mean "lengt•'." 
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3-3 THREE~POINT PROBlEMS 

Use of Polnt Data 

ln this section we leam how to calculate the auítude of 
planes from lmowledge of the map coordinates and 
elevation of three points on the plane. Such problems, 
appropriately, are called three-point problems. The data 
necessary to set up a three-point problem may be obtained 
from a geologic map on a topographic base or from survey 
measurements. Calculation of planar attitudes from three 
points is based on the fundamental theorem of geometry 
that three points define a plane. We wm treat two cases: 
first, the case where two points on the plane are at the 
sarne elevation, and second, the case where all three points 
are at different elevations. The method is presented in 
somewhat of a "cookbook fashion" so that it is easier to 
foHow the steps, but please do not treat it as a cookbook. 
Think through each step and be sure you understand why it 
is done. 

Prnblem 3-1 (Two points at same elevation) 
Imagine a distinctive white tuff bed that is interlayered 

between dark massively bedded vokanic agglomerates. The 
sequence is homoclinally dipping (i.e., there are no changes 
in l.ayer attitude within the area of concem), but because the 
tuff is friable, meaning that it breaks up easily into little 
pieces, it is impossible to find a well-defined bedding plane 
in the unit on which to make a direct compass 
measurement. The locations and elevations of three points 
on the hasal contact of the tuff bed have been surveyed 
(Fig. 3-6a). Points X and Y are at an elevaüon of 100 m, 
and point Z is at an elevation of 60 m. Determine the 
attitude of the hasal contact of the tuff layer. Plane XYZ is 
the plane that defines the base of the tuff layer. 

Method 3-1 
Step 1: Make a scaled drawing that depícts the three 

points projected onto a map plane that lies at an elevation 
of 100 m (Fig. 3-6a). Be sure to indícate your scale and 
north arrow. Label the three points X, Y, and Z'. We use 
Z' instead of Z because the real point Z does not lie in the 
projection plane, but points X and Y do. 

Step 2: Connect X and Y with a straight Iine (line 
XY). Because these points are at the same elevalion, this 
line ís a strike line on plane XYZ, and its orientation is the 
strike of the plane (Fig. 3-6b ). 

Step 3: Using a protractor or a triangle, draw the 
perpendicular to line XY so that it passes through point Z'. 
Let the point at which this perpendicular line intersects line 
XY be called Q. Line Z'Q, which runs from a higher point 
toward the projection of the lower point, is, by definition, 
parallel to the dip direction. Create fÜlding line Fl parallel 
to Z'Q and rotate the cross-sectional plane up to horizontal 
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(Fig. 3-6b). The vertical scale in the cross section must be 
the same as the horizontal scale in the map. Locate point 
Z on the rotated projection plane; Z is at a depth of 40 m 
below Z'Q. Draw line ZQ, which is the trace of the 
contact in the rotated cross-sectional projection plane. The 
angle 0. the true din. can be measured with a orotractor (= 

34°) or can be calculated with the equation 

i& = arctan([ZZ']/[Z'Q]) = arctan(40/60) = 34° (Eq. 3-1) 

where the numbers in the square brackets are line lengths in 
your scaled drawing. 

Problem 3-2 (Three points 
at different elevations) 

Determine the attitude of a homoclinal bed gi ven the 
location and elevation of three points on the bed. The three 
points are L, M, and N. L is at an elevation of 200 m, M 
is at an elevation of 160 m, and N is at an elevation of 100 
m. 

Method 3-2 
ln this problem the three points are at different 

elevations. Therefore, in order to determine the orientation 
of a strike line on the bed, it is necessary to füst define two 
points at the same elevation. 

Step 1: Make a scaled drawing that depicts the map 

( 100) 

x 

N' 
( 1 00) 

(d) 

N' 

(f) 

(b) 

Elementary Techniques Part 1 

Flgure 3-6. Graphic solutions to 
a three-point problem. (a,b) are for 
problem 3-1 ; (c-g) are tor problem 
3-2. 

projection of the three points. Let the projection plane be 
at an elevation of 200 m (Fig. 3-6c). Therefore, the true 
position of point L is depicted, but only the projections of 
pointS M and N can be depicted; the projections of these 
pointS ai"e labeled M' and N', respectively. 

Step 2: Draw line LN' connecting the highest point 
and the projection of the lowest point. Somewhere along 
line LN' there must be a point Q' that is the projection of a 
point Q onto the 200-m-elevation projection plane. Point 
Q, whose location is not yet known, is defined to be a 
point at the same elevation as point M. Since point Q is 
at the same elevation as point M, line QM is a strike line 
on the bed at an elevation of 160 m. Line Q'M' is the 
projection of this strike line onto the map plane. Steps 3a 
and 3b provide altemative methods of locating point Q'. 

Step Ja: Draw a line N'V at any orientation starting 
from N', which is the projection of the point of lowest 
elevation (Fig. 3-6d). It is best if line N'V is oriented at an 
angle of about 200-400 from LN' and is a little longer, say 
20%, than line LN'. Using your engineer's scale, carefully 
tick off a distance on line N'V that represents the diff erence 
in elevation between point L (highest) a~d point N 
(lowest); the scale you use can be arbitrary. Note that in 
Figure 3-6d the difference in elevation between L and N is 
100 m, so we started at N' and located 10 ticks along N'V, 
each representing a change of 10 m. Connect the point on 
N'V that represents the elevation of L, call it poínt F, to 



Chapter 3 Geometric Methods 1: Attitude Calculations 

point L. Line FL is not necessarily perpendicular to LN'. 
Now find the point along line N'V Ihat, according to your 
arbitrary scale, represents the elevation of point M. Call 
lhis point E. Draw a line from point E to line LN'; this 
line must be parallel to line FL. The intersection between 
the line drawn from point E and line LN' is poim Q'. Y ou 
can now draw line Q'M', which is the strike line. 
Remember, be sure to understand why this method work:s! 

Step Jb: Create a földing line (Fl) that passes 
through point L and nms along LN' (Fig. 3-6e). Rotate 
the cross-sectional projection into the horizontal projoction 
plane. Fl is a horizontal line at an elevation equal to point 
L (the highest point). On the rotated cross-sectional plane 
draw a line perpendicular to Fl through point N'. Using 
l:he same scale as your map view, lay off increments until 
the true depth of point N can be shown. Mark point N, 
and draw line LN. The angle iJ between LN' and LN is an 
apparent dip angle. Now, find the point along line LN that 
is at the same depth as point M, and call this point Q. 
Draw a connecting line from point Q parallel to NN' to 
where it intersects line LN'. This intersection defines point 
Q', and you can now draw line Q'M', which is the 
projection of the strike Iine. 

Step 4: Once the projection of the strike line (Q'M') 
has been determined, it is necessary to deterrnine the dip 
direction. The dip direction is perpendicular to the strike 
line and points in the direction of the point with the lowest 
elevation. Draw a line from N' (the projection of the point 
at lowest elevation) that is perpendicular to Q'M' (Fig. 
3-6f). This line intersects line Q'M' at D. Line DN', 
which is perpendicular to the projecl.ion of the strike Hne 
on the map plane, gives the direction of true dip. 

Step 5: The final step is to determine the dip angle. 
To avoid confusion, do this with a separate cross section. 
Draw a cross-sectional projection along line DN' at the 
same scale as the map (Fig. 3-6g). Put the horizont.al 
reference line at 160 m. On this reference line draw line 
DN', so that it is the same length as DN' in Figure 3-6f. 
Point N' is the projection of N onto a horizontal plane at 
an elevation of 160 m. Locate point N at an elevation of 
100 m directly below point N'. Draw line DN, which is 
the trace of the plane ín cross section. The true dip angle ~ 
can be measured directly from this figure. 

Steps 3a and 3b reflect the fact that the position of Q' 
on line LN' is determined by the equation (square brackets 
indicate length): 

[N'Q'] = [LN'] altitude of M - altitude of N 
altitu.de of L - altitude of N 

(Eq. 3-2). 

A proof of the preceding equations is not immediately 
obvious (see Dennison, 1968, pp. 62-64, for the 
derivation). 

Use of Outcrop Patterns for 
Three-Polnt Problems 
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So far we have used point dala for calcul.ating layer attitude. 
A map pattem, if carefülly drawo, also provides sufficient 
data for calculation of layer attitude. Three points on the 
line of intersection between a contact and topography can 
be used to set up a three-point problem, since the position 
and elevation of each point is known. Once the three 
points on the plane have been selected, the same procedures 
as described above can be used to calculate the attirude. 

Problem J.J 
The trace of the contact between two formations is 

shown on a map (Fig. 3-7). From the map pattem of the 
contact, determine the orientation of the cootact 

Metlwd 3-3 
Choose wee points along the contact (points A, B, 

and C). To make the solution easier, it is best to choose 
points at locations where the contact crosses contour lines. 
If possible, choose two points so that they lie on the same 
contour line. Once you have located the points, follow the 
same procedure used in the three-point problem. ln the 
example ofFigure 3-7 two points (A and B) were chosen to 
lie on the 40-m contour, and the third point (C) lies on the 
60-rn contour. A line connecting A and B strikes 
east-west, so the contact strikes east-west. Completion of 
the three-point calculation yields a dip of 38°N. 

0 100 
& i & 1 ' 1 

m 

Figure 3-7. Map showing three points on a 
contact to illustrate problems involving calcuia
tion of attitude from a map pattern. 

3m4 CALCULATION Of OUTCROP TRACE 
FROM ATTITUDE DATA 

ln regions where exposure is poor and outcrops are sparse, 
it rnay not be possible to walk out a contact and thereby 
determine its map trace. However, if you are able to 
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measure the attitude of the cootact (or of adjacent units) at a 
single outcrop and are confident that the attitude does not 
change in the area of interest, it is possible to calculate the 
ttace of the outcrop belt. 

Problem 3-4 
A topographic base map of an area is available. A 

distinctive sandstone bed crops out at point A in the 
northwest comer of the map (Fig. 3-8). The attitude of the 
bed is 09()0 ,200S. Assuming that the attitude of the bed is 
uniform throughout the map area, plot the outcrop belt of 
the bed on the map. 

Method 3-4 
Step 1: Draw a folding line (Fl) perpendicular to the 

sttike direction of the bed and rotate the cross-sectional 
view into the plane of the map projection (Fig. 3-8). Put 
the folding line outside the map area so that the rotated 
cross-sectional view does not overlap the map. 

Step 2: On the rotated view of the cross section, 
draw a scale perpendicular to the folding line at the same 
scale as the map. The cross-sectional scale represents 
elevations. Draw lines parallel to the folding line at 
int.ervals along the scale separated by a distance equivalent 
to the contour interval on the map. Each of these lines 
represents a reference plane equivalent in elevation to a 
contour line in the map area. The highest elevation on this 
section should be above the highest elevation ín the map 
area. and the lowest elevation should be below the lowest 
elevation in the map area. 

Step 3: Draw a line parallel to strike (i.e., 
perpendicular to Fl) from point A so that it int.ersects the 
one reference plane in the rotated cross section that is 
_...,_ --=~~~~~-1---• .: ..... ...,1 ..... -~..._,•;-~ •- ·~~ ~1~"'-Y~+;,..,,..,, nf •h.o. lT"f"l"'ll.1n"'llrl V'o{üi.VM.A"'••1. .ii.iii.O. VA_„ __ -..;-a.:. ..V ,,._„ __ .,..-~o_--~-~-_..:..;. ;.,.;-.=. _:..:._ (;;~::_:~~" 

surface at point A. Label the point of intersection A'. 
Draw a line in the cross-sectional plane so that it makes an 
angle with respect to Fl equal to the true dip of the bed and 

N 
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so that it passes through point A'. This line represents the 
trace of the bed in cross section. Be sure the bed dips in 
the correct direction. 

Step 4: Mark a dot at each point where the bed 
crosses a reference plane in the cross section. From one of 
these dots, ext.end a line that is parallel to strike back 
across the map area. Mark a dot on the map at each point 
where this line crosses a contour line equivalent in 
elevation to the reference plane at which the dot occurs in 
cross section. Repeat the procedure for all other dots. 

Step 5: You can now construct the outcrop trace by 
connecting the dots. Do not connect the dots blindly. Take 
care to account for local variations in topography between 
the dots by remembering the rule of V's. 

If your task is to draw the outcrop pattem of a bed of 
known thickness, make sure that your original point A lies 
on either the top or boltom contact of the bed. Draw the 
true thickness of the layer on your cross-sectional plane. 
Mark the points along both top and botlom contacts where 
the contacts cross the reference planes. Finally, draw the 
chords from these poims across the map area to locate the 
map traces of the top and bottom contacts. 

3-5 TRUE AND APPARENT DIPS 

ln Chapt.er 1 we defined the true dip of a bed as the dip 
angle measured in a vertical plane that is oriented 
perpendicular to strik:e, and the apparent dip as the dip angle 
measured in a vertical plane that is not perpendicular to 
strike. ln many circumstances true dip cannot be measured 
directly, but an apparent dip can be measured. As an 
P..,rqryu-~1~ rnn~itiPr ~ nn~rrv in whlrh rlinnina rlilcP~ ~rP. 
~-='---- -'-r -=--• -.;_--o_- - -- -~ ".-. - .; ~--- ~: -~- -- ~--- --- "---

exposed on vertical walls (Fig. 3-9). The angle that the 
dikes make with horizontal in a quarry wall that is not 
perpendicular to strik:e is an apparent dip. If the quarry wall 

LL 

0 0 0 
<0 -q- N 

Figure 3-8. Map used to illustrate 
the calculation of outcrop patterns. 
Heavy dark line is the outcrop 
trace. 
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flgure 3-9. lntersection of dikes (heavy 
lines) with the walls of a quarry. Note that the 
strikes of the dikes are not perpendicular to the 
quarry walls; therefore, the angle between the 
trace of the dikes and horizontal line in the 
quarry walis is an apparent dip. li!J is the true 
dip; µ is an apparent dip in an east-west 
trending wall; é) is an apparent dip in a 
north-south trending wall. 

is parallel to strik.e, the apparent dip is 0°. We will 
introduce graphicaJ., trigonometric, and nomographic 
methods for caJ.culation of true dip from apparent-dip data. 
W e provide several different examples to illustrate different 
situations and differem methods, but really all the examples 
are simply variations on the same theme, namely, that if 
you know the orientation of two lines on a plane, you can 

BAC=/3 
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calculate the attitude of the plane. The two lines can be 
either a strike line ami the trace of the plane in a vertical 
plane (e.g., quarry wall) or two nonparallel traces of the 
plane in verticaJ. planes. 

Trne Dlp From Strlke and Apparent Dlp 

Imagine that a quarry with vertical waJ.ls has been cut in a 
region where the original ground surface was horizontal. 
The trace of the intersection between a dipping bed and the 
grmmd surface is, by definition, the strik.e of the bed. The 
true dip can be calculated if this strike is known, if the 
apparent dip in one verticaJ. wall is known, and if the angle 
in map view between the wall and the strike line is known. 
The direction of apparent dip is the trend of lhe quarry wall. 

Problem 3-5 
Given lhe strik.e of a bed (3300) and the apparent díp 

(25°) in the directioo (260°), determine the true dip. Three 
different methods are presented. 

Method 3-Sa (Descriptive geometry) 
Step 1: Visualize the problem (Fig. 3-lOa). Define 

two reference planes, RPl and RP2, at a distance d apart 
(i.e., BB' = CC' =d). RP2 is below RPl. Let !<'! be the true 
dip, d the apparent dip, and 6 the angle in RPl between the 
true dip directioo and the apparent dip direction. 

Step 2: Make a graphic construction. Start by 
drawing north.-south and east-west coordinate axes in a 
map-view plane at the levet of RPl (Fig. 3-lOb). Let 

North 
p 

(b) 

Figure 3-10. Graphic solution for calculation of true dip from strike 
and apparent dip. (a) Block diagram of the problem. Shaded surface is 
the dipping bed; RP1 and RP2 ara upper and lower reference pianes, 
respectively. íJ is the apparent dip; " is the true dip; B is the angle 
between the true dip direciion and the apparent dip direction; d is the 
distance between rnference planes; (b) solution on a map projection 
plane. Stippled triangles ara the rotated cross-sectional views. 
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point A be located at the intersection of these axes. Draw a 
line PQ representing a strike line on the bed at the same 
elevation as point A. Draw line AB parallel to the 
apparent dip directioo. 

Step 3: Let AB become folding line Fl, and rotate 
the cross-sectional projection (quarry wall) into the map 
projection plane. Draw line AN so that it makes an angle 
é) with respect to AB, and draw the perpendicular to AB so 
that it intersects AN and defines the position of point B '. 
Point B lies in RPl, and B' lies in RP2. The length of 
BB' defines the distance d. 

Step 4: Draw line XY so that it is parallel to the 
strike line and passes through point B. Draw a line from A 
so that it is perpendicular to strike and intersects XY. The 
intersection defines point C (line AC is parallel to the true 
dip directioo). 

Step 5: Find point C', which lies a distance d below 
C. Let AC be folding line F2, and rotate the 
cross-sectional plane around this folding line into the map 
projection plane. ln this rotated projection, C lies in RPl. 
Point C', which is in RP2, must lie along XY because AC 
(true dip direction) is perpendicular to PQ (strilce line). 
The length of CC' must equal the length of BB' (= d). Use 
your scale and measure a distance d along XY to find C'. 
Draw a line from A to C'. The angle CAC', which you 
now measure with a protractor, is the true dip angle ~ (= 
26°). 

Method 3-Sb (Trigonometry) 
From the block diagram (Fig. 3- lOa) it is possible to 

derive a trigonometric formula for calculation of true dip. 
One solution is provided here; this solution employs the 
fact that BB' = CC'. 

BB'/AB =tan o 

CC'/AC = tan ~ 

AB tan é) = BB' = CC' = AC tan~ 

(AC tan ~)/AB= tan a 

tan~= (tan iJ)AB/AC 

AC/AB=cos6 

AB/ AC = l/cos 8 

tan ~ = tan iJ(l/cos 6) 

tan ~ = tan o/cos 8 

fJ = arctan(tan o/oos 8) (Eq. 3-3) 

Elementary Techniques Part 1 

where, again, ~ is the true dip, a the apparent dip, and B the 
angle in RPl between the true dip direction and the 
apparent dip direction (i.e., 200). 

To detennine the true dip for Problem 3-5, you can 
substitute the appropriate values into Equation 3-3: 

111 = arctan(tan 25°/cos 200) = 26°. 

True Dlp from Two Apparent Dlps 

If the strike of a plane is not known, it is possible to 
detennine the true dip and strilce of the plane if the apparent 
dips in two nonparallel vertical sections are known. The 
graphical procedure is similar to the preceding one and 
works both when the true dip direction lies between the 
two apparent dip directions and when it does not 

Problem 3-6 
Given the apparent dip (25°) in the direction 2400 and 

the apparent dip (200) in the direction 1700, determine the 
true strilce and dip. Three different methods are presented 
for the solution of this problem. 

Method 3-6a (Descriptive geometry) 
Step 1: Visualize the problem (Fig. 3-lla). Line 

AC is perpendicular to strike, so its orientation is the true 
dip direction. Lines AB and AD are apparent dip directions; 
). is the angle between AB and true strike, and á is the 
angle between AB and AD. Both ). and A are measured in 
RPl. é) is the apparent dip in the direction of AB,µ is the 
apparent dip in the direction of AD, and 111 is the true dip. 

Step 2: Draw north-south and east-west coordinate 
axes so that they intersect at point A (Fig. 3-llb). Draw 
lL~~ AB ;-~rntt„1 t~ th„ fird '!Dn~r.,.nt rli!1 cfüection and line 
AL parallel to the second apparent dip direction (these lines 
are of arbitrary length). 

Step 3: Using AB as folding line Fl, rotate the 
cross-sectional plane that contains the füst apparent dip up 
into the map projection plane. ln the rotated projection 
draw line AN so that it makes an angle of a (= 25°) with 
respect to AB. 

Step 4: Draw a line from B so that it. is 
perpendicular to AB and intersects AN at B '. The distance 
BB' defines d (the distance between RPl and RP2). 

Step 5: Using AL as a folding line F2, rotate the 
cross-sectional plane parallel to the second apparent dip 
direction into the map projection plane. Draw line AM in 
the rotated projection so that it makes an angle µ (= 20°) 
with respect to AL. 

Step 6: You must now find the position of D. To 
do this, draw a line between lines AL and AM that is 
perpendicular to AL and is the same length as BB'. This 
line is DD'. Note that the positions of D and D' are not 
arbitrary. 
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figura 3-11. Solutions for calculation of true attitude from two 
apparent dips. (a) Block diagram of the problem. Shaded surface is the 
dipping plane. a and µ are apparent dips, 0 is the true dip, A, is the angle 
between strike and one apparent dip direction; (b) graphic solution, on 
map projection plane; (e) angles used in trigonometric solution; (d) 
tangent vector method; (e) cotangent vector method. 

Step 7: You can now draw strik:e line BD on the 
upper reference plane; the orientation of BD with respect to 
your north coordinate axis is the strike. Draw AC, the 
direction of true dip, perpendicular to the strik:e line. Let 
AC be a folding line, and rotate the cross-sectional plane 
that contains the true dip around AC into the map 
projection plane. Lay off line CC' so that it is the same 
length as BB' and DD'. Angle CAC' (0 = 27°) is the true 
dip. 

Metlwd 3-6b (Trigonometry) 
In this method we determine the strik:e by calculating 

the angle between one of the apparent dip directions (in this 
case, AB) and the strike line (angle "A in Figure 3-1 la). 
Below is an equation for determining the angle A, given 
two apparent dips (a in the direction AB and µ in the 
direction AD). To simplify the calculation, first calculate 
the angle x (Fig. 3-1 lc), where x = (90 - "A). The distance 
between RPl and RP2 is d. 
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AB =d/tanCl 

AD=d/tanµ 

Now, remember the ídentity cos(90 - A.)= sín A.. 

AC/AB = cos x = sin A. 

AC/AD =cos(<'.\ - x) 

AC = AB cos x = AD cos(<'.\ -x) 

Now, use the formula for the cosine of the difference 
between two angles. 

AB cos x = AD(cos A cos x + sín /1 sín x) 

(d/tan Cl)cos x = (d/tan µ)(cos /1 cos x + sin A sin x) 

(l/tan Cl)cos x = (l/tan µ)(cos /1 cos x) 
+ (l/tan µ)(sin A sin x) 

l/tan a= (l/tan µ)[cos /1 +(sín L\ tan x)] 

tan µ/tan a = cos L\ + sin L\ tan x 

sin .ó. tan x =(tan µ/tan CJ) - cos L\ 

tan x = tan(90 - A) = [tan µ/(sin L\ tan d)] - cot L\ 

A,= 900 - arctan{[tan µ/(sin L\ tan Cl)] - cot 11} (Eq. 3-4) 

where A. is the angle between strik:e and the apparent dip in 
the dirl".Ction of AR. 11 is the aooarent din anirle (20°) in the 
direction of AD (bearing of 1700), a is the apparent díp 
angle (25°) in the direction AB (bearing of 2400), and /1 is 
the angle between AB and AD(= 700). Now that we have 
Equation 3-4, we can illustrate the solution. 

Step 1: To determine the strike, first calculate the 
angle A. using Equation 3-4. 

A.= 900 - arctan([tan 200/(sín 70°tan 25°)) - cot 70°} 

strik:e = 2400 + 65° = 305°. 

Step 2: Once strik:e has been detennined, the true dip 
can be determíned by using Equation 3-3. First, calculate 
B, which is the angle between the true dip direction and the 
appparent dip in the direction of AB. The true dip direction 
is 
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B = 240° - 215° = 25°. 

Now, substitute the appropriate values into Equation 3-3: 

true dip = ~ = arctan(tan 25°/cos 25°) = 27°. 

Method 3-6c (Tangent vector method): 
Hubbert (1931) and Ragan (1985) showed that the 

tangent of the apparent dip can be treated like a vector and 
thus that the true dip can be calculated as follows. 

Step 1: Draw north-south and east-west coordinate 
axes to intersect at point P (Note: We use P ínstead of A to 
indicate the origin in this figure to emphasize that it 
displays vectors, not lines and planes, as did Figure 3-11 b) 
and define an arbítrary scale (Fig. 3-lld). Draw vector EP 
in the direction of AB. The length of EP is equal to the 
tangent of the apparent dip angle ín the direction of AB. In 
other words, 

[EP] = tan d = tan 25° = 0.4 7 units 

where the square brackets indicate length. The line 
representing EP in Figure 3-lld is 0.47 unit long at the 
scale of the figure. 

Step 2: Draw vector FP in the direction of AD. 
The length of FP is equal to tan µ. 

[FP] =tanµ= tan 200 = 0.34 unit. 

The line representing FP in Figure 3-lld is 0.34 unit long 
at the scale of the figure. 

Step 2: Draw perpendiculars to both vectors. These 
perpendicular lines cross at point S. Vector SP indicates 
the direction of the true dip. The lernzth of SP is 0.51 
unit. The value of true dip is given by 

true dip = ~ = arctan[SP] = arctan(0.51) = 27° (Eq. 3-5). 

Usíng this tangent vector method will yield more accurate 
results than the graphical method, especially for small dip 
angles. 

Method 3-6d (Cotangent vector method) 
This method is similar to that of Method 3-5c, but 

now we use the cotangents of the apparent dip angles rather 
than the tangents. 

Step 1: Draw coordinate axes that intersect at P 
(Fig. 3-lle). Draw vector EP so that it is parallel to AB 
and is equal in length, using the scale of the drawing, to 
the cotangent of the apparent dip a in that direction (cot 
25° = 2.15). Draw vector FP so that it is parallel to the 
direction of AD and is equal in length to the cotangent of 
the apparent dip µín that direction (cot 200 = 2.75). 

Step 2: Draw vector EF, which connects the ends 
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of EP and FP. Draw a vector from P so that it is 
perpendicular to EF; cal! thi.s vector NP. The length of 
vector NP (= 1.96), measured by the scale, is the cotangent 
of the true dip. Therefore, 

!iS = arccot[NPJ = arccot(l.96) = 27° (Eq. 3-6). 

Apparent Dlp Determined From True Dlp 

Perhaps the most common application of cakulations 
involving true and apparent dips occurs in the construction 
of geologic cross sections. As noted earlier, if the line of 
section is drawn to be perpendicular to strike of the beds 
that cross the line, then the dip of the beds shown in the 
section will be true dips. If the line of section is oblique 
to strike, then the díp of the beds shown in the line of 
section must be an apparent dip. Next we offer a few 
geometric methods for determination of apparent dip if the 
trend in which the apparent dip is desired is given, and the 
true strike and dip are known. 

RP1 

A f3 = BAC 

(a) 

N North 

0=1 a0 

L 

E ast 

0.0 0.5 1.0 

(e) 

L 
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Problem 3~7 
Given the strike and dip of the bed (N45°W,30°SW), 

determine the apparent dip (d) in the direction N80°W. 
The trend of the requested apparent dip direction may 
represent a line of section. Three alternative methods to 
solve this problem are given below. To visualize the 
problem, refer to the block diagram of Figure 3-12a. We 
wish to determine a, given !iS = 30° and B = 55°, where ~is 
the true dip and B is the angle between the apparent dip 
direction and the true dip direction. 

Method 3-7a (Descriptive geometry) 
Step 1: Draw north-south and east-west coordinate 

axes that intersect at point A (Fig. 3-12b). Draw line AC 
of arbitrary length parallel to the true dip direction (i.e., 
perpendicular to the strike). Draw line SR so that it passes 
through point e and is parallel to the direction of strike. 
SR is the projection of a strike line onto RPL 

Step 2: Let AC be a folding iine Fl. Rotate the 
cross-sectional view into the map projection plane. Draw 

R 

(b) 

North 

0=18° 

R 

0 2 4 
1 1 1 ! ! 1 1 ! ! ! 1 ! ! 1 ! 1 1 1 1 1 i 

(d) 

Figure 3-12. Solutions for calculating apparent dip from trua attitude. 
{a) Block diagram. a is the apparent dip; 13 is the true dip; B is the angle 
between true dip and apparent dip directions; (b) graphic solution; (e) 
tangent vector method; (d) ootangent vector method. 



56 

line AC' so that it makes an angle of 111 ( =300) with AC. 
Point C' in the rotated projection must lie along line SR. 
The distance CC' defines the distance d between the upper 
and lower reference horizons (RPl and RP2). 

Step 3: Draw line AQ so that it is parallel to the 
specified direction of the apparent dip (N800W) and crosses 
line SR at B. Consider AB to be folding line F2. Rotate 
Uie cross section around F2 into the map projection plane. 
On the rotated projection draw line BB' so that it is 
perpendicular to AB and has a length of d. Now that B' is 
located, you can draw AB'. The angle between AB and AB' 
is the apparent dip (d = 18°) ín the direction AB. 

Method 3-7b (Trigonometry) 
We can derive a trigonometric formula by referring to 

Figure 3-12a. 

d = arctan[tan 111 cos B] (Eq. 3-7) 

where, again, dis the apparent dip in the direction AB, 111 is 
the true dip, and S is the angle between the true dip 
direction and the apparent dip direction. Substituting 
appropriate angles into Equation 3-7 yields 

Method 3-7c (Tangent vector method) 
Step 1: Draw coordinate axes that intersect at P, 

and specify a scale (Fig. 3-12c; note that the scale provided 
in this figure is arbitrary and units do not inatter.). 

Step 2: Draw vector PN in the direction of true 
"trike_ Pnnl!I in lenzth to the t~mgent of the tme dip (tan 
30° = 0.577) at the scale of your drawing. Draw line PL 
in the direction of the desired apparent dip direction. 

Step 3: Draw a line from N that joins PL and is 
perpendicular to PL. This line is vector NH. The length 
of NH, at the scale of the figure, is the tangent of the 
apparent dip in the dir~tion of PL. The length of NH is 
0.32, SO, 

d = arctan[NH] = arctan(0.32) = 18° (Eq. 3-8). 

Method 3-7d (Cotangent vector method) 
A construction using cotangents may also be used in 

the solution of this problem (Ragan, 1985). To help 
visualize this solution, refer to Figure 3-12a, and imagine 
that d (=BB' and CC') is set to be l unit long. Note that if 
d = 1, tan 111 = l/AC, so that cot fii= AC. Likewise, cot a 
= AB. This fact permits a quick construction to determine 
the apparent dip (Fig. 3-12d). 

Step 1: Draw coordinate axes so that they intersect 
at P. Draw vector PR perpendícular to the strike and in 

Elementary Techniques Part 1 

the direction of true dip; make PR equal in length to the 
cotangent of the true dip (cot !11 = 1.73) according to the 
scale of the figure. 

Step 2: Draw line PL parallel to the desired apparent 
dip direction. Draw a vector from the tip of PR that is 
perpendicular to PR and joins PL at J. The length of 
vector P J is the cotangent of the apparent dip in the 
direction of PL. PJ is 2.97 units long in Figure 3-12d at 
the scale of the figure, therefore, 

a= arccot[PJ] = arccot[3.0] = 18° (Eq. 3-9). 

Nomograms for Apparent Dlp Calculatlons 

A nomogram is a graphical tool that permits quick 
solution to equations. It is basically a graphical solution 
to a single formula (see Palmer, 1919; Billings, 1972). 
The type of nomogram that we introduce here is an 
alignment diagram used for true and apparent dip 
calculations (Fig. 3-13). The diagram consists of three 
columns; column one represents true dip, column two 
represents apparent dip, and column three represents the 
angle between the apparent dip direction and the strike. 
The plane in which the apparent dip is measured is called 
the projection plane. These columns represent quantities in 
an equation that relates true dip to apparent dip. To use the 
apparent dip nomogram of Figure 3-13, simply mark off 
values on two of the columns and draw a straight line 
through these two points so that it crosses the third 
column. The intersection of the line with the third column 
gives the value of the third variable. Any two values can 
be used to calculate the third. 

A circular nomogram, the apparent dip computer (Fig. 
3-14). is used ina similar wav. Mount the outer scale on a 
piece of cardboard and cut out the inner scale so that it can 
rotate. Knowledge of any two values allows the third to be 
determinoo. 

These nomograms are most useful when many 
calculations are to be done quickly, such as when 
constructing a geologic ~ross section that is not 
perpendicular to strike. They cannot be used for 
determining true dip from two apparent dips. 

3·6 CALCULATION OF LINEAR ATTITUDES 

Determlnatlon of Rake 

It is often possíble to measure the rake of a lineation 
directly in the field. However, if direct measurement is not 
possible, the rake of a lineation can be calculated either 
trigonometrically or by descriptive geometry if the attitude 
of the plane on which the lineation occurs is known and 
the bearing of the lineation is known. 
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Figure 3-13. Linear nomogram 
for calculation of true dip given lhe 
apparent dip on a vertical plana 
(projection plane) that is indined to 
the strike direction. (Adapted from 
Palmer, 1919). 

Problem 3-8 

True dip 

89° 

85° 

80° 

70° 

60° 

50° 

20° 

10° 

The attitude of a slip lineation on a fault swface is 
20°,S38°W. The fault-plane attitude is NlOOE,40°NW 
(i.e„ 0 = 400). The angle between the fault strike and the 
bearing of the lineation is, therefore, a = 28°. What is the 
rake (8) of the lineation? 

Method 3-Ba (Descriptive geometry) 
Step 1: Draw a map representing the fault trace and 

the projection of the lineation on a horizontal plane (Fig. 
3-lSa). Specify points A, B, C, and D, which all lie in the 
map projection plane. Consider the map projection to 
define an upper reference plane (RPl). Line AD represents 
the fault trace in RPl, line AC is the projection of the 
lineation onto RPl, lines AB and OC are drawn parallel to 
the dip direction of the fault. Line BC is the projection of 

Apparent dip 

89° 

85° 

80° 

70° 

60° 

50° 
40° 

30° 

50 

30' 

10' 
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Angle between 
projection plane 

and strike 

90° 
80° 

6()o-70° 

50° 

40° 

30° 

20° 

10° 

50 

the trace of the fault in a lower reference plane (RP2) up 
onto RPl. The plane ABCD is the projection of a 
dipping plane on the horizontal map plane. In order to 
determine the rake (an angle measured in the fault plane), 
füst rotate the fault plane up to ho:ri.wntal. 

Step 2: Let line AB be a folding line (Fl). Draw 
lin.e AJ (Fig. 3-15b), which represents the trace of the fault 
on the rotated plane (Ili is the true dip of the fault). Locate 
point K along AJ; K lies ín RP2 and therefore lies 
vertically below point R 

Step 3: Now rotate the fault plane into the map 
projection plane. To do this, use a compass and draw a 
connecting arc from K to L; point L lies along folding line 
FI and point A is the center of the circle. The length of 
line AL equals the length of line KL. 

Step 4: Construct rectangle ALMD (Fig. 3-15b). 
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APPARENT DIP COMPUTER ú' 

LOWELL R. SATIN, 1959 
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Figura 3·14. Circular nomogram or "apparent 
dip computer" far calculating true dip when 
given the apparent dip and the angle between 
the strike of the bed and the strike of the 
vertical plane on which the apparent dip was 
mentioned. The inner scale can be cut out and 
rotated with respect to the outer scale. 
(Adapted from Satin, 1960.) 

(a) (b) 

Flgure 3-15. Graphic solution far calculation 
of rake. (a) Map projection of four points on the 
fault plane. a is the bearing of lineation; (b) 
use of connecting arcs to permit rotation of 
fault plane into map projection. 0 is the true 
dip; /:;.is the rake; a is the angle between the 
bearing of the line and the strike of the plane. 

Elementary Techniques Part 1 

This plane is the portion of the fault between the two 
reference planes after it has been rotated into the map 
projection plane. Remember, ABCD was only the 
projection of the plane. Line AM is therefore the lineation 
in the plane, and the angle fl. is the rak.e of the lineation; fl. 
= 34°. 

Method 3-8b 
Trigonometric formulas for specifying rak.e can be 

written ín two ways. The formulas written below refer to 
lines and angles in Figure 3-16. Plane ABC is a horizontal 
plane, plane ABDE is the plane on which the lineation 
occurs, AD is the lineatíon, BA is a strike line, AC is the 
bearing of the lineatíon, ~ is the true dip, fl. is the rak.e, a 
is the angle between strike and bearing of the lineatíon, and 
a is the plunge of the líneatíon. 

Formula 1 (Rake in terms of plunge and angle 
between bearing and strike): 

AB/AD=cos& 

AB/AC =cos a 

AC/AD =cos a 

AB = AC(cos a) 

AD= AC/cosa 

cos & = AC(cos a)/(AC/cos o) =cos a cos o 

& = arccos(cos a cos ö) (Eq. 3-10). 

Substitution of appropriate values for the angles yíelds 

& = arccos(cos 28° cos 200) = 34° 

E 

flgure 3-16. Angles used far trigonometric 
calculation of rake from plunga and bearing. 
AD is the line in quastion; /:;. = rake; 0 = true 
dip; a • angla batwean strike of plane ABDE 
and the bearing of line AD; a ... plunge of line 
AD. 
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Formula 2 (Rake in terms of dip and angle between 
bearing and strike): 

BD/BA =tan !J. 

CB/BA = tan a. 

CB/BD=cos0 

BA=CB/tan a 

BD=CB/cos~ 

tan A = (CB/cos ~)/CB/tan o.) = tan a./cos ~ 

A = arctan(tan a/cos 0) (Eq. 3-11). 

Substitution of appropriate values for the angles yields 

where, again, !I) is the true dip, A is the rake, a is the angle 
between strike and bearing of the lineation, and a is the 
plunge of the lineation. 

Attltude of the lntersectlon of Two Planes 

If two planes of lmown attitude cross, the line of 
intersection is called an intersection lineation. The attitude 
of an intersection lineation can be determined both from 
descriptive geometry and from trigonometry. We provide 
only the descriptive geometry solution here, because it 
helps students to visualize the problem. 

Problem 3-9 
Two nonparallel dikes intersect each other at point A. 

Dik.e 1 is oriented N400E,30°SE and dik.e 2 is oriented 
N70°W,600NE. What is the attitude of the line defined by 
the intersection of the two dikes? 

Method 3-9 (Descriptive geometry) 
Step 1: Draw the map traces of the two dikes at a 

convenient scale so that they intersect at point A (Fig. 
3-17 a). Indicate the dip directions with tick marks. The 
map trace of the intersection lineation must líe between the 
traces of the two dikes, and the dip tick marks on each dike 
point toward the trace of the lineation. 

Step 2: Draw fold.ing line Fl perpendicular to dike 1 
and folding line F2 perpendicular to dik.e 2. Rotate the 
cross-sectional planes into the map projection plane. 
Define a lower reference plane at a distance d below the 
map plane ami draw the cross-sectional representations of 
dikes 1 and 2. The dip angles shown in the rotated 

/ 
/ 

I 
I 

...... I 

1 
1 
1 
1 
1 
11\ 

0 2 3 
1 1 1 

Scale 

1 

8 

figurn 3-17. Graphic solution for deter
mining the orientation of an intersection 
lineation formed where two dikes cross. (a) 
The dikes and their rotated cross-sectional 
projections; (b) rotated projection of the plane 
containing the intersection lineation; (e) angles 
used in trigonometric calculation of plunge. 
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(a) 

4 
1 

(b) 

(e) 

projections are the true dips of the dikes. In Figure 3-17a 
the trace of dike l in the rotated projection is line ZW, and 
the trace of dik.e 2 in the rotated projection is line XY. 

Step 3: Draw lines YN and WM. These lines 
represent the projection on the map plane of strike lines 
along the dikes in the lower reference plane. YN and WM 
intersect at point A'. Point A' is the projection on the map 
plane of the point at which the dikes intersect in the lower 
reference plane. Line AA' is therefore the projection in the 
map plane of the imersection lineation. The bearing of 
this line (S85°E) is the bearing of the lineation. 
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tan 'I':: A'B/AA' 

'I' = arctan(l/AA') (Eq. 3-12) 

Step 4a: You now know the bearing of the 
intersection lineation, but you still need to determine íts 
plunge. To determine the plunge of AA', let AA' be 
folding line F3. F3 is offset and redrawn in Figure 3- l 7b 
to simplify the figure. Rotate the cross-sectional plane 
into the map projection plane, and locate the lower 
reference plane at a distance d below F3. Draw AB, which 
is the profile of the lineation. Angle 'I', which can be 
measured from the figure by using a protractor, is the 
plunge of the intersection lineation; 'I' = 25°. 

where 'I' is the plunge and AA' is measured from Figure 
3- l 7b. Return to Figure 3- l 7b. At the scale of this 
figure, A'B is 2.1 units, and AA' is 4.25 units. You must 
divide by 2.1 to get the appropriate value of AA' for 
Equation 3-17; 4.5/2.1=2.1. 

Step 4b: It is faster to use a simple trigonometric 
formula to determine the plunge. ln Figure 3-17c if you 
set d = 1 (i.e., A'B = 1), then 

'I' = arctan(l/2.1) = 25°. 

Thus, the attitude of the intersection lineation is 
25°,S85°E. 

EXERCISES 

1 . A distinctive sandstone bed crops out at three localities in a corner of the 
Edmundsville Quadrangle. Outcrops A and B are on the 340-m contour line, and 
point C is on the 280-m contour line. Outcrop B is 400 m to the N40°E of 
outcrop A, and outcrop C is 240 m to the N20°W of outcrop A. Assuming that 
the sandstone bed is homoclinal, what is its strike and dip? 

2. A hasalt sill is exposed at three localities within an area being surveyed by a 
geologist. The geologist collected the following data conceming the three outcrops 
of the sill. (Locations are specified wíth respect to a reference point, X. The first 
number is the distance from X, and the second number is the azimuth from X): 

Locality 
A 
B 
e 

Location 
200 m; 070° 
100 m; 3300 
100 m; 210° 

-.·n·!-__ -"c: ~---, -e-!- ·---~·11 ---:.-=--"--~ "-~;-;--- ___ r "':'- --- ~;n~ 
\U) 1'V IH&I. J...:J l.ll\.I .:n.1..1.n."" u.uu ,.uy v.1.. 1.„u.v L>lLI..&. 

(b) Repeat the problem using a different method. 

Alti tud e 
700m 
900m 

1200m 

3. Three wells have been drilled in Chatalkqua County by the Beanbody Coal· 
Company in order to find the thick Queen Mother coal seam. ln order to track the 
seam into the next county, the company geologists must know the strike and dip 
of the seam. The following data were obtained by the well-site crew. The wells 
were positioned at the comers of a square that is 500 m on a side. Two edges of 
this square trend north-south, and two edges trend east-west. 

Well number 
459 
460 
461 

Location 
NE 
NW 
SE 

Ground elevation 
730 m 
850 m 
760m 

What is the strike and dip of the coal seam? 

De,Pth to top of coal 
220m 
410m 
340 m 

4. Fred Spear is attempting to determine the regional tilt of a peneplain surface (a 
peneplain is a region that has been beveled flat by erosion). Such information will 
tell him about postunconformity epeirogenic movements. The term epeirogeny 
refers to gentle regional vertical movements of continental crust. He accurately 
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measured the altitude of the peneplain at three comers of a square mik section, and 
his data are listed below. 

Lücafüy 
NEcomer 
NWcomer 
SWcomer 

Altitude 
1400 ft 
1700 ft 
1900 ft 

(a) By how much has the peneplain tilted since it förmed, assuming that it was 
initially horizontal? Assume no curvature to the earth. 
(b) Around what axis didit rotate? 

5. Some rock units display massive bedding, meaning t~at, as a consequence of 
bioturbation or of other characteristics of the depositional environment, the unit 
does not contain distinct bedding planes. The upper l 0 m of the Becram 
Limestone is massively bedded, and its attitude cannot be measured with a 
compass. Three outcrops of the upper Becram Limestone are located on Figure 
3-Ml. 

(a) What is the strike and dip of the unit in the map area, assuming it is 
homoclinal in the map area? 
(b) Detailed mapping in the map area indicates that between points A and B there 
is a syncline hinge. The amplitude of the syncline is 80 m. Keeping this 
observation in inind, reconsider your preceding cakulation. Do you think your 
answer to {a) is worth plotting on the map? (Explain.) 

Figure 3-M1. Outcrop positions 
of the Becram limestone. Ele
vations of the outcrops are 
indicated. 

120 
@ 

260 

0 
Numbers are elevations above sea levei. meters 

Outcrop locat1ons of Becram Limestone 

100 

6 . The true attitude of a hasalt dike is N400E,30°NW. What is the apparent dip of 
this dike as exposed in a vertical cliff face that trends N700E? 

7 . The strike of bedding on the horizontal floor of a limestone quarry is N43°E. The 
apparent dip of the bedding in a north-south trending quarry wall is 32° toward the 
south. What is the true dip of the bedding? 

8. A prospector has dug two small trenches, which are not parallel to one another, at 
the base of Tabor Ridge in order to expose a thick vein of gold-bearing bull quartz. 
The walls of the pits are vertical. In the füst pit the apparent dip of the vein is 
24°,Nl7°E, and in the second pit the apparent dip of the vein is 56°,N39°W. 
What is the orientation of a shaft that lies in the plane of the vein and parallel to 
the true dip of i:he vein? 

1 
N 
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(21 
lnco Fm. 
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9. Cross beds can be used to determine paleocurrent directions. Such information is 
of great value in regional stratigraphic study. Often, however, cross beds are not 
fully exposed, and their true attitude must be calculated from data on apparent dip. 
Consider a cross bed in sandstone that is exposed on two vertical nonparallel joint 
faces. On one face the apparent dip ofthe cross bed is 10°,016°, whereas on the 
other it is 28° ,082°. 

(a) What is the attitude of the cross bed? 
(b) Assume that the current direction is parallel to the true dip direction of the 
cross bed. What was the orientation of the current direction during deposition of 
the sandstone? 
(e) What is the orientation of a joint face on which the apparent dip of the cross 
bed is the maximum possible value? 

10. An east-west line of section in the Rusty Ridge Quadrangle cuts across a folded 
sequence of Carboniferous strata. A portion of the line of section is shown in 
Figure 3-M2. ln order to draw a cross section along this line, it is necessary to 
detennine the apparent dip in the direction of the line of section and project these 
measurements down-plunge onto the fold. 

(a) Calculate the apparent dip in the line of section for each measurement given on 
the map. Identify your results by specifying station number. (A station is merely 
a location where a measurement was made). 
(b) Draw a cross-sectional sketch along the line of section, using the above data 
and projecting onto the line. Assume the ground surface is horizontal. 

0 200 
w,x,y,z are measurement stations. ..._! ___ m_e_te_r_s __ __, 

Rusty Ridge Quadrangle 

1 
N 
1 

1 

Figure 3-M2. Geologic map of a 
portion of the Rusty Ridge Quad
rangle. Attitude measurements at 
points x, y, z, and w are given. 

11. ln an exposure of Precambrian granite in the Hudson Highlands north of New York 
City, there are many mesoscopic faults on which there are well-developed slip 
lineations. The slip lineations are composed of fibrous chlorite. A geologist 
measured the rake of lineations on the faults. Below are some measurements from 
her field notebook. 

(a) Calculate, using trigonometry, the plunge and bearing of the lineations on the 
faults and fill ín the table. Do you think that the movement on the different faults 
might have occurred during the same tectonic event? Why or why not? 
(b) Divisions between the fault classes can be made according to the following 
criteria: dip slip (900 2 rake 2 70°), oblique slip (70° 2 rake ;;::: 20°), or strike 
slip (200 ~ rake ~ 00). Indicate how the geologist would classify the faults. 
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Fault attitude ~ Plunge and bearing Fault class 

359°,72°E 80° s 

315°,84°NE 68° SE 

272°,so0 s 72°E 

313°,08°SW 900NW 

032°,40°NW 12°SW 

076°,12°SE 35° sw 

(b) About 3 km southeast of the outcrop that contains the above mesoscopic 
faults, there is an exposure of the Rakesh fault The Rakesh fault, which is a 
major structure in the region, is oriented N45°E,700SE. There is evidence for two 
periods of movement on the fault; the füst period is strike slip and is evidenced by 
slip lineations that are oriented 08°,S42°W; the second period is dip slip and is 
evidenced by slip líneations oriented 69° ,S62°E. Do you think there is a 
relationship between movement on the Rakesh fault and the movement on the 
mesoscopic faults described above? (Why?) 

12. Foliation at a locafüy near the town of Ouro Preto in the highlands of Brazil is 
oriented NlOOE,70°E. There are two lineations visible on foliation planes. One 
is a mineral lineation that trends N20°E, and the other is a crenulation that trends 
N75°E. 

(a) What is the rake of each lineation? (Use descriptive geometry for your 
calculation). 
(b) Does the rake increase or decrease as the angle between srrike of the plane and 
bearing of the lineation increases? 
(e) What is the bearing of the lineation that has the maximum possible plunge on 
l:his foliation plane? 

13. A chevron fold is one ín which the hinge is very angular, so that in profile the fold 
has the shape of a V. A beautiful chevron fold crops out in Four Day Canyon in 
British Columbia. The attitude of one limb of this fold is N200W,30°NE, and of 
the other limb is N500E,600NW. What is the plunge and bearing of the hinge? 

14 . A high concentration of manium occurs at the intersection of a 0400 ,60°NW fault 
and a 3500 ,40°NE sandstone bed. The intersection of the bed and the fault crops 
out in a wash north of the True Blue Mine in western Arizona. The owners of the 
mine have decided to expl9re the uranium play by drilling it. If they start the hole 
at the outcrop, what should be the bearing and plunge of the drill hole such that the 
hole follows the intersection lineation (and stays in the play)? 

15. A thick quartz vein can be observed in Carlisle Canyon. The vein occurs in 
granitic gneiss and is parallel to the foliation in the gneiss. ln the map area there 
is no surface on which a compass can be placed to make a direct measurement of 
foliation. The only way to determine the attitude of foliation in the gneiss is to 
use the quartz vein as a marker horizon and to cakulate the attitude of the vein 
from its outcrop pattem. A map showing the trace of the quartz vein is provided in 
Figure 3-M3. From this map, determine the attitude of the vein (and therefore of 
the foliation in the gneiss). The dot-dash line is the trace of a stream. 
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Figure 3-M3. Map of a portion of 
the Carlisle Canyon ragion. The 
thick line is the outcrop trace of the 
quartz vein. 

16. Figure 3-M4a shows the map of the Sheep Hollow anticline as it may have 
appeared in the vicinity of Cresty Ridge before the area was dissected by rivers. 
The black lines represents the traces of a marker bed on opposite limbs of the fold. 
Figure 3-M4b shows the current topography of the Cresty Ridge area. Draw the 
map pattem of the fold as it would appear on Figure 3-M4b. Assume that the 
ground above the 160 m contour is still horizontal and is at an elevation of 161 m. 

~o 

o 100 contour interval 
1, , , • , , , , , 1 is 1 o m 

m 

(a) (b) 

Figura 3-M4. (a) Hypothetical geologic map of the Sheep Hollow 
anticline in the Cresty Ridge area before river erosion (assume that the 
ground surface is horizontal). The two lines ara the traces of a marker 
horizon on opposite limbs, and the dashed line is the trace of the fold 
hinge; (b) present-day topography of the Cresty Ridge area. 

17. The base of the Plower Formation is exposed at the 1000-m contour interval on 
the slope of Jacob's Peak (Figure 3-M5). At this locality, and throughout the 
map area, the formation is 100 m thick and has a dip of 0°. The Duke's Ranch 
fault is oriented N400W,900NE and passes through BM 800 on the map. The net 
slip on the fault is 240 m along a vector oriented 6()0 ,S400E. The southwest side 
of the fault is down. Complete the map by showing the trace of the Duke's Ranch 
Fault and the outcrop belt of the Plower Formation. 
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Figure 3-M5. Map of a portion of 
the Jacob's Peak area. The Plower 0 

600 

400 

/ 
.__ ___ ~ 

Formation crops out at point P. km 
Map of Plower Fm . 

18. A map of the portion of the Bumish Comers quadrangle is presented as Figure 
3-M6. The trace of the Green Hollow fault is shown as wen as mapped outcrops 
of the contact between the Freiburg Gneiss and the Baxter Schist. The Green 
Hollow fault offset.s a basaltic sill.. 

(a) Assume that the Freiburg/Baxter contact is homodinal throughout the map 
area. From the outcrop data given, calculate the attitude of the the contact. 
(b) Complete the map of the Freiburg/Baxter contact. (Calculate the contact 
position.) 
(e) What is the attitude of the Green Hollow fault? Measured slip lineations 
índicate that movement on the fault is parallel to the dip on the fault. Which side 
of the fault moved down? What is the approximate magnitude of net slip on the 
fault? 

0 100 200 
L1111d1111.I 

m 
Burn1sh Corners 

contour interval is 20 m 

~Sill 

"-, Contact 

"'-Fault 

Sf Freiburg 

Sb Baxter 

Figura 3-M6. Map of a portion of the Burnish Corners quadrangle. 
Part of the Freiburg/Baxter contact is shown. 
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19. Assume the base of the Judith Fonnation is exposed at point Pin the Twin Peaks 
quadrangle (Figure 3-M7). The attitude of the formation is N90°E,35N. Assume 
that the formation is 30 m thick. Draw the outcrop belt of the formation. A 
rotated cross section plane graduated in 10 m intervals is provided. 
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' ' e ' e e ' ' ' ' 1 

rn 

Twin Peaks Ouadrangle 
Contour interval = 1 Orn. 

u.. 

Figure 3-M7. Map of a portion of the Twin Peaks Quadrangle. The 
base of the Judith Formation crops out at point P. 
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We noted earlier that it is often easier to use stereographic 
projections to solve attitude problems than it is to use 
geometric methods. Steroographic projections, however, 
cannot be used to represent dimensions (e.g., lengths and 
areas) of geologic foatures. Thus, when cakulating 
thickness of a bed, depth to a horizon beiow the ground 
surface, length of a line, or area of a plane, you must use 
descriptive geometry or trigonometry. Problems requiring 
such calculations arise quite commonly during the course 
of both resource exploration and academic studies. For 
example, construction of stratigraphic columns depends on 
knowledge of unit thickness; the thickness of a unit can be 
measured directly at somc localities, but commonly it is 
necessary to calculate stratigraphic thiclmess from indirect 
measurements. ln this chapter we outline methods for 
solving problems in structural geology that require 
specification of a dimension. As before, remember to 
visualize the problems that are described before trying to 
solve them. For simplicity, we wiU refer to sedimentary 
beds in the problems described in this chapter, although the 
same methods can be used with reference to any type of 
rock. layer. 

4-2 DEPTH TO A PLANE 

Depth ln a Vertlcal Hole 

If the attitude of a planar strucrure (e.g., a bedding surface 
or a fault) is known, the depth at which the structure wm 
be reached below the ground surface at a given locality can 

be determined from two pieces of information. First, we 
must know the location of one point where the plane 
intersects the ground surface (e.g., the location of an 
outcrop) and second, we must lmow the attitude of the 
plane. The formulas and constructions used for solving 
depth problems depend on whether the ground surface is 
horizontal or not and on whether the traverse line (a line on 
the ground surface between two points) connecting the 
outcrop and the point at which the depth is to be 
determined is perpendicular to or oblique to the strike of the 
plane. Different situations wm be handled individually 
below. No te that in our descriptions we use the ground 
surface and the position of an out.crop to provide a reference 
frame. For some of the situations we provide only a 
trigonometric solution. Problems 4-1 through 4-4 aH 
describe variations of the same general theme. 

Problem 4-1 (Ground surface horizontal; 
trnverse line perpendicular to strike) 

A sandstone bed crops out at point 0 (Fig. 4-la). The 
attitude of the bed is N-S,300W. A vertical hole is drilled 
at point J. At what depth will this hole intersect the bed? 
Assmne that the ground surface is horizontal and that point 
J is l 00 m due west of point 0. The traverse line is OJ. 

Method 4-la (Descriptive geometry) 
Step 1: Visualize the problem (Fig. 4-la). 
Step 2: Draw a map-view pmjection showing the 

relative positions of 0 and J at a convenient scale (top half 
of Fig. 4-lb). For convenience, locate the points at the 
south edge of the map area. Line OJ is the traverse line. 

Step 3: Draw folding line FI parallel to the traverse 
line and rotate the cross-sectional view into the plane of the 

67 



68 

T 

(a) 

m 
(b) 

N 

t 

flgure 4-1. Depth calculation with trav
erse line perpendicular to strike and ground 
surface horizontal. (a) Block diagram; (b) map 
view and rotated cross-sectional view. "' = true 
dip, JT = true depth, OJ = traverse line. 

T 

(a) 
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map projection (bottom half of Fig. 4-lb). On the 
cross-sectional plane draw line OP (the length of OP is 
arbitrary) starting at the outcrop and making an angle equal 
to the true dip (16) of the sandstone bed with line OJ. 

Step 4: Draw line JT so that it is perpendicular to 
line OJ and intersects line OP at point T. The length of 
line JT, measured with your map scale, is the depth to the 
horizon. JT = 58 m. 

Method 4-lb (Trigonometry) 
ln the cross-sectional plane (Fig. 4-1 b) no te that 

triangle OJT is a right triangle. Therefore, the length of 
line JT can be determined trigonometrically from the dip 
angle f6 and the length of line OJ using Equation 4-1. 

JT/OJ =tan 0 

depth = JT = l 00 tan(300) = 58 m (Eq. 4-1). 

Problem 4-2 (Ground hori:r.ontal; traverse not 
perpendicular to strilce) 

A sandstone bed crops out at point 0 (Fig. 4-2a). The 
attitude of the bed is N-S,300W. A vertical hole is drilled 
at point K. At what depth will this hole intersect the bed? 
The ground surface is horizontal, and the traverse line KO 
is oriented N500W and is 139 m long. 

Method 4-la (Descriptive geometry) 
Step 1: Visualize the problem (Fig. 4-2a). 
Step 2: Draw a map-view representation of the 

problem (top half of Fig. 4-2b). Using one of the methods 

p 

(b) 

t 

0 

' ~ )' 
figura 4·2. Depth calculation with traverse line oblique to strike 
and ground surface horizontal. (a) Block diagram; (b) map view and 
rotated cross-sectional view. a „ apparent dip, a „ true dip, KM = true 
depth, KO "' traverse line. 
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described in Chapter 3, determine the apparent dip (a) of the 
horizon in the traverse direction. a= 24°. 

Step 3: Draw folding line Fl parallel to KO, and 
rotate the cross-sectional plane into the map projection 
plane (bottom half of Fig. 4-2b). Draw line OP so that it 
makes an angle of a(= apparent dip) with respect l:o KO. 

Step 4: Draw line KM perpendicular to KO so that 
ü intersects OP at point M. The length of line KM is the 
depth 1:o the horizon. KM= 61 m. 

Method 4-lb (Trigonometry) 
Two formulas can be applied to this problem (refer to 

Fig. 4-2a). First, the depth can be calculated in terms of 
the apparent dip by the equation 

depth = KM :::: KO(tan 24°) = 61 m (Eq. 4-2) 

where KO is the traverse length (= 138 m by the map 
scale), and a is the apparent dip. Second, the depth can be 
cakulated in tenns of the true dip. Note that in this 
derivation, KM= JT. Note that the length of OJ in this 
problem is not the same as the length of OJ in Problem 
4-1. 

JT/OJ =tan !11 

OJ/KO=cosB 

OJ:::::: KO cos B 

depth =KM= JT = (KO cos B)(tan fii)= 61 m (Eq. 4-4) 

where KO is the traverse length, B is the angle between dip 
direction and the traverse direction (400), and 0 is the true 
dip (300). 

T 
(a) 

J 

w 
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Problem 4-Ja (Ground surface im:lined in the 
direction opposite to dip; traverse perpendicular 
to strike) 

A sandstone bed crops out at point 0 (Fig. 4-3a). The 
attitude of the bed is N-S,30°W. A vertical hole is drilled 
at point J, 104 m upslope ina direction due west of point 
0. At what depth will this hole intersect the bed? The 
ground surface slopes at an angle of /':;,. = 15° to the east. In 
this situation the total depth must incorporate both the 
distance from the ground surface to a horizontal plane as 
well as the distance from the horizontal plane to the bed. 

Method 4-3a 
If the ground slopes in the direction opposite to the dip 

of the bed, reference to Figure 4-3b yields the following 
formulas. (A scale drawing like Figure 4-3b could also 
provide the answer; if line ON = 100 m, then line OJ = 
104 m, and line JT = 85 m): 

JN/OJ =sin/':;,. 

JN = OJ(sin &) 

NT/ON= tan 0 

NT = ON(tan 0) 

ON/OJ = cos Li 

ON = OJ(cos .1) 

depth = JT = JN + NT = OJ(sin A)+ OJ(cos L'i)(tan 0) 

depth = JT = OJ[(sin A) + (cos b.)(tan 0)] = 85 m (Eq. 4-6) 

where !\ is the slope of the traverse line, OJ is the traverse 
line on the ground surface, ON is the projection of the 

E w E 

0 50 

(b) (e) 

Flgure 4-3. Oepth calculation with traverse line perpendicular to 
slope. (a) Block diagram; (b) cross-sectional view of case in which 
slope is opposite to dip; (e) cross-sectional view of case in which slope 
is in the same direction as the dip but is shallower than the dip. L'. = 
slope of ground, " "' true dip, JT = true depth, JO ""traverse line. 
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traverse line on a horizontal plane, and ~ is the true dip of 
the sandstone bed. 

Problem 4-Jb (Ground surface inclined in the 
same direction as dip; traverse perpendicular to 
strike) 

This problem is identical to Problem 4-3a, except that 
the ground surface (OJ) slopes in the same direction as the 
bed (i.e., OJ slopes 15° W, and the bed dips 30°W). 
Again, ON = 100 m, and OJ = 104 m, A= 15°, and ~ = 
30°. 

Method 4-3b 
Reference to Figure 4-3c yields the following formulas: 

NJ = OJ sin A 

NO= 01 cos!':. 

NT =NO tan~= OJ(cos A)(tan ~) 

depth = JT = NT - NJ = [OJ(cos /';.)(tan~)] - 01 sin A 

depth = JT = OJ[(cos /';.)(tan~) - (sin!':.)]= 31 m (Eq. 4-7). 

Note that Equation 4-7 differs from Equation 4-6 only in 
the sign of one term. 

Problem 4-4 (Sloping ground surface; traverse 
not perpendicular to strike) 

A sandstone bed crops out at point 0 (Fig. 4-4). The 
attitude of the bed is N-S,300W. A vertical hole is drilled 
at point K. At what depth will this hole intersect the bed? 
The be~rin11 of thl' tr11vl'r<:e li:ne is N4'00W füe le'.lll!Lh of - -
the traverse line (KO) is 100 m, and the traverse line (KO) 
plunges at A = 15° toward the southeast. 

Method 4-4 (Trigonometry) 
Remember that bearings are measured ín a horizontal 

plane. Therefore, the angle B between the dip direction and 
the traverse bearing is measured in the horizontal plane, not 
on the slope. The slope angle, along traverse line KO, can 
be measured from a topographic map, or by a compass 
sighting along the traverse line, or by a calculation similar 
to that demonstrated in Problem 3-7. 

Case A (The ground slopes to the east, 
opposite to the direction of bed dip): 

Reference to Figure 4-4 yields the following formulas. 

KP/KO =sin A 

KP= KOsin A 

OP/KO=cos A 

Elementary T echniques Part 1 

OP == KO cos A 

ON/OP=cos 6 

ON = OP cos B = (KO cos .&)cos 6 

NT/ON =tan~; 

NT = ON tan~= [(KO cos .&)cos B]tan 0 

depth = KM = KP + PM; 

however, PM= NT, so: 

depth = NT +KP = [(KO cos .&)cos B]tan 0 + (KO sin A) 

depth = KO[(cos A cos B tan 9))+ sin A] = 62 m (Eq. 4-8). 

Case B (The ground surface slopes to the 
west, in the same direction as bed dip): 

The sign of (sin A) used in Equation 4-8 is opposite, 
so the formula to be used is 

depth = KO[(cos A cos B tan~) - sin A] = 10 m (Eq. 4-9). 

ln Equations 4-8 and 4-9, KO is the traverse length, A 
is the slope of the traverse line, B is the angle between dip 
direction of the bed and the bearing of the traverse line, and 
~ is the true dip of the bed. 

Depth ln lncllned Drill Holes 

The geometry of depth problems becomes more 
comnlicated if the distance from the m-ound surface to the 
structural plane (e.g., bedding surface) of interest is 
measured in an inclined drill hole (i.e., a hole that is not 
vertical). We consider two cases: first, the case in which 

Figure 4-4. Block diagram far depth calcu
lation with traverse line oblique to strike, and 
ground surface sloping in the direction 
opposite to the dip direction of the layer. !J. = 

plunge of the traverse line, 0 = true dip, B = 

angia betwean trus dip direcíion and traverse 
line, KM = true depth. 
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the phmge of the hole is in the same direction as the 
apparent dip of the bed, and second, the case in which the 
phmge of the hole i.s opposite to the apparent dip of the 
bed. ln the two problems described below, the ground 
surface is assumed to be horizontal. The "apparent dip" 
refers to the apparent di.p of the bed i.n the direction parallel 
to the beating of the drill hole. 

Problem 4-5 (lnclined hole; bearing of the hole 
is in fhe same direction as the apparent dip of 
the plane) 

A sandstone bed intersects the grmmd surface at poi.nt 
N and has an attitude of N-S,300W (Fig. 4-5a). A hole is 
drilled at point 0 (it wm intersect the bed at point J). 
Point 0 is 105 m in the direction N42°W from point N 
(i.e., line ON, which is not shown, is 105 m long). The 
hole attitude is 50°,N600W. How far must the hole be 
drilled before it 1ntersects the sandstone bed? 

Method 4-Sa (Descriptive geometry) 
One method to solve this problem combines 

descriptive geometry with trigonometry (following Ragan, 
1985). 

Step 1: Calculate the apparent dip of the bed (()) ín 
the direction parallel to the bearing of the hole (using the 
methods of Chapter 3); a= 27°. 

Step 2: Construct a rnap view showing the position 
of points 0 and N (middle of Fig. 4-5b). Let N be at the 
comer of the map area. Line NV defines the i.ntersection of 
the bed with the ground surface (the trace of the bed). 
Extend a line parallel to the bearing of the drill hole in 
both directions from point 0. This line intersects the 
outcrop belt at point Q. Line OQ makes an angle of a. = 
60° with respect to line NV. 

Step 3: Draw folding line Fl parallel to OQ, and 
rotate the cross-sectional plane into the map projection 
(bottom of Fig. 4-Sb). ln the rotated cross-sectional plane 
draw line QS to represent the trace of the bed. QS makes 
an angle of a (= apparent dip) with respect to the ground 
surface. Draw line OT so that it makes an angle of Q (= 
plunge of drill hole) with respect to the ground surface. 

Step 4: Lines OT and QS intersect at point J in the 
subsurface. Point J is, therefore, the point at which the 
drill hole intersects the bed. The projection of point J 
onto the ground surface is point J'. Therefore, line JJ' (at 
the map scale) is the depth below the ground surface, 
measured along a vertical line, at which the drill hole 
intersects the bed. JJ' = 66 m. Line OJ is the required 
Iength of the drill hole (90 m). 

Method 4°5b (Trigonometry) 
Reference to Figure 4-Sb yields the foHowing 

formulas. Note that in order to solve the problem, it is 
necessary to draw folding line F2 (parallel to the dip 
direction) l:hrough point 0 (top of Fig. 4-5b). Rotate the 
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flgure 4-5. Depth calculation from data in 
an inclined hole. The bearing of the hole is in 
the same direction as the apparent dip 
direction. (a) Block diagram; (b) map view and 
rotated cross-sactional views. Q = plunge of 
ths hole, () "' apparent dip of the bed in the 
direction of the hole, a. „ angle between the 
bearing of the hole and the strike of the bed, 0 

= true dip, JJ' = true depth, OJ „ the length of 
the drill hole. 
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cross-sectional plane around F2 into the map projection. 
In this rotated plane the trace of the bed intersects Lhe 
ground surface at D. Draw line DM so that it makes an 
angle of 0 (true dip) with respect to folding line F2. ln 
the map view, point J' projects along strike onto F2 at 
point F. Plot point F on the rotated cross section. Point 
H lies on the trace of bedding vertically below F, and point 
G lies on the trace of bedding verticaHy below 0. Point I 
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lies vertically below F at an elevation equal to that of G. 
Note that JJ' = FH. 

OJ'/OJ = cos Q 

OJ' = OJ(cos Q) 

OF/OJ' = sin ex 

OF = OJ'(sin ex)= OJ(cos Q)(sin a) 

IH/OF = tan fii; 

IH = OF(tan fii)= OJ(cos Q)(sin a)(tan fii) 

JJ'/OJ' = tan Q 

JJ' = OJ'(tan Q) = OJ(cos Q)(tan Q) 

OG = JJ' - IH = [OJ(cos Q)(tan Q)] 
- [OJ(cos Q)(sin a)(tan fii)] 

OJ = OG/{cos Q)[(tan Q) - (sin a)(tan fii)] (Eq. 4-10). 

ln these equations (1) is the true dip, a is the angle 
between the bearing of the hole and the strike of the bed, a 
is the apparent dip of the bed in the direction of the bearing 
of the hole, Q is the plunge of the hole, and OG is the 
vertical distance between the origin of the hole and the bed. 
It is assumed that the length of OG is easily determined 
using some other method (e.g., Method la or lb); in this 
problem OG = 40 m. Note that the apparent dip () is not 
needed ín the trigonometric formula. 

If we substitute the aooronriate values into Eauation 
4-10, we find 

OJ = 40/(cos 500)[(tan 500) - (sin 6QO)(tan 300)] = 90 m. 

Problem 4-6 (lnclined hole; bearing of the hole 
opposite to the apparent dip direction of the 
bed) 

A sandstone bed intersects the ground surface at point 
N and has an attitude of N-S,300W (Fig. 4-6a). A hole is 
drilled at point C (it will intersect the bed at point E). 
Point C is 215 m in the direction N53°W from point N. 
The hole attitude is 300,S6QOE. How far must the hole be 
drilled before it intersects the sandstone bed? 

Method 4-6a (Descriptive geometry) 
This method is almost identical to Method Sa, so we 

will outline the steps in abbreviated form. 
Step 1: Construct a map view with the hole starting 

at point e (middle of Fig. 4-6b). The hole plunges toward 
point 0. Folding line Fl is parallel to the true dip 
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Figura 4-6. Depth calculation from data in 
an inclined hole. (a) Block diagram; (b) 
descriptiva-geometry solution. The bearing of 
the hole opposite to tha apparent dip diraction. 
" = true dip, a = angle between strike and 

bearing of the hole, CE "' length of hole, OE = 

true depth, stippled plane is vertical. 

direction of the bed, and fold.ing line F2 is parallel to the 
bearing of the hole. The extension of line CO intersects 
line NV (the trace of the bed) at point Q. CQ makes an 
angle of a with respect to NV. 

Step 2: Rotate a cross-sectional plane around FI 
into the plane of the map projection (top of Fig. 4-6b; Fl 
has been moved so that the figure is not cluttered). ln this 
cross-sectional plane draw ilie u<lCe of the bed (DH) <md the 
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trace of the hole (CG). Note that CG does not represent 
the true length of the hole. Angle 0 is the true dip of the 
bed in this cmss- sectional plane. 

Step 3: Now mtate a cross-sectional plane around 
F2 into the plane of the map projection (bottom of Fig. 
4-6b). Draw line CJ down frorn point C; CJ is 
perpendicular to CQ and is the same length as CH. Now 
you can draw the trace of the bed (QJ) ín this 
cross-sectional plane. QJ makes an angle a with respect to 
QC; a is the apparent dip of the bed :in the direction parallel 
to the phmge direction of the hole. 

Step 4: The hole :intersects the trace of the bed (QJ) 
at point E. The projection of point E on the ground 
surface is at point 0. The length of OE is the vertical 
distance from the ground to the intersection at the map 
scale (52m). The length of CE gives the distance between 
the ground and the bed in the hole at the map scale (104 m) 

Metlwd 4-61> (Trigonometry) 
Reference to Figure 4-6b yields the following 

förmulas. Note that CF =IG. 

OC/CE=cosQ 

OC = CE(cos 0) 

CF/OC =sin a 

CF = OC(sin a ) = CE(cos Q)(sin a) 

IH/CF = tan ~; 

IH = CF tan jlj = CE(cos Q)(sin a)(tan ~) 

OE/OC = tan 0 

OE = OC(tan Q) = CE(cos ü)(tan ü) 

CJ=CH=CI+IH 

OE=FG=CI 

CJ = OE + IH = CE(cos ü)(tan Q) 
+ CE(cos ü)(sin a)(tan f/J) 

CE = CJ/(cos ü)[(tan ü) + (sin a)(tan 111)] (Eq. 4-U). 

In these equations CE is the length of the drill hole, 
and CJ is the vertical distance between. the groood mace 
and the bed below point e. (The val.ue of CJ must be 
determined by Method 4~ 1, once the iength of tmvenc Ime 
CD has been measmed; CJ = 91 m.) 0 is the plunge of 
the hole, a is the angle ~ the beiring of the hole w 
the strike of the bed, f1J is the mlC dip of the bed. ne ug!c 
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a. the apparent dip of the bed in the direction parallel to the 
bearing of the hole, is not needed. 

If we substitute the appropriate values into Equation 
4-11, we find that 

CE = 97/(cos 300)[t:an 300 +(sin OOo)(tan 300)] = 104 m. 

4·3 CALCULATION OF LAYER THICKNESS 

The most straightforward way of calculating layer thickness 
is by direct measurement. Direct measurement is, of 
course, only possible at locations where there is either a 
complete exposure of the unit on a plane that is 
perpendicular to the bedding of the unit, or a drill hole that 
is oriented perpendicular to the bedding of the unit (Fig. 
4-7). If the bedding is inclined, the outcrop face or drill 
hole must al.so be inclined. Locafüies at which direct 
measurement is possible are relatively rare. Usually, the 
angle between the outcrop face or the drill hole and the 
bedding of the unit is not 900. ln such circumstances, the 
true thickness, which is measured perpendicular to the 
bedding, must be calculated. Thickness measurements can 
be obtained at the outrcrop either with a Jacob's staff, or 
with a tape and compass. Thiclmess can also be calculated 
from the ootcrop pattem on a map or from drill data. 

Thlckness Determlnatlon Uslng a 
Jacob's Staff 

Problem 4-7 
A unit whose orientation is north-south is exposed on 

a slope that dips to the east. A profile of the unit, drawn 
perpendicular to sttike, is illustrated in Figure 4-7c. 
Measure the unit thickness with a Jacob's staff. 

Method 4-1 
The base of dle staff is placed on the outcrop at the 

base of dle unit (po:int A) and the staff is inclined from 
perpendicular by an amount equal to the true dip of the 
strata (!B). The geologist visually sights in a direction 
perpendicular to the strike direction across the top of the 
staff to a pomt on the outcrop (point B). Point B is 
sttatigmphlcally above point A by an amount equal to the 
height of the staff. The base of the staff is then moved up 
to point B. and the procedure is repeated until the top of the 
unit of mtelCSt is reached. The total thiclmess of the unit 
is the swn of the increments. 

If it proves impossible to follow a traverse that is 
itself perpendicular to strike, the geologist can sidestep 
aloog dle groood at a specific stratigraphic levei until an 
~ placc to proceed upsection can be found (Fig. 
4-1d). 
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figura 4-7. Direct measure
ment of layer thickness. (a) Cross 
section showing measurement of 
horizontal beds on a vertical scarp; 
(b) cross section showing measure
ment of vertical beds on a horiz
ontal pediment; (e) cross section 
showing measurement with a 
Jacob's staff; (d) map showing 
offset of a traverse line. Dots 
represent measurement stations. 
Geologist sidesteps the hill from 
point E to point F. 
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The thickness of a unit can be determíned if the positions 
of the top and bottom of the unit are known, and the 
attitudes of the unit and of the traverse line are known. 
The distance between the top and bottom, measured with a 
tape (in the field) or with a scale (on a map) along the 
traverse line, is an apparent thickness. The attitude of the 
unit and of the traverse line is determined with a compass. 
The graphic and trigonometric solutions used for 
converting tape-and-compass or map-and-compass data into 
true layer thickness depend on the orientation of the 
traverse line with respect to strike and on whether the 
ground surface is horizontal or planar. Several situations 
are described separately below. 

Problem 4-8 (Horiz.ontal ground surface; 
traverse line is perpendicular to strilce) 

The base of a distinctive sandstone bed is exposed at 
point 0 and its top at point T in an area of no relief (Fig. 
4-8). The bed attitude is N-S,300W. A geologist uses a 

tape to measure the distance on the ground surface on a 
"" jl 

UQV'-'1..:>'-' .lUl'-' U\..ILVY\.A.fll '-' Q.llU .1. • .1.11'\I atUl.UU'-' VJ. LIJ" U.Ql'VJ..3'\..I 

line between 0 and T is OOO ,270°. What is the true 
thickness of the sandstone bed? 

Method 4-8 
Reference to Figure 4-8 yields the formulas 

TB/OT= sin 0 

TB= OTsin 0 (Eq. 4-12) 

where TB is the true thickness, OT is the apparent 
thickness measured along the traverse, and ~ is the true dip. 

Problem 4-9 (Horizontal ground surface; 
traverse line is oblique to strike) 

A sandstone bed, whose attitude is N-S,30°W, is 
exposed in a region of no relief. A geologist measures its 
apparent thickness along traverse line KO, which trends 
N45°W (Fig. 4-9). What is the true thickness of the bed? 
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w E 

T 0 

Figure 4-8. Thickness measurement with 
traverse line perpendicular to strike and ground 
surface horizontal. Cross-sectionai view is 
shown. 0 = true dip, TB = true thickness, OT = 

traverse length. 

Method 4-9 
Reference to Figure 4-9 yields the following formulas: 

OT/KO =sín a 

OT= KO sin a 

TB= OTsin 0 

TB = KO sin a sin 0 (Eq. 4-13) 

where TB is the true thickness, KO is the length of the 
traverse line, OT is the projection of the traverse line onto 
a line drawn perpendicular to the strike, Ii.! is the true dip of 
the bed, and a is the angle between the traverse line and the 
strike of the bed. 

Problem 4-10 (Traverse line slopes; traverse 
line is perpendicular to strike) 

A sandstone bed is exposed on a slope (Fi.g. 4-10). A 
geologist measures the apparent thickness (01) of the bed 
on a traverse that trends perpendicular to the strike of the 
bed. What is the írue thiclmess (TB) of the bed? 

Method 4-10 
There are three variations of this problem, depending 

on whether the bed dip is greater or less than traverse-line 
slope, and on whether the di.p direction is the same as or 
opposite to traverse-line slope. We wiU provide only 
trigonometric solutions. The equations refer to angles and 
lines shown in Figure 4-10. ln these figures 0 is the true 
dip, and A is the slope of the traverse line. Note that it 
does not matter whether the strike of the ground slope is 
parallel to the strike of the bed, as long as the bearing and 
slope of the traverse line are known. 

Case A (Traverse line slopes in dip 
direction; plunge < dip): The layer attitude is 
N-S,600E. The base of the bed is exposed at point 0 and 

Figur@ 4-9. Thickness measurement with 
traverse line oblique to strike and ground 
surtace horizontal. Block diagram is shown. 
KO = traverse length, a "' angle between 
traverse bearing and the strike of the bed, o = 

true dip, TB = true thickness. 
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the top of the bed at point T. The traverse line is oriented 
30°,0900. Reference to Figure 4-lOa yields the following 
formulas: 

TB/OT = sin(0 - A) 

TB = OT[sin(0 - A)] (Eq. 4-14). 

Case B (Traverse line slopes in the dip 
direction; plunge > dip): The layer attitude is 
N-S,lOOE. The base of the bed is exposed at point 0 and 
the top of the bed at point T. The traverse line is oriented 
30° ,0900. Reference to Figure 4- lOb yields the following 
formulas: 

TB/OT = sin(A - 0) 

TB = OT[sin(A - 0)] (Eq. 4-15). 

Case C (Traverse-line slope is opposite to 
dip direction): The layer attitude is N-S,30°W. A 
traverse line (OT) running from the base to the top of the 
bed is oriented 500 ,0900. Note that 0 is at the base of the 
bed in this example. Reference to Figure 4-1 Oc yields the 
following fonnulas: 

TB/OT = sín(~ + ~) 

TB = OT[sin(0 + ~)] (Eq. 4-16). 

Problem 4-11 (Ground surface is sloping; 
traverse is not perpendicular to strike) 

A sandstone bed, whose attitude is N-S,30°E, is 
exposed on the face of a hill that slopes toward the west 
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Flgure 4-10. Thickness measurement on 
a slope with traverse line perpendicular to 
strike. Cross-sectional views are shown. (a) 
Dip is in the same direction as traverse-line 
slope, and dip is greater than slope; (b) dip is 
in the same direction as traverse-line slope, 
and dip is less than slope; (e) dip is in the 
direction opposite to traverse-line slope. !). = 

slope, 0 = true dip, OT = traverse length, TB = 

true thickness. 

(Fig. 4-11). A traverse line (01) running from the base to 
the top of the bed is oriented 500 ,315° and is therefore 
inclined to the strike of the bed. What is the true thickness 
ofthebed? 

Method 4-11 
Note that angle a (between the strike and the beari:ng 

of the traverse line) must be measured ín a horizontal 
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Flgure 4-11. Thickness measurament on 
a slope with traverse line that is oblique to 
strike and dips in a diraction opposite to the 
traverse-lina bearing. Block diagram is shown. 
!). = plunge of traverse line, a = angle between 
bearing of traverse line and strike, 0 = true dip, 
TB = true thickness, OT = traverse length. 

plane. ln order to solve the problem, we must create line 
T'B', which is equal to the true thickness (TB) but does not 
intersect the ground surface. Reference to Figure 4-11 
yields the following formulas (after Mertie, 1922 and 
Ragan, 1985): 

TX/OT= sin d 

TX = OTsind 

OX/OT=cosd 

~.,... ~. ~ 

V.L'l..;;;;;V.1. \,.-V~U 

YX/OX == sin a 

YX = OX sin a= OT(cos d)(sin a) 

XB '/YX = sin 0 

XB' = YX sin 0 = OT(cos d)(sin a)(sin 0) 

T'X/TX = cos 0 

T'X = TX cos 0 = OT(sin d)(cos 0) 

TB= T'B' = T'X + XB' = OT[(cos ó)(sin a)(sin 0) 
+ (sin ..1.)(cos 0)] 

(Eq. 4-17) 

where TB is the true thickness, OT is the traverse length, d 
is ihe ph.mge of t."averse, a is füe angle between ttaverse 
bearing and strike, and 0 = true dip of the bed. Note that if 



Chapter 4 Geometric Methods 11: Dimension Calculations 

the bed dips in the same direction as the slope, the sign in 
Equatioo 4-17 becomes negative. 

Thlckness Determlnafü:m from Drm Data 

Modem down-hole logs (e.g., gamma-ray and electric logs) 
make it possible to recognize strata in a drill hole without 
requiring expensive core recovery. If strata are horizontal 
and the drill hole is vertical, the distance measured in the 
hole between the top and bottom of a unit is the true 
thiclrness of the unit. Below we discuss two additional 
situations: füst, the case where a vertical hole intersects 
inclined bedding (which is identical to the case where an 
inclined hole intersects horizontal bedding) and second, the 
case where an inclined hole intersects inclined bedding. 

Problem 4-12 (Thickness in a vertical lwle 
cutting im:Uned bedding) 

From field evidence it is known that the bedding 
beneath weU C-6 is oriented N-S,300E (Fig. 4-12). Well 
C-6 is a vertical hole that int:ersects the top of a distinctive 
sandstone bed at a depth of l 00 m and the base of the bed at 
a depth of 220 m below ground surface. What is the true 
thickness of the bed? 

Method 4-12 
Frorn a cross-sectional view drawn perpendicular to the 

strike of the layer (Fig. 4-12), we obtain the following 
forrnulas: 

TB/OT=cos0 

TB = OT(cos 0) (Eq. 4-18) 

where TB is the true thickness, OT is the thickness as 
measured in the drill hole, and 0 is the true dip of the layer. 

w Well C-6 E 

Figura 4-12. Thickness measurement of 
an inclined bed in a vertical hole. 
Cross-sectional view is shown. OT = thíckness 
as measured ín ho!e, TB „ true thickness, 0 "' 

true dip of the bed. 
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Note that lrnowledge of the strike of the bed is not actuaUv 
needed för the calculation, as long as the true dip angle is 
lrnown. 

Problem 4-13 (Thickness in an im::lined hole 
cutting inclined bedding) 

A bed of sandstone is oriented N-S,40°W. A hole is 
drilled on horizontal ground. The hole is oriented 
60°,S300W. The hole penetrates the bed at point Min the 
subsurface and passes through the bed entirely ín the 
subsurface (Fig. 4-13). The thickness of the bed as 
measured in the hole (line ML) is 100 m. What is the true 
thickness of the bed? 

Method 4-13 
Figure 4-13 iUustrates this problern. The top surface 

of the block shown in Figure 4-13 is a horizontal plane in 
the subsurface that intersects the top of the bed along line 
Iv1P. The dashed line (ML) represents the segment of the 
drill hole that passes through the stippled bed. Line ML 
lies entirely within the stippled bed, though this could not 
be easily represented on the figure. As indicated in Figure 
4-13, 

TB/L T = sin(900 - ~) 

TB = L T sin(900 - '6) (Eq. 4-19) 

where TB is the trne thickness, L T is the thickness in a 
vertical hole, and ~ is the true dip of the bed. In the 

Figure 4-13. Thickness calculation of an 
inclined bed in an inclined hole. Block diagram 
is shown. ML = thickness measured in hole, TB 
= true thickness, 0 = ture dip, Li = plunge of the 
hole, a "" angle between bearing of the hole and 
the strike of the bed. 
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problem, however, the value of LT is not known. It is 
calculated as follows: 

MK. = ML cos ll 

MP= MKcos a= ML cos llcos a 

KP=MPtana=MLcos/lcosa tana 

KT = KP tan f<' = ML cos ll cos a tan a tan Ja 

KL= ML sin ll 

LT = KL - KT =(ML sin ll) 
- (ML cos ll cos a tan a tan Ja) 

(Eq. 4-20). 

Substitution of Equation 4-20 into Equation 4-19 yields 

TB= [ML(sin /l - cos ll cos a tan a tan ia)][sin (90° - 0)] 
(Eq. 4-21). 

Note that Equation 4-20 involves only the true 
thickness (TB), the thickness measured in the drill hole 
(ML), the plunge of the drill hole (ll), the angle between 
the bearing of the drill hole and the strike of the bed (a), 
and the true dip of the bed (0), all of which are numbers 
that were provided in the problem. 

Thlckness of Folded or Nonunlform Layers 

ln all the situations described above, we assumed 
parallelism between the top and bottom of the layer whose 
!.:.~~~!'"--=~~~~ '!-'~'~ 'l;.~.'ished t~ ~~!?"""1~~ (!t~_,-.h qn ~~~umptinn 1~ 

not always reasonable. ln many localities a particular unit 
thins in a given direction either because of truncation by an 
unconformity or because of variation in sediment supply 
during deposition. Variation ín thickness can also be a 
consequence of ductile stretching or shortening. Thickness 
measurements on folds are difficult, because it is not 
always clear how to specify dip. ln the hinge zone of the 
fold the measured dip on the top surface of a layer may not 
be the same as the measured dip on the bottom surface of 
the layer, even if the true thickness of the layer is constant 
around the fold. 

Nonparallel Layer Boundarles 

If the boundaries of the layer under consideration are not 
parallel to one another (Fig. 4-14), then it is not possible 
to measure a true thickness that is perpendicular to both the 
upper and lower boundaries. An estimate of the thickness 
is possible by averaging the strike and dip of the upper and 
lower boundaries and using this as the iayer attitude ín the 
calculations described above: 
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diPaverage = [dipl + dip2]/2 

strikeaverage = [strike1 + strikeil/2 

(Eq. 4-22) 

(Eq. 4-23). 

The area over which this averaging is done depends on 
the degree to which the layer boundaries deviate from 
parallelism and thereby converge; the greater the deviation, 
the smaller the area for which an average value can be 
assumed. 

flgure 4·14. Cross section showing con
vergence of two layer boundaries. The dips of 
the two contacts are not the same. "1 = dip of 
top surface, 0 2 = dip of the bottom surface. 

Thlckness of a Folded Layer 

Folded layers present a special problem because the layer 
boundaries are curved. First, it is necessary to decide what 
is meant by "thickness." Ideally, we would like to know 
the thickness of the layer before folding. For parallel folds, 
the layer thickness does not change, but for other types of 
folds (see Chapter 13) layers do change. Three measures of 
thickness are commonly used in reference to földed layers 
(Fig. 4-15). The first is vertical thickness, which is the 
thickness of a layer as it would occur in a vertical drill hole 

(s~c.h ~ ?1.~sure will usually deviat~ greatl?' :~o?1 the 
on~111a1 uüCK.iiefSSJ. .iu\i .SC~Uiiü t;)I viuWj50iiüi. unLl\.nc:-.>-.J, 

which is the thickness along a line drawn perpendicular to 
both the upper and lower boundaries. The third is iso gonal 
thickness, which is the thickness measured along a line 
connecting points on the boundaries that have equal dips. 

(a) (b) 

Flgure 4-15. Thickness measurement in a 
fold profile. (a) Vertical thickness is line AB, 
and orthogonal thickness is line AC; (b) 
isogonal thickness is line AB. Dip at point A is 
the same as the dip at point B. 
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The second and thlrd methods refer to ihickness measured in 
a profile plane drawn perpendicular to the axis of the fold. 

Because of the complications apparent from the 
preceding discussion, the thickness of a földed layer must 
generaUy be considered to be an estimate. Geometric and 
trigonometric solutions are possible for determining the 
thickness of földed layers (see Heweu, 1920; Mertie, 1940; 
Ragan, 1985), but generally an adequate approach is to 
draw an accurate down-plunge projection with no vertical 
exaggeration (see Chapter 13). Any desired measure of 
thidmess can be derived by directly measuring such a 
drawing. 

Nomograms for Calculatlng Layer Thlckness 

As was the case for solution of true and apparent dip 
problems, nomograms have been developed for solving 
certain types of thickness problems. The nomogram 
presented in Figure 4-16 permits cakulation of thickness if 
the traverse is perpendicular to strike. Note: (l) If the 
ground surface is sloped, and the slope and dip directions 
are opposite to one another, then the dip angle to be used 
in column l must be the sum of the dip angle and the 

Outcrop width 
1,000 

900 

800 

700 
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slope. (2) If the grrn.md surface is sloped and the slope and 
dip directions are not opposite to one another, the dip angle 
to be used in column 1 must be the difference between the 
slope and dip. 

4-4 DETERMINATION OF llNE lENGTH 

It is often necessary to determine the distance in the 
subsurface between two features as measured along a line of 
known orientation. For example, imagine that the top of a 
mineralized horizon occurs at a known depth below the 
ground surface, but that for technical reasons it must be 
reached in an inclined mine shaft. The length of the shaft 
must be lmown in order to cakulate its cost. Such 
problems can readily be solved with the geometric methods 
that you have leamed already. 

Problem 4-14 
A fold hinge is exposed at point A on the ground 

surface and is intersected at point B in a mine tunnel at a 
depth of 400 m below the ground surface (Fig. 4-17). 
From existing maps of the mine tunnels it is known that 
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Figura 4-16. Nomograms for 
thickness calculations. (Adapted 
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Flgure 4·17. Map view and rotated cross
sectional view showing how to measure the 
length of a line. ~ = piunge of the line, AB = 

true length of the line. 

point B lies directly below point B' (point B' is on the 
ground surface at a distance of 800 m to the N400W of 
point A). How long is the linear geologic structure 
between points A and B? 

Method 4-Ua (Descriptive geometry) 
Step 1: Draw a map to scale showing the positions 

ofpoints A and B' (Fig. 4-17). Draw folding line Fl along 
AB'. Note that AB' is parallel to the bearing of the linear 
feature. 

Step 2: Rotate the cross-sectional view around FI 
into the plane of the map projection, and locate point B in 
the cross-sectional plane. Line BB' is 400 m long at the 
map scale. Line AB is a representation of the linear 
Iealun:~, WIU ii.S ita1gÜ1 (;afl uc meaSiucu JirecGy :.-1vfü ll,..., 
map scale. AB is 898 m long. 

Method 4-Ub (Trigonometry) 
Step 1: In order to solve this problem, we must first 

determine the plunge (.1) of the linear feature. Reference to 
Figure 4-17 yields the following formulas: 

BB'/AB' =tan a 

arctan(B'B/B'A) =a (Eq. 4-24). 

Step 2: Now that the plunge is known, it is 
possible to determine the length of AB, using the 
following formulas: 

cos .1 = AB'/AB 

AB= AB'/( cos 6) (Eq. 4-25). 

Step 3: Applying Equations 4-24 and 4-25 to the 
data in this problem yields: 
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arctan(400/800) =a= 21° 

AB = 800/cos 27° = 898 m 

4-5 AREA OF A DIPPING PLANE 

Problems involving calculation of the area of a plane arise 
ín circumstances where, ultimately, the volume of a layer 
(e.g., a seam of coal) must be determined. 

Problem 4-15 
A bed is oriented N20°E,40° NW. The bed crops out 

in a region of no relief at point A (Fig. 4-18). At a 
distance of 200 m to the N45° E of point A there is an 
exposure of a vertical fault trending N600W. At a distance 
of 200 m to the S45°W of point A there is an exposure of 
a vertical fault trending N900W. What is the area of the 
bed between the two faults above a depth of 200 m below 
the ground surf ace? 

Method 4-15 
ln order to solve this problem, you must füst obtain a 

projection of the plane of the bed. 
Step 1: Draw a map to scale showing the position 

of the points identified above and the iraces .of the two 
faults and of the bed on the ground surface (right half of 
Fig. 4-18). Let line XY represent the trace of the bed and 
lines YN and XM represent the traces of the two faults. 
The angle .B (= 100) is the angle between YN and the 
perpendicular to strike, and angle a (= 200) is the angle 
between XM and the perpendicular to strike. 

Step 2: Locate the map projection of the bed in the 

draw folding line FI perpendicular to the bed strike through 
point P. (ln Figure 4-18 we have extended the bedding 
trace XY out to point P so that the figure will not be 
cluttered.) Rotate the cross-sectional view into the plane of 
the map projection and draw the cross-sectional trace of the 
bed to a depth of 200 m; the cross-sectional trace of the bed 
is line PK. Angle ~ is the true dip of the bed. The 
projection of K onto the ground surface is K'; line KK' is 
200 m long. 

Step 3: To determine the area of the plane you must 
now rotate the bed itself into the map plane. To do this, 
let PK be folding line F2. Rotate the bed around F2 into 
the plane of the map projection (left half of Fig. 4-18). In 
this representation PR is the intersection of the ground 
surface with the bed, and SK is the intersection of the bed 
with the loweneference plane. Mark off a segment of line 
PR that is equal in length to XY; this segment of PR is 
labeled X'Y'. 

Step 4: Draw lines Y'N' and X'M' so that they make 
the same angles wíth respect to PR as YN and XM do to 
PY, respectively. Y'N' intersects SK at Z', and X'M' 
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Flgurit 4-1 S. Map view, rotated 
cross-sectional view, and layer
normal view showing how to 
measure the area of a piane. XA is 
the trace of the bed, YN and XM are 
the traces of faults, the stippled 
area is the the area of the bed. 

intersects SK at W'. The area Z'Y'X'W' (stippled) is the 
area of the plane ín question. To measure this area quickly, 
divide it into two triangles and one square, as shown in the 
figure. Note that the projection of this plane onto the 
horizontal. ground surface is ZYXW. At the scale of the 
figure, the area of plane Z'Y'X'W' is about 225,000 m2. 

4°6 DESCRIPTIVE~GEOMETRY ANAL YSIS 
OF FAULT OFFSET 

The net slip on a fault is the postmovement distance, 
measured in the plane of the fault, between two points that 
were adjacent prior to faulting but are now on opposite 
sides of the fault (Fig. 4-19a). The dip-slip component of 
movment is measured in the direction parallel to the dip of 
the fault, and the strike-slip component is measured in the 
direction parallel to the strike of the fault. A fault on which 
displacement is primarily dip-slip is a dip-slip fault, a fault 
on which the displacement is primarily strik:e-slip is a 
strike-slip fault, and a fault on which the displacement has 
both dip-sHp and strik:e-slip components is called an 
oblique-slip fault. 

If the fault plane is not vertical, the term hanging-wall 
block can be used to refer to the rock above the fault plane 
and the termfootwall block can be used to refer to l:he rock 
below the fault plane. If the hanging waU moves up dip 
with respect to the footwall, then the fault is a reverse fault 
or thrust fault If the hanging waU moves down dip with 
respect to the footwan, then the fault is a norma! fault. 
Note that in these definitions, the groond surface is used as 
a reference frame. Recently, the term contractional fault 
has been used to refer to faults whose movement has 
resulted in shortening of the crust, and extensionalfault has 
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been used to refer to fault.s that result in stretching or 
lengthening of the crust (Fig. 4-19b). 

The term separation, when used in the context of 
describing movement on a fault, refers to the distance 
between displaced parts of a marker as measured in a 
specified direction (Dennis, 1987). Strike sepo.ration, for 
example, is the distance between the two displaced ends of 
a marker (e.g„ an offset dike), as measured along the strike 
of the fault at a specified elevatioo (Fig. 4-20a). 

The apparent displacement across a fault that is 
indicated by a map pauem is usually the strike separation. 
If the offset marker is vertical, the strike separation is the 
strike-slip component of displacement It is not possible 
to determine strike-slip and dip-slip components of 
displacement from the separation of only one marlcer, if the 
dip of the offset marker is less than 900. For example, 
imagine a normal fault that offsets a dipping bed. After 
erosion has removed the fault scarp, a map of the fault 
displays strike separation (Fig. 4-20b). 

Measurement of the strike separation of two 
nonparaHel markers that have been offset along a fault 
does, however, permit the net slip on a fault to be 
calculated. In this section we briefly outline a descriptive 
geometry procedure that can be used to calculate the true 
offset on a vertical fault plane. A more efficient method of 
solving such fault problems is presented in Chapter 6. ln 
Chapter 6 we also introduce a technique for determining net 
slip on an indined fault. 

Problem 4-16 
Imagine that a vertical fault occurs in a region of no 

relief. The fault strikes N70°W. The fault cuts a dike 
oriented N20°W ,40°NE and a contact oriented 
N300E,700NW. The intersections of th.ese structures with 
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the fault are shown in Figure 4-21a. Prior to movement 
on the fault, points A and B were adjacent, and points C 
and D were adjacent. Determine the bearing, plunge, and 
magnitude of the net slip, and determine the dip-slip and 
strike-slip components of displacement. 

Method 4-16 
Step 1: Draw a scaled map-view of the fault and of 

the offset structures, and label points A, B, C, and D (Fig. 

..... --~<i ._______,____,V 
(a) 

A' 

AA1= strike separat1on 

(b) 

Flgure 4-20. lllustration that the strike 
separation across a fault indicated by a single 
offset marker does not uniquely define the net 
slip on the fault. (a) Displaced dike before 
erosion. Movement on the fault is pure dip-slip; 
(b} strike separation displayed after erosion. 
Points A and A' were originally adjacent. 

Extens1on 
1 
1 
1 
1 

Bi 
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Flgure 4·19. (a) Terminology 
used to describe displacement on a 
fault. NS = net slip; DS = dip slip 
component; and SS "' strike slip 
strike slip component; (b) cross 
sections illustrating the contrast 
between contraction faults and 
extension faults. Note that the 
distance between the end points A 
and B on the black marker layer as 
measured in a projection plane 
parallel to the marker layer 
decreases as a consequence of 
contraction faulting and increases 
as a consequence of extension 
faulting. 

4-21b). Extend the lines representing the dike and the 
contact on the south side of the fault out to a convenient 
distance. 

Step 2: Draw folding line FI perpendicular to the 
dike trace. Let the elevation ofFl (and of all folding lines 
in this problem) be the same as the ground surface. Rotate 
the cross-sectional view around Fl into the plane of the 
map projection. Draw a line representing the lower 
reference plane at a distance d below Fl in the 
cross-sectional view. Draw line NN' so that N lies at the 
ground surface and N' lies in the lower reference plane. 
Line NN' must make an angle of 400 (equal to the dip of 
the dike) with respect to Fl. Remember, it must dip to the 
nonneast. Line f"iN. represeflts i:Í1c CfüSs ;scl;Uüü u{ uat; 

dike. 
Step 3: Draw folding line F2 perpendícular to the 

contact trace, rotate the cross-sectional view around F2 into 
the map projection plane, and draw a line representing the 
lower reference plane at the same distance d below F2. 
Construct line MM' to represent the cross section of the 
contact. Note that MM' must make an angle of 700 with 
respect to F2 and must dip toward the northwest 

Step 4: Let the fault trace be folding line F3. 
Rotate the cross-sectional view around F3 into the plane of 
the map projection and draw the trace of the lower reference 
plane at a distance d below F3. This cross section 
represents the plane of the fault. 

Step 5: Draw a dashed line from point N' so that it 
intersects F3 at R. Draw a line perpendicular to F3 down 
to the lower reference plane in the fault plane and locate 
point R'. Repeat the procedure and locate P'. Point R' 
represents the position at which the cross-sectional trace of 
the dik.e crosses the lower reference plane in the plane of 
the fault on the southwest side of the fault. Point P' 



Chapter 4 Geometric Methods 11: Dimension Calculations 

Figure 4-21. Determination of 
fault offset from the map pattern. 
(a) Map showing the fault truncating 
a dike and a contact (the fault plane 
is vertical); (b) descriptive 
geometry construction. 

represents the point at which the contact crosses the lower 
reference plane in the plane of the fault on the southwest 
side of the fault 

Step 6: Extend a line from A drrough R', and 
extend a line from D through P'. AR' and its extension 
represent the trace of the intersection between the dike and 
the fault in the southwest wall of the fault. DP' aml its 
extension represent the trace of the intersection between the 
contact and the fault in the southwest wall of the fault 
These two lines intersect at Y, which represents the 
intersection of the dike and the contact i.n the southwest 
wall of the fault. 

Step 'l: Draw a line from B that is parallel to AY, 
and a line f:rom C that is parallel to DY. These lines 
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represent the traces of the dike and the contact in the 
northeast side of the fault The lines intersect at X. Prior 
to movement on the fault, points X and Y were adjacent. 
Thus, a line connecting X to Y represents the net slip on 
the fault As the fault plane is vertical, the bearing of the 
net-slip line is S700E, and its plunge (d) is measured from 
vertical. The dip slip and strike-slip cornponents of 
displacement can be determined by resolving the net-slip 
line into components parallel to and perpendicular to the 
fault trace. The dip-slip component is XY sin d, and the 
strike-slip component is XY cos o. Note that in this 
example, the fault was an obhque-slip fault, and that the 
larger component of movement was dip-slip. 

EXERCISES 

1. A fault is exposed in outcrop at point A. For each of the situations defined below, 
determine the distance (depth) between the ground surface at point Band the fault 
plane. ln each case, the traverse length betwen points A and B is exactly 200 m, 
and the traverse bearing between the two point.s and the elevation difference 
between the two point.s is specified. 
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0 
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Fault attitude 

(a) N-S,30°E 
(b) N-S,30°E 
(e) N-S,30°E 
(d) N-S,30°E 

Traverse beating 

0900 
060° 
0900 
0600 
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Elevation difference between A and B 

0 
0 

50 (A is higher than B) 
50 (A is higher than B) 

2 . Karen Freer is mapping a heavily forested slope. The stratigraphic sequence on the 
slope is (from top to bottom) Gomez Creek Shale, Race Point Limestone, Hunter 
Formation. As a consequence of the vegetation, outcrops are hard to come by. 
She finds, however, an exposure of the contact between the Gomez Creek Shale 
and the Race Point Limestone at point A on the hillslope. The attitude of the 
contact is 300° ,40°NE. From drilling data at a nearby well, she knows that the 
Race Point Limestone is 50 m thick. A straight path runs from the Race 
Poinl/Gomez Creek outcrop at point A down the slope of the hill. Karen sights 
down the path with her compass and finds that the path is oriented 15° ,S40°E. 
How far must she walk down the path before she will find the contact between the 
Race Point Limestone and the Hunter Formation? (Assume that the bedding is 
homoclinal.) 

3 . It is common during offshore drilling for many holes to be drilled from a single 
platform. The holes are inclined so that they fan out from the platform and thus 
cover a broader area of the reservoir. Coosider a platform located at point A ín the 
Straits of Vermouth. A new hole drilled from this platform is oriented 60°,340°. 
The drilling target is a reservoir sandstone formation that lies beneath a horizontal 
unconformity. A salt layer above the unconformity provides an effective seal. The 
unconformity lies at a depth of 1200 m below the sea floor. Water depth below 
the platform is 100 m. How long will the drill stem be when it penetrates the 
unconformity? 

4. Bill Nelson is mapping a small region in western Nevada (Figure 4-Ml). He 
found the contact between the Figaro Sandstone and the underlying J arbidge 
Volcanics at BM 98 (el. 98 m). The attitude of the contact is 360°,30°W. He 

1 
1 
1 

1 

Figaro Sandstone with the overlying Franklin Shale. In order to cross the Franklin 
Shale, heavy brush forced him to run his traverse in the direction N45°W (also 
along horizontal ground). He found the top of the Franklin Shale at the l 00-m 
contour line. Bill then began to climb Pointop Ridge. The lowest unit on the 
ridge is the Rufus Springs Formation. Bill was able to traverse this formation in 
the direction N900W and found its top at an elevation of 330 m. He then found a 
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Figura 4-M1. Sketch map of the 
Pointop Ridge ragion in Nevada . 
Contours are shown by solid lines, 
and tha crest of tha ridga is 
indicated by the dashed line. 
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convenient sheep trail that crossed the overlying Milo Formation. The bearing of 
the trail is S500W. Bill crossed 150 m of Milo Formation before finding its top 
contact with the Pointop Dolomite. The Pointop Dolomite is exposed all the way 
to the crest of Pointop Ridge. The crest of the ridge is indicated by the dashed line 
in Figure 4-Ml, and is at an elevation of 525 m. 

(a) Complete the geologic map (Fig. 4-Ml) by adding the contacts and by labeling 
the different units. Ass~e that all contacts are oriented 3600,300W. 
(b) Calculate the thicknesses of the Figaro Sandstone, Franklin Shale, Rufus 
Springs Formation, and Milo Formation (show your work). Assume that bedding 
attitude is constant througho1.1t the map area. 
(e) Construct a scaled stratigraphic column of 1.mits exposed in the map area. 
Choose your own scale. 
(d) Old man Thompson the hermit, whose cabin is located at point T on the map, 
wants to drill a water well. The Figaro Sandstone is known to be a good aquifer. 
How deep will Thompson have to drill a vertical weU in order to reach the top of 
the Figaro Sandstone? 

5 . In western Nevada a recent fault offset the grrn.md surface and displaced a fence. A 
somewhat forgetfol geologist drove for five hours across rough dirt roads to get to 
the site of the offset fence in order to measure the net slip on the fault. The net 
slip, as defined by Ried et al. {1913) is "the distance, measured on the fault surface, 
between two originaUy adjacent points situated, respectively, on opposite sides of 
the fault" When the geologist arrived at the fault, he found that he had not 
brought a tape measure. Though forgetfol, he was not stupid, because he cleverly 
determined the net slip by surveying the difference ín elevation (6 m) of the ground 
surface on opposite sides of the fault and by measuring the plunge and bearing of a 
line connecting the two ends of the fence (70°,N30°W). What is the net slip in 
the plane of the fault? 

6 . A 3-m-thick conglomerate layer oriented N300W ,40°SW contains placer gold. 
Initial assays suggest that the conglomerate is worth $50.00 per cubic meter. 
Backyard Mining Company has the ability to excavate down to a depth of 50 m. 
The property that they own and the outcrop trace of the layer are shown in Figure 
4-M2. What is the total value of the gold that they will be able to obtain, 
assuming they excavate the entire layer within their property? 

Figure 4-M2. Sketch map of the 
prospect being exploited by 
Backyard Mining Company. The 
thin lines índicate property 
boundaries, and the thick line 
represents the outcrop trace of the 
conglomerate layer (its thickness is 
exaggerated). m 

~ 
N 

1 

7 . A geologist is completing a map of regional-scale folds involving the ItabiriLa 
Formation. This formation contains major iron deposits and has been drilled 
extensively during exploration. During folding, the ductile rocks of the formalion 
did not maintain a uniform thickness. The geologist is trying to determine 
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whether regional variations in thickness are associated with the folding or predated 
the folding. To do this, she is calculating the thickness of the unit at various 
localities and plotting the results on a map showing the attitude of lithologic 
layering (it is not clear if original bedding has been preserved) and the position of 
the folds (Figure 4-M3). 

B 100 
40°~ x 6 0°, S6 0°1/v 

~50° XD 
300 
9 O~N 0 0°W 

~ ~ ..... ~ 
60° ~ e ~30° 

x 
A x 200 

300 
7&':N50°W 

60~S9 0°W 

0 200m 

Flgure 4-M3. Sketch map of the ltabirita Formation. Points A, 8, C, 
and D are measurement stations where the attitude and thickness of the 
formation could be determined. 

(a) Next to each attitude measurement on Figure 4-M3 we indicate the thickness (in 
meters) of the Itabirita Formation measured in the hole and the plunge and bearing 
of the hole. Assuming that the top and bottom contacts of the fonnation are 
parallel, calculate the thickness of the bed at each locality. 
(b) Based on the above results, do you think that the thickness variations are 
associated with the development of the folds or that they developed during an earlier 
independent deformation event? Explain your answer. 

Q A u~!'fi~~! f!!!!lt eoh'ik-P~ NQOOP ~~~~ ~ h0:ri.:.Z0nt~1 !"'l!aln A tPlPphone oole h!.lnnPn~ 
to be planted exactly on the fault trace, and two nonparallel veins are offset by the 
fault. The strike separation of the veins as measured on the ground surface is 
described in the following table. AH distances are measured to the west of the the 
telephone pole. 

Dike Attitude Distance between telephone pole and inter
section of the dike with the S side of fault 

Distance between telephone pole and inter
section of the dike with the N side of fault 

A 340° ,30°NE 600 m 400 m 

B 040° ,5QONW 100 m 300 m 

(a) What is the bearing, plunge, and value of the net-slip line that characterizes 
movement on the fault? 
(b) Which side of the fault moved relatively up, prior to erosion and creation of the 
present ground surface? 
(e) Is this a dip-slip, oblique-slip, or strike-slip fault? 



CHAPTER 

INTR DOCTI N 
TO STERE G PHIC 

PR JECTIONS 

5-1 INTRODUCTION 

Representation and manipulation of structural data by the 
geometric methods introduced in the previous chapters 
becomes cumbersome and difficult if we have to analyze a 
large number of measurements. In this chapter we 
introduce the concept of the stereographic projection, which 
has become widely used by structural geologists during the 
last 50 years (Bucher, 1944) and provides a simple and 
quick alternative way to represent three-dimensional data in 
two dimensions. Although data plotting using a 
stereographic projection may seem abstract at füst, once 
you are used to it you will find that the methods are 
powerful and allow you to solve many types of structural 
problems easily. Computers are increasingly being used to 
plot structural data on stereographic projections, but you 
will not be able to interpret computer output if you are not 
adept at plotting data by hand. In fact, you will find that 
the cardboard stereonet itself is versatile and quick and can 
easily be carried with you to thc field, even if you are 
backpacking into a remote area. 

5-2 CONCEPT OF A 
STEREOGRAPHIC PROJECTION 

We can understand stereographic projections more easily if 
we füst think about spherical projections. Imagine an 
observer standing at the center of a large hollow glass 
sphere. Any direction can be specified by marking a dot on 

the surface of the sphere. For example, the direction "due 
west" can be indicated by a dot on the equator of the sphere 
that is due west of the observer, and a point that is 
"straight up" will be a dot on the surface of the sphere that 
is directly over the head of the observer. Early astronomers 
displayed the relatíve positions of stars by plotting the 
stars as white dots on the surface of a blackened sphere 
whose center was the eari.h. The resulting representation 
was called the celestial sphere. Note that the relatíve 
distances of the stars from the earth cannot be represented 
on the celestial sphere. A spherical surface on which 
positions are indicated is called a spherical projection. 
Remember, only orientations, not distances, can be 
represented on spherical projections! 

Spherical projections can be used to represent the 
orientations of a line or a plane if the line or plane is 
po~itioned so that it passes through the center of the 
sphere. A line that is so positioned intersects the surface 
of the sphere at two points, and a plane that is so 
positioned intersects the surface of the sphere along a circle 
(Fig. 5-1). The intersection of the line or plane with the 
surface of the sphere is its spherical projection. 

A spherical projection is three dimensional and is, 
therefore, not particularly portable. Fortunately, a sphere 
can be projected onto a two-dimensional plane. The most 
common planar projections of a sphere are called azimuthal 
projections. An azimui.hal projection is constructed by 
passing projection lines (see Chapter 3 and Appendix 1) 
from a point source through the sphere to where they 
intersect a projection plane (imagine that the point source 
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_______ / Spherical projection 

'' ot a line 

of a plane 

Figure 5-1. Spherical projections of lines 
and planes. Any line through the center of the 
sphere pierces the sphere at two points. Any 
plane through the center of the sphere 
intersects the sphere along a circle. 

is a small light bulb; Fig. 5-2). The plane must be 
oriented such that the unique projection line that passes 
through the center of the sphere (the central projection line) 
is perpendicular to the projection plane. The projection 
plane can be tangent to the surface of the sphere, or it can 
be at a distance from the surface of the sphere, or it can 
pass through the center of the sphere. A change in the 
position of the projection plane merely changes the scale of 
the projection (Fig. 5-2). The projection plane can also 

Planes of projectlon - e 

I \) 

Polar Case Oblique Case 
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have any orientation, and this determines whether the 
projection is an equatorial, polar, or oblique one (Fig. 5-2). 
A stereographic projection is a special kind of azimuthal 
projection that was developed and refined by crystal
lographers. The special characteristic of a stereographic 
projection is that the point source used in its construction 
lies on the surface of the sphere. In geology the projection 
plane used to construct a stereographic projection is 
positioned to pass through the center of the sphere. 

Now, let's try to visualize the construction of a 
stereographic projection. Imagine that a dot has been 
marked on the lower half of our glass sphere; the dot is a 
spherical projection of a point in space. A stereographic 
projection of the dot is constructed by drawing a projection 
line from a zenith point, placed at the top of the sphere, to 
the dot. This projection line must pass through the 
equatorial plane of the sphere. The intersection between 
the projection line and the equatorial projection plane is the 
stereographic projection of the dot (Fig. 5-3). ln structural 
geology we always project points from the lower half of 
the sphere. Thus, in figure captions of structural geology 
papers you will usually see the words "lower hemisphere 
projection." 

The intersection of the equatorial projection plane with 
the sphere is called the primitive circle (often abbreviated 
simply as "the primitive"). The primitive has the same 
radius as the original projection sphere, and all points on 
the surface of the lower hemisphere project to points inside 
the primitive on the projection plane (Fig. 5-3). 

Figure 5-2. Three different azi
muthal projections. The projections 
vary according to the position of the 
point source with respect to the 
sphere. The size of the projection 
depends on the relative distances 
among the point source, the 
sphere, and the projection plane. 
The orientation of the projection 
plane determines the type of 
projection. (Adapted from Raisz, 
1962.) 
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Lower hemlsphero 

proJecUon surfac@ 

Stereographlc Projection of a Plane 

Figura 5-3. The basis of a lower
hemisphere stereographic projection on an 
equatorial plane. The projection of a point on 
the lower hemisphere lies along a line drawn 
from the point to the zenith. 

Imagine a dipping plane that intersects the ground surface; 
the plane can be a bed, a fault, a joint, or any other planar 
st:ructure. The trace of the plane on the ground surface is a 
straight line (Fig. 5-4a). Create a projection sphere of 
radius r that is centered at a point 0 on the out.crop trace of 
the indined plane. The dipping plane (and its extension 
into the sky) intersects the sphere as a cirde, whose radius 
is the same as that of the sphere (Fig. 5-4b). This circle is 
the spherical projection of the dipping plane and is called a 
great circle (see Appendix 1). A plane with a different 
attitude wm intersect the sphere &dong a different great 
circle. In other words, there is a unique great circle for each 
different orientation of a plane. 

To const:ruct the stereographic projection of the plane 
join each point on the portion of the great circle projection 

a 

zenith 

dipp!ng bed 

s 

Flgure 5-4. Stereographic representation of a plane. (a) Block 
diagram of a plane oriented 300°,so0 sw; (b) projection sphere (radius 
r) set up on an outcrop trace that intersects the plane in a great circle 
(adapted from Hobbs et al., 1976); (e) lines from the zenith to the lower 
half of the great circle intersect the equatorial projection plane in a 
circular arc {the cyclographic trace) (adapted from Hobbs et al., 1976); 
(d) the completed stereogram of the dipping plane. 
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that lies on the lower half of the projection sphere to the 
zenith (Z) of the projection sphere (Fig. 5-4c). These 
straight lines generate part of a circular cone that intersects 
the equatorial projection plane as part of a círcular arc. The 
arc is the stereographic projection of the dipping plane and 
is called a cyclographic trace of the plane (Fig. 5-4d). We 
will refer to the arc as a great circle because it corresponds 
to a great circle on the original spherical projection. 

Note that a horizontal plane will project along the 
primitive circle (i.e„ the radius of curvature equals the 
radius of the projection sphere), and a vertical plane will 
project as a straight Iine passing through the center of the 
primitive circle (i.e„ the radius of curvature is infinity). A 
plane of intermediate dip projects as a cyclographic trace 
with a radius of curvature intermediate between that of the 
primitive and infinity; the radius of curvature of a plane's 
cyclographic trace increases as the dip angle increases (Fig. 
5-5a). Also note that as the strike of the plane changes, 
the two intersections between the cyclographic trace and the 
primitive rotate around the primitive. The two 
intersections are, however, always exactly 180° apart. 

To help visualize stereographic projections of planes 
imagine a hemispherical cereal bowl (Fig. 5-5b). Hold 
your hand so that it passes through the center of the 
hemisphere and intersects the inside surface of the bowl. 
Then, look straight down on the bowl so that you simulate 
projecting the bowl onto an equatorial plane. From this 
viewpoint the intersection of your hand with the bowl 
corresponds to the stereographic projection of your hand. 
As you make your hand dip more steeply, the cyclographic 

Horizontal -----~ a 

Elementary Techniques Part 1 

trace of your hand approaches the center of the bowl and 
starts to look like a straight line. As you make your hand 
dip more shallowly, the cyclographic trace of your hand 
approaches the rim of the bowl and starts to look like a 
circle. 

Stereographlc Projection of a Une 

The orientation of any linear geologic structure (such as a 
mineral lineation, fold hinge, or the axis of a drill hole) can 
be represented on a stereographic projection in a manner 
similar to that described for planes. First, you must 
visualize a spherical projection of the structure. A linear 
structure can be represented as a line that passes through 
the center of the projection sphere and intersects the surface 
of the lower hemisphere at a point P (Fig. 5-6a), which is 
the spherical projection of the line. A straight line joining 
P to the zenith of the projection sphere intersects the 
projection plane at point P', which is the stereographic 
projection of the line. A vertical line will project as a 
point at the center of the primitive circle, and a horizontal 
line will project as a point on the primitive circle itself. 
Points corresponding to lines of intermediate plunge lie 
somewhere between the center and the primitive, with 
steeper lines lying closer to the center (Fig. 5-6b). If you 
fix the plunge of a line, but vary its trend through 360°, 
the succession of points representing the stereographic 
projection of the line will describe a circle that is 
concentric with the primitive. 

The cereal bowl analogy, described above, will help 

b 

Figure 5-5. Cyclographic traces of planes. (a) Planes of different 
oríentations represented as unique great-circle arcs; (b) a plane 
contínuous with the inclined palm of your hand would intersect the insíde 
of a cereal bowl in a semícircle. lmagine lookíng vertically down into the 
bowl to visualize how the semícircle projects as an arc on a horizontal 
equatorial plane. 
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Figura 5-6. Stereographic representation of a line. (a} A line OP 
through the center of the sphere pierces the lower hemisphere at a point 
P that is the spherical projection of the line. A line from P to the zenith 
intersects the equatorial projection plane at P', which is the 
stereographic projection of the line; (b) lines of different orientations 
project to unique poínts on the stereogram; (e) the cereal bowl analogy 
for lines. Use your index finger to simulate lines of different 
orientations. 
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you to visualize the stereographic projection of a line. 
Use your index finger to simulate a line, and make sure 
that your finger passes through the center of the imaginary 
sphere of which the bowl is the lower half (Fig. 5-6c). 
Clearly, the intersection of your finger with the surface of 
the bowl is a point As you move your finger to dífferent 
orientations, note how the position of the point moves. If 
your finger is vertical, it touches the center of the base of 
the bowl, and ifit is horizontal, it touches the rim of the 
bowL 

small circle is closer to the primitive than the radius of 
small circle, then the small circle will be truncated by the 
primitive; the other half of the small-circle projection will 
appear at the opposite edge of the primitive. 

Stereographic ProjecUon of a Small Círcle 

The intersection of a sphere with a plane that does not pass 
through the center of the sphere is a small circle (see 
Appendix 1). The radius ofthe small circle depends on the 
distance of the plane from the center of the sphere. The 
radius decreases as the distance between the plane and the 
center of the sphere increases (Fig. 5-7) and becomes zero 
when the plane is tangent to the sphere. Such small circles 
also result from the intersection of a circular cone with the 
sphere if the apex of the cone is positioned at the center of 
the sphere. Small circles appear on stereographic 
projections as circles (Fig. 5-7); the projection of a small 
circle is not coaxial with the primitive unless the central 
projection hne passes through the center of the small 
circle. If the center of the stereographic projection of the 

zenilh 

stereographic 

figura 5-7. Stereographic representation 
of small circles. Planes that do not pass 
through the center of a sphere intersect the 
sphere in small circles. These circles project 
as circles (or circular arcs) on the stereo
graphic projection plane. 
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5-3 THE STEREONET 

Visuallzatlon of the Stereonet Grid 

Clearly, stereographic projections would be of limited use 
i~ you first had to construct a spherical projection every 
ttme you wanted to create a stereographic projection of a 
line or plane. Fortunately, if a coordinate grid is projected 
onto the plane of the stereographic projection, the 
projections of lines and planes can be plotted directly. A 
coordinate grid (Fig. 5-8a) that is constructed using a 
stereographic projection is called a stereonet. The stereonet 
is also called an equal-angle net (for reasons that are 
described in Chapter 8) or a Wulff net, after the crystal
lographer who popularized its use. The representation of a 
point, line, or plane on a stereonet is called a stereo gram. 

A stereonet is constructed by drawing the great-circle 
cyclographic traces of a set of planes that all intersect 
along a line that runs between the poles of the primitive 
and passes through the center of the projection sphere (Fig. 
5-8b). The angle between each plane and its neighbor is 
2°. Thus, the cyclographic traces define a longitudinal grid 
with a 2° interval between adjacent grid lines. Every fifth 
grid line is darker, so it stands out and makes the grid easer 
toread. 

Superimposed on the longitudinal grid is a latitudinal 
grid composed of the stereographic projections of small 
circles. These small circles are constructed from the 
spherical projections of a series of coaxial right circular 
cones with progressively decreasing ratios between the 
hasal radius and the altitude. The axis of these cones is the 
line that runs between the north and south poles of the 
primitive and passes through the center of the projection 
c;:phl"re fPi<r 'í-Rhy Thl" angll" of intl"rc;:l"rtion hPtwf'en ~ 

Elementary Techniques Part 1 

longitudinal grid line and a latitudinal grid line on the 
stereonet is always a right angle. 

Construction of a Stereonet Grid 

On~ o~ th~ most useful properties of a stereographic 
proJecuon ts that any circle (great circle or small circle) on 
the projection sphere appears as a circle or a circular arc on 
a stereogram (Fig. 5-9). This simple geometric property 
allows us to construct the stereographic projection of any 
plane quite easily using either a graphical approach or an 
analytical expression. 

First, we must calculate the shortest distance between 
the cyclographic trace of a plane and the center of the 
primitive circle. To do this, we draw a vertical cross 
section (Fig. 5- lOa) through the center of the projection 
sphere and parallel to the dip direction of the inclined plane. 
The trace (OP) of the inclined plane on the section makes 
an angle 111 (true dip of plane) with the horizontal. A 
straight line from P to the zenith (Z) intersects the trace of 
the projection plane on the cross section at Q. Point Q 
represents the positíon of the cyclographic trace of line OP 
in the profile. The Iength of OQ represents the shortest 
distance of the cyclographic projection of the dipping plane 
from the center of the primitive circle and can be measured 
directly from the construction. It can also be calculated 
using the analytícal expression ' 

OQ = r tan[(rc/4) - (0/2)] (Eq. 5-1). 

Thus, we have been able to determine the position of 
point Q. On the stereographic projection (Fig. 5-lOb) the 
cyclographic trace of the inclined plane is a segment of a 
circular arc that must pass through point Q and two points 
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Figura 5-8. The nature of the stereonet grid. (a) The stereonet, 
Wulff net, or equal-angle net; (b) the great circles on the stereonet 
represent dipping planes that all intersect along the north-south axis. 
The small circles represent a family of coaxial right-circular cones 
(adapted from Hobbs et al., 1976). 



Chapter 5 lntroduction to Stereographic Projectíons 

Figure 5-9. A great circle on a 
sphere projects as a circular arc on 
the stereographic projection. 
(Adapted from Berry & Mason, 
1959.) 

Figura 5-10. Construclion of a 
great circle on a stereonet grid. (a) 
Vertical cross section through the 
projection sphere showing the trace 
of a plane OP that dips at an angle 
G. Q is the stereographic projection 
of P (adapted from Hobbs et al., 
1976); (b) stereographic projection 
of the plane dipping at an angle 0. 

The cyclographic trace is a circular 
arc with center at C (adapted from 
Hobbs et al., i 976); (e) geometric 
construction to determine the 
centers of circular arcs repre
senting planes with different dips 
(adapted frorn Ragan, 1985). 
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intersection of the trace of the bed with the primitive and 
are defined by the strike of the plane. Therefore, once we 
know the positions of points Q, S, and T, we can define 
the cyclographic trace of our inclined plane. To locate 
point C, which is the center of the circular arc of which the 
cyclographic trace is a segment, we draw the perpendicular 
bisector of the chord QT and find the point (C) where the 
bisector of QT intersects the extension of line OQ. The 
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position of point C can also be found analytically by 
determining the distance d between point e and the center 
of the stereogram (point 0). This distance is given by the 
equation 

(Eq. 5-2). 

Using the preceding methods we can draw a series of 
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great-circle curves for planes striking north-south and 
dipping east or west at various angles (Fig. 5-lOc). 

IJ = 01 - 01 

IJ = r tan(11:/4 + B/2) - r tan (11:/4 - B/2) 

IJ = 2r tan B (Eq. 5-3). 

A small-circle arc on a stereogram can be constructed 
graphically as follows. Figure 5-1 la shows a vertical cross 
section through the center of the projection sphere. On 
this cross section, line MN is the trace of a vertical plane 
that is perpendicular to the cross section and does not pass 
through the center of the sphere; it is also the trace of the 
small-circle intersection between the sphere and the vertical 
plane. Straight lines joining M and N to the zenith Z 
intersect the trace of the projection plane at I and J, and 
these points are the stereographic projections of M and N 
respectively. On the stereographic projection (Fig. 5-llb) 
IJ is a diameter of a projected small circle; the center C of 
the small circle must lie midway between 1 and J. The 
chord MN of the sphere subtends an angle of 2B at the 
center of the sphere (Fig. 5-1 la) and hence an angle B at the 
zenith Z. The diameter of the small circle, IJ, therefore, 
can also be given by 

The distance of the center of the small circle from the 
center of the sphere is line OC, which is given by 

OC == OI + IC 

OC = r tan(11:/4 - B/2) + r tan B = r/cos B 

OC = r/cos B (Eq. 5-4). 

It can also be shown quite easily that on the stereographic 
projection (Fig. 5-llb), radius vectors drawn from the 
center of the small circle to the points of intersection of the 
small circle with the primitive (P and Q) are tangential to 
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Figure 5-11. Construction of small circles on a stereonet grid. (a) 
Vertical cross section through the projection sphere showing the trace 
of a vertical plane MN and its projection JI on the projection plane trace; 
(b) stereographic projection of the small circle representing the plane. 
Note that the projection PJQI is also a circle; (e) geometric 
construction to determine the center of circular arcs representing 
vertícal planes at different distances from the center of the sphere. 
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the primitive. This relationship permits a quick graphical 
construction of small-circle arcs for small circles at any 
particular angle B to a point on the primitive. Generally, a 
series of small-circle arcs are drawn to represent small 
circles at various angles to a horizontal north-south axis 
(Fig. 5-llc). 

Calibration of the Stereonet Grid 

As indicated earlier, the perimeter of the stereonet is called 
the primitive. The poles of the stereonet lie on the 
primitive and are the points at which the longitudinal 
great-circle traces converge. The top pole is labeled north 
and the bottom pole is labeled south. The ends of the 
horizontal diameter are labeled east (on the right) and west 
(on the left). The primitive can be divided into four 
quadrants of 90° each (like a quadrant compass) or can be 
divided directly into 360° (like an azimuthal compass), 
with the number of degrees increasing in a clockwise 
direction. In the azimuthal convention, north has a value 
of 000° or 360°, east has a value of 090°, south has a 
value of 180°, and west has a value of 270°. The numbers 
along the primitive correspond to a strike or trend. 
Distances measured in from the primitive correspond to dip 
or plunge angles. Dip or plunge angles are 00° on the 
primitive circle and increase to 90° at the center of the 
circle and are always read along a radius that is drawn from 
the center of the circle to the perimeter. We will see that 
dips or plunges are usually determined by using the tick 
marks along the line passing from the east or west mark 
through the center of the stereonet. The best way to 
understand how to read a stereonet is to practice plotting 
lines and planes according to the procedures outlined next. 

5-4 PlOTTING TECHNIQUES 

In this section we will go through a number of examples, 
step by step, to familiarize you with plotting varíous 
structural elements on a stereonet. The key to successful 
use of a stereonet is visualization. Before plotting 
anything on the net, imagine the cereal bowl analogy 
described earlier, and make sure you have a general image 
in your mind of where the great circle or point that you 
wm plot will fall on the stereonet. 

Preparing the Stereonet and Overlay 

Stereographic plotting is usually done on an overlay (a 
piece of tracing paper that is slightly larger than the net) 
that can be revolved above a fixed stereonet. Before 
plotting on the overlay, however, it is useful to prepare 
your stereonet so that it is permanently available for use in 
both the office and the field. To do this, remove the large 
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stereonet (Fig. A4-l) from the back of this book and 
mount it on a piece of stiff cardboard or masonite board. 
Cover the net with a transparent plastic sheet to prevent ü 
from getting wet or dirty (transparent Contact™ paper 
serves this purpose very well). Punch a hole in the center 
of the net wüh a thumbtack, then insert the thumbtack 
through this hole from the back of the net. Tape the tack 
head to the back of the net using clear plastic tape or 
adhesive tape. This ensures a permanent mount so that the 
pin does not fall out and also prevents the hole at the center 
of the net from enlarging and rendering the net unusable. 
The pin (which should stick out approximately 0.5 cm 
from the net) serves as an axis of rotation for overlays. 
When the net is not in use, it is a good idea to cover the 
pin with a small eraser or a piece of cork to prevent it from 
tipping paper, clothes, or skin. 

To prepare the overlay, place a small piece of clear 
tape on the back of the overlay at the center. Then, pierce 
the center of the overlay with the pin at the center of the 
net so that the overlay is free to revolve above a fixed net, 
and smooth the overlay against the net. Draw the 
primitive circle on the overlay, and mark the positions of 
the north, south, east, and west geographic directions. Use 
an arrow to indicate the north mark. 

Plotting a Plane 

Problem 5-1 
The attitude of a bed is N80°W,40°S. Plot a stereo

gram representing the orientation of the bed. 

Method 5-1 
Step 1: Visualize the bed (Fig. 5-12a), then prepare 

your overlay, as described above. 
Step 2: Count off 80° westward (counterclockwise) 

from north, and place a tick mark on the primitive to mark 
the line of strike (Fig. 5-12b ). Since the plane intersects 
the primilive at two points, it is useful to place a tick at 
the other end of its line of slrike (i.e., at S80°E). It is also 
useful to mark the approximate dip direction at this stage. 
The dip is in the direction Sl0°W. 

Step 3: Revolve the overlay clockwise to bring the 
first strike mark to the north position; in this position, the 
series of great circles now pass through the strike marks 
(Fig. 5-12c), The dip direction now lies to the left. 

Step 4: Count off 40° along the east-west diameter 
from the primitive on the side of the dip direction (i.e„ in 
from the left side of the net in this case) to locate the 
great-circle trace representing a plane dipping 40°S (Fig. 
5-12c). Draw the great-circle trace connecting the N80°W 
tick mark to the S80°E tick mark on your overlay. Note 
that the initial three-dimensional visualization helps in 
determining whether the dip should be counted in from the 
left or the right edge of the net. Also note that the straight 
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line connecting the two ends of the great-circle trace and 
passing through the center of the stereonet is a strike line 
on the plane. 
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position (north-arrow coinciding with north of stereonet), 
and check the result by visualization (Fig. 5-12d). 

Plotting a llne 

Problem 5-2 
A plunging fold hinge has the oeientatíon 38°,S42°W. 

Plot the hinge line on a stereogram. 

Method 5-2 
Step 1: Visualize the problem füst (Fig. 5-13a), and 

prepare the overlay. 
Step 2: Count 42° westward (clockwise) from 

south, and place a tick mark on the peimitive to represent 
the trend of the line (Fig. 5-13b). 

Step 3: Revolve the overlay to being the trend mark 
to the south position (Fig. 5-13c). 

Step 4: Count 38° inward from the peimitive toward 
the center along the south-north diameter. Plot the point 
to represent the line (Fíg. 5-13c). 

Elementary Techniques Part 1 

Flgure 5·12. Procedure for plot
ting the stereographic projection of 
a dipping plane. 

Step 5: Revolve the overlay back to its original 
position (north arrow coinciding with north of stereonet) 
and check the result by visualization (Fig. 5-13d). 

It should be noted that in plotting the plunge of the 
line we used the graduations (along the north-south 
diameter) marked by the small circles of the stereonet. We 
could just as easily have revolved the overlay to being the 
trend mark to the west position (in step 4) and counted 
inward along the west-east diameter (in step 5); the 
resulting point obtained to represent the line would have 
been exactly the same. Such alternative methods of 
plotting often help to speed up the plotting process and 
can be used once you have gained confiden~e in your ability 
to use stereographic projections. 

Plotting a line on a Plane 

Problem 5-3 
Cleavage in an area is oriented 110° ,43°SW. A 

mineral lineation on the cleavage plane trends 160°. Plot 
the line representing this lineation on the stereogram of the 
plane, and determine the plunge of the lineation. 
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Figure 5-13. Procedure far plot
ting the stereographic projection of 

a 

a plunging line. e 
Method 5-3 

Step 1: Visualize the problem (Fig. 5-14a), and 
prepare your overlay. 

Step 2: Note that in this problem we are using an 
azimuthal convention to represent orientations of planes 
and lines. Count 110° clockwise from north, and mark the 
strike orientation on the primítive. Note that your dip 
direction should be toward the southwest. 

Step 3: Revolve the strike mark to south. ln this 
position, the dip direction is to your left. Count 43° 
inward from the left end of the primitive along the 
west-east diameter. Draw the great circle to represent the 
cleavage (Fig. 5-14b). 

Step 4: Revolve the overlay back to its original 
position. Count 160° clockwise from north and mark the 
trend of the lineation on the primitive (Fig. 5-14c). 

Step 5: Revolve the trend mark to south (Fig. 
5-14d). With the overlay in this position the lineation 
must lie on the north-south diameter as well as on the great 
circle representing cleavage. Therefore, the point of 
intersection between the cyclographic trace of the plane and 
the north-south diameter is the point that represents the 
lineation. The phmge of the lineation can be read off 
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directly by counting inward from the primitive to the 
lineation along the north-south diameter. The orientation 
of the lineation is 34°,160°. 

Step 6: Revolve the overlay back to its original 
position, and check the result by visualization (Fig. 5-14e). 

Note that if the line were not to plot along the 
great-circle representation of the plane, then it could not lie 
in the plane. If your measured attitudes of a plane and a 
line in the plane do not permit their respective 
stereographic representations to coincide, then one or both 
of your measurements are wrong. 

Determination of the Rake of a Une 

Given the trend and plunge of a line and the strike and díp 
of the plane on which it occurs, it is very easy to determine 
the rake of the line ín the plane. 

Problem 5-4 
Cleavage in an area is Oriented 110°,43°S. A mineral 

lineation on the cleavage plane is oriented 34°,160°. What 
is the rake of this lineation on the cleavage plane? 
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Figure 5-14. Procedure for plotting a line on a dipping plane. 

Method 5-4 
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the same as in Problem 5-3. Follow the procedures 
outlined in Method 5-3 for plotting the line and the plane 
(Fig. 5-14). 

Step 2: Revolve the overlay so that the strike of the 
cleavage is oriented north-south (Fig. 5-15a). Count 
inward from the primitive along the great circle 
(representing cleavage) to the lineation, keeping in mind 
that the rake angle must be an acute angle (:::;;90°). ln this 
case we find that the rake acute angle opens toward the east 
mark on the overlay. Thus, the orientation of the lineation 
is given by a rake of 58°E on cleavage oriented 
110°,43°5. 

Step 3: Revolve back to the original position and 
check the result by visualization (Fig. 5-15b). 

Determination of Plunge and Bearing 
from Rake 

Most of the steps of Methods 5-3 and 5-4 can be reversed if 
you are given the rake of a líne on a plane and the 

orientation of the plane and are asked to find the plunge and 
h1=111.:1r-1nrr nf tht3 lin.13 ---- v -

Problem 5-5 
A cleavage plane is oriented H0°,43°S. A mineral 

lineation on the plane has a rake of 58°E. What is the 
bearing and plunge of this lineation? 

Method 5-5 
Step 1: Visualíze the problem (Fig. 5-14a) and 

prepare your overlay. 
Step 2: Mark the strike of the cleavage plane on the 

primitive. Revolve the strike mark to south, count 43° 
inward from the left end of the primitive, and draw the great 
circle to represent the cleavage (Fig. 5-16a). 

Step 3: Count 58° inward along the great circle 
from the correct end (in this case, the south end) of the 
stereonet. Plot the point representing the mineral lineation 
(Fig. 5-16a). 

Step 4: Revolve the overlay so that the lineation 
point lies on the north-south diameter. Count the number 
of degrees between the point and the south end of the 
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Flgure 5-15. Procedure for 
determining the rake of a line given 
its plunge. a 
primitive to get the phmge (Fig. 5-16b). Make a tick 
mark on the primitive at the south end. 

Step 5: Revolve the oveday so that the north arrow 
overlies the north mark on the stereonet. Read off the trend 
of the lineation (tick mark) on the primitive (Fig. 5-16c). 
The lineation has an orientation of 34°,160°. 

True Dip and Apparent Dip Problems 

It was pointed out earlier (Section 3-4) that the apparent dip 
of a plane in a given direction is the same as ihe plunge of 
a Hne lying on the plane and having ihe same bearing as 
the apparent dip direction. Thus, Method 5-3 can also be 
used to determine the apparent dip of a plane in any given 
direction. 

Problem 5-6 (Determination of apparent 
dip angle) 

The true attitude of a dike is N25°E,65°SE. The dike 
is exposed on a vertical quarry wall that trends Nl 0°W. 
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What is the apparent dip of the dike as viewed in the quarry 
wall? 

Method 5-6 
Step 1: Visualize the problem and prepare an 

overlay (Fig. 5- l 7a). 
Step 2: Mark the strike (N25°E) on the primitive, 

revolve the mark to north, count 65° in from the right end 
of the primitive, and draw the great circle to represent the 
dike (Fig. 5-17b). 

Step 3: Revolve the overlay so that the north arrow 
is over the north mark on the stereonet (Fig. 5-17c). 
Count off 10° in the direction counterclockwise from north 
and make a tick to indicate the bearing of the quarry wall 
and therefore the desired apparent dip direction. The 
diameter of the stereonet that passes through this point is 
the great-circle representation of the vertical quarry wall. 
The point of intersection (P) between this straight line and 
the great circle that represents the dike is the stereographic 
projection of the line of intersection between the quarry 
wall and the dike. 

Figura 5-16. Procedure for determining the plunge of a line given its 
rake on a dipping plane. 
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Step 4: Revolve the overlay so that the tick mark is 
on the north-south diameter (Fig. 5-17d). Count in from 
the primitive along the the north-south diameter to point P 
to get the apparent dip (52°). The direction of apparent dip 
is the same as the bearing of the vertical quarry wall 
(Sl0°E). 

Determination of the direction of apparent dip given 
the apparent dip angle is a somewhat more tricky problem. 
After plotting the plane, we must resort to a trial-and-error 
approach. 

Problem 5-7 (Determination of the bearing 
of an apparent dip) 

The true attitude of a dike is N25°E,65°SE. What are 
the bearings of the two vertical quarry walls on which the 
apparent dip of the dike is 40°? Remember that it would 
be impossible to find a quarry wall on which an apparent 
dip greater than 65° could be measured. 

Method 5-7 
Step 1: Visualize the problem and prepare an 

overlay (Fig. 5-18a). 
Step 2: Plot the great-circle trace of the dike on the 

Elementary Techniques Part 1 

flgure 5-17. Procedure for 
determining the apparent dip (in a 
specified direction) of a plane 
whose true dip is known. 

overlay, following the procedure in Method 5-1 (Fig. 
5-18b). 

Step 3: Revolve the overlay until the great circle 
representing the plane intersects the north-south diameter at 
a distance equal to the apparent dip angle (40°) from the 
primitive (Fig. 5-18c,d). Two such points will be found. 

Step 4: Por each of the two points, draw a radius 
from the center of the stereonet through the point to the 
primitive, and make a tick mark where each radius 
intersects the primitive. 

Step 5: Revolve the overlay so that the north arrow 
is over the north mark on the stereonet, and read off the 
bearings of the two tick marks on the primitive (Fig. 
5-18e). The two bearings are N48°E and S02°W. 

Now, it should be easy for you to determine the true 
attitude of a plane if you are given the apparent dips of the 
plane in two directions. Note how much faster it is to 
solve this problem with a stereonet than to use descriptive 
geometry. 

Problem 5-8 (True dip from two apparent dips) 
A distinctive bed is expvsed on a highway road cut 

At one end of the cut, the apparent dip of the bed is 
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Figure 5-18. Procedure tor determining the direction of a specified 
apparent dip if the true dip of the plane is known. 

32°,256°. Around a bend in the road, the apparent dip of 
the same bed is 27°, 125°. Determine the true dip of the 
bed. 

Method 5-8 
Step 1. Visualize the two apparent dips as lineations 

that must be contained on the dipping plane (Fig. 5-19a). 
Prepare the overlay. 

Step 2: Mark the positions of the apparent dip 
trends (125° and 256°) on the primitive. 

Step 3: Bring each trend mark to the north-south 
line and count the appropriat.e angles (27° and 32°) inward 
from the primitive to obtain the points for the apparent 
dips (Fig. 5-19b, e). 

Step 4: Revolve the overlay (by trial and error) 
until both points lie on the same great circle (Fig. 5-19d). 
Draw in the great circle. Determine its dip by counting 
inward from the primitive to the great circle along the 
east-west diameter (Fig. 5-19d). 

Step 5: Revolve back to the original position. 
Determine the strike of the great cirde by counting 
clockwise from north to the strike mark along the 

primitive (Fig. 5-19e). The true dip of the bed is 
l02°,54°S. 

The same procedure can be used when you are given 
the attitudes of two lineations on a surface and are asked to 
calculate the attitude of the surface. The true dip of a plane 
can also be calculated using a similar procedure if you are 
given the strike of a plane and an apparent dip of a line on 
the plane or the attitude of a single lineation on the plane. 

Determining the lntersection of Two Planes 

Remember that the intersection of two planes is a line. ln 
Chapter 3, we presented the geometric method for 
determining the orientation of this line. Here we present 
the stereographic method. Again, note how quickly the 
answer can be obtained with a stereonet. 

Problem 5$9 
At an outcrop, bedding orientation is S800E,20°S, and 

cleavage orientation is N30°E,70°E. Determine the 
orientation of the deavage/bedding intersection lineation. 
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Method 5-9 

Step 1: Visualize the problem as two inclined 
planes intersecting along a line (Fig. 5-20a). Prepare your 
overlay. 

Step 2: Mark the strike of bedding (S80°E) on the 
primitive, and revolve the overlay to bring this mark to the 
south point. Count 20° inward from the left end of the net 
along the west-east diameter. Draw the great circle 
representing bedding (Fig. 5-20b). 

Step 3: Revolve the overlay back to its original 
position. Mark the strike of cleavage (N30°E), and bring 
this mark to the north point. Count 70° inward from the 
right end of the net along the east-west diameter. Draw 
the great circle representing cleavage (Fig. 5-20c). The two 

256° 
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Figure 5-19. Procedure for 
determining the true dip of a plane 
from two apparent dips. 

great circles intersect at a point (L) which represents the 
cleavage-bedding intersection lineation. 

~tep 4: Revo1ve the ovenay to brmg lhe nneauon 
(L) to the north-south diameter. Count inward from the 
primitive along the north-south diameter to obtain the 
plunge angle (Fig. 5-20d). Mark the position where the 
radial line from L intersects the primitive. This tick mark 
will give the trend of the lineation. 

Step 5: Revolve the overlay back to its original 
position. Read off the trend of the lineation from the 
position of the trend mark (Fíg. 5-20e). The cleavage
bedding intersection lineation has a plunge of 20° toward 
S24°W. 

EXERCISES 

1. Plot each of the following bed orientations as great circles on the same tracing 
paper overlay. Label each plane. Be sure to visualize each plane as you plot it. 

(a) N25°E,44°NW 
(e) N83°W,43°NE 

(b) N14°W,85°SV/ 
(d) 072°,06°SE 
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figure 5-20. Procedure for 
determining the orientation of the 
line of intersection between two 
dipping planes. d e 

(e) 234° ,18°NW 
(g) 047°,0I 0 NW 

(f) 090° ,38°N 
(h) 180°,90°E 

2. Plot the following lineations as points on the same tracing paper overlay. Label 
each lineation. Be sure to visualize each line as you plot it. 

(a) 32° ,087° 
(e) l2°,NI2°E 
{e) 86° ,270° 
(g) 59° ,S60°E 

(b) 43°,217° 
(d) 88° ,092° 
(f) 59°,N60°E 
(h) 59°,N60°W 

3. A polydeformed metamorphic rock contains two mineral lineations that lie on the 
same foliation plane. The füst is oriented 14° ,Nl0°E. The second is oriented 
58°,S58°E. 

(a) What is the attitude of the foliation plane on which these lineations occur? 
(b) What is the rake of each lineation in the foliation plane? 
(e) What is the angle between the lineations as measured in the plane of foliation? 

4. A slip lincation on a fault plane has a rake of 68°NE. The fault is oricnted 
N52°E,83°SE. What is the plunge and bearing of this lineation? 

103 
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5. A slickensíde surface dips NI0°E,80°W. Fibrous slickenlines on the surface trend 
N60°W. 

(a) What is the plunge of the lineation? 
(b) What is the rake of the lineation on the slickenside surface? 

6. The true attitude of bedding at Flagstone, New York, is N4 l 0 W ,65°NE. What is 
the apparent dip of bedding on a vertical quarry face that trends N20°E? 

7. A shale bed has the attitude N65°W,42°SW. What is the apparent dip of the bed 
in the direction S85°W? 

8. The apparent dip of bedding on a quarry wall is 23° ,S48°W. On a second quarry 
wall, it is 34° ,N55°W. What is the true strike and dip of the bed? 

9. In the Granite Wash Mountains of Arizona, bedding ina flysch sequence is oriented 
N47°E,34°NW. A spaced cleavage in this unit is oriented N22°E,68°SE. The 
intersection of bedding with cleavage produces a pronounced lineation that is 
visible on bedding-plane surfaces. What is the attitude of this lineation? 

l 0. A sandstone bed strikes 140° across a stream. The stream flows down a narrow 
gorge with vertical walls. The apparent dip of the bed on the walls of the gorge is 
25°,095°. What is the true dip of the bed? 

11 . Along a curving road cut, two different apparent dips on the same contact between 
a limestone bed and a shale bed were measured. The first was 42° ,N30°W and the 
second was 58° ,S70°W. What is the strike and dip of the contact? 

12. A fault plane displays two different sets of slip lineations. One set is oriented 
22° ,325°, and the other set is oriented 49° ,041°. What is the orientation of the 
fault plane that contains the two lineations? 
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At this point you should feel cornfortable with the basic 
concept of a stereographic projection and should have no 
trouble visualizing and plouing lines and planes on a 
stereonet. We now introduce the concept of a pole to a 
plane, describe how it is plotted on a stereonet, and show 
how it cm be used oo calculate angles between structures. 
Once you are adept at plotting poles, we can show how a 
structure can easily be rotated from one orientation to 
another on a stereonet. Firuilly, we wm apply our ability 
oo plot poles and rotate structures to several practical 
problems in structural goology. The l:eehniques introduced 
in this chapter demonstrate the incredible versatility of the 
stereonet 

6-2 POlE TO A PlANE 

A stereogram showing the great-circle traces of many 
planes is difficult 00 read because the traces of different 
planes cross one another and become hard to separate and 
identify. Fortunately, it is possible to represent the 
orientation of any plane by specifying the orientation of 
the normal to the plane (Fig. 6- la). Remember that a 
normal is the line that is perpendicular to a phme; while a 
plane projects as a circular arc on the stereograph.ic 
projection, the norma! to the plane is a líne and hence 
projects as a point. The point on a stereogram representing 
the norma! to a phme is called the pole to the plane and, by 
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defmition, lies 900 from the center of the great cirde trace 
representing the plane (Fig. 6-lb). You can use your hands 
to help visualize a pole. Hold a pencil between the fmgers 
of your hand so that it is perpendicular to your hand; if 
your hand represents the plane, the pencil represents the 
pole to the plane (Fig. 6-lc). The distance of the pole 
from the center of the primitive is r tan(d/2). where a is the 
dip of the plane, and r is the radius of the stereogram (Fig. 
6- ld). You rnight think of a plot of the cyclographic trace 
of a plane or of a line as a direct plot, whereas a plot of a 
pole is a reciprocal plot. ln summary, every plane has a 
unique norma! to it, which plots as a 1.mique point (pole) 
on the stereographic projection. Therefore, we may 
represent the orientation of any plane by its pole. 
Diagrams representing poles to surfaces (S-planes) are 
referred to as 17:-diagrams or S-pole diagrams. 

Method of Plottlng a Pole 

Problem 6-1 
A bed has an orientation of N300W,500SW. Plot the 

stereographic projection of the bed ami its pole. 

Method 6-1 
Step 1: Visualize the problem. The norma! to the 

plane pierces the projection sphere at a point 900 from the 
great circle intersection of the plane and the projection 
sphere (Fig. 6-2a). Prepare your overlay as described in 
Chapter 5. 

Step 2: Mark the strike of the bed on the primitive, 
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and revolve the overlay to bring the stríke mark to the 
north-south axis. Count off tbe dip (500) of the plane 
fmm thf'. left f'.dve of the nrimitive inward alomr the - ~ - - -:-:: ---

west-east diameter. Draw the great-circle trace for the 
plane. 

Step 3: From the great-círcle trace, continue to 
count 90° inward toward the center and then beyond the 
center along the west-east diarneter. Plot the point P on 
the west-east diameter to represent the pole; its orientation 
can be determined just lik.e that of a line (see Chapter 5). 
The pole (P) has a plunge of 400 ,N600E (Fig. 6-2c). 

Note that the plunge of the pole is the complement of 
the bed dip ( 400+ 500=900), and the trend of the pole is the 
complement of the bed strike (300+600=90°). Thus, after 
bringing the strike mark to the north-south axis (Step 2), 
we could also locate the pole by counting the dip angle 
from the center outward in the direction opposite to the dip 
direction. 

Determlnatlon of an lntersectlon llneatlon 

In Chapter 5 we saw that the intersection of me great circle 
traces of two planes on a stereograrn is a point that 

Zenlth 

OP : r tan b12 

Flgure 6-1. Relationship bet
ween a plane and its pole. (a) 
Projection sphere showing a dipping 
plane and its norma!, and their 
projections (cyclographic trace and 
pele) on the horizontal equatorial 
plane; (b) stereographic projection 
showing the cyclographic trace of a 
dipping plane and its pele; (e) 
drawing to help visualize the 
meaning of a pele; (d) vertical cross 
section through the projection 
sphere showing the trace of a 
dipping plane and its norma!. The 
pele (P) is the stereographic 
projection of the norma!. (Adapted 
from Hobbs et al., 1976.) 

represents the line of intersection between the two planes. 
The line of intersection can also be determined in terms of 
the ooles to the nlanes. 

Problem 6-2 
One limb (labeled A) of a chevron fold is oriented 

020° ,60°SE and the other limb (labeled B) is oriented 
06()0 ,40°NW. What is the plunge and bearing of the fold 
hinge? Assume that the fold hinge is the line of 
intersection between the two limbs. 

Method 6-2 
Step 1: Visualize the problem. The fold hinge is 

the pole to the plane that contains the normals to the two 
limbs (Fig. 6-3a). Prepare your overlay. 

Step 2: Plot the great-circle traces of the two limbs. 
Then, plot point PA• which is the pole to the füst limb 
(limb A), and point PB, which is the pole to the second 
limb (limb B; Fig. 6-3b,c). 

Step 3: Revolve the overlay so that PA and PB lie 
over the same great circle on the stereonet, and trace this 
great circle (Fig. 6-3d). This great circle defines the plane 
füat contains boíh PA and Pn. Cmmt 900 to the right 
along the east-west diameter, passing through the center of 
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flgure 6-2. Procedure for plotting the pala to a dipping plane on a 
stereographic projection. 

the stereonet, and locate the pole (point F) to this plane 
(Fig. 6-3d). 

Step 4: Deterrnine the phmge and bearing of point 
F. Pofit F represents the line of intersection between the 
two limbs and thus is the hinge line of the fold. The fold 
hinge is oriented 22° ,035°. Note that the same fold hinge 
could have been obtained from the point of intersection of 
the cydographic traces representing the two limbs. 

figura 6-3. Procedurn for 
determining the iine of intersection 
of two plane:s from the orientations 
of their poles. 

6-3 ANGLES BETWEEN 
UNES AND PlANES 

Dlhedral Angle between Two Planes 

A dihedral angle is the angle between two planes measured 
ín a lhird plane that is perpendicular to both planes. The 
dihedral angle is easily determiood by measuring the angle 
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between the poles to the planes on a stereogram. Note that 
the poles are lines, and that the angle between two lines 
can be rneasured only on a plane containing the two lines. 
Thus, on a stereogram, the angle between the two poles is 
rneasured along the great circle that passes through both 
poles. 

ln rnany cases (e.g., crossing joints) the dihedral angle 
is usually specified as an acute angle. Therefore, if the 
measured angle between poles is acute, it rnay be used 
directly as the dihedral angle, but if the measured angle 
between poles is obtuse, its supplernent is recorded as the 
dihedral angle. Specification of the interlimb ang/e of a 
fold, however, is a bit more tricky. The interlirnb angle is 
always the supplement of the angle between the poles and 
can be either acute or obtuse. The problem is that it is not 
always immediately obvious whether to use the acute angle 
between the poles or the obtuse angle between the poles, as 
measured on the stereogram, in your cakulation of the 
supplement. ln order to make the proper choice, you must 
visualize the fold and perhaps make a profile sketch (see 
Problem 6-3). 

Problem 6-3 
One limb (limb A) of an antiform is oriented 

N20°E,70°NW. The other limb (limb B) is oriented 
N30°W ,65°NE. Detennine the interlimb angle of the fold. 

Elementary Techniques Part 1 

Method 6-3 
Step 1: Visualize the problem (Fig. 6-4a), and 

prepare your overlay. 
Step 2: Plot the great circle representing limb A. 

Locate the pole (PA) to this great circle (Fig. 6-4b). 
Step 3: Repeat the procedure in step 2 and locate 

the pole (P8 ) that represents the nonnal to limb B (Fig. 
6-4c). 

Step 4: Revolve the overlay till the two poles lie on 
the sarne great circle. This great circle is perpendicular to 
the line of intersection of the two limbs. The angle 
between the two poles rneasured along this great circle is 
an obtuse angle of 114° (Fig. 6-4d). If you visualize the 
fold again, you realize that the interlimb angle is an acute 
angle; it is, therefore, given by the supplement of 114° 
namely, 66°. 

Angle between a Une and a Plane 

The angle between a line and a plane is measured by the 
angle between the line and its orthographic projection on 
the plane. This angle must be measured ín a second plane 
that both contains the line and is perpendicular to the first 
plane; in other words, the perpendicular plane must contain 
the normal to the füst plane. On a stereographic projection 
the angle between a line and a plane is measured along the 
great circle containing the line and the pole to the plane. 

flgure 6-4. Procedure for 
determining the interlimb angle of a 
foid using the dihedrai angía 
between the poles to the fold limbs. 
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Problem 6-4 
A fold hinge plunges 300 ,260°. A cross section of 

the fold is exposed on a joint surface whose attitude is 
150° ,60°E. Determine the angle between the fold hínge 
and the joínt surface. 

Method 6-4 
Step 1: Visualize the problem {Fig. 6-Sa). Tim 

angle between the líne and the plane must be measmed on a 
specific plane, which is shaded ín the drawing. Prepare 
your overlay. 

Step Z: Plot the fold hinge (H) on the stereogram 
(Fig. 6-5b). 

Step 3: Plot the great circle representing the joint 
surface on the stereogram. Count over 900 along the 
east-west diameter to fimi the pole (P) to t:his plane (Fig. 
6-Sc). 

Step 4: Revolve t:he oveday until the hinge (H) and 
the pole (P) lie along a cornrnon great cirde. The 
great-circle t.race through H and P intersects the great-circle 
trace representing the joint at point X (i.e., point X 
represents t:he line of intersection between the two planes). 
Measure the angle between H and X aloog the great cirde. 
The angle between the hinge line and the joint face is 75° 
(Fíg. 6-Sd). 

flgurt11 6-5. Procedure for 
determining the angle between a 
line and a plane. 
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Note that the joint face is not perpendicular to the 
hinge Hne. Therefore, the exposure of the cross section of 
the fold on the joint face is not a profi.le view of the fold. 

Blsectlng the Angle between Two Planes 

A plane that bisects the angle between two intersecting 
planes must contain the li.ne of intersection between the 
two planes and the line that bisects the dihedral angle 
between the planes. For most chevron folds and kink folds 
it is reasonable to assume that the plane that bisects the 
angle between the two limbs of the fold and contains the 
fold hinge is the axial plane of the fold. 

Problem 6-5 
The two limbs of a chevron fold (limb A and limb B) 

a.re oriented N60°E,40°SE ami N80°W,50°NE, res
pectively. Deterrnine the attitude of the axial plane of this 
fold. 

Method 6-5 
Step 1: Visualize the problem. We will make the 

assumption that the axial plane bi.sects the angle between 
the two limbs (Fig. 6-6a). Prepare your overlay. 

Step 1: Draw the great circle representing limb A, 
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flgure 6-6. Procedure for determining the plane bisecting the angle 
between two intersecting planes. 

and locate its pole (PA) 900 from the great circle (Fig. 
6-6b). 

B, then locate and plot its pole (PB) (Fig. 6-6c). The two 
great-circle traces (representing the two limbs) intersect at 
point H, which represents the hinge line of the fold. 

Step 4: Revolve the overlay until the two poles lie 
on the same great circle, and find the point (B) along the 
great circle that has the same angular distance from each of 
the two poles to the fold límbs (Fig. 6-6d). 

Step 5: Revolve the overlay till B and H lie on the 
same great circle, and trace the great círcle. This great 
circle represents the plane that bisects the angle between 
the two limbs and contains the fold hinge and thus is the 
axial plane of the fold. Its dip, from the stereogram, is 84° 
(Fig. 6-6e). 

Step 6: Revolve the overlay back: to its original 
position. The axial plane has a strike of N84°E (Fig. 
6-6f). Thus, the attitude of the axial plane is N84°E,84°S. 

6-4 ROTATION 

In order to solve certain problems in structural geology it 
is necessary to simulate the physical rotation of a structural 

element around an axis in space. For example, rotation 
around an axís may be needed in order to undo the 
!'e~~~:~~.!~~~0~ ~ff~f"O!~ ~f 1~U:e=St!gP .-11t1"~ nn thP ~ttitnritio nf 

an early-stage fold. ln order to accomplish this we rotate 
the geometric elements of the fold through a specified angle 
around a specified axis and theh replot the elernents in a 
new orientation. This process is quite different from 
anything we have done so far. ln all the plotting procedures 
described previously, we have revolved the overlay about 
the center of the net for convenience in rneasuring and 
plotting data. The overlay always carried with it a fixed 
north mark, so the orientations of planes and lines never 
changed with respect to the stereogram reference frame. 
However, when we rotate a line or plane ín space, the 
orientation of the line or plane does change with respect to 
the stereogram (overlay) reference frame. Note that we use 
the words "revolve" and "rotate" differently in this book for 
clarification purposes; revolve refers to physically moving 
the overlay with respect to the stereonet, and rotate refers to 
actual reorientation of structural elements. 

There are two basic procedures that can be used to 
achieve any rotation: (1) rotation about a vertical axis {the 
axis has a plunge of 90°) and (2) rotalion about a 
horizontal axis (the axis has a plunge of OOo). Rotation 
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armmd any inclined axis (where the phmge of the axis lies 
between 00° and 90°) is most easily performed by a 
combination of rotations around horizontal and/or vertical 
axes. 

Rotatlon about a Vertlcal Axls 

Rotation about a vertical axis is the simplest type of 
rotation to perform. The axis for such a rotation is the 
center point of the stereonet Rotation of a line is achieved 
by moving the point that represents the line along a small 
circle Ihat is coaxial wüh the primitive; when the rotation 
is complete, you simply replot the line. Note that small 
circles that are coaxial with the primitive are not the smaH 
cirdes inscribed on the stereonet grid. To visualize why 
the small circle track makes sense, imagine an inclined line 
with one end fixed on the vertical rotation axis; if this line 
is rotated around the axis, its free end describes a 
right-circular cone that intersects the projection sphere ina 
sman circle (Fig. 6-7a). Rotation of a plane is achieved by 
moving the strike line of the great-circle trace around the 
primitive; when the rotation is complete, the plane is 
replotted. The same result is achieved if the pole to the 
plane is rotated around a smaU circle that is coaxial with 
the primitive. 
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Once a rotation armmd a vertical axis has been 
accomplished, the line or phme has a new orientation with 
respect to the steroogram reference frame. For a line the 
phmge direction changes, but the phmge magnitude does 
not, and for a plane the strike changes, but the dip 
magnitude does not. ln order to uniquely specify the sense 
of rotation, you must indicate your viewing direction with 
respect to the axis. A dockwise rotation viewed looking 
down a vertical axis is the same as a counterclockwise 
rotation viewed looking up along the same axis. 

Problem 6-6 
The attitude of a line is 400 ,SS0°E. What is the 

orientaüon of the line .after it has been rotated by 40° 
clockwise around a vertical axis (viewed looking down the 
axis)? 

Method 6-6 
Step 1: Visualize the problem. As the line rotates, 

ít describes a segment of the swface of a right-circular cone 
whose axis passes through the center of the stereonet (Fig. 
6-7a). Prepare the overlay. 

Step 2: Plot the point (L) representing the line on 
the overlay (Fig. 6-Tu). 

Step J: Draw a tick mark on the primitive that 
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figura 6-7. Procedure tor 
rotating a plunging line around a 
vertical axis. 

d 
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indícates the bearing of the line. Without moving the 
overlay, count 40° clockwise along the primitive, and 
make a second tick at SlOOE (Fig. 6-7b). 

Step 4: Revolve the overlay so that the second tick 
lies over the north-south diameter. Count in by 400 from 
the primitive and mark point L', which represents the 
rotated position of the line in the stereogram reference 
frame (Fig. 6-7c ). The rotated line is oriented 400 ,S l OOE 
(Fig. 6-7d). Note that the bearing of the line changed, but 
not the plunge of the line. 

Problem 6-7 
A plane is oriented N30°W ,40°NE. What is the 

orientation of the plane after it has been rotated by 700 
counterclockwise around a vertical axis (viewed looking 
down the axis)? 

Method 6-7 
Step 1: Visualize the problem (Fig. 6-8a), and 

prepare your overlay. 
Step 2: Plot the great-circle trace representing the 

plane, and plot its pole P (Fig. 6-8b). 
Step 3: Locate the N30°W strike mark on the 

primitive. Count 700 counterclockwise along the primitive 

Elementary Techniques Part 1 

and make a tick. This tick is at S800W (Fig. 6-8b) and 
represents the new strike of the plane. 

Step 4: Bring the S80°W tick: mark to the 
north-south axis, count in 400 along the east-west axis, 
plot the new great-circle trace (Fig. 6-8c), and plot the new 
pole P'. 

Step 5: Revolve the overlay 80 that the north arrow 
overlies the north pole of the stereonet. Now you can read 
the strike of the rotated plane. It is S800W (or N80°E). 
The dip angle of the plane does not change during the 
rotation. The orientation of the plane after rotation is, 
therefore, N800E,400SE (Fig. 6-8d). Note that P' lies 700 
counterclockwise from P along a small circle that is 
concentric with the primitive. 

Rotatlon about a Horlzontal Axls 

A line representing a horizontal rotation axis plots as a 
point along the primitive of a stereonet. ln order to 
simulate a rotation around a horizontal axis, we must first 
revolve the overlay 80 as to bring the rotation axis to the 
north-south diameter of the net. The rotation of any line 
around this axis is then accomplished by moving the point 
representing the line along a small-circle grid line on the 

" 

Figura 6-8. Procedure for 
rotating a dipping plane around a 
vertical axis. 
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stereonet (Note: These smaU circles are not coaxial with 
the primitive). Rotation of a füle past the primitive will 
cause the line to reappear on the diametrically opposite side 
of the stereogram. Rotation of a plane can be 
accomplished by rnoving i.ndividual points of the 
great-cirde trace that represents the plane along small-cirde 
paths through equal angular distances. After the rotation, 
all the points will lie on a new great-circle trace that 
represents the orientation of the rotated plane (Fig. 6-9a,b). 
This method works both when rotating a plane around its 
own strike and when rotating a plane around a horizontal 
axis that is at an angle to the strike. If a plane is rotated 
around its own strike, oniy the dip of the plane wm 
change. If the horizontal rotation axis is not parallel to the 
strike of the plane, the rotation wm re~mlt in a change in 
both the dip and the strike of the plane. 

During a rotation the pole to a plane moves through 
the same angular distance and in thé same direction as the 
points on the great circle (Fig. 6-9a,b), so the rotation of a 
plane can also be accomplished rnerely by moving the 
point that represents the pole along a small circle on the 
stereonet. Once the rotated position of the pole is found, 
the great-circle trace of the new plane that it represents can 
be drawn. Any linear structure (L) that has a fixed 
orientation with respect to the plane wiU also move 
through the same angular distance in the same direction 
along a small-cirde path to a new position L' as the plane 
rotates. A lineation that lies in a plane before rotation 
must lie in the rotated plane after rotation. Movement 
along smaU circles during rotation around a horizontal axis 

Pia.ne rotated clockwiee 
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makes sense, for remember that each small cirde of the 
stereonet represents the intersection of a right-circular cone, 
whose axis is horizontal and t.rends north-south, with the 
surfoce of the projection sphere. 

In performing rotations, it is very critical to visualize 
the process at every step, particularly to ensure that the 
rotation is in the correct direction. Imagine a plane 
oriented north-south, 60°E. If the plane is rotated 
counterclockwise, viewed looking north, its dip will 
decrease (Fig. 6-9a,b). Ifit is rotated counterclockwise by 
60°' it wm become horizontal (and its pole wm become 
vertical), and if it is rotated by more than 6()0 it will begin 
to dip to the west. If the plane is rotated clockwise, it wm 
steepen (Fig. 6-9a, e). Ifit is rotated clockwise by 300, it 
wm become vertical (and its pole will become horizontal). 
If it is rotated by more than 300, it will go past vertical 
and begin to dip to the west (ami the pole to the plane will 
jump to the diametrically opposite side of the stereogram). 
Rotation of an overtumed plane back up to a horizontal 
position is sometimes difficult to visualize; remernber that 
an overtumed plane must pass through the vertical position 
before being rotated up to the horizontal position. The 
following examples will help you to visualize rotations. 

Problem 6-8 (Rotatilm of a line ar<nmd a 
horizontal axis) 

A mineral stretching hneation plunges 300 toward 
220°. What is lhe orientation of this lineation after it has 
been rotated 300 cmmterclockwise (as viewed looking 
toward NIOOW) around a NlOOW-trending horizontal axis? 

Flgure 6-9. Rotation about a horizontal axis. (a) Spherical 
projection showing effects of clockwise and counterclockwise rotations 
on a dipping plane, its normal, and a lineation on the plane; (b) 
stereographic projection showing counterclockwise rotation (about a 
horizontal north-south axis) of a great-circle trace, its pole, and a 
lineation; (e) stereographic projection showing clockwise rotation o! 
the same great-circle trace and its pole, about the same axis. 
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Method 6-8 
Step 1: Visualize the problem (Fig. 6- lOa). Note 

that the axis is oblique to the the beating of the line. The 
rotation should increase the plunge of the line and change 
its beating. Prepare your overlay. 

Step 2: Plot the point (L) that represents the 
lineation on the overlay (Fig. 6-lOb). Draw a tick mark at 
N 1 o0 w on the primitive; this mark represents the 
horizontal rotation axis (Fig. 6-lOb). 

Step 3: Revolve the overlay 10° clockwise so that 
the rotation axis coincides with the north-south axis of the 
stereonet. Point L has also moved and lies over a new 
small circle on the stereonet. Count off 300 to the right 
along this small circle, and make a new dot (L') on the 
overlay. L' represents the new position of the line after 
rotation (Fig. 6-lOc). 

Step 4: Revolve the overlay so that L' lies over the 
north-south diameter of the stereonet (Fig. 6- lOd). 
Measure the plunge of the line represented by L'; the 
plunge is 51°. Make a tick on the primitive. 

Step 5: Revolve the overlay so that the north arrow 
of the overlay is over the north mark of the stereonet (Fig. 
6-1 Oe ). Determine the bearing of L'. L' is a line oriented 
51°,202°. 

Rotation axisD N 
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Elementary Techniques Part 1 

Problem 6-9 (Rotation o/ a plane around strike) 
The attitude of a plane is N200E,20°SE. (a) What is 

the attitude of the plane after it has been rotated by 30° 
clockwise (as viewed looking northeast) around an axis 
parallel to strike? (b) What is the attitude of the plane after 
it has been rotated 30° counterclockwise (as viewed 
looking northeast) around an axis parallel to strike. 

Method 6-9 
Step 1: Visualize the problem (Fig. 6-lla). ln case 

a, the clockwise rotation will cause the dip of the plane to 
increase by 30°. In case b, the counterclockwise rotation 
will cause the bed dip to decrease. A 200 counterclockwise 
rotation will take the bed to horizontal, so a 30° 
counterclockwise rotation will take the bed past horizontal 
so that it dips to the northwest. Note that since the 
rotation axis is the line of strike, in neither case does the 
rotation cause the strike of the plane to change. Prepare 
your overlay. 

Step 2: Plot the great circle trace and the pole P of 
the original plane on the overlay. Rotate the overlay 
counterclockwise by 200 so that the intersection of the 
great-circle trace with the primitive lies over the north 
mark of the stereonet (Fig. 6-11 b ). 

figura 6-10. Procedure tor 
rotating a plunging line about a 
horízontal iine thai is obiique to it. 
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flgure 6-11. Procedure for rotating a dipping plane about its strike. 

Step 3: To rotate by 300 clockwise, count over 30° 
to the left along the east-west diameter, and d.raw a new 
great-circle trace (Fig. 6-llb). This trace represents the 
rotated plane oriented N20°E,50°SE. The pole to the 
plane also moves 30° to the left (to P'), away from the 
center of the stereogram (Fig. 6-11 b ). 

Step 4: To rotate 300 counterclockwise, start 
counting to the right from the original trace of the plane · 
(Fig. 6-1 lc). Note that when you have counted 20° you 
have reached the primitive, and the plane is horizontal. 
Continued rotation causes the plane to begin to dip 
northwestward, and you must count an additional 10° 
inward from the diametrically opposite end of the primitive 
(Fig. 6-llc). Draw the new great circle trace. This trace 
represents the rotated plane, and it is oriented N200E, 
10°NW. During the rotation, the pole to the plane moves 
30° to the right (to P"); the pole moves through the 
vertical position in the process (Fig. 6-llc). 

Problem 6-10 (Rotation of a plane around an 
axis oblique to strike) 

A dipping bed is oriented N200E,700SE. What is the 
orientation of the bed after it has been rotated 30° 
counterclockwise (viewed from the south) around a 
horizontal axis that ttends NHPW? 

Method 6-10 
Step 1: Visualize the problem (Fig. 6-12a). Note 

that the rotation axis is oblique to the strike of the plane. 
Thus, rotation armmd the axis wm not only change the 
dip of the plane, but will also change its strike. Prepare 
your overlay. 

Step 2: Plot the great-circle trace of the plane and 
the pole to the plane (P) (Fig. 6-12b). Next, make a tick 
indicating NlOOW on the primitive to indicate the trend of 
the rotation axis. 

Step 3: Revolve the overlay clodcwise so that the 
rotation axis lies over the north mark of the stereonet. 

Point P now lies over a new srnaH circle on the stereonet 
(Fig. 6-12c). Count 300 to the right along the small cirde 
and plot point P', which is the pole to the rotated plane. 

Step 4: Revolve the overlay so that P' lies over the 
east-west diameter of the stereonet. Count 900 along the 
east-west diameter and draw the great-circle trace of the 
rotated plane (Fig. 6-12d). 

Step S: Revolve the overlay so that its north arrow 
is over the north mark of the stereonet (Fig. 6-12e). The 
rotated plane is oriented N300E,45°SE. 

Problem 6-11 (Rotation of a lineation in a 
plane) 

An overtumed bed is oriented N300W,40°SW. A 
current lineation on the bedding plane has a rake of 
30°NW. What was the orientation of the lineation when 
the bedding was horizontal? 

Method 6-11 
Step 1: Visualize the problem (Fig. 6-13a). In 

order for the bed to rotate back to horizontal, it must be 
rotated armmd its line of strike by 500 counterclockwise 
(viewed looking northwest) to bring it to the vertical 
position and then an additional 900 counterclockwise to 
bring it to horizontal. Prepare your overlay. 

Step 2: Plot the great-circle trace representing the 
plane and plot the lineation (L) on the plane, following 
methods described earlier. Orient the overlay so that the 
strike line of the bed lies over the north-south diarneter of 
the steroonet (Fig. 6-l3b). 

Step 3: From the great-circle trace, cmmt 140° to 
the right along the east-west diarneter and trace the new 
great cirde that coincides wüh the primitive (Fig. 6-13b). 
This great-circle trace represents the horizontal right-side-up 
plane. Note that in order to reach this position, the plane 
passed through the vertical position. 

Step 4: At the end of step 2, point L lies on a small 
circle. Count 1400 to the right along this small circle and 
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N 

figura 6-12. Procedure for 
rotating a dipping plane about a 
horizontal axis oblique to its strike. 

N 

Flgure 6-13. Procedure for rotating a lineation on a plane about the 
strike of the plane. 

plot point L'. Point L' represents the horizontal position 
of the lineation after rotation. Note that L' lies on the trace 
of the great circle representing the rotated plane and that it 
still has the original rake. Note also that the bearing of the 
lineation is quite different from the bearing that it had 
before rotation. The rotation changes the plunge and 
bearing of the lineation, but not its rake. 

Step 5: Revolve the overlay so that the north arrow 
of the overlay coincides with the north mark of the 

stereonet. The original trend of the lineation (its trend 
before the bed was tilted) can now be detennined directly; it 
is due north and is horizontal (00°,000o) (Fig. 6-13c). 

Rotatlon about an lncllned Axls 

It is possible to perform rotation around an inclined axis 
directly, but the method is cumbersome. It is far easier to 
accomplish such a rotation by a three-stage process. First, 
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the inclined axis is rotated to horizootal (or vertical) aroond 
a second axis that is horizontal and is orthogonal to the 
indined axis. The structural eiements to be rotated go 
through the same angular movements (along small-cirde 
paths) as díd the axis during this step. Second, the 
necessary rotations are perfonned armmd the rotated axis, 
following the methods described earlier. Third, the axis is 
rotated back to its original indined position. Once again, 
the rotated structure elements pass through the same 
angular movernents along small-circle paths. 

Problem 6-12 (Rotation around 
an im:Uned axis) 

The bedding on eme limb of a fold is oriemed 
N60°W,40°SW. What is the orientation of the bedding 
after it has been rotated by 400 counterclockwise (viewed 
looking down plunge) around the fold axis, which plunges 
30°,S80°W? 

Method 6-12 
Step 1: Visualize the problem and prepare your 

overlay (Fig. 6-14a). ln this problem we füst rotate the 
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fold axis to horizontal, then we rotate the bedding by the 
required amount, and fmally, we rotate the fold axis back to 
í.ts original position. 

Step 2: Plot the position of the rotation axis (fold 
axis), R, and the pole to the fold lí.mb, P (Fig. 6-14b). 

S~p 3: Rotate the overlay co1.mterclockwise so that 
R Hes over the east-west di.ameter of the stereonet. Rotate 
R to horizontal (Fig. 6-14c) by co1.mting 300 along the 
east-west diameter to the left 1.mtil you reach the primitive, 
and plot R' at this position on the primitive. R' indicates 
the position of the axis after it has been rotated to 
horizontal. Move P by the same amount and ín the same 
direction along the small circle that underlies it, and plot 
point P'. Point P' represents the position of the pole after 
it was carried along passively during the operation that 
brought the fold axís to horizontal (Fig. 6-14c). 

Step 4: Revolve the oveday so that R' lies over the 
north mark of the stereonet. P' is carried along on the 
overlay. Rotate P' coonterclockwise around R' by countlng 
40° to the right along the small circle that underlies P'. 
Plot point P" at this locality (Fig. 6-14d). R' does not 
move during this stage; it is the rotation axis. 

Figure 6-14. Procedure for rotation around an inclined axis. 
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Step 5: Revolve the overlay so that R' is again over 
the east-west diameter. P" is passively carried along. 
Count in by 300 along the east-west diameter, so that you 
retum R' to R (Fig. 6-14e). Move P" along the small 
circle that underlies it by 300 to the right and plot a new 
point P"'. P'" is the final rotated position of the pole (Fig. 
6-14e). 

Step 1: Revolve the overlay so that P"' lies over the 
east-west diameter. Count off 900 along the east-west 
diameter and trace the great circle that represents the rotated 
plane (Fig. 6-l4f). Its orientation is N88°W,71°S. 

6·5 APPLICATIONS 
OF STEREOGRAPHIC ROTATIONS 

ln this section we will work through a few typical 
examples that illustrate how stereographic rotations can be 
used to solve geological problems. You need not leam any 
new procedures; all that is necessary is to reword each 
problem so that you can define an axis and an amount of 
rotation. 

N 

N 
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Pretllt Orientatlon of Structures 
below an Unconformlty 

Probltm 6-13 
The beds above an angular unconformity are presently 

oriented Nl00E,500W. The beds below the unconformity 
are presently oriented N400E,80°E. What was the 
orientation of the subunconformity beds prior to tilting of 
the unconformity? 

Method 6-13 
Step 1: Visualize the problem. Assume that the 

beds above the unconformity have the same dip as the 
unconformity surface and that the unconformity surface was 
originally horizontal. Removal of the effects of 
postunconformity tilting can be accomplished by rotating 
the unconformity to horizontal by an amount equal to the 
dip of the unconformity around an axis parallel to strike of 
the unconformity (Fig. 6-15a). Prepare your overlay. 

Step 2: Plot the great-circle trace of the 
unconformity, and mark an X on the primitive where this 
trace intersects the primitive at NlOOE. Point X represents 

N 

14411°1 

Flgure 6-15. Procedure tor 
determining the pretilt orientation of 
structures below an unconformity. 
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the horizontal rotation axis. Plot the pole (Pb) 
representing the attitude of the subunconformüy beds. (Fig. 
6-l5b). 

Step 3: Revolve the overlay counterclockwise by 
10° so that point X lies over the north-south axis of the 
stereonet (Fig. 6-15c). Rotate the great-circle trace 
representing the unconformity out by 50° to the left so 
that it coincides with the primitive. This operation brings 
the unconformity to horizontal. 

Step 4: With the overlay in this position, move 
point Pb to the left along the underlying small circle by 
50°, and plot Pb' at this locality. Note that after 100 
rotation along the small-circle path, the pole becomes 
horizontal; to complete the rotation, move to the 
dirunetrically opposite point on the stereonet, and continue 
for an additional 400 of rotation. Pb' is the pole to the 
subunconformity beds after the unconformity has been 
rotated to horizontal. 

Step 5: Revolve the overlay so that Pb' lies over 
the east-west díameter of the stereonet, count 90° along the 
east-west diarneter, and draw the great-cirde trace (Fig. 
6-15d). Revolve the overlay back: to its original position, 
so that the north arrow of the overlay aligns with the north 
mark of the stereonet. The new great-circle trace now 
represents the pretilting orientation of subunconformity 
beds. Prior to tilting, the subunconformity beds were 
oriented N45°E,55°NW. 

Unfoldlng and Refoldlng Folds 

If a lineation occurs on the limb of a nonplunging fold, 
cakulation of the pretilt orientation of the lineation is 
relatively easy. The plane on which the lineation occurs is 
retumed to horizontal by rotating it through an angle equal 
to its dip around an axis parallel to its strike, followíng the 
procedure described in Method 6-11. The lineation is 
rotated passively along with the plane. If the fold is 
plunging, the procedure for unfolding the fold is more 
difficult. Usualiy, a two-stage procedure is used similar to 
that described in Method 6-12. First, the plunging axis of 
the fold is rotated to horizontal; then, the limbs are rotated 
around this new horizontal axis so that they become 
horizontal. Lineations on the limbs are passívely rotated 
along with the limbs. 

Problem 6°14 (Unfolding ami refolding 
a plunging fold) 

The axis of an anticline is oriented 30°,NI0°E. The 
east limb is oriented N19-0W,500E and contains sole marlcs 
that trend due east. The west limb is oriented 
N50°E,40°NW. (a) Determine the orientation of the 
sedimentary lineation before folding. (b) What is the 
present orientation of the sole marks on the west fünb? 
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Metiwd 6-14 
Step 1: Visualize the problem (Fig. 6-16a,b). Frrst, 

we must determine the prefolding orientation of the sole 
marks; then, we must refold the beds to determine the 
orientation of the lineation 011 the west limb of the fold. 
Prepare your overlay. 

Step 2: Plot the great crrcles representing the two 
limbs and locate their poles (Pl and P2, respectively). The 
great cirdes intersect at the fold axis (F). Also plot the 
orientation of the lineation (L) on the east limb (Fig. 
6-16c). 

Step 3: Revolve the overlay so that Point F lies on 
the east-west diruneter of the stereonet. Rotate F around a 
horizontal axis up to horizontal by counting along the 
east-west di.runeter to the primitive. Plot Point F on the 
primitive to represent the rotated axis (Fig. 6-16d). The 
points representing the other structures move concurrently 
along small cirdes: lineation L rnoves to L', pole Pl 
moves to Pl', and pole P2 moves to P2' (Fig. 6-16d). 

Step 4: Revolve the overlay so that the F' lies on 
the north-south diameter of the stereonet; it now serves as a 
horizontal rotation axis (Fig. 6-16e). Rotate the east limb 
to the horizontal position by moving Pl' to the center of 
the stereonet and replotting it as Pl ". The rotated lineation 
L' must be horizontal when t:he bed is horizontal; thus, it 
moves along a small circle to L" on the primitive (Fig. 
6-16e). The position of L" gives the original orientation 
of the sedimentary lineation; it trends N72°E. This is the 
answer to part (a) of the problem. 

Step 5: Now that we know the trend of the lineation 
on unfolded bedding, we can refold the bed and determine 
t:he present orientation of the lineation on the west Hmb. 
First, rotate the west limb to the horizontal position; its 
pole (P2') moves to the center of the stereogram (P2") 
(Fig. 6-16t). Remember that Fis the rotation axis. The 
point diametrically opposite to L" now gives the original 
orientation of the sedimentary lineation on the west limb 
(L*). 

Step 6: Rotate the west limb back to its földed 
position with respect to a horizontal axis; its pole (P2") 
moves back to its original position (P2'), and the lineation 
(L *) moves along a small-circle path to a new posítion 
(L**) (Fig. 6-16t). We have not yet accommodated for the 
plunge of the fold. 

Step 7: Revolve t:he overlay to bring the fold axis 
(F') back to the east-west diameter of the stereonet, and 
rotate the fold axis (F) back to its original orientation (F) 
by counting inward along the east-west diameter (Fig. 
6-16g). At the same time all other points move along 
small-circle paths by the same amount and in the same 
direction. P2' moves back to P2, and L ** moves to L *** 
(Fig. 6-16g). 

Step 8: Revolve the overlay back to its original 
orientation. Now L *** gives the orientation of the 
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Flgure 6-16. Procedure for unfolding and folding a plunging fold and 
determining the orientation of a prefolding lineation. 

lineation on the west limb of the fold (Fig. 6-16h). The 
lineation on the west limb is oriented 09°,S61°W. 

Determlnlng Net Sllp on a Fault 

ln Chapter 4, we saw how to calculate net slip on a vertical 
fault from map dala entirely through the use of descriptive 
geometry. The construction is considerably simplified if 
the angular relationships between various planes and lines 
are obtaíned stereographically and the rotations are 

performed stereographically. The information is then 
transferred to the orthographic construction. The following 
example is the most general case of net slip determination 
(i.e., an inclined fault plane). Special cases of this 
problem (e.g., a vertical fault plane) can, of course, be 
solved by modifying this method. 

Problem 6-15 
A fault (FF) is oriented N900E,40°S. A dike dipping 

N30°W ,35°E is exposed at A on the south síde of the 
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fault, and at A' on the north side of the fault. A bed 
dipping N300E,60°W is exposed at B on the south side of 
the fault and at B' on the north side of the fault. The 
relative positions of A, A', B, B' are shown on the map 
(Fig. 6-17d). Determine the azimuth of the horizontal 
projection of net slip, the plunge of net slip, the rake of 
net slip on the fault plane, and the amount and relative 
movement direction of net slip. 

Method 6-15 
Step 1: Visualize the problem (Fig. 6-l7a,b). 

Complete the map showíng the outcrop pattem of the 
fault, and the bed and the dike north and south of the fault 
(Fig. 6- l 7d). Prepare a stereographic overlay. 

Step 2: Plot the attitude of the fault and the dike on 
the stereogram (Fig. 6- l 7c ); the point of intersection of 
these two great circles gives the attitude of the trace of the 
dike on the fault plane. Plot the attitude of the bed on the 
stereogram (Fig. 6-17c). The point of intersection of this 

b 
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great circle and the fault great circle gives the attitude of the 
trace of the bed on the fault plane. 

Step 3: To determine the magnitude of net slip we 
need to construct a section parallel to the fault plane. ln 
this section the orientatioos of all lines (such as bed ttaces) 
on the fault plane can be represented by their rakes with 
respect to the fault strike. The rake of the dike and of the 
bedding traces on the fault are measured directly off the 
stereogram (Fig. 6-17c) by bringing the fault strike to the 
north-south axis of the stereonet and counting along the 
great-circle ttace of the fault. 

Step 4: Draw a section (Fig. 6-17e) parallel to the 
fault plane, with the dike and bed traces in their proper 
orientations (using the measured rakes) and their proper 
relatíve positions (passing through A, A', B, B'). The 
traces through A and B intersect at S' on the south síde of 
the fault The traces through A' and B' intersect at N' on 
the north side of the fault. The line N'S' gives the 
magnitude of net slip; it is 25 rn (use the same scale as the 
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figurn 6-17. Procedure for determining net slip on a fault, using a 
stereographic projection to determine angular relationships. 
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map ). It is also evident from this diagram that N' has 
moved up with respect to S'; therefore, because the fault 
dips south, it is a norma! fault. 

Step 5: Measure the rake of the net slip on the fault 
plane (Fig. 6-17e) with a protractor, by measuring the 
acute angle between the fault strike line and the line of net 
slip. 

Step 6: Retum to the stereogram, and plot a line 
with the same rake as the net slip so that it plots as a point 
(X) on the great-circle trace of the fault (Fig. 6-17c). The 
plunge and bearing of X gives the attitude of the line 
representing the net slip. The plunge of this line can be 
read directly off the stereogram by bringing this point to 
the NS axis of the net The plunge of net slip is 35°. The 
bearing of net slip is S300E. 

Determlnlng Dlsplacement 
for Rotatlonal Faulting 

Fault tips (where faults end) are areas in which the 
displacement on a fault decreases to zero over a very short 
distance. There is usually a component of rotational 
displacement on the fault over this short segment. For any 
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fault with rotational motion, the magnitude of 
displacement as a function of position along the length of 
the fault can be determined if the rotation pole is known. 
If no gaps or overlaps are to develop across the fault, the 
rotation pole must be perpendicular to the fault plane. 
Alternatively, if offsets of markers at several localities 
along the trace of the fault are known, the rotational pole 
can be determined. ln either case, working out the angular 
relationships on a stereogram before proceeding to an 
orthographic construction makes the solution of such a 
problem much simpler. The main value of the stereonet, 
once again, is the ease with which rotations about the 
horizontal and vertical axes can be performed. 

Problem 6-16 
A fault oriented N300W ,40°E disrupts a bed and a 

dik.e. (a) The bed is oriented N200E,30°W on the west 
side of the fault. If the fault has 40° counterclockwise 
rotational movement, determine the attitude of the bed on 
the east side of the fault (b) The bed is exposed at W on 
the west side of the fault and at E on the east side of the 
fault. The dike, which dips N800E,60°S, is exposed at W' 
on the west side of the fault; it is also exposed at E' on the 

Figure 6-18. Procedure for determining the reorientation of pianes 
due to rotational faulting. 
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east side of the fault. What are the orientation ami 
magnitude of net slip ami the position of the pole of 
mtatioo for faulting? 

Method 6~16 

The problem is presented in two parts to allow lhe two 
major parts of the soh!tioo to be illusirated separately. 

Step 1: Prepare yom overlay. Plot the great-circle 
traces for lhe fault and the bed on the west side of the fault 
(Fig. 6-18a). Also plot the poles to the fault (PF) and the 
bed (PB). Remember that rotational motion on a fault 
takes place around an axis perpendicular to the fault plane. 

Step 2: Revolve the overlay to bring the fault strike 
to the north-south position. Rotate the fault through 400 
to the horizontal; the fault pole moves to PF'. The 
bedding pole moves along a small circle path to PB' (Fig. 
6-18b). 

Step 3: The fault plane is now horizontal, so the 
pole to the fault plane is vertical, and we can apply the 
rotational fault motion directly about the vertical axis. The 
bedding pole moves 400 counterclockwise to PB" (Fig. 
6-18b). 

Step 4: Rotate the fault about the horizontal 
north-south axis to bring it back: to the actual 400 dip 

flgure 6-19. Procedure for 
determining the net slip on a 
rotational fault and the posítion of 
the poie of rotation. 
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position of the fault. The bedding pole moves úrrough 400 
along a small circle path to a new position PB"' (Fig. 
6-l8b). At the same time the fault pole moves back: to 
PF. 

Step 5: Bring the pole PB"' to the east-west axis and 
draw in the great cirde for bedding by counting 90° from 
the pole along the east-west axis. Revolve the overlay so 
that the fault great circle returns to its original position 
(S30°E,40°E). The bedding great circle shows the 
orientation of bedding on the east side of the fault; the 
beds dip S6QOE,28°sw (Fig. 6-18c). 

Step 6: The same method can be followed to 
detennine the attitude of the dik.e on the east side of the 
fault (Fig. 6-18d). The dike dips N500E,80°S. 

Step 7: To solve the second part of the problem 
(part b), draw a rnap showing the relative positions of the 
dike and the bed on either side of the fault trace (Fig. 
6-19a). 

Step S: The rakes of the traces of the bed and dike 
on both the east and west sides of the fault can be 
determined from the stereogram (Fig. 6- l 9b ). Transfer this 
information to a projection drawn parallel to the fault 
plane, showing the units in their appropriate positions 
(Fig. 6-19c). The line (XY) joining the intersection of the 

500m 
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bed and dike traces on the east and west sides of the fault 
gives the net slip; the length of the line gives the 
magnitude of net slip to be 370 m. The orientation of net 
slip is given by the rake of the line on the fault plane, 
which is 18.5°S (Fig. 6-19c). 

Now, for example, if the position of a mineral vein 
(M) is known on one side of the fault, its position on the 
other side (M') can be determined easily, by drawing a 
circular arc around P with radius PM and then subtending 
an angle of 400 at P. 

Step 9: The pole of rotation on the fault must lie on 
the perpendicular bisector of the line of net slip, and the net 
slip subtends the rotation angle ( 40°) at the pole. The 
other two angles of the triangle (angle PXY and angle 
PYX) are equal and must each be 70°. By constructing 
these angles at X and Y, we can find the position of the 
pole (P). The pole lies at a distance of 540 m along the 
perpendicular bisector of the net slip line. 

In the preceding problem, the amount and direction of 
rotation were givtn. If the rotation has to be determined, 
two possible positions for the rotation poles generally 
exist. Additional information, such as slickenlines or 
additional displaced markers, must then be used to 
determine which of these rotation poles is the correct one. 

EXERCISES 

1. Plot the following planes as poles on a stereogram. Put all poles on the same 
overlay, and label each. 

(a) 025° ,44°NW 
(d) 072°,06°SE 
(g) 0900 ,38°N 

(b) NI4°W,85°SW 
(e) 234°,18°NW 

(e) N83°W,43°NE 
(f) 040°,90°SE 

2. One limb of a chevron fold is oriented N23°E,57°SE, and the other limb is 
oriemed N12°W,71°SW. 

(a) What is the plunge and bearing of the fold hinge? 
(b) What is the interlimb angle? 
(e) Assume the axial plane bisects the angle between the two fold limbs. What is 
the orientation of the axial plane? 

3. The following measurements are the attitudes of opposing limbs of nonplunging 
folds. Detennine the interlimb angle for each fold. ln order to choose the proper 
angle in your calculation of the supplement, be sure to visualize the fold and note 
the orientation of the axial plane (i.e., draw a profile sketch). 

Limb A Limb B Axial plane 

(a) 360°,soow 360°,30°E 360°,10°w 
(b) 3600,SOOW 360°,30°E 360°,70°E 
(e) 360°,ioow 360°,soow 360°,30°W 
(d) 360°,ioow 360°,70°E 360°,60°W 

4. Measurements of dip on opposite limbs of an anticline in southern Illinois are 
NI5°E,32°SE and NlOOW,72°NW. 

(a) What is the orientation of the fold hinge? 
(b) What is the attitude of the axial plane? 
(e) What is the plunge and bearing of the axial-plane trace on horizontal gound? 
(d) What is the plunge and bearing of the axíal-plane trace on a slope whose 
surface is oriented NlOOW,300SW? 
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5. ln a metamorphic terrane, regional foliation is oriented 085°,65°S. A slip 
lineation on a fault plane that cuts the foliation is oriented 80° ,255°. What is the 
angle between the foliatioo and the slip lineation? 

6. In eastem New York, there is an important unconformity called the Taconic 
unconformity. It separates Mid-Ordovician flysch from Devonian limestone. At a 
locality near the town of Catskill, the limestone (and the unconfonnity) is oriented 
Nl5°E,44°NW. An anticline occurs in the underlying flysch. One limb is 
presently oriented N600E,73°NW, and the other limb is presently oriented 
N20°E,4 l 0 SE. Flute casts occur in the Ordovician strata and have a pitch of 
55°NE on the northwest-dipping limb. 

(a) What was the orientation of each of the two fold limbs before lilting of the 
unconformity? 
(b) What was the orientation of the fold axis prior to tilting? 
(e) What was the trend of the current direction responsíble for the formation of the 
flute casts in Ordovician time? 
(d) What is the present orientation of the flute casts on the southeast-dipping 
limb? 

7. Mineral lineation occurs 011 foliation planes of the Lion Den mylonite at 
BaHleship Peak, Arizona. The foliation at this locality is oriented 
N22°W,73°SW. The rake of the lineations is 200N. Mapping indicates that the 
Lion Den mylonite was földed subsequent to formation of the folíation. In fact, at 
the measurement locafüy the gneiss is on the hmb of a Iarge antifonn. Foliation 
at a locafüy (South Ridge) on the other limb is oriented N64°W,48°NE. 

(a) Assume that the lineation förmed while the mylonite was horizontal. What 
was the orientation of the lineation prior to folding? (Hint: Calculate the plunge 
and bearing of the fold axis first.) 
(b) Predict the present orientation of the lineation at South R!dge. 

8. A fault strildng N900W is exposed on a featureless plain. The fault has a dip of 
60°N. The outcrop positions of a dike (N30°W, 3 5 °NE) and a coal bed 
(N30°E,600NW) are known on both sides of the fault. 

Dik e 
Coal bed 

Determine the following: 

North side 

100 m 
250m 

(a) Trend and plunge of net slip. 
(b) Amount of net slip. 
(e) Rak.e of the net slip on the fault plane. 
(d) Relatíve movement along the fault 

South side 

Om 
400 m 

Determine all necessary angles from a stereographic projection. 

9. The map in Figure 6-Ml is a simplified geologic map of part of the east coast of 
Conanicut Island in Narrangansett Bay, Rhode Island. The bedrock is composed of 
slate and phyllite that contains recognizable Cambrian trilobites. Regionally, 
these rocks have been complexly deformed, but the area of the map does not 
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100 meters 

Mafic Dike showing clip 

Beavertail fault showing dip 

Strike and Dip of Cleavage 

Strike and Dip of Overturned Bedding 

Contact 

Flgure 6-M1. Geologic map of part of the east coast of Conanicut 
Island, Rhode Island, far exercise 6-9. Mapping is by students of the 
Colgate University Geology Field Camp (1983 & 1985). 

contain any major fold hinges. The map area includes an exposure of the 
Beavertail fault. (Problem contributed by A. Goldstein.) 

(a) From the geological relationships shown, determine the sense of separation of 
the mafic dike and the sense of separation of the bedding contacts. 
(b) On the hasis of your answers to part (a), make a preliminary guess as to the 
orientation of the net slip describing the cumulative movement on the fault. 
(e) Calculate the sense, direction, and amount of displacement on the Beavertaíl 
fault, based on the offset markers shown. 
(d) Slip lineations on the fault plane, where it is exposed, rak.e 85°ENE. Is the 
orientation of these lineations parallel or oblique to your calculated true separation 
vector? If not, how can the discrepancy be explained? 
(e) How can the age of movement on this fault be constrained? 

10. The map of Figure 6-:M2 shows part of füe Singatse fault in eastem Nevada. Note 
that the early Tertiary Conglomerate and the Tertiary Ignimbrite uníts pinch out 
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figura 6-M2. Geologic map of part of the Singatse Range, western 
Nevada far exercise 6-10. (Modifíed from Profett, 1977.) 

Nv. 

along the unconfonnity that separates the pre-Tertiary sequence from the Tertiary 
sequence. The pinchout, which represents the intersection of two planes, appears 
as a point on the map. The pinchout is exposed at two localities. Assurne that 
the dip of the uoconformity at the top of the pre-Tertiary sequence has the same dip 
as the adjacent Tertiary sequence but a different strike. Also assume that the map 
area is a horizontal featureless plain. (Problem contributed by A. Goldstein.) 

(a) Using the preceding assumptions and the dat.a on the map, determine the 
orient.ation and amount of displacement on the Singatse fault. First, you must 
find the locations at which the line of pinchout pierces the hanging wall and 
footwall of the fault. Find the trend and plunge of the line of pinchout using your 
equal-area net, and draw two cross sections through the two points ofpinchout (one 
for the hanging wall. and one for the footwall). Include on these cross sections the 
line of pinchout and the trace of the Singatse fault. Your instructor will help you 
do this if you have difficulty. From these cross sections the locations of the two 
piercing points should be clear. Project these to the surface and put them on the 
map. Now, draw another cross section cont.aining both piercing points, and project 
the fault and piercing points onto the cross section. The strike of this cross 
section is the direction of the displacement, and the amount can be measured from 
the section. 
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(b) Classify the Singatse fault (e.g., is it dip-slip, strike-slip, or oblique-slip). 
(e) Why does the fault presently have a curving map pattem? 

11. Figure 6-M3 is modified from a map by Harwood (1983) and is a more typical map 
expression of faults than is either of the two previous maps. The area is in the 
northem Sierra Nevada of Califomia, 35 km northwest of Lake Tahoe. Ordovician 
through Perrnian sedimentary and volcanic units dip toward the northeast and are 
displaced along several vertical fault strands of an unnamed fault zone. 

(a) What can be deterrnined about the direction and magnitude of the faults, given 
only the inforrnation on the map? 
(b) Assuming that the faults are strike-slip faults, what are the direction, sense and 
amount of cumulative displacement across the fault zone? 

Tertiary 

Jurassic or Cretaceous 

_:\_\-\ --

,KJg~-.:' 
1'..::..\'_\"._\_ 

Gabbroic Rocks 

Permian 

Reeve Formation 

Mississippian and Pennsylvanian 

r::::J Peale Formation CJ Chert Member 

,..---., Peale Formation 
llPMpt 1 Tuff Member 

Oevonian and Mississippian 

EJ Taylor Formation 

Oevonian 

Part 1 

Sierra Buttes Formation 
Upper Member 

0 Mi . „ „ „ 
e Sierra Buttes Formation 

lower Member 

Ordovician and Devonian 
M MM 

0 Km 
1 DOsf 1 Shoo Fly Complex 

Figura 6·M3. Geologic map of part of the Sierra Nevada Mountains, 
California for exercise 6-11. (Modified from Harwood, 1983.) 
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(e) Assuming that the faults are pure dip-slip faults, what are the direction, sense 
and amount of cumulative displacement across the fault zone? 
(d) What was the time period during which the faulting took place? 

12. A fault plane in the Wind River Mountains is oriented N20°W,70°SW. The fault 
is a norma! fault; displacement on the fault decreases progressively toward the 
northwest along the trace of the fault Strata of the hanging waU are oriented 
N70°W ,3 5°SW, whereas strata of the footwall are horizontal. At the locality 
where these measurements were made the displacement on the fault is 100 m. 

(a) What is the attitude of the axis of rotation describing movement on the fault? 
(b) By how much did the hanging-wall beds rotate (and in what sense) to attain 
their present attitude? 
(e) Approximately how far and in what direction must the geologist walk to find 
the "hinge" of the fault (the point at whích displacement on the fault is O)? 
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CHAPTER 

LCO TI N 
F YER ATTITGDE 
IN DRILL H LES 

7-1 INTRODUCTION 

Modem techniques have made the drilling of holes in solid 
rock a routine, though expensive, task. Drilling is 
commonly done for the purpose of tapping oil-bearing 
reservoirs, but often, holes are made simply to obtain 
ím portant data about subsurface geology. For example, 
mining companies determine the size and extent of ore 
bodies by drilling holes at equal intervals on a square grid; 
such data aHow construction of subsurface maps. 
Similarly, the Deep Sea Drilling Project (DSDP) routinely 
drills sediments with underlying igneous rocks on the 
deepest ocean bottoms, thereby providing information on 
the structure of the crust on ocean floors. Generally, rock 
in a drill hole is pulverized during the course of drilling and 
is flushed to the surface in a slurry called drilling mud. If 
necessary, however, it is possible to keep a drill core intact 
by using a hollow drill bit. 

Information on t.he orientation of subsurface layers can 
be obtained from t.he examination of recovered drill core and 
from downhole logging. Logging refers to the process of 
sending an electronic instrument, called a sonde, down the 
hole. The instrnment records physical properties (e.g., 
electrical resistivity) as a function of depth. The physical 
properties are interpreted ín terms of rock type and 
character. Traditional logging teclmiques indicate only the 
depth of the intersection between the hole and a known 
layer, but newer instruments permit direct measurement of 
layer attitude in holes under appropriate conditions. 

ln order to use drilling data tO provide information on 

the orientation of subsrnface layering, one must understand 
the geometric limitations of such data. The purpose of this 
chapter is to demonstrate how drilling data can be used to 
determine completely the orientation of subsurface layering 
or at least to constrain the possible ranges of orientation. 
The constraints on the attitude of a subsurface horizon 
depend on the number of drill holes ín which data are 
available and on the orientation of the drill holes. 

7·2 DATA FROM ONE DRILL HOlE 

Use of Unorlented Core 

If a drill core could be kept from rotating as it was brought 
to the surface, it could provide attítude information 
equivalem to !.hat obtained by measuring a surface outcrop 
with a compass. Unfortunately, prevention of rotation 
during extraction of a core is generally not possible. The 
only usable structural information that we get from a 
single unoriented drill core is the depth to a particular 
horizon and the inclination of planar structures (e.g., 
bedding, foliation, and fractures) with respect to the drill 
axis. The orientation of a planar structure is uniquely 
determined only if it is perpendicular to the core axis; the 
attitude of planes at other orientations with respect to the 
core axis cannot be uniquely determined from a single 
unoriented core. 

In order to understand the preceding concept, imagine a 
recovered core !.hat contains a bedding plane inclined to the 
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axis of the core. If you rotate the drill core through 360° 
(Fig. 7-la), the range of possible orientations of the bed 
describes a right-circular cone whose axis is the core axis. 
Depending on the orientation of the drill hole and the angle 
that the planar structure makes with the core axis, the cone 
defining the possible orientations of the planar structure 
intersects the earth's surface as a circle (Fig. 7-la), an 
ellipse (Fig. 7-lb,c), a parabola (Fig. 7-ld), or a hyperbola 
(Fig. 7-le). 

Core axia 

\ 

Cone of poeelble', 
beddlng attltudea \ 

LJDrill core 

1 

1 

\l 
a 

'-Z:::: ----~ 

E 11 i p t I e a I 

e 

Elementary Techniques Part 1 

Use of an Oriented Core 

During near-surface drilling, it is sometimes possible to 
draw an orientation mark on a core so that the orientation 
of the core with respect to the drill hole is known even if 
the core is broken and rotated by an unlmown amount 
during drilling. Orientation of a core must be done if the 
core is to be used for paleomagnetic work or for analysis of 
rock anisotropy. The orientation of a core is indicated 

Parabolic Hyperbolic 

/') 
/ \ 

\ 
\ 

d e 

Figure 7-1. lnclined bedding in a drill core may have had a range of 
possible orientations described by a right-circular cone around the core 
axis. The inclination of the drill hole determines the conic section 
(circle, ellipse, parabola, or hyperbola) in which the cone intersects the 
earth's surface. 
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either by affixing an oriented marker to the top of the core, 
if the core is vertical, or by scratching a line along the top 
side of the core, if lhe core is inclined (Fig. 7-2). 

It is easy to determine the orientation of a planar 
feature that cuts across a vertical core. The angle between a 
strike line on the plane and the orientation mark indicates 
the strike of the plane, and the angle between the plane and 
the core axis is the true dip of the plane. 

VERTICAL CORE INCllNED CORE 

/.._____.Orl&nlatlon mark 

/ 
Orlentatlon ma k 

a b 

Figure 7-2. Orientation marks used on 
near-surface drill cores. (a) Vertical core with 
mark on top; (b) inclined core with line on upper 
s ide. 

If the core is inclined, the attitude of the plane can be 
calculated using a stereonet. This calculation requires two 
stages: first, determination of the orientation of the plane 
with respect to the core axis as if the core axis were 
vertical, then rotation of the core axis into the real-world 
reference frame. ln the following example the apparent 
strike line is defined as a line that lies in the plane and is 
perpendicular to the axis of the core (Fig. 7-3). The angle 
~ is the angle between the apparent strike line and a 
reference line inscribed on a plane perpendicular to lhe core 
axis. The angle µ is the angle between the plane and the 
core axis as measured in a plane that contains the core axis 
and is perpendicular to the apparent strike line. 

Problem 7-1 
A vein cuts across an oriented inclined core (Fig. 

7-4a). The orientation mark (AC) on the side of the core 
plunges 40° ,220°. What is the attitude of the vein in the 
real-world frame ofreference? 

Method 7-1 
Step 1: The problem as stated does not contain 

enough information to determine the vein attitude. We 
must füst specify the orientation of the vein in the frame 
of reference of the core. To do this, cut the core above and 
below the vein on saw cuts perpendicular to the core axis 
(Fig. 7-4a). Line AB is a reference líne drawn across the 
top (AB is perpendicular to AC). Lines AB and AC 
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Figure 7-3. Relatíve orientation of a pianar 
structure with respect to an oriented, inclined 
core. 

together define a plane through the core that contains thc 
core axis. 

Step 2: Now we must find the apparent.strike. The 
apparent strike line of the vein is determined by finding 
two diarnetrically opposite points (D and E) on the vein 
that are the same distance from the top surface of the core. 
Points D' and E' are then marked on the top surface of the 
core. DD' and EE' are parallel to the core axis. The angle 
between the apparent strike line and the line AB is the 
angle between D'E' and AB; we measure it to be 20° 
clockwise (Fig. 7-4a). 

Step 3: Now we must find the angle (µ) between the 
core axis and the vein. W e rotate the core so that we are 
looking along the apparent strike Iine and measure µ with a 
protractor; µ = 300. 

Step 4: We have now specified the vein attitude 
with respect to the core axis (apparent strike == 20°; µ == 
30°). To proceed from this point, it is easiest to visualize 
the problem by imagining that the core axis is vertical, 
and that line AB strikes due north. If the core actually had 
this orientation, the vein would be oriented N20°E,70°SE; 
we will call this attitude the "relative" attitude of the vein. 
We must now do two rotations to get lhe core and the vein 
into the real-world frame of reference. Prepare a stereonet 
overlay. 

Step 5: Plot the great-circle trace (VV) indicating 
the relative attitude of the vein and its pole (P) on a 
stereonet (Fig. 7-4b ). Rotate 40° clockwise (as viewed 
looking down the axis) around a vertical axis to make line 
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a b e x 

Flgure 7-4. Determining the orientation of a planar structure from an 
oriented core. 

AB parallel to the real bearing of the orientation mark. 
During this operation, the apparent strike line of the vein 
rotates to N60°E, and the relative dip of the vein remains 
unchanged. Plot the rotated vein attitude as a new 
great-circle trace (V'V'), and plot the rotated pole (P'). 

Step 6: Next, rotate by 500 clockwise (as viewed to 
the northwest) around a horizontal axis that is perpendicular 
to plane AB. This operation retums the core to its true 
inclination. Plot a point (X) on the primitive of the 
stereogram at 2200 - 900= 1300. Revolve the overlay so 
that X líes over the south mark on the stereonet. Rotate the 
pole (P') 50° to the left along a small-circle path (Fig. 
7-4c), trace the new great-círcle trace, and label it V"V". 
This trace represents the attitude of the vein in the 
real-world frame of reference; the vein attitude is 
N380E.7'iOSE. 

Note: You must visualize every step of the preceding 
procedure in order to make sure that the rotations are in the 
correct sense. 

Dlpmeter Surveylng 

ln certain situations it is prohibitively expensive to drill 
many holes. Such is the case, for example, in offshore 
drilling or in oil exploration in mountainous areas. Under 
these circumstances a dipmeter survey is generally done to 
determine bedding attitudes within a single wildcat well. 

A dipmeter is an instrument consisting of three 
electrodes that are distributed in azimuth at 1200 intervals 
around the Jogging sonde (Fig. 7-Sa). Each electrode 
measures and records the microresistivity of bedding units 
that the instrument passes through as it is lowered down a 
bore hole. (The prefix "J!licro" simply means that the 
instrument has high resolution). Thus, three micro-

resistivity logs, which accurately plot resistivity as a 
function of depth, are produced for each hole. The log for 
each electrode shows characteristic "kicks" (sudden changes 
in resistivity) for key beds. lf the bed is inclined to the 
hole, the depths at which each electrode crosses the bed are 
different. The elevations at which the three electrodes 
cross the bed can be used to calculate the attitude of the 
bed; the method used is the same as the three-point method 
described in Chapter 3. 

ln order to calculate the attitude of the bed in the earth 
reference frame, the orientation of the dipmeter must be 
known. A dipmeter log typically shows the orientation of 
one electrode with respect to magnetic north (Fig. 7-Sb), 
and the drift (angle of deviation from the vertical) of the 
bore hole. These measurements are resolved into 
comnonents on north-south and east-west vertical olanes. 
The following example, done for a vertical hole, illustrates 
the method for incorporating measurement ·of dipmeter 
orientation into the calculation of bed attitude measured by 
the dipmeter. The method can be modified quite easily for 
dip determination from inclined drill holes. 

Problem 7-2 
A dipmeter survey is done on a 9-in. diameter vertical 

drill hole through uniformly dipping beds. The azimuth of 
electrode A is N40°E. Electrode A cross a key bed at a 
depth of 200 ft, electrode B crosses the bed at a depth 4 in. 
below the 200-ft level, and electrode C crosses the bed at a 
depth of 1.8 in. below the 200-ft level. Determine the 
attitude of the bed. 

Method 7-2 
Step 1: Examine the angular relationship of the 

bedding plane ABC to the horizontal electrode plane of the 
dipmeter A'B'C' (Fig. 7-6a). Triangle A'B'C' is an 
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Flgure 7-5. (a) The essential features of a 
dipmeter showing three electrodes 120° apart 
that record the microresistivity of beds as the 
instrument is lowered down a bora hole; (b) 
typical dipmeter log showing microresistivity 
curves and orientation and "drift" of the 
instrument. (Adapted from Badgley, 1959.) 

b 

equi:lateral triangle with sides µ--J3 (where µis the radius of 
the bore hole) and is perpendicular to the axis of the hole. 
Therefore, 

A'B':::: B'C' = C'A' = 4.5(--J3). 

The slope of line BA, as measured in a vertical plane, is 
the angle ABA' (0) and is given by 

n tan 0 = AA'/AB' = 4/(4.5;/3) = 0.5132 

0 = tan-l(0.5132) = 27°. 

Simi.larly, the slope of line CA, measured in a vertical 
plane, is given by the angle ACA', where 

ACA' =a= tan-l(AA'/CA') = tan-l[l.8/(4.5.../3)] 

= tan- 1(0.2309) = 13°. 

Step 2: Prepare a stereographic overlay (Fig. 7-6b). 
Be sure to use an equal-angle (Wulff) net! The azimuth of 
A (given by OA') bisects the angle between A'B' and A'C', 
which give the relatíve orientations of B and C with respect 
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CONTINUOUS DIPMETER CURVES 

to A. ff we assume that point A lies at the center of the 
spherical projection, then lines AB and AC, which have 
plunges of 27° and 18°, intersect the lower hemisphere at 
two points whose stereographic projections plot at B* and 
C* at distances of 27° and 13° from the primitive, 
respectively. Angle C* AB* is 60° and is bisected by the 
azímuth of A. 

Step 3: Revolve the overlay until B* and C* lie on 
the same great ci:rcle. Trace this great circle, which 
represents the true dip of bedding and has a dip of 28° (Fig. 
7-6c). Revolve the stereogram back to its original position 
to get the strike of bedding. The bedding attitude is 
N84°W, 28°S (Fig. 7-6d). 

Note: In a dipmeter survey, directions are generaHy 
measured with respect to magnetic north rather than true 
north. Rence, to obtain the true dip direction for the beds 
we must correct for the local magnetic declination. 

Problem 7-3 
The drill hole in the preceding problem has drift angles 

(deviation from the vertical) of 09°N on the north-south 
plane and 06°E on the east-west plane. Determine the true 
attitude of bedding. 
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Method 7-3 
Step 1: The apparent dip of the plane perpendicular 

to the drill axis (i.e., the plane of the dipmeter) measured ín 
the north-south and east-west vertical planes is the same as 
the driít angle of the bOre hole (measureo rrom lhe veruca!) 
on these planes (Fig. 7-7a). Thus, the plane of the 
dipmeter has an apparent dip of 09°S and 06°W. Prepare 
your stereographic overlay. Plot the two apparent dips on 
the stereogram, and draw the great circle passing through 
them (Fig. 7-7b). 

Step 2: Also trace the bedding great circle 
(determined in the previous problem) and plot its pole (P) 
(Fig. 7-7b). 

Step 3: Bring the strike of the dipmeter great circle 
to the north-south axis, and rotate this plane to the 
horizontal. This operation has the same effect as rotating 
the drill hole to the true vertical position. Concurrently, 
the pole to bedding (P) moves along a small circle to P' 
(Fig. 7-7c). 

Step 4: Draw in the new bedding great circle with P' 
as pole (Fig. 7-7c ); this gives the true orientation of 
bedding as N85°E,18°S. 

Note: This method of correcting for bore-hole drift 
from the true vertical can also be used in determining 
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N 

N 

Figure 7-6. Determining the dip 
of beds from dipmeter data. 

bedding dips from inclined drill holes. Of course, drift 
from the true inclination of the bore hole must also be 
accounted for in this case. 

7~3 DATA FROM TWO DRILL HOLES 

W e saw earlier that it is not possible to specify the true 
attitude of layering in a single unoriented drill core. If the 
same layering is oberved in two unoriented drill cores, it is 
possible to considerably reduce the range of possible 
attitudes that the layering can have. Dependíng on the 
inclination of the drill holes and the presence or absence of 
a marker horizon, a number of different constraints can be 
determined. If a marker bed is found in both cores, it is 
usually possible to use a combination of orthographic and 
stereographic constructions to narrow the possible choice 
of orientations to one. If no marker bed is present, a 
stereographic construction will usually yield more than one 
possible orientation for the layering . 

The orientation of a drill hole plots on the 
stereographic projection as a point. The cone, which 
defines the possible orientations of bedding around the 
drill-core axis, intersects the lower hemisphere of the 
spherical projection in a circle. Any such circle projects on 
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flgure 7-7. Correcting dips 
determined from dipmeter surveying 
for drill-hole drift. 
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the stereographic projection as a circle. We noted this 
property in Chapter 5 and wiU now demonstrate that this is 
a general property of stereographic projections before 
proceeding with two-driU-hole problems. 

RepresentaUon of Clrcles on a Stereonet 

Consider a circular cone with its vertex at the center of the 
projection sphere (Fig. 7-8a). The cone intersects the 
sphere in a small circle. Figure 7-8b shows a vertical 
section through the center of the projection sphere that 
passes through the center of the smaU cirde. Line AB is a 
diameter of the smaU cirde, and point C is its center. The 
lines joining points on this circle to the zenith (Z) form a 
cone with axis CZ , of which AZB is a section. The right 
section of this lauer cone (through BOD) is an ellipse, 
since an oblique section (AB) is a circle. There should be a 
second circular section DE symmetrically inclined to the 
axis (CZ); section DE is called the conjugate section to 
AB. If we draw a line AF parallel to the projection plane, 
then angle FAZ = angle ZBA, as they are subtended by 
equal arcs FZ and ZA. Also, angle ZBA = angle ZDE, 
since AB and DE are conjugate sections. Therefore, both 
AF and the plane of projection (PQ) are parallel to the 
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circular section DE of the cone. Since parallel sections of 
a cone are similar, the section of the cone (A'B') in the 
projection plane (PQ) is a cirde. The projection of C is 
C', and it does not lie halfway between A' and B'; thus the 
center of the small circle on the sphere does not project to 
the center of the small circle on a stereographic projection. 

To convince ourselves of the preceding property we 
can draw a small circle whose center (A) is at the center of 
the stereogram and then rotate it out toward the edge of the 
stereogram by rotation around the north-south axis (Fig. 
7-8c). Individual points on the circle move through the 
same angular distance along small-circle paths, and the new 
points define a circle, whose center (B) can be obtained by 
bisecting the east-west diameter. This center does not 
coincide with the rotated center (B '). If we rotate the circle 
farther, until its original center (D') lies on the primitive, 
the circle coincides with the small circle of the net. Its 
center (D) can be found by drawing a tangent to the 
primitive at the point where the small circle intersects the 
primitive; the intersection of this tangent and the east-west 
axis gives the center (D) of the small circle. 

Any small circle can be constructed by drawing the 
corresponding cone section and projecting its intersection 
witll the sphere onto the plane of the stereonet. To do this, 
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the cone is füst brought to the east-west diameter, and the 
net is converted (as a mental exercise) to a vertical section 
along the east-west diameter (Fig. 7-8d). The plunge of the 
core axis (C) and the vertex angle of the cone are plotted at 
the center of the circle (the circumference of the net can be 
""-"-::."~~~ e:'.::" - --;--,-:;_~~-:::=.~""'tc-c7 ~:-- ..... '"":""''"""'._ ,,...,_ff ~'.""_,...._.<:'.'>~_~~~..__, Q,~~1..o.co\ 
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Intersections with the sphere (A1B 1 or A1B2) are then 
projected (A1'B 1' or A2'B2') onto the horizontal diameter 
by drawing straight lines from those points to the zenith 
(Z). The center of the small circle (0) lies halfway betwen 
its inner and outer limits along the horizontal diameter. 
The net can now be converted back to a stereogram 
(horizontal projection) and the small circle drawn on the 
projection. This method works for all small circles (Fig. 
7-8d), including those that lie partly outside the primítive 
(e.g., A2B2, for which the intersection of the cone with the 
sphere extends into lhe upper hemisphere). 

We can now look at a few examples to see how a 
combination of orthographic and stereographic projections 
can help us solve two-drill-hole problems. 

Two Vertlcal Drlll Holes with a Marker Bed 

Problem 7-4 
Two vertical drill holes are 400 m apart on a line 

trending N700E. A bed is encountered at a depth of 200 m 

z 

z 
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Figure 7-8. Representing small 
circles on a stereonet. (a) A small 
circle on the projection sphere 
projects as a small circle on the 
stereogram; (b) geometric proof to 
show that small circles always 
project as circles on the 
stereogram; (e) effect of rotating a 
small circle from the center to the 
circumference of a stereogram; (d) 
method far plotting small circles 
representing cones of possible 
orientation around a drill core. 
(Adapted from Phillips, 1971 ). 

in the western hole and 300 m in the eastem hole. Bedding 
makes an angle of 400 with the core axis in both holes. 
Determine the possible attitudes of bedding. 

Method 7-4 
S!~; _! ~· Tn-~'i,•_1 ~ ~?-[! ~~~UJ!~~ !hP l~~tion nf ~t_'1_ 

drill holes (A and B) (Fig. 7-9a). 
Step 2: Using AB as a folding line, draw a cross 

section. Plot the depths at which the bed is encountered in 
both holes (A' and B'). Line A'B' gives the apparent dip of 
the bed along the line of cross section (13°,N700E) (Fig. 
7-9b). 

Step 3: Draw cross sections of the cones defining 
possible bedding orientations around each drill hole (Fig. 
7-9b). The intersections of these cones with the 
ground-surface line define the ends of the diameters of 
circles representing possible bedding orientations. 

Step 4: Complete the circular cross sections of the 
cones on the map (Fig. 7-9a) using the diameters obtained 
from the cross section. Tangents common to these circles 
define the possible strike orientations (N59.5°E and 
N80.5°E). 

Step 5: Plot the apparent dip (from Step 2) on a 
stereogram (Fig. 7-9c). Usíng the possible strike 
directions (from Step 4), draw great circles passing through 
the point marking apparent dip. Each of mese great circles 
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o 300m 

figure 7-9. Determining bedding attítudes from two vertical drill 
holes that encounter a marker bed. 

represents a possible true attitude of bedding 
(N80.5°E,500N and N59.5°E,50°S). 

Note: If there was no marker bed, it would not be 
possible to detennine an apparent dip for bedding. It would 
also be impossible to detennine possible strike orientations 
for bedding, and hence there would be an infinite nmnber of 
possible solutions that would satisfy the data. 

Two Nonparallel Drill Holes 
wlth a Marker Bed 

Problem 7-5 
Two inclined drill holes are drilled 100 m apart along a 

line trending S200E. The first hole is indined 500 toward 
N30°E, encounters a marker bed at a depth of 25 m, and 
has a core-bedding angle of 48°. The second hole is 
inclined 55° toward S400W, encounters the same bed at 
45 m, and has a core-bedding angle of 54°. Detennine the 
attitude of bedding. 

Method 7-5 
For an inclined drill hole the cones representing the 

possible orientations of bedding intersect the projection 
sphere ina circle. As explained earlier, any circle on the 
projection sphere projects as a circle on the plane of the 
stereographic projection. Just like bedding, the possible 
orientation of the normal to bedding also generates a cone 
around the core axis, and the vertex angle of this cone is 
the complement of the vertex angle of the cone 
representing possible bedding orientations (Fig. 7-lOa). ln 
practice, the cone generated by possibk orientations of the 
pole to bedding is used to represent possible bedding 

orientations; this cone intersects the projection sphere in a 
circle and projects on the stereogram as a pole circle. The 
pole circles for two inclined drill holes intersect at points 
that give the possible orientations of the pole to bedding. 

Step 1: Plot drill hole l (50° ,N30°E) on a 
stereogram (Fig. 7-lOb). This represents the orientation of 
the core axis; note that, except for a vertical drill hole, the 
core axis does not coincide with the center of the 
stereogram. 

Step 2: The plunge of the bedding pole is given by 
(90° - bedding dip). Thus, the angle between the pole to 
bedding and the core axis is 900 - 48° = 42°. Bring the 
point representing drill hole l to the east-west axis and 
count off 42° in either direction from it to obtain the 
diameter of the pole circle, and draw this small circle using 
acompass. 

Step 3: Plot drill hole 2 (55° ,S40°W) on the 
stereogram (Fig. 7-lOc). 

Step 4: The angle between the pole to bedding and 
the core axis is 90° - 54° = 36°. Usíng the same 
procedure as step 2, draw the pole cirde (small cirde) for 
drill hole 2. 

Step 5: The two srnall circles intersect at two 
points, giving the poles (P1 and Pz) for two possible 
bedding attitudes: N30°E,18°SE and N40°E,14°NW (Fig. 
7-lOd). An orthographic construction must be used to 
decide which one of these gives the true attitude of bedding. 

Step 6: Draw a map showing the locations of the 
drill holes and their trends (Fig. 7-lOe). For each hole use 
the surface trend of the hole as a folding line to draw a 
vertical cross section that shows the plunge of the drill 
hole and the distance along the drill hole to the bed. 
Complete the right-angled triangles to obtain the surface 
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8.5° 

a :1 

a• 37 m 

B 

Figure 7-10. Determining bedding attitude from two inclined, 
nonparallel drill holes that encounter a marker bed. 
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and depths (19 m and 37 m) at which these intersections 
take place. 

Step 7: Use A'B' as a folding line to draw a vertical 
cross section, and plot the known depths (19 m at A', 37 m 
at B') at each end to get points A" and B". The slope of 
line A"B" gives an inclination of the bed (8.5°) along line 
A'B ' (S03°E); this gives an apparent dip on the bed. 

Step 8: This apparent dip is compatible with only 
one of the poles determined stereographically, 
corresponding to a bedding attitude of N30°E, 18°SE; 
therefore, this is the true attitude of the bed. 

N ote: If there was no marker bed present, it would not 
be possible to determine an apparent dip for bedding. 
Thus, it would not be possible to deterrnine a unique 
orientation for bedding. However, the intersection of the 
pole circles on the stereogram for the two inclined drill 
holes would give two possible orientations for bedding. 
Thus, these drill holes are more useful than vertical drill 
holes or parallel drill holes, which, as you may remember, 

_ '_E·-·~ - -~-'!~~= _e ...... -~-.:1-..1,... .... ...,,1.,,,,,.,,,._:.....,._....,.. ..-..-.1..,,._~ .,...,.,. 
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marker beds were present. 

7-4 DAT.A FROM THREE DRILL HOLES 

Three nonparallel drill holes allow us to completely 
determine the attitude of a structural plane, regardless of 
whether or not any marker horizons are present. As we 
have seen, if a marker horizon is present, we need only two 
drill holes to completely deterrnine the orientation of the 
marker horizon; in a situation where a marker horizon is 
present, the third drill hole provides superfluous 
information but can be used to check the accuracy of the 
two-hole solution. Even without a marker horizon, the 
poínt of intersection of the pole circles for three drill holes 
on a stereographic projection gives a unique pole to the 
structural plane whose attitude is to be deterrnined. 

Problem 7~6 

Three nonparallel drill holes have the following 
orientations and core-bedding angles: 
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Hole attitude 
1: 29°,N45°W 
2: 51°,Sl3°W 
3: 46°,N55°E 

Core-bed angle 
39° 
41° 
51° 

Determine the attitude of bedding. 

Method 7Q6 
Step 1: Plot drill hole 1 (29°,N45°W) on a 

stereogram. The angle between the pole to bedding and the 
core axis is 900 - 39° = 51°. Bring the point representing 
drill hole 1 to the east-west axis of the stereonet and count 
off 51° on either side of it (along the east-west axis) to 
obtain the diameter of the pole circle. Using the midpoint 
of the diameter as center, draw a small circle using a 
compass (Fig. 7-lla). 

Step 2: Plot drill hole 2 (51°,Sl3°W) on the 
stereogram. The angle between the pole to bedding and the 
core axis is 90° - 41° = 49°. Use the same method as step 
l to draw the pole circle around drill hole 2 (Fig. 7-llb). 

Step 3: Plot drill hole 3 (46° ,N05°E) on the 
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stereogram. The angle between the pole to bedding and the 
core axis is 900 - 51° = 39°. Use the same method as step 
l to draw the pole circle around drill hole 3 (Fig. 7-llc). 

Step 4: The three pole circles (smaH circles) 
intersect at a point that represents the pole to bedding. 
Using this pole, draw the great-circle trace representing 
bedding. The attitude of bedding is N75°E,l3°S (Fig. 
7-lld). 

7·6 USING ROT.ATION TO SOlVE 
DRlll~HOlE PROBLEMS 

The stereographic constructions for drill holes described so 
far can be done in an altemative manner that eliminates the 
need to use a compass for drawing the small (pole) cirdes. 
The rnethod involves rotating the cone axis to the 
horizontal position, so that the smaH circles can be drawn 
using the "small-circie" traces of the stereonet. We wiU 
illustrate the method here using the same three-drill-hole 
problem described in Method 7-6. 

e d 

Figure 7-11. Determining bedding attitude from three nonparallel drill 
holes. 



142 

Problem 7-7 
Three nonparallel drill holes have the following 

orientations and core-bedding angles: 

Hole attitude 
1: 29°,N45°W 
2: 51°,S13°W 
3: 46°,NS5°E 

Core-bed angle 
39° 

Determine the attitude of bedding. 

Method 7-7 

41° 
51° 

Step 1: Plot the points representing drill holes 1, 2, 
and 3 on a stereogram (Fig. 7-12a). Find the great circle 
passing through points 1 and 2 and rotate it to the 
horizontal position. The points (l' and 2') now lie on the 
primitive (Fig. 7-12b). 

Step 2: Bring l' to the north-south axis. Draw the 
51° small circle to represent the pole circle for hole 1 (the 
angle between the pole and the core axis is 90° - 39° = 
51°) (Fig. 7-12c). 

Step 3: Bring 2' to the north-south axis and draw the 
49° small circle to represent the pole circle for hole 2 (the 

N 
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angle between the pole and the core axis is 90° - 41° = 
49°) (Fig. 7-12c). The two small circles intersect at four 
points (A', B', C', and D'). 

Step 4: Rotate the plane containing the two drill 
holes back to its original orientation. A', B', C', and D' 
move along small-circle paths by the same amount to their 
true oricntations A, B, C, and D (Fig. 7-12d). 

Step 5: The same procedure can be followed for a 
second pair of drill holes (2 and 3) to obtain the true 
orientations of the points of intersection (E and F) of their 
pole circles (Fig. 7-12e). Note that it is not necessary to 
draw the entire small-circle traces at this stage, but just 
enough to find the points of intersection of the small 
circles; this removes much of the confusíon caused by 
criss-crossing lines on the stereogram. 

Step 6: By comparing the stereograms from Steps 4 
and 5 (Figs. 7-12d, e), we find that points A and E 
coincide, giving the position of the point of intersection of 
the pole circles for all three drill holes. This point gives 
the pole to bedding, and the great-circle trace for bedding 
can be drawn (Fig. 7-12f). The attitude of bedding is 
N75°E,13°S. 

1 • 

\\' 1 
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Flgure 7-12. Using rotation to determine bedding attitude from three 
nonparallel drill holes. 
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EXERCISES 

1. The orientation mark on a vertical drill core has an azimuth of 40°. Bedding 
within the core has an apparent strike of 40° clockwise and a core axis-bedding 
angle of 48°. What is the attitude of bedding? 

2. An inclined drill core has an orientation mark (on its upper side) that has a plunge 
of 62° ,210°. The core cuts a mineral vein whose apparent strike (with respect to 
the orientation mark) is 300 counterclockwise and which makes an angle of 30° 
with the core axis. What is the attitude of the vein? 

3. A dipmeter survey on a vertical drill hole gives the following data: 

Electrode A crosses a key bed at 300 ft 
Electrode B crosses the bed at 300 ft 9 ín. 
Electrode C crosses the bed at 300 ft 5 in. 

(a) If the azimuth of A is N72°E, and B is 120° clockwise from A (looking down 
the drill hole) determine the attitude of the bed. 
(b) If, in addition, the drill hole has a drift of 7°S on the north-south plane and 
4°W on the east-west plane, detennine the true attitude of bedding. 

4. A mining company drills a series of vertical drill holes on a north-south, east-west 
grid with a spacing of 100 m. One drill hole encounters a planar ore body at 150 
m. The drill hole immediately to the east of the first one encounters the same 
body at 190 m. 

(a) At what depth should the ore body be encountered in the hole immediately to 
the east of the second hole? How far west of the first hole should the ore body be 
expected to be found at the surface? 
(b) If the core-bedding angle in the drill holes is 50°, what are the possible 
attitudes of the ore body? 

5. Two drill holes arc 400 m apart on a line trending N70°W. Both drill holes are 
inclined, plunging 80° toward N700W. The western hole encounters a coal bed at 
a depth of 300 m, and the same bed is encountered in the eastem hole at 200 m. If 
the core-bedding angle is 40° in both holes, determine the possible attitudes of 
bedding. 

6. A drill hole plunging 60° ,N35°E encounters a marker horizon at 30 m, and the 
core-bedding angle is 62°. A vertical drill hole, 50 m west of the first hole, 
encounters the same horizon at 15 m, and the core-bedding angle is 45°. What is 
the attitude of the marker horizon? 

7. In an area of uniformly dipping siltstone beds with no marker horizons, three 
drill-holes are drilled to determine the subsurface attitude of bedding. From the 
drill-hole data (given below), determine the attitude of bedding. 

Drill hole 

A 
B 
e 

50°,90° 
58°,298° 
40°,200° 

Corc-bedding anglc 
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CHAPTER 

EQOAL
PR JECTIONS 
D STRllCTCJRAL 

ANALYSIS 

8·1 INTRODUCTION 

In previous chapters we used a specific type of azimuthal 
projection, called the stereographic projection, to solve a 
range of geometric problems in structural geology. The 
stereographic projection has two important properties: (1) 
The projection preserves angular relationships and is, 
therefore, often called an equal-angle projection. This 
means that the angle between the tangents to two 
intersecting great-circle traces at their point of intersection 
is the same as the angle between the two real planes that 
the great-circle traces represent (Fig. 8-la). (2) The 
stereographic projection does not conserve area. This 
means that projections of identical circles inscribed on 
different parts of a projection sphere appear as circles of 
different sizes on the stereogram (Fig. 8-lb). ln fact, the 
stereographic projection of a circle may vary ín area by up 
to a factor of two, depending on where it is projected; a 
circle of a given area will appear to be much larger if 
ploued near the primitive than if it is plotted at the center 
of the net (Fig. 8-lb). Likewise, a 100 X 100 area at the 
edge of a Wulff net is much larger than a 10° X 100 area at 
the center ofthe net (Fig. 8-lc). 

The latter property makes the stereographic projection 
useless for applications in which the statistical treatment of 
orientation data is of interest. Such applications are 
common in structural analysis. For example, information 
on the preferred orientation (most common orientation) of 
joints in an area may provide information on paleo-stress 

fields. The orientation of the joints can be represented on a 
rose diagram or a histogram (see Chapter 12), but these 
graphs represent orientation only in two dimensíons (i.e., 
they can represent strike or dip, but not both). An 
appropriate azimuthal projection can represent a preferred 
orientation in three dirnensions as a cluster of poles, if the 
concentration of poles per unit area of the projection is 
proportional to the real concentration of planes of a specific 
orientation. A stereographic projection, because it distorts 
area, cannot be used for such representatíons; equal 
concentrations of poles at different localities on the surface 
of a projection sphere appear as unequal concentrations of 
poles on the plane of a stereographic projection. 

In problems for which the statistical dístribution of 
points is important, an alternative form of azimuthal 
projection called the Lambert or equal-area projection is 
used. A grid constructed on an equal-area projection is 
caUed a Schmidt nei, narned after a German petrologíst 
(Fig. 8-2). Such a projection does not cause the area of a 
projected circle to vary with its posítion, although its 
shape does change (Fig. 8-3a); thus, ilie concentration of a 
cluster of points does not vary with position on the 
projection. Likewise, on a Schmidt net the size of a 100 X 
10° area nea:r the primitive is the same as that at the center 
(Fig. 8-3b). The purpose of this chapter is to introduce the 
equal-area projection, show how data distributions on such 
projections can be represented by contours, and illustrate 
some applications of the equal-area projection to structural 
analysis. 

145 



146 Elementary T echniques Part 1 

ooo·, 40• w 

Dlhedral angla between two plenes • 34° 

Flgure 8-1. Properties of a stereographic or equal-angle projection. 
(a) The angle between two planes is the same as the angle between the 
tangents to the great-circle traces of the two planes; (b) identical circles 
on projection sphere project as circles of different sizes; (c) 1 o0 X1 o0 

area at edge of projection is larger than at the center. 

Flgure 8-2. The Schmidt or equal-area net. 

8-2 EQUAL·AREA PROJECTIONS 
AND THE SCHMIDT NET 

Constructlon of an Equal-Area Net 

The equal-area projection is simply another form of 
azimuthal projection that can be used to project a 
lower-hemisphere spherical projection onto a horizontal 
plane. The geometric hasis for construction of the 
equal-area projection is shown in Figure 8-4. This figure 
shows a vertical cross section through the center of a 
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center of the sphere, and C' is the base of the sphere. The 
projection plane is tangent to the sphere at C', which is 
the center of the azimuthal projection. Any inclined line 
(CP) that passes through the center of the projection sphere 
intersects the surface of the sphere at a point P. Point Pis 

Figure 8-3. Properties of an 
equal-area projection. (a) ldentical 
circles on projection sphere project 
as ellipses with various axial ratios 
but having the same area; (b) 100 X 
1 o0 area at edge of projection is the 
same size as at the center. 
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T' P' C' 

Flgure 8-4. The geometric basis far con
structing an equal-area projection. (Adapted 
from Ragan, 1985.) 

the spherical projection of line CP. A circular arc, whose 
center is at C' and which passes through point P, 
intersects the projection plane at P'. P' is the projection of 
P on the azimuthal projection plane. The distance of point 
P' from the center of the azimuthal projection (C') can be 
calculated as follows: 

L (C'CP) = (11 = 90° - a, 

where o is the plunge of line CP, so 

L (C'ZP) = 0/2. 

Triangle C'ZP is a right triangle, so 

PC'= 2r[sin(0/2)] (Eq. 8-1) 

P'C' =PC'= 2r[sín(lll/2)], (Eq. 8-2) 

where r is the radius of the projection sphere. Using a 
similar method, we can cakulate the radius (R = C'T) of 
the primitive on the projection plane: 

T'C' = TC' = 2r[sin(n:/2)] = 2r/..J2 = r..J2 (Eq. 8-3). 

Remember that in the case of the equal-angle projection, ü 
was easiest to visualize the projection by passing the 
projection plane through the center of the projection 
sphere, so that the radius of the primitive equaled the radius 
of the projection sphere. It is sirnilarly convenient to scale 
an equal-area projection to be the same radius as the 
projection sphere. In order to change the scale of the 
primitive so that it has the same radius as the projection 
sphere, we make T'C' = r by dividing Equation 8-3 by ..J2, 
and we determine the position of any point within the 
scaled projection circle by dividing Equation 8-2 by ,/2: 
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P'C' = v2r[sin (fD/2)] (Eq. 8-4). 

Note that in the projection technique described above, a 
2°-wide segment of the surface of the projection sphere 
will correspond to the same line length on the azimuthal 
projection, regardless of whether the segment is near the 
equator or near the pole. Therefore, an azimuthal 
projection constructed according to the preceding method is 
an equal-area projection. 

Using this projection procedure, it is possible to 

construct an equal-area net (Fig. 8-2). The net is merely a 
grid of curves. The suite of curves on this grid that run 
frorn the north to south poles represent the equal-area 
projections of a suite of planes of different dips passing 
through the north-south horizontal axis of the projection 
sphere. The second suite of curves represents the equal-area 
projections of right-circular cones whose vertices are at the 
center of the projection sphere and whose axes are coaxial 
with the north-south axís of the projection sphere. Thus, 
the equal-area grid is analogous to the grid on a Wulff net, 
and it is used in exactly the same way for plotting lines, 
planes, and poles. The curves on an equal-area net, in 
contrast to those on an equal-angle net, however, are 
elliptical arcs, not segments of circular arcs. Nevertheless, 
the north-south trending grid lines are usually referred to as 
great circles, and the other set of grid lines are referred to as 
small circles. The trace of a plane on an equal-area net is 
called a great-circle trace. 

Which Net Is Which? 

There is sometimes confusion about the names assigned to 
different types of azimuthal projections. A stereographic 
projection is one type of azimuthal projection. The terms 
Wulff net or stereonet refer only to grids drawn on a 
stereographic projection, and a stereogram refers only to a 
plot of poíms or curves on a stereographic projection. An 
equal-area projection is a second type of azimuthal 
projection. An equal-area projection is not a stereographic 
projection. The term Schmidt net refers to a grid drawn on 
an equal-area projection, and ü is not the same as a 
stereonet; formally, the term stereonet should be used only 
with respect to a grid on a stereographic projection, and the 
term equal-area plot should be used for points or curves 
drawn on an equal-area projection. In practice, however, 
geologists tend to use the term stereonet loosely, to refer to 
either a Wulff net or a Schmidt net (see Chapter 15). 

A question often arises as to when it is appropriate to 

use a Schmidt net instead of a Wulff net, and vice versa, for 
plotting data. The Schmidt net must be used in all 
applications where the concentration of points on the plot 
is significant; thus, it is particularly applicable for analysís 
of a large number of measurements. A Wulff net must be 
used where anglcs between strnctures on the net will be 
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measured with a protractor (e.g., problems in Chapter 7). 
ln applications where lines, planes, and poles are to be 
plotted for geometric calculations without a protractor (i.e., 
all problems in Chapters 5 and 6), either net can be used; 
thus, all figures in Chapters 5 and 6 could have been drawn 
on a Schmidt net. The Schmidt net, therefore, has the 
most common application for problems in structural 
geology and is usually the net that geologists carry with 
them to the field. 

W e will see that measurements made at rnany 
localities around certain structures yield characteristic 
distribution pattems of poles on a Schmidt net. The 
distributions of poles shown in Figure 8-5 represent 
more-or-less ideal pattems. ln actual geologic examples 
the distribution patterns are never quite perfect, and pattems 
may be difficult to recognize. If the scatter from an ideal 
pattem is large, the pattem may be unrecognizable unless 
more dat.a are obtained. 

8-3 CONTOURING 
OF EQUAl·AREA PLOTS 

From the experience gained in the exercises of the previous 
three chapters, you should now be adept at visualizing the 
orientation of a structure represented on an azimuthal 
projection. ln the process of collecting data on a structure 
in the field, you will have occasion to make numerous 
measurements of either planar or linear attitudes. A plot of 
such data may show clusters of points (poles or lineations) 
on either a stereoplot or an equal-area plot. A projection 
that shows only points is called a scatter diagram or a point 
diagram. From clusters on a scatter diagram it is often 
nncieoih1.(lt. t.n eaC1tim1J1tt11 thP rlnmin"-'nt nr-iPnt!litinn of ~ 
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structural element in your study area. But in order to 
obtain a more precise representation of variations in 
orientation, you must quantify the number of points per 
unit area of the projection. Such quantification can be done 
on an equal-area net and may allow you to recognize subtle 
variations in the preferred orientations of a structural 
element as measured in different localities. The most 
efficient way of representing variations in the concentration 
of points on an equal-area plot is by contouring of point 
data. 

A contour line on an equal-area plot separates zones of 
the plot in which the densities of point data are different. 
Densities of point data are usually measured as a percentage 
of the total number of points per 1 % area of the 
stereogram. If the total area of the plot is 100 cm2, 1 % of 
the plot is l cm2; if there are 100 points plotted on the 
equal-area net, and 10 points lie in a specific l-cm2 area, 
then the density of points in that area is 10% of total 
points per l % of area. Contour lines are drawn on an 
equal-area plot to separate zones in which the percemage of 
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total points per 1 % area falls within a specified range. For 
example, if the contour interval is 2, then the lowest 
contour line is drawn separating the zone in which there are 
fewer than 2% of total points per 1 % of area from the zone 
ín which there are more than 2% of total points per 1 % of 
area. The next contour line is drawn to separate the zone in 
which there are 2 to 4% of total points per 1 % area from 
the zone in which there are more than 4% of total points 
per l % area, and so forth. Admittedly, describing the 
contour interval on a contoured equal-area plot is a bit of a 
tongue twister. 

Certain general rules can be followed when contouring 
an equal-area plot: 

1. On the basis of the minimum and maximum 
concentrations, contour intervals should be chosen such 
that there are no more than 6 contours on the final plot. 
There should be a constant contour interval. 

2. The lowest contour is usually drawn at 1 point per 
1 % area. The highest contour should be chosen to 
emphasize and differentiate maxima that are large enough to 
stand out clearly on the projection. 

3. A contour that crosses the primitive has to reappear 
at the diametrically opposite end of the stereogram. 

4. It is easiest to start drawing the contours at the area 
of greatest concentration and to work outward. 

5. After preliminary contouring, it may be useful to 
go back to the counting net to deterrnine the true 
maximum. This is done by moving the 1 % counting 
circle (described below) around the net until the largest 
number of poínts lie within the counting circle. The center 
of the counting circle then locates the true maximum. 

6. It is also useful to smooth out some contours, after 
pre11min!lr!' l'"nnto!!fin~- or to elimin~tP rnntnnr~ if the: 

lines are too close to one another. 
7. The values of the contours should be indicated in 

the legend in the form 1-5-9-13% per l % area, maximum 
14%, for example. On the finished plot the area of highest 
concentration should be blackened. Progressively decreasing 
densities of stippling are used for areas of lesser 
concentration. The lowest concentration is left blank. On 
many plots only the areas within the contours of highest 
concentration are shaded at all. 

8. It is very useful to present the contoured diagram 
side by side with the scatter diagram (showing points on 
the stereogram) in order to convey as much objective data 
as possible. 

Once the diagram has been contoured, the mean or 
dominant orientations of principal structures can readily be 
determined from the positions on the net where the greatest 
number of points occur. It is common practice to abstract 
these data by plotting, on a separate equal-area (or 
equal-angle) net, the orientations of me pfincipal strnctural 
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dipping plane with normals 
Spherical pro]ections of normals to bedding EQu&I area projections of polea tO bedding 

Folded bed with normals 

figure 8-5. Characteristic distribution patterns of bedding poles on 
an equal:area projection. (a) Uniformly dipping beds; (b) folded bed 
(adapted from Ragan, 1985). 

elements within a region. A diagram on which a single 
great cirde or point is used to represent the mean or 
dominant orientations of several structural elements is 
called a synoptic diagram. 

Increasingly, computers are being used to construct 
contoured equal-area plots, but it still is important to 
understand contouring principles using graphical methods. 
There are a number of graphical methods that are used for 
contouring point data, some of which are very versatile 
and can easily be used in the field. For most graphical 
methods it is convenient to use a 20-cm-diameter stereonet 
for ease of counting, but the large size of this net makes it 
inconvenient for transporting ít to the field. The methods 
described here refer to a 15-cm-diameter stereonet (Appendix 
4 provides a net with this diameter). 

Schmidt or Grld Method of Contourlng 

The most commonly used method of contouring is the 
Schmidt method, which works well for large data sets 

(>400) and/or for high concentrations of points. The 
method employs a square grid, so it is sometimes also 
called the grid method. The steps of this method are 
outlined next. 

Problem 8-1 
An equal-area plot of the poles to foliation within the 

Carthage-Colton mylonite zone in the Adirondacks is 
given (se.e Fig. 8-8a). Contour this plot using the Schmidt 
method. 

Method 8-1 (Schmidt method) 
Step 1: Construct a square grid wíth grid points 

0.75 cm apart. The dimensions of the grid must exceed 
that of your equal-area plot. 

Step 2: Construct a Schmidt counter (Fig. 8-6). A 
Schmidt counter contains two circular holes at opposite 
ends of a cardboard sl.rip. Each hole has an area equal to 
1 % of the total area of your equal-area projection. You wíll 
see that two diametrically opposite holes are needed to 
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111.5 cm 

Flgure 8-6. Construction of a Schmidt counter for a 15-cm-diameter 
Schmidt net. The full size counter appears in Appendix 4. (Adapted 
from Turner and Weiss, 1963.) 

count points along the edges of the equal-area plot, while 
only one circle is needed for counting points in the interior 
of the plot The holes to be used with our 15-cm-diameter 
net should be 1.5 cm in diameter. The counter can be 
constructed from a strip of poster board that is 18 cm long 
and 3.5 cm wide (Fig. 8-6). Draw two 1.5-cm-diameter 
circular holes in the strip, one at each end, such that the 
centers of the holes are 15 cm apart. ln ink, draw a circular 
arc of 15 cm diameter that passes through the centers of the 
counting holes, and draw lines through the centers of the 
holes perpendicular to the line that joins the two centers; 
these ink marks should be visible on the cardboard borders 
of the counting holes and will serve as guides during 
counting (Fig. 8-7). Now, cut out the counting holes, and 
cut a 2-cm-long thin slot in the middle of the strip, 
halfway along the inscribed line joining the two centers of 
the holes. Draw a cross-line to mark the center of the slot. 

Step 3: Place an overlay containing the point data of 
an equal-area plot (Fig. 8-8a), a tracing of the primitive, 
and a north reference mark, over the square grid. The center 
of the overlay must coincide with the intersection of two 
IITid lines. Fix the overlav with tape. 

Step 4: Place a second overlay, showing only the 
trace of a 15-cm-diameter circle and a north mark, on top of 
the first. The circles on the two overlays should be 
concentric, and the north marks should coincide. 

Step 5: Place one end of the counter over the two 
overlays, such that the center of the circular hole coincides 
with a grid point; you may use the ink line that passes 

through the center of the hole as a guide (Fig. 8-7b). The 
number of points that are visible within the hole represent 
the number of points per 1 % area. Make a dot at the grid 
point on the second overlay, count the number of points on 
the füst overlay that are visible within the hole, and write 
it next to the dot on the second overlay. Reposition the 
counter so that its center is over the adjacent grid point, and 
repeat the procedure for all the grid points. Leave blank the 
areas in which there are no points (Fig. 8-8b). 

Step 6: In the peripheral zone near the primitive, 
one counting circle will not fali entirely within the 
primitive, and you will need to use both circles of the 
counter. Pierce the center of the grid and the two overlays 
with a thumbtack, and put the point of the tack through the 
central slot of the counter. Points within both counting 
circles at diametrically opposite ends of the projection 
must be counted together (Fig. 8-7a). Intersections of the 
grid lines with the primitive are used to center the counting 
circle where necessary. 

Step 7: Once numbers have been written in at each 
grid point on the second overlay (Fig. 8-8b), convert the 
number of points (n) next to each dot to a percentage by 
the equation 

n(lOO)/N = %, 

where N is the total number of points on the plot. Draw 
contours at intervals corresponding to the appropriate point 
densities (Fig. 8-8c). 

Counter centered on grld polnt 

----~ 

--~ Flgure 8-7. Method for count
ing points for contouring. (a) For 
points that lie close to the primitive; 
(b) for points inside the primitíve. 
(Adapted from Turner and Weiss, 
1963.) 
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·.·· 

72 poles to foliatlon 

Figura 8-8. Procedure for contouring 
described in Problem 8-1. (a) Equal-area 
projection of poles to 72 foiiation 
measurements; (b) point count using grid and 
Schmidt counter; (e) the final contoured 
diagram with oontours at 1, 3, 7, 11, and 15%. 
A Schmidt counting grid is available in 
Appendix 4. 

Mems Method of Contourlng 

This method is convenient for a small number of points 
( < l 00) and for populations of poims that do not show local 
high concentrations. H is particularly usefül for 
determining the contour of minimum density (i.e., usuaUy 
the one-point contour). 

Problem 8-2 
Contour the data in Figure 8-9a using the Mellis 

method. 

Method 8-2 (Mellis contouring) 
Step 1: Construct an overlay on which only the 

primitive and the north mark are shown. Construct a 
counting drcle that is 1.5 cm in diameter (i.e., l % of the 
total area of your equal-area projection). Place the overlay 

l 1 

1 ' 

b 

0 

e 

' ' 
' ' 

i ' 
;... 2. 3 3 

' ' 

' ' 

i 1 t. 4 4 ~ 

j .3 !) ' 3 "'" ' s 
111135787+.2.. 

1 5 5 s ' t.2. 12 8 2.. 

3 6 10 6 3 fi 7 4 2. 

l 3 s 2 . 1 . 

0 
0 

c„„,„„ra "' 1, 3. 7, 11 and 16% 

1 51 

over your equal-area plot so that it is concentric and aligned 
with the north arrow. Tape it down. 

Step 2: Draw a 1.5-cm-diameter circle around each 
point in the population (Fig. 8-9a). The ovedapping areas 
of two cirdes have a 2X concentration of a single cirde, 
overlapping areas of three cirdes have a 3X concentration 
of a single cirde, and so on. The percentage of the total 
number of points that is represented by one point can be 
calculated. The 2X and 3X areas are merely double and 
triple that percentage respe<'.tively. 

Step 3: Place a third overlay over the second, and 
outline the areas of different point concentrations. H is 
best not to smooth the contour lines in this type of plot 
(Fíg. 8-9b ). 

The Mellis method is the least subjective and most 
accurate method for contouring. The results are completely 
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Figure 8-9. The Mellis rnethod of 
contouring described in Problern 
8-2. (a) Equal-area projection of 36 
poles to bedding. 1 % area circles 
drawn around each point; (b) 
contoured diagram with contours at 
3 and 6%. 
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reproducible, and for the same populaüon of points the 
results will be identical for any two workers using the 
melhod. Its use, however, is limited to smaH populations 
and low concentrations; the method would obviously be 
cumbersome and difficuH to use if four or more circles 
overlapped in a certain area. 

Kalsbeek Method of Contourlng 

The Kalsbeek method (Kalsbeek, 1963) of contouring is 
quick and easy and t:hus is particularly appropriate in the 
field. It can be used with any population of point data on 
an equal-area plot. 

Problem 8~3 

The equal-area plot in Figure 8-1 la is the same as that 
used for Problem 8-1. Contour the data using the Kalsbeek 
method. 

Method 8-3 (Kalsbeek umtouring) 
Step 1: Obtain a Kalsbeek counting net ( one is 

provided in the back of this book). This net is subdivided 
into small triangles (Fig. 8-10). Each set of six triangles 
forms a hexagonal area that covers l % of the total area of 
the net. The triangles are arranged so that the net has six 
radial rays. The counting areas at the ends of these rays are 
semicircles, rather than hexagons. 

figura EMO. Counting net. (From Kalsbeek, 
1963.) 

Step 2: Place an overlay containing your equal-area 
scauer plot over the counting net, with the north mark of 
your plot at the tip of one of the radial rays. Place a 
second oveday, with only the primitive and the north 
mark, over the füst 

Step 3: Count the number of points that fall witlün 
each hexagon, and write the number of points next to a dot 
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at the center of the hexagon on the second overlay (Fig. 
8-11 b ). Since the hexagons overlap, each point is counted 
on three occasions. Along the primitive combine the 
points within each half-hexagon with points from the 
half-hexagon at the diametrically opposite end of the 
stereogram. Count the points at the ends of the six radial 
rays of the net by using the two complementary 
semicircles at opposite ends of the diameters. As with the 
Schmidt method, leave areas with no points blank. 

Step 4: When you have finished counting, translate 
the numbers into percentages of the total number of points, 
and contour the results (Fig. 8-1 lc) in the same way as you 
did for the Schmidt method. Note that the contoured plot 
looks similar to that obtained in Problem 8-1 (Fig. 8-8c), 
but it is not exactly the sarne. 

Kamb Method 

Kamb (1959) proposed a contouring method that permits 
graphic analysis of the statístical significance of point 
concentrations on an equal-area plot. In the Schmidt or 
Mellis methods just described, the area (A) of the counting 
circle was l % of t:he total area of the equal-area projection. 
We could, altematively, choose A to be any fraction (of 
the total area) from 0 to l. 

Consider an equal-area plot on which there are N 
points. If the distribution of points is statisticaUy 
uniform, there are (N X A) points within a counting circle 
of area A and [N X (l - A)] points outside the counting 
circle. Call (N X A) the expected numher of points. If the 
actual number of points (n) that faUs within the counting 
circle is significantly greater than the expected number, 
then we have a significant cluster. The distribution of n 
values is a binomial distribution (see a statistics book for 
the definition of a binomial distribution), and the mean (µ) 
and standard deviation ( o) of such a distribution are given 
by 

µ=(NA) (Eq. 8-5) 

cr = [N (A)(l - A)Jl/2 =NA [(l - A)/NA]l/2 
or, 

cr/(NA) = [(l - A)/NA]l/2 (Eq. 8-6). 

To smooth out wild fluctuations from expected densities, A 
is chosen such that if the population has no preferred 
orientation, the number of points (NA) expected to fall 
within the counting circle is 3cr of the number of points 
(n) that actually fali within the counting circle under 
random sampling of the population. Thus, by setting 
o/(J'l.A) = 1/3, we can calculate from Equation 8-2 the 
appropriate area (A) of the counting circle for a given fabric 
represented by N points: 
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Contours at 1, 3, 7, 11 and 15% 

(1 - A)/A = N/(32) 

l/A = (N/9) + 1 = (N + 9)/9 

A = 9/(N + 9) = 1t r2 (Eq. 8-7). 

Therefore, the radius (r) of the counting circle, expressed as 
a fraction of the radius of the equal-area projection, should 
be 

r = 3/[(N + 9)1t] 112 (Eq. 8-8). 

The spacing of grid points on the counting net is also 
simply r. 

Once the diameter of the counting circle has been 
determined, and an appropriate counting grid has been 
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Figure 8-11. The Kaisbeek method 01 con
touring described in Problem 8-3, far the same 
data as Problem 8-1. Contours drawn at 1, 3, 
7, 11, and 15%. 

constructed, the procedure for contouring data using the 
Kamb method is the same as that used in the Schmidt or 
the Mellis methods. The observed densities are contoured 
at intervals of 2cr, at values of 2cr, 4cr, etc., with the 
expected density (N X A) for a population of points with no 
preferred orientation being 3cr. Generally, the area of a 
counting circle used in constructing a Kamb contoured plot 
is larger than that used for conventional contouring; 
therefore, the Kamb method smooths out the contour 
irregularities that are of no statistical significance. 
However, it does not significantly change the positions of 
contour lines for large populations. The method is most 
conveniently applied by using a computer, as the size of 
the counting circle must be calculated for each data set that 
is plotted. 
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Problem 8-4 
The equal-area plot of Figure 8-12a shows the same 

data as that used in Problem 8-1. Determine the 
appropriate diameter for the counting cirde, for the Kamb 
method of contouring, and contour the data using this 
method. 

Method 8-4 
Step 1: Determine the appropriate diameter of the 

counting circle. Using Equation 8-8 for N = 72, r is found 
to be 0.188 of the radius of the equal-area projection. For a 
15-cm-diameter net, the counting area is a circle of diameter 
2.82 cm. 

Step 2: Construct a counting grid wilh a spacing 
equal to the radius of the counting cirde, i.e„ 1.41 cm. 

Step 3: Follow the same method as ín Schmidt 
contouring to obtain concentrations at the grid points (Fig. 
8-12b). 

a 
72 polea to foliation 

Figure 8-12. The Kamb method of con
touring described in Problem 8-4, lor the same 
dat a as Problem 8-1. Contours drawn at 2o, 
4cr, 6cr, and Bcr. 
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Step 4: Using Equation 8-6, calculate a value for cr 
(l.57). Contour the concentrations at 2cr, 4cr, 60', and 8cr 
(Fig. 8-12c). Notice that the contoured diagram is 
significantly different from those obtained by the Schmidt 
and Kalsbeek methods. 

Additional methods of contouring equal-area plots and 
of statistical analysis of equal-area plots are described by 
Vistelius (1966). 

8~4 PA.TTERNS OF POINT DAH\ 
ON EQUAl~AREA PROJECTIONS 

The distribution of points on an equal-area projection 
graphically expresses the degree ofpreferred orientation (or 
lack thereof) of a particular structural element (such as 
foliation or lineation). The key to interpreting the 
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projection lies in recognizing the pattern defined by the 
distribution of points (where "points" refers to either the 
projection of a line representing a linear structure or the 
projection of a pole representing a planar structure). 
Recognition of patterns is often easier to do with a 
contoured diagram. There are four main pattems that can 
be recognized: 

Uniform Distribution: A statistically random 
distribution in the orientation of structural elements is 
expressed by a scatter of points on an equal-area plot in 
which there are no obvious local concentrations. The lack 
of any concentration on a plot is called a uniform 
distribution (Fig. 8-13a). 

Point Maximum: A preferred orientation of 
structural elements is represented by a high concentration 
(significant cluster) of points symmetrically distributed 
around a single mean orientation (Fig. 8-13b). The center 
of the cluster is the point maximum. A single data set 
can show more than one point maximum. 

Great-Circle Girdle: A concentration of points 
along an arc approximating a great circle is called a 
great-circle girdle (Fig. 8-13c ). The pole of the great-circle 
girdle is called the girdle axis. A girdle may contain one or 
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more distinct maxima. ln some cases, two girdles may 
íntersect, forming a crossed girdle pattern. A girdle pattern 
for linear elements indicates that the lineations all lie in a 
single plane but are not parallel to one another. ln such a 
case the girdle approximates the attitude of the plane 
containing the lineations, and the girdle axis is the pole to 
that plane. A girdle pattern for poles to planar elements 
indicates that the planes could all intersect along the same 
line. For example, a girdle pattern is obtained by plotting 
poles to bedding taken around a cylindrical fold (see below). 

Small-Circle Girdle: A small-circle girdle is a 
concentration of points along an arc that approximates a 
small circle (Fig. 8-13d). Such a girdle may contain one or 
more distinct maxima. For both linear and planar elements 
such a girdle indicates a preferred orientation in a cone 
about a single axis (the girdle axis). 

We can describe the point-distribution pattem on an 
equal-area plot in terms of the type of symmetry displayed 
(e.g., the number of mirror planes that can be drawn on the 
plot, across which the point clusters are mirror images of 
one another) by analogy with the description of point 
groups in crystallography. For example, a fold may be 

+ 

Flgure 8-13. Patterns of point 
data on an equal-area projection. 
(a) Uniform distribution; (b) point 
maximum; (e) great-circle girdle; (d) 
smal!-circ!e girdl\i'}. 
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described as orthorhornbic or monoclinic, depending on the 
pattern of clusters displayed on a plot of poles to bedding. 
For further discussion of this terminology see Turner and 
Weiss (1963). 

8-5 AN.Al YSIS OF FOLDING 
WITH AN EQUAL·AREA NET 

Geometrically, a fold is merely a curved surface. There are 
two basic types of folds: (l) Cylindrical folds are 
generated by moving an imaginary straight line parallel to 
itself in space. The line that generates the fold is called the 
fold axis. (2) Noncylindrical folds are generated by a line 
that moves in a nonparallel manner through space. If one 
end of the generating line is fixed, the resulting fold form 
is called a conical fold. If the movement of the generating 
line is nonsystematic, a com.plex fold results. Sometimes 
complex folds can be subdivided into parts that are 
approximately cylindrical. The geometry of cylindrical or 
conical surfaces can be analyzed with either B-diagrams or 
rc-diagrams on an equal-area projection. 

a 

157 

ll·Diagrams of Cyllndrlcal Folds 

Every segment of a cylindrically földed surface contains a 
line segment that is parallel to the fold axis. Any two 
tangential planes to the földed surface will intersect along a 
line that is parallel to the fold axis. On an equal-area 
projection, therefore, the great circles representing the 
attitudes of the földed surface at different points on the fold 
should all intersect at a common point representing the fold 
axis. This point is called thefi-axis. In practice, however, 
real folds do not have a perfectly cylindrical form, so strike 
and dip measurements around the fold produce great circles 
that do not all intersect at a common point, although the 
points of intersection do show a point maximum that gives 
an average orientation for the B-axis. For n plotted planar 
attitudes (Fig. 8-14), the number of intersections (x) is 
given by the arithmetic progression 

x = 0 + l + 2 + ... + (n - 1) = n(n - 1)/2 (Eq. 8-9). 

Thus, if there are 200 plotted planes, the number of 
intersections is 19,900. Contouring of the intersection 
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2 planes, 1 f3-point 3 planes, 1+2 jl-points 

Figura 8-14. ~-diagram of cylin
drical fold. The number of inter
sections of great circles increases 
rapidly as the number of plotted 
planes increases. (Adapted from 
Ramsay, 1967.) 
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points will emphasize the maximum concentration of 
intersections. 

A plot of B-axes is not generally the best way to 
represent attitude measurements on a fold, for several 
reasons. First, the number of points on a B-axis plot is far 
greater than the actual number of measurements; thus, such 
a plot may make you think you have more data than you 
actually have. Second, if there is any scatter in the original 
data, there can be concentrations of B-axes away from the 
main concentration, leading to an erroneous interpretation. 
Such errors become unacceptably large if the interlimb 
angle is very small (<400), asin tight folds, or very large 
(>140°), asin open folds. Finally, construction of a 
B-diagram is time consuming, because a large number of 
great circles must be plotted, and the number of 
intersections can become unmanageably large for even a 
small data set. 

re-Dlagrams of Cyllndrlcal Folds 

Because of the disadvantages of the B-axis diagram, a 
1r-diagram is the preferred method for representing 
measurements from a folded surface. A re-diagram is an 
equal-area plot of the poles to planes that are tangential to 
the folded surface. Practically, this means that if we have 
strike and dip measurements from many locations on a 
fold, we plot the pole for each plane rather than the 
great-circle trace. On a cylindrical fold, each of the poles is 
perpendicular to the fold axis; thus, the poles are parallel to 
a plane perpendicular to the fold axis. On an equal-area 
plot the poles approximate a great-circle girdle, which is 
variously called the S-pole circle, the pole circle, or the 
;r-circle (Fig. 8-15). The pole to the re-circle is the re-axis 
<Für. 8-15). and it reoresents the fold axis. The rc-axis 
should coincide with the B-axis on a plot. For a very open 
fold, with a very large interlimb angle, the rc-diagram will 
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Figura 8-15. n-diagram of cylindrical fold. 
Poles to planes lie on a great circle girdle 
whose pole givas the fold axis (n"" B). 
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show an elliptical point maximum. With progressive 
decrease in the interlimb angle, the pole pattem changes 
from a point maximum, to an incomplete great-circle 
girdle, and finally, to a complete great-cricle girdle (Fig. 
8-16; e.g., Ragan, 1985). 

A rc-diagram not only gives information on the 
orientatíon of a fold axis but also contains clues to the 
form of the fold. For example, if a fold has a broad, 
rounded hinge, the density of points will be uniform within 
the re-circle girdle, and the two extreme points on the girdle 
will define the interlimb angle (Fig. 8-l 7a). The rc-circle 
gírdle for a fold with planar limbs and a narrow hinge zone 
will contain maxima on the gírdle corresponding to the two 
limbs, and these maxima can be used to determine the 
interlimb angle (Fig. 8- l 7b ). For a chevron fold there is 
no well-defined girdle, and the rc-circle on the projection is 
defined by two point maxima corresponding to the two 
limbs (Fig. 8-17c). Most natural folds show pattems that 
are intermediate between the broad-hinge girdle and the 
two-maxima (limbs) girdle. 

It is generally not possible to say anything conclusive 
about the symmetry of folds from just a rc-diagram, 
because factors other than dips in the two limbs of the 
folds determine fold symmetry (Hobbs, Means, and 
Williams, 1976; Ramsay, 1967). A concentration of 
points along a girdle may also be a consequence of 
sampling bias. However, if the spatial distríbutíon of 
measurements in a train of folds is uniform, there will be 
fewer readings from the short limbs of asymmetric folds, 
resulting ín an asymmetry in the pole pattern on the 
re-diagram (Fig. 8-17d). Generally, in order to determine 
asymmetry of folds, we need additional information such as 
variation in thickness from limb to limb, orientation of the 
enveloping surface, and orientation of the axial surface (see 
Chapter 11). 

The orientation of the axial surface (or the axial plane) 
can be determined if the rc-axis is known and if the 
orientation of the axial trace at a locality can be determined; 
the great circle passing through these two points gives the 
orientation of the axial plane (Fig. 8-18a). ln the case of 
chevron folds and kink folds, the axial plane may be defined 
as a plane containing the bisector of the interlimb angle. 
The bisector is represented by the point whose angular 
distance from the two point maxima (measured along the 
re-circle girdle) is the same. The great circle passing 
through the bisector and rc-axis represents the axial plane 
(Fig. 8-18b) . 

The attitudes of the fold axis and the axial plane are, of 
course, reflected in the position of the 11:-circle girdle on an 
equal-area projection. For example, if the fold axis is 
horizontal, then the re-axis lies on the primitive and the 
girdle passes through the center of the net, but if the fold 
axis is plunging, then the 1t-axis lies inside the primitive, 
and the girdle follows a curve that does not pass through 
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Unfolded inclinad bed Gently plunging broad arch Plunging fold 

a b e 

Figure 8-16. Change in pole pattern on the n:-diagram with decrease 
in fold interlimb angle. (Adapted from Ragan, 1985.) 

the center of the net. If the axial plane of the fold is 
vertical, it is represented by a diameter of the equal-angle 
plot; if it is horizontal, it is represented by the primitive; 
and if it is indined, it is represented by some intermediate 
great cirde. A fold with a plunging .axis and an inclined 
axial plane may display a complex pattern on an equal-area 
net. Figure 8-19 shows several examples of n:-diagrams 
and the folds that t:hey represent. 

Jt~Dlagrams of Noncylindrlcal Folds 

If the földed surface is conical, with the cone having an 
apical angle µ, each pole makes an angle of (90° - µ/2) 
wit:h respect to the cone axis. ln other words, the poles to 
bedding generate a coaxial cone with an apical angle of 
(180 - µ). Thus, the poles define a small cirde, with its 
center representíng the cone axil) (Fig. 8-20). If an 
approximate small-circle pattem is recognized, it may be 
worthwhile to replot t:he poles on a Wulff net, since a 
small circle projects as a ci.rcle on the stereographic 
projection. A smaU circle can then be fitted to the plotted 
points, and the center of the circle (representing the cone 
axis) can be located. The cone axis can be rotated to the 
primítive, and the small circles of the net can be used to 
analyze the angular relationships within the fold. 

ln nonconical noncylindrical folds, both the axial 
surface and the fold axis vary in attitude, and construction 
of a :n:-diagram will generally give several possible 
orientations for the n:-axis. Commonly, areas of 
superposed folding exhibit this kind of geometry. To 
analyze such folds, they must be subdivided, by trial am.i 
error if necessary, into domains of plane cylindrical folding 
(see Problem 8-7). Each domain should have its own 
constant 11:-axis orientation. ln plane noncylindrical folds 
the axial surface is planar and has a constant orientation, 
althought the orientation of the fold axis (n:-axis) may 
vary. The mean orientation of the axial plane is defined as 
the great circle passing through the axes of the different 
cylindrical domains (Fig. 8-21). 

8-6 ANAL YSIS OF FABRICS 
WITH AN EQUAL·AREA NET 

Types of Fabrics 

The intemal geornetric and spatíal configurations of the 
components of a rock constitute its fabric. If a fabric is 
visible in a rock regardless of the scale of observation, it is 
said to be penetrative. Rock.s that have penetrative fabric 
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Concentric fold Fold with narrow hinge 

a b 

Chevron fold Asymmetric folds 

,,,--~-----~--------

e d 

resulting from deformation are referred to as tectonites. 
Three major classes of tectonites are recognized, based on 
whether the fabric can be described as a foliation, a 
lineation, or both. (1) S-tectonites have a strong foliation 
but no lineation (Fig. 8-22a). The foliation is defined by 
parallel alignment of platy minerals, lenticular mineral 

Flgure 8-17. Variation in 
n:-diagrams with change in fold 
form. (a) Fold with broad, rounded 
hinge; (b) fold with narrow hinge; (e) 
chevron fold; (d) asymmetric folds. 

aggregates, or flattened grains. The letter S is used because 
of the longstanding convention of referring to foliations as 
S-surfaces (Turner & Weiss, 1963). (2) L-tectonites have a 
well-developed lineation but no foliation (Fig. 8-22b). The 
lineation in an L-tectonite is defined by alignment of 
prismatic minerals or uniaxially elongated grains parallel to 
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Figure 8-1 a. Determining att
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Plunglng overturned fold Reclined fold 

Figura 8-19. Variations in position of x-círcle girdle with changes in 
attitude of the fold axis and axial plane. (a) Nonplunging upright 
(norma!) fold; (b) plunging norma! fold; (e) plunging inclined fold; (d) 
plunging overturned fold (note the presence of vertical beds indicated 
by the plotting of some bedding poles on the primitive); (e) reclined fold; 
(f) recumbent fold; axial plane coincides with the primitive. (See Fig. 
11-17.) 

1 
@n-axis 
1 
1 

1 Axis.I surface 

1..1 
1 

1\ 
l Bisector 

Plunging inclinad fold 

Recumbant fold 

1 61 



162 Elementary Techniques Part 1 

.·: .. - -..... ........ 

:'· ' 
/. '\. 

•• „ \ 

I I ., 
I \ 

1 
l 0 Fold axis 1 

1 
\ 

1 

a 

1 
~ 

b 

\ 
\ 

SE-limb of Eureka syncline 

one another. (3) L-S-tectonites have both a foliation and a 
1 !_-_ -~~~ ,....._ IT]~ ~ 0 l")"'lr-'\ 
.a..í&.H~M.i-4.~u \..ii.-•i:)• V -...-.Wju 

T~ ..,._ T C' f-.n„tn.n;t-o n..;thni-..., thp. „ ... „ .;,.;,..;..ii ~---:.,:; ............ ~~:;;:;;.:;.._,;,,. -:..--=-~==--~-.- ~~-

lineation or the foliation may be more pronounced. The 
L-S fabric may be defined by the alignment of elongated 
platy minerals or of ellipsoídal grains. It may also be the 
result of crenulation of a foliation or the intersection of 
two foliations. 

Traces on outcrop faces in a tectonite may represent 
either the lineation or the foliation or both. Planes 
perpendicular to, or at high angles to, the foliation wíll 
show traces of the foliation. The best-developed traces in 
an L-S tectonite will be on a plane parallel to the lineation 
and perpendicular to the foliation. Lineation traces alone 
will appear best developed on all planes parallel to, or at 
acute angles to, the lineation and are absent or, at most, 
poorly developed on planes perpendicular to, or at high 
angles to, the lineation. ln an L-S-tectonite an outcrop 
face parallel to the foliation itself shows the true attitude of 
the lineation. 

ln order to apply the methods of structural analysis, 
the fabric ina rock body must be homogeneous, meaning 
that equal volumes of rock from different localities in the 

• Cone axls 

" ~ "-._ ,.? 

----~ 

Sheba fault surface 

# 

\ 
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I 
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/. 

Flgure 8-20. Flexural-slip fold
ing of sedimentary rocks and a fault 
(at low angles to bedding). The 
southeast limb of the Eureka 
syncline shows cylindrical folding. 
The Sheba fault surface is conically 
folded. (Adapted from Ramsay, 
1967.) 

body are structurally identical. True fabric homogeneity 

statistically homogeneous, meaning that the sample over 
which the homogeneity is to be assessed is much larger 
than the scale over which inhomogeneity occurs. A rock 
in which the degree of development (intensity) or the 
orientation of a fabric differs as a function of location is 
inhomogeneous. An inhomogeneous rock can usually be 
subdivided into homogeneous parts. Each of these parts is 
a three-dímensional portion of a rock body that is 
statistically homogeneous and is called afabric domain or 
simply a domain. 

If the fabric withín a single domain has the same 
properties in all directions, then it is called isotropic. ln 
most deformed rocks, however, the structural elements 
within any domain show some degree of preferred 
orientation, and the fabric is, therefore, said to be 
anisotropic. Rocks with anisotropic fabrics may be S-, L-, 
or L-S-tectonites. Equal-area nets are useful in analyzing 
fabric in two ways. First, they may be used to calculate 
the true orientation of fabrics, given partial measurements 
on dífferent planes; second, they may be used to describe 
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Figure 8-21. Plane noncylin
drical folding. The area is sub
divided in!o domains of cylindrical 
folding, each with its own fold axis, 
but all the fold axes lie on a comrnon 
axial plane (as shown on the 
synoptic equal-area plot). (Adapted 
lrom Turner and Weiss, 1963.) 

IV 

S-tectonite 

Flgure 8-22. The penetrative C 
fabric of a rock defined by overall LS-h•ctonue 

grain shape, elongated or platy 
minerals, and ellipsoidal markers. 
Three different classes ara defíned. 
(a) S-tectonite; (b) l-tectonite; (e) 

LS-tectonite. 
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variations in the geometry of fabrics that occur between 
different domains. Finally, in rocks with multiple fabrics 
an equal-area projection may be the only way of 
distinguishing various fabric elements. 

Calculation of Planar and Llnear Attltudes 

The trace of a planar structure on any surface is its apparent 
dip in that plane. If two or more such apparent dips can 
be measured, the orientation of the planar structure can be 
determined on an equal-area projection (Method 5-8). With 
more than two traces, the plane is defined by the 
best-fitting great circle that passes through the data points. 

Problem 8-5 
The trace of a foliation (S) is seen on three nonparallel 

faces. The attitudes of the faces were measured, and the 
rake of the foliation trace on each face was measured, with 
the following results: 

Attitude 
N44°E,60°NW 
S66°E,800SW 
s 11°E,70°NE 

N 

Elementary Techniques Part 1 

Determine the orientation of the foliation (S). 

Method 8-5 
Step 1: On an equal-area projection, plot the 

great-circle trace of each face (Fig. 8-23a, b, e). Measure 
the rake of the lineation on each face, and plot the point 
representing the trace of the foliation for each face. 

Step 2: Find the best-fitting great circle that passes 
through the three points representing the foliation traces 
(Fig. 8-23d). The great circle represents the plane of the 
foliation, which has an attitude of N300E,400NW. 

Often, lineations (such as minor fold axes or mineral 
lineations) can be directly measured on an exposed surface. 
At some localities, however, linear structures do not lie on 
a plane of easy breakage and thus cannot be measured 
directly. The orientation or poorly exposed lineations can 
be determined by measuring the apparent lineation on two 
or more differently oriented faces and plotting the data on 
an equal-area projection. Imagine a rod-shaped fabric 
element (e.g., a dowel with a circular cross section). Any 
section of the rod oblique to its axis will be elliptical (Fig. 
8-24). The long ax,is of the ellipse is an apparent lineation 
on the plane of exposure; the true linear structure is 

Flgure 8-23. Procadura for det
ermining orientation of a foliation 
described in Problem 8-6. 
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Figura 8-24. Apparent lineation on a planar 
surface obliquely intersecting a rod-shaped 
linear structure. 

flgure 8-25. Procedure tor det
ermining orientation of a lineation 
described in Problem 8-7. 
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contained in a plane perpendicular to the exposure plane and 
passing through the long axis of the ellipse. The 
oriemation of the apparent lineation can be measured either 
by its rake on the plane of exposure or by its plunge and 
bearing. The measurements are plotted on a stereogram to 
obtain the true auitude of the lineation. The following 
problem illustrates the method. 

Problem 8-6 
Traces of a lineation were measured on three 

nonparallel faces. The orientations of the t.hree faces and 
the rake of the apparent lineation in each face are as 
follows: 

Qrientation 
S56°E,52°NW 
N82°E,30°S 
N09°E,70°W 

Determine the true attitude of the lineation. 

Method 8-6 
Step 1.· On an equal-area projection, plot each face, 

its pole, and the trace of the lineation on the face (Fig. 
8-25a, b, e). 
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Step 2: For each face draw the great circle passing 
through the pole and the lineation trace (Fig. 8-25a, b, e). 
The three great circles intersect (ídeally) in one point 
defining the attitude of the lineation (Fig. 8-25c) as 
24°,S2°W. This is referred to as Lowe's method (Lowe, 
1946). 

Step 3: Alternatively, after step 1, find the poles 
(G1, G2, G3) to the great circles that pass through the pole 
to the face and the lineation trace. All these "new" poles 
lie on a great circle that represents the plane perpendicular 
to the lineation (Fig. 8-25d). Thus, the pole to thís great 
círcle gives the attitude of the lineation (Fig. 8-25d). This 
method, which was devised by Cruden (1971), avoids the 
problem of trying to find a single point of intersection to 
define the attitude of the lineation by allowing a best-fit 
great círcle to be drawn. 

Analysls of Fabrlc Geometry 

Patterns of variation in the attitude of fabrics around folds 
may help detennine the chronology of fabric development 
with respect to the fold. A number of patterns are 
possible, depending on the nature of the fabric, the timing 

a b 
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of fabric development with respect to folding, and the 
mechanism of folding. The pattems are discussed next 
individually. A complete discussion of fabric types is 
beyond the scope of this book; our goal here is solely to 
show how fabric geometry can be practically analyzed with 
the equal-area net. 

Foliation Postdating Folding: If a plane 
cylindrical fold that folds S1 and fonned coevally with S2 
is cut by a later planar foliation (S3), the intersection 
lineation between S3 and S1 will vary around the fold (Fig. 
8-26a). However, all the attitudes of the lineation lie on a 
single plane (S3) and fall along a great-circle girdle (Fig. 
8-26b). Also, the angle between the lineation and the F2 
fold axis varies as a function of S1 attitude (Fig. 8-26b). 

Flexural-Slip Folding of a Lineation: 
Development of flexural-slip folds is accommodated by 
layer-parallel slip with minímal intemal dístortion of 
layers. Thus, to a füst approxírnation, the movement of a 
layer during foldíng can be described as a rotation, and the 
angle (µ) between the fold axís and the preexisting 
lineation remains constant everywhere on the földed surface 
(Ramsay, 1967; Fig. 8-27a). On an equal-area projection, 
the points representing the lineation, therefore, lie on a 

N 

Figure 8-26. lntersection linea
tion produced by a later planar 
foliation (S3 ) cutting an earlier 
folded foliation (S1 ). (Adapted from 
Turner and Weiss, 1963.) 

1 1 1 
1 1 l 1 1 , 1 

Figura 8-27. Flexural-slip fold
ing of a preexisting lineation. Linea
tion points lie on a small circle 
centered on the fold axis. Lineation 
that was perpendicular to the fold 
axis (open circles on equal-area 
plot) lies on a great circle after 
folding. (Adapted from Ramsay, 
1967.) 
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smaH circle centered on l:he fold axis (6) (Fig. 8-27b), 
unless the original lineation is perpendicular to the fold 
axis in which case the földed lineation lies on a great circle 
(Fig. 8-27b). Remember that the rotation of a line around 
an axis inscribes a srnall circle (see Chapter 7). 

ln reality, the discounting of material distortion of 
layers is not correct. Because individual layers in a 
flexural-slip fold are bockled, each földed layer has a neutral 
surface that shows idea! concentric geometry, but the outer 
arc is extended and the inner arc shortened (Fig. 8-28a). 
Therefore, oo the outer arc, the angle between the lineation 
ami the fold axis is slightly increased (µ'>µ), and tb.e 
lineation points lie on an arc that is broader than the 
small-circle arc but is stiU centered on the fold axis. (Fig. 
8-28b). Similarly, l:he angie between the fold axis and the 
lineation is slightly decreased (µ"<µ) on the inner arc, and 
the lineation points lie on an arc thai is narrower than the 
small-circle arc (Fig. 8-28b). 

Passiwe Folding of a Llneation: Development 
of a passive fold is geometricaHy analogous to the passive 
reorientation of a marker layer by shearing on a set of 
close-spaced planes that are oblique to the foliation. In 
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reality, discrete slip planes need not exist The axial plane 
of the fold is parallel to the hypothetical shear planes, and 
the fold axis is parallel to the shear plane-marlcer layer 
intersection lineation. Points along an original Hnear 
feature on ilie marker layer are transported variable distmces 
along parallel lines (in the slip direction) and are positioned 
on ilie surface of the földed layer so that the földed lineation 
is cootained in a plane defined by the original lineation and 
the slip direction (Fig. 8-29a). Thus, on an equal-area 
projection the points representing the földed lineation lie 
on a great circle that is oblíque to the fold axis (Fig. 
8-2%). This geometry is the same as that for an 
intersection lineation due to a foliation superposed on a 
preexisting fold, except that in this case, there may be no 
foliation developed parallel to the plane containing the 
lineation. 

Complex Refolding of Lineations: Many 
natural folds show complex pattems for refolded l.ineation; 
the lineations often lie in arcs intennediate between a smal.l 
circle and a great circle. Such modifications may result 
from layer-parallel shortening prior to folding, 
homogeneous flatteni.ng after folding, or some form of 

Outer arc 

figure 8-28. Effect of buckling 
of individual layers during flexural
slip folding. The small-circle arc 
pattern of lineations is modified in 
the outer and inner arcs of the fold. 
(Adapted from Ramsay, 1967.) 

Nautral surface 

Figure S-29. Passive folding ol 
a lineation. Lineation points lie on a 
great circle oblique to the fold axis. 
(Adapted from Ramsay, 1967.) 
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longitudinal layer-parallel strain accompanying folding. 
Details of these various possibilities are discussed in 
Turner and Weiss (1963) and Ramsay (1967). 

Flexural-Slip Folding of Obliquely Inclined 
Surfaces: Folding of rocks containing two preexistíng 
foliations (S 1 and S2) that are oblique to one another 
results in simultaneous folding of both foliations (Ramsay, 
1967). The foliations could, for example, be bedding and 
cleavage, or two preexisting cleavages, or even cross 
bedding and its enclosing master bedding. The geometric 
pattems resulting from such folding are readily analyzed on 
an equal-area net. During flexural-slip folding, if the 
S 1JS 2 intersection líneation is parallel to the fold axis, 
then both surfaces are földed into cylindrical folds that are 
coaxial (Fig. 8-30a). If, on the other hand, the S1/S 2 
intersection lineation is perpendicular to the fold axis, and 
one surface (S2) is földed into a cylindrical fold, the other 
surface (S2) maintains its dihedral angle with respect t.o S 1 
and is folded in conical fonn, with the cone axis parallel to 
the fold axis for S1 (Fig. 8-30b). Oblique intersections 
between S1 and s2 give rise to more complex pattems, 
with the S 1/S2 intersection lineation falling on a 
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small-circle arc centered on the fold axís for S1, and the 
dihedral angle between S 1 and s2 varying continuously 
around the fold (Ramsay, 1967) (Fig. 8-30c). 

Passive Folding of Obliquely Inclined 
Surjaces: During passive folding the S1ts2 intersection 
lineation is folded (Fig. 8-3la) but still lies in a plane 
defined by its original orientation and the slip direction on 
the hypothetical shear planes. Thus, after folding, the 
intersection lineations lie on a great circle (Fig. 8-31 b ). 
Both s1 and s2 are földed into cylindrical folds with a 
common axial plane (S3) parallel to the shear planes. The 
two földed surfaces have different fold axes (Bl and B2) 
detennined by their lines of intersection with the shear 
planes (Fig. 8-3lb, e). The dihedral angle between S1 and 
S2 generally varies across the fold (Ramsay, 1967) (Fig. 
8-3lc). 

n·Dlagram Analysls of Superposed Folds 

Superposed folding refers to the overprint of a later 
generation of folds over an earlier one. Depending on their 
orientation, the later generation of folding can cause 

Small circle (S2) 

Small circle (S2) 

Great circle (S1.S2) Great circle (S 1) 

a b 

Figure 8-30. Flexural-slip folding of obliquely inclined surfaces. (a) 
s 1;s 2 intersection lineation parallel to the fold axis; (b) s 11S2 
intersection !ineation perpendicu!ar to the fold axis; (e) S 1 /S2 inter
section lineation oblique to the fold axis. (Adapted from Ramsay, 1967.) 
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flgure 8-31. Passive folding of 
obliquely inclined surfaces. S1/S2 
intersection lineation is folded but 
iies on a plane (great circle) after 
fold ing. b 

reorientation of the earlier folds. TypicaUy, in areas of 
superposed folding there are multiple generations of folds 
and multiple sets of foliations. Sometimes, each foliation 
set can be shown to be in an axial-planar orientation with 
respect to a particular generation of folds. ln analyzing an 
area of superposed folding, the füst step is i:O recognize and 
defme domains of plane cylindrical folding of any foliation. 
The folíation that is analyzed may be different in different 
domains. The earliest foliation possible is bedding and is 
usually labeled s0. Successive later foliations are labeled 
S 1.S2, ... , etc. Next, we illustrate how an area of 
superposed folding can be analyzed with the aid of an 
equal-area net Additional examples are provided in Chaprer 
15. 

Problem 8-7 
The example shown in Figure 8~32 is taken from 

Turner and Weiss (1963). The map shows földed foliation 
(S 1). There are two k:i.nds of axial traces: füst, broken 
lines (F2), which are folded; and second, solid lines (F3), 
which do not show any consistent folding. With the aid of 
an equal-area net, analyze the structures shown i.n the map 
of Figure 8-32. Identify structural domains, and determi.ne 
the generation of fold responsible for the orientation of 
foliation i.n each domai.n. 

A x ial pia ne ] 

lssJ 

Method 8-7 

a 

' ' ' 
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Step 1: Divide the map into domains of plane 
cylindrical folding by choosing areas with straight axial 
traces. Plot poles to S1 foliation within each domain on a 
separate equal-area plot By trial and error, adjust domain 
boundaries so that the plot from each domain displays a 
single n-axis; n-axes for different domains will be different. 
The axial trace, determined from the map, and n-axis 
permit calculation of the orientation of the axial plane for 
each domain. 

Step 2: Group the domains based on orientation of 
the axial plane defined by S 1 foliation attitudes within the 
domain. ln this example, we can do this by inspection: 
Domains I to VU have s3 as the ax.ial plane, while 
domains VIII to XIV have S2 as the axial plane. 

Step 3: Draw synoptic diagrams for each group of 
domains: (a) For domains I to VU the fold axes 
(determined from S1 poles) lie on. a great cirde and are 
almost coplanar to S3 planes; (b) for domains VIII to XIV 
the axes (from S1 poles) also lie on a great cirde. The S2 
planes intersect to define an axis that lies on the same great 
cirde as the axes from domains I to VH. GeneraUy, in 
natural examples the older folds do not show such a regular 
pattem because of inhomogeneities that develop during 
refolding. 
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Figure 8-32. n-diagram analysis 
of superposed fo!ding described ín 
Problem 8-5. (Adapted from Turner 
and Weiss, 1963.) 
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Step 4: If s2 and S3 cannot be distinguished by 
inspection, then we can attempt to group the domains 
either by trial and error or by using minor structures (folds, 
axial-plane foliations, intersection lineations) to establish 
age relationships among structures. The latter is usually 

the more fmitful approach, since any macroscopic analysis 
of complex folding is unsatisfactory without the 
information provided by relationships among various 
minor structures, and among minor and major structures. 

EXERCISES 

1 . The following series of attitude measurements were obtained from the limbs of a 
fold: 

106°,36°SW 
150°,45°SW 
079°,40°SE 

N40°E,60°SE 
S03°E,65°SW 
NS3°E,S0°SE 

(a) Plot a 8-diagram using these data. 
(b) Plot a n:-diagram using these data. 
(e) Describe the structural significance of the 8-axis, the n:-axis, and the n-círcle 
gírdle. Give the orientation of each. Which diagram (n: or B) is easier for you to 
interpret? 

2 • A geologist measured a prominent mineral lineation on foliation surfaces of the 
Hightower Gneiss exposed on a horizontal pediment near Tarantula Gulch, 
Arizona. A simplified version of the map of this area is presented as Figure 
8-Ml. The geologist measured the pitch of the lineations. This problem 
emphasizes the fact that geometric calculations can readiiy be done with an 
equal-area net. 

D 
®e 

e 

•s 

"' E" A 

Flgure 8-M1. Map of the Tarantula Gulch 
area for exercise 2. 

(a) Complete the following table. 

i 
1 

~ 

Attitude of foliation Rake of lineation Plunge and bearing of lineation 

A N37°E,30°SE 
B N-S,40°E 
C N23°W,60°NE 
D N55°W,700SW 
E N85°W ,40°s 

42°SW 
n°s 
04°NW 
27°SE 
75°E 
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(b) Using appropriate structural symbols, complete Figure 8-Ml by plotting 
the foliation and lineation attitudes at the appropriate stations. Indicate the axial 
trace of the fold. 
(e) Calculate the attitude of the fold axis, and using your mapped axial trace, 
calculate the attitude of the fold-axial plane. 
(d) Calculate the angle between lineation and the fold axis at each station. 
Based on the results of this calculation, do you think the fold at Tarantula Gulch 
förmed by a flexural-slip mechanism or a passive mechanism? 

3 . Below are attitudes of poles to bedding planes measured around a fold. From 
these measurements determine whether the fold is cylindrical or conical. 

16°,NI0°E 
47°,N16°W 
37°,N75°W 

38°,N02°W 
500,N49°W 
24°,N82°W 

Poles to bedding 
N 

Poles to cleavage 
N 

. . . 
.· .. ... +-. . . . . 

(a) 

Poles to small 
strike-silp faults N 

. . . 
•• „" 

... . . . 

--:»·;:_ 
(e) 

• • • 0 

„ •• : 

. .·. 
: : : . . . . 

... 
··"· . . . .. . 

+-

(b) 

. . ... . . ... 
fi. "'.„·:„ „ 

··.· 

Figure 8-M2. Equal-area plots of structural 
data from a fold-thrust belt for exercise 4. (a) 
Poles to bedding; (b) poles to cleavage; (e) 
poles to small strike-slip faults. 
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4. Figure 8-M2 provides several equal-area plots of structural data collected in a 
fold-thrust belt. If you wish, you may reduce a Schmidt net to the appropriate 
size to determine carefolly the attitudes of the structures shown, but you should 
be able to estimate the attitudes of structures from the equal-area plots. 

(a} Estimate the attitudes of the structures shown in each plot. 
(b) Describe the contour pattem (e.g., a girdle, a point concentration). 
(e) With the results of part a, construct a synoptic diagram of the data. 
(d) Write a brief interpretation of the structures in the area. 

5. The scatter plots of Figure 8-M3 show the attitudes of two types of cleavage that 
were measured on an upright syncline with a horizontal hinge. Cleavage A is a 
slaty cleavage found in beds of fine-grained slate. Cleavage B is a spaced 
cleavage found in beds of slightly micaceous quartzite. 

Cleavage A 

(a) Describe the differences between l.he two plots. 
(b) Which cleavage is more lilcely to represent the axial-plane attitude of the 
foki? 
(e) If you are familiar w.ith the process of cleavage fonnation, explain why the 
two plots are so different from one aoother. 

N 

+ 

(a) 

. . ... 
• <II ... „ 

& : '9 

Cleavage B 
N 

.. . . 

·+ 

(b) 

figure 8-M3. Equal-area plots of structural data from a syncline. (a) 
Poles to slaty cleavage set A; (b) poles to spaced cleavage set B. 

6 . Figure 8-M4a shows a contoured equal-area plot of poles to foliation in a 
Precambrian augen gneiss that occurs in the Buckskin Mountains "metamorphic 
core complex" of Arizona. The plot was contoured by the Schmidt method, and 
the contours are at 2%-4%-6%-8% per l % area. The area within the 8% contour 
is blackened. Figure 8-4Mb shows a contoured equal-area plot of lineations in 
shear zones that cut the foliation of the mylonües. Interpret these plots by 
answering the following questions. 

(a) Is the augen-gneiss foliation földed, and if so what is the approximate 
attitude of the axes associated with the folds? 

173 



174 Elementary Techniques Part 1 

Poles to fohat1on N Line a !Ion s N 

+ 

n:435 

(a) (b) 

Flgure 8-M4. Contoured equal-area plots of structural data from the 
Buckskin Mountains. The small 'n' signifies the number of 
measurements represented on the plot. Contours are at 2%-4%-6%-8% 
per 1 % area. (a) Poles to foliation planes in augen gneiss; (b) Lineations 
in shear-zone rocks. 

(b) What is the geometric relationship between the su·ucture displayed by the 
augen gneiss and the shear zone Iineation direction? 
(e) Assume that the lineation in the shear zones is down-dip. Estimate the 
orientation of the shear zones. 

7. Your instructor will provide structural data plotted on an equal-area plot that is 
the same size as the plots provided in Appendix 4. Use one or more of the 
contouring methods descríbed ín this chapter to construct a contoured plot of the 
data. 

n:166 



PART 

11 
E 1 LT IC 

The purpose of this part is to provide an introduction to the specialized techniques that 
are used in subdisciplines of structural geology. Included in this part are discussions of 
how to: interpret geologic maps, interpret the results of rock-deformation experiments, 
describe natural fracture arrays, describe mesoscopic and microscopic structures (such as 
folds, shear zones, and foliations), construct cross sections of folds, balance cross 
sections, measure two-dimensional strain ín rocks, and analyze polydeformed terranes. 
Each chapter is self contained, so a few subjects are discussed in more than one chapter. 
The chapters have been edited so as to conform to the overall style of the book. 
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CHAPTER 

ASPECTS 
OF GE L GIC 

MAP INTERPRETATION 

Lucian B. Platt 

9·1 INTRODUCTION 

Map rnak:ing is a fine art. To appreciate fuHy and to 
understand a geologic map tak:es thoughtfol and carefol 
analysis. The purpose of this chapter is to explain what 
geologic maps show and do not show and to provide 
illustraüons of the process of map analysis. A geologic 
map is a sublle combination of observed facts and 
interpretations. The skillfül map reader can sort out some 
of these, but how? We consider füst how information is 
displayed on a map, and then, using techniques developed 
in earlier chapters as well as some additional methods, we 
consider what one might anticipate leaming from a map. 

A geologic map shows the distribution of different 
kinds of rock.s at the surface of the earth. If you want to 
know the location of a particular kind of rock, say 
granodiorite ín southern Montana, apparently all you have 
to do is find that unit in the map explanation and then 
locate its color or pattem or other identifying symbol on 
the map, right? The locatio11 of the granodiorite symbol 
on the map corresponds to the location of the rock on the 
ground, and some people thi11k there is nothing more to a 
geologic map than this. On l.he contrary, a geologic map 
is a treatise on the geology of the area depicted that can 
provide ínformation on the geometry of structures and on 
the geologic history of the mapped region. In the case of 
our granodiorite, its contacts with adjacent unüs might 
demonstrate when it was intruded, whether it has been cut 
by faults or whether it cuts faults itself, and whether it had 
been exposed to erosion prior to the present erosion cycle. 

To read a geologic map on a two-dimensional piece of 
paper and to grasp the four-dimensional aspects (including 
time) of the geology portrayed requires practice and 
attention both to details a11d to the overall map pattern. 
This chapter will help the map reader sort out map data and 
detect inconsistencies, contradictions, and errors in the way 
that structures are expressed 011 a map. It is not intended to 
be an aH-inclusive monograph on geologic maps but rather 
to provide an i11troduction to the thought process involved 
in map interpretation. 

9-2 LIMIT A TIONS OF MAP SCA.LE 

Geologic maps are prepared and published at many scales, 
from 1:5,000,000 for North America (Goddard, 1965) to 
1:5,000 or even larger for some mines. Regardless of the 
scale, good maps are almost cluttered with details; that is, 
they have a similar amount of information per square 
centimeter of map. The scale of the map, however, limits 
the scale of the information it can display. For example, l 
mm on a map at a scale of l:l,000,000 represents l km on 
the ground; no ink line is thin enough to show the details 
of structure on a hillside on such a map. Obviously, 
enlarging the 1:1,000,000 map does not produce a map 
with greater detail. 

At 1:25,000, a common scale for current geologic 
maps, a fine line that is 0.25 mm 011 the map covers a 
swath of 6 or 7 m (about 20 ft) on the grou11d. This line 
can show a feature the size of a hillside, but it cannot show 
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the details of folds in an outcrop. Of course, the contour 
lines on a topographic map have a finite width too, and the 
accuracy with which they are drawn limits the details a 
geologist can show. Clearly, there is a minimum size of 
feature that can be illustrated with lines on any particular 
map. 

9-3 OBSERVING lOCAl DETAILS 
ON A MAP 

A geologic map is a collection of details that should fit 
together to form a meaningful pattem. ln looking at the 
geology of a relatively small area (a few square kilometers) 
of stratified rocks the sequence of which is known, it is 
useful to keep in mind the following propositions: 

1. Mappable units (formations or members that can be 
indicated on the map at the scale of the map) or key beds 
(marker horizons that can be followed through the map 
area) are laterally continuous, at least locally. Thus, where 
a unit or key bed is offset by displacement on a fault, it 
does not vanish into oblivion but rather should appear 
somewhere on the other side of the fault. 

2. A mappable unit has a finite thickness, so it has a 
definite top surface and a definite bottom surface, which are 
not the same plane. Rock layers are not Möbius strips, so 
regardless of whether you know which side of the unit is 
stratigraphically younger, the top contact at one locality on 
the map cannot magically become the bottom contact at 
another locality. 

".l. fo 111'.n!'r11l !lifforPnt rock tv!'lf'.s nmduce different 
-- ~ 

topographic expressions, because of their different 
erodability. 

Next, we illustrate how these propositions can be used 
to recognize local geological details on a map. 

Example 9·1 

Scrutinizing small particulars of topography can allow you 
to identify pertinent particulars of geology. Figure 9-1 
shows contour lines on a hill. Every contour line has two 
sharp comers. If you connect these comers on adjacent 
contour lines, you trace out on the map the edge of a hard 
rock layer up the northwest side of the hill and down the 
northeast side. If you connect two comers on the same 
contour line, you trace a strike line on the resistant bed. 
The strike lines are progressively higher southward, so the 
beds dip north. As a useful exercise, choose an arbitrary 
scale and contour interval for this figure and then reckon 
the implied angle of dip. For example, if tt.e contour 
interval is 10 m and the strike lines are 50 m apart on the 
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Figure 9-1. Sketch map showing a pattern 
of contour lines. The pattern contains clues to 
the attitude of strata on the hill slope. See text 
for explanation. 

map, the layer has a grade of 20%, equal to about 100 of 
dip. A calculator would give the dip to several decimal 
places, but such precision does not match the quality of the 
data and thus is unwarranted. Clearly, a geologic map, by 
its very nature, cannot be squeezed to disgorge data to four 
significant figures, but it can produce hard data nonetheless. 

As another example of how to pay attention to local details 
on a map, we will examine how the displacement of 
contacts by a fault might be misinterpreted. The map in 
Figure 9-2 does not have any contour lines, but it is 
reasonable to assume that the little intermittent creeks flow 
down little valleys. The northern contact between units A 
and B dips south at some moderate angle, but at Wet Creek 
the contact does not continue up the east bank. The same 
contact between units A and B is shown dipping north less 
than a kilometer to the south, so units A and B are in a 
littJ„ "~""li""' Thl'. nnrth fürnk of thi<: 11yndin~ l'IOnP.l'lrS to 

have a steeper dip, because the V of the contact is shorter 
on that side of the fold. 

unit A 
'.1 

unit B 
. I 

~~'s 
' j ,,· 

unit A \ / .. "e,~'*-
\1 /(;<.. 

; .·, 
1 .. /~,0 :1 ...,., 

1 
't' 

0 km 

Figure 9-2. Sketch map showing the 
contacts bet~vecn units A and B near 'vVet 
Creek. 
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Because the contacts on each limb do not continue 
directly across Wet Creek, the creek probably runs along a 
fault, but we do not yet know the offset on this fault. If 
the fault is down on the east side of the creek, the contacts 
should be wider apart on that side. If the fault is up on the 
east side of the creek, the contacts on the limbs should be 
closer together. Strike-slip movement on the fault would 
displace both contacts in the same dírection and by about 
the same amount. It is clear that the contacts must be 
located with care if the fault is to be properly understood. 
The position of the outcrop of unit B alone on the east 
bank of Wet Creek does not adequately constrain the sense 
of movement on the fault; we need to know the positions 
of the contacts themselves. 

ln Figure 9-3 the carefülly located contacts on the east 
side of Wet Creek are shown. The implication of the 
offsets of these mapped lines is that the east side of the 
fault went down relative to the west side. Even though the 
fault surface itself is not visible, its existence is thereby 
established. 

unit A 

unit A 

figure 9-3. Sketch map showing contacts 
between units A and B near Wet Creek. Trace 
of the Wet Creek fault is also shown. 

By giving attention to details, we obtained a lot of 
information from Figure 9-3 about the geometry of 
structures in the area of Wet Creek, even though no 
contours and no dips are shown. We were not able, 
however, to estimate the dip of the fault, but we could if 
the fault continues north over the hill and down the other 
side. This example has been an application of the füst 
proposition - that units continue and their contacts 
continue. 

9-4 UNDERSTANDING INTERSECTIONS 
OF GEOLOGIC CONTACTS 

A line on a geologic map is the trace on the land surface of 
the contact between two mappable units regardless of 
whether that contact is a thrnst fault separating upper plate 
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from lower plate rocks or whether it is the conformable 
surface between successive formations. Y ou should focus 
special attention on how and where lines join or intersect 
on a map, because such intersections define the chronology 
of geologic evems in the map area. What kinds of 
intersections are possible? The following example 
discusses relationships shown in the sketch maps of Figure 
9-4a-c. Notice that the line pattem, by itself, is nearly the 
same in aU three cases, yet the geologic relationships 
depicted in each case are quite different. 

Dsh 

(b) 

Sd --------

Tcgl 
Dsh 

(a) 

(e) 

Tcgl - Tertiary conglomerate 
Kg - Cretaceous granodiorite 

Dsh - Devonian Shale 
Sd - Silurian do!omíte 

-E:ss - Cambrian sand5tone 

flgure 9-4. Types of cross-cutting relation
ships. (a) Unconformity; (b) thrust fault; (e) 
intrusive contact. 

Example 9-3 

ln Figure 9-4a Tertiary conglomerate overlaps the conta~t 
between two Paleozoic formations. From this pattem the 
unconformity at the base of the Tertiary unit is clear. The 
Paleozoic rocks were exposed to erosion one or more 
times, including the last day before deposition of the 
Tertiary conglomerate. We cannot determine from the map 
whether Upper Paleozoic and/or Mesozoic strata were 
deposited in the area; if they were, they were completely 
removed by erosion. Figure 9-4b shows a sírnilar pattem 
of lines, but the geologic relations are quite different. ln 
this figure the edge of the Cambrian rocks lies across the 
contact between Silurian and Devonian rocks, and the map 
symbol shows the edge of the Cambrian to be a thrust fault 
placing the older rocks on top of the younger. The 
younger rocks presumably strike north, parallel to their 
mutual boundary. Figure 9-4c shows that a Cretaceous 
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granodiorite intruded into Paleozoic sedimentary rocks. ln 
each of the three cases (Fig. 9-4a-c) the curved contact is 
the youngest contact shown; in Figure 9-4b the oldest 
rocks are inside the curve, whereas in Figure 9-4a and e the 
oldest rocks are outside the curve. 

The intersections of lines in Figure 9-4 are easy to 
interpret once the symbols for the units and the contacts are 
recognized. Combínations of these maps require 
systematic and stepwise appraisal. Such an analysis is 
carried out for the map in Figure 9-Sa, starting with the 
youngest rocks. 

Dsh u 
D 

Kg 

Tcgl 
Kg 

Sd 

(a) 

Dsh Dsh 
u Kg 

Osh 
Tcgl 

Kg 

Sd 

(b) 

Figure 9-5. Figures for interpretation of 
cross-cutting relations. The symbols on these 
maps are the same as those used on Figura 
9-4. 

ln the map of Figure 9-Sa, Tertiary conglomerate lies 
unconformably upon Silurian dolomite and Devonian 
shale. Unit Tcgl also overlies and is younger than the fault 
striking east from its edge. Because the thrust fault is not 
covered by the Tertiary conglomerate, ít might seem, at 
first glance, that either feature might be younger. Let us 
turn our attention to the next older unit, the Cretaceous 
granodiorite. The granodiorite is older than the 
east-striking fault but is younger than the thrust. Thus, 
the map relations demonstrate the following sequence of 
events: (1) deposition of the Paleozoic rocks, (2) thrusting 
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of the Cambrian rocks over the Middle Paleozoic rocks 
some time before the intrusion of the Cretaceous 
granodiorite body, (3) movement on the normal fault, and 
(4) deposition of the Tertiary conglomerate. 

The map explanation indicates the ages of the units. 
The way that the contacts between the units intersect and 
offset one another proves that the thrust fault is older than 
the granodiorite, which in turn is older than the 
east-striking fault, which in tum is older than the Tertiary 
conglomerate. Therefore, the Tertiary conglomerate must 
be younger than the thrust fault, even though the fault and 
the conglomerate do not touch on the map. 

The map ín Figure 9-Sa was drawn in 1924. Recently, 
a geologist studied the area again, with the aid of aerial 
photos and an improved topographic base map, and 
produced the new map shown in Figure 9-Sb. The new 
map is quite similar to the old map, but on the new map 
there is a south-striking fault that offsets the Silurian/ 
Devonian contact before disappearing beneath the thrust 
plate of Cambrian rocks. The new map has revealed 
something new and interesting about the geologic history 
of the area, namely, that there was some normal faulting 
prior to the thrusting. Not only does the south-striking 
fault offset the Silurian/Devonian contact, but it also 
offsets the east-striking fault to the north. The east
striking fault displaces the border of the Cretaceous 
granodiorite body, which, in turn, cuts off the thrust. 
Now, note that the depiction of the newly discovered 
south-striking fault yields an interestíng relationship! This 
fault, as shown, is both older than the thrust and younger 
than the (younger) granodiorite. Either there is an error in 
the mapping or there was a recurrence of movement on the 
northern part of the fault. 

Analysis of the intersection of lines on Figure 9-Sb 
has brought to light a problem in the depictíon of geology 
on the map. The sixth part of this chapter will deal fw1her 
with problems on maps, but first we will review two more 
considerations useful in evaluating maps. 

9-5 IMPLICATIONS OF UNIT THICKNESS 

We have studied how the outcrop width of a unit varies 
with its thickness, its dip, and the slope of the ground (see 
Chapters 4 and 5). ln this section we will see how 
examinalion of the variations in outcrop width can help 
locate hidden structure. 

Example 9-5 

Figure 9-6 is a cross section of a conformable stack of 
stratified rocks that dips 30° to the east. If the map 
explanation indicales that each unit is 500 m thick, then 
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0 km 2 

Flgure 9-6. Gross section illustrating width 
of outcrop belt as a function of unit thickness. 

each unit will form a band that is 1 km wide 011 the 
ground. This is illustrated by the triangle in unit D; this 
30°160°190° triangle has sides whose lengths are in the 
ratio 2:1:.,/3. A similar conclusion about the expected 
width of a formation can be made in any situation. 

Figure 9-7 is a cross section sketched on the graph 
paper in a field notebook to the scale of the geologic map 
being examined. These are the same units shown in Figure 
9-6 and have the same thickness (500 m each), but here 
they dip 70°. Unit D is exposed on a hill sloping west at 
20° with unit C beneath it. Across the alluvium-filled 
valley, the contact between units A and B is also dipping 
east at 70° on a slope of 25° east. Again, as in Figure 
9-6, the five units are apparently in order across the valley, 
although the contact between units B and C is covered by 
alluvium. Nevertheless, a glance at Figure 9-7 indicates 
that something is not quite satisfactory; the valley is too 
wide l.o be underlain by only 1000 m of 70°-dipping strata 
(500 m of unit Band 500 m of unit C). The cross sectíon 
does not provide a hint of what to do about this anomaly; 
the rest of the map should give an indication of a possible 
solution (e.g., a fold or a thrust fault that thickens the 
section, a norma! fault that extends the section, or a big 
sin). Obviously, one should look at the ends of the 
aUuvium to see what emerges from beneath it 

So far in this chapter we have made several 
suggestions conceming how to read relations on a map. 
Even the simple fact of continuity - that there arc no open 
gaps in the earth - can force you to question a map, and 
questioning will lead to further discovery. Thus, in Figure 
9-7 something mysterious (an unknown structure) is under 
the alluvium, because there is simply too much space for 
the alluvium to be underlain by only units B and C. It 
follows that, whatever the rnysterious feature is, the 
positíon of the contact between units B and C is unknown. 

figure 9-7. Gross section illus
trating a problem in the repre
sentation of unit thickness. 

A 8 

0 

9·6 STEPS IN ANAl YSIS 
OF GEOLOGIC MAPS 

1 81 

Previous sections of this chapter considered certain 
particulars on gcologic maps and what such details imply. 
Section 9-2 pointed out that the map scale limits the size 
of visible features, and Section 9-3 brought out the fact 
that little local pictures must fit together to make a big 
picture. One kind of little picture was emphasized in 
Section 9-4, namely how contacts and faults meet and 
offset or overlap one another. In this section we use these 
considerations to assess how the separate parts of a 
geologic map work together to give an image of the area 
depicted. 

Checklng the Map Explanauon 

How do you start? The map explanation is a good place. 
After checking the scale and the map orientation, the same 
questions may occur to you as are directed at any piece of 
science: Who, what, when, where, why, and how? 

1. Who did the mapping? Different geologists have 
different points of view. Interpretive bias can strongly 
control the way in which structures are depicted. 

2. What does the map purport to show? Ask ifit is a 
sketch map or an outcrop map (i.e., what level of 
interpretatíon is depicted and if the contacts shown are 
intended to show the exact or the general location of a 
feature). 

3.Where is the map area? What is the regional context 
in which the map area occurs? Such information can help 
you predict the suite of structures (e.g., styles of folds and 
faults) that may occur in the map area. In addition, 
consideration of the location of the mapped area can affect 
your confidence in the map; map relations shown on a map 
of a jungle swamp are probably less tightly constrained 
than relations shown on a map of a desert range. 

4. When was the mapping done? Remember that 
maps are, at some levei, interpretations, and that 
interpretations change as geology advances. If the map is 
good, geologic relations should be depicted correctly 
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regardless of whether the map is old or new. Be 
particularly careful to check whether the stratigraphy of the 
map area was still in doubt at the time the map was made. 

5. Why was the map made? Some maps are made 
solely for the purpose of depicting the general geology of 
an area, whereas others are made to solve a specific 
geologic problem. For example, if the mapper was 
interested in locating gem-bearing pegmatites, the map 
may not show folds in the country rock even if they are 
present; if you are interested in the folds, you are out of 
luck. On the other hand, if the mapper was looking for 
gold placer deposits, and you are interested in tracing an 
unconformity, you may find that the map does show what 
you want--the position of postunconformity gravel. 

6. How was the map made? Was the map the result 
of a reconnaissance project or a 9-year detailed analysis? 
Did the geologist making the map have an accurate 
topographic base on which to plot the geology? The detail 
of the mapping partly determines the confidence that you 
should have in the map. 

Scanning the Map 

Giving the map itself a "once-over" is time well spent. 
Such a scan of a geologic map can help you assess the 
quality of the map and give you a feel for the style of 
geology in the map area. When scanning a map, you may 
ask the following questions (in no particular order): 

1. Does the map seem orderly or is it just a tangle of 
lines and blobs? Some maps show no systematic 
~rr<tc11gern"'lt of rlifforent lcind<: nf rock<:: rather. they show a 
disorderly collection of patches of the units identified in the 
map explanation. The map may have this appearance 
because of (a) poor exposure in the map area (as may occur 
in country with glacial deposits); (b) slumping in the map 
area; or (e) breakup of the mapped area by nonsystematic 
faulting and folding. 

Even if exposure is poor and/or units truly lack 
continuity, the map should show the geologist's 
interpretation of how discrete exposures relate to one 
another. One way to do this is to display actual outcrop in 
more vivid color than the inferred extensions of units. 
Another way is to specify in the explanation that one of 
the mapping units consísts of "blocks in shale." If no 
such effort has been made, and the map looks like a "blob 
job" of this and that here and there, it is not a very useful 
map. ln areas of terrible exposure the mapper may feel 
reluctant to offer an interpretation that systematizes what 
little is known. ln a sense this reluctance is an avoidance 
of responsibility, because who is better qualified to 
interpret a map area than the person who walked armmd it? 
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Keep in mind, however, that not all map areas are equally 
interpretable; in some localities, the exposure may be so 
bad that many interpretations are viable, and all 
ínterpretations must be viewed with skepticism. 

2. How well documented are contact traces? ln some 
regíons it is possible to put your finger on a contact, but 
in many localities it is not. Y ou can get a sense of the 
constraints on contact positions in stratified or foliated rock 
by seeing how close attitude measurements in adjacent 
units are to a contact. If they are close, the position of the 
contact is probably well constrained. 

3. Are contacts among units orderly and is there a 
systematic relationship between suites of structures? There 
should be a systematic arrangement of rock types, and their 
contacts should also be orderly. For exarnple, does one set 
of faults systematically offset a second set of faults with a 
different strike, or is the fault pattern a mosaic in which 
faults with one strike both cut and are cut by faults with 
other orientations. The four faults in Figure 9-8 form a 
tangle, a sort of mosaic. Which fault is younger than 
what? Another anomaly in this map is that no fault 
continues across any other. The pattem of Figure 9-8 is a 
peculiar map pattern of interlocking and nonsequential 
faults. If you find such a pattem on a map, you should 
suspect the quality of the map. Although there are 
inherent difficulties in determining relatíve offsets, places 

Flgure 9-8. Sketch map of a fault mosaic. 

where one fault intersects another deserve special attention, 
because it is necessary to know which fault is the older in 
order to understand the geologic history of the area. 

Let us clarify what we mean by "inherent difficulties" 
in the previous sentence. Consider two formations 
separated by a fault oblique to their outcrop belts on the 
map. ln terrane of reasonable exposure, outcrops may be 
found anywhere in either belt that can provide opportunities 
to determine the local attitude of the formations. ln 
contrast, most faults are rather thin sheets and consist of 
crushed material that is more easily eroded than the 
uncrnshed formations away from the fault. If a fault 
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surface is not exposed, one cannot measure its attitude 
directly. Rence, to measure offsets along fauhs, the field 
geologist needs to make an extra effort to establish 
locations of attitudes and formation contacts as close as 
possible to the fault. Thus, a question that you can 
legitimately ask while evaluating a map is whether it 
shows attitudes dose to faults, especiaHy where they cross. 
Again, remember to check whether the fault offsets are 
systematic or tangled. 

4. Do the interactions between contacts and topo
graphy make sense? If layer auitudes are indicated on the 
map, make sure that the contacts cut across topography in 
an appropriate manner (see Chapter 5). If layer attitudes are 
not shown, be wary if the V-direction of a contact as it 
crosses adjacent valleys is not consistent. 

5. Do displacements on faults make sense? As you 
follow the trace of a fault, contacts that are cut by the fault 
should be displaced. Y ou may have seen a geologic map 
on which two faults cross without any offset of one by the 
other. Although this is possible, just as it is possible for 
a fault to cross a stratigraphic contact without displacing it, 
it is only barely possible (Redmond, 1972). Unless the 
displacement on a fault is so small that it cannot be 
portrayed at the scale of the map, a fault that does not 
displace a contact or any other kind of surface must have 
slipped exactly parallel to the trace of the contact on the 
fault. Possible slip directions on a fault range over 1800, 
but only one direction of slip can produce slip without 
offsetting any specific other plane. The intersection of a 
fault with a contact is rarely a perfect X, and the 
intersection of two faults is probably never a perfect X. 
Places where faults intersect deserve speciai attention. 
Getting an attitude measurement on a fault is nice work if 
you can get it, but because of the erodability of faults, such 
measurements are often impossible. In order to document a 
fault, a geologist needs to establish attitudes and contact 
positions as dose as possible to the fault. 

6. Do fold patterns make sense? Make sure that the 
hinges, crestlines, or axial-plane traces of folds in the map 
area are indicated by a map symbol. If a dip reversal occurs 
and no fold symbol is present, there is a problem. 
Remember that two adjacent antiforms must be separated 
by a synform or by a fault Check that the type fold 
indicated is compatible with the progression of strata from 
core to limb (e.g., on a sirnple upright anticline, the oldest 
rock is in the core and the youngest rockon the limbs). 

Example 9~6 

Keeping in mind the preceding questions, we wiH scan a 
map and see what turns up. The map, Figure 9-9, is 
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adapted from a map of part of the Great Basin in the 
western United States. Thís puts things in a regional 
context. We know that the Great Basin is a region that 
was affected first by thrust faulting and Iater by normal 
faulting, so we will anticipate seeing examples of both 
types of structures. We also know that the Great Basin is 
an arid region and that carbonate units should form steep 
slopes. At the scale of the map and at the contour interval 
shown there is nearly 2 km of relief in a distance of less 
than 8 km from the southeast part of the map to the 
northwest part. The ground is therefore steep, so 
considering the arid climate, good exposures are virtuaHy 
assured (in fact, diffs and ledges might limit where a 
geologist can walk around). 

The map explanation identifies seven formations by 
the symbols SI (for Lower Silurian) through M (for 
Mississippian). The brief descriptions of the map suggest 
that the units can be identified with confidence by anyone 
who 1.ries. The lack of talus or any other Quaternary map 
unit is notable (it may imply good exposure of bedrock or 
maybe just lack interest on the part of the mapper 
concerning Quatemary units). 

A single glance at the map itself reveals several 
problems. Overall the map shows too few attitude 
measurements for an area of 70 kffi2 of probably good 
outcrop. Many of the faults are drawn with solid lines, 
suggesting that the map's author considered that their 
position was well constrained, yet few auitude symbols are 
shown near the faults, and no direct measurements of fault 
attitudes are indicated. W e count eight fault intersections 
without any offset (see Question 3 above). Ali the faults 
except the thrust were drawn straight regardless of 
topography; to find this many vertical faults in an area is 
unusual. Not one of the faults lies in a gully, although 
one might expect shattered carbonates along the faults. At 
three localities northwest-trending faults are truncated at 
their junction with the northeast-trending faults, but their 
continuations cannot be found. Again, we should be 
suspicious, even though it is possible that the contin
uations of the truncated faults are outside the map area. 

In the middle of the map there is a belt of Middle 
Silurian sandstone dipping homodinally northeast at about 
200. The outcrop belt between the two northwest-trending 
faults is almost 3 km wide. This outcrop pattem suggests 
that the unit is about 1200 rn thick (note the 1400-m 
contour line at the southwest and northeast edges of the 
patch and note that sine 20° "" 0.34), but the map 
explanation claims that it is only 800 m thick. Either 
there is a contact missing, or the unit is not continuous 
and homoclinal within this fault block. The inaccuracy in 
the thickness represéntation makes us suspect that the map 
is incorrect or incomplete. 

Another potential problem is in the northwestern part 
of the map where Mississippian rocks (dipping 23° to the 
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Su 

Sm Sandstone, calcareous, outcrops rare, weathers to blocks, 800 m thick Normai fault, dashed where approximately located; 

SI Limestone, gray lresh and weathered, high ledges, about 600 m thick 
D is on relatíve downthrown side and U is on relatíve 
upthrown side 

0 km 3 contour interval is 200 m 

Figure 9-9. Geologic map of a portion of the Great Basin. Several 
errors exist on the map. 

northeast) are exposed on a topographic saddle. On the 
south side of the saddle, Upper Devonian silty limestone 
dips under the Mississippian unit, but the younger unit 
seems to dip beneath the Devonian unit on the north side 
of the saddle. 

No fold hinge i.rdCes are shown on the map, despite the 

fact that bed dip direction in some localities is northwest, 
whereas in other localities it is southeast. The discordance 
in dip directions could be a consequence of rotation of fault 
blocks. We need to look more closely to see if dip 
directions within a fault block are uniform. In most of the 
biocks thcy are, but in the west-central part of the map 
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there is a block where strike changes from northeast to 
northwest over a very short interval, and it is likely that a 
fold should be indicated. 

Our initial scan of the map has tumed up so many 
anomalous situations that we might conclude that the map 
is not dependable. If we sift carefüHy, however, we can 
derive usefol information from it First, because the units 
are distinctive, we infer that the units are correctly labeled 
as to dip location and direction. Unit contacts seem 
reasonable; shallowly dipping contacts closely follow 
contour lines, and moderately dipping contacts appear to 
show the appropriate V-pattem. Because the geologist 
probably walked along the ridges where the attitude 
symbols are marked, contacts and faults may well cross the 
ridge where they are shown. The map suggests that there 
may be two sets of faults, one striking northeast and 
another striking north-northwest. A single thrust fault 
occurs in the area, but the trace of this fault has been 
broken up by later faulting. The thrust fault is shallowly 
dipping; in the eastem half of the map, the fault clearly 
dips to the east. The th...rust fault seems to have the same 
attitude as adjacent bedding, and it always lies between 
units Sm and Su; it does not cut across stratigraphy in the 
map area. We should wonder, however, about the 
significance of the fault; the units juxtaposed by the fault 
are in their proper stratigraphic sequence, with the younger 
unit above the fault and the lower unit below. Is the lack 
of stratigraphic repetition reasonable for a thrust fault? Ifit 
is, then the fault is a bedding-plane "flaf' (see Chapter 14). 
From the map data, however, we cannot completely rule 
out that the fault is a low-angle normal fault. 

ln summary, our exarnination of the map and its 
explanation has unearthed several severe problems, but we 
can realistically infer that middle Paleozoic sedimentary 
rocks in the area dip gently to moderately northeast Faults 
are numerous, have uncertain dips, and intersect in 
unknown ways. ln view of the numerous problems we 
must admit that we cannot significantly improve this map 
with one single change or one simplifying hypothesis. ln 
this area, one day invested climbing up to find out how one 
fault intersection actually maps out in detail would not 
clarify the situation much. Some problems with particular 
maps do lend themselves to the consideration of altemative 

Figura 9-10. Geologic sketch 
maps showing details of fault 
relationships along Wet Creek. 

/ 
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hypotheses that significantly improve the map. The next 
section of this chapter deals with two such examples. 

9· 7 THE METHOD OF MUl TIPLE 
WORKING HYPOTHESES 

Look again at Figures 9-2 and 9-3. When these were 
· discussed early in this chapter, they iUuminated the 
proposition that contacts continue, although offsets across 
faults are interesting. ln discussing these examples, we 
automaticaHy considered alternative interpretations: What 
if geometry X? What are the possibilities if I know 
geometry Y? How do I efficiently test these altematives -
that is, what data can I collect to discriminate among them? 

Example 9-7 

Figure 9-2 presents an outcrop of unit B directly across the 
creek from the contact between units A and B, so at first 
glance it appears that the east side of Wet Creek fault must 
have gone down; a more carefu! look offers other 
possibilities. The location of the outcrop at B, 100 m east 
and a bit above the creek, actually does not preclude any 
displacements on Wet Creek fault except east side up by 
enough to eliminate unit B on the east side, because the 
contact downhill · from that outcrop is not located. Figure 
9-10 provides the local map pattem resulting from each of 
three possible interpretations of the geology in this area: 
In Figure 9- lOa the fault is up on the east, or is left-lateral; 
in Figure 9-1 Ob the fault is down on the east, or is 
right-lateral; in Figure 9- lOc no fault is necessary to fit the 
local exposures. Corroborating evidence for and against 
these possibilities is necessary to test them. Such evidence 
was provided by exposures of the north side of the syncline 
farther up Wet Creek. 

An important concept is illustrated by this simple 
example. If the geologist mapping this area had already 
decided what kind of fault the Wet Creek fault was - had 
arrived at Wet Creek with a bias in favor of strike-slip 
faults, for example - he or she might not have visualized 
the several other possible interpretations of the area and 
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thus might not have paid sufficient attention to the offset 
of the northem contact between units A and B shown in 
Figure 9-3. This method of considering altematives as one 
goes along has been known since the late nineteenth 
century as the method of multiple working hypotheses 
(Chamberlin, 1890; 1897). It is an essential method of 
thinking about geologic maps and is useful in many other 
endeavors. Indeed, it is so important in all kinds of science 
that the American Assocíation for the Advancement of 
Science maintains a stock of reprints of the 1890 article. 

Example 9·8 

Analysis of Figure 9-11 puts the method of multiple 
working hypotheses to work. This map could be from a 
low wooded island in a regíon with known Jurassic and 
Cretaceous stratigraphy and complex structural history, 
including thrusts and normal faults. The map has a fault 
mosaic somewhat like the mosaic in Figure 9-8, but in 
Figure 9-11, fault Y is offset by fault Z; both are shown 
with solid lines, and dips are recorded near the intersection, 
so we can have confidence in this offset relationship. The 
contacts and dips shown will aid us in interpreting this 
map, which we could not do with Figure 9-8. 
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Figure 9-11. Geologic sketch map showing 
a fault array with an impossible sequence of 
faulting. Faults are indicated by heavier lines. 

Having recognized the fault mozaic, we consider what 
might be done to alter the map so that the mosaic is sorted 
out. The southwest part of the map is a place of interest 
because the faults and contacts are dashed; outcrops are not 
abundant here, so this is a place to consider altematives. 
Figure 9-12 offers two possibilities, neither of which is 
much of a change, although each shífts the fault 
internections a bit In the upper diagram, fault X is dearly 
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Figure 9-12. Alternative modifications to 
the fault array shown in Figure 9-11. 

the youngest, and fault Y appears to be older than X or Z. 
This partly sorts out the mosaic, but fault W is left out of 
the sequence. ln Figure 9-12b W is the youngest fault, and 
Y is the oldest, but X and Z terminate against other faults. 
We also note that the Ju/Kl contact displays right-lateral 
separation, which is opposite to the sense expected if the 
fault is down on the west, as indicated by the D and U 
symbols. Perhaps we should reverse the sense of 
displacement. Neither of these modifications yields an 
ideal map, but each demonstrates the thought process called 
the method of multiple working hypotheses. 

9·8 SUMMARY 

A geologic map is a subtle combination of creative art and 
rock-hard fact. The factual part is placed on the map first 
by the field geologist and should get füst attention in your 
ana!ysis of the product, but at kast. a bit of creativity is 
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included in the map and deserves your auention when 
reading it. 

This chapter began by discussing how the scale of a 
map restricts what it can include; thus, hill-scale folds 
cannot be shown on a rnap of the whole state of Colorado, 
and regional trends may not be apparent on a single 
quadrangle. In the next three sections we used little maps 
of stratified rock to demonstrate how to recognize various 
structural relationships on a map. We could not discuss all 
possible features, but the geometric aspects of Figures 9-4, 
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9-5, and 9-7 can be carried over to situations not illustrated. 
Throughout the chapter the map explanation was 
emphasized as an integral part of a geologic map, and a part 
that you must examine carefuHy; it is a specialized 
dictionary in which the formations and symbols on the 
map are defined. We also discussed the difficult procedure 
of evaluating a map and discovering its inconsistencies. 
Critical map makers and users rely on the method of 
multiple working hypotheses to help in construction or 
interpretation of a map. 

EXERCISES 

This group of questions is designed to get you to think through explicit map 
relations. They are arranged in order of increasing difficulty. Answers to these 
questions should be quite specific. 

1. Figure 9-Ml shows units V, W, and X of unknown age. 

(a) What is the dip of the conforrnable units W and X? 
(b) What is the relationship of W and X to unit T? 
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(e) What is the dip of unit V? What is its age relation to T? 
(d) Give the geologic history illustrated by the map relations on Figure 9-Ml. 

2 . ln Figure 9-M2 contour lines are dotted, and the contour interval is 20 m. 

A 

Contacts between stratigraphic units A, B, C, and D are solid. Units Band C are 
each 40 m thick, but the thicknesses of units A and D are unknown. The map 
scale is 1:4000. 

(a) What is the dip of the fault? 
(b) What is the direction of displacement on the fault? 
(e) Draw geologic cross sections XX' and YY'. 
(d) What is the amount and direction of stratigraphic throw of the fault at YY'? 
What is the amount and direction of stratigraphic throw on XX'? Explain the basis 
of your answers. 
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·········· Figure 9-M2. For use with exer
cise 2. 

3. Obtain Map #4 from the Williams & Heinz Map portfolio No. 1 (Williams and 
Heinz Company, 8119 Central Avenue, Capitol Heights, MD 20743). This map 
shows the geology of central Pennsylvania (taken from the State geologic map). 
The map has no contour lines, but the general lay of the land can be inferred from 
various features, especially the strearn pattem. For the western part of the map, 
topography at the same scale can be seen on the U.S.G.S. Pittsburgh 2° sheet. 
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(a) Based on the V's of contacts in stream valleys, what is the attitude of the beds 
in the northwestem part of the map? 
(b) What is the dip of the Silurian unüs along sl:rike for a few miles northeast of 
Altoona? 
(e) Are the Cambrian rocks 3 mi southeast of Tyrone part of an anticline or a 
syncline? 
(d) How far along strike does this structure extend in each direction from Tyrone? 
(e) In the southeast part of the map note the line between Mifflin and Huntingdon 
counties. Examine the structural geology along the Juniata River from the county 
line northwest to Petersburg. Describe the geology in a paragraph, or draw a 
diagrammatic geologic cross section (at a suitable scale) along the river, assuming 
flat ground. 

Group B 
ln this group of questions not only must you read the map, but you must find 

and evaluate difficulties and then offer possible solutions, or at least altematives. 
For any one of these problems there may not be a single perfect answer; in this 
way they represent real geologic problems. 

4 . For the map of Figure 9-M3 we do not know eüher the sequence or attitudes of the 
units or the dip of the fault You have a choice in interpreting the situation. 
Make a suitable choice and follow the directions. Then make another reasonable 
choice and follow the directions a second time. 
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Figure 9-M3. For use with exer
cise 4. 
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(a) Complete cross sections XX' and YY'. It is easier to do YY' first. 
(b) Give the sequence of rock units in the order of deposition, oldest first. 
(e) Indicate the direction of movement of the fault. 
(d) Name the kind of fault you have shown ín your cross section XX'. 
(e) Repeat a-d with a different view of the structure. 

5. ln Figure 9-M4 contacts between units A, B, C, and D and Quatemary alluvium 
are shown as solid lines. Something of the topography can be inferred from the 
interrnittent streams. Complete cross section YY' and explain the relations 
beneath the alluvium. 

6 . The four faults in Figure 9-MS offset each other. Thus, in the upper left corner of 
the figure, fault B offsets fault A, and in the lower right, fault A offsets fault D. 

A.. 
1 

. ' 

(a) Of the six intersections now farming a tangle with no logical time sequence, 
is there an intersection that can be reversed to form an orderly sequence? For 
example, in the lower ríght comer, if the intersection were changed to make D 
offset A, would this alter the picture satisfactorily? 
(b) Is there more than one such intersection? 
(e) State the sequence of faulting for each solution that you propose. 
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flgure 9-M4. For use with exe;cise 5. Flgure 9-M5" Fo• use with exercise 6. 
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7 . Look again at Figure 9-12b. Assume this map is of essentially flat ground. 

(a) Draw a north-south geological cross section east of fault Z, interpreting fault 
Y as a normal fault dipping steeply south. 
(b) Draw another north-south cross section east of fault Z, this tíme intcrpreting 
fault Y as a thrnst dipping steeply north. 
(e) Discuss the possible implications of each of these cross sections for the 
geometry of bedding west of fault Z and for displacement on fault W. 
(d) Discuss the possible implication of discovering that the 50° dip is on 
overtumed rocks. 
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10-1 INTRODUCTION 

Experimental rock deformation refers to the laboratory 
study of the mechanical characteristics of rocks. These 
characteristics include rheology (the respoose of rock to 
stress), strength (the maximum stress that can be sustained 
by a rock before it fails), and friction (the resistance to 
sliding on a fracture surface in the rock). ln such work, 
specimens of rocks (usually machined cubes or cylinders) 
are subjected to rneasured stresses under varying conditions 
of temperature, confining pressure, sttain rate, pore 
pressure, and chemical environment. Rock-deformation 
experiments can be used to model both brittle deformation, 
meaning deformation that involves formation of and 
movement on di.screte fractures in a rock., and ductile 
deformation, meanmg deformation that occurs without loss 
of cohesion across a plane. Structural geologists should be 
able to read and interpret descriptions of experimems, 
because experiments simulate deformation in the earth and 
therefore provide insight into the physical processes by 
which common structures, such as faults and folds, fonn. 

Ideally, structural-geology students should have the 
opportunity to observe or partícipate in experimental 
studies. Unfortunately, most schools do not have the 
equipment l:O demonstrate soch studies. The purpose of 
this chapter is to describe rock-deformation experiments and 
provide an opportunity to work with methods for 
representing and interpreting experimental resuhs. The 
format. of this chapter differs f:rom that of previous chapters 
ín that you are asked to wod: throogh dle interpretations of 

the experiments that are outlined in the text. The 
discussion in this chapter is limited to certain types of 
rock-deformation experiments; we consider experiments 
concemmg rock strength under brittle, brittle-ductile, and 
doctile conditions, and we consider experiments conceming 
rock friction. Ultimately, these experiments give 
information about the state of stress in the upper crust To 
introduce the terminology of experimental rock 
deformation, we begin by describing some of the 
equipment used in rock-deformation experiments and by 
describing the diagrams commonly used to represent 
rock-deformation dala. 

10-2 THE ROCK-DEFORMATION 
EXPERIMENT 

Experlmental Apparah.1s 

Many rock-deformation experiments are carried out on a 
triaxial load machine (Fig. 10-1). This device is a 
sophisticated press that is able to exert a stress on a rock 
cylinder or cube. Stress (force per unit area) is commonly 
measured in pascals (1 Pa= l X 10-5 kg m-1 s-2), where l 
I\.1Pa = 10 bars = 145 psi (psi means "pounds per square 
inch"). The length/diameter ratio of rock cylinders used in 
experiments is generally around 2: l, and cylinders range in 
size from 5-mm diameter (smaH), through 2.5-cm diameter 
(standard), up to 30-cm diameter (large). Work with 
different size cylinders is important because strength is 
scale dependent. Larger cylinders are more likely to contain 
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/ Pore pressure 
fluid access 
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fluid accessT'778:'1 

S = sample 

V = pressure vessel 

P = piston 

• = 0-nng seal (b) 

flaws such as microfractures that will cause local stress 
concentrations lead.ing to failure (see Means, 1976, Jaeger 
and Cook, 1979, and Kulander et al., 1979 for further 
discussion of stress concentration). 

During an experiment a rock cylinder is squeezed by 
displacement of a piston in the machine (Fig. 10-1). ln 
response to the displacement of the piston, the axial length 
of the cylinder changes. This change, the axial strain of 
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Figure 10-1. Triaxial load machíne. (a) 
Diagrammatic cross-sectional sketch of a 
portion of a machine showing the pressure 
vessel, sample, and piston; (b) photograph of a 
machine; (e) photograph of two deformed 
samples. The lett sample contains an induced 
fracture. The ríght sample contains a saw-cut 
tor friction experiments. There is a 5 mm-thick 
layer of gouge along the cut. Samples are 3.5" 
long and 2" in diameter. 

the cylinder, is measured by an electrical transducer attached 
to the cylinder. The axial stress felt by the cylinder during 
an experiment is measured by a load cell aligned with the 
piston and the cylinder. 

Typically, a triaxial experiment is designed so that 
physical conditions can be varied during the experiment. 
For example, it is possible to control the following 
parameters: 
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Strain rate (the time rate of change of lhe rock-cylinder 
length), by specifying the rate at which the piston moves 
during the experiment 

Temperature, by heating the cylinder during an 
experiment. 

Confining pressure (lhe pressure exerted on the sides of 
the cylinder), by placing the cylinder in a pressure vessel 
containing a confining medium (usually kerosene or 
argon). The pressure of the confining medium is controHed 
during the experiment. The cylinder is usually jacketed in 
copper, lead, or plastic to isolate it from the confining 
medium. A solid medium such as talc is sometimes used 
for very high pressure experiments. 

Pore pressure (the pressure of the fluid that fills pores 
ín the rock cylinder), by allowing fluid to reach the cylinder 
via small conduits in the machine (Fig. 10-1). The 
pressure of the fluid in the cylinder is regulated 
independently of the axial stress or of the pressure in the 
confining fluid. 

The term triaxial refers to the fact that all three 
principal stresses (cr1, cr2, and cr3) can be manipulated 
during an experiment, so that none is necessarily equal to 
atmospheric pressure in the laboratory. The subscript l 
signifies the maximum principal compressive stress, the 
subscript 2 signifies intermediate principal compressive 
stress, and the subscript 3 signifies the minimum principal 
compressive stress. If a rock cylinder is used, the axial 
stress is cr 1 in compression, and the confining pressure is 
cr2 and cr3 (cr2 and cr3 are equal because of the sample 
geometry and the experimental configuration). The 
differential stress, which is defined as the axial stress minus 
the confining pressure is, 

(Eq. 10-1). 

If the pore pressure (P p) is not equal to 0, then the 
preceding equation may be rewritten in terms of effective 
stress (*cr 1): 

*cr1 (effective axial stress) == cr1 - PP (Eq. 10-2) 

*cr3 (effective confining pressure ) = cr3 - P p 
(Eq. 10-3) 

and thus, 

(Eq. 10-4). 

Two basic expe~ents are possible with a triaxial load 
machine. The first type is called a constant strain-rate 
experiment. During such an experiment, as the name 
suggests, the piston of the machine moves at the same rate 
throughout the experiment The second type is called a 

constant stress experiment (also called a creep test). 
During a creep test the stress is held constant, and a 
variation in strain rate is measured as a function of time. 
Creep tests are useful in constraining the constitutive 
equations {quite simply, equations that specify strain rate as 
a function of stress) associated with different deformation 
mechanisms. This chapter is restricted to descriptions of 
constant strain-rate experiment.s. 

Representatlon of Data 
on Stress-Strain Plots 

There are a number of ways to represent the results of 
rock-deformation experiments. Commonly, results are 
displayed on a stress-strain plot. A stress-strain plot is 
merely a graph, constructed in Cartesian coordinates, that 
plots differential stress (measured in bars, pascals, or other 
valid units) on the vertical axis against strain ina specified 
direction on the horizontal axis (Fig. 10-2). The direction 
of strain is usually parallel to the axis of the test cylinder. 
Remember that strain is defined as the ratio of change of 
length of line over the initial length; it is a dimensionless 
quantity usually represented by a percentage. 

On a stress-strain plot the results of a constant 
strain-rate experiment involving elastic deformation plot as 
a straight line (portion of the curve labeled "elastic 
deformation" on Fig. 10-2a). The slope of this line is a 
rock property called Young's modulus. This straight-line 
relationship indicates that, for an elastically deforming 
material, strain is directly proportional to stress. The 
stress-strain relationship can be represented by the equation 
cr = fa:, where E is Young's modulus and e is the strain. 

It is commonly observed in rock-deformation 
experiments that a rock behaves elastically until a certain 
strain is achieved; then the rock either fails brittlely (i.e., it 
fractures, suddenly loses cohesion, and can no longer 
support the stress, so the stress drops; Fig. 10-2b, curve 
A), yields by fracture (rock does not necessarily lose all 
cohesion when it fractures), or deforms plasticaUy. If the 
curve on a stress-strain plot still has a positive slope after 
yielding has occurred, the rock is said to exhibit strain 
hardening during deformatio11 (Fig. 10-2b, curves F). If the 
curve has a negative slope after yielding, the rock is said to 
exhibit strain softening (Fig. 10-2b, curve D). A sample 
that yielded by fracture may fail after a certain amount of 
strain hardening or strain softening (Fig. 10-2b, curves B 
and C). Perfectly plastic behavior on a stress-strain plot is 
represented by a horizontal straight line once the rock 
yields (Fig. 10-2b, curve E). Such a plot means that, for a 
plastically deforming material, strain wiil continue to 
increase as long as the stress is held at or above the 
ultimate strength of the rock. 

Elastic strain is recoverable, in that if stress is 
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Figure 10-2. Stress-strain plots. (a) General stress-strain plot far 
an experiment in which a sample first deforms elastically, then yields 
and deforms plastically before failing. (b) Representative stress-strain 
plots. A = elastic deformation followed by brittle failure; note that failure 
is indicated by a sudden stress drop. B = elastic deformation followed 
by yielding, plastic deformation, then brittle failure. e= elastic deforma
tion followed by yielding, strain softening, then brittle failure. D = strain 
hardening followed by strain softening. E = elastic deformation followed 
by yielding, then plastic deformation. F = elastic deformation followed 
by yielding, then strain hardening (adapted from Handin, 1966). 

removed while the rock is bchaving elastically, the strain 
retums to 0. Plastic strain is nonrecoverable or permanent, 
in the sense that if stress is removed after plastic strain has 
ue veJOptu, i.he Sí.fllill aue:s nm üb.appelli. 

A number of terms are useful in describing the 
behavior of a rock as displayed on a stress-strain plot. 
Note that in these definitions the term strength is measured 
in units of stress. 

Yield strength: The value of stress (Acr) at the bend in 
the stress-strain curve Ihat marks the onset of permanent 
plastic strain. 

Fracture strength: The value of stress (Acr) at which a 
rock fails by brittle fracture. This is represented by a 
sudden drop in stress on the stress-strain curve. 

Ultimate strength: The maximum stress (Acr) that a 
rock sustains during an experiment (i.e., the maximum 
ordinate of the stress-strain curve). 

Ductility: The total percent permanent strain before 
failure by fracture, as indicated by a marked stress drop. 

The results of a constant strain-rate experiment can be 
be plotted not only on a stress-strain plot (Fig. 10-3a), but 
can also be plotted on a strain-time plot, which shows how 

strain changes as a function of time (Fig. 10-3b). On such 
a plot the horizontal axis is time, and the vertical axis is 
strain. Obviously, the plot for a constant strain-rate 

The results of creep tests can be depicted by curves on 
a stress-strain plot (Fig. 10-3c), but the curves do not give 
an indication of the change in strain as a function of time. 
Therefore, it is often preferable to plot results of a creep 
test on a strain-time plot (Fig. 10-3d). The plot of results 
for a creep test is usually not a straight line, because the 
strain rate changes as strain hardening or strain softening 
occurs. 

Representatlon of State of Stress 
on Mohr Dlagrams 

The stress across a specified plane can be represented by a 
stress vector. The stress vector, P, acting across a 
randomly oriented plane is inclined to the plane (Fig. 10-4) 
and thus can be resolved into crn, a norma/ stress 
component (perpendicular to the plane), and t, a shear 
stress component (parallel to the plane). The state of stress 
at a point cannot be represented by a stress vector. Stress 
at a point can, however, be represented by a stress ellipsoid 
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Figura 10-3. Correspondence between stress-versus-strain plots 
and strain-versus-time plots (adapted from Heard, 1963). (a) Stress
strain curves far constant strain-rate tests. Curve 5 is the slowest 
strain rate, and curve 1 is the fastest strain rate; (b) constant 
strain-rate experiments plotted on strain-time coordinates tor the same 
experiments as in (a); (e) crnep experiments plotted on stress-strain 
coordinates. Curve 1 is the fastest strain rate, and curve 5 is the 
slowest strain rate; (d) creep experiments plotted on strain-time 
coordinates far the same experiments as in (e). 

x 
A 

or a stress tensor (see Means, 1976, for a complete 
definition of these ímportant terms). For a given stress 
state, there are three unique planes on which the magnitude 
of the shear stress component is zero. These planes are 
called the principal planes, and the stress vectors acting 
across them are called the principal stresses, where cr 1 
equals the maximum principal stress at the point in 
question, and cr3 equals the minimum principal stress. 
Principal stresses have no shear component and correspond 
to the principal axes of the stress ellipsoid. 

F!gure 10-4. The general orientation of the 

principal stresses, cr1 and cr3 , and the stress 
vector, P, resolved into crn and 't. The angle e 
is between the norma! to the plane AB and the 
cr 1 ('x') direction. 

If we are given the principal stresses representing the 
stress state at a point, we can calculate the stress vector 
actíng across any plane of a specified orientation that 
passes through that point. Such calculations can be done 
analytically with force-balance equations or with the stress 
tensor (see Means, 1976, or Suppe, 1985). Fortunately, 
there is an easy-to-use graphic device thai: allows us quickly 
to determine the relative magnitudes of the normal and 
shear stress vectors in two dimensions acting across a 
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specified plane without going through any calculations. 
This device is called a Mohr circle. A plot containing a 
Mohr circle is called a Mohr diagram. 

A Mohr circle is plotted on Cartesian axes; the x-axis 
represents values of normal stress (crn), and the y-axis 
represents values of shear stress (t). The coordinates of 
each point on the circle represent the values of the normal 
and shear stress components acting across a plane of an 
orientation specified by the angle e, which is measured 
between the pole to the plane and the maximum principal 
stress cr1 (Fig. 10-4). The reason that the relatíve values 
for normal and shear stress plot along the circumference of 
a Mohr circle is that the circle is the locus of all points 
that satisfy the equations 

cr3)sin 20 (Eq. 10-5) 

(Eq. 10-6). 

For a derivation of these equations using the balance of 
forces method, see Suppe (1985) or Means (1976). 

Examination of Equations 10-5 and 10-6 indicates that 
the right-hand intersection of the Mohr circle with the 
x-axis is cr 1, and the left-hand intersection is cr 3 . 
Therefore, to plot a circle, simply plot a point representing 
cr 1 and another point representing cr3 on the x-axis 
(remember that principal stresses have no shear 
component). Place the anchor needle of a compass midway 
between these two points, and place the pencil of the 
compass on either one of the points; then simply trace out 
a circle with the pencil. The length of the diameter of the 
~~rch~ i~ ~q_!!2-I tn A~~fer!!!'!_tinl ('tre~~ ~n 1 -n-3 y ~níf the. 
x-coordinate of the center of the circle is the mean stress 
[( cr 1 +cr3)/2]. The values of crn and t at a point on the 
circle represent the normal and shear components, 
respectively, of the stress vector acting on a plane oriented 
at and angle of 20 measured counterclockwise from cr 1. 
The sign convention for Mohr diagrams used in geology is 
as follows: positive stresses on the x-axis are compressive, 
negative stresses on the x-axís are tensile, positive stresses 
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on the y-axis reprcsent a left-lateral shear couple, and 
ncgative stresses on the y-axis represent a right-lateral shear 
couple. 

From the Mohr diagram the relatíve magnitudes of t 
and crn on a plane inclined to the principal stresses can 
easily be visualized. For example, a plane inclined at 80° 
lo cr 1 is being subjected to a greater normal stress than a 
plane oriented at 40° to cr 1. The plane on which shear 
stress is greatest is the plane oriented at 45° to o-1. 

Problem 10-1 
The mean stress at a point in a rock is 40 MPa, and 

the differential stress is 20 MPa. (a) What are the values of 
o-1 and cr3 in the rock? (b) What are the magnitudes of t 
and O'n acting on a plane that is inclined at 30° to o-1? 

Method 10-1 
Step 1: Construct coordinate axes calibrated in MPa. 

The horizontal axis represents O'n, and the vertical axis 
rcpresents t (Fig. 10-5). 

Step 2: Construct a Mohr circle representing the 
specified state of stress. The diameter of the circle is 20 
MPa, and the center is positioned along the x-axis at 40 
MPa. The values of o-1 and cr3 (Problem 10-la) can now 
be read directly: cr1 is 50 MPa, and o-3 is 30 MPa. 

Step 3: Draw a line from the center of the circle, 
point N, to a point, 0, on the circle so that line ON makes 
a counterclockwise angle of 20 (=120°) with respect to the 
x-axis. Remember that e is the angle between the normal 
to the specified plane and the direction of o-1. 

Step 4: The values of 'C and crn acting on the plane 
are specified by the coordinates of point 0. 

R~!"'rAsentation of Failure Criteria 
on Mohr Diagrams 

As discussed earlier, failure of a rock is manifested by a 
sudden stress drop. Failure under brittle conditions can be 
indicative of either (1) development of a new fracture 
surface in an intact rock or (2) slip on a preexisting fracture 
in a previously broken rock. A failure criterion is a 
spccification of the stress state at which failure occurs. A 

60 
dn CM Pa) 

Figure 10-5. A Mohr diagram. 
Point N marks the value of mean 
stress, which is 40 MPa. 20 = 120°, 
01 = 50 MPa, 03 = 30 MPa. The 
normal stress on a plana orianted 
such that the angle between 01 and 
the pole to the plane is 60° is 
specified by the coordinates of 
point 0. 
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Mohr diagram can be used to represent certain types of 
failure criteria. On a Mohr diagram, a failure criterion is 
represented by a curve that separates a field ín which the 
state of stress is such that a rock remains stable from a 
field in which the state of stress is such that a rock is 
unstable and either mptures or deforms by slip on a 
preexisting fracture. The curve is called afailure envelope. 
A failure envelope on a Mohr diagram is empirical, ín that 
it is drawn based on laboratory experiments, not on 
theoretical calculations. 

One of the most widely known faihrre criterion is the 
Coulomb-Mohr failure criterion, which is described by the 
equation 

t = e + (µ*)crn (Eq. 10-7). 

where t is the shear stress at failure, C is a constant called 
the cohesion (the y-intercept), and µ* is a constant called 
the coefficient of internal friction (the slope of the line). 
As indicated by the equation, the failure envelope defined 
by the Coulomb-Mohr criterion is a straight line whose 
slope isµ* and whose y-intercept is the cohesion (Fig. 
10-6a). The envelope cuts the abscissa at a point 
representing the tensile strength (T = -cr3). 

To understand what is meant by a failure envelope, 
consider a stress state defined by a Mohr cirde that falls 
below the envelope and does not touch it Such a stress 
state is stable, in that the rock subjected to the stress state 

Coulomb-Mohr 
Fa1lure Envelope 

(a) 

(e) 

On 

does not fail (Fig. l0-6b). If the differential stress is 
increased, the diameter of the Mohr circle increases. If the 
differential stress is increased to a sufficiently large value, 
the Mohr cirde becomes tangent to the envelope (Fig. 
10-6c). At this instant the rock fails by formation of a 
fracture. If the differential stress is constant, but the mean 
stress decreases, the Mohr circle moves to the left along the 
x-axis of the Mohr diagram and eventually may touch the 
envelope. Again, the instant that a stress state is achieved 
such that the Mohr circle defining the stress state touches 
the envelope, the rock fails. As a consequence, it is 
ímpossible to have stress states defined by Mohr circles 
that extend beyond the envelope (Fig. 10-6d), because the 
rock will fail before such a stress state can be aclüeved. 

Failure envelopes on a Mohr diagram are empirical., in 
that they are determined experimentaUy rather than by 
means of theoretical calculations. ln the experiment 
described next, we see how a failure envelope is determined. 
You will find that real envelopes are not always perfectly 
straight lines. 

10u3 ANAl YSIS OF ROCK STRENGTH 
AND FAILURE CRITERIA 

The study of rock strength at elevated temperature and 
pressure was greatly advanced in the 1950s by John Randin 
and his colleagues at the SheU Development Company. 

On 
(b) 

/ ' '\ 
\ 
\ 0, 

On 
(d) 

Figure 10-6. Coulomb-Mohr failure envelope. (a) Failure envelope 
showing the position of the y-intercept; (b) Mohr circle thai is not 
tangent to the failure envelope and therelore represents a stable stress 
state; (e) Mohr circle that is tangent to the envelope and represents the 
stress state at the instant of failure; (d) Mohr circle representing an 
unstable and impossible stress state. 
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Handin's group systematically characterized the brittle 
strength of various types of rock (e.g„ Handin and Hager, 
1957). Experiment 1 shows how results obtained at the 
Shell Lab during this period can be used to determine a 
failure envelope for a brittle rock. 

Determination of the Failure Envelope 
for Brlttle Fracture 

Experiment 10-1 (Oil Creek Sandstone) 
The purpose of this experiment was to determine the 

failure envelope that characterizes the strength of Oil Creek 
Sandstone (a massive, very fine-grained, well-sorted, 
well-cemented Ordovician sandstone from Grayson County, 
Texas). To obtain each experimental data point a jacketed 
cylinder of sandstone was placed ín a triaxial rock
defonnation machine. Then the confining pressure was set 
at a specified value, and the axial stress (cr1) was increased 
until the specimen failed. Note that by íncreasíng the 
value of cr 1 while cr3 was held constant, we increased the 
differential stress. This íncrease was represented by an 
increase in the diameter of the Mohr circle defining the 
stress state in the sample. Indivídual experiments differed 
from one another in the value of the confining pressure 
( cr 3) set at the beginning of the experiment. All 
experiments were carried out at room temperature and at a 
strain rate of about 10-3 per second. 

Results 10-1 
The raw data of each experiment (run) were replotted 

on a graph in which the x-axis was axial straín and the 
y-axis was differential stress. In each case, when the 
sample achieved its ultimate strength, it failed brittlely by 
formation of a discrete shear fracture. ln Figure l 0-7 three 
stress-strain curves obtained during the experiment are 
shown (from Randin and Hager, 1957). The confining 
pressure for each run is indicated on the graph. The 
strength of the sample under the specified confining 
pressure is the maximum stress achieved before the sudden 
stress drop occurred. The stress drop is indicated by the 
small arrow at the end of the curve. Figure 10-8 provides a 
sketch of a ruptured specimen after completion of the 
experiment, showing the orientation of the shear fracture 
(the measured 9 = 67°). 

Interpretation 10-1 (to be completed by 
the student) 

(a) Using the stress-strain plots of Figure 10-7, 
detennine the differential stress and the mean stress at the 
point of brittle fracture for each run. 

( b) Draw the coordinate axes of a Mohr diagram at an 
appropriate scale. On the diagram draw the Mohr circle 
showing the stress state at failure for each run (i.e., you 
should draw thrcc nonconcentri~ circles centered at the mcan 
stress for the respective experiment). Note that you must 
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Figure 10-7. Stress-strain curves far Oil 
Creek Sandstone (adapted from Handin and 
Hager, 1957). The confining pressure is 
indicated next to the curve. 

OIL CREEK SANDSTONE 

01 

F r a e t u re ---------ffi 

Figure 10-8. A drawing of fractured Oil 
Creek Sandstone. The stippled plane is the 
fracture surface. 

first calculate cr1 from knowledge of the differential stress 
and cr3. 

(e) Draw the two curves that are tangent to all three 
circles. One curve will lie above the x-axis, and one curve 
will lie below the x-axis. These curves define the failure 
envelope. Are the curves straight or bent? 

( d) Cakulatc the equaüon that approximately 
describes the curve that lies above the x-axis (i.e., 
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determine appropriate values for the constants in Equation 
10-7). This equation is the Coulomb-Mohr failure 
criterion for Oil Creek: Sandstone. 

(e) The orientation of the failure plane is determined 
by the obtuse angle between the x-axis and the Hne 
connecting the center of a particular drcle and the point of 
tangency with the envelope. Is the orientation of the 
failure plane indicated by each circle the same? 

(f) Is the orientation of the observed fracture plane 
the same as the fracture orientation suggested by the 
Coulornb-Mohr failure criterion? 

( g) How does confining pressure affect the fracture 
strength of Oil Creek Sandstooe? 

(h) From your answers to parts a-f, complete Table 
10-1. Write a paragraph outlining the condusions that can 
be drawn from the experiments on Oil Creek Sandstone. In 
particular, suggest what applications the results might have 
toward predicting the stability of boreholes? 

Study of the BrlUle-Ductiie Transltlon 

Experiment 10-2 (Berea Sandstone) 
Handin et al. (1963) conducted a set of experiments on 

Berea Sandstone (medium-grained, poorly cemented 
Mississippian sandstone from Ohio), using the procedures 

outlined in Experimem l 0-1. The Berea Sandstone is 
weaker than the Oil Creek Sandstone. In these experiments 
the specimens contained pore fluid under pressure. Handin 
et al. ran five experiments. ln each experiment, the 
confining pressure was the same (200 MPa), but the pore 
pressure varied (0, 50, 100, 150, and 200 MPa, 
respectively). The purpose of these experiments was to 
determine the failure envelope that characterized the 
strength of Berea Sandstone under conditions of elevated 
pore pressure. (The data used here have been modified 
slightly from the original experiments in order to make the 
results more obvious.) 

Results 10°2 
Figure 10-9 provides the stress-strain plots for five 

runs (adapted from Randin et al., 1963). The effective 
confining pressure associated with each curve is indicated 
next to the curve. It is evident from the curves in Figure 
10-9 that Berea Sandstone does not lose complete strength 
after yielding; there was not a sudden loss of cohesion 
accompanied by a catastrophic stress drop, as was the case 
for the Oil Creek Sandstone. At higher confining pressures 
it was observed that the sandstone specimens continued to 
strain without a stress drop even after fractures had 
developed. Note that the ultimate strength continued to 
increase with increasing confining pressure. 

Table 10-1 

Figure 10-9. 
curves for 

Run 
number 

1 
2 
3 

Stress-strain 
Bere a Sandstone 

(adapted from Handin et al., 1963). 
P e•, the effective confining pres-
sure, íor each run is indicated next 
to the curve. The value of difler-
ential stress at the ultima te 
strength is also indicated. 
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Interpretation 10-2 (to be completed by 
the student) 

(a) Look at the curves shown in Figure 10-9. Note 
that the curves for runs at lower effective confining 
pressure are different in shape from the curves at higher 
effective confining pressure. Describe the difference in 
curve shape. (Hint: Compare these curves with those 
shown in Figs. 10-2 and 10-3a. Explain how the series of 
curves in Figure 10-9 shows the transition from brittle 
behavior to ductile behavior). Is the yield strength the 
same as ultimate strength for all curves? Under what 
conditions does strain hardening occur? 

( b) After examining Figure 10-9, indicate how the 
strain (in percent) at which ultimate strength is reached is 
related to effective confining pressure. Remembering the 
definition of ductility (ductility = total percent strain before 
fracture), explain how ductility is related to effective 
confining pressure. 

(e) Construct a Mohr diagram, and plot the Mohr 
circle corresponding to each experiment. Use the ultimate 
strength to define the differential stress at failure, and 
consider the effective confining pressure to be cr3. Draw 
the failure envelope so that it is tangent to each circle. 
How does the failure envelope constructed from this 
experiment differ from that constructed in Experiment 10-1 
for Oil Creek Sandstone? 

(d) From the Mohr diagram, determine how the 
fracture angle changes as a function of confining pressure. 
Is there a systematic change? Try to explain why this 
change occurs. The measured fracture angles (angle 
between cr1 and the plane of the fracture) were 26° at 0 
MPa, 27° at 50 MPa, 34° at 100 MPa, 36° at 150 MPa, 
and 38° at 200 MPa confining pressure, respectively. Note 
that these :mQ"les are somewhat different frorn those rlerived 
from the Mohr diagram, probably reflecting the qualitative 
nature of the Coulomb-Mohr failure envelope. 

(e) Based on the observations in this experiment, do 
you estimate that wet Berea Sandstone subjected to the 
stress conditions at a depth of 1 km in the earth will lose 
strength by brittle fracture or maintain strength by 
ductile-like behavior? What about dry Oil Creek Sand
stone? Assume that differential stress in the upper crust is 
2/3(pgh), where p is the average density of rock (2.7 
g/cm3), g is the gravitational constant (980 cm/s2), and h 
is the depth measured in centimeters. Means (1976) 
explains why the differential stress in the upper crust is 
approximately 2/3(pgh). 

(f) Note that ín this experiment we have used the 
term "effective" confining pressure to emphasize that the 
samples contained pore fluid under pressure. Will a change 
in the pore pressure affect the equation of the failure 
envelope for a given rock? 

(g) The confining pressure on a sample of Berea 
San<lslüne is set al 100 l'v1Pa, and the axiai si.ress is set at 
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210 MPa. Based on the failure envelope you determined 
above, will the sample fail if the pore pressure is 50 MPa? 
Will a sample fail if the pore pressure is 60 MPa? How 
does an increase in the pore pressure of 75 MPa affect the 
position of the Mohr circle? How does an increase ín pore 
pressure of 60 MPa affect the values of mean stress and 
differential stress? 

10-4 ANAl YSIS OF DUCTILE 
DEFORMATION 

During brittle deformation only a small elastic strain (< 
3%) is achieved before failure occurs by formation of a 
brittle fracture. During ductile deformation of rock, fracture 
does not occur even after large strain is achieved (> 25%). 
ln other words, during ductile deformation large strains 
develop without loss of cohesion. Rock that fails by 
brittle fracture when the strain is between 3% and 25% is 
said to exhibit brittle-ductile behavior. We observed the 
transition from brittle to ductile behavior in the experiment 
on Berea Sandstone. It is obvious that ductile deformation 
is common in nature, for there are many geologic settings 
in which folding occurs, without the aid of brittle fracture. 
Next, we consider triaxial loading experiments in which 
environmental conditions are manipulated so that ductile 
defonnation can occur. 

Experiment 10-3 (Solenhofen Limestone, 
Carrara Marble, Yule Marble) 

The three environmental parameters that are most 
important in determining whether rock behaves brittlely or 
ductilely are temperature, confining pressure, and strain 
rate. Heard 0960) and Edmond and Paterson (1972). 
among others, have examined how these variables affect the 
ductility of rock. ln the experiments a cylinder of rock was 
placed ín a triaxial loading machine. Confining pressure 
was exerted by increasing the pressure of argon in the 
pressure chamber, and temperature was increased by an 
electrical fumace. The strain rate was varied by changing 
the rate at whích the piston moved. In some experiments 
the sample was stretched rather than shortened. We 
describe four sets of experiments. 

(a) Variable Confining Pressure: Edmond and 
Paterson (1972) deformed cylinders of Carrara Marble at 
room temperature and at a strain rate of 4 X 10-4 s-1 They 
repeated the experiment six times, each time with a new 
rock cylinder and under a different confining pressure. 
Differential stress versus axial strain curves for the 
experiments are shown ín Figure 10- lOa. 

(b) Variable Confining Pressure: Heard (1960) 
deformed cylinders of Solenhofen Limestone under 
compressíon at room temperature. He repeated the 
experimem seven times, each time at a different co11fining 
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Figure 10-10. Effect of environment on ductile behavior. (a) 
Differential stress versus axial strain for triaxial compression tests on 
Carrara Marble under variable conditions of confining pressure (adapted 
!rom Edmond and Paterson, 1972); (b) dif!erential stress versus axial 
strain for triaxial compression tests on Solenhofen Limestone under 
variable conditions of conlining pressure at a constant strain rate 
(adapted from Heard, 1960); (e) differential stress versus axial strain far 
triaxial compression tests of Solenhofen Limestone under variable 
conditions of temperature (adapted from Heard, i 960); (d) differential 
stress versus strain for triaxial extension tests on Yule Marble at 
soo0 c and 500 MPa (adapted from Heard, 1963). 
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pressure. The results of the experiments and the confining 
pressures are indicated on Figure 10-lOb. 

(e) Variable Temperature: Heard (1960) defonned 
cylinders of Solenhofen Limestone under compression at a 
strain rate of 2 X 10-4 s-1 and a confining pressure of 300 
MPa. He repeated the experiment six times, each time 
with a new rock cylinder. The results and the temperatures 
are indicated in Figure 10-lOc. 

(d) Variable Strain Rate: Heard (1963) defonned 
Yule Marble by extension at a temperature of 500oC. He 
repeated the experiment eight times, each time with a new 
rock cylinder and at a different strain rate. The results and 
the strain rates are indicated in Figure 10-1 Od. 

lnterpretation 10-3 (to be completed by 
the student) 

(a) For each set of experiments describe how the 
yield strength varies as a function of the environmental 
condition. To emphasize your result make a plot of yield 
strength (in terms of differential stress) as a function of the 
environmental parameter (i.e., confining pressure, 
temperature, strain rate). 

( b) Considering the results of these experiments, 
provide generalizations conceming the relationship of 
ductility to deformational environment. Under what 
conditions will ductile defonnation be more likely? 

(e) Compare the results of the variable confining 
pressure experiments for Solenhofen Limestone 
(Experiment 10-3b) with those of the experiments for 
Carrara Marble (Experiment 10-3a). Solenhofen Limestone 
is a very fine grained carbonate, whereas Carrara Marble is 
a relatively coarse grained carbonate. Is there a dependence 
of ductility on grain size? 

(dl Carbonates are relativelv ductile comuared to 
granite. What types of stress-strain curves would you 
expect for granite under the conditions of Experiments 
10-3a and 10-3b? (Hint: Look again at the stress-strain 
plot for Oil Creek Sandstone, and remember that some 
sandstones, like granite, are stronger than carbonates). 

(e) Considering the state of stress in the crust, at 
what depth would you expect ductile behavior to become 
dominant over briule behavior (the brittle-ductile 
transition) for Solenhofen Limestone, assuming that 
temperature does not change with depth? Assume that 
differential stress in the upper crust is 2/3(pgh), where pis 
the average density of rock (2.7 g/cm3), g is the 
gravitational constant (980 cm/s2), and h is the depth 
measured in centimeters. 

(f) ln reality the geothermal gradient in the crust is 
about 300C/km (i.e., at 1-km depth, the temperature is 
300C greater than at the surface). Keeping this in mind, at 
approximately what depth would you expect the 
brittle-ductile transition for Yule Marble to occur, 
neglecting the effect of confming pressure? 
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(g) Folds, which are manifestations of ductile 
deformation, are known to develop in the upper crust above 
the brittle-ductile transition. Furthermore, in many 
deformational settings, folding and brittle faulting occur 
during the same period of time. Considering the results of 
the experiments described above, explain this paradox. 

10~5 ANAL YSIS OF ROCK FRICTION 

Experiments 10-1 and 10-2 concemed the initiation of a 
fracture in an intact rock. Once a rock contain fractures, 
deformation may continue by additional slip on these 
fractures. Friction is the resistance to sliding on a fracture 
surface. To initiate sliding on a surface, the component of 
shear stress parallel to the surface must exceed a critical 
value called the frictional strength. ln general, frictional 
strength depends on the magnitude of nonnal stress across 
the surface; as the nonnal stress increases, it becomes 
progressively harder for sliding to take place, and thus the 
shear stress necessary to initiate sliding must increase. The 
coefficient of friction (µ) is the ratio between the shear 
stress necessary to initiate slidíng and the normal stress 
across the surface: 

(Eq. 10-8). 

The value of µ can be determined from a single 
experiment in which the value of 't at a given a n is 
measured. Experimental work suggests that µ is not 
constant but depends on the value of cr0 . If a series of tests 
is conducted, each at a different crn, and the results are 
plotted using Cartesian axes (x-axis is cr0 , and y-axis is 't), 
we can define another coefficient of friction (µ'), which is 
the slope of the line passing through the data points. This 
line is a failure envelope that may be used in the same 
manner as the Coulomb-Mohr envelope to predict frictional 
sliding on favorably oriented fractures. For measurements 
made under high pressure, the sloping line intercepts the 
't-axis above zero. Therefore, the equation of the line is 

(Eq. 10-9), 

where s0 is the intercept between the friction envelope and 
the 't-axis. S0 represents the shear stress necessary to 
initiate sliding under conditions such that crn is 0 (i.e., it is 
the cohesive strength of the fracture). We can solve for µ' 
and derive the equation 

µ' = ('t - So)/crn (Eq. 10-10). 

The coefficient of friction (µ') can also be defined in terms 
of the angle (<jl) between the friction envelope and the 
horizontal. This ang!c is called the angle of friction, arid 
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µ' = tan ijl (Eq. 10-11). 

ln the foUowing experiments, we see how to deternüne the 
value of µ'. 

Analysls of Fallure Envelopes 
for Frlctional Slldlng 

Experiment 10-4 (Tennessee Sandstone) 
John Randin at SheH Development Company 

measured the frictional properties of Tennessee Sandstone. 
For each experimental run he used a 1.9 x 5.0 cm cylinder 
of sandstone containing one lhrough-going saw cut inclined 
at 45° to the cylinder axis. Each saw-cut surface was 
polished to aHow a good fit when mated to reform a 
cylinder. The samples were jacketed in lead and placed in a 
triaxíal rock deformation machine. The stress at which 
sliding occurred (i.e., thefrictional strength) was measured 
by subjecting the specimen to an axial load and observing 
when a displacement occurred on the saw-cut surface. The 
experiment was repeated for a range of confming pressures 
as listed in Table 10-2. 

Results 10-4 
Table 10-2 lists the µ (the ratio of i:/crn) for individual 

experiments (Randin, 1969). Note that the normal and 
shear stress terms were cakulated by resolving the axial 
stress on a plane oriented at 45° to the axial stress. AH 
stresses were measured in MPa. Note that the coefficient 
of friction is dimensionless. 

lnterpretation 10-4 (to be completed by student) 
(a) Derive µ' based on the slope of the line of 't 

versus cr11 • 

( b) Wrüe the general equation for the frictional 
sliding of Tennessee Sandstone. Note thal µ' in this 
equation is by definition independent of confining pressure. 

(e) Row does the coefficient of friction (µ) for 
individual tests depend on confining pressure? This 
relationship is best illustrated by plotting a graph of µ 
against confining pressure. 

Determlnatlon of the Preference 
for Fracture over Frictional Slldlng 

Experiment 10-5 (Blair Dolomite, Solenhofen 
Limestone, Leuders Limestone, Tennessee 
Sandstone) 

The shear stress necessary to initiate sliding 011 a 
preexisting fracture depends on the normal stress across the 
fracture, as can be illust.rated by comparing shear stress and 
norma! stress in Table 10-2. The norma! stress across a 
fracture plane depends on its orientation relative to cr 1. If a 
fracture is oriented such that the norma! stress across the 
fracture is high (i.e., 20 is small), the rock may fail by 
formation of a new fracture before the preexisting fracture 
can slip. It is possible to determine conditions under 
which frictional sliding precedes fracture for a given rock 
by comparing the envelope for frictional sliding with the 
Coulomb-Mohr failure envelope. 

Randin (1969) described a series of experiments 
designed to investigate the preference for new fracturing 
before slip on preexisting rock fractures. He obtained 1.9 
X 5.0-cm cylinders of several rock types (Blair Dolomite, 
Solenhofen Limestone, Leuders Limestone, and Tennessee 
Sandstone) and made a cut at a specified angle in each 
sample. These cuts represented preexisting fractures in the 
test samples. The opposing surfaces of each cut were 
lightly polished so that they closed tightly. The samples 
were jacketed in lead and placed in a triaxíal 
rock-deformation machine. The stress at which sliding 
occurred (i.e., the frictional strength) was measured by 
subjecting the specimen to an axial load and observing 
when a displacement occurred on the fracture. The 

Table 10-2 
The frlctional Propertles of Tennessee Sandstone 

Confining Shear Normai Coefficient 
pressure strnss stress of friction 

't CTn µ 

25 76 100 0.76 
50 130 180 0.72 
75 181 255 0.71 

100 231 330 0.70 
125 287 410 0.70 
150 331 480 0.69 
175 386 560 0.69 
200 420 620 0.68 
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experiments were repeated for the same rock type, for 
different fracture orientations in each rock type, and for a 
range of confining pressures. 

Results 10-5 
The results of the work on preference for fracturing or 

sliding are presented in the form of fracture and friction 
envelopes in Table 10-3. ln some specimens deformation 
was accommodated entirely by movement on the 
preexisting fracture, in some specimens deformation was 
accommodated by formation of a new fracture in addition to 
slidíng on a preexisting fracture, and ín some specimens 
deformation was accommodated only by initiation of a new 
fracture (Fig. 10-11). 

lnterpretation 10-5 (to be completed by student) 
(a) On a Mohr diagram construct both the Coulomb

Mohr failure envelope and the sliding friction envelope for 
the four lithologies listed in Table 10-3. Note that the saw 
cuts are cohesionless, so the frictional failure line passes 
through the origin. 

(b) For the runs identified in Table 10-3 compare the 
coefficients of sliding friction and the coefficients of 
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internal friction. Consider an experiment in which the 
confining pressure is 100 MPa, and Lhe differential stress is 
gradually increased. From the data in Table 10-3 determine 
whether any of the rocks will fail füst by slip on a 
preexisting fracture inclined at 45° to the axial load or 
whether they will fai! by formation of a new fracture. 

(e) Consider an experiment run at a mean stress of 
400 MPa. For Tennessee Sandstone what are the angles of 
the preexisling fracture for which new fracture will take 
place while the preexisting fracture remains stable (i.e., 
does not slide)? 

( d) The crust of the Earth contains fractures in many 
orientations. Using your answers to the preceding 
questions, and Tables 10-2 and 10-3, explain why differ
ential stress magnitude in the upper crust is controlled by 
frictional sliding criteria rather Lhan by failure criteria. 

(e) If Lhe axial stress is 207 .6 MPa and Lhe confining 
pressure is 92.4 MPa, dctermine Lhe shear strcss on each of 
the two plancs shown in the cylinder of rock (Fig. 10-12) 
used for a deformation cxperiment. Assuming that both 
discontinuitics exist within thc rock cylindcr, on which 
plane will frictional slip be favored? (Draw the Mohr 
diagram very carefully.) 

Table i0-3 
faulting and friction Envelopes 

Rocktype 

Blair Dolomite 

Tennessee Sandstone 

Solenhofen Limestone 

Leuders Limestone 

Fracture 

\ 

Coulomb-Mohr envelope 

1: = 45 + crn tan 45° 

50 +CT~ tan 40° 

105 + crn tan 28° 

15 + crn tan 28° 

Precut 

Friction envelope 

't = crntan21° 

't = crn tan 35° 

't = crn tan 32° 

't = crn tan 31° 

flgure 10·11. Three samples of 
Blair Dolomite: one with a fracture; 
one with a saw cut, and one with 
both. The lightly stippled plane is a 
fracture that formed in intact rock. 
The darker shaded plane is a saw 
cut. 



Chapter 10 Analysis of Data from Rock-Deformation Experiments 207 

Bla1r Dolomite 

Pracut- e= 67 .5° 

o, 
Figure 10-12. A cylinder of Blair Dolomite 
with two fracture surfaces (for Experiment 
10-5). 

Friction and an ExplanaUon for Stress 
ln the Earth's Crust 

In the late 1970s a large number of in situ stress 
measurements were made in outcrops, drill holes, and 
rnines. Comparison of the results from in situ 
measurements with laboratory measurements indicated that 
ambient stresses in the upper cmst of the earth are 
generally too low to initiate fractures in intact rock. It was 
suggested that the relatively low ambient stress state of the 
earth's upper crnst did not, therefore, reflect the strength of 
intact rock but rather reflected the magnitude of shear stress 
necessary to cause sliding on preexisting fractures. The 
crnst is pervaded with joints and fractures; it is intuitively 
reasonable to assume that slip will occur on one of these 
fractures long before the magnitude of differential stress 
becomes high enough to cause rnpture of intact rock 
between the fractures. In order to better understand stresses 
in the earth's upper crnst it is therefore necessary to 

understand the conditions under which sliding along natural 
fractures can initiate. 

The data for Tennessee Sandstone from Table 10-2 are 
plotted on a Mohr diagram (Fig. 10-13). This is the 
answer to a question in Experiment 10-5. To a first 
approximation these data appear to follow a linear trend 
defining a Mohr-like envelope called the friction envelope. 
Byerlee (1978) compiled a large quantity of frictioo data for 
a great variety of rock types. After plotting his data in the 
same format as that of Figure 10-13, Byerlee (1978) 
observed that most of the friction data for rocks followed a 
general trend divided into two linear segments. Those data 
for experiments with a mean stress of less than 200 MPa 
followed the friction equation 

(Eq. 10-12), 

whereas data from experiments with mean stress > 200 
Mpa followed the friction equation: 

(Eq. 10-13). 

Experiment 10-6 (Barre Granite) 
ln this experiment we wish to demonstrate that 

Coulomb-Mohr analysis can be used to deterrnine which 
fracture orientation is most favorable for slip. To do so, 
we create an experimental rock cylinder of Barre Granite 
with three fractures (saw cuts that have been slightly 
polished) as shown in Figure 10-14. Norrnals to the 
fractures make angles of 45°, 60°, and 75° to cr 1 , 

respectively. We place the rockin a triaxial load machine, 
set the confining pressure at 150 MPa, and gradually 
increase the axial load until failure by sliding on a fracture 
occurs. 

Results 10-6 
The granite sample fails by sliding on one of the 

fractures when the value of cr1 reaches a sufficiently high 

Tennessee Sandstone - Sliding on 45° Saw Cuts 

Flgure 10-13. Mohr diagram for 
frictional sliding of Tennessee 
Sandstone. 
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Existing Fractures 

8 = 60° 

8 = 75 

a, 
Figure 10-14. Three preexisting fractures 
in a cylinder of Barre Granite (far Experiment 
10-6). The angle 0 is the angle between the 
pole to the fracture and the o 1 direction. The 
fractures all intersect along a line that is 
perpendicular to the cylinder axis. 

value. Because the sample is jacketed, we cannot detennine 
which fracture slipped until we remove the sample from 
the machine and strip off its jacket. ln order to prove that 
the Coulomb-Mohr analysis correctly predicts the 
orientation of the slipped fracture, we first complete the 
following steps of interpretation (i.e., predict the 
differential stress at failure and predict which fracture failed 
first). 

lnterpretation 10-6 
(a) First, we attempt to predict the differential stress 

~ ... ~i.,,..,,_ o1-!_.. .... ,,....,_, .,:'..,.!1 .. -.-. '\Xl~ L-...... -„~, -th~• --- ~~ 1.Cf\ l\KD..,, on. ....,,„ i..iiiiiV ..... „„„...,. V.i>. .o.;;;. ... ,,,_~_,~ <• ~- _ _..„._..-.-";; ~.:;;... _ _. ::J .:;:~ .::.- -~ ~ ~:C. -:;:::; 1 ,::::~ __ 

we guess that the mean stress is at least 300 MPa. If this 
guess is correct, we can use the general friction equation 
(Eq. 10-13) to define the failure envelope for frictional 
sliding. We construct a Mohr diagram showing this 
frictional sliding envelope. The friction equation states 
that the coefficient of friction is 0.60, that the frictional 
sliding envelope has a slope of 31°, and that the rock 
behaves as ifit has a "cohesive strength" of about 50 MPa. 

(b) We plot the specified a3 on the x-axis. We 
know that the rock failed by sliding, so by trial and error 
we use a compass to find the Mohr circle that passes 
through the 150-MPa mark and is tangent to the failure 
envelope. Then, with a compass, we draw a circle centered 
at this point and tangent to the sliding envelope. Now that 
we have the Mohr circle, we determine the mean stress and 
the differential stress at the time of failure. Considering 
the mean stress that we determined, was it reasonable to 
use Equation 10-13 rather than Equation 10-12 to specify 
the failure envelope? 
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(e) We draw a line from the center of the Mohr circle 
to the point of tangency between the circle and the failure 
envelope and measure the angle 29. Given this angle, we 
can detennine the orientation of the fracture that probably 
slid first. What is it? Note that this plane is not the plane 
on which shear stress was greatest. Why did it slide füst? 
Why do you expect the other fractures to be stable under 
these stress conditions? 

( d) Consider a hypothetical state of stress in the 
upper crust of the earth. Vertical stress is cr1 and is due to 
the weight of overlying rock. The magnitude of cr 1 is pgh. 
ln the absence 'of tectonic stress, horizontal stress in the 
upper elastic crust is due to lateral expansion of the rock in 
response to the vertical load. Assume the value of 
horizontal stress to be cr2 = cr3 = 1;3(pgh). Determine the 
mean stress, differential stress, and depth in the crust at 
which cr2 = cr3 = 150 MPa (p = 2.7 g/cm3, and g = 9.8 
m/s2). Assuming that the predictions made above are 
correct, how do these stresses compare wíth the stresses at 
the time of failure in the experiment? Do you expect that 
at a depth of 10 km in the earth that one or both fracture 
sets will slide in dry rock ? If not, by how much can pore 
fluid pressure increase before slip on a fracture set will 
occur. 

A Mohr diagram constructed from the data in Table 
10-3 for Blair Dolomite is shown in Figure 10-15a. ln 
this diagram the Mohr circle represents the stress state at 
which a shear fracture develops under a confining pressure 
of 100 MPa. The Coulomb-Mohr failure envelope is 
tangent to the Mohr circle at Point 0. The radius ON 
makes a 29 angle of 135° measured counterclockwise from 
the x-axis. Therefore, the Mohr diagram indicates that a 
f~,...t~~~A rl~~rei!':'~r! !!"! !!"!?'..-_:'' r~k th-:lt fftl!5' !_!nrlPl" '.:l ronfining 

pressure of 100 MPa should be oriented at an angle of 
22.5° to cr1. 

Using data from Handin's friction experiments 
(described above), we find that the friction envelope for 
Blair Dolomüe has a relatively shallow slope (9 = 21°). 
This envelope is not the same as that specified by Equation 
10-12 and, therefore, does not fit the general friction 
equations given above. This discrepancy may be a conse
quence of the experimental conditions used by Handin. ln 
his experiments the saw cuts were quite smooth, so there 
may have been líttle interlocking across the saw cut; 
therefore, resistance to shear was less than expected. 

Examination of Figure 10-15a allows us to predict the 
range of possible orientations for which slip on a 
preexisting fracture is favored over fracture through intact 
Blair Dolomite. To do this, we locate the intersections 
between the envelope for frictional sliding and the Mohr 
circle and label the two points of intersection A and B. 
Then we draw the two radii of the Mohr circle that 
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(a) 
Figure 10-15. Mohr diagrams for 
Blair Dolomite. Only fractures 
reprasented by lines that fal! in the 
stippled intervals on the diagrams 
can slip. lf there are no favorably 
oriented fractures in the rock, then 
the rock fails when the circle 
touches the Coulornb-Mohr enve
lope. (a) Diagram showing both the 
Couiomb-Mohr failure envelope and 
the envelope for frictional sliding 
determined by Handin (1969); (b) 
diagram showing both the Coulomb
Mohr failure envelope and the 
general envelope far frictional 
sliding proposed by Byerlee (1978). 
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tenninate at A and B. These radii are hnes NA and NB. 
The wedge of the circle that lies between NA and NB 
(shaded in Fig. 10-15a) represents the range of 20 values 
for which slip on a preexisting fracture will occur at 
stresses lower t.'lan those necessary to cause a new fracture 
to fönn. If we had used the general friction equations to 
represent the frictional strength of Blair Dolomite, then a 
smaller range of fracture orientations would favor slip over 
fracture initiation. Figure l 0-1 Sb shows that if the general 
friction equations are applied to Blair Dolomite, an existing 
fracture inclined at 45° to cr 1 is not favored over 
development of a new fracture at 22.5° to cr1. However, a 
fracture inclined at 43° to cr1 is equally likely to slip as a 
new fracture is to forrn. 

10·6 FRICTIONAL PROPERTIES 
OF FAULT GOUGE 

So far the frictional properties of fractures and joints have 
been examined by using experiments where intact rock is 

On CM Pa) 

(b) 

sliding on intact rock. If slip continues on these breaks in 
rock, a layer of fault gouge will build up by the grinding 
and milling of the rock in contact with the slip surface. 
Before much slip the fracture will become a fault zone with 
a layer of fault gouge between intact rock. The gouge will 
act to change the frictional properties of the rock depending 
on the strength of the fault gouge. The effect of gouge on 
the frictional properties of rock has been investigated in the 
laboratory. 

Experiment 10-7 (quartz gouge ami 
halite gouge) 

Many real faults are not planes along whi.ch two clean 
rock surfaces are juxtaposed. During faulting, fault gouge 
composed of finely ground rock, may accumulate along the 
fault. In some circumstances, a particularly ductile 
material, such as hafüe, may occur along a fault. Halite 
can be incorporated along faults that pass through evaporite 
sequences. In such circumstances the frictional strength of 
the fault is affected. A number of experiments have been 
conducted to study how the frictional strength of a fauh is 
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affected by the presence of a ductile material along the 
fault. ln experiments to test the effect of gouge, a rock 
cylinder was cut at an angle of 35° to the cylinder axis, and 
a 2-mm-thick layer of simulated fault gouge (finely ground 
quartz or halite) was spread evenly on the sliding surface. 
The precut cylinder was jacketed and placed between the 
pistons of a triaxial load rig in a pressure vessel. The 
sample was subjected to an axíal stress under a range of 
confining pressures, and the differential stress at which 
sliding initiated was detennined. 

Results 10-7 
The stress-strain plots for experiments run with quartz 

gouge are shown in Figure 10-16 (from Shimamoto and 
Logan, 1981). When plotted on a Mohr diagram, these 
curves suggest that shear stress for frictional slip on 
gouge-coated surfaces increases with normal stress, as 
predicted by the general equations for sliding friction of 
rock. The effect of halite along a fault is shown in Figure 
10-17. Under experimental conditions halite is ductile, 
which means that it deforms with a constant shear stress 
regardless of the magnitude of normal stress across the 
plane of shear. 

lnterpretation 10-7 (to be completed 
by the student) 

(a) Using the Mohr diagram, derive the shear stress 
and nonnal stress for frictional slidíng of quartz fault gouge 
at 8% axial shortening. 

( b) Plot the shear stress and nonnal stress detennined 
in part a to detennine a sliding friction equation. Does it 
agree with the general equations for friction of rocks 
without gouge? 

/' ~ \ 0--...,,~~ _,,,.,,....,"' ~ .C ..... - .C-!,,,,._;"""'_,"""1 '°'1..:.A~ ........... -~ l,,_""'1.;„~ 
\ Vj .... -<;.....,pVWi. P""-1.. ._.. ;..-..._. ....... .._ ... -...,.-..-.u.:;;;~ .:;......._..,._...._ab -..r'i>;; ~;;;.~~-.-,..-. 

( d) What is the coefficient of sliding friction for 
halite gouge? 

(e) Above a confining pressure of 200 MPa 
frictional sliding on halite gouge requires the same shear 
stress as at 200 MPa. This means that the shear stress is 
independent of normal stress. What then is the coefficient 
of sliding friction for halite gouge above 200 MPa? 
Represent this friction criterion for halite on a Mohr 
diagram. 

(f) Referring to Figure 10-18, if 0'3 is 300 MPa, 
detennine the differential stress required for frictional 
sliding on salt. What would have been the differential 
stress required for slip on a plane 45° to a 1 if the general 
friction equations had applied to salt? 

Comments on Experiment 10-7 
The Mohr circle for halite has the same diameter 

regardless of the confining pressure at pressures above 200 
MPa. This type of behavior is modeled by the 
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OUARTZ GOUGE 
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AXIAL SHORTENING ( % ) 

Figura 10-16. Differential stress versus 
axial shortening curves for the frictional sliding 
of quartz fault gouge as determined by 
Shimamoto and Logan ( 1981) (for Experiment 
10-7) (adapted from Shimamoto and Logan, 
1981). 
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Figura 10-17. Differential stress versus 
axial shortening curves for the frictional sliding 
of halite fault gouge as determined by 
Shimamoto and Logan (1981) (lor Experiment 
10-7) (adapted from Shimamoto and Logan, 
1981 ). 
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Figure 10-18. A Mohr diagram 
for the general fictional sliding 
curve for halite that is acting as a 
pertectiy plastic material along the 
sliding surface (for Experiment 
10-7). 
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Coulomb-Mohr failure criterion using a constant S0 and 0 
= 0°. The friction equation for salt is then 

S0 = 50 MPa (Eq. 10-14). 

The significance of Equation 10-14 is that it says that 
for fault zones deep within the upper crust, frictional 
resistance to sliding is very low if the fault gouge is salt. 
Many thrust beh.s of the world, such as the Appalachian 
foreland, the Jura of S witzerland, and the Zagros of Iran, are 
wide because salt "gouge" acts to reduce frictional 
resistance (Davis and Engelder, 1985). 

The Mohr diagram describing frictional sliding on salt 
is presented in Figure 10-18. Such a diagram would also 
represent the behavior of an intact sample of rock that 
defonns ina perfectly plastic manner. The rock will strain 
at the same differential stress regardless of the confining 
pressure. 
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ADDmONAL EXERCISES 

1. There are several general dasses of stress. AH can be drawn in two dimensions 
using a Mohr cirde. Possible stress states in the earth include: 

(a) Tension ami compression: One principal stress is tensile and the other is 
compressive. This is the most likely situation for the generation of most tensile 
fractures (joints) within the earth's crust. 
(b) Pure shear stress: A special case of tension and compression, in which cr1 = 
-cr2, so that the planes of maximum shear stress are also planes of pure shear stress 
(i.e., the nonnal stress component is zero on these planes). This is a very unusual 
state of stress for the earth's crust 
(e) General compression: Both principal stresses are compressive. In three 
dimensions this state of stress in the earth is called triaxial compression. This is 
the usual state of stress within the crust. 
(d) Hydrostatic compression: The stress across all planes is compressive and 
equal. Pore water within a rock can exert a state of hydrostatic compression 
provided that the water in the pores can communicate directly with the smface. 
(e) Lithostaiic compression: The stress across all planes is compressive and equal 
to the weight of the rockon top of the point at which the measurement is made. 

Draw each of these states of sLress considering the nature and relatíve magnitudes of 
!:he principal stresses. Note the differences in location of the center and length of 
!:he diarneter of the Mohr circle for each state of stress. 
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2. Using the data shown in Figure 10-14 for Barre Granite, determine the shear and 
norma! stress on the three planes shown in the cylinder of rock used for a 
deformation experiment if cr1 is 100 MPa and cr3 is 50 MPa. Calculate the answer 
using the appropriate equations, and derive the answer using a Mohr diagram. ln 
this example it is important to appreciate that slip occurs on the plane whose ratio 
of 't to O'n is maximum. The plane (at e == 45°) with the maximum 't did not slip 
because on was so large that the ratio was not maximum. Likewise, the plane (9 
== 75°) with the minimum O'n did not slip bccause 't was small. 

3. Leuders Limestone is fairly weak lithology. At a confining pressure of 100 MPa, 
a differential stress of just over 200 MPa is required to fracture intact samples of 
Leuders Limestone (Fig. 10-Mla). 

(a) What is the orientation of the fractures that form in Leuders Limestone? 
(b) The friction envelope for Leuders Límestone is also plotted on Figure 10-Mla. 
Note that it is very close to the Coulomb-Mohr failure envelope. What does this 
relationship imply? 
(e) Is there a preference for slip on an existing fracture at 34° to cr 1 over 
development of a new fracture at 31° to cr1? 
(d) ln the paper in which Byerlee (1978) compiled friction data for many 
lithologies several rocks showed frictional behavior that deviated from the general 
friction envelope. Leuders Limestone is one of those lithologies. ln Figure 
10-Mlb the frictional envelope defined by Equation 10-12 is plotted next to the 
Coulomb-Mohr failure envelope for Leuders Limestone. ln this case the envelope 
for frictional sliding plots well above the Coulomb-Mohr failure envelope. If the 
general friction equations are applicable, is it ever possible for Leuders Limestone 
to slide on an existing fracture? If not, how will Leuders Limestone respond to 
elevated differential stress? 
(e) Leuders Limestone is known to fail by sliding on favorably oriented 
preexisting fractures. What are the implications of this observation for the the 
acceptance of the envelope defined by Equation 10-12 (i.e., does the equation apply 
to all cases)? 

't = 15 + crntan 28° 

<P = 31° 
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flgure 1 O-M1. Mohr diagrams for Leuders Limestone (for Exercise 
3). (a) Diagram showing the Coulomb-Mohr failure envelope and the 
envelope far frictional sliding determined by Handin (1969). Circle is 
tangent to the Coulomb-Mohr envelope; (b) The Coulomb-Mohr failure 
envelope and the friction envelope defined by Equation 10-12. 
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11~1 INTRODUCTION 

The study of mesoscopic structures (visible at the scale of 
outcrops and hand samples) and microscopic structures 
(visible under the microscope) relies on a keen eye and a 
willingness to observe patiently and carefully. Study of 
such structures helps in strain analysis, provides 
information that can help in the interpretation of regional 
(macroscopic) structural relations, and can provide clues 
about deformation conditions aml sense of movement 
during deformation. The determination of sense of 
movement of particles of rock during deformation is often 
called kinematic analysis (see Davis, 1984). 

The purpose of this chapter is simply to outline 
terminology and procedures used for describing mesoscopic 
and microscopic structures and to draw your attention to 
features of structures that should be observed and measured 
duríng structural analysis. Each of the subjects addressed in 
this chapter could be the subject of a whole book, so we 
are forced to be brief and we present much of the 
description in figures or lists. Our intention is to provide a 
concise synopsis that can be taken to the field or !ab for 
reference. We do not have the space to elaborate on how 
mesoscopic and microscopic structures can be used as 
interpretive tools, nor can we provide detailed discussion of 
the mechanisms of formation. Excellent descriptions and 
interpretations of mesoscopic and microscopic structures 
are provided in standard stmctural geology textbooks. 

We hope that this chapter will be used in conjunction 
with field and laboratory analysis of natural structures. For 

that reason, we do not provide exercises at the end of the 
chapter. 

11-2 FOLDS 

Folds are the most familiar manifestation of ductile 
deformation in rocks. They form under a variety of 
conditions in igneous, sedimentary, and rnetamorphic 
rocks. Folding can be a consequence of primary def or
mation or a consequence of tectonic deformation during 
orogenesis. Primary folds develop during the formation of 
the rock. Examples include slump folds in sedimentary 
rocks (Kuenen, 1953) and flow folds in lava flows. 
Tectonic folds develop in response to applied stress 
associated with plate movement and the formation of 
mountain belts (see King, 1977). Fold geometry is 
variable and reflects the rheology of the rock, the 
conditions of deforrnation, and the rate of deforrnation. 

ln order for a fold to be visible in a rock, the rock 
must possess layering; a fold simply cannot be seen in an 
isotropic rock, even if the mineral grains in the rock have 
moved with respect to one another during deformation. 
The layering that defines a fold can be bedding (in a 
sedimentary rock), flow banding (in an igneous rock), or 
metamorphic foliation. Folds can also be defined by the 
boundaries of a sheet intrusion or by streaks of impurities 
in an otherwise homogeneous rock. 

A complete description of a fold should include a 
description of its shape and its orientation. The shape can 
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be described in outcrop or ín hand sample and may provide 
clues about the rnechanism of fold formation irrespective of 
the fold orientation (e.g., Hudleston, 1973). The 
orientation, on the other hand, can be described only with 
respect to an extemal reference frame (i.e., a horizontal 
plane) and is, therefore, best described at the outcrop. ln 
the context of fold description, the tenn "shape" refers to 
four parameters: (1) the fönn of a single surface, such as a 
bedding plane, within the fold, (2) the form of a sequence 
of folded layers, (3) the fönn of a series of folds involving 
a single surface, and (4) the shape of a single földed layer in 
profile. 

Shape of a Folded Surface 

Figure 11-1 provides an illustration of a pair of folds 
involving a single surface. A number of geometric 
elements, useful for describing the shape of a folded 
surface, are labeled on this figure (Fleuty, 1964; Fleuty, 
1987; Ramsay, 1967; Ramsay and Huber, 1987). These 
are: 

Hinge line: The line of maximum curvature 
(smallest radius of curvature) on a földed surface. 

Hinge zone: The area on a folded surface adjacent to 
the hinge line where the surface has a relatively small 
radius of curvature. 

Crest line: This is the line on the surface of the 
fold at which the dip changes direction with respect to the 
horizontal-surface reference frame. The dip directions on 
either side of this line point away from each other (e.g., the 
dip changes from southeast to northwest). If a fold is 
inclined such that dips change at a hinge but are in the 
same direction <Für. 11-2). then the crest line or trough 
line cannot be defined. 

Trougb line: Same as a crest line except that the 
dip directions point toward one another. 

Figure 11-1. The principal geometric 
elements used to describe a single folded 
surface. 
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Figure 11-2. A fold in which beds of both 
limbs dip in the same direction. This fold has 
no crest or trough line. 

Fold axis: Many natural folds have approximately 
cylindrical shapes or are made up of approximatcly 
cylindrical parts (Fig. 11-3). These cylinders are usually 
statistically defined using equal-area projections (Chapter 
8). The cylindrical shape of a földed surface can be 
generated by moving a line parallel to itself in space. This 
irnaginary line, which is parallel to the axis of the cylinder 
or cylinders approximating the fold, is called thefold axis. 

Fold limb: This is the area of the folded surface 
between hinge zones where the surface has a large radius of 
curvature. Each convex fold shares a limb with an adjacent 
concave fold. 

Inflection line: This is the line along the folded 
surface at which the surface changes from convex to 
concave. An inflection line, therefore, is the boundary 
between two adjoining folds, although it may not lie 
halfway between the two adjoining hinges. 

Figure 11-4 shows additional geometric elements of a 
fold that involves a sequence of surfaces. Terms defined by 
this figure are: 

Hinge surface: This is the surface containing the 
hinge lines of successive folded surfaces within a single 

Figure 11-3. Concept of a cylindrically 
folded surface. The folds are generated by a 
line (fold axis) moving parallel to itself; this line 
is also parallel to the axes of the cylínders. 
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Figure 11-4. Geometric ele
ments of a fold involving several 
folded surfaces. (a) Fold with 
curved hinge and crest surfaces; 
(b) fold with hinge plane and crest 
plane. (a) 

fold. The hinge surface sometimes is also called the a.xial 
surface. ln general, the hinge surface is curved (Fig. 
l l-4a). If the surface is planar, it is referred to as a hinge 
plane or a.xial plane (Fig. l l-4b ). 

Crest surface: This is the surface containing the 
crest lines of successive földed surfaces within a single 
fold. Like the hinge surface, the crest surface can be curved 
or planar (crest plane). 

Trough surface: Like the crest surface, this surface 
contains the ttough lines of successive földed surfaces 
within a single fold. 

Terms used to describe a series of folds involving a 
single surface (Fig. 11-Sa-c) indude: 

(a) 

(b) 
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Crest surface 
\ 

(b) 

Fold systern: A group of folds that are spatially 
and genetically related is called a fold system. A fold 
system can consist of a single fold train, in which the 
linked folds are comparable in dimension, or it can consist 
of related sets of folds. ln such a case, each set is 
composed of folds of comparable dimensions. 

Median surface: The surface passing through 
inflection lines between successive folds in a fold train. 

Enveloping surface: The two limiting surfaces 
between which a fold train oscillates are called enveloping 
surfaces. These surfaces can be defined by drawing the 
tangent planes to successive fold-hinge zones. The median 
surface for a fold train may or may not lie halfway between 
the two enveloping surfaces. 

surface 

surface 

) 
Hinge surfaces Enveloping surface 

Figme 11-5. Terminology used 
to describe geometric elements, 
amplitude, and wavelength of a 
series of folds involving a síngle 
surface. (a) Periodic symmetric 
waves; (b) periodic asymmetric 
waves; (e) periodic asymmetric 
waves. 

(e) 

Hinge surfaces Enveloping surface 
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Closure direction: The direction in which a fold 
closes is used to classify it as one of three basic fold types 
(Fig. ll-6a-c). A fold that closes upward is called an 
antif orm. A fold that closes downward is called a synf orm. 
A fold that closes sideways (left or right) is called a neutral 
fold. The terms anticline and syncline have more restricted 
usage and depend on the facing (see below) of the folds. 
An anticline has the oldest unit of the földed sequence in its 
core, while a syncline has the youngest unit in the földed 
sequence in its core. 

(a) Antiform (b) Synform 

(e) Neutral folds 

Figure 11-6. Classification of folds based 
on closure diraction. (a) Antiform; (b) synform; 
(e) neutral folds. 

Fold order: ln a fold system, smaller folds 
commonly occur on the limbs of the larger folds. The 
largest folds in the system are calledfirst-order folds, the 
next largest are called second-order fold.s, and so forth. The 
enveloping surfaces associated with lower-order folds are 
földed around the next-higher-order folds (Fig. 11-7). 
However, all the folds of a system have similar 
orientations for axial planes and share a common fold axis. 
Second-order folds förmed in response to shear on the limbs 
of a first-order fold are sometimes called parasitic fold.s. 

~ 
Hlnge plane 
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Description of Folded Surfaces in Profile 

A profile of a cylindrical fold is the projection of a fold on 
a plane drawn perpendicular to the fold axis (Fig. 11-8; see 
Chapter 13). The terms used to describe the shape of a fold 
in profile are defined next. 

Tightness: The tightness of a fold is a measure of 
the angle between the limbs of the fold (interlimb angle = 
a) as shown in Figure ll-9a. The angle a is measured 
between tangents to the földed surface drawn at the 
inflection points. The adjectives used to describe tightness 
are listed below (Table 11-1; after Fleuty, 1964) and are 
illustrated in Figure 1 l-9b. 

Table 11-1 

Terminology for Describing Fold Tightness 

lnterlimb angle Adjective 

120°-1so0 Gentle 
70°-120° Open 
30°-10° Close 
1 o0 -3o0 Tight 
00-100 lsoclinal 
<Oo Elasticas 

Obviously, the transition between various tightness 
groups is gradational, so it may be difficult to place a 
natural fold precisely within a single group, especially if 
there are variations in geometry from bed to bed. ln 
pract1ce, geolog1sts ass1gn a íola to a cenam group oy 
visually estimating the angle between the limbs. 

Hinge/limb shape: The hinge of a fold may be 
rounded, angular, or very angular (Fig. 11-lüa-d). AH 
these terms are self-descriptive. Folds with very angular 
hinges are called chevronfolds (Ramsay, 1974) if they have 
limbs of equal length (Fig. 11-lüc), and kinkfolds if they 

F1rst order fold 
Second order enveloplng surface 

Figure 11-7. First- and second
order folds showing enveloping 
surfaces in different orientations. 
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~ 

Trace ol 
hinge surlace 
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Figure 11-8. Cylindrical fold 
showing tha orientation of the 
profi/e plane perpendicular to the 
fold axis. The trace of the fold on 
the profile plane is the fold profi/e. 

Profile plane 
1..e::...L::::__,e:_L._J::::.JUL..J.C.__JL_.=J ...,_____.-/ 

interlimb angle 
[aj 

(a) 

\ 
\ 

Hinge surface 

,,. ..-.... Tangent pia ne 

\/ 
" 

Gentle 

Open 

(\ t Tight 
Elasticus 

(b) !aoclinal 

Figure 11-9. lnterlimb angle. (a) lnterlimb 
angle a rneasured between tangent planes to 
the folded surtace drawn at the inflection lines; 
(b) classification of fold tightness based on 
interlimb angles. 

have limbs of unequal length (Fig. 11-lOd). The limbs of 
a fold may be planar or curved; these terms are also 
self-explanatory. 

Hinge/limb ratio: The relative lengths (in profile) 
of the hinge zone to the limbs affect the appearance of the 
fold (Fig. 11-H). Ramsay (1967) proposed the parameter 
P to describe this characteristic, where 

p = length of ljmb orojection on the medjan-surface trace 
length ol hinge-zone projection on the median-surface trace 

Fold prof!le 

(a) (~ 

{d) 

Figure 11-10. Fold profi les showing 
different hinge and limb geometries. (a) 
Rounded hinge with curved limbs; (b) angular 
hinge with planar limbs; (e) very angular hinges 
(chevron folds); (d) very angular hinges (kink 
folds). 

The categories of folds based on hlnge/limb ratio are listed 
in Table 11-2. 

Fold symmetry: A single fold is symmetric if its 
hinge plane is a plane of symmetry and half of the fold is 

Table 11-2 
Descrlption of Hinge/limb Ratio 

Chevron/kink 
Anguiar 
Subrounded 
Rounded 

*indeterminate 

Hinge descriptioo 

Very narrow hinge zone 
Narrow hinge zone 
Broad hinge zone 
Very broad hinge zone 

P yalue 

20 - <X> 

5 -20 
1 - 5 
o· - 1 
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P-value 

0 

1·5 

lnterlimb angle. a 

CXl 

Figure 11-11. Folds with the same interlimb 
angle showing variation of the parameter P 
(i.e., variation in the relatíve sizes of the hinge 
and limb). 

(a) 

M-folds 

x 

~__,.--- S-folds 

(b) 
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the minor image of the other half. A fold that is not 
symmetric is asymmetric. A fold train is symmetric if 
each individual fold in the train is symmetric and the hinge 
planes of the fold train are perpendicular to the enveloping 
surfaces (Fig. ll-12a). A fold train is asymmetric if the 
hinge planes of the folds are oblique to the enveloping 
surfaces (Fig. ll-12b). ln general, the symmetry or 
asymmetry of a series of folds depends on the relatíve 
lengths of successive limbs; the two limbs of asymmetric 
folds are not equal in length. 

If a fold pair is viewed down its plunge (see the 
discussion of down-plunge viewing in Chapter 13), its 
shape may be defined by comparison with letters of the 
alphabet: Symmetric folds resemble an M or a W, and 
asymmetríc folds resemble an S or a Z (Fig. ll-12b). 
Remember, the sense of asymmetry of a fold pair (whether 
it is S or Z) depends on the direction in which we are 
looking along the fold axis. The asymmetry of a particular 
fold is reversed if we look up-plunge rather than 
down-plunge or if the plunge of the fold is reversed along 
the length of its hinge line (Fig. ll-12c). 

Vergence: The direction toward which the fold is 
turned is called its vergence (see Chapter 16). Z-folds 
display dextral or clockwise asymmetry in that one hinge 
can be visualized as moving to the right or rotating in a 
clockwise sense around the other hinge (Fig. ll-13a). 

(e) 

Figura 11-12. Symmetric and asymmetric folds. (a) Profile of a 
symmetric fold train with hinge planes perpendicular to the enveloping 
surfaces; (b) profile of a fold train showing that second-order folds may 
be symmetric (M· or W·) or asymmetric (S- or Z) depending on their 
position within the larger folds; (e) block diagram illustrating that the 
asymmetry of a fold depends on the direction from which the fold is 
observed. 
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Z-folds are saíd to have dockwíse vergence. Likewise, 
S-folds display sinistral, or counter-dockwise, asymmetry, 
and are said to have counter-clockwise vergence (Fig. 
ll-13a). 

Generally, lower-order folds in a fold system show a 
systematic variation in asymmetry across the next-larger
order fold; Z-folds are found in one limb of a larger fold, 
and S-folds in the other limb, while M- or W-folds occur in 
the hinge zone (Figs. 11-7; ll-12b). This systematic 
variation in asymmetry is also referred to as vergence 
(Hobbs et al., 1976). Note that the minor folds in the two 
limbs of major folds verge toward the antiformal axial 
surfaces and away from the synformal axial surfaces 
(Roberts, 1982). This means that the axial traces of major 
folds can be located by studying the changes in vergence 
shown by the minor folds (see Chapter 16). 

The vergence of an asymmetric fold can be used as an 
indication of the sense of transport associated with the 
development of the fold. Imagine two points, A and B, on 
an unfolded line (Fig. ll-13b). As an asymmetric fold 

clockwise counterclockwise 

B 

(a) 

w E 
El 

(b) 

Figure 11-13. Fold vergence. (a) Clock
wise and counterclockwise vergence of 
asyrnmetric folds defined on the basis of 
relatíve rnovernent of one hinge with respect to 
the other; (b) relatíve movement of two points 
(A and 8) during forrnation of an asymmetric 
fold. This fold verges toward the east. 
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dcvelops, point A (which will end up on the higher limb) 
is displaccd wilh rcspect to point B (which will end up on 
thc lowcr limb). In the example ofFigure ll-13b, point A 
moves to the east rclative to point B, so wc say that this 
fold verges to the east (see Bell, 1981). 

Facing: The facing of a fold is often confuscd with 
the vergence of a fold, but in fact it refers to quite a 
differcnt aspcct of thc fold gcomctry (sce Chaptcr 16). The 
facing of a fold rcfcrs to the dircclion in which strata gct 
younger along the axial surface. Figure l l-14a-d shows (a) 
an east-facing anticline, (b) an cast-facing syncline, (e) a 
wcst-facing antiformal synclinc, and (d) a west-facing 
synformal anticline. A fold that has a vcrtical axial plane 
can be upward or downward facing. To describc the facing 
of a fold, you must know the rclalive agcs of thc units. 

Dimensions: If a fold train shows regular, pcriodic 
repctition, and if thc median surfacc lics halfway bctwccn 
thc cnvcloping surfaccs, we can dcscribe thc dimensions of 
the folds in tcrms of thcir amplilude and wavelength. The 
amplitude (A) is half thc pcrpcndicular distance betwccn thc 
envcloping surfaces (Fig. 11-Sa,b). The wavelcngth (W) is 
the distancc from a point on onc fold to the equivalent 
point on the ncxt fold in the train (Fig. 11-Sa,b). If thc 
mcdian surface docs not lie halfway bctwcen the two 
enveloping surfaccs, we can no longer dcfine a single 
amplitude, although we can still dcfinc a wavelcngth (Fig. 
11-Sc). If thc folds do not show rcgular pcriodic rcpctition, 
it is not possible to dcfinc an arnplitudc or wavclength for 
the folds. 

Thickness Variation of a Folded Layer 

So far, we have described the geometry of földed surfaces. 
Real folds involve a sequence of layers (e.g„ beds) each of 
which has a finite thickness. Whether or not the thickness 

w E 

~ (!f3 
(a) (b) 

~ ~/ 
(e) (d) 

Figure 11-14. Description of fold facing. To 
describe the facing, the relative ages of the 
units must be known (1 is oldest, 3 is 
youngest). (a) an east-facing anticline; (b) an 
east-facing syncline; (e) a west-facing anti
formal syncline; (d) a west-facing synformal 
anticline. 
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Figure 11-15. lsogonal thickness of folds. (a) Measuring thickness 
between tangents of equal dip; (b) the dip isogon classification of folds; 
(e) plots of t' and T' versus dip angle. These plots define fields far 
different fold classes. (Adapted from Ramsay, 1967.) 

of a layer remains constant or changes during folding 
depends on the mean ductility of the rock, which is 
determined by the pressure, temperature, and strain rate 
during folding, and on the contrast in ductility between 
successive layers, which depends on the contrast in 
lithology between layers (Donath and Parker, 1964). Folds 
which display constant bedding thickness around the fold 
developed by the process of flexural slip (meaning that 
adjacent layers slid past one another as bending occurred). 
Flexural-slip folds formed under conditions such that there 
was a low mean ductility and a large ductility contrast 
between successíve layers. ln contrast, formation of folds 

in which limb and hinge areas are not the same thickness 
involved plastic flow mechanisms, and form where rocks 
have relatively high mean ductility. 

Because the thickness variation of a földed layer 
provides information on the mechanism of fold formation, 
it is an important characteristic to describe. Ramsay 
(1967) developed a morphological classification of folds 
based on the profile of a földed layer. The geometry of a 
folded layer can be described in terms of the following: 

1. The relative curvature of the two bounding surfaces 
of the layer, which can most easily be described by 
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constmcting dip isogons. As described in Chapter 13, a 
dip isogon is a line that connects points of equal dip on 
adjacent surfaces in the fold. 

2. The distance between the two bounding surfaces of 
the layer. This distance can be specified in three ways: (a) 
The orthogonal thickness t is the perpendicular distance 
between two tangents of equal dip (Fig. 11-1 Sa); (b) the 
thickness parallel to the axial surface T is the distance 
between tangents of equal dip ineasured parallel to the axial 
surface (Fig. 11-lSa); and (e) the isogonal thickness is the 
thickness measured parallel to dip isogons (see Chapters 4 
and 13). Note that if you were to inscribe lines parallel to 
the axial plane within the limbs of the fold, they might not 
connect poínts of equal dip. 

If the fold profile is positioned so that the tangent at 
the hínge is horizontal, then t = T at the hinge, and 
everywhere else on the fold t = T(cos a), where O'. is the 
dip of the tangent to the földed surface. 

Based on the pattem of isogons in the profile of a 
földed layer, Ramsay (1967) defined five classes of folds 
(Fig. 11-lSb). Table 11-3 provides additional information 
about these fold classes. Statements about convergence or 
divergence of dip isogons are made with reference to the 
inner arc (concave side) of the fold (e.g., convergent 
isogons merge toward the inner arc of the fold). 

If the normalized orthogonal thickness (t/to) or 
normalized thickness parallel to the axial surface (Tff 0) is 
plotted against the dip angle a (Fig. ll-15c), the different 
fold classes plot in different fields. Thus, by constructing 
dip isogons for any natural fold and plotting the results 
graphically, we can determine its fold class. 

Procedure 11-1 (Construction of dip isogons) 
To construct dip isogons for a particular fold, follow 

these simple steps (Fig. ll-16a,b; Ragan, 1985). 
Step 1: Draw a profile section of the fold. This can 

be either a down-plunge projection from a map or a tracing 
from a hand sample cut perpendicular to the fold axis. 

Step 2: Draw a series of lines tangent to two 
successive földed surfaces either with a drafting machine or 
with a protractor and a triangle as shown ín Figure l l-l 6a. 
Using a convenient horizontal datum, place the protractor 
at a certain dip angle and draw successive tangents by 
sliding the triangle up and down the straight edge of the 
protractor. 

Step 3: Repeat the process for other dip angles, 
usually at 10° intervals. A srnaller dip interval may be 
needed in some situations if more detail is required. 

Step 4: Connect points of equal dip on the surfaces 
with straight lines. These lines are the dip isogons (Fig. 
ll-16b). 

Fold Class 

Class 1A 

Class 18 

Class iC 

Class 2 

Class 3 

Tabie 11-3 
Classes of Folds 

Characterjstics 

2 21 

Strongly convergent dip isogons 
Curvature of the outer arc < curvature 

of the inner arc 
The smallest distance (t and T) between 

two surfaces is at the hinge 

Moderately convergent dip isogons 
Curvature of outer arc< curvature 

of the inner arc 
lsogons are perpendicular to the outer 

and inner arcs 
t remains constant throughout the fold 
Tis a minimum at the hinge 
These folds are often called parallel fofds 

or concentric tolds 

Weakly convergent dip isogons 
Curvature of outer arc < curvature 

of inner arc 
t is a maximum at the hinge 
Tis a minimum at the hinge 

Parallel dip isogons 
Curvature of outer arc = cun1ature 

of inner arc 
lsogons are parallel to the axial-

surface trace 
t is a maximum at the hinge 
T remains constant around the fold 
Such folds are often called similar folds 

Divergent dip isogons 
Curvature of the outer arc > curvature 

of the inner arc 
Largest distance (t and T) between two 

surfaces is at the hinge 

Orientation of Folds 

AH the fold features we have described so far apply to folds 
in hand samples as well as ín outcrop. However, a fold in 
outcrop is in its true natural orientation and presents us 
with some additional geometric information that can be 
described. 

To quantitatively describe the orientation of a fold we 
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)Tangents 

(a) (b) 

must subdivide the fold into parts with straight hinge lines 
and planar axial surfaces. The orientation of a fold with a 
straight hinge line and a planar axial surface can be 
described ín terms of the attitude of the hinge line and the 
attitude of the axial plane. Based on the orientation of 
these features, a fold can be classified into one of several 

(~ '~ 
cfO 80 60 

Horizontal 
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figure 11-16. Method far deter
mining points of equal dip on a fold 
profile. (a) Use of a protractor and 
triangle; (b) dip isogons far this fold 
profile. (Adapted from Ragan, 
1985.) 

groups, which arc defined on Fig. 11-17. ln many folds 
with inclined axial planes, and in reclined folds, both fold 
limbs dip in the same direction as the axial plane. This 
indicates that one of the limbs of the fold rotated through 
morc than 90° from its prefolding subhorizontal position 
and is now overturned. Folds with one overturned limb are 

10 

Horlzontal 
Upright 

Norma 

Steeply _________ --- Gently 

Plunge of 

fold hlnge 

inclined incllned 

figure 11-17. Fold classifica
tion based on the orientation of 
folds. (Adapted from Ramsay, 
1967.) 
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called overturned folds. In arcas of ovcrtumed fo!ds it is 
useful to have primary structures to aid in determining 
younging direction or facing of beds. 

The orientation of the crestal line and crestal surface 
(and trough line and trough surface) is usually different 
from the hinge line except in upright folds (Fig. 11-4). 
The hinge line of a fold is not always straight, and the 
plunge of the hinge line may change along üs length. If 
the plunge of the hinge line changes direction along the 
lcngth of the fold, the fold is doubly plunging (Fig. 
11-18). If the hinge line (for an antiform, synform, or 
neutral fold) plunges away from a high point, it produces a 
culmination; similarly, ifit plunges towards a low poínt it 
produces a depression (Fig. 11-18). 

The axial surface of a fold may be curved. Thus, for 
example, a fold may change from an antiform to a neutral 
fold either along its length (i.e., along the length of its 
hinge line) or up- and down-section. 

Procedure 11-2 (M easurement of the orientation 
of a fold hinge) 

The oricntation of a fold hinge cannot be measured if 
the fold is exposed on a smooth two-dimensional plane. 

Anllformal Culmlna!ion 

Synformal Depression 

Antiformsl Depresslon 

Synformal Culmínalion 

Figura 11-18. Terminology tor description 
of doubly plunging folds. 
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Fortunatel y, there is usuall y local relief on the surface of 
an outcrop because of the difference in resistance to erosion 
of various layers. If such relief is available, emphasize the 
hinge by placing a pencil on it or, if that is not possible, 
by aligning the pencil with the hinge (Fig. 11-19). Then, 
remember that a fold hinge is a line, and apply the 
procedure for measuring lines described in Chaptcr l to 

measure the attitude of the pencil. 

Figure 11-19. lllustration showing how to 
use a penci! to emphasize the orientation of a 
fold hinge. 

Procedure 11-3 (Measurement of the orientation 
of a fold axis) 

The fold axis is calculated, using the equal-angle or 
equal-area nets as dcscribed in Chapter 8, from altitude 
measurements at many locations on the fold surface. 
Collection of data for such a calculation from a mesoscopic 
fold may be difficult if the fold is very small; it may help 
to use a compass plate (Chapter 1). 

Procedure 11-4 (Measurement of the attitude 
of a hinge plane) 

Remember that the hinge plane is defined by two 
lines. One of these is a hinge line, and the other is the line 
composed of the points defined by the intersection of hinge 
lines on successive layers with the outcrop face. Locate 
these two lines (you may wish to emphasize them with a 
penci!); then align your compass plate so that it contains 
both lines, and measure the attitude of the compass plate 
(Chapter 1). 

Representation of Folds on a Map 

Map-scale folds are defined on a map by the outcrop pattern 
of földed layers (Appendix 1 ). If both limbs of the fold are 
present, a traverse across the map will cross the same 
stratigraphy twice. If the hinge zone of a plunging fold is 
present in the map area, the map will display a fold closure 
where the outcrop belts of the two limbs join and the 
outcrop pattem has the maximum curvature. The fold trace 
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is the line on a map connecting closures in the outcrop 
pattem of successive layers or units. ln general, the fold 
trace does not coincide exactly with either the hinge-surf ace 
trace or the crest-surface trace. If the fold has a vertical 
hinge plane, the hinge-plane trace will coincide with the 
fold trace only in areas of negligible relief (Ragan, 1985). 
For folds with inclined hinge planes, the real hinge-plane 
trace is always different from the fold trace (see Chapter 
13). The degree of discrepancy between the two depends on 
the geometry of the fold (e.g., whether the fold is 
concentric or similar) and on the topography (Ragan, 
1985). Thus, the fold trace on a map has no real 
significance in terms of the fold geometry but is simply a 
convenient way of representing a fold on a map. 

Symbols are usually placed on the fold trace to convey 
additional information about the fold. Arrows pointing 
away from the trace represent an antifonn, and arrows 
pointing toward the trace represent a synform (Fig. 
ll-20a). Similarly, symbols can also be used to represent 
overtumed folds (Fig. l l-20a). If the fold is plunging, an 
arrow along the fold trace is used to represent direction and 
amount of plunge (Fig. ll-20b). A strike-and-dip symbol 
placed on the fold trace can be used to specify the strike and 
dip of the hinge surface. 

Folds that are too small to be represented on the map 
by their outcrop pattems are usually represented simply by 
an arrow indicating direction and amount of plunge. It is 
useful to draw at the tail of the arrow a profile sketch of the 
fold as viewed looking down-plunge (Fig. ll-20c). 
Asymmetric (S- and Z-) minor folds are often represented in 
this way. 

(a) 

(b) 

(e) 

I I I I 
T T I r 

Antl1orm Synform Overturned Overturned 
antlform ayntorm 

IÁ\\ ~ ~ 
Plunglng normal fold Plunglng lncllned told Recllned fold 

/ t ~ v( 
Antlformal Synformal z-fold e-fold 
minor fold minor fold 

Figure 11-20. Symbols used to represent 
folds on a map. (a) Overall shape of major 
folds; (b) plunge of major folds; (e) shape and 
orientation of minor folds. 
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Speclal Fold Types 

There area number of specific fold types that are distinctive 
enough to warrant special names. These are described 
below: 

Monocline: This is a fold in which a layer changes 
dip for an interval then retums to its original dip. A 
monocline, therefore, has two hinges (Fig. ll-2la). ln 
many localities large monoclines occur over high-angle 
reverse faults. ln such settings the monoclines are 
commonly assumed to have developed as drape folds 
(Steams, 1978). However, monoclines can also fönn by 
buckling or kink-folding at a site of a preexisting flaw or 
mechanical disturbance (Reches and Johnson, 1978; Davis, 
1978; 1984). 

Ptygmatic folds: ln metamorphic rocks it is not 
uncommon to find veins that have been folded into an 
intestinelike squiggle containing elasticus-shaped folds 
(e.g„ Mitra and Datta, 1978; Klein, 1981). The folds 
typically involve a single layer and have concentric 
geometry. Such folds are called ptygmatic folds (Fig. 
l l-2lb). 

Sheatb folds: Sheath folds generally occur in zones 
of high shearing (Cobbold and Quínquis, 1980; 
Malavieille, 1987). A sheath fold has this name because 
the hinge of the fold is itself földed in the axial plane of the 
fold, so that the földed surface has the fönn of a sheath, 
such as would fit around a sword (Fig. l l-2lc). 

Kink-domain folds: These are folds that do not 
have smooth curving hinge zones. Rather, the fold is 
composed of straight-limb segments separated from one 
another by sharp hinges (see Faill, 1973). A map of a 
large kink-domain fold would contain bands in which the 
1~-:"-..l- _t.. ____ ~J..,... ""'"'""'_.-_ ...1!-_ • .,.i._!""--"."",...,_ ~~~A,... ...... '."",... ,....~1J~~ f!:-. Á~~-"'!Í~~ 
u~~,_, J.11.i.li.ÜV i..ii"Y UM.a.ii..i~ ....... p, i..iiiVUV vw„ ... -0.:.. ...,..._ ..... ~ ........ -- -·r ~ .. .--„ ........ 

(see Chapters 13 and 14). 
Kink bands: A kink band is a tabular zone in which 

an earlier foliation has been deflected into a new orientation 
(e.g., Dennis, 1987). The boundaries of the zone are 
kink-fold hinge planes (Fig. 11-lOd). Kink bands only 
form in rock that contains a pre-existing well developed 
foliation (bedding, cleavage, or schistosity) and has 
uniform layer thickness (see Dewey, 1965; Anderson, 
1964; Weiss, 1980). Typically, kink bands die out along 
their length in profile either by tapering to a point as the 
amplitude of the kink diminishes (Fig. 11-22a), or by 
narrowing into a thin shear zone. The geometry of a kink 
band leads to a relative displacement of the foliation across 
the kink band. Kink bands often occur in conjugate pairs 
(Fig. ll-22b) resulting in conjugate folds. The 
intersection of the kink band with the foliation being 
kinked detennines the orientation of the kink-fold hinge or 
kink axis (Fig. l l-22c). Conjugate kink bands intersect 
along kink-intersection axes, which lie on the 
kink-intersection surface (Fig. l l-22c; see Chapter 13). 
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Figure 11-21. Examples of special fold 
types: (a) Monocline (adapted from Huntoon, 
i 974); (b) outcrop photograph of ptygmatic 
folds; (e) progressive steps in the development 
of a sheath fold. lnset shows cross sections 
of "a-type" and "b-type" sheath folds (adapted 
from Malavieille, í 987). 

Monocline 
j 

\ "'r 
y 0 2 5 

Kink band b9undary 

(a) 
.Kink band Kink band 

(b) 

(b) 

Kink junction surf.ace 

(e) 

15 

Pri~ery boun~ary 

Kink band 1 \~Kink band 2 

Figure 11-22. Geometry of kink bands. (a) Reorientation ol foliation 
across a parallel-sided kinkband resulting in relative displacement of 
the foliation. Kink bands die out by tapering to a point (adapted !rom 
Anderson, 1964); (b) intersection of conjugate kink bands (adapted 
from Weiss, 1980); (e) conjugate kink bands showing orientation of kink 
axes and kink-intersection axes. 
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A description of a kink band should include: (a) the 
plunge and bearing of the kink fold hinges; (b) the strike 
and dip of the kink band; (c) a specification of whether the 
displacement across the kink band is dextral or sinistral as 
viewed down the plunge of the kink axis; (d) the interlimb 
angle of the kink folds; (e) the dimensions of the kink band 
and a description of its termination; and (i) an indication of 
whether the kink band is isolated, is part of a set of parallel 
kink bamls, or is part of a conjugate system of kink bands. 

11·3 SHEAR ZONES, FAULTS, 
AND FAULT ZONES 

The term shear zone is a general term for a relatively 
narrow zone with subparallel boundaries ín which shear 
strain was localized (see Chapter 15). The relatively 
undeformed wall rocks on opposite sides of the zone have 
been displaced relative to one another in a direction parallel 
to the plane of the shear zone. Shear zones form under a 
variety of deformation conditions and can be subdivided 
into three main types (after Ramsay, 1980): 

Ductile shear zones: ln these zones there is no 
discontinuity across the zone, and shear strain magnitude 
varies smoothly across the zone. The fabric of rocks 
within these zones has been modifíed by plastic 
deformation processes. 

Brittle-ductile shear zones: There is a 
discontinuity within the ductilely deformed rock of the 
shear zone. This discontinuity may be a discrete fracture 
on which sliding has occurred, or it may be an array of 
en-echelon extension gashes. 

RrittlP o;:hpar 7'.0nP« {firnlts :tnrl fault zonf's): 

ln a brittle shear zone the rock has been deformed by brittle 
deformation processes. If the "zone" is a discrete planar 
fracture on which slip occurred, it is called a fault. If a 
brittle shear zone is composed of a number of subparallel 
anastomosing faults separating lens-shaped blocks of 
undeformed rock, or if it is a tabular band of finite width 
containing brittlely shattered or pulverized rock, it is called 
afault zone. 

The description of a shear zone should include 
information on (a) the orientation (strike and dip) of the 
zone, (b) the relatíve movement across the zone (direction 
and amount of net slip), (c) the width of the zone, (d) the 
style of deformation (brittle or ductile) within the zone, and 
(e) the nature of the transition between the zone and the 
wall rocks (is the boundary of the zone gradual or abrupt). 

Shear0 Zone and Fault-Zone Rocks 

The fabric of rocks deformed ín shear zones is quile 
distinctive. Sibson (1977) suggested that shear-zone rocks 
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can be classificd bascd, on thc proportion of matrix (Lhc 
rclativcly finc-graincd groundmass) formcd in thc rock as a 
conscqucncc of shcar, on the grain size of thc matrix, on 
whcthcr or not the rock is cohesive (a cohesive rock holds 
togcthcr), and on whcthcr or not thc rock devcloped a 
foliation as a conscqucnce of shear deformation. The three 
main calcgorics of shcar-zonc rocks arc: (a) the breccia 
series, which includcs incohcsive nonfoliated rocks, (b) thc 
cataclasite series, which includcs cohcsive random-fabric 
rocks, and (c) thc mylonite series, which includcs cohcsive 
foliatcd rocks. ln practicc, geologists usc the term 
cataclastic rock to refer to any mcmbcr of the cataclasitc 
scrics and the term mylonitic rock to rcfcr to any mcmber 
of thc mylonitc scries. 

Various subcategorics (rock typcs) within each of these 
serics arc namcd in Figurc ll-23a (after Sibson, 1977). 
This chart also indicatcs the approximate pressure
tcmpcraturc conditions (mctamorphic grade) in which each 
scrics forms, assuming a granitic protolith (aflcr Hull et 
al., 1986). Hand-samplc and thin-scction photographs of 
somc typical fault-zone and shcar-zonc rocks arc shown in 
Figurc 11-24. 

Thc tcrms fault breccia and fault gouge arc uscd for 
incohcsivc rock formcd by fracturing and crushing in a 
non-mctamorphic (brittlc) shcar zonc. Rocks of the 
cataclasite series form in brittle and brittle-ductile shcar 
zoncs; thcy are not foliatcd but arc cohcsive. The spccific 
name givcn to a rock in thc cataclasitc serics (e.g., crush 
brcccia, protocataclasitc etc.) dcpcnds on the grain size of 
the fragmcnts and on Lhc proportion of the rock that is 
matrix. 

Brittle shcar zone rocks devclop whcn fracturcs 
initiatc, propagatc, and coalcsce in thc rock (Blcnkinsop 
and Ruttcr. 1986). Frictional sliding on fracturcs mav give 
risc to slickenside surfaccs. (A slickenside is the polishcd 
surfacc of a fracture.) Brcccia forms whcn blocks arc 
surroundcd by fractures and scparate from the wall rock. 
Continucd shcar Jcads to crushing and grinding and a 
progrcssi ve dccrease in grain size of the blocks (Fig. 
l I-24a). If rock is pulvcrized under low pressure, gouge 
ultimatcly forms, but undcr high prcssure the finc grains 
arc intcrlockcd into cohcsivc cataclasitc (Fig. l l-24b,c). 

If sufficicnt hcat is gencratcd during a shcar cvcnt, 
somc of the rock in thc shcar zonc mclts, and thc moltcn 
material ínjccts into fracturcs and quickly cools. Thc 
rcsulting glass is called pseudotachylite. This rock 
rcscmblcs basallic volcanic glass (tachylitc) and may occur 
along a fault plane or in vein nctworks near the fault. 
Sibson (1975) suggestcd that the formation of 
pseudotachylite is indicative of seismic movement on a 
fault. 

Rocks of the mylonite series form by ductile 
deformation mechanisms (see Bell and Etheridge, 1973; 
Hobbs et al., 1976; '.Vhite et al., 1980; Suppe, 1985; 
Poirier, 1985) and therefore characteristically form in shear 
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Figura 11-23. Fault-rock terminology. (a) Classification of fault 
rocks that have been derived !rom quartzo-feldspathic lithologies (e.g„ 
granite) (adapted from Sibson, 1977); (b) the grain size - metamorphic 
grade - lithologic composition grid used far classifying fauli rocks (after 
Hull et al., 1986); (e) fault rock diagram far mari showing expanded 
mylonite and superplastic mylonite !ields as compared the those shown 
on the diagram for granite in part a. 
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(a) 

(b) 

(e) 

(d) 

(e) 

Figure i 1-24. Outcrop, hand-sample, and thin-section photographs 
of some typical fault and shear-zone rocks. (a) Fault breccia from 
Appalachian thrust, Tennessee; (b) thin section sketch of a cataclasite 
from the Wind River Mountains, Wyoming; (e) thin section of foliated 
cataclasite from the White Rock thrust fault, Wind River Mountains, 
Wyoming; (d) quasiplastic mylonite from the Blue Ridge region, 
Appalachian Mountains of Virginia; (e) thin section of quasiplastic 
mylonite. Notice cracking of feldspar porphyroclasts; (f) hand sample 
of mylonite frorn the Carthage-Cotton mylonite zone in the Adirondack 
Mountains of New York (from Lumino, 1987). 
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zones that were active under medium to high metamorphic 
grades. The sequence, protomylonite => augen mylonite => 
mylonite => uhramylonite, represents progressive grain 
diminution by dynamic recrystallization of original grains. 

ln a protomylonite, most of the rock displays original 
grain size, though grains are flauened and stretched and 
display undulose extinction. As ductile shear continues, a 
once coarse-grained rock evolves into a matrix of extremely 
small grains. The fine-grained matrix is strongly foliated 
and lineated; foliation is defrned by flow segregation of the 
matrix into bands, by alignment of fine mica, and by 
preferred orientation of flattened grains of other minerals. 
ln an augen mylonite, the bands of matrix wrap around 
lenticular coarser grains called augen (German for eyes). 
Some augen are porphyroclasts, in that they are composed 
of relict crystals or clusters of crystals of the parent rock. 
Porphyroclasts are commonly bordered by pressure-shadow 
tails formed by solution-reprecipitation, or by tails (often 
asymmetric) of tiny grains formed by recrystallization. 
The tails, along with stretched grains and streaks of fine 
rnica, define the characteristic lineation of mylonite-series 
rocks. A mylonite (in the strict sense) has 50-90% matrix; 
the remainder of the rock is composed of porphyroclasts 
and ribbons of highly strained relict minerals. ln an 
ultramylonite, porphyroclasts are largely absent and the 
entire rock is composed of extremely fine matrix; 
ultramylonites are aphanitic. Mylonites or ultramyloniles 
that are composed largely of fine-grained mica are 
commonly called phyllonites. Under high-grade metamor
phic conditions, crystals (porphyroblasts) grow in lhe 
mylonite (e.g., Wintsch and Knipe, 1983) and strained 
grains are annealed. The resulting rock is called a 
blastomylonite. Eye-shaped porphyroblasts can also be 
called augen. 

The chart of Figure ll-23a shows a field for 
quasiplastic mylonites. A quasiplaslic mylonite (Fig. 
l l-24d) is one lhat exhibits both ductile and brittle 
deformation features. ln some quasiplastic mylonites of 
granitic composition, quartz deforms ducülely, while 
feldspar deforms by fracture and fragmentation (Mitra, 
1978; Fig. l l-24e). 

The usage of the term superplastic mylonite is 
somewhat controversial. ln a broad sense, superplasticity 
simply refers to extremely ductile deformation during 
which very large strains develop without failure (Schmid, 
1983). Thus, any shear-zone rock in which there has been 
extreme strain without loss of cohesion can be called a 
superplastic mylonite. Such large ductile strains are 
typically observed in very fine grained shear-zone rock, 
irrespective of whether the initial reduction in grain size 
took place by brittle or ductile processes (Wojtal and Mitra, 
1986; Mitra, 1984; Gilotti and Kumpulainen, 1986; 
Schmid, 1975; Bouillier and Gueguen, 1975). fo Figure 
l l-23a, the term superplastic mylonite is used in the broad 
sense; the field of superplastic mylonites is shown as 
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includíng the extremely fine-grained members of the 
quasiplastic mylonite series and the mylonite series. 

Under medium to high-grade metamorphic condüions, 
superplastic behavior in rock is thought to be a 
manifestation of deformaüon by grain-boundary sliding 
(Schmid et al., 1977; Schmid, 1983). Grain-boundary 
sliding is a deformation mechanism that involves diffusion 
and dislocation motion concentrated along grain boundaries, 
such that grains can switch neighbors without the overall 
rock losing cohesíon. BouiUer and Gueguen (1975) 
suggested that evidence of grain-boundary sliding in a 
mylonite is the occurrence of a fine-grained matrix without 
a crystallographic preferred orientation. If water is present, 
a form of grain-boundary sliding called particulate flow 
may occur even under relatively low metamorphic 
conditions (Borradaile, 1981). 

As noted earlier, the boundaries between fields on 
Figure l l-23a are related to metamorphic grade. Figure 
ll-23a is drawn for felsic (granitic) rocks and implies that 
breccia-series rocks form at depths of < 4 km, cataclasite
series rocks form at depths up to 15 km, and mylonite
series rocks form at depths below the brittle/ductile 
transition (i.e„ > 15 km). The depth ranges just listed are 
very approximate and depend on rock composition, 
geothermal gradient, and strain rate. 

Figure l l-23b schematically illustrates that the 
boundary between the catalclasite and mylonite fields 
depends on the original lithology as well. For example, 
ultramafic rocks stay brittle at relatively high temperatures, 
whereas carbonate rocks become ducüle at relatively low 
temperatures. Figure ll-23a is a slice parallel to ilie X-Z 
plane through the 3-D space of Figure l l-23b. Figure 
l l -23c shows the X-Z slice for a carbonate rock. Note that 
the boundary belween the cataclasite and mylonite ficlds is 
further to the left (i.e., at lower metamorphic grade) for 
carbonate rocks than it is for granilic rocks. 

Sibson (1977) schematically illustrated the relation
ship between metamorphic conditions (i.e„ depth of 
deformation) and the type of shear-zone rock that forms 
(Fig. 11-25). Zones formed at shallower levels within the 
earth's crust are brittle and yicld breccia or cataclasite series 
rocks, whereas zones förmed at deeper levels, hence at 
higher pressures and temperatures, are ductile and yield 
mylonitic series rocks. 

Klnematic lndlcators ln Fault Zenes 

A correct interpretation of shear sense on a shear zone may 
provide critical insight into the tectonic significance of ilie 
shear zone or fault. Obviously, the most direct way of 
determining shear sense is to look for offset markers. As 
we have seen in Chapters 6, in order to completely specify 
the net slip on a fault it is necessary to have two 
nonparallel offset markers or one offset marker and an 
indication of the direction of slip. In the absence of offset 
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Figure 11-25. Characteristic fault rocks of 
a shear zone as a function ol depth. (After 
Sibson, 1977.) 
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markers, certain structures can assist us in determining 
shear sense on a fault. These structures are called 
kinematic indicators because they indicate the sense of 
movement. 

Slickenlines or Slip Lineations: Often a 
slickenside surface is decorated by lineations parallel to the 
direction of movement on the surface. These lineations are 
variously referred to as slickenside lineations, slickenlines 
(Fleuty, 1975), or slip lineations. There are at least three 
types of slip lineations: 

( 1) Groove lineations: These are lineations förmed by 
the scratching of one surface against another during 
movement on the fault or sliding surface (Fíg. ll-26a,b). 
The opposing surfaces of the fault are not perfectly 
smooth; microscopic asperities contact the opposing wall 
and gouge the opposing wall as the fault moves (Fig. 
1 l-26c). Groove lineations are often ambiguous as 
indicators of the sense of shear, so their presence can be 
used only to determine direction of shear. 

Figure 11-26. Outcrop, hand-sample, and 
thin-section photographs of some typical 
slickenside features. (a) Groove-type 
slickenlines on slickenside surface Iram the 
Appalachian Valley and Ridge province; (b) 
scanning-electron photomicrograph of a 
grooved slickenside surface ín the Flathead 
Sandstone, Wind River Mountains, Wyoming 
(from Mitra & Frost, 1981 ); (e) scanning
electron photomicrograph showing the cross 
section of a slickenside surface ín granitic 
rock, Wind River Mountains, Wyoming. The 
upper wall of the fracture has an asperity (the 
protrus1on 1nd1cated oy tne arrow) tnat 1s 
gouging the lower wall (from Mitra & Frost, 
1981). 
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(2) Fiber lineations: These are lineations Ihat area 
consequence of fibrous mineral growth on the surface of the 
fault. Their presence indicates that as the fault moved, it 
opened slightly and became the locus of vein-mineral 
precipitation. The precipitation occurred ín increments (see 
the discussion of crack-seal deformation presented later in 
this chapter) and as a consequence the mineral composing 
the vein grew in the form of long, thin fibers. When the 
fault surface is exposed, these fibers appear in imbricate 
sheets (Fig. ll-27a,b). The long axis of each fiber is 
parallel to the direction of extension (i.e., movement 
direction on the fault), and the sense of imbrication of the 
fibrous sheets gives the sense of movement on the fault 
(Fig. ll-27c). 

Typically, fault-plane veins have a complicated history 
and may, in cross section, be seen to consist of sheets of 
blocky spar separated by thin screens of clay residue or wall 
rock; in such examples, the fibers are visible only on the 
surface of the vein (Fig. ll-27b). If the fault has had a 

(a) 

lnitial fracture 
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complicated movement history, two or three sets of fibers 
wüh different orientations may be visible on the faull 
surface. 

(3) Nesting grooves and ridges: During creation of a 
fault plane and initial sliding on the plane, Iineations 
appear on the fault that are sometimes longer than the 
displacement on the fault (Means, 1987). Shallow 
U-shaped grooves on one side of the fault nest with ridges 
of similar length protruding from the other side. The exact 
mechanism of formation of these lineations is not clear, 
although they are known to form under conditions of brittle 
deformation. They may represent lateral steps in the fault 
surface. It appears that nesting grooves and ridges can be 
used to indicate the direction but not the sense of slip. 

Steps or Bends on Fault Planes: Fault surfaces 
are generally not perfectly planar. Rather, the surfaces are 
locally offset at bends or steps. Because a bend or step in a 
fault plane is not parallel to the shear direction, 
compressional or extensional structures may develop at the 

(b) 

Figure 11-27. Fibrous slip lineations. (a) 
Partially eroded fault vein of white calcite on 
dark grey muddy limestone. Fibers are parallel 
to transport direction and are only on the 
surface of the vein. The vein interior is 
composed of calcite spar. Note compass for 
scale; (b) lmbricate sheets of fibers on the 
footwall of a fault in the Hudson Valley of New 
York. The hanging wall (eroded away) moved 
up with respect to the footwall; (e) formation of 
imbricate fibrous minerals on a fault surface 
(adapted from Durney and Ramsay, 1973). 

Fault displacemenl 
fiber growth 

~ 

Exposed fault surface 

(e) 
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bend. The shape of the step with respect to thc shear scnse 
on the fault detennines whether there is compression or 
extension at the stcp. To visualize the relationship 
between step shape and the type of structurc that develops 
at the step, imagine a horizontal fault (Fig. 11-28). 
Restraining steps face opposite to the direction of shear of 
the hanging wall with respect to the footwall, and releasing 
steps face in the direction of shear. 

On mesoscopic faults that have developed under condi
tions amenable to fiber lineation formation, restraining 
steps are the site of solution pitting (Fig. 11-28). If the 
stcp is perpendicular to the fault plane, the step evolvcs 
into a small stylolite, and ifit is oblique to the fault plane, 
it is sometimes called a slickolite (a hybrid of thc words 
"slickenline" and "stylolite"); the long axis of a pit on a 
slickolite is oblique to the plane of the slickolite and is 
parallel to the fibrous lineations on the fault surface (sec 
Price, 1967; Arthaud and Mattauer, 1969). Releasing steps 
are the site of vein formation (Fig. 11-28). Recognition of 
the above stmctures on a fault are a direct indication of the 
sense of shear across the fault plane. 

Restraining and rcleasing bends on regional strike-slip 
faults lead to the development of large structures (Crowell, 
1974). Restraining bends are the sites of thrusting and 
folding, and releasing bends are the sites of norma! faulting 
and pull-apart basin formation. 

Hansen Slip-Line Method: If an interval of 
well-layered rock is deformed in a shear zone, it is likely 
that a large number of mesoscopic asymmetric folds 
develop as a consequence of the shear couple. The axial 
planes of these folds are inclined at a low angle to the 
boundaries of the shear zone, and the hinges of the folds lie 
in the plane of the shear zone or at a low angle to it. 
P-e~~~1~~ 0f !ni:~• ,_,ariat~"ns in thp rrHienlhidP "f ~hP-3r ln the 

zone, the hinges of the folds are not all parallel to one 
another and are not all oriented perpcndicular to the slip 
direction. Rather, the angle between the hinges and the 
slip direction is quite variable. If the slip direction has 
been uniform, however, there is a consistent relation 
between the fold vergence and the orientation of the hinge, 
and thus it is possible to use mesoscopic folds in a shear 

Res1ra1ning step 
Releas1ng slep 
w1th fibrous ve1n 

wlth solution pits / 
~ ,,,..---~""""-

'-taull plane 

Figure 11-28. Gross section o! a jagged 
fault sur!ace showing the restraining and 
releasing steps. (Adapted trom Marshak et al., 
1982.) 
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zone to determine the shear sense on the fault (Hansen, 
1971). 

Imagine a thrust fault that dips 30° to the east; the 
hanging wall moved up to the west (Fig. ll-29a). Small 
asymmetric folds develop in the zone of shearing. Folds 
whose hinges plunge in a northerly direction have 
counterclockwise vergence, whereas folds that plunge in a 
southerly direction have a clockwise vergence (Fig. 
l l-29a). This difference reflects the fact that fold vergence 
must be described as viewed down-plunge. On a 
stereographic projection, the fold hinges lie on a great 
circle representing the plane of the fault, with the dextral 
and sinistral folds in different fields. The gap between the 
two fields is the separation arc, and the slip directíon lies 
within this arc. 

To help visualize why there is a difference in vergence, 
placc a pencil between the palms of your hands so that it is 
inclined to your fingers (Fig. l 1-29b). Shear your hands 
past one another in the direction parallel to your fingers 
and watch how the penci! rotates. Repeat the exercise with 
the penci! plunging in the opposite direction. 

Procedure 11-6 (Hansen slip-line method) 
Step 1: In the field, measure a number of 

mesoscopic folds with unambiguous vergence; only clearly 
defined S- and Z-folds fit the bili cy./- and M-folds cannot 
be used). About 30 folds are needed for a reliable answer. 
For each fold, measure the bearing and plunge of the fold 
and the sense of vergence (clockwise or counterclockwise) 
as viewed down-plunge. 

Step 2: On an equal-angle or equal-area net, plot the 
points representing the fold hinges. Use arrows to indicate 
the sense of rotation of the clockwise folds and the 
connterclockwise folds. 

Step 3: If the data are appropriate for the method, 
the fold hinges define a great circle representing the plane 
of the shear zone. The clockwise folds fall in a different 
field than the counterclockwise folds. The gap between the 
two fields is called the separation arc. 

Step 4: The slip direction lies within the separation 
arc. To determine the sense of slip (either up-dip or 
down-dip) you must think through the sense of vergence. 
Imagine a fault that dips 30° due south. Figure ll-29c 
shows two possible patterns of fold data; if the data 
appeared as shown in the stereoplot on the left, then the 
fault is a thrust, whereas if the data appeared as shown in 
the stereoplot on the right, then the fault has normal 
displacement. 

Mesoscopic and Microscopic Kinematic 
lndicators ln Ductile Shear Zones 

Ductile shear zones and mylonite zones often do not 
contain offset marker layers for the determination of 
relatíve movement sense. However, a number of 
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Figura 11-29. The Hansen slip
line method. (a) Map and cross 
section of a thrust sheet showing 
the development of asymmetric 
folds. The stereogram shows the 
populations of dextral and sinistral 
folds with the transport direction 
lying within the separation arc; (b) 
illustration to help visualize why 
different folds along the same fault 
plane can have different vergence; 
(e) illustration that the sense of slip 
can be determined by examining the 
pattern of folds aiong a great circle. 
The pattern in the lelt stereoplot is 
characteristic ot a thrust fault, and 
the pattern of the right stereoplot is 
characteristic of a norma! fault. 
Both plots show the plunge and 
bearing of mesoscopic folds along a 
fault surlace that dips 30° to the 
south. 
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small-scale structures (at the hand-sample and thin-section 
scale) ín mylonites can be used to determine relatíve sense 
of movement. To obtain the maximum amount of 
information about sense of shear, samples should be 
viewed on a plane perpendicular to the foliation and parallel 
to the stretching or mineral elongation lineation. Here, we 
describe briefly the main criteria used to determine shear 
sense in mylonitic rocks (adapted from Simpson, 1986); 

3 km 

w E 

s separat1on arc 

(a) 

N 

Normai fault 

(e) 

morc detailed descriptions are given by Simpson and 
Schmid (1983), Lister and Snoke (1984), Simpson (1986), 
and Ramsay and Huber (1987). 

Sigmoidal foHation: In a relatively narrow shear 
zone it is possible to observe the variation in orientation of 
the new foliation (within the zone) with respect to the zone 
boundaries. The foliation generaUy shows a smooth 
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change in orientation across the zone, giving rise to a 
typical sigmoidal pattem (Fig. l l-30a). This pattern can 
be used to determine the relative sense of movement on the 
zone, as indicated in the figure. In addition, the angular 
relationship between the new foliation and the zone 
boundary can be used to determine the shear strain within 
the zone and the displacement across the zone (Fig. l l-30b; 
see Chapter 15). 

Shear-band geometry: Some shear-zone rocks 
contain small, subparallel, evenly spaced (at 1- to 10-cm 
intervals) shear zones. These small shear zones form 

(a} 

(e) 
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within a larger host shear zone and deflect or cut schistose 
foliation (Fig. l 1-30c,d). The relatíve age of the small 
shear zones with respect to the foliation that they deflect is 
not always clear. Simpson (1986) suggested that the term 
shear band should be used as a general name for the small 
shear zones when the relatíve ages of the deflected schistose 
foliation and the small shear zones are uncertain. When 
there is evidence that the schistose foliation and the shear 
bands förmed at the same time, the term S-plane (S for 
schistosity) can be applied to the schistose foliation and 
C-plane (C for "cisaillement," the French word for shear) 

Y = tanlj.I 

V = 2 / tan 28' 

s 

Dl•!~~ (/ ?!ilr7? ----"-~ 
Shear zone a""' j Y dx 
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Figure 11-30. Shear-zone structures. (a) Sigmoidal pattern of 
foliation flowing into and out of a shear zone in the Blue Ridge region of 
Virginia; (b) determining the shear strain and displacement across a 
shear zone using the change in orientation of foliation through the zone; 
(e) small-scale structure within a shear zone showing the development 
of s-planes (schistosity) and c-planes (shear planes in sheared 
granodiorite from Palm Canyon, California; (d) photomicrograph of Sarv 
mylonite from the Swedish Caledonides showing well-developed 
c-planes and s-planes (photo by J. Gilotti); (e} sketch illustrating the 
use of S-C fabrics as shear indicators. 
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can be applied to the shear bands (Berthe et al„ 1979). 
Shear-zone rocks with pronounced S-planes and C-planes 
are called S-C mylonites (Lister and Snoke, 1984). They 
develop best in augen mylonites förmed from a micaceous 
granitic protolith. 

The geometric pattem of shear bands with respect to 
the deflected schistose foliation gives the overall sense of 
movement across the larger host shear zone (e.g., 
Simpson, 1986). Shear bands are parallel to the shear-zone 
boundaries, and the S-planes or the earlier schistose 
foliation are inclined to the shear-zone boundaries. 
S-planes or earlier schistose foliation dip away from the 
direction of shear and curve into shear bands, thereby 
creating a sigmoidal pattem of foliation (Fig. ll-30e) that 
directly gives shear sense as described earlier. The line of 
intersection of shear bands and schistose foliation is 
approximately perpendicular to the direction of movement. 

(a) 
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It is important to emphasize that not aU shear bands 
can be used as shear-sense indicators for the host shear 
zone. ln some cases, shear bands, which closely resemble 
sigmoidal crenulation cleavage (described later in the 
chapter), are inclined to the main shear zone boundary and 
the shear across them can be antithetic or sympathetic to 
the shear across the larger host shear zone. In addition, 
shear bands can fönn conjugate systems that are associated 
with flattening across the shear zone (Platt and Vissers, 
1980; Bell, 1981). 

Porphyrodast tails: Porphyroclasts are relict 
larger grains of relatively rigid minerals that occur in an 
otherwise fine-grained, foliated mylonite. Porphyroclasts 
range in size from 0.1 mm to several centimeters. They 
often have thin mantles and elongated tails of either tiny 
recrystallized grains of the same composition as the 
porphyroclast (Fíg. ll-3la,b) or of reaction-softened 
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Figure 11-31. Porphyroclast tails in mylonites. (a) Feldspar por
phyroclast with dynamically recrystallized asymmetric tails (a-type) 
from the Carthage-Colton mylonite zone. The tails indicate clockwise 
vergence (!rom Lurnino, 1987); (b) photornicrograph sketch of a a-type 
tail in Sarv mylonite, Sweden, indicating counterclockwise vergence 
(after a photo by J. Gilotti); (e) cr-type and 8-type tails on porphyroclasts 
used for determining shear sense in mylonites (adapted !rom Passchier 
and Simpson, 1986); (d) change in vergence depending on direction o! 
viewing of the plane of exposure (!rom Lumino, 1987). 
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material förmed from the porphyroclast (e.g., feldspar 
altered to white mica and quartz). The asymmetry of the 
tails on the porphyroclasts can be used to determine the 
sense of shear within a shear zone (Simpson and Schmid, 
1983; Passchier and Simpson, 1986; Simpson, 1986). 

To determine the sense of shear from porphyroclast 
tails we füst need a frame of reference. The median line of 
a tail is defined as the line in the cross-sectional plane that 
runs down the middle of the tail. The reference plane is 
drawn to contain the porphyroclast axis (this axis is 
perpendicular to the shear direction) and the stretching axis 
(the stretching axis is parallel to the prominent mineral 
lineation of mylonites); the reference plane should be 
parallel to the tails at a distance from the porphyroclast and 
is usually parallel to the foliation of the mylonite. 

There are two different geometric types of 
porphyroclast-taíl systems (Passchier and Simpson, 1986). 
Wedge"shaped tails whose median lines lie on opposite 
sides of the reference plane at all points are called a-type 
tails; often the tails themselves are concave on the side 
toward the reference plane (Fig. 11-3 lc). Thinner tails 
whose median lines cross the reference plane next to the 
porphyroclast are called D-type tails; the tails show 
embayments of finer matrix adjacent to the porphyroclast 
and bend into parallelism with the reference plane away 
from the porphyroclast (Fig. ll-3lc). ln general, in going 
from the tail on one side of the porphyroclast to the other, 
we "step up" across the reference plane either to the right 
(indicating clockwise rotation or right-lateral shear) or to 
the left (índicaling counterclockwíse rotation or left-lateral 
shear) (Fig. ll-3la,b,c). ln the case of ö-type tails, it is 
important that you "step up" away from the porphyroclast 
so that you are not misled by the portions of the tails that 
~-~~·,.... -:-:----_„i ~ ...... """'"---~~:~_...,. ~~..t ..... ,,. ,..,,.- ~J...,.,.. _,...r'""''""'"''""'"",..,,_ ...... 1...,, ...... ,.... n ...... 
.iA.:.i VV iaAV ,_ VÜ i.V V_l-'y"-'u.ii.i.'V U.>....,._,~ .....-.o. ;_..;~e.,., _...,,,_._.,_._,.;.;-;,,.--,.... _t'„....,.._;;_:.,::. ..:..._ -..,. 

not confuse thc embayments of ö-type tails with the 
concavities of thc cr-type tails. Also, note that in some 
cases, the tails themselves rotate with the porphyroclast. 

ln order to obtain the correct sensc of shear, you must 
be careful to note thc orientation of the surface that you 
arc examining (remember, the surface should be 
perpendicular to the foliation and should contain the 
lineation of the mylonite) and the direction in which you 
viewed the surface. The same porphyroclast can give the 
"opposite vergence" when viewed from the "other side" of a 
plane of exposure (Fig. ll-3ld). 

Rotated grains: Porphyroclasts of equant crystals 
(e.g„ garnet, albitc) tend to rotate when caught in a shear 
couple and thus can be used to indicate shear sense (e.g„ 
Powell and Vernon, 1979; Rosenfeld, 1970). The sense of 
rotation is indicated by the pattern of inclusion trails or 
relict foliation in the grain; the inclusion trails or relict 
foliation is reoricnted with respcct to the foliation that has 
dcveloped in the shear zone. Trails or relict foliation that 
is planar within the porphyroclast formed prior to 
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development of the shear zone. Inclusion trails with 
sigmoid shapes indicate that the porphyroclast grew during 
dcvelopment of the shear zone (Fig. 11-32; Zwart, 1962; 
Vernon, 1976). 

prekinema tic synkinema tic 

Figure 11-32. Rotated porphyroblast 
textures useful tor determining shear sense 
and far relating time of development of foliation 
with time of growth of the porphyroblast. (From 
Vernon, 1976.) 

Mica fish: Large porphyroclasts of white mica in 
myloniles are commonly referred to as micafish (Lister and 
Snoke, 1984; Simpson, 1986). The cleavage plancs of a 
majority of the mica grains are oriented at the same low 
angle to the mylonitic foliation, the normal to the cleavage 
plane being parallel to the incremental shortening direction 
(see Lister and Snoke, 1984). The large grains may be 
bordered by cr-type tails composed of dynamically 
rccrystallized fine mica. 

A phenomenon called fish flash (S .J. Reynolds, oral 
commun„ 1985; Simpson, 1986) may be used to deter
mine shear sense if the mica fish are large enough to be 
seen in hand samples and in outcrop. To observe this 
phenomenon, look down on the foliation plane of the 
mylonite in a direction parallel to the stretching lineation. 
T:!~ ~·'2~r !i~e ~f ~~ght (~-~ ~!' ontror0::') Ar !_hP <.-~mnlP ffrn· ~ 

hand specimen) until a majority of the mica grains have 
maximum reflectivity at once (i.e., the fish "flash"). The 
sight line from your eye to the mica is then parallel to the 
relatíve movement vector of the shear zone (Simpson, 
1986; Fig. 11-33). 

Fractures and displaced grains: Rigid minerals 
in a deforming ductile matrix often develop cracks along 
weak planes because they cannot accommodate large strains 
by crystal plastic mechanisms. With continued shearing 
the rigid grains rotate, and the fragments of each grain slide 
past one another along the cracks, allowing the grain to 
extend in the flow direction. The sense of shearing along 
individual fractures can be sympathetic with or antithetic to 

the overall shear sense (Fig. l 1-34a). 
If the initial fractures are at a low angle to the flow 

plane, the shear sense on them will be sympathetic with 
the overall shear sense, and the grain will be extended by 
motion analogous to motion on low-angle faults 
(Simpson, 1986; Fig. ll-34b). If the initial fractures are 
at a high angle (45° to 135°) to the ílow piane, Lhe shear 
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Figura 11-33. The use of "fish flash" as a 
shear sense indicator. (Adapted from Simpson, 
1986.) 

Figura 11-34. Photomicrograph 
of fractured and sheared grains. (a) 
Fractured feldspar grains from the 
Carthage-Colton mylonite zone, 
New York, showing sympathetic 
and antithetic shearing. Grains are · 
outlined far emphasis; (b) illustra
tion showing that sympathetic and 
antithetic shearing depends on 
initial orientation ol fractures with 
respect to the flow plane. (From 
Lumino, 1987.) 

(a) 
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sense on t.hem will be antithetic to the overall shear sense, 
and the grain wiH be extended by motion analogous to 
motion on high-angle normal faults or sometimes to 
motion on high-angle reverse faults (Fíg. l l-34b). 
Rotation may cause initial high-angle fractures to reach a 
low-angle orientation during progressive deformation, 
causing the shearing on the fractures to change from 
antithetic to sympathetic. It is safest to use grains in 
which fractures are at high angles (500 to 1300) or at very 
low angles (00 to 200, 160° to 1800) to the flow plane in 
a shear-sense determination (Simpson, 1986). 

Folded layering: In most shear zones 
inhomogeneous deformation causes perturbations in the 
flow foliation of mylonites. These perturbations evolve 
into asymmetric folds whose vergence is consistent with 
the shear sense within the zone (Fig. ll-35a). The 
vergence of such folds can be used as a shear-sense 
criterion only where mylonitic foliation formed in a shear 
zone is földed by the late stages of rnovement of the same 

FlOW PlANE 
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(a) 

(b) 

shear event (Simpson, 1986; Fig. l l-35b). When such 
. - =· --
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can be used to detennine transport direction. 
If original compositional layers (e.g., bedding, sills or 

dikes, earlier gneissic layering) are földed in a shear zone, 
the geometry of the fold depends on the initial orientation 
of the layer with respect to the shear zone (Ramsay, 1980; 
Ramsay and Huber, 1987). The small-scale földs förmed 
during this földing may show vergence rclated to flexural 
folding of the layer rather than to flow in thc shear zone 
(Fig. ll-35c). Thus, you must be careful about using 
small-scale folds in shear zones as shcar-scnse indicators. 

Preferred orientation: The term preferred 
orientation is uscd with refcrcncc both to thc 
crystallographic or lattice preferred orientation and 
grain-shape preferred orientation. Crystallographic prcfcrrcd 
orientation is also called texture (Schmid, 1983). Analysis 
of prefcrrcd oricntation can permit dctcrmination of shcar 
sense, but the mcthods for such analysis (c.g., Listcr and 
Price, 1978) cannot be discusscd here for thcy rcquirc usc of 
somewhat sophisticatcd tcchniqucs of microscopy (sec 
Simpson, 1986 for an introduction). Prcfcrrcd oricntation 
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Figura 11-35. Use ol folded 
layering as a shear-sense indicator. 
(a) lsoclinal folding of mylonitic 
layering indicating top to the west 
shearing along the Linville Falls 
thrust, North Carolina; (b) mylonitic 
foliation in a shear zone folded by 
later stages of shearing (adapted 
from Simpson, 1986); (e) folding of 
pre-existing layering in a shear 
zone (adapted from Simpson, 
1986). 

also leads to rock anisotropy, meaning that physical 
v1up.;nits suci1 as magnetÍ1,; 1>usccopuo111ty a11J seismic 
velocity vary with direction in the rock (see Owcns and 
Bamford, 1976; Wood et al., 1976; Kligfield et al., 1981). 

11-4 FOLIATIONS 

The tcrm foliation is a gcneral tcrm that rcfcrs to any 
planar fabric or laycring in a rock, with the implication 
that thc rock did not losc cohcsion along foliation plancs 
during thc formation of thc foliation. According to this 
dcfinition, an array of joints or faults is not considcrcd to 
be a foliation. Foliation can be a conscqucnce of 
depositional proccsscs (ín which casc it is callcd bcdding) 
or a consequcnce of mctamorphic and dcformational 
proccsscs (e.g., Williams, 1977). In this scction we arc 
conccrncd only with foliations crcatcd during mctamor
phism and dcformalion. We dcscribc thrcc typcs of 
foliation (carlicr in this chaptcr, we mcntioncd a fourth 
typc, mylonitic foliation). Thc purposc of this discussion 
is to provide tcrminology that you can use to dcscribc 
foliation that you may comc across ín a ficld study. 
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Cleavage 

We use the term cleavage to refer to foliation förmed as a 
consequence of tectoníc deformation in rocks at relatively 
low metamorphic grades. There are two basic categories of 
cleavage, namely, disjunctive cleavage and crenulation 
cleavage (Borradaile et al., 1982). 

Disjunctive cleavage: This type of cleavage is 
defined by planes that cut across earlier foliation such as 
bedding (Engelder and Marshak, 1985). The cleavage 
planes, called cleavage domains, are zoncs in which the 
original rock fabric has bccn altered by the cleavagc
formation process (Fig. ll-36a). Adjaccnt domains are 
separated from one another by microlithons, which are the 
bodies of rock in which the original fabric is still prescnt 
and the earlier foliation is still visible. Earlier foliation in 
a rock (usually bedding) is not rcoriented by formation of a 
disjunctive clcavage. 

The formation of disjunctive-clcavage domains 
involves prcferential solution (by prcssure solution or 
free-face dissolution) of the morc soluble minernls in the 
rock (Engcldcr and Marshak, 1985). The domain is 
composcd of an accumulation of the lcss-soluble mincrals. 
For example, in limestone, cleavage domains consist of 
accumulations of clay and quartz, and in sandstonc, 
domains consist of an accumulation of clay. The clay 
plates in a domain tend to be packed togethcr parallel to the 
domain boundaries. The preferrcd oricntation of clay in 
domains rcílccts rotation of clay ílakes into paraUclism as 
the framework carbonate or quartz grains arc rcmovcd. 
Clay ín domains may undcrgo slight rccrystallization. 

The character of disjunctive cleavage is quite variable 
and is controllcd by the original composition of a rock and 
by the amount of strain. Domain spacing (the distancc 
bctwecn adjaccnt domains) tends to be smallcr in rocks that 
originally had a highcr conccntration of clay and tcnds to 
dccrcasc as strain incrcascs. Thcrcfore, domains are morc 
closcly spaccd in clay-rich limestonc than in clay-poor 
limcstonc, and in a given lithology, domains arc morc 
closely spaced in a location whcrc thcre is largc strain than 
ín a localion whcre thcre is low strain. Dom a i n 
morphology refcrs to thc shapc of a singlc domain. 
Domains tcnd to be suturcd or stylolitic (tooth-likc in 
profilc) in clay-poor rocks, and thickcr and mcsoscopically 
smoothcr in clay-rich rocks (Fig. 11-36b). Commonly, 
individual domains are wavy in cross section, so that a 
group of domains in an outcrop dcfinc an anastomosing or 
braidcd pattcrn (Fig. l l-36b ). 

The classificalion of disjunctive clcavage is bascd on 
domain spacing and domain morphology. Figure ll-37a 
providcs a scale for spccifying tcrminology to describc 
clcavagc-domain spacing. Nolc that vcry widcly spaccd 
clcavage domains may be callcd stylolites, and that slaty 
cleavage ~Fig. l I-36c; Wood, 1974; Siddans, 1977) rcfcrs 

(e) 

(a) 

Figure 11 ·36. lllustrations of disjunctive 
cleavage. (a) Photomicrograph of a cleavage 
domain in limestone. The domain is the dark 
accumulation of clay between the large twinned 
calcite grains; (b) Non-sutured (smooth) planar 
cleavage domains in clay-rich limestone in the 
Canadian Rocky Mountains. The ruler is 30 cm 
long. See also Figure A 1-19a; (e) Vertical slaty 
cleavage in shallowly dipping mudstone. 
Notebook is 19 cm long. 
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Figure 11-37. Classification of cleavage. 
(a) Scale for specifying cleavage-domain 
spacing; (b) chart tor describing cleavage
domain rnorphology. (Adapted frorn Engelder 
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to disjunctive cleavage in which discrcte microlithons arc 
no longer definable in hand specimen. If a prcfcrrcd 
orientation of fine-graincd platy mincrals is pcrvasivc 
throughout the rock, such that thcre are no unaffcctcd 
microlithons, the slaty cleavagc can be called conlinuous or 
penetrative. Figure 1 l-37b providcs a chart of adjcctivcs to 
be used for describing domain morphology. 

Crenulation cleavage: This type of cleavage is 
characterized by microscale kinking of an earlier fabric. 
The earlier fabric may be preexisting slaty cleavage or 
finely laminated bedding. There are two main types of 
crenulation cleavage (Fig. 11-38; Gray, 1977; Cosgrove, 
1976; Gray and Dumey, 1979). Zonal crenulation cleavage 
(Fig. l 1-38a) is defined by laminar zones consisting of 
microkink fold limbs, in which preexisting foliation is 
reoriented. The boundaries of the zones may be distinct 
surfaces, or they may be gradational, depending on the 
angularity of fold hinges. There are two versions of zonal 
crenulation. ln chevron or symmetric crenulation cleavage 
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the crenulation fabric looks like the bellows of an 
accordion (Fig ll-38b) and the boundaries between adjacent 
zones are approximate planes of symmetry. ln sigmoidal 
or asymmetric crenulation cleavage the relict earlier 
foliation within a zone is bent into a sigmoid shape (Fig. 
11-38c; see also Platt and Vissers, 1980). Pressure 
solution can accompany formation of zonal crenulation 
cleavage. In pelitic rock, pressure solution removes quartz 
from zones and concentrates it in the hinge areas that form 
the boundaries between zones. Thus, there is a 
concentration of mica in the zones (Fig. l l-38a). 

Discrete crenulation cleavage (Fig. l l-38d) occurs 
where redistribution of minerals by pressure solution and 
precipitation has been very extensive (Gray, 1977). As a 
consequence, the cleavage consists of altemating bands - in 
one band, material has been dissolved, and in the adjacent 
band, material has been precipitated. There are sharp 
discontinuities between bands. ln pelitic rocks that contain 
this fabric, one band will be composed of quartz, and the 
adjacent band will be composed of mica. 

Schlstoslty 

Schistosity refers to foliation in metamorphic rocks that 
are coarse-grained enough for individual layer-silicate grains 
(e.g., mica, chlorite) to be visible to the unaided eye. This 
type of foliation is commonly found in medium- and 
high-grade metamorphic terranes, where the minerals 
comprising the rock formed largely by complete 
recrystallization and new mineral growth. The fabric of a 
schist (a metamorphic rock with schistosity) is defined by 
preferred orientation of the large layer-silícate crystals. 
There are three types of schistosity (Borrac1aile et. al., 
1 QR?\· fa) Dnm_ninnl .~rhi~tmdtv is chHrncte.rizeÁ hv <lomHins -. . ~- ~ ------

of subparallel mica grains that form films that anastomose 
around lenticular domains composed of other minerals (Fig. 
l l-39a); (b) Continuous schistosity Type 1 is characterized 
by a strong preferred orientation of coarse mica grains and 
no mesoscopic lenticular microlithons (Fig. 1 l-39b); 
however, microlithons may be visible if the rock is 
examined under a microscope; (e) Continu.ous schistosity 
Type 2 is characterized by planar fabric elemcnts (layer 
silicates or flattened/stretched grains) that have a single 
preferred orientation and are distributcd throughout thc rock 
rather than being concentrated in zoncs. Thus, this type of 
schistosity is not defined by a domainal fabric at any scale 
(Fig. ll-39c). 

Gneissic Layering 

Gneissic layering is a foliation developed in high-grade 
metamorphic rocks and is defined by compositional 
layering that is not primary in origin (Fig. 11-40). 
Gneissíc layering can form by metamorphic differentiation, 
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chevron (symmetric) 

(b) 

{a) 

Figura 11-38. Crenulation clea· 
vage. (a) Zonal crenulation 
cieavage (photo by D. Gray); (b) 
sketch of symmetric zonal 
crenulation cleavage; (e) sketch of 
asymmetric zonal crenulation 
cleavage; (d) discrete crenulation 
cleavage (photo by D. Gray). 

sigmoidal (asymmetnc) 

(e) 

by transposition and recrystallization of original bedding, 
by fü-par-lit intrusion, and by partial melting (Spry, 
1969). 

Description of Follatlon 

A description of foliation should provide answers to t.he 
following questions: 

1. What does the foliation look like? Is the foliation 
best described as bedding, deavage, schistosity, or gneissic 
layering? A "flow chart" for foliation description is 
provided as Figure 11-41. The description should include 
details conceming the feature that defines the foliation 
(e.g., is it defined by domains of clay residue probably 

100 AJ 

(d) 

indicative of solution removal of framework quartz or 
cakite, by parallel alignment of platy silicates, by flattened 
crystals of quartz, or by crenulations). It should also 
include inforrnation on whether or not the foliation is 
domainal or penetrative, on whether or not there has been a 
redistribution of minerals associated with t.he foliation 
(e.g., by pressure solution), and on whether or not the 
foliation is associated with recrystallization. 

2. What is the relationship between foliation and folds 
in the study area? There are three possible relationships 
betweeen a foliation (specifically, cleavage or schistosity) 
and a fold: (a) The foliation is axial-planar to the fold (is 
parallel to t.he fold's axial plane; see Williams, 1976); (b) 
The foliation (specifically, cleavage) fans around the fold. 
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(a) (b) 

(e) 

Flgure 11-39. Types of schistosity. (a) Domainal schistosity with 
mica films wrapping around lenticular quartz grains (photo by S. Mitra); 
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strong preferred orientation of mica; (e) continuous schistosity type 2 
defined by stretched and llattened grains of quartz in an orthoquartzite 
(photo by S. Mitra). 

F anning cleavage is clca vage that stays at a high anglc to 
bcdding around a fold (e.g., Mitra and Yonkce, 1985); (e) 
The foliation transccts thc fold. Transecting foliation 
(specifically, clcavage or schistosüy) cuts across thc axial 
plane of a fold (Borradailc, 1978; Gray, 1981). 

Cleavage förmed in association with folds at low 
metamorphic grades in clay-rich rocks tends to be 
axial-planar, whereas cleavage in clay-poor rocks tends to 
fan around folds (Fig. 11-42). Thus, in the same fold, 
cleavage in some beds may fan around the fold, and 
cleavage in other beds may be axial-planar. The change in 
orientation of cleavage as a function of lithology is called 
cleavage refraction. Fanning cleavage probably initiated 
prior to development of a fold, The occurrence of a 
transecting foliation may indicate that there was complex 

strain history during a single event or that the fold and the 
foliation developed during separate events (see Chapter 16). 

3. Does the domain spacing of the foliation change as 
a function of structural position? This information may 
indicate variations in lithology or strain in a region. 

4. Is the foliation itself földed? Is the foliation cut or 
crenulated by a later cleavage? Such information gives 
clues to the history of polyphase deformation in a region 
(see Chapter 16). What are the geometric relationships 
among different foliations, if more than one exist? If a 
rock has been subjected to more than one phase of 
deformation, one or more crenulation cleavages may disrupt 
a slaty cleavage. Be sure to determine if more than one set 
of folds exist in the rock, and try to associate each foliation 
with a fold set. 
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Figure 11-40. Gneissic layering in 
Precambrian rocks of the Wind River 
Mountains, Wyoming. The layering is folded 
and is cut by igneous dikes. 

5. Is the foliation related to a shear zone? If it is, it 
could be used to help determine the sense of shear and 
perhaps the shear strain of the shear zone. 

6. Is the foliation cut by faults or veins or does it cut 
these structures? ln many localities, cleavage or schisto
sity bends and merges asyrnptotically with a fault plane. 

Answers to the preceding questions will help you gain 
insight into the conditions under which the foliation 
förmed, will help you to determine the nature of strain 
resulting from the cleavage, and may help you to place the 
development of the foliation in the sequence of deformation 
events that affected the region. 

11~5 UNEATION 

Many differem types of lineation can occur ín a rock 
(Cloos, 1946). Some of the important categories of 
lineations are listed next. 

bedding 

Figure 11-41. Simple "flow 
chart" for description of toliations. 
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SHp Hneations: These are found on fault surfaces 
and have been described ín detail earlier in this chapter. 

Intersecfüm lineations: Any two foliation planes 
that are oblique to one anolher intersect along a line. The 
intersection defines a hneation (Fig. l l-43a). 
Cleavage/bedding intersection lineations appear as minute 
parallel lines on the bedding surface; if the cleavage is an 
axial-plane cleavage, the lineation is parallel to the hinge 
line of associated folds and may be used to detennine the 
orientation of the hinge. The trace of bedding on the 
cleavage plane may produce colored stripes referred to as 
striping (Fig. l l-43a). 

C:renulation hinges: The fold hinges of microkink 
folds associated with crenulation cleavage define a lineation 
on the early foliation surface (Fig. ll-43b ). 

Minernl lineations: Metamorphic minerals often 
grow with a preferred crystallographic and dimensional 
orientation. Depending on the shape of the crystals and 
their orientation, one of several lineation patterns is 
possible (Fig. 11-43). Minerals with one long dimension 
(e.g., homblende, tourmaline, sillimanite) a.rranged with 
their long dimension parallel to one another will producc 
an L-tectonite (see Chapter 8; Fig. ll-43c). Some mineral 
lineations are defined by streaks of microcrystalline mica 
smeared along foliation planes in the direction of shear 
(Fig. ll-43d,e). 

Stretched markers: Spherical markers (e.g., 
oolites, pebbles) may be deformed into ellipsoids, or 
crystals can be stretched during plastic deformation to give 
rise to lineations (e.g., Mosher, 1987). If the strain 
ellipsoid (Chapter 15) is prolate, the rock is an L-tectonite 
(Fig. l l-43f); if the strain ellipsoid is oblate, the rock is an 
S-tectonite (Fig. ll-43g); and if the strain ellipsoid is 
triaxial, the rock is an LS-tectonite (see Chapter 8; Fig. 
ll-43h). 

Pressure shadows: Material dissolved by pressure 
solution is often reprecipitated as fibers in the pressure 
shadow behind rigid grains (Fig. 11-44; e.g., Stromgard, 
1973; Beutner and Diegel, 1985). The fibers thus form 
long tails that define a lineation. The tails in pressure 
shadows may also form by dynamic recrystallization or 
reaction softening of rigid grains during the process of 
mylonitization (see Section 11-3). 

Boudinage: Extension of a layered sequence, which 

gneissic layering 
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shale 
(ductileJ 

Figure 11·42. Profile sketch showing 
cleavage refraction. ldealized fanning of 
cleavage is evident in competent beds and 
axial-planar cleavage occurs in incompetent 
beds. 

is made up of competent layers interlayered with more 
ductile units, causes necking and eventual separation of the 
competent layer into segments, while the ductile material 
flows into the space between the segments (Fig. ll-45a; 
e.g., Cloos, 1947; Ramsay, 1967; Paterson and Weiss, 
1968; Sanderson, 1974). The segments are called boudins, 
and the overall structure is called boudinage (Fig. 
ll-45a,b). If the competent layer does not separate into 
pieces, it may still thicken and thin, giving rise to 
pinch-and-swell structure (Fig. ll-45a,c). ln the third 
dimension, both boudins and pinch-and-swell structures 
extend as elongate bodies that lie in bedding and are parallel 
to one another, thereby defining a lineation (Fig. ll-45b). 
ln describing boudinage, it is important not only to 
measure the foliation containing the boudinage and the 
boudin lineation, but also to note whether the boudins' 
1 ___ - JI~···--·--~- -~- -----·- ---"-~-- : _ ______ 11_1 /'_. _______ ... _:_ 
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structure) or oblique (en-echelon structure) to the enclosing 
foliation, what the boudin terminations look like, and what 
the relationships are to other major structures (e.g., folds; 
see DeSitter, 1958). Analysis of boudinage is useful in 
working out details of the strain history (see Ramsay and 
Huber, 1983). 

Mullions: Shortening of a thin incompetent unit 
sandwiched between two thick cornpetent units forms 
cylindrical corrugations on the surfaces of the competent 
units (Fig. l l-46a). The parallel cylindrical features on the 
bedding surface define prominent lineations called mullions 
or antiboudins (Fig. l l-46a,b; Wilson, 1953; Smith, 
1977). Like boudins, these are useful for working out 
details of the strain history of larger-scale structures. 

Pencil Structure: ln many localities, weakly 
deformed shales break into pencil shaped fragments at the 
surface of weathered outcrops. One explanation for such 
pencil structure is that the shale breaks along two 
directions of weakness: one direction is parallel to 
sedimentary compaction fabric (i.e., original bedding) and 
the other is parallel to incipient tectonic cleavage (Ramsay 
and Huber, 1983; Reks and Gray, 1982). The term pencil 
structure has also been used with reference to shales which 
break along closely spaced joints and to very well 
developcd mctarnorphic L-tectonites. 

Lineations can be difficult structures to intcrprct. ln 
sorne circumstances lineations define the direction of shcar, 
whereas in other circumstances they define the long axis of 
the strain ellipsoid. A slip lineation is an example of the 
former, while a stretched marker is an exarnple of the latter. 
ln some localities the long axis of the strain ellipsoid is at 
right anglcs to the shear direction, allhough in most cases 

~/ 

{ h) Trlru.lal ttlllpaolda 

s 

figure 11·43. Types of tectonic 
lineation. (a) lntersection lineation; 
(b) fold hinges of crenulation; (e-e) 
preferred orientation of elongated 
and platv minerals; (f-h) deformed 
markers. 
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Figure 1 "i-44. Fibrous mineral growth in 
pressure shadows behind a rigid pyrite grain in 
Devonian limestone from the Hudson Valley 
fold-thrust belt (photo by S. Bhagat). 

Competent a 

Competent e 
i--~~-'-~~-'--'-'--'--'-'i 

Boudln 

Figura 11-45. Boudinage. (a) Derivation of 
boudinage as a consequence of extension of a 
layered sequence in which layers are of 
different compositions. The nature of 
boudinage varies according to the competence 
contrast (a>b>C>d) (adapted from Ramsay, 
1967); (b) boudinage in vertical beds of 
limestones ín the Great Valley province of the 
Appalachians of Maryland. Note hammer tor 
scale; (e) pinch-and-swell structure in quartzite 
in lhe Blue Ridge province of the Appalachians 
of Maryland (from S. Mitra, 1979). (e) 
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(b) 

figure 11-46. Mullions. (a) Derivation of mullions during the 
deformation of a layered sequence (adapted from Smith, 1975); (b) 
Mullions in sandy limestone of the Wyoming fold-thrust belt. 

pointed out that in three-dimensional space, the shcar 
direction and the long axis of the strain ellipsoid can ncvcr 
be exactly parallel to one anothcr (see Chaptcr 15). 

11-6 VEINS 

Veins are mineral-filled fractures that generally result from 
precipitation of minerals out of fluids passing through the 
fractures. The minerals filling the vein can occur in two 
forms: (a) blocky spar, with fine to coarse grain size (Fig. 
ll-47a), and (b) crystal fibers (Fig. ll-47b). 

Blocky spar generally grows into open cavitíes. ln 
some localities the veins themselves contain open gaps in 
which P.nhP.rlrnl rry~t:il terminations grow Genernllv_ such 

(a) 

veins farm at shallow levels in the earth's crust, where low 
lithostatic pressure allows open cavities to form along 
fractures. At deeper levels in the crust, opcn fractures can 
exist only if the hydrostatic pressure of the fluids is 
sufficiently high to keep the fracture walls opcn (Secor, 
1965). 

Fibrous veins farm by the crack-seal process (Ramsay, 
1980). The vein grows incrementally by first cracking and 
then quickly resealing by prec;ipitation of new mineral at 
the tips of earlier-formed grains. The fiber grows parallel 
to the incremental elongation direction and can thus be used 
to track incremental strain history (Ramsay and Huber, 
1983). If the fibers are perpcndicular to the walls of the 
vein, the vein opcned norma! to the plane of the vein (Fig. 
ll-48a) Tf the fibers aie inclined to the vein walls. the 

(b) 

figure 11-47. Veins. (a) Outcrop photo of blocky calcite crystals 
filling a vein. The pen is 15 cm long; (b) photomicrograph of a fibrous 
calcite vein. The crystals are twinned. 
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Figure 11-48. lncremental his
tory of an opening librous vein. (a) 
Fibers perpendicular to vein walls; 
(b) fibers inclined to vein walls; (e) 
sigmoidal fibers. 

Fibers perpendlcular 
to veln walis 

(a) 

direction of vein opening was indined to the plane of the 
vein (Fig. l l-48b ). Often the fibers are sigmoidal in shape 
(Figs. ll-47b, 48c), indicating successive noncoaxial 
stages of vein opening. There are four types of fibrous 
veins (Dumey and Ramsay, 1973; Ramsay and Huber, 
1983): 

Syntaxial veins: These grow inward from the wall 
by precipitation at a median line (Fig. 11-49a). Each 
increment of cracking occurs at the medial line, and the 
increments of new mineral are precipitated there. ln thin 
section the boundaries between increments are indicated by 
bands of fluid inclusions. Typically, the wall rock and the 
vein material are the same composition, so that the vein 
fibers nucleate on grains of the wall. 

Antitaxial veins: These grow outward from the 
center of the vein (Fig. ll-49b). Each increment of 
cracking occurs along the two walls of the vein. In thin 
section, increments can be seen to be separated from one 
another by thin screens of wall rock. Typically, the wall 
rock and the vein fibers are composed of different minerals. 

Composite veins: These forrn by a combination of 
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Obllque miers Sigmoldal fibers 

(b) (e) 

antitaxial and syntaxial growth. Usually, such veins 
contain two different rnineral components (Fig. l l-49c). 

Stretched crystal. veins: ln these veins, each fiber 
is optically continuous with two halves of a grain that was 
split during initiation of the vein (Fig. l l-49d). 

A complete description of a vein should include the 
following information: (a) Description of the structural 
setting of the vein. Is it one member of a systematic set 
(see Chapter 12)? Is it a member of an en-echelon array? 
Is it a local structure related to, say, outer-arc extension on 
a fold? Are there nearby unmineralized joints of the same 
orientation? (b) Description of the vein character. Is it 
fibrous or blocky? If the vein is fibrous, define the type 
of fibrous veín and specify whether the fibers are straight or 
sigmoidal. (e) Description of the vein fill. What is the 
composition of the vein fül and of the waH rock? (d) 
Measurement of the vein orientation. What is the attitude 
of the vein? If the vein is part of an en-echelon array, be 
sure to measure the attitude of the vein and the attitude of 
the enveloping surface. 

Surface where new vein ms.terls.1 le added 

Figura í 1-49. Types of fibrous 
veins. (a) Syntaxial vein; (b) 
antitaxial vein; (e) composite vein; 
(d) stretched crystal vein. (Adapted 

(a) Syntaxlal growth 

!rom Durney and Ramsay, 1973.) (e) Composite growlh 

{b} Antltaxial growth 

(d) 'Stretched" cryslai 
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12~1 INTRODUCT!ON 

A fracture in rock is a surface on which the rock has lost 
cohesion. If there is no observable slip on a fracture it is 
caHed ajoint, if there is observable slip it is called a fault. 
Fractures commonly occur in sets composed of several 
subparallel members. A single region may be cuí by 
several sets of fractures; a group of fracture sets is called a 
fracture system or fracture array. Information on fracture 
arrays in a region helps to define the stress and strain 
history of a region and thus is important for regional 
tectonic analysis. Information on fractures is also of 
practical importance, for fractures affect slope stability and 
foundation strength. ln addition, fractures affect a range 
other phenomena, such as permeability and drainage. This 
chapter discusses approaches used to describe fracture 
arrays. We draw attention to morphological and geometric 
features that should be noted in a survey of fractures. The 
chapter concludes with a brief introduction to the 
description of lineaments; for lineaments in some cases are 
topographic manifestations of fractures. 

12-2 CHARACTERISTICS OF JOINTS 

Descriptive Terminology for Jolnts 

J oints are fractures thai: do not display observable 
displacement parallel to the fracture surface. They are very 
common structures and occur in a range of sizes in a given 

area. Joint size refers to the area of the joint surface. 
Some joints are only a few square centimeters in area, 
whereas others have areas of several hundred or several 
thousand square meters. Fractures that affect only a single 
grain or a few grains in a rock and, therefore, are visible 
only in thin section are called microfractures. 

Remember that a joint is a plane and that it does not 
extend infinitely in all directions; therefore, its orientation 
is specified by a strike and díp and its dimensions should be 
specified as an area, not as a line length. The orient.ation 
of vertical joints, however, can be represented by strike 
alone. Also, the full surface area of a joint is usually not 
exposed; therefore, joint size is usually described in terms 
of trace length, which is the length of the exposed line of 
intersection between the joint and the surface on which it is 
exposed. 

Joints that have relatively long traces (more than 2 to 
5 m) and are parallel or subparallel to many other joints on 
the outcrop or in the region are called systematic joints. A 
group of parallel or subparallel joints comprise a joint set. 
Short, locally irregular joints that are not part of a set are 
called nonsystematic joínts (Hodgson, 1961). The Iargest, 
most prominent joints of a set are sometimes called master 
joints. If a large proportion of the joints in an area share 
the same orientation, they comprise a prominent joint set. 
Recognition of prominent sets often depends on statistical 
analysis of joint orientation dat.a from a region. 

Some joínts tenninate at the top and bottom of a bed 
and are called bedding-contained joints, whereas others cut 
across bedding. Joint spacing refers to the distance between 
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adjacent joints of the same set measured perpendicular to 
their surfaces, and is a particularly important parameter in 
studies of rock permeability. Joint spacing reflects the 
material properties of the host rock, the thickness of the 
jointed layer (see Suppe, 1985), and the structural position 
of the measurement site (joint spacing may be smaller in 
the hinge of a fold or in the vicinity of a fault; e.g., 
Wheeler and Dixon, 1980). Joint intensity refers to the 
surface area per unit volume of joints in a rock. J oint 
frequency refers to the number of joint traces cutting a 
traverse line per unit length of traverse line. 

More than one joint set is usually present in any one 
outcrop. Any group of two or more joint sets is called a 
joint system or joint array. Joint sets in a system may 
intersect at any angle. If two joint sets intersect at nearly 
90°, they define an orthogonal system. Joint systems in 
which the dihedral angle between two sets is significantly 
less than 90° (usually around 60°) have been called 
conjugate joint systems. As we discuss later in this 
chapter, there is debate as to whether or not true conjugate 
joint systems actually exist. 

Description of Joint Surface Morphology 

Many joint surfaces display plumose structure. To a füst 
approximation, plumose structure looks like the imprint of 
a feather (Fig. 12-1 ). The tiny surface irregularities that 
comprise the plume develop as a consequence of local 
variations in fracture propagation velocity and in the stress 
field, and as a consequence of inhomogeneities in the rock. 
The main elements of an ideal plumose structure (Fig. 
12-1) include the following: 

1. The origin, which is the point at which the fracture 

2. The mist, which is composed of tiny irregularities 
on the fracture surface, resulting from breaking of bonds in 
the rock that are not in the plane of the fracture. These 
irregularities, on some fractures, are arranged in a pattem 
that looks like the barbs of a feather. 

3. The plume axis, which is the line from which 
individual barbs propagate, and which is considered to be 
parallel to the fracture propagation direction. 

4. The twist hackle, which is composed of the steps at 
the edge of a fracture plane. These steps represent a zone in 
which the fracture has split into a set of smaller en
echelon fractures. The indívidual members of the 
en-echelon array are not parallel to the main joint surface. 

The entire surface of a joint does not form instant
aneously. Rather, a joint initiates at the origin in an intact 
rock body and propagates outward. The joint front, which 
is the line that separates intact from fractured rock, moves 
through rock as the joint grows. Some joints display 
arrest lines, which mark a temporary edge of the fracture, 
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where it stopped before continuing to propagate. Arrest 
lines are curved, because the joint front at any given time 
is curved. For a detailed mechanical interpretation of the 
surface morphology of fractures see Kulander et al. (1979). 

12-3 COLlECTION AND REPRESENTATION 
OF ATTITUDE DATA ON JOINTS 

Sarnpling Schernes 

The most commonly asked question in any study of 
jointing is, what are the orientations of the prominent joint 
sets ín the area? Proper collection of joint-orientation data 
is crucial to the success of any study of jointing. There are 
several methods of sampling joint attitudes. These are 
identified as Steps 2a, 2b, 2c, and 2d below. 

Problem 12-1 (Sampling a joint array) 
A number of joints are exposed in a region. 

Determine the prominent joint sets and their orientation. 

' 1 

0 / / 
, ~IG1N / / 

Figure 12-1. Block diagram íllustratíng 
the morphology of a plumose joínt. The stress 
fíeld depicted assumes that the joínt is an 
extension íracture. 
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Method 12-1 
Step 1: Eslablish structural domains in the study 

region. This means that you must put limits on the area 
that you are going to sample. There is no point in 
lumping measurements from unrelated locafüies or 
stmctural settings. The specification of domain limits may 
be determined on the basis of lithology and/or on the the 
basis of structural position. For example, you may 
segregate measurements of joints in a limestone unit from 
measurements of joints in a granite intrusion cutting the 
limestone, and you may segregate measurements of joints 
on one fold limb from measurements of joints on a 
different fold limb. Once you have eslablished structural 
domains, select suilable measurement stations, which are 
localities of good exposure where you can measure joints 
efficiently. 

Step la (Selection method): In this method 
(e.g., Nickelsen and Hough, 1967) you visually scan an 
outcrop and select represenlatives of the prominent joint 
sets, then you measure only from four to eight joints of 
each set. This method is relatively fast, giving you time 
to make measurements at many stations. It also is quite 
subjective and works best only where joint pattems are 
relatively simple. If, however, you are careful to pay 
attention to such characteristics as size, mineralization, and 
surface features, even complicated joint pattems can be 
sampled with this method. 

Step 2b (Quantity method): At an appropriate 
measurement slation, measure as many individual joints as 
possible without regard to size or systematics. TypicaUy, 
a sample suite collected at one station using this method 
will consist of 50 to 100 measurements. The concept 
behind this method is that the prominent joint sets will be 
obvious on plots of the dala. The problem with this 
method is that large numbers of measurements of small 
nonsystematic joints can swamp measurements on master 
joints of systematic sets. The results of quantity 
measurement, therefore, may not provide insight into the 
attitudes of systematic sets. Also, because the 
measurements are made randomly, they cannot be used to 
specify joint intensity or frequency (Wheeler and Dixon, 
1980). 

Step 2c (lnventory method): This method (e.g., 
Davis, 1984) not only provides dala that can be used for 
statistical determination of prominent joint auitudes but 
also allows determination of joint intensity. To inventory 
the joints in an area, define a circle up to 10 m in diameter 
on an outcrop (the size of the circle is determined by the 
joint density). Measure the attitude and the length of aU 
joints exposed on the surface. If possible, repeat the 
measurements in the same area on outcrop faces of other 
orienlations to avoid sarnpling bias (as discussed later). 

Step 2d (Traverse method): Lay out a traverse 
line and measure its orientation; the traverse can be on the 
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ground or along a cliff face or road cut A reasonable 
traverse is 20 to 40 m long, but the length wiH be 
determined by the exposure quafüy and joint spacing. 
Walk along the traverse and measure every joint that 
crosses the line. Also, indicate which individual joints 
appear to be prominent in that they are continuous and 
straight for a long distance (this is a subjective 
determination). Figure 12-2 shows a form that can be used 
for recording dala along the traverse. This method is 
time-consuming, but allows quantification of joint
orienlation pattems in a region and allows quantification of 
joint frequency. As we discuss later in this chapter, results 
of the traverse method ín a region are controlled, in part, by 
the orienlation of the traverse, so in order to get better 
results, two or three traverses at different orienlations 
should be run through the same locality. 

Graphical Presentation of Orientatlon Data 

Several types of diagrams can be used to display joint 
orientation dala: the rose diagram, the histogram, the 
running average, the equal-area projection, the length 
versus strike (LVS) diagram, and the strike versus traverse 
distance (SVTD) diagram. Some of these diagrams can be 
used only with two-dimensional dala and thus are most 
useful in studies of vertical joint sets. 

Rose Diagrams: A standard rose diagram is 
constructed on a grid composed of concentric circles 
superimposed on a set of radial Iines (Fig. 12-3a). The 

FIELD FORM FOR JOlNT DATA 

NAME ------~ DATE: 

EXPOSURE TYPE·: ______ ROCK TYPE: ____ _ 

• (A= vertical outcrop face; B = inclined outcrop face; C '"'horizontal outcrop face, 
1 = natural ou!crop: 2 = stream cut; 3""" manmade outcrop) 

BEDDING ATTITUDE. ____ _ 

STRUCTUAAL FEATURES AT THE STATION (folding, faulting, cleavage, etc ). 

.. „„·-------·-·.--· --------

ATTITUDES OF OTHER STRUCTURES: 

TYPE OF SAMPLING§ _____ ORIENTATION OF TRAVERSE 

§(traverse, selection, circle inventory, e1c) 

Pistance afom trayerse 

Figura 12-2. Exarnple of a joint-sampling 
tieid farm. 
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OOO" 

(b) 

180" 

Cal 

figure 12-3. Rose diagrams. (a) Template that can be used far 
preparing rose diagrams with a s0 class interval; (b) completed rose 
diagram of 143 joint measurements. (See Appendix 4 far template.) 

radius of each successive circle is one unit greater than the 
radius of the previous circle. Uníts of distance measured 
along a radius represent a quantity of joint measurements. 
The quantity of measurements represented by a single unit 
along a radius is chosen so that the total number of joints 
ín the most prominent joint set can be represented on a 
standard 20-cm-diameter grid. Commonly, each unit 
represents one or two measurements. The orientation of a 
radius represents a compass bearing. Radii are normally 
spaced at 5° intervals. Each 5°-wide section is called a 
class interval. The number (n) of joints whose bearings are 
in a single class interval is plotted as a filled pie-shaped 
sector of length n at the scale of the diagram. 

The major advantage of a rose diagram is that the data 
shown are easy to visualize (Fig. 12-3b). The major 
drawback of a rose diagram is that it is difficult to visually 
distinguish between two joint sets whose azimuths are less 
than 15° apart on two different rose diagrams. Also, 
because the area of a sector representing a measurement 
increases with increasing distance from the center, the 
difference between the numbers of joints in two different 

5 

1 
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sets is visually exaggerated. This second problem can be 
overcome by plotting data on a Lambert equal-area polar 
projection (Appendix 4). 

Because it does not malter which end of a compass 
needle is read when representing strike, joint strikes are 
commonly converted so that all measurements can be 
placed on one half of the rose diagram. 

Histograms: A histogram is similar to a rose 
diagram in that it uses class intervals (usually 5° wide), 
but it is plotted on a square grid instead of a circular grid. 
The x-axis of this grid represents joint azimuth, and the 
y-axis represents the number of measured joints (Fig. 
12-4). Measurements represented on a histogram are not as 
easy to visualize as those on a rose diagram (compare 
Figures 12-3b and 12-4, which are plots of the same data 
set), but peaks with small azimuthal differences are easily 
discemed, and there is no false exaggeration of peaks. 

Running A verages: Rose diagrams or histograms 
can appear very jagged. Calculation of a running average 
can be used to smooth either type of diagram and thereby 
make true peaks stand out more clearly. To construct a 
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Figure 12-4. Histogram of 143 
joint measurements (using the 
same data set as in Figure 12-3b). 
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running average, replot the data using a small class ínterval 
(say 1°), then average over a range (usuaHy 100). Shift the 
area of averaging across the pmge of orientations ín 1° or 
2° steps. For example, in Figure 12-5 we show the 
construction of a 100 running average with a 1° step. If 
we start at a strike of 30°, we count the total number of 
measurements that faH wühin 5° to either ~~de of 30° 
(from 25° to 35°) and divide by 10. There are 17 
measurements, so the average in the 10° around 300 is 1. 7. 
W e plot 1. 7 at 30°. Then we move to 31° and count all 
measurements that fall wühin 5° to either side of 31° 
(from 26° to 36°) arid divide by 10. There are 20 
measurements, so we plot 2 at 31°. We repeat the 
procedure for each successive degree on the x-axis. 

Equal-Area Plots: Where the joints in an area are 
not strictly vertical, the only graphical device that can 
display both dips and strikes is an equal-area plot of poles 
to joint planes (see Chapter 8 for method). Be sure to use 
an equal-area projection so that the poim distribution can 
be contoured. The Kamb method (Chapter 8) is the best 
method to use to overcome noise in the plot when the 
number of measurements is large (>200). Remember that 
the size of the counting circle used in the Kamb method 
varies wüh the number of measurements, so you can 
contour the actual density of points in relation to the 
density distribution expected for a population without 
preferred orientation. The size of the counting circle is 

A= 9/(N + 9) (Eq. 12-1) 

where A is the decimal equivalent area of the counting 
circle, and N is the number of measurements. 

Length versus Strike (LVS) Diagrams: The 
diagrams just described represent only orientation. 
Orientation diagrams may present a misleading impression 
of the nature of jointing ín an area. For example, consider 

6 
5 
4 
3 
2 
1 

253 

a horizontal bed in which there are 100 5-cm-long vertical 
joints whose traces trend north-south and 50 10-m-long 
vertical joints whose traces trend east-west. Intuitively, it 
would seem that the east-west set is tectonically more 
significant, but on an orientation diagram the north-south 
set would appear to be more prominent. An L VS diagram 
accommodates this problem. On an L VS diagram the 
x-axis represents joint-trace trend, and the y-axis represents 
cumulative joint length in a specific direction. ln the 
preceding example the total cumulative length of the 
north-south set is 5 m, whereas the total cumulative length 
of the east-west set is 500 m. An L VS plot looks like a 
histogram (Fig. 12-6). Usually, a fairly large class interval 
(say 10° - 20°) is used in the construction of an L VS 
diagram. Note that only two-dimensional data can be used 
for an L VS diagram. 

Strike versus Traverse Distance (SVTD) 
Diagrams: Wise and McCrory (1982) note that, in many 
cases, joint sets occur in discrete geographic domains. 
This means that joints in one locality have a different trend 
than joints in another locality. Such differences can be 
usually represented by providing separate histograms for 
separate domains. If measurements from separate domains 
were lumped together, you would convey the false 
impression that all joint trends were visible at all 
localities. 

But now consider the possibility of two joint domains 
that overlap slightly (Fig. 12-7). If you measure joints at 
one locality in each domain, it is impossible to tell if the 
region contains one set of joints that change trend between 
the two stations or two sets of discrete joints each of which 
occurs only in a limited area, so that they do not overlap. 
The detection of separate joint domains is possible by 
sampling along long traverses that span the two regions 
and then plouing a graph of strike versus distance along the 
traverse; such a graph is called a strike versus traverse 
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Figure 12-5. Example of 
smoothing a histogram using a 1 o0 

running average with a í 0 step. The 
initial histogram was plotted using a 
1 ° class interval. The dots 
represent the smoothed values. 
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Figure 12-6. Example of a length versus 
strike diagram, constructed using a s0 class 
interval. 
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Flgure 12-7. Hypothetical application of 
strike versus traverse distance plots to 
distinguish joint domains. (a) Two discrete joint 
sets that overlap only in an intermediate 
locality; (b) a single joint set whose trend 
changes with locality; (e) plot tor the joints in 
'a'; (d) plot for the joints in 'b'. 

E 
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distance diagram (SVTD diagram). Figure 12-7 shows two 
possible SVTD diagrams; in case A, two discrete joint sets 
overlap whereas in case B one smoothly varying joint set 
is observed. SVTD diagrams can only be applied to 
two-dimensional dat.a . 

Data Corrections for Joint Data Sets 

Regardless of the sampling method chos~n and of the 
graphical device used for representing results, there are three 
factors that make a simple presentation of joint 
measurements an unrealístic portrayal of the true 
distribution of joints in an area. The füst factor results 
from the possibility of incorrectly lumping measurements 
from different structural domains; to avoid this problem, 
you should define the sampling domains in the region of 
interest carefully, and if appropriate, plot your dat.a on an 
SVTD diagram. The second factor is a consequence of the 
intrinsic bias in collecting orientations along a specified 
traverse direction; to accommodate this bias, it is necessary 
to apply a traverse correction. The third factor results from 
tilting of the bedrock containing the joints after the joints 
formed; to adjust for postformation reorientation of joints, 
a tilt correction must be applied. 

Traverse Corrections: Imagine that two vertical 
joint sets (A and B) cross an east-west-trending 20-m-long 
traverse line. The joint spacing measured perpendicular to 
the fractures in each set is 1 m. Set A strikes N800E and 
set B strikes north-south. Because of the difference in 
strike, 20 members of set B cross the traverse line, but 
only 4 members of set A cross the traverse line (Fig. 
12-8). Thus, if the results of a traverse-method sampling 
of joint attitudes is plotted on a histogram, set A will 
"),!'"!!r'kr.t.Qr tA h.cir. lt=J.ceo nrnm-inP.nt -in tprmeo nf ran~nt-itu th~n c<Pt 
~-=.1:--r-~-~~ - ----------------- --- -~ - -;-. ------- -- -

B. ln other words, the frequency of joint set A appears, 
incorrectly, to be less than the frequency of joint set B. 

A true measurement of joint frequency can be obtained 
only by sampling at 90° to strike of the joint set. If joints 
do not strike perpendicular to the trend of the traverse line, 
the number of measurements used to determine frequency 
can be adjusted to provide a truer representation by 
applying the equation 

N = n/sin 0 (Eq. 12-2) 

where N is the corrected number of joints in a class 
interval, n is the measured number in that interval, and 0 is 
the acute angle between the traverse direction and the strike 
of the class interval (0 = 10° in Fig. 12-8). After 
correction, N for joint set A in Figure 12-8 would be 23. 
The precision of determining joint frequency decreases as 
the angle 0 becomes small (LaPoint and Hudson, 1985). 
For small p's, one cannot be confident that the actual 
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figurn 12-8. Diagram illus
trating the rationale tor a traverse 
correction of joint measurements. 
0 is the angle between the strike of 
a joint set and the traverse 
direction. 

numbers of joints measured reflects true joint frequency. 
To get a truer representation of joint frequency in such a 
case, it is beuer to make two mutually perpendicular 
traverses. 

A similar correction must be applied if the dip of the 
joints is not vertical. For example, if two joint scts strike 
perpendicular to a horizontal traverse line, you will 
encounter fewer shallowly dipping than steeply dipping 
joints. To correct for nonvertical dips, apply thc equation 

N = n/sin B (Eq. 12-3) 

where B is the dip of the joint set. If both strike and dip 
corrections are necessary, apply the equation 

N = n/(sin 0 sin B) (Eq. 12-4). 

Traverse corrections can be applicd to the distribution 
of data points on an equal-area net For a counting circle 
centered at a particular 0 and B, apply Equation 12-4 to the 
number of data points that fali in the circle. 

Tilt Corrections: If jointing predates the tilting or 
folding of strata in an area, the present-day orientation of 
the joints will be different from the original orientation of 
the joints. ln such cases a tilt correction must be applied 
(see Chapter 6), in which the joints are rotated around the 
strike of the beds that contain them by an amount equal to 
the dip of the beds. The rotated orientation of the joints is 
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then plotted graphically. The rotation can be accomplished 
by computer or graphicaUy on an equal-area net. 

Statistlcai Treatment of Joint Data 

Statisücal analysis of joint orientation data can be quüe 
complex; the arithmetic mean of several compass 
measurements cannot be determined by simply adding the 
strikes together and dividing by the number of 
measurements. Below we describe a calculation that 
permits the mean angle of a sel of angles (e.g., joint 
strikes) to be determined (taken from Zar, 1984). 

Consider a population of n angles. Each angle is 
denoted by ai (Zar, 1984). In order to determine the rnean 
angle (3m) of the population, we first define the quantities: 

H = (l: sin 3j_)/n 

T == ~(G2 + H2). 

Given these quantüies, the mean angle (3m) can be 
determined by either of the following two equations: 

3m =arc cos (G/T) (Eq. 12-5) 
or 

am = arc sin (H/T) (Eq. 12-6). 
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Discussion of more advanced statistical treatment of joint 
orientation data is available in Kohlbeck and Scheidegger 
(1977), Hay and Abdel-Rahman (1974), Wheeler and 
Stubbs (1979), and Wheeler and Holland (1978). 

i 2-4 STYLE, AGE ANAl YSIS, 
AND INTERPRETATION OF JOINTS 

Style of Jointing 

The collection of orientation and spacing data alone does 
not constitute a complete analysis of jointing in an area. 
In order to interpret the tectonic significance of jointing 
(e.g., Engelder and Geiser, 1980; Hancock, 1985) and to 
classify joints (e.g., Nelson, 1979), it is necessary to 
characterize the style of joints and to determine, if possible, 
the relatíve ages of different joint sets. It is also important 
to record basic characteristics about the geology (e.g., 
lithology, bedding thickness, existence of other structures) 
of the outcrop containing the joínt. 

The style of a joint or joint set (e.g., Wheeler and 
Stubbs, 1979; Kulander, Barton, and Dean, 1979) includes 
the following characteristics of the joint: 

1. Surface morphology: This refers to the appearance 
of the joint surface. Knowledge of joint surface 
morphology permits kinematic analysis of the joínt (e.g., 
Arthaud and Mattauer, 1979; Kulander et al., 1979). ln 
particular, it is possible to specify whether a joint formed 
by extension and has subsequently remained unchanged, or 
whether the joint surface has been modified by shear or 
compression. Plumose structure, described earlier, is 
generally attributed to the tensile fracturing. Slip 
11nP.~tin.nci inrl~r-~fo PithPr th~t c;:ohP.~-r h<!:H~ f"\f"f"H'fTP_rl 

subsequently occurred on a joint surface or that the fracture 
initiated as a shear surface, and stylolitic pitting indicates 
the occurrence of compressional stresses across the joínt 
surface (see Price, 1967; Ramsay and Huber, 1987). 

2. J oint size: This refers to the trace length of a joint 
or, better, the joint surface area. 

3. Systematics: This refers to the regularity of joints 
in a specified orientatíon. Does a joint appear to be part of 
a systematic set? 

4. Relation to bedding: This refers to both the joint 
attitude with respect to bedding and nature of the interaction 
between joints and bedding planes. Are joints perpendicular 
or oblique to bedding? Do joint systematics improve if a 
tilt correction is applied to the joints in an area? Are joints 
bedding-confined? 

5. Relation to other structures: This refers to the 
geometric relation among joints, folds, and faults. Are 
joints parallel to, oblique to, or perpendicular to the 
bearing of fold hinges in the area? Does joint spacing, 
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morphology, or orientation change in the vicinity of a 
fault? 

6. Joint intensity: Calculation of joint intensity is 
partly a statistical problem and has been approached in 
many ways. For a discussion of methods for calculating 
joint intensity, see Karcz and Dickman (1979) and Wheeler 
and Dixon (1980). 

Joints in Folded Regions 

ln regions of flat-lying rock, it is common for prominent 
joint sets to be either parallel or perpendicular to the earth's 
surface (Suppe, 1985). ln regions where rocks have been 
folded, however, a greater range of joint orientations with 
respect to bedding commonly occur (e.g., Nickelsen, 1979) 
and it may be useful to define the geometry of the joi.1a. ~ in 
terms of their geometric relation to the folds. 

One way of referring to joints in földed regions is to 
define joints that are parallel to the strike of fold axial 
planes as strike joints and to define joints that cut across 
the axial plane as cross-strike joints. Hancock (1985) 
described joint orientation with relation to symmetry axes 
(a, b, and e) of a fold using a procedure similar to the 
definition of Miller indices for crystals. This convention is 
described in Figure 12-9. As an example, vertical joints 
that cut obliquely across an upright fold are called hkO 

Cal 

(b) 

Flgure 12-9. Terminology for describing 
joint orientations with respect to folds. (a) Fold 
showing the orientation of fractures in ac; (b) 
fold showing the orientations of hkO fractures. 
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joints, with the h and k denoting intersection of the joints 
with both the a axis and the b axis respectively, and the 0 
(zero) indicating the lack of intersection with the e axis. 

As noted earlier, it is important to apply tilt 
corrections to joints in földed regions to help determine 
whether the joints were tilted during folding, and thus may 
predate folding. While measuring joints in a fold, be sure 
to define strnctural domains carefuHy (i.e., separate 
measurements near the hinge from measurements on the 
limbs) and keep track of bedding attitude at each 
measurement station. 

Age Rela.tionships of Joints 

There are two methods available for determining age 
relationships between two different joínts. These methods 
are briefly described next. 

Analysis of Joint Intersections: If two non
parallel joims form simultaneously, they will mutually 
cross-cut one another, and there may be no apparent 
interaction between the joints along the line of 
intersection. 

If one joint forms before another, the first joint is a 
free surface (unless it has been recemented) and thus cannot 
transmit shear stress; therefore, the regional stress field is 
modified locally in the vicinity of the joint such that 
principal stresses are parallel or perpendicular to the joint 
surface. As a second joint grows and approaches the füst, 
its trace bends, so that it intersects the first joint at a right 
angle. The second joint terminates at the first joint. The 
bending of the second joint is called hooking (Kulander et 
al., 1979), and the intersection is called a J- or 
T-intersection. Where such intersections are observed, the 
younger joint is always the one that bends and/or 
terminates at the older joint (Fig. 12-10). The explanation 
of hooking depends on the assumption that the second joint 
forms perpendicular to cr3. 

Mineralization on Joints: Joint surfaces can be 
locally coated with quartz, calcite, or other minerals 
deposited when water flows along the fracture. Absence of 
mineralization on one joint set that cuts a different 
mineralízed set indicates either that the unmineralized set 
postdates the mineralized one or that stress kept the 
unmineralized set closed to fluid circulation. ln favorable 
circumstances close examination of mineral coatings on 
joints may help to determine the sequence of jointing. For 
example, Tillman and Barnes (1983) used fluid-inclusion 
analysis to deduce the temperature at which minerals were 
deposited on a joint surface; they found that the mineral 
coatings of different joint sets on the Appalachian Plateau 
förmed at different temperatures. If it is assumed that the 
temperature of rocks of the plateau decreased progressively 
as the area was uplifted, then mineral coatings formed at 

Figure 12-10. Map view of a J-intersection 
between two joints. The curved joint is 
younger. 
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lower temperatures could be assumed to be relatively 
younger. Presumably, the joints on which the younger 
coatings formed are younger than joints on which the older 
coatings formed. 

Dynamic lnterpretation of Jolnt Sets 

An examination of a Mohr-Coulomb failure envelope (see 
Chapter 10 for a discussion of failure envelopes) suggests 
that there are three different types of fractures each of which 
is associated with a specific stress state (e.g., Suppe, 
1985). Extension (or tensile) fractures form under 
conditions where the Mohr circle is tangent to the failure 
envelope at only one point (Fig. 12- lla), and one of the 
principal stresses is tensile. Shear fractures form when the 
Mohr circle is tangent to the envelope at two points and all 
príncipal stresses are compressive (Fig. 12-llb). A third 
fracture type also forms when the Mohr circle is tangent to 
the envelope at two points, but under conditions such that 
one of the principal stresses is tensile (Fig. 12-1 lc ); this 
third type of fracture has been called either a transitional
tensile fracture (Suppe, 1985) or a hybrid shear fracture 
(Hancock, 1985). Note that according to the Mohr
Coulomb diagrams (Fig. 12-11), extension fractures form 
perpendicular to a 3 and parallel to cr 1, whereas shear 
fractures and hybrid shear fractures form at an angle to the 
principal stresses. 

Studies of fracture formation in ceramic materials 
suggest that there are three ways in which a fracture can 
propagate through intact rock (Fig. 12-12; Kulander et al., 
1979). Mode l propagation means that the fracture grows 
by incremental extension perpendicular to the plane of the 
fracture at the fracture tip. Mode ll and mode JII 
propagaüon means that the fracture propagates by 
incremental shear parallel to the plane of the fracture at the 
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(a) (b) (e) 

figure 12-11. Mohr-Coulornb diagrarns defining stress state at the 
tirne of joint forrnation. (a) Stress state during forrnation of an extension 
fracture; (b) stress state during forrnation of a shear fracture; (e) stress 
state during forrnation of a hybrid shear fracture. 

(a) (b) (e J 

Figure 12-12. Block diagram sketches of 
fracture opening rnodes (a) Mode 1 propa
gation; (b) rnode 11 propagation; (e) rnode 111 
rrnn<>n<>tinn (Ari::intAri frnm K11l::inri<>r AI ;:il 

1979.) 

fracture tip. Extensíon fractures farm by mode I 
propagation, shear fractures by mode II or III propagation, 
and hybrid shear factures by a combination of mode I and 
modesiland/orIII. 

The dynamic interpretation of natural joints (i.e„ the 
specification of the stress state at the time of joint 
formation) remains quite controversial. The controversy 
revolves around the interpretation of plumose markings on 
joint surfaces. One school of geologists believe that the 
presence of a plumose marking on a joint indicates that the 
joint farmed by mode I propagation, that joints are strictly 
extension fractures, and that joints are a principal plane of 
stress. A second school believes that some plumose
marked joints are hybrid shear fractures. ln particular, this 
school considers members of conjugate systems of hkO 
joints to be hybrid shear fractures even if they have 
plumose markings (Hancock 1985). ln contrast, geologists 
of the füst school believe that that conjugate systems are 

merely pairs of extension joint sets each of which farmed 
at a different time under a different stress state. The issue 
is moot if there is clear evidence of shear on a fracture 
(crushed grains and slip lineations), in which case the 
fracture is probably best described as a fault. 

Joints which do farm strictly by mode I propagation 
define a principal plane of stress. Based in this fact, several 
authors have used extension joints as pa/eostress-trajectory 
indicators (Engelder and Geiser, 1980). A paleostress 
trajectory is the orientation of a principal stress in the rock 
at some time in the past. ln these studies, the trend of a 
vertical joint on the ground surface is taken as the 
trajectory of cr1 at the time of the joint farmation (cr2 is 
assumed to be vertical). 

Numcrous studies have considercd the creation of strcss 
statcs leading to joint formation. ln general, it is 
considcrcd that most joints form in association with uplift 
of a rcgion (Pricc, 1966; Suppe, 1985; Engeldcr, 1987). 

12-5 FAULT·ARRAY ANALYSIS 

Fault Arrays 

ln Chapters 4, 6, and 9 we leamed how to analyze the 
sense, direction, amount, and timing of fault displacement 
resulting from movement on individual faults that 
measurably offset mappable contacts. ln many localities 
the bedrock is broken by numerous faults. Parallel faults 
which have parallel directions of motion and similar senses 
of motion comprise a fault set. Two or more fault sets 
comprise a fault array or afault system. The size of faults 
in fault arrays is quite variable; at some localities 
indi vidual faults are mappable features on regional maps, 
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and the fault array is a prominent feature of the orogenic 
belt, whereas at other localities the faults of the array are 
mesoscopic, in that they have outcrop traces of only a few 
rneters and displacernents of only a few centimeters (Price, 
1967). There are several types of fault arrays: 

l. Parallel array: A parallel array is composed of a 
single set of parallel faults. There are three types of 
parallel arrays. (a) Rotational parallel arrays, are composed 
of a set of parallel faults, the motion on which leads to 
rotation of the inter-fault rock bodies around an axis that 
lies ín the fault plane and is perpendicular to the slip 
direction on the fault (Wemicke and Burchfiel, 1982); (b) 
Nonrotational parallel array, are composed of a set of 
parallel faults accommodating shear without block rotation; 
(e) Relay arrays, are composed of parallel faults each of 
which is shorter than the length of the host deformed beh 
(Fig. 12-13). As one fault dies out along strike, its 
displacement is transferred to a neighboring fault. As a 
consequence cumulative displacement across the deforrned 
belt is relatively constant. Relay arrays are common in 
fold-thrust belts 

Figure 12-13. Sketch map of a relay array 
of thrust faults. 

2. Conjugate array: A conjugate fault array is com
posed of two fault sets that fonned at the same time under 
the same stress system. The dihedral angle between the 
two sets is typically between 500 and 70°, but larger 
angles have been documented (Freund, 1970; Marshak et 
al., 1982). 

3. Anastomosing array: In some localíties a fault 
zone contains many intertwined faults that cross one 
another at a low angle or merge with one another. The 
sense of movement on all faults is roughly the same. 

4. Complex array: ln a complex array, there are many 
non-parallel sets of faults. However, the shear sense and 
shear direction on each fault is such that, overall, the slip 
on the array results in a single coherent regional movement 
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(e.g., Compton, 1966; Arthaud, 1969; Reches, 1978). 
Arrays such as these possibly reflect either slip on 
preexisting surfaces (earlier formed joints, faults, or 
foliations; Bott, 1959; Compton, 1966), faulting under 
nonplane strain conditions (Reches, 1978), and noncoaxial 
strain (Wojtal, 1986). Rhomboid fault pattems (Reches, 
1978) are one type of comp!ex array. 

5. Detachment-bounded array: ln both fold-thrust belts 
and rift zones, sets of faults occur which merge at depth 
along a subhorizontal detachment fault (see Chapter 14). 
Such arrays include both planar and listric faults. 

5. Polyphase array. Some regions are cut by sets of 
faults each of which förmed at a different tirne and under a 
different stress field. A group of tectonically unrelated sets 
can be called a polyphase array. 

Description of Fault Arrays 

A fault array is a group of planar strnctures. Therefore, 
strike and dip data representing a fault array can be treated 
much like strike and dip data on a joint array. A fault is 
different from a joint, in that shear occurred parallel to the 
surface of the fault (see Chapter 11 for a discussion of how 
to determine direction and sense of slip on a fault). There 
are several ways to cornrnunicate information on slip 
direction and shear sense on a fault. 

Rak.e Histogram: Data on the rakes of slip 
lineations on an array of faults can be plotted on a 
histogram. The vertical axis of the histogram represents 
number of measurements and the horizontal axis represents 
rake in class intervals of 5° - l 00. If the majori ty of slip 
lineations have low rakes, for example, then the fault array 
is composed of strike-slip faults. 

Annotated Equal-Area Plot: The orientation of 
a fault on an equal-area plot can be represented by the 
orientation of the pole to the fault. Additional information 
can be represented on such a plot if a symbol is plotted at 
the position of the pole rather than just a dot Appropriate 
symbols include, e for extensional faults, e for contrac
tional faults, n for norrnal faults, r for reverse faults, and s 
for strike-slip faults. If all the data on a plot refer to 
strike-slip faults, you rnay wish to plot open circles for 
left-lateral faults and füled circles for right-lateral faults. 
Such plots can also display the orientation of the slip 
lineations. 

Slip-Linear Plot: A slip-linear plot is an equal
area plot on which the symbol for the polc to a fault plane 
is decorated by a line that indicates direction of slip, or an 
arrow that indicates the direction and sense of slip. Such 
diagrams are very useful for representing the kinematics of 
a fault array. The method of constructing a slip linear plot 
(Hoeppener, 1955) is described based on a figure from 
Anastasio (1987). 
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Problem 12-2 (Constructíon of a slip-linear 
plot) 

A fault is oriented 000° ,6()0E. Slip fibers on the fault 
plunge 50° in a northeasterly direction. The hanging wall 
of the fault moved relatively up dip. Construct a slip
linear plot representing this fault. 

Method 12-2 
Step 1: Refer to Figure 12-14a. This figure shows 

a fault coated with imbricate slip fibers that give the 
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direction and sense of movement. Visualize the problem; 
the fault is an oblique-slip fault with a component of 
reverse motion. 

Step 2: On an equal-area diagram (Fig. 12-14b), plot 
the great-circle trace representing the fault plane, the pole 
to the fault plane, and the point representing the plunge and 
bearing of the slip fibers. 

Step 3: Construct a plane, called the M-plane ('M' 
stands for 'movement'), which contains the slip fiber 
lineation and the pole to the fault plane. At the point 

Footwall ol fault Pole to M-plane 

Figure 12-14. Construction of a 
slip linear plot. (a) Block diagram 
illustrating the position of the 
M-plane with respect to fiber slip 
lineations; (b) equal-area plot 
showing the slip linear and the 
great-circle traces of the fault plane 
and M-plane; (e) slip linears 
representing an array of faults in 
the southern Pyrenees of Spain. 
(From Anastasio, 1987.) 
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representing the polc to lhe slip plane, draw a short line 
segment along the the great-circle trace of the M-plane. 
This line segment is the slip linear represeming the 
dircction of slip on a fault. 

Step 4: If the sense of movement on the fault is 
known, an arrow can be added to the line segment 
indicating the relative movement of the hanging-wall 
block. In this example, the hanging-wall block moved 
toward the southwest, so the slip linear points toward the 
southwest. 

Step S: To interpret an arrow on a slip linear, you 
must keep in mind the orientation of the fault plane 
(indicated by the pole position) as you look at the line 
segment or arrow. From just the slip linear in Fígure 
12-14b, we know that fault plane dips moderately to the 
east and that the hanging-wall block moved up and to the 
southwest Therefore, we immediatcly know that it is an 
oblique-slip fault on which there has been a component of 
right-lateral shear and a component of reverse shear. 

If a large number of slip linears from faults in a region 
are plotted on a single equal-area plot, the diagram 
graphically indicates the kinematics of movement on the 
array. For example, Figure 12-14c shows a slip linear plot 
for faults in a portion of southem Pyrences of Spain (from 
Anastasio, 1987). From this diagram we see that many 
faults dip to the south (cluster A); on these faults, the 
movement of the hangíng-wall block is directly up-dip, so 
the faults are reverse faults. In addition, many faults (e.g., 
cluster B) dip steeply to the northwest. These faults 
display slip lineations that point to the southwest, and, 
therefore the faults are strike-slip faults. ln general, radial 
slip linears indicate dip-slip faults and arrows parallel to the 
primitive are strike slip. 

Another plot that provides kinematic data on faults can 
be constructed by first plotting the polc to the M-plane and 
then by indicaüng the sense of movement as a rotation 
around the polc. The points on such a plot are called 
kinematic rotation axes. For a description of the method, 
see Wojtal (1986). 

ln addition to attitude data on fault arrays, a description 
of an array should also provide infonnation on the size of 
faults, spacing of faults, the magnitude of displacement on 
individual faults, and the character of the fault surface (see 
Chapter 11 ). You should also describe the relationship of 
the fault array to other structures in the region, such as 
folds and larger faults. 

Determination of Principal Stress DirecUons 
from Fault Arrays 

The pauem of slip on a simple conjugate array of 
rnesoscopic faults is directly related to the state of stress at 
the time of faulting. The basis of this interpretation is 
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called the Anderson theory of faulting (after Anderson, 
1942), which assumes that cr2 lies in the plane of the fault, 
and that cr 1 is oriented at 30° - 45° to the fault, and o-3 is 
orientated at 45° - 60° to the fault; the configuration of the 
three principal stresses with respect to the surface of the 
earth determines whether the fault initiates as normal, 
thrust, or strike-slip (Fig. 12-15). 

[a\ 

(b) 

Figure 12-15. Idea! orientations of fault 
planes with respect to principal stresses. (a) 
Block diagram showing the orientation of 
principal stresses with respect to two 
conjugate strike-slip faults; {b) diagram 
showing principal stresses with respect to slip 
lineations on a single fault plane. 

Problem 12-3 
Two fault sets are observed in a region. Set A is 

oriented N88°W,40°NE and has slip lineations oriented 
26°,N56°E. Set B is oriented N44°W,82°SW and has slip 
lineations oriented 61° ,S30°E. What were the orientations 
of the principal stresses which produced these fault sets? 

Method 12-3 
If the faults define a simple con jugate array, then a 1 

bisects the acute angle of intersection, o-2 is parallel to the 
intersection of the two sets, and o-3 bisects the obtuse 
angle of intersection. 

Step 1: Plot the faults as great circles on an 
equal-area net (Fig. 12-16). Plot the slip lineations as 
lines (La and Lb) that lie in the fault planes (Chapter 5). 
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N 

+ 
fault B _,,. 

Flgure 12-16. Equal-area plot showing 
estimation of principal stresses from data on 
two faults of a conjugate system. La and Lb 
are slip-lineation attitudes. 

Step 2: Construct a great circle perpendicular to the 
intersection of the two fault sets (Figure 12-16). This 
great circle is oriented N42°E,62°SE. The slip lineations 
should lie on or near to this great circle. If they do not, 
then the fault geometry is not truly conjugate. 

Step 3: By couming along the great circle drawn in 
Step 2, find the acute bisectrix of the two fault sets. This 
line, which is 53° ,N86°E, gives the orientation of a 1. 

Step 4: Along the same great circle, find the obtuse 
bisectrix of the two fault sets. This line, which is 
23°,S29°W, is the orientation of cr3. 

Step 5: The line of intersection between the two 
rauits sets g1ves cr2. 

The geometry described in Problcm 12-2 is that of a 
conjugate fault array. However, it is necessary to examine 
additional criteria before treating the calculation of stress 
orientation with confidence. Specifically, it is important 
to check that the sense of slip on the fault sets is 
appropriate; in general, slip on fault set A should be 
right-lateral with a component of normal motion, and slip 
on fault set B should be left-lateral with a component of 
reverse motion. With such a sense of slip, the acute 
wedges between the faults move toward each other. 

If we assume that the a 1 direction is at a specified 
angle from the fault plane, we can estirnate the principal 
stress orientations from a single set of lineations. 

Problem 12-4 
A single set of mesoscopic faults occur in an area. 

The faults are oriented N300W,800NE. Slip lineations on 
the fault are oriented 19°,N26°W. The fault has a 
right-lateral sense of shear. Estimate the orientations of 
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the principal stresses which gave rise to this fault set. To 
help visualíze the problem, refer to Figure 12-lSb. 

Method 12-4 
Step 1: Plot the orientation of the fault set as a 

great circle and the slip lineations as a point (L) lying on 
that great circle (Fig. 12-17). We assume that cr 1 is 
oriented at 300 to the fault plane and lies in the M-plane 
(the plane that is perpendicular to the fault plane and 
contains the slip lineations). We assume that cr2 lies in 
thc fault plane 900 from the slip lineations. 

N 

- fault plane 

+ 

figure 12-17. Equal-area plot showing 
estimation of principal stresses from a single 
set of slip lineations. 

Step 2: Align the great circle representing the fault 
__ '!_ ------ -- - - -"'--~---=- - -- -•-- -_- -- „ _---- --d· _.,....._ _____ . __ 11 - -
µ1a.iiC1 VV!Ul a ö,l'VelL \.IJ.1\.ri\..I Vli tii\; \.J\.t.U.(..U-m~u l.i\...L. \,,...\..ii.iiii. ü.i.VHE; 

this great circle exactly 90° from the orientations of the 
slip lineations; this point represents theoretical orientation 
of cr2 (68°,S54°E). 

Step 3: Draw a great circle, which has the cr2 
oríentation as its pole. All points along this great circle 
are 90° from the cr2 orientation, and thus cr 1 and cr3 must 
lie along the great circle. Note that this great circle 
contains the pole to the fault plane and the slip lineation, 
and thus represents an M-plane. We could have constructed 
the M-plane without first locating 0"2. 

Step 4: We assume that the angle that cr 1 makes 
with the faults is 30°. Count along the M-plane great 
circle 30° from the slip orientation to find the cr 1 
orientation and an additional 600 to find the cr3 orientation. 
The direction in which you count depends on the sense of 
motion on the fault. ln this problem, the fault is 
right-lateral, so cr1 is12°,N04°E and cr3 is 19°,S90°W. 

A number of techniques exist for determining the 
orientations of principal stress directions and or 
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deformation directions (i.e., directions of shortening and 
elongation) associated with faults of a complex array. For 
díscussion of these teclmiques, refer to papers by Compton 
(1966), Arthaud (1969), Arthaud and Choukroune (1972), 
Angelier and Melcher (1977), Reches (1978; 1983), 
Angelíer (1979), Etchecopar et aL (1981), and 
Aleksandrowski (1985). 

Some of the techniques are based on plots of M-planes 
and slip linears. These techniques require orientation and 
slip data on a large number of faults. The essence of the 
M-plane method is as follows; you should study the details 
of the method and its limitations in the primary references 
before using it for a real field study. 

Problem 12-5 (Simplified M-plane stress 
calculation) 

Given the attitude of 100 fault planes in a complex 
array and the attitude of the slip lineations on the fault 
planes, estimate the attitudes of principal stresses defining 
the state of stress at the time of faulting. 

Method 12-5 
Step 1: Plot the great circle traces representing the 

M-planes of the faults on an overlay placed over an 

N 

(a) 

Figure 12-18. M-plane method of calculating 
principal stresses from a complex fault array. 
(a) M-plane great-circle traces far members of 
a complex array. Circles show the common 
intersection points (frnm Aleksandrowski, 
1985); (b) block diagram showing how the 
common intersection of three M-planes may be 
related to a principal stress; (e) slip linear plot 
for the faults of plot 'a'. Note that the slip 
linears point toward cr3 and and away from cr1 
(from Aleksandrowski, 1985). 
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equal-area net (Fig. 12-18a). If the faulting in the region 
is part of a complex array, the M-plane great-circle traces 
will intersect at a limited number of common locations 
(called "common intersection points") on the equal-area 
plot; the number of intersections depends on the variability 
of fracture orientations and on the nature of strain in the 
region. Two of the common intersection points of the 
M-planes may represent cr1 and cr3 (Fig. 12-18b). cr2 
should occupy a region of the net in which there is a low 
density of M-plane intersections. 

Step 2: On the separate overlay, draw the slip 
linears for the fault array (Fig. 12-18c). In an ideal case, 
the slip linears point away from the cr 1 direction and 
toward the cr3 direction, and therefore allow you to isolate 
which common intersection points are representalive of 
principal stress directions. 

Step 3: Choose the appropriate common intersection 
points from your M-plane plot. The cr2 orientation is 
defined by the pole to the plane containing o-1 and cr3. 

We caution that the above method should not be applied 
blindly. Aleksandrowski (1985) discusses limitations of 
the method and shows how to increase the reliability of the 
results. 

common intersection 

(b) 

(e J 
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12·6 LINEAMENT-ARRAY ANAL YSIS 

Nature of lineaments 

Lineaments are straight or nearly straight topographic 
alignments that are visible on remote-sensing images (e.g., 
air photographs and satellite images) or on topographic 
maps. A set of lineaments that occur in a given area can 
be called a lineament array. 

The recognitíon of a lineament is merely a judgment 
of the viewer; any two observers may or may not agree on 
the presence of a specific lineament or may draw a gíven 
líneament with a slightly different azimuth and/or length. 
Some lineaments arc, ín fact, optícal illusions whose 
presence or absence may reflect only illumínation directíon 
(Wise, 1982). lt is often difficult to verify the presence of 
a lineament or to assess íts geological significance from 
field work. Wise et al. (1985) have noted, however, that 
although experíenced observers might disagree about a 
single lineament, they will usually find the same overall 
lineament trends on a single image, and these trends 
probably have geological significance. Because the 
observation and interpretation of lineaments is híghly 
subjective, the topíc of lineament analysis is one that is 
approached with justífiable skepticism by most geologists. 

The description of a lineament pattern in an area is of 
little value if the geologic significance of the lineament is 
unknown. Commonly, lineaments represent the trends of 
fault zones or the trends of major systematic joínts. Joint 
systems stand out as lineaments particularly if they control 
the drainage in a region. Lineaments may also represent 
the structural grain of bedrock (orientation of deformation 
fabric), the dístribution of bedrock or cover units, the 
ro"i tion of linear intrnsivcs or ilmeous fissurcs. 
nonstructurally controlled topography, or human-made 
constructions. Assessment of the geologic significance of 
a lineament must be dctermincd through field analysis. 

Practical Suggestions 
tor Uneament Analysis 

ln order to make the best of a lineament study, the 
technique for drawing lineaments should be standardizcd for 
a given study, so that rcsults may be repeatable. 
Following are a number of suggestions to achieve this 
goal: 

1. ln studying lincaments exposed in a region, use 
images of the same type that havc been processed in the 
same way. Do not mix study of satellite images with 
study of low-altitude photographs. 

2. Obtain images that are illuminated obliquely, for it 
is the shadowing effect of topography that permits 
lineaments to be obscrved; the sun should not be directly 
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overhead. Maximum enhancement of a línear feature 
occurs when the feature is illuminated at an angle of 15° 
from parallel (measured ina horizontal plane) (Wise et al., 
1985). 

3. To get consistent results it is best to use images of 
adjacent areas that were made at the same time of day. On 
a given image, however, lineaments oriented 15° from the 
sun azimuth or radar look direction tend to stand out. 
Therefore, to avoid biasing results, it is best to repeat 
mcasurements on two or more images of the same area 
taken at different úmes. 

4. When drawing línes, use an overlay. Try not to 
think of the geology of the area covered by the image. 
Prejudícc is subtle. 

5. Do not work on an image for too long a period of 
time. The longer you stare at an image the more 
lineaments you will see. The first 10 to 45 minutes of 
observation will allow you to find the most obvious 
lineaments that are probably the most geologically 
significant. 

6. When studying an image, rotate it frequently so 
that you do not always look at the image in the same 
dírection. We tend to see lineaments parallel to the 
direction we are looking. 

7. Draw only what you see. Do not extend a 
lincamcnt to intersect another unless you actually observe 
it to do so. 

8. Do not mix observers. One observer should make 
the measurements on all the images of the area. It is of 
value, however, to have more than one observer repeat 
measurements of the same images. The results of two or 
more observers can be overlain on top of one another, and a 
synoptic ovcrlay showing only the lineaments índicated by 
all obscrvers can then be produced. The synoptic overlay 
may be less noisy than the índividual overlays. 

Once an overlay showing the traces of lineaments has 
been produced, it can be analyzed with a rose diagram, 
histogram, or running average. Equal-area nets, of course, 
cannot be used, as the data are only two-dimensional. 
Rcmember that the high degree of subjectivity involved in 
analyzing líneaments means that the results of a lineament 
study should be viewed with skepticism until the 
lineaments can be related to real geology. 
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EXERCISES 

1 . As an initial exercise, your instructor will set up a field-based study of jointing. 
Unless the area that you live in is completely covered by glacial drift or vegetation, 
there should be an outcrop nearby that contains joints. Prepare a field form or use 
the one provided. If you have time, use several methods of sampling joints, and 
compare the results. If your time is limited, use only the traverse method. Begin 
your sampling traverse at some recognizable location, and record data on joint 
orientations, spacings, and style elements. Make preliminary data plots (rose 
diagram, histogram, or equal-area plot) at the outcrop. Construct a synoptic 
diagram to indicate the major joint sets in the outcrop. While still at the outcrop, 
try to determine the relative tirning of formation of different joint sets. 

2. The data ín Table 12-Ml are strikes of vertical joints measured along a traverse. 

No3°w 
Nos0 w 
N53°E 
No3°W 
N69°W 
Nrn°w 
N07°W 
N63°W 

Table 12-M1 
Joint Orlentatlons 

N04°W 
N03°W 
N36°W 
N27°W 
N21°E 
N21°E 
N18°E 
No9°W 

N69°W 
No3°W 
No9°W 
N03°E 
Nrn°w 
N69°W 
N04oW 
N27°W 

No3°W 
N03°E 
N03°W 
No9°W 
N72°W 
N63°W 
N72°w 
N04°E 

(a) Make a histogram of these orientations using a l 0 class interval. Plot a 
second histograrn with a 5° class interval. Compare the two plots and describe the 
orientations of prominent joint sets along the traverse. Make a rose diagram of the 
data with a 5° class interval. Which of the plots do you find to be most easy to 
interpret? 
(b) Apply a traverse correction for these data using as the strike of a class interval, 
the mid-point of that interval. Portray the corrected data as a histogram with a 5° 
dass interval. Describe the differences between the corrected and uncorrected plots. 
(e) Smooth the data in the interval between a strike of N10°W and a strike of 
N04°E. Use the original 1° class interval plot for this calculation. Use a 10° 
running average with a 2° step. Describe the differences between the smoolhed and 
raw plots. 

3. Slip lineations on fault set A of a conjugate pair are 18°,N70°E and slip lineations 
on fault set B are oriented 30° ,S30°E. What were the orientations of the principal 
stresses responsible for faulting? 

4. Mesoscopic faults in an area have the following dominant orientations: Set A is 
Nl7°W,70°SW, and Set B is N21°E,52°SE. 

(a) For these two sets to be considered conjugate, what should be the orientalions 
of the slip lineations on them? 
(b) What would be the senses of motion on the two sets if they were con jugate? 
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(e) What would be the orientations of the principal stresses that gave rise to a 
conjugate set with the specified geometry? Speculate about the tectonic setting 
that could have generated such stress orientations. 

5. The image ín Figure 12-Ml is a synthetic aperture radar image of part of the island 
of Luzon in the Phillipines. This type of image enhances topography by using the 
"shadowing" effect of radar. Several different types of linear features can be seen on 
this image. First, a major linear boundary cuts diagonally across the image and 
separates the northwest comer of the image from the rest of the image. This 
boundary, which trends east-northeast, may be a fault. Within the rough 
topography, short linear valleys and ridges can also be seen. These lineaments are 
typical of lineaments in heavily vegetated regions and are commonly interpreted as 
reflecting etching of pervasive systematíc joints by erosion (Wise et al., 1985). 

Figure 12-M1. Synthetic-aper
ture radar image of part of Luzon, 
the Philippines. Flight lines ran 
north-south, and radar illumination 
direction is east-west. Scale bar is 
5 km. (Courtesy Aero Service.) 

(a) Draw all the linear features that you can see on the image. Try to differentiate 
between those lineaments which may be major faults, and those which are related 
to the etching of erosion (Hint: Look for offsets of topographic features). 
(b) Plot a histogram of the erosional-etching lineaments. Note that this image 
was produced using an east-west illumination direction. Do the prominent 
linealion directions show a relationship to the illumination direction? 
(e) Compare your tracing and your diagrams from parts (a) and (b) with those of 
other students. Do individual students have distinctly different styles of drawing 
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lineaments? Do all students show the same linearnents? Are there some dominant 
directions that all students show? Based on your answers, do you think that 
lineament analysis can produce geologically signifícant results? 

6. Figure 12-M2 is a LANDSAT image of a portion of the Makran Range in 
southwestem Pakistan. Comparison of the image with a geologic map of the area 
shows that the major east-northeasHrending lineaments in the image correspond to 
outcrop belts of strata that have been involved in formation of a fold-thrust belt. 
Place an overlay on the image and spend about 10 minutes tracing the lineaments 
that cut across the ENE-trending outcrop belts. Interpret your results (Hint: ln the 
southem quarter of the image, there are some well defined plunging folds. 
Consider the geornetry of the lineament array with respect to these folds.) 

Figure 12-M2. LANDSAT image 
of a portion of the Makran Range in 
southwestern Pakístan. Scale bar 
is approximately 5 km. 
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CHAPTER 

1 
OBJECTIVE ETH DS 

F R C NTRUCTING PR FILES 
AND BLOCK D S 

OF FOLDS 

Steven Wojtal 

13·1 INTRODUCTION 

A slice or section through any three-dimensional object 
provides a useful visual image of its interior. Geologists 
often construct sections of the earth to illustrate its internal 
structure. A section that is oriented perpendicular to the 
surface of the earth is called a cross section (Appendix 1). 
Block diagrams (Appendix 1) combine data from maps and 
cross sections to provide a perspective image of a three
dimensíonal block of the earth. 

Cross sections and block diagrams are influential tools 
that you can use to convey your ideas about the geologic 
stmcture of an area to other geologists. They are also often 
used as data when analyzing the tectonic history or 
resource potential of an area, so it is important that they be 
as accurate and tmthful as possible. Constructing cross 
sections and block diagrarns tests your understanding of the 
geometry of deformed rocks. The central problern that you 
encounter when constructing a cross section or block 
diagram is, How can surface data be extrapolated to depth? 
Extrapolation, as you will see, depends in part on objective 
geometric techniques of projecting stmctures and in part on 
subjective interpretation. 

ln this chapter we examine some of the objective 
geometric techniques (Busk method, kink method, 
dip-ísogon method, and down-structure projection) used to 
project surface data on fold geometry to depth. We will 
also see how to incorporate drill-hole and seismic data in 
such sections. Finally, we will describe how to represent 
accurately the three-dimensional configuration of rock 

structures in block diagrams that have geologic maps on 
their upper surfaces and geologíc cross sections on their 
sides. Additional aspects of cross-section constmction are 
introduced in Chapter 14. It is important to emphasize at 
the outset that the reproducibility of cross sections and 
block diagrams drawn using the techniques described ín this 
chapter must not be confused with the truthf ulness of these 
representations. Natural geologic structures rarely confonn 
to ideal geometries; thus, real geology may deviate 
markedly from sections drawn using geometric models. 

13-2 FOLD STYLES AND SECTION LINES 

Cylindrlcal and Cylindroidal Folds 

Objective techniques for projecting fold geometry to depth 
can be applied only to folds whose shapes have a certain 
degree of regularity. Cylindrical or cylindroidal folds are 
two types of folds whose shapes are sufficiently regular 
that data on fold shapes at the surface can be used to 
characterize fold shapes at depth. The techniques are not 
feasible in regions where fold shapes are very irregular 
(földed layers thicken or thin dramatically, and fold trains 
are disharmonic); in such regions, knowledge of fold 
geometry at the surface will not help us predict fold 
geometry at depth. 

As described ín Chapter 8, the axis of a cylindrical fold 
is a straight line that, when moved parallel to itself, can 
"trace out" the földed surface (Fig. 13-1). Because of this 
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(a) 

Map View 

(b) 

property, the shape of a cylindrical fold can be projected 
orthographically along the fold axis onto a plane that is 
normal to the axis. Few real folds are cylindrical, but 
many real folds are cylindroidal. ln a cylindroidal fold, 
segments of the hinge line are nearly straight lines, but no 
single straight line can trace out the entire fold. In 

" • • 1 -- ~ ~ - „ 
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folds by assuming that they are composed of several 
cylindrical segments, where the axis of each segment is not 
exactly parallel to the axes of the adjacent segments 
(Ramsay and Huber, 1987; Langenberg and others, in 
press). 

Choosing the line of Section 

You will recall from earlier chapters that the inclination of 
a dipping layer in a vertical section equals the layer's true 
dip only if the section is oriented perpendicular to the 
layer's strike. Likewise, the truest representation of any 
cylindrical fold is a section taken perpendicular to the fold's 
axis (Fig. 13-1; see also Suppe, 1985). A section that is 
oriented perpendicular to fold axes in a region is called a 
profi/e section or, more commonly, a profi/e, and a section 
that is oblique to the axis of a structure is called an oblique 
section. The traces of the földed layers exhibit their 
maximum curvature in a profile plane. The profile plane 
of a nonplunging cylindrical fold is vertical and strikes 

Profile View 
(e) 
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Flgure 13-1. Map,cross sec
tion, and profile views. (a) lf the 
axis of a circular cylinder (line a) 
plunges, the map pattern of the 
cylinder on a horizontal surface is 
an ellipse, and the intersection of 
the cylinder with a vertical cross
section plane is an ellipse. Like
wise, the shape of a plunging fold 
is distorted in the map and cross
section planes; (b) distorted 
shapes in the map plane; (e) true 
shapes in the profile plane. 

perpendicular to the strike of the földed layers. The profile 
plane of a plunging cylindrical fold must be an inclined 
plane. Since the fold is cylindrical, profiles drawn at all 
points along the fold axis must be identical. If a fold is 
cylindroidal, földed layers exhibit different shapes in 
different sections along the length of the fold. Sections 
,_i~-~~ -•~- ,._1 _ _ ----~=:~~ .... ~~---...,_ _..,.~~~~,..,,~~~-- _e „L,... .c-_1...1_,..;1 1 .... ~~_..,. ..... ,.... .... ~ 
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different points along the fold axis have different strikes and 
dips. There is, therefore, no such thing as a single profile 
of a cylindroidal fold. We can draw a section that 
approximates a fold profile for an individual segment of a 
cylindroidal fold by positioning the section normal to the 
local fold hinge. 

ln a given map area it is best to draw sections of folds 
so that the surface trace of the section, called the line of 
section, crosses regions where surface geology is well 
constrained and/or there are seismic or drill-hole data 
available. The line of section should intersect several 
attitude measurements; the spacing between attitude 
measurements along the line of section must be less than 
the wavelength of the folds. 

Parallel and Nonparallel Folds 

ln some geologic settings layered sequences of rock are 
folded in such a manner Lhat (1) individual layers are not 
appreciably thickened or thinned during folding, and the 
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thickness of an individual layer measured perpendicular to 
its local dip is nearly the same at all points around the fold; 
and (2) successive layers in the fold are conformable or 
harmonic. Folds that fit these criteria are called parallel 
folds. Some parallel folds have smoothly curved broad 
hinge zones (Fig. 13-2a), whereas others have narrow 
angular hinge zones that separate domains in which layers 
have nearly constant dips (Fíg. 13-2b). The Busk method 
of section construction (Busk, 1929) is appropriate for 
smoothly curved parallel folds, whereas the kink method 
(e.g., Suppe, 1985) is appropriate for parallel folds with 
angular hinge zones and straight limbs. These methods 
produce reliable cross sections only if the assumption of 
parallel folding is valid; they cannot be used for 
extrapolation to depth in regions of nonparaHel or 
disharmonic folding. If we cannot assume that folds are 
parallel, we use the dip-isogon method or one of several 
orthographic projection techniques to construct sections. 
Keep in mind that there are geologic settings where none of 
these techniques yields a truthful representation of 
subsurface stn1cture. 

(b) 

Flgure 13-2. Styles of parallel folds 
referred to ín the text. (a) Concentric parallel 
folds; (b) angular parallel folds. 

13-3 BUSK METHOD OF CONSTRUCTING 
SECTIONS OF NONPLUNGING FOLDS 

The Busk method is the most popular method for 
constructing sections of parallel folds with smooth, 
rounded hinges. An altemative method Ihat uses "evolutes" 

and "involutes" (types of curves; see Bronshstein and 
Semendyayev, 1973) was proposed by Mertie (1947; see 
also Roberts, 1982), but this method is considerably more 
difficult and usually does not yield cross sections that are 
sufficiently more accurate than those constructed with the 
Busk method to be worth the trouble. 

The Busk method permits us to reconstruct the traces 
of layers in a section plane from surface or subsurface 
measurements of the attitudes of the folded layers. The 
geometric basis of this method is the assumption that 
folded layers are everywhere tangent to circular arcs. In 
practice this assumption means that (1) t.he trace of each 
folded layer in a profile plane can be divided into a number 
of segments each of which is either a portion of a circular 
arc or a straight line. Along each circular-arc segment, dip 
values change smoothly and continuously. Adjacent 
circular-arc segments are cmmected either by inflection 
points or by straight-line segments; and (2) Folding is 
harmonic and the traces of adjacent layers in profik are 
concentric arcs of different radii (Fig. 13-2a). 

Busk Method for Two Polnts 

Problem 13-1 (Busk method u:sing data 
at two points) 

Staüons A and B lie 140 m apart along a N45°W -
trending section line across a horizontal parallel fold; the 
elevation of A is 5 m higher than the elevation of B. The 
attitude of bedding at A is N45°E,10°SE, and t.he attitude 
at B is N45°E,35°SE. Use the Busk met.hod to reconstmct 
the segments of földed layers that pass through A and B. 

Methoá 13-1 
Step 1: Draw a profik plane to scale. ln this 

problem the plane is vertical and is perpendicular to the 
axis of the fold. If stations fall directly on the section line, 
as in this problem, just plot t.hem at their appropriate 
relatíve elevations and lateral spacing. (If a station does 
not fall direcdy on the section line, plot its projection on 
the section line by drawing a projection line parallel t.o the 
fold axis from the station to the section line. The 
intersection of the projection line with the section line 
gives the station's relative position along the scction line; 
plot a projected station at the same elevation as the original 
station.) 

Step 2: ln this problem the section line is 
perpendicular to the strike of the the beds, so the true dips 
of the beds can be shown in the profik plane. If the 
section line is not perpendicular to strike, we can still carry 
out a Busk construction, but the dips indicated in the 
profile plane must be apparent dips. Once the appropriate 
apparent dip value in the profile plane has been determined, 
indicate the dip values on the profik plane by short line 
segments drawn in ink (e.g., line segments l and 2 in 
Figure 13-3a). 
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SE NW SE 

NW SE 

100m 

(a) (b) 

Flgure 13-3. lllustrations far Busk construction Problem 13-1. (a) 
The location of stations A and B plotted along a line of section. Line 
segments 1 and 2 give the dip values in the plane of section at A and B, 
respectively; (b) cross section completed in step 3; (e) completed 
Busk reconstruction of layers passing through A and B. The dip value 
increases from A to B, so the circular arcs are antiforrnal. 

Step 3: We assume that the traces of beds passing 
through A and B are segments of concentric circular arcs. 
We must now find the common center of these circular 
arcs. To do this, recall that the radius of a circle is 
perpendicular to the trace of the circle at all points along 
the circle. Draw line AC perpendicular to line segment 1 
at A and BD perpendicular to line segment 2 at B. Extend 
lines AC and BD to intersect at point 0 (Fig. 13-3b). 
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Step 4: Next, obtain a compass and place its anchor 
needle on point 0. With the compass's pencil, draw one 
círcular arc that passes through point A and intersects 
radius OB at point E, and a second circular arc that passes 
through point B and intersects the extension of radius OA 
at point F. The two circular-arc segments, AE and BF, are 
the profile traces of bedding that we desire (Fig. 13-3c). 
Note that arc segments AE and BF are concentric, but have 
different radii, and that points A and B do not lie on the 
same arc segment. It is important that the arc segments 
not be extended beyond their intersections with rays OA 
and OB, for the traces of layers outside the rays are fixed by 
dip readings at other station locations. 

ln Problem 13-1 note that if, for example, point A 
was the outcrop of a stratigraphic contact, arc segment AE 
would be the Busk reconstruction of that stratigraphic 
contact. Note also that the layer thickness is uniform 
along the fold segment between stations A and B (i.e., AF 
= BE). The relatíve dip values at stations A and B 

determine whether the center of curvature for circular-arc 
segments passing through the two points lies below the 
ground surface (asin Figure 13-3c, where the dip at B is 
greater than the dip at A) or above the ground surface (as ín 
Fígure 13-4a, where the díp at B is less than the dip at A). 
The circular arcs representing the földed layers drawn using 
these centers will be either antiförmal (Fig. 13-3c) or 
synförmal (Fig. 13-4a). 
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different. If the dip readings at two adjacent stations are 
identical, the normals to the line segments representing the 
dipping layers do not intersect. The "arc" segments 
connecting these two dip stations will be straight lines 
(i.e., they will have an infinite radius of curvature; Fig. 
13-4b). 

Busk Method for Three or More Polnts 

Problem 13-2 (Busk method using data 
at three points) 

Stations A, B, and C lie on a N45°W-trending section 
line across a horizontal parallel fold. The horizontal 
distance between A and B is 190 m, and the horizontal 
distance between B and C is 200 m. The elevation at A is 
150 m, at B is 160 m, and at C is 170 m. The attitude of 
bedding at A is N45°E, 10° SE, the attitude at B is 
N45°E,35°SE, and the attitude at C is N45°E,70°SE. 
Use the Busk method to construct the traces of the földed 
beds passing through A, B, and C. 
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Figura 13-4. Busk construction, 
continued. (a) lf dip values 
decrease from A (where the 
attitude is N45oE,4o0 SE) to B, 
(where the attitude is N45oE, 
1 o0 SE), the center of curvature for 
the arc segments passing through 
A and B lies above the points, and 
the folded surfaces are synformal; 
(b) if strike and dip readings at two 
adjacent stations along a line of 
section ars the same (N45°E, 
3oosE at both A and B), the limb 
segments between the two points 
are straight-line segments. 

Method 13-2 

F 

e 

(a) 

Step 1: Draw your section line, locate the positions 
of the stations along the section line, and plot line 
segments representing the dips at these stations (Fig. 
13-Sa). In this problem the dips indicated on the line of 
section are true dips. 

Step 2: Draw the normals to line segment l at A 
and line segment 2 at B, lines AD and BE respectively 
(Fig. 13-Sb). Extend these lines to intersect at point 0. 

Step 3: Place the anchor needle of your compass at 
point 0 and draw circular arcs ..A.F and GB. These arcs 
represent the segments of the földed layers between stations 
A andB. 

Step 4: Draw the normal to line segment 3 at C, 
line CH. Extend line CH to intersect the radius OB at O' 
(Fig. 13-Sc). The point O' is the center of concentric 
circular-arc segments that are tangent to line segment 2 at 
B and line segment 3 at C. The centers of the two sets of 
circular-arc segments must lie on a single straight line 
normal to line segment 2 at B (e.g., line OB in Fig. 
13-5c). 

Step 5: Move the anchor needle of the compass to 
point O', and draw arc segments BJ and CI. To finish the 
drawing, retum the anchor needle back to point 0 and draw 
arc segment IL (Fig. 13-5c). 

Once again, the relative spacing of stations A, B, and 
e and the relative magnitudes of the dips at these stations 
determine the locations of the centers of concentric circular 
arcs passing through three stations along a single line of 
section (see Fig. 13-6). 

So far, we have not worked with problems where a 
single marker bed is exposed at several localities along a 
line of sectíon. If we have an insufficient number of 
surface or subsurface dips along the line of section, the 
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(b) 
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Busk method may predict surface exposures of a horizon 
that do not correspond with known surface exposures. If a 
particular marker bed appears at the ground surface two or 
more times long the line of section, it is possible to test 
the consistency of the Busk construction of the fold with 
the surface data. The following method is taken from 
Billings (1972). 

Problem 13-3 (Busk method applied 
to a marker lwriwn) 

We l<.now the attitude ofbedding at four points along a 
N45°W-trending line of section across a horizontal parallel 
fold: N45°E,15°NW at point A, N45°E,40°SE at point 
B, N45°E,60°NW at point C, and N45°E,15°SE at point 
D. A distinctive conformable stratigraphic contact crops 
out at points A and D along a section line. Use the Busk 
method to reconstruct the földed .layers between points A 
and D. Be sure that your solution conforms with known 
positions of the comact. 

Method 13-3 
As we will see, if we sirnply apply the steps of 

Method 13-2 to the data gíven here, we obtain a cross 
section that cannot be correct (Fig. 13-7a). The arc 
segment that passes through point A does not connect with 
the arc segment passing through point D. Next, we 
illustrate how such a mistake can be corrected. 

Step 1: Draw the line of section, locate the measure
ment stations, and plot the appropriate líne segments 1, 2, 
3, and 4 representing the dip values at each station. 

Step 2: Draw the normal to line segment 1 at A and 
the normal to line segment 2 at B, and extend them to 
intersect at 0. Place the anchor needle of a compass at 0, 
and draw circular-arc segment AE. Point E does not 
coincide with point B, but based on the field data that we 
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Flgure 13-5. Busk construction for Problem 13-2. (a) Stations A, B, 
and C, plotted on a cross section plane; (b) partial construction after 
completing step 3 of Method 13-2; (e} completed cross section. 

have, we do not expect the layer passing through A to crop 
out at B. 

Step 3: Draw the normal to line segment 3 at C, 
and extend the normal to line segment 2 at B (line OB) to 
where they íntersect (poínt P). Use a compass to draw 
circular-arc segment EF. Once again, F and C do not 
coíncide, but this is consístent with our field data. 

Step 4: Draw the normal to line segment 4 at D, 
and extend it to intersect the normal to line segment 3 at 
poínt Q. Place the anchor needle of your compass at Q, 
and draw círcular-arc segment FG (Fig. 13-7a). G does not 
coincide with D. Field data indicate, however, that the 
same contact crops out at both points A and D. Therefore, 
barring faults, point G should coincide with point D. 
Obviously, our section at this stage is not correct, and we 
must modify it. 

We alter the construction to conform with surface data 
by interpolating a dip value between the two stations that 
are most widely spaced (B and C) and by replacing the 

single arc segment (EF) between those two staúons with 
two arc segments. 

Step 5: Place the anchor needle of your compass at 
Q, and draw arc DW (Fig. 13-7b). 

Step 6: Draw line WX perpendicular to QP, and 
draw line EY perpendicular to OP. Lines WX and EY 
intersect at poínt R. 

Step 7: Draw a straight line between points E and 
W. Drop a perpendicular from the line EW to point R, and 
extend it to intersect the ground surface at U. The 
inclination of the line EW is, in effect, an interpolated dip 
value at U for the layer passing through A and D. 

Step 8: Extend line RU upward to intersect the 
extension of OB. The intersection of these two lines is 
point S. Line SR, which is perpendicular to the 
interpolated dip at U, intersects line PQ at point T. 

Step 9: With the compass anchor at S, draw 
circular-arc segment EH. With the compass anchor at T, 
draw círcular-arc segment HW. Curve AEHWD (Fig. 
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3 

Figura 13-6. lllustration showing 'hat the relatíve positions of the 
centers of concentric arc segments pé ssing through three stations in a 
Busk construction change as distances between stations and dip 
values at the stations change. (a) Dir.: values in the plane of section 
increase from A (1 o0 ) to B (35°) to C (6,)0 ). Comparing this figura with 
Fig. 13-5c, we note that the center O' rnay fali between points F and Bor 
between points 0 and F, depending upon ~he dip values at stations and 
the spacing between stations; (b) constru,~tion for the case where the 
dip at the intermediate station (station B) is less than the dip values at 
the two ends. Dip values are 60° at A, 1 o0 at B, and 40° at C. 
Curvature changes from synformal to antiforr; al. Curvature will change 
from antiformal to synformal if the dip at a sta. on is greater than dips at 
the two adjacent stations. 

13-7b) is the trace of a surface Ihat fits the known dip data 
and passes through both points A and D. 

Problems with the Busk Method 

Figure 13-8 shows a cross section drawn by applying the 
Busk method to seven dip readings along a line of section. 
Remember that, by definition, the hinge of a fold is the 
line along which lhe curvature of the fold is a maximum. 
If the trace of a layer is drawn as a circular arc (i.e., OP in 
Fig. 13-8), the curvature of the layer is constant, so 
technically, we cannot define a unique hinge. ln Busk 
constructions, we arbitrarily place the hinge at the 
midpoint of an arc. ZZ' is the trace of one antifonn's hinge 
surface in Figure 13-8. 

Look again at Figure 13-8. At points U and X along 
line ll', concave-up arc segments of adjacent synforms 

intersect (!here is no intervening antiformal arc). The trace 
of the the földed layer has infinite curvature at such points. 
Points of infinite curvature, caHed singularities, often 
appear in Busk constructions of folds whose wavelengths 
are short relative to lhe thickness of the layered sequence. 
Singularities, such as those that occur at points U and X, 
are a consequence of the assumptions that folded Iayers are 
concentric circular arcs. Singularities are rarely observed ín 
outcrop, so we must question whether Busk-constructed 
folds actually represent reality. Badgley (1959) suggested 
replacing singularities in Busk reconstructions wilh curved 
line segments, but, as Ragan (1985) noted, this alters the 
appearance of the reconstruction without necessarily 
making it more truthfu!. If several singularities appear in a 
Busk construction of an area but none are observed in 
surface exposures, we probably should find an altemative 
method to reconstruct the subsurface geology of the area. 
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Figure 13-7. Steps in the Busk 
construction of Problem 13-3. (a) 
lncorrect cross section drawn 
using dip values at four stations; 
(b) interpolating a dip reading at an 
intermediate location in the Busk 
construction (after Billings, 1972). 

Flgure 13-8. Completed Busk 
reconstruction of folded Devonian 
strata near Kinaston. New York. 
(See Marshak and others, 1986.) 
sl = sea levei; a through g are 
different stratigraphic horizons. 
Line ZZ' is a fold hinge. Note the 
infinite curvature (singularities) at 
points U and X along the hinge. 



Chapter i 3 Objective Methods for Constructing Profiles and Block Diagrams of Folds 

13-4 KINK-STVlE CONSTRUCTION 
OF NONPLUNGING FOLDS 

Kink Geometrles 

ln recent years geologists have recognized that many folds, 
particularly those in fold-thrust belts, have straight limbs 
and angular hinges (cf. Faill, 1969, 1973; Laubscher, 
1977; Thompson, 1981). Angular folds produce domainal 
dip patterns on maps. A dip domain on such a map is an 
area in which strata have nearly constant dips. Adjacent dip 
domains are separatcd by narrow belts in which dips change 
abruptly (Fig. 13-9). The formation of these angular folds 
is often accommodated by interlayer slip, and it often 
occurs without apprcciable thickening or thinning of strata. 
We model these angular folds as kink folds and use a 
method that relies on the geometríc properties of kink folds 
to draw cross sections of regions exhibüing domainal dip 
pattems. 
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Flgure 13-9. Dip domains on a map of 
angular folds. The map in this figura shows 
attitude measurements on bedding in a small 
area. The map can be divided into three 
distinct dip domains (A, B, and C) where layer 
dips are fairly constant. Belts between 
domains are fold-hinge zones (i.e., domain 
boundaries). 

ln an ideal kink fold, layering abruptly changes its 
attitude across an imaginary planar boundary called a kink 
plane (Fig. 13-10), which is the fold's axial surface. 
Layers in adjacent limbs of a kink fold meet along a kink 
axis; the change in attitude between adjacent limbs can be 
described by a rotation around this axis. If layers do not 
thicken or thin during folding, the kink plane bisects the 
angle between adjacent limbs. If the layer thickness does 
change, the kink plane does not bisect the angle between 
adjacent limbs. 

A kink band is composed of two parallel kink planes 
whose kink axes are parallel but have the opposite sense of 
rotation (Fig. 13-10). Intersecting kink bands produce 
folds with straight limbs and angular hinges (Fig. 13-lla). 

Figure 13·10. ldealized kink band, 
showing folded layers, two kink planes (P1 
and P2) and kink axes A1 and A2. (From Faill, 
1969.) 

A, 

J 

(a} 

B; 

Figura 13-11. Geometry of folds formed 
by intersecting kink bands. (From Fai!!, 1969.) 
(a) A cylindrical angular fold is generated 
when two kink bands, B1 and B2, with kink 
junction axes A1 and A2 intersect along a kink 
junction axis J that lies in bedding; (b) if the 
kink junction axis J is obiique to bedding, 
intersecting kink bands form noncylindrical 
folds. 
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The line at which the two kink bands join is called the 
kink junction axis (line J in Figure 13-lla). If the kink 
junction axis lies in the plane of layering (Fig. 13-lla), 
the resulting fold is cylindrical, but if the kink junction 
axis is not in the plane of layering, noncylindrical folds 
result (Fig. 13-11 b ). ln a section through either type of 
angular fold, the traces of contacts are straight, parallel 
lines whose inclinations change abruptly at fold hinges (the 
kink planes). 

We can use the Busk rnethod to construct sections of 
kink-style folds, but by doing so, we disregard the unique 
properties of kink folds. The kink rnethod (Faill, 1969, 
1973; Suppe, 1985) takes advantage of the unique 
properties ofkink-style folds. In the kink rnethod we draw 
the traces of layers as straight-line segrnents between 
adjacent fold hinges. As we will see, we locate and use 
known stratigraphic contacts to draw our cross section at 
the outset, thereby avoiding difficulties like those 
encountered in Problern 13-3. Because the kink rnethod 
allows us to construct cross sections of angular folds 
rapidly and reliably, it has becorne popular in recent years. 
The boundary-ray method of section construction (Badgley, 
1959, after Coates, 1945, and Gill, 1953) was also 
developed to accommodate angular folds, but because it 
requires data other than strike and dip readings and because 
it is quite cornplex, it is not widely used. The kink 
rnethod is the rnethod of choice for drawing sections of 
angular folds. 

Kink Method Applied to Folds 
wlth Constant Layer Thlckness 

Problem 13-4 
Th.a. cit ........ t;~911"'1h;,.. f"n:nta.rot hPtnn::ii.t:'n o lim.t1>otr..n~ l'.lnr4 ~ 
=;;;. __ . ~r-··=~-e;.<·~·-~·--· ------------,, -=------- -- --- -- ~ .::_:_:.:::_.::..:....::: 

shale crops out at points X and Y along a N75°W-trending 
line of section across an angular parallel fold (Fig. 13-12a). 
The contact between the shale and a sandstone crops out at 
points W and Z, and the top of the sandstone crops out at 
point V. Line segments 1, 2, and 3 at points A, B, and C, 
respectively, give the dip values of different dornains. 
Points V and W fall in dip dornain 1 (NI5°E,50°W), point 
X falls in dip dornain 2 (Nl5°E, 10°W), and points Y and 
Z fali in dip dornain 3 (Nl5°E,25°E). Use the kink 
rnethod to draw a profile of the fold. 

Method 13-4 
Step 1: First, we locate the fold hinges. We assurne 

that the lirnestone/shale contact that passes through point 
X is a straight-line segrnent. This líne must have an 
inclination in the plane of the section that corresponds to 
the dip value of this dornain, so we draw this segrnent of 
the contact parallel to line segrnent 2 at B. Likewise, draw 
the segrnent of the lirnestone/shale contact that passes 
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through point Y parallel to line segrnent 3 at C. The two 
segrnents of the lirnestone/shale contact intersect at point L 
(Fig. 13-12b). Poim L is the intersection between the 
trace of a kink hinge plane and the lirnestone/shale contact. 

Step 2: To determine the trace of the hinge plane 
that passes through point L, bisect angle XL Y. The 
hinge-plane trace is line ab (Fig. l3-12b). 

Step 3: Draw the segrnent of the shale/sandstone 
contact trace passing through Z as a straight line parallel to 
YL. This line intersects hinge ab at point M. To continue 
the trace of this contact beyond the hinge, draw a line frorn 
M that is parallel to XL. 

Step 4: Next, we position the second hinge-plane 
trace. The segrnent of the shale/sandstone contact passing 
through W must have an inclination in the plane of section 
that corresponds to the dip value for its dornain. Draw the 
segrnent of this shale/sandstone contact passing through W 
as a straight-line segrnent parallel to line segrnent l at A. 
This portion of the shale/sandstone contact intersects the 
segment of the contact passing through M at the point N. 
Bisect L WNM to determine the orientation of the second 
hinge-plane trace, which is line cd (Fig. 13-12c). 

Step 5: Now we can cornplete the outer portion of 
the fold. The lirnestone/shale contact intersects line cd at 
point 0. We can extend this contact beyond hinge cd as 
line segrnent OP, where angle POd = L XOd. Draw the 
upper contact of the sandstone (QV parallel to PO, etc.). 

Step 6: When any two kink-fold hinge traces 
intersect, they are supplanted by a single hinge trace that 
bisects the angle between the rernaining opposing lirnbs 
(provided the layers' thicknesses rernain constant). Hinge 
traces ab and cd intersect in the subsurface at point e. To 
position the traces of layers in the core of the fold, draw eS 
p~r<11lf'l tn OP <1nrl f'T pllnillf'I to TY nrl!w folil hingf' f'f 

so that it bisects the angle between eS and eT. 

Kink Method Applled to Folds 
wlth Changing Layer Thickness 

ln rnany cases surface data indicate that corresponding 
layers on opposing lirnbs of folds have different 
thicknesses. ln these cases the fold hinges cannot bisect 
the interlirnb angle, so the axial angle between each lirnb 
and the fold hinge is different for opposing lirnbs. 
Consider a kink fold where layer thickness changes 
abruptly frorn T on one lirnb (Fig. 13-13) to T' on the 
other lirnb. The two axial angles are y and y, where 

y = MBD -:;:. y' = MBE. 

A comparison of triangles MBD and EMB indicates that 

T/sin y = BM = T'/sin y (Eq. 13-1) 
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Figure 13-12. lllustrations for 
kink-method construction of 
Problem 13-4. (a) Raw dip data on 
a cross-section plane. Une 
segments 1, 2, and 3 give the dips 
at points A, B, and C, respectively, 
and represent the attitudes of 
different domains; (b) fold profile 
after completing step 3 in Method 
13-4; (e) cornpleted fold profile. 
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or, 
T'{f = sin y'/sin y (Eq. 13-2). 

If we can locate a fold hinge and we know the dips of the 
opposing fold limbs, we can measure the axial angles y 
and y' and can use Equation 13-2 to find the relative 
orthogonal thicknesses of layers on opposing limbs. If, 
altematively, we know T and T' from field data, we can use 
Equation 13-2 to calculate the axial angles and orient the 
fold hinge in our reconstruction. 

flgure 13-13. An angular fold with differ
ent layer thicknesses (T and T') on opposing 
limbs and unequal axial angles (L DBM * L 
MBE). 

Problem 13-5 
Field mapping has established that a single stratum in 

C along a line of section (Fig. 13-14a). A fold hinge is 
exposed at point h between the two limbs. Line segments 
1, 2, and 3 give domainal dip values at points A, B, and C, 
respectively. Dipmeter readings in the borehole at D are 
also plotted on the figure. Note that two distinct dip 
domains are defined by the measurements in the drill hole. 
Use the kink method to draw a profile of the fold. 

Method 13-5 
S tep 1: First, draw the trace of the fold hinge 

passing through point h. Locate point i in the drill hole 
halfway between two nonparallel dip measurements in the 
bore hole, and draw line ih. Extend this line into the sky. 

Step 2: Draw a straight-line segment parallel to line 
segment 3 through point C, and extend it to intersect the 
fold-hinge trace at point G. Draw a straight line parallel to 
line segment 2 through point B, and extend it to intersect 
the fold-hinge trace at E. 
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Step 3: Draw line GJ parallel to BE and line EF 
parallel to CG. Note that the axial angle JGE is not 
equivalent to the axial angle CGE and that layer thickness 
JB is not equivalent to layer thickness CF. By inspecting 
Figure 13-14b, we see that the eastem limb was thinned to 
83% of the thickness of the flat-lying limb during folding. 

Step 4: To complete the outer portion of the fold 
profile, we must position the fold hinge between dip 
domains 1 and 2 in the western portion of the profile. 
Changes in layer thickness in the eastern portion of the 
profile make us wary about applying the parallel folding 
assumption elsewhere in the profile. We need field data, 
however, on the relative thicknesses of layers in the limbs 
of this open fold to draw this western fold hinge. Lacking 
such data, we assume here that layering neither thickened 
nor thinned as this open fold förmed. This is reasonable 
because changes in layer thicknesses in angular folds are 
often restricted to folds with relatively tight interlimb 
angles. Thus, draw a straight line parallel to line segment 
1 through A, and extend it to intersect the continuation of 
GJ at K. Bisect angle AKJ to find the trace of the second 
fold hinge (line lm). Extend BE to intersect lm at N, then 
draw NO parallel to AK. The shallower levels of the fold 
can be traced out by drawing lines parallel to established 
contacts. 

Step 5: A problem arises below the depth at which 
fold-hinge traces hí and lm intersect (point S). Because of 
the thinning of the eastem limb, we cannot simply bisect 
the angle between opposite limbs to determine the hinge 
trace below point S. ln order to complete the fold profil e, 
it is necessary to know how much layer thinning occurred 
at depth. For the sake of argument, assume that the ratio 
of thicknesses in opposing limbs ín the subsurface is equal 
t0 •J.i<:>t "h"PrvPil irr thf' ontl"r nortinn of the folíL With this -
assumption, we can position the fold hinge graphically by 
drawing lithologic contacts at depth parallel to established 
contacts while maintaining a fixed ratio between the 
orthogonal thicknesses of the eastern and western limbs 
(Fig. 13-14c). 

Alternatively, we could substitute this ratio of 
orthogonal thicknesses into Equation 13-2. We know that 
the two axial angles together must equal angle RST, 
measured (with a protractor) to be 94°. We have, then, 
two equations (Equation 13.2 and y + y = 94°) with two 
unknowns and can solve for the values of the two axial 
angles in thís portion of the fold. W e be gin by 
substituting 94° - y for 1 into Equation 13.2. Using the 
trigonometric identity for the sine of the difference between 
two angles, we can rewrite this equation in terms of sin y 
and cos y. Combining terms and rearranging, we have y = 
arctan [sin 94°/(0.84 + cos 94°)], or y = 52.3° and y' = 
41.7°, the same values we determined graphically. 
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Flgure 13-14. lllustrations for 
kink-method construction of a fold 
with nonconstant layer thickness, 
described ín Problem 13-5. (a) Raw 

data p!otted on a cross-section 
plane. A drill hole at point D 
provides subsurface data; (b) 
partíally completed fold profile 
after step 4 in Method 13-5; (e) 
completed fold profile. 
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13·5 DIP-ISOGON METHOD 
OF CONSTRUCTING FOLD PROFILES 

If we have information on the characteristic way in which 
layer thicknesses vary in a region (variations that are 
commonly a function of lithology), we can construct 
reasonable profiles of the folds ín the region, even when it 
is not possible, because of the layer-thickness variation, to 
use Methods 13-3, 13-4, or 13-5. Variations in layer 
thickness are readily described by dip-isogon patterns 
(Ramsay, 1967), which indicate the relative curvatures of 
the outer and inner arcs of földed layers (see Chapter 11). 
Remember that a dip iso gon is a line in the profile plane 
that connects points with equal dip values on successive 
contacts. Characteristic dip-ísogon pattems can be derived 
by examining well-exposed minor folds in the region of 
interest or by studying well-constrained profiles in the 
region. Once the characteristic dip-isogon pattem is known 
for a sequence of beds at one location in a region, it can be 
used as a guide in constructing profiles of folds involving 
similar sequences of beds elsewhere in the region. 

The following problem/method (based on procedures 
outlined by Ramsay and Huber, 1987) illustrates how to 
use characteristic dip-isogon pattems to reconstruct fold 
profiles. ln the problem we refer to two angles: (1) o is 
the angle between a specified reference line and the tangent 
to any földed layer at a point. We use the same reference 
line to measure all o values in a single profile. The 
reference line may have any attitude, but normally we 
choose a horizontal line or a norma! to the fold hinge as a 
reference line (Fig. 13- l 5a). If a fold-hinge plane is 
vertical, the norma! to the hinge is horizontal, and o values 
equal the local dip values. (2) i.; is the angle between the 
-~~~~~1 A_- ...,,_ ("_,__1..l_~...t 1-:"--_~_-.-:- ,...._~ ,...._ ............ ;'"""._ 0 ..... ..-I ..-h~_ ,-1; ...... ; ............ "" ....... rl f'hnf-

.=..n.ijiji~ "'-" M. i.'0'.au ...... u i..~J .,,., ... ~i. oi4. r-.._„„. ;;;..;.... ... --. ........... -;,.,...._r- ~~~ó~---~ .:,.0;.:0'0-~~ 

passes through that point (Fig. 13-15a). We call 0 the 
deflection of the isogon. By convention, angles that open 

Reference line 
RL 

Normai 

Tangent 

Layer 

(a) 
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ín a clockwise sense are negative, and angles that open in a 
counterclockwise sense are positive. The deflection angle 
usually changes as we trace an isogon from one rock type 
to another; 0 is usually greater ín less-competent layers 
(Fig. 13-lSb). ln plots of 0 against o, the curves 
connecting (0, y) pairs for points on the surfaces of 
different layers are generally different. 

Problem 13-6a (Characterizing dip-isogon 
patterns) 

Figure 13-15b is a profile of folded quartzites and 
phyllites seen in a vertical roadcut. Assume that this 
profile indicates how quartzites and phyllites typically 
behaved during folding in this area, and determine the 
characteristic dip-isogon pattems for folded quartzites and 
phyllites in this area. 

Method 13-6a 
Step 1: Draw the hinge-surface trace ab on the 

profile. Draw a reference line for measuring o values at 
different points on the layers. ln Figure 13-15b the 
reference line RL is perpendicular to the fold hinge ab. 

Step 2: At several points around the fold (at regular 
intervals, such as 5° or 10° increments, along each 
lithologic contact), draw a short line segment tangent to 
the contact. Measure the angle between this line segment 
and the reference line (Fig. 13-15a). ln Figure 13-15b, for 
example, the outer arc of the phyllite bed has a dip value of 
o = +60° at point X, the outer arc of the quartzite bed has a 
dip value of o = +60° at point Y, and the inner arc of the 
quartzite bed has a dip value of o = +60° at point Z. 

Step 3: Draw straight-line segments across layers 
connecting equal dip (o) values. These segments are the 
lguPr"' rlin ;„ncron" ln FicmrP 1 ~-1 'íh XY is th~ +600 rlin ... - - - - --.il ~.;;:;;- - - ._. - -- --

isogon for the phyllite bed, and YZ is the +60° dip isogon 
for the quartzite bed. Draw normals to layering where each 

a 

Ouartzite 

(b) 

Flgure 13-15. lllustrations of 
dip-ísogon method of fold 
construction descríbed ín Problem 
13-6. (a) Convention for measur
ing dip (ö) values with respect to a 
given reference líne and dip-ísogon 
deflection 0; (b) profíle of a 
well-exposed minor fold ín the 
western portion of the Great 
Smoky Mountaíns, Tennessee 
Appalachíans, involvíng a quartz
ite layer and a phyllite layer. The 
fold hinge is ab; several isogons 
are shown. XYZ is the +600 isogon 
in this fold; (e) plot of dip-isogon 
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deflection (0) versus dip values (ó) 
far the quartzite layer (dashed line) 
and the phyllite !ayer (solid iine) in 
(b); (d) topographic profile across 
Bates Mountain (from King, 1964), 
which is near the location of the 
fold shown in (b), with dip values at 
several locations. Ouartzites crop 
out between D and E, a distinctive 
phylllite layer crops out at G, and 
the fold hinge (with strike and dip 
N6ooE,80SE) crops out at C; (e) 
profile after step 5 in Method 
i3-6b. 
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isogon intersects a lilhologic contact, and measure the 
deflection angle of each isogon. ln Figure 13-lSb, 0 = 
-32° for isogon XY, and 0 = -15° for isogon YZ. 

Step 4: Tabulate values of o and ~ for each layer in 
the profile, and plot these data on a graph with o on the 
horizontal axis and 0 on the vertical axis. Note that the the 
0-versus-o curve for phyllite is different from the 
0-versus-o curve for quartzite in Figure 13-15c. If we 
assume that the dip-isogon pattem in Figure 13-15b is 
typical of folds ín this area, this graph characterizes the 
dip-isogon pattems for földed quartzite/phyllite sequences in 
this area. We use this graph to reconstruct a fold profile 
from dip data along a line of section. 

Problem 13-6b (Dip-isogon construction 
of a fold profile) 

Figure 13-15d is a topographic profile showing 
outcrop pattems and dip values along a N30°W-trending 
line of section across a földed quartzite/phyllite sequence 
near the location of Figure 13-1 Sb. The fold's hinge crops 
out at point C; the strike and dip of the hinge is N60°E, 
80°SE. The top of a quartzite bed crops out at point D; its 
base is exposed at E. A distinctive phyllite layer crops out 
at G. Assume that the fold does not plunge, and construct 
a profile of this fold. 

Method 13-6b 
Step 1: First, draw a reference line on the section 

with an orientation comparable to that in our characteristic 
profile (i.e., normal to the fold hinge). Draw the trace of 
the hinge surface, ab, on the profile, and draw reference line 
R perpendicular to ab. 

Step 2: Measure the angle o between the dip mark at 
n~f'h o!."'ltn.t;...,.. ........... 1"""'-"n' thD> 1;..,o. r..f' (.'~,....t~Ari "'.'n...l th.o. rPÍPrPnl"'o. lin~ '""'-....,._„;. ..;;;;............_._.-„_ ....... v„;.o ;;..,;;;.;.-..,.- ..:..;.;.„ ... ~- ---~ ...... ~_--;;...-~-:....-;:.= ~-~..:~ """"""''""'- = -;,..--=-"C..--= -c_-- - -------- ~ 

R, and tabulate the measurements. For example, o = + 10° 
at point D, o = +20° at point E, and o = +40° at point F. 

Step 3: Find the characteristic isogon deflection that 
corresponds to the dip value at each point along the profile. 
For example, o = + 10° at point D. Figure 13-15c 
indicates that the characteristic isogon deflection at points 
where o = + 100 in folds in this area is -5° in quartzite 
layers and -9.5° in phyllites. Draw a norma! to layering at 
D (N0 ). Draw the +10° isogon (i10) with a deflection of 
-9.5° in the phyllite above D and with a deflection of -5° 
ín the quartzite below D. o = +20° at point E. The 
characteristic isogon deflection at points where o = + 200 is 
-10° in quartzites and -180 in phyllites. Draw a norma! to 
layering at E (NE)' and draw the +20° isogon (i20) with 0 
= -100 in the quartzite above E and ~ = -18° in the phyllite 
below E. Dip values are constant along any isogon. As 
Ramsay and Huber (1987) suggest, indicate this by drawing 
several small tick marks, each parallel to the local dip, 
across each isogon. 

Step 4: We assume that the isogon pattern in the 
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fold in our section in Figure 13-15d is comparable to that 
in the characteristic profile. The phyllite/quartzite contact 
that crops out at D must have a o value of +20° when it 
crosses ísogon i20 above E. Using a french curve or a 
flexible ruler, extend the phyllite/quartzite contact to point 
H on the +20° isogon, making sure that this contact 
parallels the tick marks across the isogon at H. Similarly, 
the quartzite/phyllite contact exposed at E must have a o 
value of +10° when it crosses isogon i10 below D. 
Extend the quartzite/phyllite contact from E to point J on 
the + 10° isogon, making sure that this contact parallels 
the tick marks across the isogon at J. 

Step 5: Draw a norma! to layering through point F 
(NF)· and then draw the +40° isogon through this point 
(i40) with the appropriate deflection angle for phyllites 
(-33°). Extend the quartzite/phyllite contact to point K on 
the +40° isogon, making sure that it is parallel to the tick 
marks across the ísogon. The deflection of the +40° 
isogon must change from a value appropriate for phyllite 
to one appropriate for quartzite above K. Draw a normal to 
layering at K (NK), and extend the +40° isogon above K 
with 0 = -13°. We can then extend the phyllite/quartzite 
contact from H to L. Repeat steps 4 and 5 until you have 
completed the profile of the fold. 

Fold profiles constructed by the dip-isogon method 
will show changes in layer thickness similar to those seen 
in the characteristic profile. Because the dip-isogon method 
uses the shapes of folds seen in well-constrained profiles as 
models for other profiles instead of assuming that layer 
thickness does not change around folds or changes abruptly 
across fold hinges, this method is conceptually more 
attractive than the Busk and kink methods. As Ramsay and 
T-JnhPr (1 Q~7i nntl' hml\/f'Vf'T fnlrl nrnfilP.<: rlrnwn hv thP. 
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dip-isogon method become less reliable as we extend our 
profiles farther from data constraints. 

13-6 CONSTRUCTING PROFILES 
OF NONPARALLEL FOLDS 
BY ORTHOGRAPHIC PROJECTION 

Accurate and well-constrained profiles of nonplunging folds 
can be constructed directly from observational data obtained 
in regions where folds are cylindrical and topographic relief 
is sufficiently high that large portions of folds are exposed. 

The technique introduced next involves orthographic 
projection and can be used for either parallel folds or 
nonparallel folds. It is particularly useful for nonparallel 
folds, for which the Busk and kink methods cannot be 
applied. 

To visualize how a cross section of a nonplunging fold 
can be constructed, consider the pattems defined by the 
intersections between a cylindrically földed surface and ilie 
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ground surface. A cylindrically földed surface intersects a 
horizontal ground surface in a series of straight lines that 
parallel the fold axis (ab, ef, and ij are parallel to cd and gh 
in Fig. 13-16a). This map pattem, a series of straight 
lines, tells us Httle about the shape of the fold in profile. 
If the földed surface intersects a vertical quarry wall, 
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Figure 13-16. Traces of folds. (a) The 
traces of nonplunging cylindrical folds on a 
horizontal surface are straight lines; (b) trace 
of a cylindrically folded surface abdc on a 
vertical face is curve ij; (e) trace of 
cylindrically folded surface abfe on an 
irregular topographic surface is curvE~ ijk. 

however, the trace of the fold on the vertical surface gives 
the true shape of the földed layer (Fig. 13-16b). If the 
ground surface is irregular, the földed surface intersects the 
ground along an irregular trace (Fig. 13-16c). The shape of 
each segment of this irregular trace is controlled by the 
strik:e and dip of one portion of the földed layer. We can 
use this map trace to construct a profile of that földed 
contact. To define a földed layer, we need to know the map 
trace of both the upper and lower boundary of the layer. 

Next, we show how to construct a profile of a földed 
contact from its trace on an irregular topographic surface. 
This problem is the inverse of the problem of calculating 
outcrop traces that was described in Chapter 2. Note that 
this method can also be used for parallel nonplunging folds 
that are exposed in regions of high relief. 

Problem 13-7 
Figure 13-17a is a map of a cross-bedded quartzite 

(stippled) that is overlain by marble (M) and is underlain 
by slate (S). The attitude measurements on the map 
indicate that this meta-sedimentary sequence has been 
földed, and a stereogram of the poles to bedding (not 
shown) indicates that folding is cylindrical around a 
horizontal axis. The arrow FA above the map gives the 
bearing of the fold axis. Draw a profile of the földed 
layers. 

Method 13-7 
Step 1: Draw a folding line (Fl) perpendicular to the 

fold axis at the edge of the map, and swing up the 
cross-sectional view into the plane of the map projection. 
Draw a suite of lines parallel to the folding line on the 
rotated cross section. These lines are spaced to represent 
the difference in elevation between contour lines. The 
vertical scale on the cross section must be the same as the 
map scale. 

Step 2: Locate the points on the map where the top 
and bottom contacts of the quartzite layer cross contour 
lines. From each point, draw a straight line parallel to the 
fold axis (and, therefore, perpendicular to the folding line) 
to the corresponding contour line in the rotated 
cross-sectional plane. For example, the quartzíte/marble 
contact at A 1 on the map projection outcrops at 100 m; we 
draw a straíght line from A1 across to the 100-m grid line 
on the rotated cross section. This point plots as point A' 
on the grid. Notice that point A2 on the map also plots as 
A' on the grid. Points B 1 and B2 on the map plot as point 
B' on the rotated cross section. 

Step 3: Repeat the procedure of step 2 for a 
sufficient number of points to define the profile trace of the 
lower contact. (For example, points C and D on the map 
plot as C' and D' on the rotated cross section). Then, 
repeat the procedure for points on the upper contact. 

Step 4: Connect the points on the rotated cross 
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section to trace out the upper and lower folded surfaces 
(Fig. 13-17b). The resulting profile automatically shows 
the variation ín the thickness of the quartizite layer around 
the fold. 

13-7 CONSTRUCTING PROFILES 
OF PLUNGING FOLDS 

We stated earlier that the truest image of the shape of a 
cylindrical fold is a profi le of the fold, drawn on a plane 
normal to the fold axis. The profile plane for a plunging 

D' 

C' 
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Flgure 13-17. lllustration of 
profile construction of a horizontal 
~Hli~~~i~_...1 .f,..,1,..1; i ..... ,,. !!"'-""'~i!"'I!""" -.f: 
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topographic relief, as described in 
Problem 13-7. (a) Map showing the 
outcrop belt of a unit (stipple 
pattern). The grid at the right is the 
cross-section plane rotated into 
the map plane around folding line 
F1 ; (b) complatad profile of tha 
fold. 

fold is necessarily inclined. Sections other than profiles 
(e.g., vertical cross sections, oblique sections, or maps) 
yield fold forms with distorted limb thicknesses, distorted 
ínterlimb angles, and íncorrect hinge positions (Fig. 13-18; 
see also Roberts, 1982; Ramsay and Huber, 1987). 
Fortunately, the very fact that the fold plunges makes it 
possible for us to see large portions of the fold on a map. 
Map data can, therefore, allow us to construct a profile of a 
plunging fold. Likewise, subsurface data in a drill hole 
that is not perpendicular to the fold axis can also be used to 
construct fold profiles, if it is available. Next, we 
illustrate how to construct profiles of plunging folds from 
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(a) A~---~----~A 

A~-~--1----t--~A 

(b) 

Flgure 13-18. lllustration of the distortion 
of a plunging fold that occurs on a map. (See 
Schryver, 1966.) (a) Map of a plunging 
asymmetric fold. The lines connecting zones 
of maximum curvature in the map traces (thin 
dashed lines) do not give the true positions of 
the hinge traces (thin solid lines); (b) profile of 
the fold. 

map and subsurface data. The specific technique that must 
be used depends on whether the fold is exposed in a region 
of high topographic relief or in a region of low 
topographic relief. 

Constructing Prornes of Ph.mging Folds 
from Maps of Regions 
with Low Topographlc Relief 

In regions of low topographic relief (i.e., the heights of 
hills in the map area are significantly less than the 
amplitude of the folds in the area), the map plane is 
essentially an oblique section through the fold. To 

visualize this principle, refer back to Figure 13-L Note 
how the intersection of the plunging circular cylinder with 
both the map plane and the vertical cross-sectional plane is 
an eUipse; only on a profile plane oriented perpendicular to 
the cylindcr do you see a circular section. There are two 
ways to use the map pattem to construct a profik. 

(1) Down-Structure Viewing and Freehand 
Sketching: The füst method is generally referred to as 
down-structure viewing. To obtain a down-structure view 
of the plunging circular cylinder in Figure 13-1, simply 
orient your line of sight so that it parallels the axis of the 
structure. When viewed frorn this angle, the ellipse will 
appear to be a circle. In the field, to obtain a 
down-structure view of a fold, you should place yourself so 
that you are looking down (or up) the hinge of a fold (Fig. 
13-19a). Sometimes, it is necessary to get into an 
awkward position in order to properly víew a strncture 
(Fig. 13-19b)! When positioned properly, you will see the 
profile form of the fold. It takes practice to do 
down-plunge viewing easily. It may help to relax your 
eyes or close one eye and trick yoursclf into ignoring your 
natural depth perception, so that the oblique section of the 
fold on the outcrop surface appears foreshortened onto a 
single plane that is oriented perpendicular to the hinge. 
Sketch the shape of the fold that you see freehand. 

(a) 

-~ , ....... . 

(b) 

Figura 13-19. lllustration of down-
structure viewing. (a) Observer positioned so 
that her line of sight is parallel is coincident 
with the hinge of the fold; (b) observer 
positioned to view a shallowly plunging fold 
that intersects the ground surface. 
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We can also use the technique of down-structure 
viewing to view maps (Mackin, 1950). The only 
difference between down-structure viewing of a map and 
down-structure viewing of an outcrop is that in order to 
orient yourself properly to view the map, you must read 
the attitude symbols on the map so that you know the 
plunge direction of the folds. Place the map on a table, and 
position your line of sight to view it down structure. As 
before, you can sketch the profile of the fold freehand as 
you view the map from this angle. Typically, the true 
amplitude of a fold (the amplitude in profile) will be much 
less than the apparent amplitude that is indicated in the 
map plane, and apparent thickening in the hinge may 
vanish (Figs. 13-lb and e, 13-18). Also, the true 
symmetry or asymmetry of a fold will be obvious ín the 
profile view. 

(2) Grid Method of Profi/e Construction: 
The grid method (Roberts, 1982; Ragan, 1985) is a 
graphical technique that allows us to construct accurate 
profiles of plunging folds in regions of low relief from a 
map of the fold. To understand the hasis of this method, 
again consider the plunging circular cylinder of Figure 
13-1. We saw that the map-plane image of the plunging 
circular cylinder is an ellipse. The líne WX across the 
ellipse (Fig. 13-20), which is perpendicular to the bearing 
of the cylinder axis, is the same as the diameter (D) of the 

Profile 
View/ 

Profile 
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y n--] · w\!!J_x D 

z 
Map 

(b) 

Figura 13-20. Profile versus map views 
of a plunging circular cylinder. (a) A plunging 
circular cylinder produces an elliptical trace 
on a horizontal map; (b) a comparison of the 
map and profile sections of the circular 
cylindar. 
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circular profile of the cylínder, but the line YZ across the 
ellipse, which has the same bearing as the cylinder axis, is 
greater than the diameter (D) of the circular profile. lf we 
are given the length of YZ (called D'), we can calculate D 
from the equation 

D = D'(sin µ) (Eq. 13-3), 

where µ is the plunge of the axis of the cylinder. 
Now consider a map of a plunging fold. Distances 

between points on the fold surface measured along lines 
that are perpendicular to the bearing of the hinge are 
undistorted, whereas distances measured along lines that are 
parallel to the bearing of the hinge will be greater than they 
would be in profile. The distance in profile between any 
two points along a line on the map that is parallel to the 
bearing of the fold axis can be found by applying Equation 
13-3. ln other words, 

Profile distance between = Distance observed (sin µ) 
two points on the map on the map 

(Eq. 13-4). 

Keeping this equation in mind, we can transfer contact 
positions from a square map grid onto a profile grid in 
which one direction is foreshortened according to Equation 
13-3, as demonstrated ín the following problem (see also 
Roberts, 1982; Ragan 1985). 

Problem 13-8 
Figure 13-21a is a map of a plunging fold in an area 

where the topographic relief is small relatíve to the 
amplitude of the folds. Stereographic projections of poles 
t~ hnrlrl;ntT ÍT".n.m thi~ n"!!Qr\ ~.-p.g, l;A- ~ln.nn n eo;no-1P n-rP'lit 
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circle, indicating that the folds are cylindrical. The fold 
axis (the normal to the great circle on the n-diagram) is 
oriented 30° ,040°. Draw an accurate profile of this fold by 
using the grid method. 

Method 13-8 
Step 1: On a transparent overlay large enough to 

cover the map area, draw a square grid composed of 
mutually orthogonal suites of lines. The spacing between 
lines in a suite is an arbitrary distance S (S should be 
chosen so that a reasonable number of grid lines are drawn; 
i.e., it should be possible to locate points on the földed 
contacts accurately with respect to the grid). Use a thicker 
pen to draw the lines at the left edge of the grid and at the 
boltom of the grid; these two lines are reference lines. 

Step 2: On a separate piece of drafting paper, 
construct a rectangular grid (here called the foreshortened 
grid) composed of two mutually orthogonal suites of lines. 
The lines in one suite should be spaced at a distance S 
apart, and the lines of the second suite should be spaced at a 
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Figure 13-21. lllustration of 
the grid rnethod for constructing 
profües of plunging folds. (a) Map 

of a fold that plunges 30° in the 
direction given by FA; (b) map with 
square grid superirnposed on it; (e) 
the profile plane illustrating the 
foreshortened grid. See Method 
13-8 for more explanation. 

distance S' apart, where S' = S(sin 300) = 0.5S. There 
should be the same number of lines in the rectangular grid 
as there are in the square grid. Use a thicker pen to draw 
the reference lines. 

Step 3: Secure the map to your drafting table with 
the up-plunge portions of the fold nearest to you. Place 
the square grid over the map with one set of lines parallel 
to the trend of the fold axis, and secure the overlay in place 
(Fig. 13-2lb). Secure the foreshortened grid to the table 
next to the map and oveday; the foreshortened grid should 
be positioned so the suite of lines that are S' apart are 
oriented perpendicular to the fold-axis bearing (Fig. 

(b) 

Cal 

1-----1 
500m 

(e) 

l3-2lc). The lines spaced S' apart are horizontal lines in 
the profile plane. The lines spaced at a distance S apart are 
parallel to the bearing of the fold axis; they are parallel to 
the dip direction of the inclined profile plane--they do not 
represent vertical lines. 

Step 4: Now we use the square grid to locate points 
on the map traces of the földed layers, and the rectangular 
grid to position the corresponding points in a profile plane. 
For example, locate point Pin Figure 13-21b. It coincides 
with the intersection of two grid lines; one line is two 
lines up from the bottom reference line and the other line is 
the left reference line. W e plot the image of P on the 
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profile plane by finding the corresponding location on the 
rectangular grid (Fig. 13-2lc). Poinl P' on Figure 13-2lc 
is also located at the intersection of the left reference line 
with a line two lines up from the bottom reference line. 

Step 5: Locate other points on the map of the fold 
trace with respect to the square grid, and plot the 
corresponding image points on the profile plane (i.e., the 
rectangular grid). Using the positions of the points 
plotted on the rectangular grid as a guide, trace out the 
image of the folded surface on the rectangular grid. This 
image (Fig. 13-2lc) is the properly foreshortened image of 
the fold. 

An altemative approach is to slide the foreshortened 
grid over the square grid and, with one of the "horizontal" 
lines (those spaced distance S' apart) over the corresponding 
líne in the square grid, make tick marks where each contact 
crosses the line. Repeat thís for each "horizontal" line in 
the profile plane, and use the tick marks to trace out the 
image of the folded contacts. 

Constructing Fold Profiles from Maps 
of Regions with High Relief 

When topographic relief is high (the heights of hills 
approach or exceed the amplitudes of folds ín the area), our 
map is no longer a single oblique section through a 
plunging fold. Different portions of the map may be 
different oblique sections through the fold, but the 
composite map image is not simply related to the fold 
shape in profile. If, however, we know the orientation of 
the fold axis, we can pass a straight line parallel to the fold 
axis through each point along the map trace of a folded 
11 11 11• ('•11 1 .....-.1 
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piercing points collectively define the laycr's trace on the 
profile plane. Next, we introduce a graphical method for 
finding the piercing points on a profile plane and 
constructing a profile of the fold. This method works both 
for parallel and nonparallel cylindrical folds. 

Problem 13-9 
Figure 13-22 is a map of a földed marble (M), 

sandstone (Ss), and shale (Sh). An equal-area plot of 
poles-to-bedding readings from this region (not shown) 
índicates that the attitude of the fold axis is 30°, 04 5°. 
Draw an accurate profile of these földed layers. 

Method 13-9 
Step 1: Align the map so that the plunging fold 

axís points away from you. Place a sheet of tracing paper 
over the map. 

Step 2: On the right side of the overlay, draw líne 
AB parallel to the bearing of the fold axis. Next, draw 
lines AD and BC norma! to AB, with AD across the 
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up-plunge edge of the map, and BC across the down-plunge 
edge of the map. Rectangle ABCD outlines that part of the 
map that we will project onto the profile plane. 

Step 3: Let line AB be a folding line (FI), and 
swing down a vertical cross-sectional plane around Fl (note 
that we are swinging down an imaginary plane that had 
extended up into the sky). Draw a suite of parallel lines in 
the rotated cross-section plane that are parallel to AB and 
whose spacing, at the scale of the map, equals the map's 
contour interval. The lowest contour (in this case the 
100-m line) should be placed closest to AB. Draw line BQ 
in the rotated cross-section plane so that ít makes an angle 
of µ (that is, the plunge of the fold) with AB. Line BQ 
represents the fold axis; note that it plunges to the NE. 

Step 4: Find the perpendicular to line BQ that 
passes through A, and extend it to intersect BQ at point J. 
We now have right triangle AJB inscribed in our vertical 
cross-section plane. Line AB is horizontal, and line JB is 
parallel to the fold axis. Line AJ, which is perpendicular 
to JB, is the trace of a profile plane on the vertical section. 
You may wish to erase the contour lines in the 
cross-section plane that are outside this right triangle. 

Step 5: Draw a second rectangle EFGH at the 
up-plunge end of the map, wíth EF (farther from you) and 
GH (closer to you) parallel to DA and equal in length to 
DA. FG and EH are colinear with CD and AB, 
respectively. If rectangle EFGH were positioned so that 
GH coincided with DA and EH coincided with JA, then we 
could consider EFGH to be a "frame" in the profile plane 
through which we could view the plunging folds. Because 
EFGH represents an inclíned plane, lines parallel to EF are 
horizontal, but those parallel to FG are inclined. 

Step 6: To draw the fold profile in the "frame" of 
rrn1T ____ e:. __ ,._ e: ...... ~ ~ .,,.... _ _,_.:.,,....~ ~ ...... ""L- ---~- _1,,___,... „„,t.,_,..,.__...,, ~i.,..,, 
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trace of the geologic contact intersects a contour line. We 
choose point L, which lies on the 200-m contour. 
Through point L we draw two lines; one parallel to AB and 
one parallel to DA. Extend the line parallel to DA across 
triangle ABJ to point M, which lies on the 200-m contour 
line of the rotated cross-section plane. Extend the line 
parallel to AB across rectangle EFGH; this line intersects 
EF at N and intersects GH at 0. 

Step 7: Return to the triangle ABJ. Draw line MP 
parallel to BJ. Measure the length of segment JP along 
line AJ. Point L', which is the projection of L in the 
profile plane (EFGH), lies along line NO; the length of 
segment NL' equals the length of segment JP. 

Step 8: Repeat the procedure for many other points. 
For example, S' is found by drawing lines SV and ST. 
Line SV intersects rectangle EFGH at U and V. Line ST 
ends where it crosses the contour line in triangle AJB in 
the vertical section plane whose elevation equals the 
elevation at S. Draw line TW parallel to BJ. Plot point S' 
along line UV so that the length of segment US' equals the 
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Figure 13-22. lllustration of 
method for constructing profiles of 
plunging folds that crop out in 
areas of high relief, as described in 
Problem 13-9. Map of folded 
sandstone (Ss), marble (M and 
stippled), and shale (Sh) 
sequence; topographic contours ín 
meters. Triangle ABJ at right is a 
vertical cross section folded down 
ínto plane of the map. Rectangle 
EFGH is a profile plane positioned 
in the plane of the map. 

S' 

G 0 V 

length of segment JW along AJ. B y connecting the profile 
images of several points along a particular contact, we can 
trace out the profile image of that contact (Fig. 13-23). 

In the preceding method, lines EF and GH were used as 
reference lines to determine the positions of points L' and 
S'. Note that we can draw contour lines on the profile 
plane, but that the spacing of the contours will not be the 
same as the spacing on triangle ABJ. Remember that ABJ 
represents a vertical plane, whereas EFGH represents an 

Figure 13-23. Fold profile of 
the contact between the marble 
(M) and the sandstone (Ss) shown 
on the map in Figura 13-22. l' and 
s· are points determined in Method 
1M. G 

Q 

H 

inclined profile plane. Therefore, the spacing of contours 
on EFGH is 

spacing = d/cos µ (Eq. 13-5), 

where d is the distance bctween contours ín triangle ABJ, 
and µ is the plunge of the fold axis. 

The graphical procedure just described is very tedious if 
there are many points to be transferred from the map to the 
profile plane. Section 13-8 provides an algebraic version 

H 
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of the projection procedure, which can be easily converted 
into a computer algorithm, thereby making it possible for 
a computer to construct the profile. 

13-8 CONSTRUCTING BLOCK DIAGRAMS 

A block diagram, with a geologic map on its top face and 
geologic cross sections along its side faces, is an effective 
means of portraying geologic structures. ln this section we 
examine how to draw block diagrams with any orientation 
that correctly portray geologíc structures in perspective. 
W e also leam how to plot geologic data on the diagrams. 
The methods require the use of an orthographic net (Fig. 
13-24). 

The Orthographic Net 

An orthographic projection of a sphere can be constructed 
by simply passing a suite of parallel projection lines 
through the sphere so that they intersect a projection plane; 
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the projection plane must be perpendicular to the projection 
lines (Fig. 13-24a). To help you visualize an orthographic 
projection, consider that the view of the moon that we have 
from earth is essentially an orthographic projection of half 
the moon's surface. Imagine a sphere on which lines of 
latitude and longitude have been drawn. An orthographic 
projection of this graticule (see Appendix 1) onto any 
vertical great circle will appear as a grid of lines within the 
circle. The lines of latitude (which are small circles) appear 
as straight lines parallel to the equator, and the lines of 
longitude (which are great circles) appear as elliptical arcs 
running from pole to pole. This grid is called an 
orthographic net (Fig. 13-24b) or orthonet. We can plot 
lines and planes or rotate geometric elements on an 
orthographic net exactly like we have done on a stereonet. 
As is the case with a stereonet, we portray only 
lower-hemisphere spherical projections on an orthonet, so 
the projection lines are vertical, and the projection plane is 
horizontal. 

The properties of an orthographic net allow you to 
rotate figures to simulate the effect of changing your line 

N 

(b) 

Figura 13-24. The orthographic net. (a) Construction of an 
orthographic net. 0 is the center of the projection sphere, Z is its zenith, 
and N is its nadir. GC is the upper-hemisphere spherical projection of a 
plane passing through the center of the net. We find the orthographic 
projection of any point on the surface of the projection sphere (such as 
point S) by drawing a line that is parallel to ZN through the point and 
finding where it pierces a plane perpendicular to ZN. ln this way we can 
draw the orthographic projection of the great circle (GC'). We show the 
upper-hemisphere projection only because it is easier to see in this 
drawing; (b) a compie1ed orthographic net. 
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of sight; thus, it is very uscful for conslructing isometric 
block diagrams (Appendix l; also sec Mclntyre and Weiss, 
1956). 

Constructlng a Cube 
with an Orthographic Net 

Let us begin by examining how to render a cube with a 
horizontal. top face that is viewed along different lines of 
sight. If we view the cube along a normal to its top face, 
we see the cube as a square (Fig. 13-25a). Other faces, 
edges, and vertices on the cube are hidden by this face. We 
can see the cube's other componems only by rotating the 
cube or by changing our viewing axis. Next, we show a 
method outlined by Lisle (1980) to draw, in proper 
perspective, a cube of any orientation viewed along any 
line of sight. 

Problem 13-10 
Begin with a cube whose top face is horizontal and 

whose side faces are aligned northeast and northwest. Draw 
how the cube would look when viewed along a line 
oriented 30°,005°. 

Method 13-10 
Step 1: Prepare an overlay for use with the 

orthographic nel as you did for the stereonet (i.e., push a 
pin through the center of the net and puncture the overlay 
with the pin; see Chapter 5). On the overlay, trace the 
primitive of the orthographic net, and draw a tick mark to 
indicate north. Placc the north mark on the overlay over 
the north mark on the net. 

Step 2: First, plot three points, each representing 
. the orientation of one edge of the cube (these are called the 
principal directions of the cube). One edge is vertical and is 
represented by point V at the center of the the net (Fig. 
13-25b). The northeast-trending horizontal edge plots as 
point X on the primitive, and the northwest-trending 
horizontal. edge plots as point W on the primitive. By 
drawing VX, VW, and line segments parallel to them, we 
have an image of the cube viewed along a vertical line of 
sight, with north at the top of the page (Fig. 13-25b). 

Step 3: To plot the point representing the line of 
sight, mark the bearing of the line on the primitive of 
your overlay. Revolve the overlay so that the bearing (5° 
east of north) mark lies on the equator (or over the north 
mark on the grid). Count in from the primitive by 30° to 
locate point L. Because grid lines are very closely spaced 
near the primitive, it is useful to check the location of any 
point by counting out the complement of this angle (60°) 
from the center of the net. Point L is the lower
hemisphere orthographic projection of the line of sight 
(Fig. 13-25b). 

Step 4: To obtain a cube that appears to be viewed 
along our new line of sight (L), we rotate L about a 
horizontal axis so that it moves to the center of the net. 
To do this, we let the north-south axis of the net be the 
rotation axis and revolve the overlay so that point L Iies on 
the equator. Move L along the equator by 60° to the center 
of the net. This rotation brings the point representing line 
of sight to the center of the net (i.e„ the line of sight 
becomes vertical). We also rotate V, W, and X through the 
same angle about the same horizontal axis. To do this, X, 
V, and W move along small circles by 60° to their rotated 
positions at X', V', and W' (Fig. 13-25c). The spherical 
angles between L, V, W, and X are not changed by rotating 
them, but their new positions on the overlay indicate where 
the spherical projections of these elements would fall if 
projected orthographically onto a plane normal to the line 
of sight (L). 

Step 5: Draw lines from the center of the net to each 
rotated edge of the cube (lines OV', OW', and OX' on Fig. 
13-25d). These lines have the appropriate attitudes and 
relatíve lengths to be a perspective rendering of the three 
principal directions of the cube as viewed along of line of 
sight oriented 30° ,005° when you revolve the overlay so 
that OV' appears vertical (Fig. 13-25d). 

Step 6: Draw the cube by drawing line segments 
parallel to, and equal in length, respectively, to OV', OW', 
and OX' (Fig. 13-25e). 

Constructing Geologic Block Dlagrams 
with an Orthographic Net 

Next, we show how to portray geologic features on the face 
of the cube in such a way that angular relationships are 
correctly portrayed. First, we consider how to project 
geology onto the top face of the cube, then we consider 
how to project geology onto the side faces of the cube. 

Problem 13-11 
The trace of a contact is shown on a map (Fig. 

13-26a). Portray this geology on the top surface of a cube 
whose principal directions are vertical, north-south, and 
east-west. The cube is to be viewed along a line oriented 
40°,050°. 

Method 13-11 
Step 1 ". Draw a square grid on the map. The grid 

lines should be parallel to the edges of the proposed block 
(Fig. 13-26a). A point along the map trace of any 
geologic contact has unique coordinates with the square-grid 
reference frame. 

Step 2: Construct the block ín the proper orientation 
following Method 13-10. On the top surface of the block 
draw the map grid in the appropriaté orientation. ln thís 
example, the north-south grid lines must parallel the 
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Figure 13-25. Construction of a cube with an orthographic net, as 
described in Problem 13-10. (a) The cube viewed normal to one face 
appears as a square; (b) the orthographic projections of a desired line of 
sight (l) and of the principal directions of the cube (V, W, and X); (e) 
configuration of projections after rotations; (d) orientations of rays OV', 
OW', and OX', which give the orientations and relative lengths of the 
cube's principal directions viewed along the line of sight l, if we align ov· 
vertically; (e) an isometric projection of the cube as viewed along the line 
orientad 3o0 ,oos0 . 
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(a) 

(b) 

flgure 13-26. Projection of a map onto 
the top surface of a block diagram. as 
described in Problem 13-11. (a) Square grid 
drawn on a map. Points P and Q fal! on a 
geologic contact; (b) the corresponding grid 
shown in perspective after rotation on an 
orthographic net. P" and a· correspond to P 
and a. respectively. The geologic contact is 
shown in perspective on the top of the block 
diagram. 

north-south edge of the block, and east-west grid lines must 
parallel the east-west edge of the block. The distance 
between adjacent east-west grid lines is not the same as the 
spacing of north-south grid lines; the spacing must be 
proportional to the lengths of the cube edges. ln other 
words, if each edge of the map is divided into four equal 
segments by construction of the grid, then each segment of 
the cube edge must be divided into four equal segments by 
construction of the grid. 

Step 3: To determine the trace of the contact on the 

top of the block, simply determine the coordinates of many 
points on the contact with reference to the map grid. 
Transfer these coordinates to the grid on the surface of the 
cube, and retrace the contact (Fig. 13-26b). 

Problem 13-12 
Draw an isometric block diagram of the geologic map 

shown in Figure 13-27a. Show all the geologic features in 
proper perspective on the sides of the block diagram. The 
block is to be viewed along a line of sight plunging 300 in 
the direction 315°. The strike and dip of bedding in the 
southern limb is N85°E,65°N; the strike and dip of 
bedding in the northem limb is N37°E,35°S. The azimuth 
and plunge of the fold axis is 23° ,078°. 

Method 13-12 
Step 1: Prepare an overlay and place it over an 

orthographic net Plot the poínts representing the line of 
sight and the edges of the cube. ln this case the edges of 
the cube are vertical, east-west, and north-south, 
respectively. Tne line of sight plots as point L within the 
primitive, and the edges of the cube plot as points N and W 
on the primitive. 

Step 2: Plot the points representing poles to 
bedding in the two limbs of the fold and the fold axis. The 
southem limb of the the fold plots as Sl, the northem limb 
plots as Nl on the overlay, and the fold axis plots as F. 

Step 3: Rotate all structural elements and principal 
cube direcüons by an appropriate amount around a 
horizontal axis such that L becomes verticaL To do this, 
revolve the overlay so that L lies on the east-west diameter 
of the orthonet. Move L by 60° along the diameter to the 
center of the net. AH other points move 60° along 
appropríate small-circle traces. Remember iliat if a point 
reaches the primitive during a rotation, it reappears on ilie 
diametrically opposite side of the orthonet. SI moves to 
Sl", Nl moves to NI", F moves to F, etc. (Fig. 13-27b). 

Step 4: Draw the properly oriented cube. Transfer 
the geologic contacts from the map to ilie top of the cube, 
using the technique described in Method 13-11. 

Step 5: We use a method described by Lisle (1980) 
to draw lines on the sides of the cube indicating the dipping 
bedding surfaces. Consider an overlay (Fig. 13-27c) that 
shows only the points representing the edges of the 
properly oriented cube r.y./", X", V"), the now-vertical line of 
sight (0), and the rotated points representing the structural 
elements (Sl', Nl', F'). Trace the three great circles that 
represent the three principal planes of the cube. Each of 
these great circles is determined by aligning two of the 
principal axes of the cube along a great circle on the 
orthonet. Next, draw the great circles that represent 
bedding in fold limbs as viewed along the desired line of 
sight Each great circle is normal to the rotated position of 
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Figure 13-27. Construction of a block diagram of a fold, as 
described in Problem 13-12. (a) Generalized map of the west end of the 
Cove syncline, Pennsylvania Appalachians. (After Dyson, 1967.) The 
dip and dip direction of beds on the northern limb is 35°, 127°. The dip 
and dip direction of beds on the southern limb is 65°,355°. We take the 
line of intersection of the beds, 23° ,078°, to be the fold axis; (b) 
orthographic projection of elements from the map. V, W, and X are 
principal directions of the block diagram. F is the fold axis, NI is the pole 
to bedding of the northern limb, SI is the pole to bedding of the southern 
limb, and L is the line of sight (30°, 315°). Ali the primed letters hava 
been rotated through 60° around the axis that brings L to the center of 
the net; (e) rays ov·. ow·. and ox· are the edges of the block diagram. 
Great circles denoting top, front, and side face are shown. GCI is the 
great circle normal to SI'. GCI intersects the great circle representing the 
front of the block at A and that representing the top of the block at B. F' 
is the rotated fold axis; (d) completed block diagram. When OV' is 
aligned parallel to the vertical edges of the block diagram, oa parallels 
OA, ob parallels OB, and f parallels OF'. 
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a pole to bedding ina fold limb. For example, GCl is the 
great circle normal to the rotated pole to bedding (Sl') in 
the southem lirnb. Great cirde GCl intersects the great 
circle representing the front of the block diagram at A and 
the great circle representing the top of the block diagram at 
B (Fig. 13-27c). Rays from the center of the orthographic 
net to each intersection (OA and OB on Fig. 13-27c) give 
the orientations, on the block diagram, of the lines 
representing the intersection of the two planes. Repeat this 
procedure for bedding in the northem limb. 

Step 6: Now that we know the orientations of the 
beds in the vertical walls of the block, it is easy to 
complete the block diagram. For example, locate the 
intersection of the Mp/Dc contact on the southern limb of 
the fold with the east edge of the block (we know this 
location from step 4). The trace of this contact in the east 
waU of the block in Figure 13-27d is a line that is parallel 
to line OA in Figure 13-27c. The orientations of other 
contacts are drawn in the same manner. The fold axis in 
Figure 13-27d, which appears to pass through the block, is 
drawn parallel to line OF' in Figure 13-27c. 

The block diagrams shown in the preceding examples 
do not show topography on the top surface. Topography, 
and other embellishments that make a block diagram more 
realistic, can be added following techniques described by 
Lobeck (1958) and Goguel (1962). 

13-9 APPENDIX: USE OF A COMPUTER 
FOR DOWN-PLUNGE PROJECTIONS 

ln order to use a computer to construct down-plunge 
projections of geologic structures depicted on a map, we 
must recast the construction process in an algebraic form 
(Charlesworth and others, 1976; Kilby and Charlesworth, 
1980; Langenberg, 1985; Langenberg and others, in press). 
We first define Cartesian axes with the x-axis parallel to a 
horizontal north-south line on the map, the y-axis parallel 
to a horizontal east-west líne on the map, and the z-axis 
vertical (í.e., perpendicular to the map surface). Place the 
origin of this coordinate frame at one corner of the 
up-plunge end of the structure and orient the coordinate 
frame to be right-handed. Any point on the topographic 
surface or in the subsurface has unique coordinates (x,y,z) 
relatíve to these axes. AH coordinate values must be 
measured in the same units (e.g., feet, meters, or miles). It 

is usually easiest to use the map scale to convert all 
horizontal distance measurements to those used to measure 
elevation. 

To project a point onto a profile plane, we perform a 
coordinate transformation to new Cartesian axes x', y', and 
z'. x' is a horizontal line whose bearing is perpendicular to 
the bearing of the fold axis. y' has the same bearing and 
phrnge as the fold axis. z' parallels the true dip direction of 
the profile plane. If the bearing of the fold axis is e, and 
the plunge of the fold axis is µ, the point with coordinates 
(x, y, z) relative to the east-north-vertical coordinate frame 
has coordinates (x', y', z') relative to the new coordinate 
axes. The values of x', y', and z' are given by 

x' = x[cos µ cos(e - 90°)] - y[cos µ sin(e - 900)] - z sinµ 
(Eq. 13-Al) 

y' = x[sin(0 - 90°)] + y[cos(0 - 90°)] (Eq. 13-A2) 

z' = x[sin µ cos(0 -90°)] - y[sin µ sin(e - 900)] + z cos µ 
(Eq. 13-A3) 

or, in matrix fönn, 

lx~ [[cos µ cos(0 - 90°)] 
y' = [sin(0 - 90°)] 
z' [sin µ cos(0 -90°)] 

[cosµ sin(0 - 90°)] sin µ] [x] 
[cos(0 - 900)] 0 y 

[sin µ sin(El - 90°)) cosµ z 
(Eq. 13-A4). 

Since the y'-coordinate axis is parallel to the fold axis, 
the x'-z' plane is a profile plane. We can project points 
onto a profile plane by collapsing all points onto a single 
plane that parallels the x'-z' plane. To do this, we simply 
ignore the y'-coordinate values and plot aH points on a 
two-dimensional Cartesian coordinate frame with abscissa 
x' and ordinate z' using only their x'- and z'-coordinate 
values. The plot of points on the x'-z' frame is the profile 
of the structure. 

Computer construction of profiles involves simply (1) 
digitizing points along the trace of a structure on a map 
(i.e., determining their x,y ,z coordínates), (2) calculating 
the coordinates in x', y', z' space, by using the preceding 
equations, and (3) having the computer plot Lhe transformed 
x'- and z'-coordinates on an x'-z' profile plane. The 
algorithms are relatively simple, so the procedure can be 
accomplished with a desktop computer. 

EXERCISES 

l, Choose an appropriate line of section across the map in Figure 13-Ml. 

2. Point A is 150 m northwest of point B along a N45°W-trending section line; the 
elevation at B is 15 m higher than the elevation at A. The strike ami dip of 



298 

- - ----------------
- - - ------- --1500---=--------si-----------

- =-== ==----= =- --==-=-=--=--=---=-=---=-----
_.... - - - - --------- -- -

~ / - - ~ -- -=-óJ---=-~~--- .:--~ ~ - - - =-
/ --- ------ -...._ 

< ---- --.. 
\.. .._ ___ ...,_ 

"- \ 
\ \ 
)/ 

-~---..-.----......, 

l 

> 

Sb 1 '\ 

r"> Ch \._.,,-, 

..__ 
"--._ -

' / 

l~s~§s\;;....'. -„-~~:::"'~---,.~;;i3~Q;Q_ ;,e-;:_;::: ---~J 
5000 

Special Topics Part 11 

Figure 13-M1. M ap of a 
portion of the Mifflintown 
Quadrangle, Pennsylvania Appa
lachians, USA. (From Conlin and 
Hoskins, 1962.) Or = Ordovician 
"°""-=-='~··!•1- I':' _ _,,_.,. ___ .._:_,..., AL.. 
; .vv""~'ii•V • v••••~„,..,,;,-,- 7 -_....... = 
Ordovician Bald Eagle Formation; 
Oj = Ordovician Juniata Formation; 
St = Silurian Tuscarora Formation; 
Sr = Silurian Rose Hill Formation. 
Topographic contours in feet. 

bedding is N45°E,27°NW at A and N45°E,52°SE at B. Use the Busk method to 
reconstruct the földed layers passing through points A and B. 

3. Points A, B, and C fall along a N88°E-trending section line. The distance from A 
to B is 550 m, and the distance from B to C is 200 m; all three points have the 
same elevation. The strike and dip of bedding is N02°W,22°E at A, N02°W,45°E 
at B, and N2°W, 54°W at C. Use the Busk method to reconstruct the földed layers 
passing through A, B, and C. 

4. Use the Busk method to draw a cross section using the data given in Figure 
13-M2. 

5. Use the Busk method to draw a cross section from the map in Figure 13-Ml. 
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NW 

St 

sl 

6. Points A, B, and C fall along a NS0°W-trending section line across a region of 
angular folds. The distance from A to B is 220 m, and the distance from B to C is 
370 m; all three points have the same elevation. A falls ina dip domain where the 
strike and dip of bedding is N40°E, 27°N; B falls in a domain where the strike and 
dip ofbedding is N40°E, 76°S; and C falls i.n a domain where the strike and dip of 
bedding is N40°E, 22°N. Use the kink method to reconstruct the földed layers 
passing through A, B, and C. 

7. Use the kink method to draw a cross section using the data in Figure 13-M2. 
Hint: Draw line segments indicating the domainal dips through each point where a 
kink fold hinge intersects the ground surface (the "h's" on the profile), and bisect 
that angle to orient the kink fold hinge. 

Oj 

h h St 
Skrm 

Sto 

0 4000ft 

Figure 13-M2. Dip readings along a line of section across folds in the 
Millerstown Quadrangle, Pennsylvania Appalachians, USA. (After Faill 
and Wells, 1974.) Dashed vertical lines separate outcrop belts of 
different stratigraphic units. Each fílled circle (h) marks the intersection 
between a kink plane and the ground surface; use them when completing 
exercise 7. sl "' sea levei; Oj = Ordovician Juniata Formation. St = 

Silurian Tuscarora Formation; Srkm = Silurian Rose Hill, Keefer, and 
Mifflintown Formations; Sb = Silurian Bloomsburg Formations; Sw = 

Silurian Wills Creek Formation; Sto = Silurian Tonoloway Formation. The 
Ordovician Juniata Formation is about 1500 ft thick and is underlain by 
the 750-ft-thick Bald Eagle Formation and the 1500-lt-thick Reedsville 
Formation. 

h 

Sw 

8. Use the kink method to draw a cross section of the region illustrated in Figure 
13-M3. 

9. Use the dip-isogon method to complete the fold profile begun in Problem 13-6. 

10. Figure 13-M4 is a map of nonplunging, cylindrical folds. Construct a profile of 
these folds using the orthographic projection method outlined in Problem 13-7. 

11. Use the grid method to draw a profile of the fold in Figure 13-MS. 

12. Assume that the folds shown in Figure 13-M6 are cylindrical and plunge 11° 
toward 015°. Use the method outlined in Problem 13-9 to determine the structure 
in this region. 
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Flgure 13-M3. Map of a portion of the Mifflintown Quadrangle, 
Pennsylvania Appalachians, USA. (From Conlin and Hoskins, 1962.) St 
== S1iunan Tusca1ora Formcü;vtt; St = Siiu;ia11 Rv~tí ;-:iii Fviii-1~!~V;'i, 3rr1 -
Mifflintown Formation; Sb = Bloomsburg Formation; Sw = Wills Creek 
Formation; Sto = Tonoloway Formation. 

T3 

13. Use the orthographic net to draw, in proper perspective, how a cube with a 
horizontal top and northeast/northwest directed edges would look when viewed 
along a line of sight 25°,315° . 

. 1 4. Draw a block diagram viewed along a line of sight 3400 ,30° of the fold illustratcd 
in Figure 13-M7. 

2mi 
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0 500 ft 

flgure 13-M4. Map of hypothetical nonplunging, cylindrical folds with 
north-south axes. Topographic contours in feet. 
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figurG 13-M5. Simplifiad geologic map of the Cove syncline. New 
Bloomfield Quadrangle, Pennsylvania Appalachians, USA. (From Dyson, 
1967.) Dc = Devonian Catskill Formation; Mp = Mississippian Pocono 
Formation; Mm "' Mississippian Mauch Chunk Formation. Bearing and 
plunge of fold axis are 085° and 1so. 
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Flgure 13-M6. Geologic rnap 
of a portion of Blue Ridge, Loudoun 
County, Virginia, USA. (Adapted 
frorn Nickelsen, 1956.) pCg = 

granitic gneiss; pCss 
Precambrian Swift Run Forrnation 
=---...J=~--...,_~ ,,...,.......,,~ n ... ,,.._-..- ...... h<?: ........ 
~~1<U.Ji:Vi1~ 1 ,...-.,...y.r • ;;-;..;...,.,..,;,-:..;-;,....;. .. 
Swift Run Formation phyllite; Cl = 
Cambrian Loudoun Formation. 
Topographic contours in feet. 

Flgure 13-M7. Map of a hypo
thetical fold. Strike and dip of 
bedding is N77oE,7o0 Nw in the 
northern limb and N53°E, soos in 
the southern limb. The fold axis 
plunges 19° toward 071°. 
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T CROSS-SECTI N 
B CING 
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14~1 INTRODUCTION 

Cross sections are very important tools for communicating 
information about geologic structures, so the interpretation 
depicted on a cross section must be as close to the truth as 
possible. The procedure of cross-section balancing has 
become popuiar in recent years as a means of helping to 
analyze and improve cross sections. Cross-section 
balancing permits geölogists to test the validity of the 
structural geometry portrayed on a cross section (see 
Dahlstrom, 1969, and Elliott, 1983). It requires 
thoughtful analysis of fault shapes, bed lengths, and 
cross-sectional areas. One of the key steps involved in the 
procedure is the restoration of the beds depicted on the cross 
section to the relative positions that they had prior to 
deformation. 

The purpose of this chapter is to introduce elementary 
aspects of cross-section balancing. We provide simple 
examples of how a cross section can be constructed, 
restored, checked, and improved. Study of cross-section 
balancing is a subject that is rapidly advancing, and so the 
techniques are constantly being improved. Cross-section 
balancing is sometimes an excruciating iterative process 
that relies heavily on intuition and on a broad knowledge of 
strnctural geology; it is not suited to a "cookbook" 
approach. Nevertheless, we hope that by foUowing the 
"steps" of our simple examples, you will grasp the 
fundamental goals of cross-section balancing and will be 
forced to think hard about every line that you draw on a 
cross section. 

The procedure of cross-section balancing has proven to 
be most valuable in the study of deformed belts in which 
deformation is largely confined to layers of rock that lie 
above a subhorizontal detachment fault or decollement 
(Rich, 1934; Rodgers, 1949; 1963). ln some literature 
such belts are called thin-skinned deformed belts (e.g., 
Gwinn, 1964; Harris and Milici, 1977). The thin-skinned 
concept emphasizes that the rock below the detachment 
need not display the folding and faulting found in rocks 
above the detachment (Fig. 14-1). The term thin-skinned 
was used to describe regions where deformation was 
confined to a stratified sequence (cover) above crystalline 
basement. If basement was involved in the deformation, 
the belt was caHed "thick-skínned." It is now known that 
at some localities detachments lie in crystalline rock below 
the basement/cover nonconformity, so the term 
thln-skinned is not used as frequently these days. To avoid 
confusion, it is best to state simply whether or not 
basement rocks are involved in the thrusting. 

Deformation involving detachments occurs both in 
fold-thrust belts (e.g., Boyer and Elliott, 1982), in which 
shortening of the crust is accommodated by the formation 
of thrust faults and associated folds (e.g., Hossack, 1979), 
and in extensional or rift terranes, in whlch crustal thinning 
is accommodated by the formation of normal f~ults and 
associated folds (Fig. 14-2; also see Gibbs, 1983, 1984; 
Wemicke and Burchfiel, 1982). This chapter focuses 011 

cross sections of fold-thrust belts, for most cross-section 
balancing studies to date have been applied to these belis 
(e.g., Elliou and Johnson, 1980). 
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0 20 
no vertical exaggerat1on 

Figure 14-1. Gross section of a segment of the foothills belt of the 
Canadian Rockies that emphasizes the concept of thin-skinned 
tectonics. The heavy lines ara faults (arrows indicate relatíve 
movement; transport is toward the foreland). Faults do not penatrate 
below a detachment fault that lies in the plane of badding near the basa 
of the sedimentary sequence. (After Prica, 1981.) 
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Figure 14-2. Gross section illustrating geo
metry of folds above a two-step normal fault. 
Note the anticline and syncline in the 
hanging-wall block. 

14·2 TERMINOLOGY 
OF FOLD· THRUST BEL TS 

Structures of Fold· Thrust Belts 

i'UJ.ü·i.iuu;;t u;;;u.::> Ücvdup <;;H.iit>f <n 1,,u11vtagcan pl.ao.c 
boundaries or as a result of continental collision, and they 
result in shortening or contraction of the crust. Next, we 
review the structural elements characteristic of fold-thrust 
belts. 

(a) lnternal and External Zones: Broadly 
speaking, orogenic belts ín which fold-thrust belts occur 
can be divided into internal zones and external zones. The 
internal zone is the portion of the belt in which plastic 
deformation dominates, penetrative strains develop, and 
metamorphism occurs. The internal zone is sometimes 
referred to as the hinterland. The extemal zone borders the 
undefonned continental interior and is characterized by less 
plastic deformation, nonmetamorphic conditions, and 
nonpenetrative strains. The foreland of an orogenic belt 
refers, in a strict sense, to the undefonned region in front of 
the thrust belt. Sometimes this tenn is used with reference 
to the region of diminishing shortening comprising the 
most extemal portion of the fold-thrust belt. 

(b) Detachments and Thrust Sheets: A 
detachment or decollement is a subhorizontal or shallowly 

dipping fault along which a sheet of rock has moved 
relative to the underlying substrate. ln a stratified 
sequence, detachments commonly lie in the plane of 
bedding. Several detachments may occur in a vertical 
sequence; in such a case the basal detachment is the lowest 
one. The basal detachment can be a regional fault that 
separates the entire package of rock undergoing defonnation 
and movement from the unaffected rock below. 

ln external zones the hasal detachment commonly 
fonns at or near the contact between sedimentary units and 
crystalline basement (Dahlstrom, 1970; Fig. 14-1). ln 
intemal zones the basal detachment commonly lies within 
crystalline basement rocks. Therefore, the hanging wall of 
the fault in intemal zones contains basement (e.g., Harris, 
1979; Cook et al„ 1979; Stanley and Ratcliffe, 1985). A 
detachment horizon or a glide horizon is a stratigraphic 
interval in which detachments are commonly found. ln 
many cases detachment horizons are composed of relatively 

1' ... • „ 
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that simply because a unit is weak that it must be a 
detachment horizon or that all detachments lie ín weak 
horizons. At some localities detachments run through 
stiff units. 

ln fold-thrust belts the package of rock above a fault is 
called a thrust sheet. Thrust sheets are named for the fault 
that underlies them; for example, the body of rock lying 
above the McEachran thrust is called the "McEachran thrust 
sheet" (Fig. 14-3a). The leading edge and trailing edge of a 
thrust sheet are defined with respect to the transport 
direction of the thrust sheet. The transport direction is a 
vector in the map plane that defines the direction that the 
thrust sheet has moved at a given locality. For example, if 
a thrust sheet has moved to the east, the eastem edge is the 
leading edge, and the western edge is the trailing edge. A 
forethrust is a thrust fault on which displacement is in the 
same general direction as regional transport direction, and a 
backthrust is a thrust fault on which displacement is 
opposite to regional transport direction. Similarly, the 
forelimb of an anticline is the limb closer to the leading 
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edge of a thrust sheet, and the backlimb is the limb closer 
to the trailing edge of the thrust sheet (Fig. 14-3). 

(e) Ramp-Flat Geometry: To simplify thrust 
geometries, it is common to portray thrust faults as 
smooth planes in cross section. Many thrust fauits 
actually have a step-like profile (Fig. 14-3a) called 
ramp-flat geometry. A thrust fault that cuts up to the 
syn-deformational erosion surface is called an emergent 
thrust, whereas a thrust fault that dies out in the subsurface 
is called a blind thrust (Fig. 3b). The termination of a 
blind thrust at which displacement has decreased to zero is 
called a tip line (Boyer and Elliott, 1982). An exposed 
thrust fault may be an emergent thrust or simply a blind 
thrust which has been exhumed by erosion. 

Over part of its trace in profile a thrust fault lies in or 
nearly in the plane of bedding and is parallel to beddíng; 
these segments of the fault are called flats. At other 
locafüies the fault cuts rnore steeply across bedding; these 
segments of faults are called ramps. In general, flats are 
much longer than ramps. The intersection between a 
contact (e.g., a bedding plane) and the fault is called a 
cutoff or cutoff line; hanging-wall bedding is truncated by 
the fault at hanging-wall cutoffs, and footwaU 
bedding-plane contacts are truncated at footwall cutoffs 
(Fig. 14-3a). The acute angle between the bed and the fault 
at a cutoff is called a cutoff angle. 

w 

Trailing 
edge 

ln practice it is necessary to distinguish between 
different types of ramps and flats: Locations where the fault 
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Figure 14-3. (a) Gross section illustrating the step-like geometry of 
a thrust fault. Tha definitions of a thrust sheet, leading edge, trailing 
edge, backlimb, and forelimb are indicated. Footwall cutoff X was 
originally adjacent to hanging-wall cutoff Y. Fault segment AB 
juxtaposes a footwall flat and a hanging-wall flat. Fault segment BC 
juxtaposes a footwall ramp and a hanging-wall flat. Fault segment CD 
juxtaposes a hanging-wall flat and a footwall flat. Fault segment DE 
juxtaposes a hanging-wall ramp and a footwall flat. Fault segment EF 
juxtaposes a hanging-wall flat against a footwall flat. (b) Cross section 
illustrating the diflerence between an emergent thrust and a blind thrust 
(courtesy of D. Anastasio). 
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is parallel to bedding of the hanging wall are called 
hanging-wall flats, locations where the fault is parallel to 
bedding of the footwall are called footwall flats, locations 
where the fault cuts across bedding of the footwall are 
calledfootwall ramps, and locations where the fault cuts 
across bedding of the hanging wall are called hanging-wall 
ramps (Bayer and Elliott, 1982; Woodward et al., 1985). 
After thrusting, a single segment of fault can juxtapose 
either a hanging-wall ramp or a hanging-wall flat against 
either a footwall ramp or a flat (Fig. 14-3a). Por example, 
a single segment of a fault can be a ramp with respect to 
the hanging wall and a flat with respect to the footwall. 
We can describe a locality where such a configuration 
occurs by saying that, "ln this outcrop there is a 
hanging-wall ramp on a footwall flat." A footwall flat is a 
detachment 

ln general, the strike of a ramp is perpendicular to the 
transport direction of the overlying thrust sheet. If the 
orientation of a ramp with respect to regional transport 
direction is such that the strike of the ramp is highly 
oblique or even perpendicular to the transport direction 
(i.e., the fault cuts up-section along strike), the ramp is 
called an oblique ramp or a lateral ramp. 

(d) Fault0 Related Folds: Three major classes of 
folds are associated with the development of ramp-flat fault 
geometries. (l) The first class includes fault-bend folds 
(Suppe, 1983). A fault bend is a change in dip of a fault 
surface. Fault-bend folds develop in the hanging wall 
because the hanging-wall block must bend to accommodate 
changes in the shape of the fault (Fig. 14-3a). A 
hanging-wall anticline, or ramp anticline, typically occurs 
above a ramp. Broad open synclines, whose dimensions 
are controlled by the distance between ramps, lie between 
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adjaccnt ramp anticlines (Note: If ramps are very close, 
adjacent ramp anticlínes may merge). Fault-bend folds also 
form in extensional terranes (Fig. 14-2), in which case they 
arc somctimcs callcd rollover folds (sce Gibbs, 1984; 
Hamblin, 1965). (2) The second class of folds includes 
fault-propagatíon folds (Suppe and Mcdwedeff, 1984; 
Suppe, 1985). Thcse folds are thc result of flexural 
bending of a layered sequence of rock in advance of the 
actual rupture and developmcnt of the fault plane (Fig. 
14-4a). (3) The third class of folds includes detachment 
folds (Dahlstrom, 1970; Jamison, 1987). These folds 
develop in response to shortening above a detachment and 
arc not associated directly with ramps (Fig. 14-4b). 

The geometry of folds exposed at the surface can be 
used to predict fault geomctry at depth. For example, in 
most (but not all) localitics, regions at the ground surface 
in which beds dip away from the transport direction (e.g., 
transport was to the west and the beds dip east) at the 
surface (region D; Fig. 14-5) reflect areas where the upper 
block moved upward over a ramp in the footwall. Forward 
bed dips (i.e., dips toward the direction of transport) at the 
surface (region B; Fig. 14-5) occur above hanging-wall 
ramp areas. 

(e) Kink vs. Concentric Fold Styles: ln 
many localities folds that develop in fold-thrust belts are 
not smooth concentric curves in profile but rather are 
subdivided into several dip domains (Usdansky and 
Groshong, 1984; see also Faill, 1969) in which the beds 
havc a uniform dip (see Chapter 13). The dip domains join 
with one another at an angular hinge (A, B, C, D, and E 
are cach distinct dip domains ín Figure 14-5). ln such 
rcgions the fault-related folds are said to have a kink style. 
Kink styles are associated with areas where the faults 
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Figure 14-4. Additional illustra
tions of fault-related folds. (a) 
Fault-propagation fold (adapted 
from Suppe, 1985); (b) detachment 
folds above a subhorizontal 
detachment in the Jura Mountains 
(adapted from Laubscher, 1962). 
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Figure 14-5. A single step in a 
thrust fault and the associated 
anticline in the hanging-wall thrust 
sheet illustrating the terminology 
used far describing cutoff angles 
and interlimb angles. 

A \ - __,.\ 

--west 

8 = </> = 30° 

themselves are planar between bends. There are localities, 
however, where kink styles do not occur, and concentric 
fold styles are more appropriate (see Chapter 13). 

It is easier to draw a cross section if the folds are kink 
style, because límbs of the folds can be drawn as 
straight-line segments, and if there is no thinning or 
thickening of beds, the distances between contacts can 
easily be kept constant In addition, it is easier to rneasme 
bed lengl.hs and bed areas and to determine cutoff angles on 
kink-style cross sections. For this reason most of the 
cross sections drawn in this chapter are drawn with 
kink-style geornetries. 

(f) Fault-Bend Fold Angles: Suppe (1983) 
showed that the relationships between cutoff angles and 
fault-bend angles are not arbitrary. Specifically, for 
situations in which two flats connected by a ramp are 
parallel to one another (as in Fig. 14-5), bed length and 
layer thickness are conserved during faulting, and there is 
no slip between beds above flats, the relationship between 
fault-bend angles and cutoff angles can be described by a 
simple equation: 

Q> = e = tan-1 (sin 2y/(2 cos2 y + 1)} (Eq. 14-1), 

where e is the angle between the lower [lat (the flat at the 
base of the ramp) and the ramp, qi is the angle between the 
upper [lat (the flat at the top of l.he ramp) and l.he ramp, and 
2y is the interlimb angle of the kinks above the 
hanging-wall cutoff (Fig. 14-5). The angle between a ramp 
and a flat (9) is generaHy less than 30° to 40°, and for 
every e there arc two possible values for y (called first 
mode and second mode). Usualiy, the shallower limb dips 
(first-mode value for y) is observed. Additional 
trigonometric derivatíon (see Suppe, 1983) allows you to 
calculate the hanging-wall cutoff angle (B), and the 
intcrlimb anglcs (2a) characterising l.he backlimb folds. It 
turns out, as an example, that if e = 30°, then B = 60°; 
these angles used in Figure 14-5. 

The equation describing the angular relationship 
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among angles in fault-bend folds formed over faults in 
which the upper and lower flats are not parallel is a bit 
more complex (see Suppe, 1983, 1985). For simplicity 
most of the cross sections described in this chapter contain 
parallel upper and lower flats and obey Equation 14-1. On 
kink-style cross sections, fault-bend angles and cutoff 
angles can be easily displayed. 

(g) Thrust Systems: A thrust system is an array 
of kinematically related faults that developed in sequence 
during a single regional deformation and are associated wil.h 
deformation above a basal detachment. There are two basic 
types of thrust systems (see Boyer and Elliou, 1982, for 
more detail): (1) An imbricate fan is a thrust system in 
which faults cut up-section from a basal detachrnent but do 
not rejoin at a higher SL'"atigraphic level (Fig. 14-6a). (2) A 
duplex is a thrust system in which faults cut up-section 
from a hasal detachment and merge at a higher stratigraphic 
level to form another continuous detachment (Fig. 14-6b). 
Ina duplex the lower detachment is called thef/oor thrust, 
and the upper detachment is called the roof thrust. The 
faults that cut up from the floor to the roof thrust surround 
bodies of rock. These bodies, which are bounded on an 
sides by faults, are called horses. Duplexes occur in a 
range of scales. Commonly, small duplexes form at the 
base of larger thrust sheets; in such a position, minor slip 
on each small fault in the duplex comributes to the overall 
movement of the thrust sheet (Fig. 14-6c). 

Duplex geometry in fold-thrust belts results ín 
substantial structural thickening in the vertical direction 
and substantial shortening of the section in the horizontal 
direction. The geometry of duplexes can be quite variable, 
depending on the relative displacements on the faults 
within the duplex. Figure 14-7a shows an carly stagc in 
the evolution of a duplex in which the relative 
displacements on successive rarnps are such that the roof 
thrust is a smooth surface and is parallel to the floor thrust. 
The final duplex composed of three horses is provided as 
Figure 14-7b. Figure 14-7c shows a duplex configuration 
in which the successive horses are stacked on top of one 
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Figura 14-6. lllustratians of thrust sys
tems. (a) lmbricate fan; (b) duplex structure 
(adapted from Perry, 1978); (e) small duplex at 
the base of a larger one (adapted fram 
Marshak, 1986). 

another; such a configuration is called an antiformal stack. 
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is not a smooth surface that parallels the floor thrust; such 
a structure is sometimes referred to as a lumpy-roofed 
duplex. 

(h) Internal Strain in Thrust Sheets: ln some 
localities a significant portion of the total strain in 
fold-thrust belts is accommodated by formation of 
structures within thrust sheets ( e.g., Reks and Gray, 1983). 
Several different types of structures can be considered in 
this category: (1) Backthrusts commonly develop above 
hanging-wall anticlines (e.g., the east-verging thrust faults 
in Figure 14-7c, which occur ina west-verging fold-thrust 
belt). (2) Out-of-the-syncline thrusts (Fig. 14-8) are faults 
that die out toward the hinge of a syncline, thereby 
allowing rock to squeeze out of the core area of the 
syncline when a room problem develops (i.e., there is 
insufficient space for rock). Out-of-the-syncline faults can 
be either backthrusts or forethrusts. These faults are 
sometimes called accommodation structures. (3) Minor 
faults are faults on which displacement is about an order of 
magnitude less than the displacemem of princípai faults in 
the thrust system (Price, 1967; Wojtal, 1986). (4) Minor 
folds are folds with amplitudes that are significantly 
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Figura 14-7. Types af duplexes. (a) Early 
stage in the evalution af a duplex in which the 
roaf thrust ends up being parallel to the flaor 
thrust. The dashed line is an incipient thrust 
(adapted fram Bayer, 1978); (b) later stage in 
the develapment of a flat-raafed duplex. Each 
fault black canfined between an upper and 
lawer thrust is called a harse. The thickness af 
the lines represents the proportion af slip that 
is transferred alang any individual segment af 
fault. ln this figura the tatai slip on the upper 
detachment ta the east af the duplex equals 
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the duplex, but slip an individual ramps in the 
duplex is anly a fractian af the tatai (adapted 
from Bayer, 1978); (e) an antiformal stack of 
harses (adapted fram Marshak, 1986). 

smaller than the height of the thrust sheet (e.g., the folds 
in thrust sheet A in Figure 14-7c). 

ln fold-thrust belts significant strain may also occur by 
development of cleavage and/or by plastic shape change of 
grains ín the rock. The cleavage fonned in fold-thrust belts 
is typically spaced cleavage or slaty cleavage, the fonnation 
of which involves pressure-solution defonnation that may 
result in volume-loss strain (e.g., Marshak and Engelder, 
1985). Cleavage is usually not unifonnly distributed in 
fold-thrust belts (e.g., the cleavage in Figure 14-7c is 
concentrated at the leading edge of thrust sheet B). 

Reference Lines 

Three lines are commonly used ío pmvide a reference frwn.e 
for describing relative movement and shortening in 
fold-thrust belts. 
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flgure 14-8. Out-of-the-syncline thrust 
faults. Both a backthrust and a forethrust are 
shown. 

(a) Regional Dip and Regional Leve!: Prior 
to displacement on faults and development of folds, strata 
in the externat zone of a developing orogenic belt are 
subhorizontal or only shallowly dipping. The dip 
displayed by a package of strata prior to folding and 
faulting is called the regional dip. Generally, regional dips 
do not exceed a few degrees, and the original depositional 
thickness of strnta commonly increases in the direction of 
regional dip. Folding and faulting not only result in 
deviation from regional dip (e.g., if the regional dip ís 
1.5°, and the limb of the fold has a dip of 35°, there is 
clearly a devíation from regional dip) but also cause beds to 
be lifted above a reference plane; this reference plane (a line 
in cross section), which marks the elevation of a bedding 
surface before deformation, can be called the regional levei. 
We will see that one of the steps involved in cross-section 
balancing requires removing the effects of deformation so 
that beds "retum to regional dip and regional levei." ln this 
chapter, we use the term structural relief to refer to the 
difference in elevation between a surface (e.g., a bedding 
plane) at the top of a structure and the same surface at 
regional levei. 

.(b) Loose Lines: It is important during the 
restoration of a cross section to keep track of how much 
slip between points in originally adjacent beds has 
developed in different parts of the cross section. This is 
done by inserting a loose line, which is merely a reference 
Hne drawn at an angle to bedding either in the deformed or 
undeformed cross sections (Fig. 14-5); a loose line does not 
extend below the basal detachment and is usually placed 
near the trailing edge of the cross section. A loose line can 
be an arbitrary line drawn perpendicular to bedding, it can 
be the cross-sectional trace of a fault, ü can be a vertical 
line drawn at the trailing edge of a cross section, or it can 
follow a known vertical drill hole. 

A loose line can be considered to be a chain of marker 
points in the layers of a sequence. If the loose line is 
marked on a cross section of deformed rocks, then we can 
observe how it is distorted or how it changes orientation 
during restoration of the section. Inversely, if the loose 
line is inserted on the restored section, we can observe how 
it distorts during our hypothesized development of the 
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deformation. The distortion or tilting of the loose lines 
during these operations gives an indication of the angular 
shear of beds past one another in different parts of a 
structure. This shear is called interbed slip and is a 
consequence of both shear on detachments and shear related 
to flexural folding. 

(e) Pin Lines: A pin line is another type of 
reference line in a cross section. When we rneasure bed 
lengths, we need to decide on some locafüy in the cross 
section at which to begin our measurement. A pin line is 
merely the reference line at which we begin measurement 
of bed lengths (Fig. 14-5). If our section extends across 
the boundary between the deformed belt and an adjacent 
undeformed foreland, we choose a regional pin line to lie in 
the undeformed foreland; a regional pin line can extend all 
the way down to basement and can penetrate the cross 
section either from the top or from the bottom. 

Many cross sections, however, do not include 
undeformed rock. ln such cases an arbitrary local pin line 
must be chosen. It is best to draw the local pin line 
perpendicular to bedding in the least deformed part of a 
thrust sheet (where there has been no interbed slip), where, 
in addition, there is the most complete stratigraphic 
section. Therefore, local pin lines are commonly drawn 
along a long flat, in a broad syncline, or at a fold hinge; a 
local pin line cannot extend below the detachment at the 
base of the thrust sheet containing the pin line. Pin lines 
should be placed along a fold hinge only ifrock-fabric dat.a 
(e.g., the occurrence of an axial-planar cleavage) indicates 
that the hinge has not migrated (moved along the fault 
plane). 

14m3 CONCEPT OF A BAlANCED 
CROSS SECTION 

Types of Cross Sections 

A new terminology has recently developed for discussing 
cross sections; next, we introduce the names that are used 
to refer to different types of cross sections (see also Elliott 
memorial volume of the Joumal of Structural Geology, 
1983, v. 5, n. 2). 

(a) Deformed-State Cross Section: A cross 
section that represents the geometry of structures as they 
appear today, after deformation, is called a def ormed-state 
cross section. 

(b) Admissible Cross Section: A deformed
state cross section that depicts an interpretation ín which 
structures look like those that can be directly observed in 
mountain sides and road cuts (i.e., the cross section depicts 
realistic-looking fold and fault geometries) is called an 
admissible deformed-state cross section. Whether or not a 
specific structure should be deemed admissible depends not 
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only on whether creation of the structure is physically 
possible but also on whether such a structure is likely to 
occur in a specific type of deformed beh. Dahlstrom 
(1969, p. 743) pointed out that, "in a specific geological 
environment, there is only a limited suite of structures 
which can exist .... " For example, you should be 
suspicious of a cross section that portrays a large 
recumbent isoclinal fold with an extremely thickened hinge 
at the foreland edge of a fold-thrust belt; such a structure 
would more likely be found in the hinterland. 

A restored cross section that depicts admissible 
structures is called an admissíble restored cross section. By 
saying that a restored cross section is admissible, we mean 
that the fault trajectories (the traces of faults on the cross 
section) shown on the cross section are possible. 
Specifically, the angles between ramps and flats should not 
be in excess of about 35°. 

(e) Restored Cross Section: A cross section 
that has been "pulled apart," such that the fault 
displacement has been removed and folds have been 
straightened out, is called a restored cross section. The 
relatíve positions of rocks shown on a restored cross 
section should be the relatíve positions that the rocks had 
prior to deformation. Traces indicating the position and 
attitude of surfaces that later became faults are also 
typically shown on a restored cross section. 

(d) Viable Cross Section: If a deformed-state 
cross section can be restored to an unstrained state such that 
the predeformation geometry of faults is admissible, bed 
lengths are conserved and/or bed area is conserved, and bed 
lengths are consistent, then the deformed-state cross section 
is said to be viable. An understanding of what is meant by 
bed "conservation" and "consistent" in this context is 
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explaining the application of these terms. Suppe (1985) 
uses the term retrodef ormable with much the same meaning 
as viable. 

(e) Balanced Cross Section: A balanced cross 
section is a deformed-state cross section that is both 
admissible and viable. In other words, a balanced cross 
section portrays an admissible suite of structures and can be 
restored such that the restored cross section depicts 
consistency of bed length, conservation of bed length 
and/or area, and admissible premovement fault geometries. 
Additional constraints, described later in the chapter, must 
also be met in order for a cross section to be balanced. 

The difference between a balanced cross section and an 
"unbalanced" admissible cross section is that the balanced 
version has been restored and tested for viability. Thus, 
when someone says that they have "balanced" a cross 
section, they mean that they have gone to the effort of 
restoring the section and have tested the restored version. 

It is important to keep in mind that by balancing a 
section, you are not checking to see if it is correct; a 
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balanced cross section is still merely an interpretation that 
is quite possibly incorrect. When new data become 
available, it is likely that the section will need 
modification. A balanced section, however, is at least 
possibly correct, whereas a section that does not balance is 
probably wrong. 

Consideratlons lnvolved in Testing 
the Vlabllity of a Restored Cross Sectlon 

ln this portion of the chapter we clarify the concepts and 
requirements for determining whether or not a cross section 
is viable. 

(a) Conservation of Area: If the deformation of 
a bed or thrust sheet involves only folding and faulting the 
volume of a bed or thrust sheet will not change during 
deformation. If, in addition, the deformation yields plane 
strain, then the cross-sectional area of the thrust sheet or 
bed does not change during deformation. Figure 14-9a 
shows an undeformed layer of rock containing a ramp on 
which there has not yet been displacement. When the 
thrust sheet moves west over the ramp (Fig. 14-9b), its 
cross-sectional area does not change and is still equal to 
that shown in Figure 14-9a. ln Figure 14-9c the shape of 
the ramp anticline is different; the thrust sheet illustrated in 
this figure has a different area than does the original 
undeformed thrust sheet, and thus this figure illustrates a 
case where area has not been conserved. 

If the area of the thrust sheet in Figure 14-9a equals 
the area of the sheet in Figure 14-9b, then the excess area 
(area above regional levei), which is labeled Ax, must equal 
Ai. Ai does not equal Ax in Figure 14-9c. Figure 14-9d 
shows the same fold form as does Figure 14-9c, but the 
""---~11: ___ ...] __ _ e .... L- „t- ___ .._ -L-- ... L-- L.,... __ ... .:1 ... _...ll ___ e.e: _ _: __ .... __ 
wi::.u;;..11.„ ... 5-~t:JV VA „ ....... W.i!..i.UU• >Jjo5.YV• >ill.'"4U vv-va„ i>..i. ... ~~ uW.a..;;..a_.„._.„.!!.i,.ii.,) 

to mak:e Ai equal to Ax and thereby result in conservation 
of area. 

Area conservation cannot be assumed for deformation 
that involves development of volume-loss strain, such as 
commonly accompanies the development of spaced 
cleavage involving pressure solution. As noted earlier, 
significant pressure-solution cleavage occurs locally in 
fold-thrust belts, so the measured cross-sectional area of a 
deformed-state thrust sheet is locally less than the original 
area. Volume-loss strain is usually not a problem in the 
extemal portions of fold-thrust belts. 

(b) Area Balance: If area conservation is assumed, 
the area of a bed or a thrust sheet depicted on the 
deformed-state cross section must equal the area of the 
thrust sheet as depicted on the restored cross section. ln 
other words, the restored area of a thrust sheet must 
"balance" or correspond to the deformed-state area of the 
thrust sheet. ln this chapter we call the operation of 
comparing deformed-state and restored areas area balancing. 
The area of a bed or thrust sheet can be measured by 
subdividing it into simple geometric forms whose areas can 
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(b) ...._ d, -
d 1 > d2 Ax ~A;" 60units 

(e) 

(d) 

a' e' (as measured around the fold) " ae 

......__ d 1 ___._ 

a" e11 „ a' e' 

A x = A 1 , a0 ' ellJ = a e 

Figure 14-9. lllustration of the concept of 
bed-lenglh and area conservation and 
balancing. (a) Undeformed thrust sheet; (b) 
thrust sheet atter moving over a ramp. Area 
balance and bed-length balance are evident, 
and there is not constant slip along the fault; 
(e) cross section in which area balance and 
bed-length balance are not evident; (d) cross 
section in which there is bed-length balance 
and area balance and constant slip along the 
fault Points a, b, e, d, and e are reference 
points, Ax is the excess area, and Aj is the 
area between the pin line and the trailing edge 
of the fault. 

be cakulated using plane geometry, by using a planimeter, 
by digitizing, by plotting on graph paper and counting 
squares, or by cuuing out thmst sheet cross sections and 
weighing them. 

(e) Conservation of Bed Length: Conservation 
of bed length refers to the supposition that the length of a 
contact in cross section does not change during 
deformation. Refer again to Figure 14-9a. Reference 
points along the top surface of the bed are Iabeled a through 
e; the pin line is fixed with respect to the footwall, to 
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provide a reference frame. The length of this contact in 
Figure 14-9b (line a'e', as measured around the fold) equals 
the original length of ae. Therefore, bed length was 
conserved during development of this ramp antidine. The 
length of contact a"e" in Figure 14-9c is not equal to ae, so 
bed length was not conserved during development of this 
structure. The length of contact a'"e"' in Figure 14-9d is 
equal to ae, so bed length was conserved during 
development of this strncture. 

(d) Bed-Length Balance: If bed length is 
conserved during deformation, the length of a contact (e.g., 
the top surface of a horse) is the same in both the 
deformed-state and restored cross sections. Such correspon
dence is called bed-length balance. Whether or not bed 
lengths in the deformed-state and the restored cross sections 
should balance depends on whether or not the bed changed 
thickness during deformation and on whether or not the 
strain was volume constant W e will see that thickening 
of a layer during deformation means that bed-length balance 
cannot occur if there is to be conservation of area. 

(e) Consistency of Bed Length: The total 
lengths of each layer in a sequence depicted in a restored 
cross section should be nearly the same or should vary in a 
consistent manner. In other words, a straight loose line 
drawn perpendicular to bedding at the trailing edge of a 
deformed-state cross section should be either straight and 
perpendicular to bedding in the restored section or smoothly 
varying in the restored section. Note that if a vertical loose 
line were drawn at the trailing edge of the thrust sheet in 
Figure 14-9d, it would be inclined to the west ina restored 
version of this cross section. 

Bed-length consistency can be determined by looking 
at the restored shape of a loose line. It is important to 
emphasize that consistency does not require that the 
restored loose line be exactly perpendicular to bedding in 
the restored and deformed-state cross sections. At present 
the characteristics of acceptable shapes for restored loose 
lines are not fülly understood; it is fair to say, however, 
that a sudden discontinuity or zigzag in a restored loose line 
(Fig. 14-10) should be viewed as indicating that bed 
lengths are not consistent. Bed-length consistency is also 
indicated by restored fault geometry, as described next. 

(f) Admissible Restored Fault Shapes: ln the 
deformed-state cross section, fault geometries are distorted 
as a consequence of movemcnt on younger faults. In 
restored cross sections, faults are depicted with t.he original 
shape that they had prior to movement on younger faults. 
Therefore, faults in the restored section should have 
reasonable step-like geometries (such as is shown in Fig. 
14-3). The abundant literature on fold-thmst belts suggests 
that when a step-like fault initially fonns, (a) ramp angles 
are generally less than 35° with respect to bedding, (b) 
faults do not tum back on themselves (i.e., segments of the 
fault trace do not dip in opposite directions), and (e) faults 
do not cut down-section. 
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(b) 

(cl 

(dl 

(el 

Figure 14-10. Examples of restored loosa
lina gaometry. Each figura shows tha trailing 
edge of a thrust sheet. Transport had been 
toward tha west. (a) Admissibla straight loose 
!ina; (b) admissibla smoothly curving loose lina 
inclined to the west; (e) admissible smoothly 
curving loose line inclined toward tha east; (d) 
jaggad loose line that is not admissibla; (a) 
stepped loose line that is not admissible. 

Additional Constraints 
on Balanced Cross Sections 

construction of a balanced cross section. 
(a) Sequence of Faulting: Many studies of 

fold-thrust belts have led to the conclusion that not all the 
faults in such belts form at the same time. In fold-thrust 
belts the more external faults (farthest toward the foreland) 
are generally the youngest, whereas the more internal faults 
are the oldest (e.g., Figs. 14-7a,b and 14-lla). This 
sequence of faulting is called a break-forward sequence. 
Structurally lower faults (faults at greater depth), therefore, 
are younger than overlying faults. Because of the spatial 
arrangement of faults, older faults can be földed by 
movement on younger faults (e.g., Jones, 1971; Figs. 
14-6b and 14-7c). The interior to exterior (hinterland to 
foreland) sequence of faulting has been compared to the 
sequence of deformation affecting snow piling up in 
advance of a snowplow (cf. Davis, Suppe, and Dahlen, 
1983); the snow closest to the plow blade deforms first. 
An arrow pointing in the direction that the rocks move 
generally points in the direction of the younger faults in a 
break-forward sequence. 

w 

Younger 
~lts 

Cal 

(b) 
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E 

Figure 14-11. Timing of thrusting in fold
thrust belts. (a) lllustration showing the aga 
sequence of faulting in fold-thrust belt using 
the snow-plow analogy; (b) out-of-saquenca 
fault cutting a preformed fold (adapted from 
Woodward et al., 1985). 

Out-of-sequence faults are faults that form in the more 
intemal parts of the fold-thrust belt at a time when the 
main thrust system is developing in the more extemal parts 
of the fold-thrust belt. Out-of-sequence faults may truncate 
folds in both the upper and lower fault blocks and may cut 
down-section locally (Fig. 14-llb), or they may display 
geometries that are indistinguishable from other faults. 
Their existence is becoming increasingly well documented 
(Boyer, 1986). To date, it has been standard practice to 
assume break-forward sequencing as a working hypothesis 
Rnrl thP.rf>f()rl'_ fo rp<:torp fanh rlic;:nl~rf>rnents in orlin from 

the foreland toward the hinterland. 
(b) Transport Direction: ln choosing a traverse 

direction along which to construct a balanced cross section, 
it is critical Ihat the section line be within about 5° of the 
transport direction of the thrust. Cross sections in 
orientations other than the transport direction may be 
excellent representations of geology, but they are 
impossible to balance. 

ln general, the transport direction is perpendicular to 
the strikes of major thrust faults at a locality (Fig. 14-12). 
This rule works best where the faults are straight or are 
only gently curved in plan. Similarly, transport direction 
is usually perpendicular to fold hinges as defined by an 
equal-area plot of poles to bedding. Regional analysis of 
slip lineations on fault surfaces may indicate transport 
direction, but often such orientations are scattered and can 
be misleading. 

(e) Ramping Directions: ln almost all examples 
ramps that are not cutting across an earlier-formed fold cut 
up-section in the direction of transport (e.g., Fig. 14-3). 
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Figure 14-12. MapofaportionoftheWyo
ming fold-thrust belt showing the transport 
direction interpreted as the perpendicular to 
the fault traces and fold hinges. (Geology from 
Royse et al., 1975.) 

As a consequence, ramps place older uníts over younger 
units and duplicate section. Faults on which this relation
ship is observed are sometimes called older-over-younger 
faults. 

(d) Plane Strain: In general, it is best to attempt 
the procedures of cross-section balancing on regions where 
rock has not moved in or out of the plane of the cross 
section. This constraint, called the plane strain constraint, 
is generally met for most extemal fold-thrust belts that are 
straíght and that do not contain a large penetrative strain. 
The constraint is not met in regions where faults are bent 
tightly or where there are lateral ramps; such regions are 
usually associated with complex strain histories. 

(e) Template Constraint: Imagine the step-like 
trace of a fault on which movement has not yet occurred 
(e.g., Fig. 14-9a). It is not suprising that the hanging-wall 
block füs against the footwall block wüh no gaps or 
overlaps. In other words, before deformation the shape of 
the base of the hanging wall is identical with the shape of 
the top of the footwall, and the hanging-wall cutoff of a 
given contact must be adjacent to the footwall cutoff of the 
same contact. After deformation, therefore, the shape of 
the base of the hanging wall that we observe in outcrop 
must have its counterpart along the top of the footwall 
somewhere at depth. Likewise, footwaU shapes observed 
ín outcrop may be representative of the shape of the 
hanging wall that has been eroded. This geometric 
constraint is called the template constraint. Whether or not 
the template constraint is obeyed sometimes becomes 
apparent only when you try to restore a cross section. 

lf we apply the template constraint to the thrust fault 
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depicted in Figure 14-l3a, we note that footwall ramp AB 
coincides with hanging-wall ramp A'B', footwall flat BC 
coincides with hanging-wall flat B'C', and footwall ramp 
CD coincides with hanging-wall ramp C'D'. Note that the 
lengths of the hanging-wall ramps are less than the lengths 
of the corresponding footwall ramps because the hanging
wall cutoff angle is greater than the footwall cutoff angle. 
Because all hanging-wall ramps can be matched with 
footwall ramps, and all hanging-wall flats can be matched 
with footwall flats, the cross section in Figure 14-13a 
obeys the template constraint. ln contrast, the cross 
section in Figure 14-13b does not obey the template 
constraint, because it does not depict a hanging-wall flat to 
correspond to footwall flat BC. The cross section in 
Figure 14-13b is, therefore, not viable. 

w E 

, 
's' c' 1 10• _..:::... 

A 
(a) 

A 
(b) 

Figure 14-13. lllustration of the template 
constraint. (a) A cross section drafted so that 
the hanging-wall ramps and flats can be 
restored so as to correspond with footwall 
ramps and flats; (b) a cross section con
structed so that the hanging-wall ramps and 
flats cannot be restored so as to coincide with 
the footwall ramps and flats. 

(f) Conservation of Slip on a Fault: The 
premise that slip on faults is conserved means that the 
magnitude of slip on a fault as indicated by offset markers 
on a cross section can either (a) be constant along the trace 
of the fault in cross section or (b) vary in an explainable 
way. 

Many "balanced" cross sections are constructed by 
assuming that slíp is constant. If slip is constant, the 
distance between hanging-waH and footwall cutoffs for 
different units offset along the sarne fault is the same. For 
example, if the top of unit A is offset by 200 m along a 
fault, then the top of unit C is also displaced by 200 m 
along the same fault Obviously, the constant-slip 
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assumption simplifies the process of placing cutoffs on a 
cross section as you draw it. 

Constant slip on a fault, however, is not necessary and 
in many cases is not even realistic. Good reasons for a 
change in slip magnitude along the trace include (a) the 
occurrence of simple shear along bedding planes in the 
thrust sheet (Fig. 14-14; note that in this example slip on 
the detachment increases in the direction of transport and 
that a loose line at the trailing edge of the thrust sheet is 
inclined in the direction of transport), (b) transfer of slip 
from another fault into the fault of interest at their mutual 
intersection (Fig. 14-7b), and (e) the partitioning of strain 
between fault displacement and other structures such as 
folds and cleavage. 

A<B 

Figure i 4-14. Changes in slip magnitude 
along the trace of the fault resulting from shear 
along bedding planes in the thrust sheet. Note 
that displacement on the upper flat is greater 
than displacement on the lower flat. (Adapted 
from Elliott, 1976.) 

The last statement in the preceding paragraph requires 
clarification. Look once again at Figure l 4-9b. Note that 
d1 > d2, where d1 is the displacement of the trailing edge 
of the thrust sheet with respect to the pin line, and d2 is 
thf' cfümlllcP.mPnt nf thf' ]p:ulini:r pcJop of thf' thm<:t .<:hcP.t 

~ ~- ~ 

along the upper detachment. The reason for the difference 
between d1 and d2 is that part of the shortening of the 
thrust sheet was accommodated by fonnation of the fold. 
In the case of a fault-propagation fold (Fig. 14-4a), it is 
particularly clear that displacement progressively decreases 
until it becomes zero at the tip of the fault. 

14·4 DRAWING A DEFORMED-STATE 
CROSS SECTION 

Next we illustrate the construction of a simple deformed
state cross section. This example differs from those 
described in Chapter 13 in that we demonstrate how to 
incorporate a fault that is not exposed at the ground surface. 

Problem 14-1 
Given the strip map of a portion of a fold-thrust belt 

(Fig. 14-15a), construct an admissible deformed-state cross 
secuon that accommodates the map data. Assume that the 
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ground surface is a horizontal plane. The only unit 
exposed at the ground surface is unit h. 

Method 14-1 
Step 1: Examine the strip map (Fig. 14-15a). We 

know that the map portrays a portion of a fold-thrust belt, 
so, although there are no faults mapped, we suspect that 
there may be a detachment at depth and that the fold 
portrayed may be related to a ramp cutting up-section from 
the detachment. 

Step 1: Determine the direction of transport. We 
see that there are numerous strike and dip measurements. 
W e take the transport directíon to be perpendicular to the 
regional strike. Therefore, we choose an east-west line 
(XX') to be our line of section. Usually, we have enough 
information from regional mapping to know which way 
the transport vector points. ln this example, the vector 
points west. 

Step 3: Draw the topographic profile along the line 
of section and plot the surface structural data (Fig. 14-15b). 
Draw the stratigraphic column (presumed to be known 
from other work) along the leading edge of the cross 
section to give an indication of the position of contacts in 
the subsurface. We know the depth of the top of unit g 
from the well data, and we know that there must be enough 
room between the ground surface and the basement to fit in 
the entire stratigraphic section of the region. ln fold-thrust 
belts, faulting thickens the section. Thus, the undefonned 
thickness of strata in the area gives a minimum depth to 
basement; basement may be deeper than this minimum but 
not shallower. 

Step 4: There are distinct dip domains, and thus we 
decide to depict the anticline using the kink style of 
f"r.1..-1;....,,.,.. 'l.Tn. ol,..-nt-roh ~ .... ~..,,....;,_ ,.,.. 'f-r. :tJ„,-,t-.-nf-A t-h.;:;o. f'~_,,..,...., ,...S: t-J..,..., ----------ov '' -_, _____ ,,..-__ „_ ---- ---·- 0 _..._. .......... _._ ....... ~ ... - _„-_ .... ...., ... _.;;_ .......... .,.„_..,... 

anticline (Fig. 14-15b). Notice that the top of unit g is at 
the same levei on both sides of the anticline, so we assume 
that the top of unit g represents a regional levei and that its 
dip is regional dip (horizontal). Using the methods 
described in Chapter 13, we project the axial-plane traces of 
kinks down to depth. W e assume that there is no thinning 
of strata on the limbs of the folds, so the traces of the axial 
planes bisect the angle between the limbs of the folds (Fig. 
14-15c). 

Step 5: To complete the deformed-state cross section, 
we propose a fault at depth. We begin with the hypothesis 
that the fold at the ground surface is a ramp anticline. 
There is no way to know where the fault is at depth based 
on the information available. Constraints on the levei of 
detachment may be provided by knowledge of regional 
structural geology. Let's say that we believe that the 
detachment lies at the base of unit d. 

(a) To construct the ramp we work from east to west 
(in the direction of transport). The eastemmost kink hinge 
SS' must bísect the base of the ramp (point A), and the 
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Figure 14-15. Map and sections far 
problem 14-1. (a) Strip map of a portion of a 
fold-thrust belt showing the attitudes of 
bedding and the dip-domain boundaries; (b) 
cross section showing dips in the plane of the 
section and the regional stratigraphy to scale; 
(e) cross section showing hypothetical fault; (d 
- f) alternative completed cross sections !hat 
fit the same original dala. 

ramp must be parallel to the backlimb dip (Fig. 14-15c). 
We draw the ramp cutting up-section to where it intersects 
the second kink hinge TI' (point R). ln this interpretation 
we propose that the fault bends at point R and becomes a 
footwall flat. Point R happens to fall on the unit d/unit e 
contact (this coincidence is circumStantial and reflects the 
geomet:ry of this example). 

(b) Now that we have drawn in the fault, we draw in 
the footwall strata (Fig. l4-15c). We assume that the 
footwall strata have regional dip. 
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(e) Ali that remains now is for us to draw in the core 
of the antidine. We extend the kink hinges down to where 
they intersect the fault surface and then draw in the 
formation contacts so that they have the correct dips in the 
different dip domains (Fig. 14-15d). 

As we noted &bove, the interpretation shown in Figure 
14-15d is not a unique interpretation. Alternative cross 
sections that fü the data in Figure 14-15a are shown in 
Figures 14-15e and 14-15f. 
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Considering that Lhere are several possible solutions to 
the data set, you may ask whether there are any definite 
constraints on the geometry cf a ramp at depth. The 
answer is, fortunately, yes. Look at Figure 14-16; regard
less of the depth of the lower flat, the eastern synclinal 
axial-plane trace (KK') must intersect the lower fault bend 
(point A in Figures 14-16a and 14-16b). The eastern 
anticlinal axial-plane trace (JM) can intersect Lhe ramp at 
any point along the ramp until it reaches the upper fault 
bend (point B ín Figures 14-16a and 14-16b). If it 
intersects at the upper fault bend (case 1), the western 
anticlinal hinge (LM) and the western synclinal hinge must 
intersect the upper flat at point B or to the west (Fig. 
14-16a). If JM íntersects the ramp at some arbitrary point 
along the ramp between points A and B (case 2), then LM 
must intersect the upper fault bend at B (Fig. 14-16b). 
Clearly, the ramp height (the vertical distance between the 
lower and upper flats) and the displacement along the fault 
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Figure 14-16. lllustration showing the 
range of possible ramp geometries that could 
fit the data of Figure 14-15a. (a) Fault bends 
intersect axial-surface traces KK' and JM; (b) 
fault bends intersect axial-surface traces KK' 
and LM. 
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are quite different depending on which interpretation (Fig. 
14-16a vs. Fig. 14-16b) is chosen, even though the lower 
detachment is at the same depth in both cases. The 
maximum possible depth for the fault is the depth at which 
point B becomes point M. If the detachment is at this 
depth, case 1 becomes identical with case 2, and only one 
ramp height can occur (shown in Figure 14-15e). 

The relationships described in the previous paragraph 
are a direct consequence of the evolution of a simple 
fault-bendfold as described by Suppe (1983). Figure 14-17 
illustrates three stages in the development of a ramp 
anticline. Note that the eastern synclinal hinge (ES) is 
fixed at the base of the ramp, and the eastern anticlinal 
hinge (EA) migrates up the rarnp with increasing 
displacement. As long as EA intersects the ramp below 
the upper fault bend, the western anticlinal hinge (W A) is 
fixed at the upper fault bend. While EA migrates up the 
ramp, WS moves west along the upper flat. When EA 
intersects the upper fault bend, it becomes fixed at that 
position, the distance between W A and WS is locked, and 
W A and WS move to the west along Lhe upper flat. Notice 
that the structural relief progressively increases as EA 
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Figure 14-17. Evolution of a fault-bend fold 
emphasizing the migration and locking of axial 
trace positions. (a) EA is migrating up the 
ramp, and WA is fixed at the upper fault bend; 
(b) EA and WA both intersect the upper fault 
bend; (e) EA is locked at the upper fault bend, 
and WA rnoves along the upper flat. 

E 
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moves up the ramp. Once EA is at the top of the ramp, 
the structural relief remains constant even as displacement 
on the fault increases and the distance between the 
hanging-wall cutoff (C) and the footwall cutoff (U) 
increases. 

14-5 RESTORING A CROSS SECTION 

In this portion of the chapter we describe the procedure of 
restoring a cross section. Recently, techniques have been 
developed that allow this procedure to be done interactively 
with a computer (e.g., K.ligfield et al., 1986), but computer 
procedures cannot be understood unless you are first adept 
at restoring a section by hand. If bedding thickness does 
not appear to have been changed during deformation (i.e., 
bedding thickness is constant around folds), then restoration 
can be carried out by assuming bed-length balance. If 
bed-thickness change accompanying deformation is 
apparent in the deformed-state cross section, then bed
length balance cannot be assumed and you must measure 
areas of thrust sheets. 

When balancing a cross section, it is important that 
you take into account the sequence of faulting; the 
youngest fault should be restored füst, and the oldest fault 
should be restored last. This means that you should 
remove the effect of the displacement on a younger fault 
before you remove the effect of the displacement on an 
older fault. Consideration of the sequence of faulting forces 
you to determine whether you understand the evolution of 
structures portrayed in a cross section. 

Restoratlon Based 
on Bed-length Balance 

We start by restoring one of the deforrned-state cross 
sections produced in Method 14-1, then we will deal with 
more complicated examples. In these problems bedding 
thickness is constant around folds. Therefore, we can 
assume that area balance occurs if bed-length balance 
occurs, and we can restore sections merely by stretching 
out the contacts to return them to regional levei and 
regional dip. This method is sometimes called the 
sinuous-bed method (Woodward et al., 1985). We do not 
need to compare areas of beds or thrnst sheets. 
Measurement of bed lengths on the cross-section sketch can 
be done directly with a ruler or dividers (Fig. 14-18) if the 
folds are kink style. If the folds are concentric style, you 
may need to use a planimeter, a waxed thread, or a 
computer digitizer. 

Problem 14-2 
Restore the cross section shown ín Figure 14-15d. 

Assume that unit thickness is constant in the section, and 
assume that the displacement is constant along the fault. 

(a) 

A' B' e' 

CA B'J = (ABJ 

(b) 

Figure "14-18. Sketch showing how to use 
dividers to measure line segments composing 
a kink-style fold. (a) Measurement of line 
segment AB on the fold; (b) restored bed. The 
length of A'B' equals the length of AB. 

Method 14-2 
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Step 1: Draft your cross section carefully; Iabel the 
points of intersection between the axial-plane traces and the 
bed traces (Fig. 14-19a). To save space, units a and b are 
not shown. The distance AB represents the distance 
between the hanging-wall cutoff and the footwall cutoff on 
the unit d/unit e contact and thus is the separation on the 
upper flat. 

Step 2: Add reference lines to the cross section (Fig. 
14-19a). The cross section portrays only a portion of a 
deformed belt; the detachment extends all the way to the 
west edge of the figure, so there is no regional pin line. 
Draw a Iocal pin line perpendicular to bedding at the 
leading edge of the cross section. The pin line does not 
extend below the fault, and because it is only a local pin 
line, it moves during the restoration. Draw a loose line 
(dotted line) at the trailing edge of the cross section. The 
loose line does not extend across the detachment and also 
moves during restoration. 

Step 3: In a space below the deformed-state cross 
section, draw a set of Hnes at appropriate spacing to 
represent the stratigraphic sequence in the undeformed state. 
We call this set of lines a stratigraphic frame. If the 
stratigraphic thickness does not vary across the length of 
the cross-section area, the Iines are parallel (Fig. l 4- l 9b). 
The lines should be longer than the deformed-state cross 
section to accommodate the restored lengths of the 
contacts. 
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Step 4: Note that the detachment is not földed, so 
the position of the ramp is fixed with respect to the 
footwall beds. Therefore, we draw the ramp on the 
stratigraphic frame in the same orientation and position 
with respect to the footwall beds as it was depicted on the 
deformed-state cross secúon. 

Step 5: With a pair of dividers, measure the 
separation on the upper flat (AB). Point A coincides with 
the hanging-wall cutoff at point 2, and point B coincides 
with the footwall cutoff at point 3. On the stratigraphic 
frame measure a distance equal to AB starting at point 1 
and extending east along the unit d/unit e contact. Mark 
point l '. Point 1' represents the restored position of point 
1. On the unit d/unit e contact line of the stratigraphic 
frame, lay off the distance 1 to 2. Note that the restored 
position of point 2 (i.e„ point 2') lies directly over point 
3. These points must coincide because when the 
displacement on the detachment is removed, the hanging
wall and footwall cutoffs must be juxtaposed. Now, lay 
off the distances 2 to 4, 4 to 5, 5 to 6, and 6 to 7 along the 
unit d/unit e contact line to locate the restored positions 2', 
4', 5', 6', and 7'. The restoration of the unit d/unit e 
contact is complete (Fig. 14-19b). 
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Figure 14-19. Gross sections for problem 
14-2. (a) The deformed-state cross section 
with the reference lines shown; (b) the 
stratigraphic frame and the completed restored 
cross section. 
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Step 6: Repeat the procedure for the other contacts, 
and locate the restored positions of points 8 thm 25. 
Restore from the leading edge to the trailing edge, and start 
with the lower contacts and move up-section. Draw the 
restored pm line an<l Ioose Ime. Note mat. ooth oi 1.he:sc 
reference lines moved east in this example, because both 
lay above the detachment. Also note that the horizontal 
distance between the loose line and the pin line is greater in 
the restored cross section, because restoration removed the 
folding that resulted from movement on the detachment. 

If the origínal thickness of units was not constant 
across the cross section, the stratigraphic frame could not 
consist of parallel lines. lf strata thicken continuously ín a 
given direction, the stratigraphic from should depict a 
thickening wedge. The exact rate of thickening cannot be 
specified until the wedge is actually restored. But if you 
can estimate the approximate amount of shortening 
depicted on the deformed-state cross section, you can draw 
an approximate stratigraphic frame by depicting layers that 
change progressively from the thickness shown at the 
leading edge of the cross section to that shown at the 
trailing edge of the cross section (Fig. 14-20). 
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Figure 14-20. Thickening stratigraphic 
wedge. Layers thicken from east to west, so 
AB > CO. Restored faults are shown. Note 
that the thickness of units in thrust sheet 1 is 
greater than the thickness in thrust sheet 2. 

Problem 14-3 
Restore the deformed-state cross section shown in 

Figure 14-2la. 

Method 14-3 
Step 1: Scan the cross section. It shows three 

thrust faults that emerge from a basal detachment. Two of 
the faults bound a horse, and two of the faults are truncated 
at the ground surface by erosion. The strata below fault A 
appear to be in place. Thus, a pin line that penetrates these 
strata at the west edge of the cross section can be considered 
to be a regional pin line that is fixed during the restoration. 
Draw the regional pin line and a loose line (Fig. 14-21a). 

Step 2: Bedding thickness is constant in the 
deformed-state cross section, so below the cross section we 
create a stratigraphic frame by drawing a series of 
appropriately spaced parallel lines (Fig. 14-21b). 

w 
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pin Jine 
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Step 3: Because bed lengths are constant, we can 
restore by measuring bed lengths (assuming that there has 
not been significant volume-loss strain). Begin measuring 
at the regional pin line and work to the east. Start with the 
beds at the base of the section. Fault A, the youngest 
fault, plots on Figure 14-21b in the same position and 
orientation as it did in the deformed-state cross section. 
The restored positions of points 1 through 5 along the top 
of the shaded bed are shown. Point 5 shows the restored 
position of the footwall cutoff of the top contact of the 
shaded bed. 

Step 4: A problem arises when we try to restore 
contacts in sheet A that lie above the shaded bed; because 
these contacts are truncated by erosion, we do not know the 
entire length of these contacts in thrust sheet A. ln order 
to continue om: restoration, therefore, we must introduce a 
local pin line in sheet A. This pin line is drawn 
perpendicular to bedding at the point where the stratigraphic 
sequence is most complete and is presumably little 
deformed (Fig. 14-21a). 

Step 5: Now we can continue the section restoration. 
On the partially restored section, draw the local pin line 
perpendicular to bedding (Fig. 14-21b). The restored 
position of the local pin line can be determined from where 
it cuts the shaded bed. The depiction of the restored pin 
line as a straight line reflects our assumption that the beds 
have not slipped past one another in the vicinity of the pin 
line. Measure bed lengths between the pin line and fault B 
in the deformed-state cross section, and locate the restored 

E" 
Loose 

km 

Fault C 

Strat1graphic frame 

(b) 
Fault A (youngest) Restored fault B 

Figure 14-21. Cross sections tor problem 14-3. (a) Oetormed-state 
cross section; (b) stratigraphic template tor the restoration, and partial 
restoration; (e) completed restoration. 
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position of fault B. Measure bed lengths to the west of the 
local pin line to detennine the position of the trace of the 
erosional truncation surface on the restored section (Fig. 
14-2lb). 

Step 6: Repeat the procedure to restore the remaining 
thrust sheets, and find the restored position of the loose 
line (Fig. 14-2lc). We discuss problems with this restored 
cross section later in the chapter. 

Restoratlon Based on Area Balance 

ln general, if a bed is significantly thickened during defor
mation, we cannot simply stretch out the bed to restore the 
cross section; rather, we must restore the cross section such 
that the areas of restored and deformed-state beds are the 
same. 

Problem 14-4 
Consider the rather unusual-looking ramp anticline 

shown in Figure 14-22a. It is obvious that there has been 
extreme thickening in the hinge. The area of unit b in the 
thrust sheet shown in this figure is 322 units2. Determine 
the restored length of unit b in the thrust sheet. 

Method 14-4 
Step 1: First we must create a stratigraphic frame. 

The trailing edge of the thrust sheet contains unthickened 
unit b that is 4 units thick. Therefore, we take the 
undeformed thickness of unit b to be 4 units and create a 
stratigraphic frame on which unit b has this thickness (Fig. 
14-22b). 
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Step 2: Examine the cross section (Fig. 14-22a) and 
prove that restoration based on bed-length balance will not 
work. Contact MN on the deformed-state cross section is 
50 units long. If we unfold contact MN and place it on the 
stratigraphic frame, we should get a restored bed that is 50 
units long and 4 units thick, with an area of only 200 
units2. The folded bed, however, has an area of 322 
units2, so this restored bed has an area that is 38% too 
small. Thus, reconstruction by such a procedure would 
yield a restored cross section that does not meet the 
constraint of area conservation. 

Step 3: To restore unit b of the thrust sheet we 
measure its area (322 units2) and determine a bed length on 
the stratigraphic frame that is long enough to yield this 
area. Assuming that the original bed thickness is 4 units 
(as it is under point N), the restored bed should actually be 
80.5 units long (Fig. 14-22c). The area of the shaded layer 
on this figure is also 322 units2. 

14·6 EVALUATING AND IMPROVING 
A CROSS SECTION 

Checklng the Balance of a Cross Sectlon 

ln this portion of the chapter we provide examples of how 
to check whether a cross section balances and if it does not, 
how to alter it to achieve balance. 

Problem 14-5 
Determine if the cross section used in problem 14-3 

(Fig. 14-21a) is balanced. 

UNITS 

N' 

I 

10 

Figure 14·22. Gross sections 
for problem 14-4. (a) Deformed 
state cross section; (b) restored 
bed created by simply stretching 
out the top contact of the shaded 
layer. The area of this bed is too 
small; (e) restored bed created by 
assuming conservation of area. 
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Method 14-5 
Step 1: First, we look at the deformed-state cross 

section (Fig. 14-2la) and check to see that the structures 
shown are admissible. Since there are no impossible fault 
shapes, we accept this cross section as admissible. Now 
we look to see if the restored cross section is viable. 

Step 2: Determine if bed lengths are consistent. To 
do this we look at the shape of the deforrned-state loose 
line (Fig. 14-2lc). It curves back on itself (reverses dip). 
This shape is worrisome and suggests that the deformed
state cross section may not be viable. 

Step 3: Check the shape of the restored fault traces 
(Fig. 14-2lc). AH of them have adrnissible step-like 
patterns and admissible ramp angles. 

Step 4: We conclude, based on the observation that 
the restored loose line may have an unacceptable shape, 
that there is a problem with the viabifüy of the restored 
cross section, and we do not yet accept the oríginal 
deformed-state cross section as balanced. 

Problem 14-6 
Determine if the deformed-state. cross section provided 

in Figure 14-23a is balanced. 

Method 14-6 
Step 1: Examine the deformed-state cross section 

(Fig. 14-23a). The numbered points are reference points on 
the cross section, and the patterned bed is a marker bed. At 
füst glance it looks admissible. 

Step 2: Look to see if the template constraint is 
obeyed. It is not. W e note, for example, that in thrust 
sheet A, the length of the ramp that begins at point 12 and 
cuts up-section across the unit is not matched by the length 
of the corresponding hanging-wall ramp, even after the 
difference between the hanging-wall and footwaH cutoff 
angles is accommodated. There are several comparable 
problems in this section. 

Step 3: Construct a restored cross section (Fig. 
14-23b). 

Figure 14-23. Gross sections 
for problem 14-6. (a) Deformed
state cross section; (b) restored 
cross section. 
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Step 4: Examine the restored cross section (Fig. 
14-23b). Note that the restored loose line looks unreason
able and that the restored fauHs reverse aip. From these 
geometries we conclude that the deformed-state cross 
section is not balanced. By going through the exercise of 
restoring the section, our attention has been drawn to 
problems ín the section that we might otherwise have 
missed. 

lmproving a Cross Section 

At this point you are probably asking the most important 
questíon of all, namely, What can be done if a cross section 
does not balance? How can a cross section be corrected or 
improved? The most common errors that experienced 
geologists make in constructing a cross section include (1) 
depicting an incorrect depth to detachment, and (2) 
depicting insufficient shortening at a given level in the 
cross section. W e will show how to deal with these 
problems in the following examples. 

Problem 14-7 
In Problem 14-5 we faced a situation where the 

restored loose line reversed dip at the base of the restored 
cross section. Change the deformed-state cross section of 
Figure 14-2la so that this problem is removed. 

Method 14-7 

7 8 

Step 1: Think about the significance of the problem. 
We conclude that the base of the patterned bed is too short. 
By referring back to the deformed-state cross section, we 
notice that if we change the dip of the lower part of fault 
C, we can increase the length of the shaded bed in thrust 
sheet B. 

Step 2: Make the necessary change (Figure 14-24a). 
Check the bed-length balance of the new deformed-state 
cross section by restoring it (Fig. 14-24b). The restored 
loose line does not reverse dip and thus Iooks reasonable. 
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Figure 14-24. Gross sections 
far problem i 4-7. (a) Defarmed
state cross section, showing 
correction; (b) restored version of 
the modified defarmed-state cross 
section. Note that the restored 
loose line does not reverse dip. has been changed {has shallo>Ner d1p) 

.···~··.•<······ 
Thus, we can say that the restored cross section is viable 
and thus that the defonned-state cross section is balanced. 

The correction described above is not the only possible 
change that could improve the cross section. For example, 
rather than increasing the length of beds lower in the 
section, we could shorten beds higher in the section. A 
shortening of the beds could be accomplished by changing 
the hanging-wall cutoff angles. 

Problem 14-8 
Figure 14-25a shows a deformed-state cross section. 

This cross section is not admissible. Improve the 
deformed-state cross section. 

Method 14-8 
Step 1: Study the cross section (Fig. 14-25a). We 

immediately see some potential problems. First, the 
displacement on the thrust drastically increases up-dip; the 
top of unit b is only slightly offset, whereas the top of 
unit e is offset considerably. Also, the template constraint 

footwall cutoffs. 
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Figure 14-25. Gross sections far problem 
14-8. (a) lnadmissible cross section; (b) 
possible cross section. 
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Step 2: Redraw the section with an appropriate 
change. We relocate the lower flat to ensure that the 
template constraint is met (Fig. 14-25b). This cross 
section is admissible. You may prove to yourself that it is 
also viable. 

Problem 14-9 
Figure 14-26a provides dip data along an east-west line 

of section. Assume that the line of section is parallel to 
the transport direction. A well drilled along the line of 
section provides stratigraphic data at depth. Draw a 
balanced cross section of this area. This example 
demonstrates that in practice, you should keep in mind the 
potential viability of the restored cross section while you 
draw the deformed-state cross section. 

Method 14-9 
S tep 1: Examine the dip data and stratigraphic data 

provided in Figure 14-26a. Notice that it is possible to 
recognize dip domains. Also notice that stratigraphic 
section seems to be repeated at depth. It appears that the 
.,,_::_.'.'""11 -~~ ~•.,,.,.,,,~'"""'." .-._ 1,..._,.....,.,_._~,....,...,. „~,hn...-.-.. .-.. hn.-.~~~o- "!:'!.r.-.11 .f'l.-.t 1~~~ .. -............. !-'--""--~ ~-~·''-""' -.;;;. "'~""'""9'"'.,..._,:o;;. :-- ::.-=--:....-.=. -... "';i. ~"'"'"~~a===o -:~ ~~. - ""~~~ "--=--o_,-,_-

over a footwall flat. 
Step 2: We use the stratigraphic data from the well 

to define unit thickness. With this information plus the 
dip data we project kink-style folds down to the depth of 
the base of unit a. Below the well we can draw in the 
repeated stratigraphy (Fig. 14-26b). Examine the resulting 
cross section. It appears that the base of unit a is indeed a 
detachment. The problem remains, How do we fill in the 
space in the cross section below the detachment? 

Step 3: We speculate that along the western edge of 
the cross section the thrust sheet has been emplaced over 
flat-lying strata. ln Figure 14-26c we draw in the 
stratigraphic section and extend the contacts to the east. 
The geometry looks viable below the syncline and below 
the westemmost ramp. But we still have a bothersome gap 
to fill between the anticline (indicated by stipple in Fig. 
14-26c). Clearly, a solution in which we have only one 
ramp originating from the basal detachment does not work. 
W e speculate that the space can be füled by inserting a 
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Figura 14-26. Maps and cross 
sections for problem 14-9. (a) 
Dip-domain data, positions at which 
contacts cross the ground surface, 
and a well showing stratigraphy at 
depth (a - d are stratigraphic units) 
provided along a section line; (b) 
partial construction of a deformed
state section, showing folded 
layers and a folded thrust. 
Ouestion marks indicate space that 
must be filled; (e) partial solution 
showing how the space at the west 
edge of the section can be filled 
with flat-lying strata. Stipple indi
cates area that still needs to be 
lilled; (d) solution showing a horse 

(b J 

(e J 
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filling the space below the anticline; Cel 
(e) partially restored cross section 
showing the restored shape of the 
horse. 

horse, so we sketch in a possible ramp Ihat could form the 
base of the horse (heavy dashed line in Fig. 14-26c). This 
line is drawn to be parallel to the backlimb of the anticline. 

Step 4: We complete the deformed-state cross section 
by completing the ramp at the base of the horse and by 
filling in the strata within the horse (Fig. 14-26d). The 
deformed-state cross section looks admissible. 

Step 5: We restore the cross section. Figure 14-26e 
provides a partial restoration that shows the geometry of 
the region before movement on fault A occurred, Notice 
that the anticline disappears, and the trailing edge of the 
horse becomes a simple ramp; the restored cross section 
looks viable. Based on this partially restored section, we 
feel that the deformed-state cross section of Figure 14-26d 
is probably balanced. We do not have the data to restore 
the major thrust sheet, because we have no exposures of 
hanging-wall cutoffs and therefore do not know the 
displacement on the fault. We do recognize, however, that 
the displacement is substantial, because section is doubled 
across the entire length of the cross section. 

Notice that in Method 14-8 we used the word speculate 
several tirnes. That is because the process of constructing 
the deformed-state cross section shown in Figure 14-26d is 

d 

e 
b 

3 
d 

an intuitive process guided by our prior knowledge of 
geometries in fold-thrust belts. Our end product looks 
reasonable, but we have no way of confirming that the 
cross section is correct unless we can obtain sufficient 
drill-hole or seismic data. Note how the procedures of 
cross-section balancing have made us think about every 
line drawn in the section. 

One final comment about correcting cross sections: In 
some regions a duplex forms at depth and results in 
significant shortening of the lower part of the stratigraphic 
sequence. Units above the roof thrust do not appear to 
show evidence of comparable shortening. For example, the 
restored length of unit Dc in Figure 14-27a is much less 
than the restored length of Dm (Fig. 14-27b). This 
discrepancy reflects the fact that in the deformed-state cross 
section (Fig. 14-27a) Dm is duplicated by faulting, whereas 
Dc is only földed. There are real examples of formations 
where the shortening of the "folded-only" strata above the 
roof thrust is much less than the shortening of a 
fault-imbricated sequence below the roof thrust. This 
discrepancy can be explained in a number of ways, one of 
which is shown in Figure 14-27c; ín this cross secüon, 
shortening of unit Dm is shown to involve not only the 
large folds but also mesoscopic folding and cleavage 
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formation, which did not appear in cross section 14-26a. 
This extra shortening makes up the missing area. For 
discussion of additional explanations, see Geiser (in press). 

14-7 DEPTH·TO·DETACHMENT AND 
REGIONAL SHORTENING CALCULATIONS 

The principle of area conservation that we described earlier 
can be applied to calculate the depth to the detachment 
beneath a detachment fold. This calculation works only if 
there are no additional thrusts between the földed surface 
and the detachment. 

Problem 14-10 
A shallow cross section of a földed surface is provided 

in Figure 14-28a. Determine the depth to the detachment 
below this structure, assuming that it is a detachment fold. 

Method 14-10 
Step 1: Consider the földed surface between points 

A and G to be a marker line (Fig. 14-28a). The length of 
this földed line is Lu, which represents the undeformed 
length of this bed (the distance between poínts A and G 
beföre deformation). Trace the földed marker line onto a 
new piece of paper. 

Step 2: Connect two poínts along the line by a 
straight chord (the dashed line between A and G in Fig. 
14-28a). This chord represents regional levei and should be 
parallel to the detachment. The length of the chord is La 
(and represents the distance between A and G in the 
deformed state). The difference between Lu and La 
represents the amount of shortening of the bed that resulted 
from förmation of the fold. Measure Lu and La. Lu = AB 
+ BC + CD + DE + EF + FG = 39 units, and La = AG 
measured along the chord = 32 units. Therefore, Lu -La = 
s= 7 units. 

Step 3: The area between the trace of the folded 
surface and the dashed line between points A and G is called 

L/ 
d 

r-- ··.· 

0 units 10 
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Fig ure 14-27. Alternative solu
tions to the problem of discrepancy 
in the amount of shortening 
between strata above and below a 
roof thrust. (a) Deformed-state 
cross section. Regional pin line is 
shown to the west of the tip line; (b) 
restoration, showing the difference 
in bed length between the supra
and subroof thrust strata; (e) 
discrepancy explained by the 
formation of volume-loss cleavage. 
(Adapted from Geiser, in press.) 

(a) 

d 

(b) 

(e) 

(d) 

Figure 14-28. Gross sections far problem 
14-10 (depth-to-detachment calculation). (a) A 
folded marker horizon. Excess area is shaded; 
(b) construction far depth-to-detachment 
calculation; (e) cross section showing properly 
located detachment; (d) alternative solution 
showing two imbricate horses. Note that in 
this solution the depth to the detachment is 
much less. 
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the excess area (AiJ We measure the area by counting 
squares on a grid placed under the figure and determine that 
Ax = 101 units2. 

Step 4: Extend chord AG to point H; the position 
of point H is determined so that the length of straight line 
AH is equal to Lu. If there is conservation of area, the area 
(Ai) between the line segment GH and the detachment at 
depth d must also equal the excess area, Ax. This 
relationship indicates that if the detachment remains at a 
given depth, shortening of the bed resulted ín movement of 
a point from G to H and creation of the excess area Ax 
above chord AG. Therefore, 

s =Lu-Ld 

Ax = Ai = (s)(d) 

(Eq. 14-2). 

Step 5: Using this equation, we can calculate the 
value of d (14.4 units), which is the depth to the 
detachment. Note that all we needed to measure was the 
lengths Lu and Ld and the area Ax under the fold. AH these 
values can be obtained directly from the cross section. 

Step 6: Redraft the cross section showing the 
detachment at depth (Fig. 14-28c). 

Note that in the solution shown in Figure 14-27c we 
füled the space between the földed marker bed and the 
detachment with földed rock. The cores of the anticline 
could contain ductile evaporite or shale that squeezed 
upward during shortening or a layered sequence that is 
földed disharmonically with respect to the overlying strata. 
We cannot know for sure without additional data. 

If, altematively, imbrication on thrust faults had 
occurred between the detachmem and the földed marker bed, 
our calculation of depth to detachment would be incorrect. 
In Figure 14-28d we show the same földed marker layer, 
but now we show it to be above the roof thmst of a 
duplex. Note that with this geometry the depth to 
detachment is much less. ln other words, a depth-to
detachment cakulation works only if there are no faults 
between the földed surface and the detachment Further
more, note that in the duplex interpretation of Figure 
14-28d the bed above the roof thrust slipped to the left out 
of the cross section. 

ln cases where ü is not possible to cakulate the depth 
to detachment, this depl.h may be predicted from knowledge 
of regional stratigraphy. Also, the age of the oldest rocks 
brought up as a hanging-wall flat is a clue to the identity 
of the unit in which the detachment lies. 

If fauhs are present beneath a fold, the excess area 
above regional level can stiH indicate the amount of 
shortening resulting from movement of the thrust sheet 
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(Laubscher, 1962; Gwilm, 1970). Consider Figure 14-9b 
as an example. If the fault geometry and depth to 
detachment are known, and area has been conserved, then 
the excess area (Ax), which can be measured on the cross 
section, determines the value of Ai, and the amount of 
shortening (d1) is merely Ajh, where h is the depth to the 
deeper detachment 

14-8 APPLICATIONS OF BALANCED 
CROSS SECTIONS 

As we have emphasized already, the principal use of 
balancing procedures is in providing constraints on cross 
sections that must be constructed from incomplete data. 
Because balanced cross sections are more likely to be 
correct, they are obviously useful in guiding resource 
exploration. The application of cross-section balancing 
techniques to petroleum exploration is evident in many 
papers, such as Bally, Gordy, and Stewart (1966), 
Dahlstrom (1969, 1970), Royse, Warner, and Reese 
(1975), and Lamerson (1982). 

Balanced cross sections are also useful in regional 
tectonic analysis, because they provide more reliable 
constraints on the production of palinspastic maps. A 
palinspastic map is a map that shows the distribution of 
stratigraphic units prior to their deformation. Such maps 
are constructed by removing the effects of fault 
displacement and folding (see Kay, 1945; Dennison and 
Woodward, 1963; Dennison, 1968). A palinspastic map 
gives a much clearer image of the spatial distribution of 
stratigraphic units and/or of early structures that förmed 
prior to the restoration of the structures. For example, a 
palinspastic map of the V alley and Ridge fold-thrust belt of 
the Appalachians gives a much clearer image of the 
dimensions of the Paleozoic sedimentary basins that existed 
along the eastem margin of North America prior to the 
occurrence of convergent tectonics (e.g., collisional events) 
in the region. A palinspastic map of the Cenozoic Basin 
and Range province in the North American Cordillera can 
be used to show t.he spatial relationships of major 
Mesozoic and Paleozic deformed belts and depositional 
behs of the Cordillera. The restored cross section that is 
constructed during cross-section restoration provides data on 
the positions of units and markers before deformation and 
thus aUows construction of a palinspastic map. 
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EXERCISES 

1 . Complete the deformed-state cross section of the Bristol Peak region shown in 
Figure 14-Ml. Assume that bed thickness is constant across the map area, that the 
Precambrian/Cambrian contact is not földed, and that the ground-surface trace gives 
the shape of a simple ramp anticline. 

2. Figure 14-M2 shows a simple cross section of a ramp anticline above the Mashpee 
thrust. 

Bristol Peak 

(a) Label the hanging-wall and footwall ramps and flats on this cross section. 
Does this cross section obey the template constraint? 
(b) If not, construct a cross section that displays the same stratigraphy and the 
same fault geometry and obeys the template constraint. 

flgure 14-M1. Cross-sectional sketch of the Bristol Peak area tor 
exercise 14-1. (Adapted from Woodward et al., 1985.) 

Mashpee thrust 

Figure 14-M2. Cross-sectional sketch of the Mashpee thrust tor 
exercise 14-2. 
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3 . The geologist working on a cross section of the Alice Hills region has been called 
off on another project. You are left to develop a cross-sectional interpretation of 
the region. Your predecessor has left several useful hints to make the task easier; 
you have access to a partially completed cross section (Figure 14-M3). Note that 
the region displays k:ink-style folds and that the dip-domain boundaries are already 
labeled. The díp angles in the nonhorizontal domains are indicated. Note that there 
are weH data at three locafüies. If you measure closely, you will see that the 
Silurian layer in hole 3 is almost twíce as thick as in the other two holes. The 
upper interval of Silurian strata is not as thick as the lower interval. Finally, 
studies elsewhere in the region suggest that beds have uniform thickness in the 
region and that detachment horizons occur along formation contacts. 

(a) Complete the cross section by showing the structure between the ground 
surface and the Precambrian/Cambrian contact Y ou must choose detachment 
levels, position ramps, and indicate the amount of slip on each ramp. 
(b) Restore your completed section. Does it balance? 

4. Figure 14-M4 shows a cross section of the Appalachian Mountains fold-thrust beh 
extending across Virginia and West Virginia from the Blue Ridge out onto the 
Appalachian Plateau. The original version of this cross section is by T. H. 
Wilson and appears in Woodward (1985). The real geology has been modified a 
little in drawing Figure 14-M4 in order to make this exercise easier to work. 

(a) Describe the type(s) of thrust system(s) that are displayed on this cross 
section. 
(b) In comparison with the structural geometries shown in the chapter, are the 
structures displayed on the cross section admissible? 
(e) What is the direction of transport? Where do the principal detachments occur? 
(d) Number the thrust sheets that contain the Cambro-Ordovician carbonate strata. 
Assuming a break-fmward sequence, in what order were the thrust sheets emplaced? 
(e) Assume that the leading edge of the cross section is a regional pin line and 
stays fixed during deformation. (This assumption is flawed, because the cross 
section indicates that the upper flat extends at least to the west edge of the cross 
section). Restore the cross section. If you wish, you may assume constant bed 
thickness to simplify the restoration, even though ü is clear that the Cambro
Ordovician carbonate sequence thickens to the southeast. You may restore 
assuming bed-length balance. 
(1) Is the deformed-state cross section balanced? 
(g) Using your restoration, compare the shortening of the strata above the roof 
thmst with the shortening of the strata below the roof thrust Discuss the 
discrepancy. Remember that the pin line you used is probably not a regional pin 
line. 
(h) Cakulate the percem shorteníng of the Cambro-Ordovician sequence by 
comparing your restored and deformed-state cross sections. If you wish, repeat Lhe 
calculation using the excess-area method. 

S. Figure 14-MS provides a cross section of Lhe Appalachian fold-thrust bell ín the 
vicinity of Lhe Powell V alley anticline, Tennessee. 

(a) Briefly describe the thrust system depicted in this cross section. 
(b) Restore this cross section and check the balance. (The geology has been 
modified slightly to facilitate this exercise). Be sure to choose a regional pin line. 
(e) Calculate the shortening of the pattemed layer in the Knox Group. 
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Figure 14-M4. Gross section of the Appalachian Valley and Ridge 
Province for exercise 14-4. (adapted from Woodward, 1985.) 
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6. Construct two restored versions of Figure 14-M6 (Kingston Ridge region), one 
using bed-length balance and the other using area balance. Compare the two and 
explain which you think is the more appropriate technique for restoring this 
particular cross section. 

Kingston Ridge region 

Figure 14-M6. Gross section of the Kingston Ridge ragion for 
exercise 14-6. 

7. Restore the cross section of Figure 14-M7 (Ben Jesse region). Note that the 
stratigraphy in the section increases in thickness toward the trailing edge of the 
thrust system. You will need to insert local pin lines in order to complete the 
restoration. Be sure to show the position of the erosion surface on the restored 
version. 

Ben Jesse region 

Figure 14-M7. Gross section of the Ben Jesse region for exercise 
14-7 (adapted from Woodward et al., 1985). 

8. Calculate the depth to detachment beneath the top of the stippled layer in Figure 
14-4b using the meüiod described ín Section 14-9. Is the dctachmcnt leve! shown 
in Figure 14-4b correct? 

9 . Once thc exercises in this chapter have been completed, we rccommcnd that 
studems be challenged to produce balanced cross sections of real map areas. Due to 
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cost, we could not provide real maps with this book. Maps that provide 
appropriate data for cross-section balancing exercises include U.S.G.S. quadrangle 
maps 1-686 (Afton 30' quadrangle) and 1-1129 (Cokeville 30' quadrangle), which are 
maps of the Idaho-Wyoming fold-thrust belt by W.W. Rubey, and the 
1: 125,000-scale maps of the Tennessee portion of the Valley and Ridge fold-thrust 
belt by Rodgers (1953; Tennessee Division of Geology, volúme 58, part 11). 
Cross sections by Roeder et al. (1978), Woodward (1985), and Suppe (1980) 
provide a variety of cross sections at a useful scale for study. 



CHAPTER 

1 
ANALYSIS 

F 0-DI ENSION L 
FINITE ST N 

Carol Simpson 

15·1 INTRODUCTION 

Strain is either a recoverable (elastic) or a permanent 
(plastic) change in the shape and/or size of a body of rock 
caused by stress changes within the earth. The state of 
strain that we observe in the rock is called the finite or 
total strain; it has been built up from a succession of very 
small strain increments over a period of time. Strain 
measurements compare the geometry of the deformed rock 
before and af ter deformation; measurements are therefore of 
changes in length (area, volume) and angles. We will see 
later that certain naturally occurring objects, such as 
pebbles and fossils, enable us to determine finite strain. 

The purpose of this chapter is to introduce various 
techniques and procedures that have been developed to help 
visualize strain and to permit direct measurement of strain 
in rock. We are concerned primarily with permanent 
strains that develop as a consequence of plastic 
deformation. This chapter is limited to strain analysis in 
two dimensions because two-dimensíonal straín is the most 
common strain measured in the field and is easier to 
analyze than three-dimensional strain. Methods for the 
calculation of three-dimensional strain are covered in more 
advanced courses (Ramsay and Huber, 1983). 

For the purpose of brevity, I have used the same 
examples in more than one exercise. This approach aUows 
the student to compare relative ease and accuracy of each 
method. However, I strongly recommend that wherever 
possible the student be given different real examples with 
which to work. If none are readily avaiiable, a casual 

search through the literature should produce any number of 
exceUent photographs of defonned objects. Ramsay and 
Huber (1983), Weiss (1972), and Borradaile et al. (1982) 
are recommended as good source rnaterials to start with. 

15·2 DISPlACEMEt•ffaVECTOR PATTERNS 

In the general case, when a rock deforms each partide 
within it changes its position with respect to each other 
partide. Thus, a reference frame (see Chapter l) is needed 
to describe the movement of these points. ln two 
dimensions the point (x, y) ín Figure 15-la is displaced 
with respect to Cartesian axes to its new pos:ition (x', y') as 
the square is deformed into a parallelogram. The straight 
line connectíng point (x', y') with its starting point at (x, 
y) is that point's displacement vector. Note that the actual 
displacement path followed by any given point does not 
necessarily coincide with its displacement vector. If the 
displacement vectors for many such points in the rock can 
be drawn, then the result is a displacement vector field 
(Fig. 15-lb). 

It is possible for a body of rock to be displaced 
without undergoing any internal strain (Fig. 15-2a,b), but 
it is not possible for the material to be strained without the 
displacement of its constituent particles (Fig. 15-2c). ln 
Figure 15-2a the square that represents a body of rock has 
undergone a rigid body translation to its new position; this 
can occur across a brittle fault, for example. ln Figure 
15-2b the square has undergone a rigid body rotation. 
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a) 

a) 

e) 

Special Topics Part 11 

y 

x',y' b) 

/'/ 

undeformed square 

d1splacement vectors 

Figure 15-1. Displacements within the xy-coordinate reference 
frarne. (a) A displacernent vector is not necessarily the same as a 
displacement path; (b) a displacement vector tieid. (After Ramsay and 
Huber, 1983.) 

l~J' b) 

~--~ -----·---- x 

d) 

-- x.y x·.y· 

Flgure 15-2. Strain and displacement. (a) 
A rigid body translation without internal strain; 
(b) a rigid body rotation without internal strain; 
(e) homogeneous straín; (d) heterogeneous 
strain. (After Ramsay and Huber, 1983.) 

dotted parallelogram and following this with a rigid body 
rotation. In practice it is seldom possible to distinguish 
among several such deformo.tion paths. 

ln order to analyze finite strain we must füst find the 
scale at which the rock deformed homogeneously. ln 
homogeneous strain, lines that were initially straight and 
parallel remain so, although the angle between two 
nonparallel lines will generally change (Fig. 15-2c). ln 
real rocks the strain is more likely to be heterogeneous; 
originally straight lines become curved, and parallel lines 
become nonparallel (Fig. 15-2d). However, if we consider 
a small enough portion of the heterogeneously deformed 
rock, an infinitesimally small point in fact, then the 
deformauon can oe s<:ud Lu apy«Jii.~ü•«~.: ~.::.ü:.o;:~~;c:.:<; 

strain. Clearly, in naturally deformed rocks it will be 
necessary to examine the finite strain state at many 
different points ín order to build a picture of the overall 
heterogeneous strain. 

Exercise 15-1 
The deformed grid in Figure 15-3b has the same area as 

the undeformed grid in Figure 15-3a. It is an example of a 
gcneral homogeneous strain. Determine the displacement
vector field as follows: 

Step 1: Trace the nodal points of the grid in Figure 
15-3b onto a sheet of tracing paper. Now position the 
paper over Fígure 15-3a such that the (0, 0) points coincide 
and the reference axes remain parallel. 

Such rotations are sometimes indicated by paleomagnetic 
data. Note that ín Figure 15-2c the finite strain state 
represented by the solid parallelogram could be achieved by 
a síngle deformation, or indireci1y by füst forming the 

Step 2: On the tracing paper draw the displacement 
vectors for each nodal point. Repeat this exercise on a 
fresh piece of paper, changing the points of coincidence to 
(2, 2) and (2', 2'). Compare the two displacement vector 
fields Lhat you have created. Note that neither field is 
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y y 

a) b) 

3,3 

2,2 

1,1 

0,0 x 

figure 15-3. A marker grid (a) in its undeformed state and (b) after 
homogeneous deforrnation. See Exercise 15-1. 

simple, even though the strain pattem in the grid appears 
simple. 

Step 3: On a fresh piece of paper create for yourself 
a constant-displacement vector field (i.e., all vectors the 
same length and orientation), using the nodal points in 
Figure 15-3a as starting positions. Which of the following 
best describes the resultant grid you produce: rigid body 
rotation; rigid body translation; homogeneous strain; or 
heterogeneousstrain? 

15°3 STRAIN MEASUREMENT 

Length Changes 

The change in length of a line after strain is known as 
longitudinal strain. It is measured as the extension, E, 

which is defmed as: 

e = Or - 10) J 10 = Af / lo (Eq. 15-1), 

where lf is the final length and Jo the original length of the 
line, or as the stretch (S), where 

s = lr 110 = (1 +e) (Eq. 15-2). 

The squru:e of the stretch is known as the quadratic stretch 
( quadratic elongation), A. Written as an equation, 

(Eq. 15-3). 

The value of E is positive where the line has lengthened 
and is negative where the line has shortened. For a line 
that has not changed Iength, S is equal to 1.0 (lf = 10 ). S 

always has a positive value even where the line has 
shortened, since shortening a line of original length 1.0 by 
an amount e= -1.0 would cause the line to vanish! 

Angular Changes 

In general, two lines originally at right angles change their 
angular relationship after strain by an amount equal to the 
angular shear, 'I'· The sign convention for description of 
angular shear is as follows: where 'V is measured 
clockwise, it is positive, and where 'V is measured 
counterclockwise, it is negative (Fig. 15-4a). The tangent 
of the angular sheru: is called the shear strain, y. 

y =tan'!' (Eq. 15-4). 

Thís relai.ionship is readily seen in Figure 15-4b, where the 
undeformed line OA has length unity. 

Shape Changes and the Strain Empse 

It is common practice to represent a finüe strain as a 
change in the shape of a hypothetical circle of unit radius 
(or a sphere of unit radius ín three dimensions) or of a 
square of unit side length (a unit cube in three dimensions). 
If a rock has deformed homogeneously, the original sphere 
will be changed into an ellipsoid, the strain ellipsoid. The 
principal axes of this ellipsoid are caUed the principal 
strains. In two dimensions, if we start with an undeforrned 
circle of unit radius (for the unit circ/e, x2 + y2 = 1.0) and 
subject it to an increment of homogeneous strain, the 
result is an ellipse, the strain el/ipse. Figure 15-5a shows 
a strain ellipse whose long axis is parallel to the x-axis of 
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y y 

tan \jf = y 
A----- A' 

a) b) 

flgure 15-4. Changes in angles. 
(a) Sign convention far angular 
shear, 'lf; (b) definition of shear 

"-----------x strain, y. 

the reference frame. The general equation for an ellípse in 
this orientation is 

(Eq. 15-5), 

where ,J'A,1 is the major semiaxis (also equal to (1 + E1)) 
and -./A,2 is the minor semiaxis (also equal to (1 + Ez)). 
The ellipticity, R, of the ellipse is defined as the ratio of 
the two semiaxes: 

(Eq. 15-6). 

This quantity is often referred to as the strain ratio, Rs. 
The two semiaxes of the strain ellipse, -./A,1 and VAz, are 
called the principal strains (or principal stretches), and 
their orientations are principal directions of strain. 

Principal directions of strain are, by definition, 90° 
apart, and we can see from Figure 15-5a that they also fönn 
a right angle BOA in the undeformed unit circle. W e will 
examine this important property of the principal directions 
of strain more thorougnly m me next exe1dst:. rui.11L.:s C' 
and D' are the intersection of the unit circle with the strain 
ellipse; therefore, lines OC' and OD' are equal in length to 
the unit circle radius. They have not changed their length 
in this increment of strain and, therefore, are known as the 
lines of no longitudinal strain. 

15·4 TYPES OF HOMOGENEOUS STRAIN 

Pure Shear 

The strain shown in Figure 15-5a is a special type in that 
there was no rotation of the principal directions of straín 
with respect to the axes of the reference frame during the 
development of the strain. This is known as irrotational 
deformation. If, in addition, there was no change in area 
during development of the strain, then the strain is called 
pure shear. 

If a second increment of strain is added to the strain 

ellipse ín Figure 15-5a, such that the principal directions of 
the new incremental strain ellipse are the same as the 
principal directions of the first-fonned ellipse (Fig. 15-5b), 
the deformation is said to accumulate coaxially. With the 
second increment, OC" and OD" become the lines of no 
longitudinal strain (Fig. 15-Sb). We could draw other lines 
within the unit circle and see that they too will rotate with 
each new increment of strain. Thus, when we speak of 
coaxial or irrotational deformation, we mean only that the 
principal directions of strain do not rotate--any other line in 
a different orientation is forced to rotate as the strain 
progresses. 

General Straln 

The preceding discussion relates only to the case of pure 
shear. ln more general defonnation the principal directions 
of strain do not remain coincident with the axes of the 
reference frame but rotate (always preserving their 
orthogonality) such that the major principal strain axis 

circle this line makes the angle fi with the x-axis. The 
relationship between 9 and fi' is shown in Figure 15-6. The 
difference between the initial angle e and the final angle fi' 
gives the rigid rotation component, w of the deformation. 
We can now see that in order to fully describe the state of 
strain ina rock we need more than one number. Strain is 
really a tensor quantity, as described thoroughly by Means 
(1976), Ramsay and Huber (1983), and references therein. 
For the purposes of this chapter we will restrict ourselves 
to solving fairly simple problems in two dimensions, but 
it should be kept in mind that more complicated strain 
states exist in nature. 

Slmple Shear 

We will now consider a second very special kind of 
deformation known as simple shear. ln Figure 15-7a an 
undeformed unit circle (radius = 1.0) has superimposed 
upon it a unit square (side length = 1.0). A dashed line is 
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a) 
y 

b) y 

-----„ 
~, 1 

1..., ___ ~---' 

coaxial strain accumulation 
irrotational strain 

Figure 15-5. Pure shear. (a) lrrotational strain--principal directions 
of strain do not rotate with respect to axes of reference frame. Unit 
circle deformed into ellipse, and square deformed into rectangle. Long 
axis of ellipse is -JA.1, and short axis is -J'A2. lines OC' and OD' are lines 
of no longitudinal strain. Points A and B move to new positions A' and 
B'; (b) coaxial strain accumulation. Strain ellipse in (a) has second 
increment added. Principal directions of new incremental strain ellipse 
are the same as for füst formed ellipse. Points C' and D' move to new 
positions C" and D". 

y 

Figura "15-6. Relationship between e and e· 
far general deformation ín which principal 
directions of strain rotate with respect to 
reference frame. 

y = 2/tan 20' 

(Eq. 15-7) 

(Eq. 15-8). 

drawn across the diagonal of the square for reference. In 
Figure 15-7b the unit circle and square have been subjected 
to a right-lateral ( dextral) shear parallel to the x-direction. 
The long axis of the strain ellipse makes an angle e· to the 
x-axis. Note that the long axis does not pass from comer 
to corner of the parallelogram. Two equations can be 
solved to find y from Figure 15-7, namely, 

Unlike progressive pure shear, progressive sirnple 
shear accmnulates noncoaxially, which means that 
principal directions rotate with respect to the reference 
frarne, and each accumulation of strain has different 
principal directions. The vertical side of the square in 
Figure 15-7 has lengthened and rotated through angle 'I'· 
The horizontal side of the square has neither lengthened nor 
rotated; it is in a special orientation parallel to the shear 
direction x and is one of the two lines of no longitudinal 
strain for simple shear (Fig. 15-8, lines OA' and OB'). If 
we extend hne OB' to intersect P-P' at R' and then 
"unstrain" point R' to its original position R, we wiH find 
that the angle ROP = POR'. ln other words, the line of no 
longitudinal strain, OB', ha'> its origin along the direction 
OR, and the two lines OR and OB' are symmetrically 
disposed about the y-axis of the reference frame. At this 
point you may wish to repeat Exercise 15-1 to demonstrate 
the pauem of displacement vectors characteristic of simple 
shear. 

The simplest method for demonstrating the basic 
principles of simple shear is to use a wooden box designed 
to hold a deck of large cards, such as Ihat illustrated by 
Ramsay and Huber (1983, p. 2). Right-triangular wooden 
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y y 

a) b) 

e· 
o~-~-~-------x 

Flgure 15-7. Simple shear. (a) Undeformed unit circle and unit 
square; (b) situation after an amount of right-lateral simple shear. Point 
x, y has moved to new position (x + y), y. 

Figure 15-8. The two lines (OA' and 08') of 
no longitudinal strain in simple shear. line OB' 
has its origin along the direction OR; line OA' 
has not changed. 

templates are used to defonn the card deck as shown in 
Figure 15-9. Ramsay and Huber (1983) recommend a 
series of 'I' angles for the templates that require very high 
precision workmanship. It is quite satisfactory to cut 'I' 
angles as close as possible to 10°, 20°, 30°, 40°, 50°, and 
60° and to record the exact angle of the finished template 
before using them. The exercises that follow use one of 
these card-deck shear boxes. Computer programs exist 
(e.g„ McEachran and Marshak, 1985) that will simulate 
these exercises. 

Exercise 15-1 
Step 1: Pack a simple card-deck shear box with 

cards so that they will slide easily past one another parallel 
to the x-axis (shear direction, Fig. í5-9a). Draw a circle 

a) 

b)(~=Ö 

z 

L_, 
Figure 15-9. Simple-shear box far use with 
card deck. (After Ramsay and Huber, 1983.) 
(a) Undeformed card deck with unit circle 
drawn on it. Each card lies in xz-plane of 
reference frame; (b) after an increment of 
simple shear has been imposed by means of 
wooden templates. 

onto the top surface (the xy-plane) of the cards and mark 
the circle center. Measure the radius, r, of the circle. 

Step 2: Choose a pair of templates with a low value 
of 'I' and use them to deform the circle into an ellipse. 
Draw in the principal strains (the major and minor axes of 
the strain ellipse) using a colored penci!. Note the 
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dífficulty of exactly positioning the long axis of a fat 
efüpse. Precise measurement of low strains is never an 
easy task! 

Step 3: Measure the lengths of the major and minor 
semiaxes of the ellipse (a' and b') and the angle 0' that a' 
makes with the x-direction. Tabulate your data as shown 
in Fígure 15-10 and calculate the followíng: 

(a) The stretches, S1 and s2• of the major and minor 
semiaxes of the straín ellipse. 

20'). 

(b) The efüpticity, R5, of lhe strain ellipse. 
(e) The shear strain, 'Yi· imposed, from y= tan 'l'· 
(d) The shear strain, 'Yc· calculated, from y = 2/(tan 

In the ideal case the two values for y should be identical, 
and the product of S1 and s2 should equal 1.0, since there 
has been no area change. 

Step 4: Now restore the cards to their starting 
position. The two colored lines are still mutually 
perpendicular but have a different orientation in the 
xy-frame. Measure the angle 0 that line a (the unstrained 
line a') makes with the x-direction. Cakulate the fol
lowing: 

(a) The rotational component of the strain, w. 
(b) ·Tan w. · 
(e) y/2. 
Step 5: Choose a second set of templates with a 

higher value of '!' and redeform the cirde, keepíng the shear 
sense the same (i.e., if you used right-lateral shear before, 
then you must use right-lateral shear in this and all 
subsequent sttain increments). Mark the new principal 
directions of strain in a different color. Make the same 
measurements as previously, but before you "undeform" 
the cards look carefully at the pair of colored lines that were 
the axes of the füst strain ellipse. Not only are they no 
longer in the correct orientation for the new strain ellipse, 
they are also no longer at right angles to each other. After 

Figure 15-10. Table for use with 
Exercise 15-2. 

unit circle 
radius r= .. cm 

'VA = 100 

'Vs = 200 

Y; 
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restoring the cards to their starting position, ched: that the 
two new colored lir1es are mutually perpendicular. 

Step 6: Repeat the experirnent twice more, using 
progressively higher values of 'l'· The principal directions 
of strain for each increment of strain should be mutually 
perpendicular before and after deformation, but they will 
not form a right angle at any other value of strain. Thus, 
the lines you draw as principal directions of strain for an 
angular shear of, say, o/ = 20° wm not form a right angle 
at any other value of angular shear. 

Step 7: Restore the cards to their undeformed state 
and note the sequence of the unstrained ellipse axes; with 
each higher value of o/ the angle 0 has increased. Subtract 
45° from each value of e and then subtract each value öf e· 
from 45°. The two columns of numbers should be 
identical, illustrating that the rotational component, m, of 
the strain is symmetrically disposed about a line drawn at 
45° to the x-axis. What would be the orientation of 0' iJ 
the íncrement of angular shear were less than 'I' :: l 0 ? 

The following important properties of simple shear 
can be seen by ínspection of your completed table: 

1. Doubling the amount of shear strain, y, gives 
more than twice the strain ratio, Rs. 

2. Ahhough the long axis of the strain eHipse 
approaches the x-direction with increasing strain, it can 
never reach it (unless y = ínfinity). 

3. The orientation of the long axis of the eHipse is 
not parallel to the sheared-over edge of the card deck (i.e., 'I' 
i= 90° - 9'), but there is a relationship between thern such 
that 

tan w = y/2 (Eq. 15-9) 
or 

tan (0 - e') = (tan '!')/2 (Eq. 15-10). 

e· Yc major semi
axis (a') cm 

w=(El - El') tan w y/2 

minor semi- S1=a'/r S2=b'/r 
axis (b') cm 

e - 45° 45° - e· 
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4. Although the principal directions of strain rotate 
with respect to the extemal xy-frame, the cards themselves 
do not rotate. 

Exercise 15-3 
Step 1: Using a fresh set of cards, draw a new circle 

onto the xy-plane and measure its radius. Draw a 
bilaterally symmetrical fossil, such as a brachiopod, onto 
the card-deck surface in any orientation (it is easier if you 
use a stencil or cutout shape for this). Construct the line 
of bilateral symmetry for the fossil (e.g., Fig. 15-1 la). 

Step 2: Select one set of templates with which to 
deform the card deck, and deform the "fossil" and circle. 
Measure the following: 

(a) 0', the angle between the ellipse long axis and the 
shear direction. 

(b) 'l'FOSSIL (measure the deflection of the median 
line from 90°). 

Step 3: Now calculate the following: 
(a) r for the whole card deck, from "/ = 2/(tan 20'). 
(b) "fpfor thefossil, from "/p =tan 'l'FOSSIL· 

There are only two orientations of the fossil (and two 
mirror images of them) in which the two values of r and 
'Yp will be identical. What are they? 

The final geometric feature we need to examine with 
the card-deck model is the change in orientation and length 
of a line drawn in any orientation not parallel to a principal 
direction of strain. ln nature such a line might be a plant 
stem in coal or an aplite dike in a granite. 

ln Figure 15-12a the edge of the card deck lies along 

a) n 

Figure 15·11. Simple shear box with 
bilaterally symmetrical fossil (a) in undeformed 
state and (b) after an increment of simple 
shear. 

y 

tan 13 
B~--~--A 

y 
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a) 

b) 

Y B' tan A 
i-------------'-'"'--A' 

Flgure 15-12. Change in length and orien
tation of line OA on top surface of sirnple shear 
b::C'.. {2.! '3+~rt;,..2 pnc::ition - Adge of card deck 
lies along OB, marker line OA makes angle ~ 
from y-axis; (b) after an increment of simple 
shear, B rnoves to B', A moves to A', and ~ 
becomes w. 

line OB and a line of length OA mak:es an initial angle ~ 
from the y-axis, or a from the x-axis. After an increment 
of simple shear (B moves to B'), the line OA has a new 
length OA' and a new orientation P' (or a.' from the x-axis). 
The line has clearly lengthened, and the relationship 
between the shear strain and the new orientation of the line 
is given by: 

tanW=tan~+y (Eq. 15-11) 
or 

cot a' = cot a + r (Eq. 15-12). 

Exercise 15-4 
Step 1: Using a fresh deck of cards, draw a marker 

line OA such ihat the angle a. when measured 
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counterclockwise from the x -axis is greater than 90° ( this 
is equivalent to a negative value of P measured from the 
y-axis). Measure length OA. 

Step 2: Subject the card deck to a right-lateral 
simple shear until line OA' is exactly perpendicular to the 
x-axis (a'= 90°). Remeasure the line OA', which should 
now be shorter than OA. Continue to shear the cards in a 
right-lateral sense to some new orientation of the line at 
a". The line will lengthen again. 

This simple experiment demonstrates two important 
aspects of a generally oriented line in simple shear: (1) A 
line may shorten and then lengthen, but it may never 
lengthen and then shorten in progressive simple shear, and 
(2) there will always be two lines that will have the same 
length after deformation as they had before. One of these 
lines of no longitudinal sttain remains parallel to the x -axis 
or shear dírection at all times. The other line starts at 
some angle -~ to the y-axis and ends at a new angle +~ 
(Figs. 15-8, 15-13). 

y 

Flgure 15-13. line of no longitudinal strain 
OA' at angle +P from y-axis was originally at 
angle -P frorn y -axis. 

Heterogeneous Slmple Shear 
(Shear Zones) 

In the foregoing series of exercises the shear strain applied 
was homogeneous (each card moved in exactly the same 
way as each other card) and plane strain (no change in the 
third dimension). There was also no change in area of the 
material. In many naturally deformed rocks that have 
undergone strain approximating simple shear, the 
deformation is heterogeneous and is confined to relatively 
narrow, planar, and parallel-sided shear zones (Fig. 15-14). 
These rnay be ductile in nature (Fig. 15-14a), brittle (Fig. 
15-14b), or somewhere in between: In ductile shear zones 
the shear zone boundary (SZB) marks the boundary between 
undeformed wall rock and the zone of heterogeneous shear 
strain. ln a deformed granite, for example, a new foliation 
is developed within the shear zone such that biotite and 

a) 

b) 

undeformed new foliation inside 
wall rock shear zene 

~''XS1 
fibers of calcite or quartz 

in extension gash 

Figure 15-14. Three-dimensional views of 
ideal shear zones in whích deformation is 
heterogeneous simple shear. (a) Ductile shear 
zone; (b) "brittle" shear zone. 
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quartz grain aggregates change their shape and orientation 
to lie along the principal direction of elongation. By 
measuring the angles 6'A 9'B· etc., between the new 
folialion and the shear zone boundary, we can compute y at 
each position across a shear zone of width W (Fig. 15-14a). 
It is then a simple matter to integrate these values of y to 
find the total displacement, D, of one side ofthe shear zone 
with respect to the other side, by using the equation 

(Eq. 15-13), 

or by plotting a graph of y versus W, as in Figure 15-15, 
and finding the area under the curve. 

Exercise 15-5 (Strain in a shear zone) 
In Figure 15-16 a small ductile shear zone crosses a 

granodiorite. Originally equidimensional aggregates of 
quartz grains (pale gray), feldspar (white), and biotite 
(black) record the shear strain by becoming elongate, platy 
aggregates inside the shear zone. Assume that the trace of 
the new foliatíon defined by the platy aggregates is parallel 
to the long axis of the straín ellipse. 

Step 1: Cakulate the displacement D across this 
zone. Note that you must first define the shear zone 
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e 

y 

distance 

Flgure 15-15. Shear strain (y) vers us 
distance (W) between shear zone boundaries 
for an ideal ductile shear zone. Points A, B, C, 
and D refer to positions on Figure 15-14a where 
e· was measured. 

boundaries (not as simple as it first seerns!) and ihen take 
as rnany readings of e· across the zone frorn one side to ihe 
other as you can in order to create a smooth y versus W 
curve. At very high strains (low values of e') very slight 
changes in e' can make enormous changes in y and D 
estimates. For example, íf 0' in the zone center is 3.5°, 
this gives 'Y = 16.7; if e· is 2.5°. 'Y = 22.9; and if e· is 
1.5°, y is 40.0! You will probably find that your y 
versus W curve is not as srnooth as Figure 15-15, but the 
more posítions at which you measure 0', the smoother it 
will be. 

Shear zones such as ihe one in Figure 15-14b are often 
referred to as en-echelon "tension" gash arrays. Strictly 
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speaking, each cakite- or quartz-filled vein is really an 
extension gash that has its long axis parallel to the 
directíon of incremental shortening and that opens in the 
direction of elongation in the rock (Fig. 15-14b). 
Although these arrays can seldom give us complete 
information on ihe finite strain state, ihey are useful for the 
determination of sense-of-shear, for incremental strain 
histories, and for volume change estimates (Ramsay and 
Huber, 1983, pp. 48-51). " 

Under certain conditions of deformation a rock may 
change in volume during the development of a 
heterogeneous strain. Vein arrays or dike swarms usually 
indicate a volurne increase, and volume decrease is manifest 
by pressure solution structures such as stylolites (surfaces 
that have a characteristic toothlike morphology; Ramsay 
and Huber, 1983, Figure 3-23; Davis 1984, Figure 10-20). 
We can simulate ihe effect of volume reduction in simple 
shear by using the card-deck model and removing every 
second (or ihird, or fourth) card after ihe unit circle has been 
drawn. Similarly, an area (or volume) increase can be 
simulated by ihe addition of one new card every second (or 
ihird, etc.) card wiihin ihe circled area. 

15-5 STRAIN MARKERS 

ln the foregoíng exercises we have concentrated on the 
special case of simple shear for ihe sake of simplicity. Of 
course, all rocks do not deform in this way; in fact, 
"simple shear zones" such as in Figure 15-16 are rather 
rare. ln the following sections we present exercises that 
demonstrate how to calculate two-dimensional strain where 

Figure 15-16. Photograph of ductile shear zona in granodiorite from 
Penninic Alps, Switzerland. Coin is 2.4 cm in diameter. 
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it is not known beforehand whether the strain fonned by 
simple shear o:r pure shear. Such measu:rements rely on 
recognition of strain ma:rke:rs. 

It is rare to find objects whose original lengths are 
known for certain, so we usually compute the ratios and 
orientations of the principal stretches. To do this it is 
necessary to find objects that have the following properties: 

l. Original spherical or equidimensionalform, such as 
some ooids, reduction spots and concretions; some 
foraminifera and radiolaria; amygdules and mineral 
aggregates in homfels and certain igneous rocks. 

2. Original circular cross section on a known surface, 
such as worm burrows (in particular Skolithos), crinoid 
ossicles, or fossil raindrops on a bedding surface. 

3. Original nonspherical shapes ( approximating 
ellipsoids), such as most pebbles in conglomerates and 
several of the examples cited under (1). 

4. Original linear form, such as belemnites, rutile 
needles in quartz grains, tourmaline crystals, plant stems, 
and the trace of pegmatite or other veins and dikes on an 
outcrop surface. 

5. Bilaterally symme,trical fossils, such as brachio
pods, trilobites, echinoderms, plants. 

6. Known initial angles between two or more lines or 
planes, such as cross bedding in sediments, worm burrows, 
graptofües, polygonal mud cracks, polygonal cooling 
joints, symmetry planes in plant or animal fossils, other 
objects of known initial geometry, such as gastropods and 
pillow basalts. 

There are many more potentiaHy useful sttain markers 
than those listed here, and the more complex Lhe initial 
geometry, the more complex is the mathematical treatment 
required to find their strain state. We do not have the scope 
in this chapter to examine each category listed but wiU 
begin with the very simplest case where lines of known 
original length, such as belemnites, he on a deformed 
bedding surface. We will generaBy work wíth the 
minimum number of deformed objects that are necessary 
for analysis in order to keep the exercises short, but it 
should be kept ín mind that strain analysis is like 
orientation analysis (Chapter 8) in that the more data 
gathered, the more reliable will be the solution obtained. 

15-6 USE OF ORIGINALLY 
UNEAR STRAIN MARKERS 

Figure 15-17 shows a belemnite that has fractu:red during 
deformation of the limestone in which ü lies. The 
segments of broken belemnite are of different lengths along 
the maximum principa! stretch (S 1) direction, and fibrous 
crystals of cakite fill the intervening spaces. The fibers are 
elongate in the direction of S 1. Often we do not see the 
entire fossil preserved and so cannot be sure of the original 

...... 

' ' 
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1 -~Jbelemnite 
J-~z fragment 

/ fibrous calcite 

~cleavage trace 

1 1 

figure 15-17. A stretched belemnite. 
(Adapted from Ramsay and Huber, 1983.) 

length, but the stretch can still be detennined by measuring 
the lengths of an equal number of segments and fibrous 
regions for each fossil. In fact, it is better to ignore the 
ends of the deformed fossil altogether, as the strain is 
unlikely to be homogeneously distributed at these 
positions. Also, the fiber orientations are not always 
parallel to S 1, so whenever possible, an independent 
estimate of the S 1 direction, such as the trace of the 
cleavage planes on ilie outcrop surface, should be sought. 

Exercise 15-6 
Cakulate the longitudinaJ. strain of the belemnite in 

Figure 15-17 in the following way: 
S te p 1: Measure the lengths (l 1, 12, etc.) of six 

fragments in a direction parallel to the long dimension of 
each fragment (this corresponds to the assumed original 
orientation of the fossil). 

Step 2: Sum the values for 11, 12, etc., to give lo, 
the original length. 

Step 3: Measure the final length, lf, along the 
direction that corresponds to the new overall orientation of 
the fossil. This direction lies at angle El' to the S 1 
direction. 
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Step 4: Measure 8'. 
Step 5: Calculate e, S, and 'A for the belemnile. 

If there is only one such fossil on the outcrop, then no 
further information can be obtained. However, it is 
fortunate for us (and correspondingly unfortunate for the 
belemnites) that these organisms tended to die in groups 
and lie in a random orientation on the bedding surface. 
Such an assemblage after deformation is shown 
schematically in Figure 15-18. 

Exercise 15-7 
Step 1: Calculate S A, SB, etc., for each of fossils 

A to H in Figure 15-18. 
Step 2: Determíne the S1 direction by inspection 

of the fossils and use this to fínd the angles e·A, 8'8 , etc. 
Angles measured ín a clockwise direction from S 1 can be 
counted as positive, and those measured in a 
counterclockwise direction as negative. 

Step 3: On a sheet of graph paper draw two lines to 
represent principal stretches S1 and s2 (see Fig. 15-19a). 
Represent each value of S A, SB, etc., obtained by 
measuring the appropriate angle 8'A· 8's ... from the S1 
axis and plotting points S A, SB, . . . at their correct 
distances from the origin. For example, fossil A lies at 
angle 8'A = 31° to S1 and is unstretched. Point A on 
Figure 15-19a therefore lies at a distance SA = 1.0 from the 
origin and at angle 0' A = 31° from S 1. Fossil B lies at 
angle 0'8 = -20° to S1 and has a stretch value of SB = 1.3. 

\ / 
\ 

/ 

\ /\ 
\ / 
\ 

/ 
/ 

; 

\ 
\ 

\ 

cleavage trace 

/ 
\ 

\ I 

/ 

/ 
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On the graph, point B lies at a distance SB = 1.3 from the 
origin and at angle e'B = -20° from S1. 

Step 4: Find the best fit ellipse to all the data by 
inspection (see Figure 15-19b) and compute the strain 
ratio, Rs= S1/S2. To facilitate your construction note that 
the strain ellipse, including the lines of no longitudinal 
strain, is mirror symmetric about both the S1 and s2 axes. 

Belemnites (or tourmaline crystals, or rutile needles) 
do not necessarily have the same strength as their matrix. 
They tend to be rigidly rotated toward the finite stretch 
direction and only fracture and extend after they enter the 
extensional field of strain {i.e., on the S1 side of the lines 
of no longitudinal strain), and then only after a certain 
amount of strain has built up in the matrix; so the results 
obtained are minimum estimates of the total strain in the 
rock. ln addition, tourmalines do not deform easily in the 
compressional field of strain (on the s2 side of the no 
longitudinal strain lines), and allhough belemnites may 
undergo pressure solution in this field, such behavior is 
uncommon. Information about a large part of the strain 
ellipse is therefore unobtainable. Finally, Figure 15-20 
shows one of the most common problems with linear 
markers. Several large tourmaline crystals have stretched 
in a recrystallized quartz vein matrix. There are no fibers 
between these fragments of tourmaline, and there is no 
obvious mineral elongation lineation on the rock slab 
surface, so the S1 direction cannot be independently 
determined. ln this case a more sophisticated analytical 
technique is required. 

\ 

\ 
\ 

\ 

figura 15-18. Schematic repre
sentation of a group of stretched 
belemnites for use in Exercíse 15-7. 
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a) 

-+----o+----1+.o- S2 

b) 

Figure 15-19. Method of plotting stretch 
valuas measured from Figura 15-18. (a) Plot of 
SA and Ss within s1 and s2 reference frame; 
(b) plotted points should fal! on an ellipse. 

15~7 USE OF BILATERAll Y 
SYMMETRICAl FOSSILS 

Many fossils have bilateral symmetry, a feature that is 
utilized in several methods to compute the various strain 
parameters. We wm concentrate here on brachiopods, but 
the methods can be applied to aU other suitable fossils. 
The specimens to be used must be carefully chosen--some 
species of brachiopods are quite fat originally and have 
strongly curved median lines, and these could cause 
problems in strain cakulations after they are deformed. 
The best specimens to use are thin ones that are 
approximately planar on the bedding surface. 

Figure 15-20. Stretched tourmaline crys
tals in recrystallized vein quartz. Principal 
stretch directions cannot be independently 
determined. 
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Urifortunately, brachiopods die at different growth stages, 
so all the fossils are not the same síze. This means we 
cannot simply use changes ín length of hinge line or 
median line, or even the ratio of hinge to median line 
lengths. The only reliable parameter we can use is the 
angle between hinge and median line; in the undeformed 
fossil this is always 90°. 

The choice of method depends upon the material 
available. Where there are many specimens on the bedding 
surface it may be possible to use the classical method that 
combines the ideas of S. Haughton (1856) and H. Breddin 
(1956) (see Ramsay and Huber, 1983, p. 143). 

The Haughton-Breddin Method 

In the Haughton-Breddin method it is necessary that at least 
a few of the fossils in the deformed state have mutually 
perpendicular hinge and median lines. This means that 
these special fossils have their hinge and median lines 
aligned parallel to the principal directions of stretch, and 
they should occur in two forms--narrow and broad (Fig. 
15-2la, b). The narrow fönn has its hinge line parallel to 
S 1, and the broad form has íts median line parallel to S 1 
(Fig. 15-2lb). 

Exercise 15-8 
Figure 15-22 shows several deforrned brachiopods on a 

bedding surface. 
Step 1: Find the specimens that have mutually 

perpendicular hinge and median lines and determine the 
directions of S1 and S2. 
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b) ~ ~ffi \lJ ~ 
S1 

a>tj •CD \J7 Ej c~.te· fs, 
undeformed deformed S1 

Flgure 15·21. The principle behind the Haughton-Breddin method. 
(a) Four undeformed and mutually perpendicular brachiopods and a unit 
circle on a bedding plane; (b) situation after a deformation in which 
principal stretch directions were parallel to hinge and median lines of 
fossils; (e) a specimen in which hinge and median lines were originally at 
45° to S1 deforms into a symmetrical farm (S1 bisects hinge and median 
line in deformed state). 

Step 2: Examine the remaining specimens and find 
those whose hinge and median lines are bisected by the S 1 
direction (see Fig. 15-21c). Since in these specimens the 
hinge and median lines were originally at 45° to the S1 
direction (i.e., e = 45°), use the formula 

tan e = Rs tan e· (Eq.15-14) 

to find the strain ratio, R8, for this outcrop. 
Step 3: If you have access to ellipse templates, draw 

a correctly proportioned and oriented strain ellipse onto 
Figure 15-22. Now tilt the paper away from you while 
looking down the s1 axis until the strain ellipse appears to 
be a circle - the fossils should now appear undeformed as 
well. We will see later that this trick of "undeforming" the 
slrain ellipse has some very useful consequences! 

The Haughton-Breddin method is extremely easy to 
use, but it does require the preservation of many deformed 

Figura 15-22. A suite of 
deformed brachiopods on a bedding 

fossils and yet uses only a select few of them. It is not 
generally possible to locate the special narrow and broad 
forms necessary for this technique to work. 

Wellman's Method 

If there area number of fossils (at least six) then a good 
method to use is that of H. W. Wellman (1962). The hasis 
of this method is illustrated in Figure 15-23. ln the 
undeformed state (Fig. 15-23a) a line a1 drawn parallel to 
the hinge line of fossil A, and a line a2 drawn parallel to 
the median line of A, are projected from the diameter of a 
circle and form the right angle a at the circle's perimeter. 
Similarly for fossil B, the hinge line b1 and median line b2 
are projected to give the right angle 13 at point B on the 
circle's perimeter. Other undeformed fossils in different 
orientations, if plotted in the same way, would produce a 
series of points that define the circle. ln the deformed state 
the circle becomes an ellipse, and the line OP becomes the 
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Figura 15-23. The principle 
behind Wellman's method (After 
Wellman, 1962.) (a) Two fossils and 
their projectíon in undeformed 
state; (b) after deformation. 

a) 

ellipse diameter, O'P'. The right angles are deformed to 
new angles a.' and W, and the lines connecting A' and B' to 
O'P' represent the new orientations of the hinge and median 
lines of the two fossils. 

Exercise 15-9 
We will use Wellman's method to analyze the suite of 

deformed fossils in Figure 15-22 ·and will compare the 
answers wíth the one we obtained using the Haughton
Breddin method. 

Step 1: Number each fossil on Figure 15-22 and 
draw a reference line across the figure in any arbitrary 
direction (see Fig. 15-24a). 

Figure 15-24. Wellman's method 
- procedure. 

a) 

/ 
/ 

I 
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b) 

A~~ ~QJ/B' 
Step 2: On a separate sheet of tracing paper draw 

another reference Hne and mark two reference points 
anywhere along it so that they are several centimeters apart 
(Fig. 15-24b). 

Step 3: Overlay the tracing sheet onto Figure 15-22 
so that (a) the two reference lines are parallel and (b) one of 
the reference points is centered on the hinge/median line 
intersection of fossil number 1. ln pencil, lightly draw the 
hinge and median lines onto the tracing paper. The line 
lengths you draw are not important, but they should be 
extended several centimeters in both directions (Fig. 
15-24c). 

Step 4: Move the tracing paper until the second 

d) 

() 

(D 

' / ' / I 
I 

I 

I 
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/ ' 
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reference point is centered on the same point of the same 
fossil, making sure the reference lines are parallel. Again 
draw in the median and hinge lines so that they intersect 
the first pair of lines at two points (Fig. 15-24d). Label 
each point as number 1 and erase your construction lines. 

Step S: Repeat steps 3 and 4 for each fossil on the 
page. You should now have 12 points, some of which 
may coincide. Draw the best fit ellipse through these 
points and measure the strain ratio, Rs. Compare your 
answer with that from Exercise 8. 

Wellman's method becomes less certain as the number 
of fossils drops, and it should not be used for fewer than 
six objects. lts main advantage over the Haughton-Breddin 
method is that it is much easier to define the ellipse 
accurately because all fossils are used, not just a few in 
favored orientations. 

Ramsay's Method 

ln some localities there may be only three or four fossils 
and no reliable indication of the principal direction of 
stretch. Here we can use Ramsay's (1967) method, which 
employs the Mohr circle for strain. It is possible to use 
this method with only two fossils, but extreme care is 
needed with the sign conventions. Por safety, it is better 
to use a minimum of three specimens. 

The Mohr circle for strain is illustrated in Figure 
15-25a. Full explanations and derivations are available in 

Figure 15·25. (a) The Mohr circle for strain; 
(b) the corresponding strain ellipse. 

most structural geology textbooks; we recommend Ramsay 
and Huber (1983, pp. 93-96) and Davis (1984, pp. 121-24). 
The axes of the Mohr construction that we will use are y/'A 
and 'A'= 1/J.... which enables us to deal with angular shear 
as well as longitudinal strain. Recall that A.1 = (S1)2, and 
A.2 = (S2)2. The center of the circle is at distance (A.1' + 
A.2')/2 from the origin, and its diameter is (A.2' - A. 1 '). 
Thus, the circle represents an infinite number of points, 
such as A' on Figure 15-25a, each of which represents the 
strain of a line A' in two-dimensional space. Figure 
15-25b shows the line A' in its more familiar setting 
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within a strain ellipse. Note that the angle a.' between A' 
and the long axis of the ellipse becomes twice that angle 
(2a') in the Mohr diagram. 

ln order to use this Mohr circle for strain analysis, we 
must adhere strictly to sign conventions for angles. Here 
we will use the convention that the angle a.', between the 
ellipse long axis and the deformed line, if measured 
clockwise on the outcrop becomes angle 2a.' measured 
clockwise positive from the A.1' side of the Mohr circle 
(Fig. 15-25). 

Exercise 15-10 
Figure 15-26 shows three deformed brachiopods on a 

bedding surface. We do not know the S1 orientation. The 
hinge lines of each fossil have been extended so that the 
angles between hinge lines can be measured. 

~ : A .''l's 
~ -,---- ' , .ia' 

-

Flgure 15-26. Deformed brachiopods on a 
b::idd~~g ~!!rlace for use !rt Everci~A 15-1 O< All 
angular shears are clockwise in this example. 

Step 1: Measure 'I' A• 'l'B· and 'lfc for the fossils. 
Step 2: On a sheet of graph paper construct the axes 

y/A. and A,'= (l/A). Choose any linear scale for your axes. 
Draw three lines of any length through the origin at angles 
'I' A• 'l'B· and 'l'c (see Fig. 15-27a). 

Step 3: Measure angles a.' and P' between the hinge 
lines of A and B, and Band C, respectively. 

Step 4: On a separate sheet of tracing paper draw a 
circle of any diameter and subtend angles 2a.' and 2P' from 
its center to intersect the circumference at points A', B', 
and e· (see Fig. 15-27b). 

Step S: Superimpose the tracing paper onto the 
graph paper and move the circle so that the three lines 'I' A• 
'l'B· and 'l'c intersect the points A', B', and C', and the 
center of the circle is on the A.'-axis. Make sure that the 
intersection points are in the same order as they were on 
the outcrop (i.e„ point C is clockwise from B, which is 
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y/A 

b) 

fig ure 15-27. Construction of Mohr circle far strain for Figure 15-26. 

clockwise from A) otherwise you will obtain incorrect 
answers because you will have effectively interchanged two 
of the angular shear readings. 

Step 6: Read off the values of A. 1' and t..2 '. Note 
that the scale is not important because you will compute 
the ellipticity or strain ratio, Rs· Convert A,1' and A-2' to 
S 1 and s2 values and find R8. 

Step 7: To find the orientation of the strain ellipse 
on the outcrop, measure angle 2a' on the Mohr circle 
between the A.1' point and point A'. The strain ellipse has 
its long axis at o:' degrees to the hinge line of fossil A. 
Remember that if A' in the Mohr diagram is clockwise 
positive from the A.1' point, then on the outcrop the hinge 
line of fossil A must be dockwise from the long axis of 
the strain ellipse. 

Ramsay's method is rapid and requires few fossils. 
However, very careful observance of sign conventions is 
necessary. The method becomes tricky to use wilh fewer 
than three fossils. 

De Paor's Method 

The final method for analysis of deformed bilaterally 
symmetrical fossils is for the case where only one or two 
fossils occur on the outcrop. This method was devised by 
De Paor (1986) and uses a special kind of stereographic 
projection known as an orthographic net or orthonet (Fig. 
15-28). For this work it is best to use a large version of 
the orthonet, such as the one provided at the end of this 
book. The orthographic projection is described in De Paor 
(1986). For our purposes it is important to note that (a) 
the small circles on the grid are a series of straight lines, 
and (b) the great circles 011 the grid are semiellipses. Recall 
that in Exercise 15-8 we found that lhe strain ellipse and 
deformed fossils could be made to appear undeformed by 

N 

Figura 15-28. The orthonet (orthographic 
net). (After Ragan, 1985.) 

ülting the paper and viewing the ellipse down its long 
axis. De Paor's method uses the orthonet to simulate the 
operation of tilting the paper. The angle o through which 
the paper is tilted is related to the strain ratio by 

Rs = l/cos ö (Eq. 15-15). 

Direct estimation of o is likely to be highly 
inaccurate, but we can use this basic principle in the form 
of the orthonet. Figure 15-29 illustrates this principle 
fürther. You can view the 25-cent coin as deformed, with 
an axial ratio of Rs = 1.55, or you can view it as 
undeformed but tilted through angle o = 50° about the 
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N 

Figura 15-29. The principle behind De 
Paor's method. Coin can be made to appear 
circular by tilting the page away from you. 

north-south axis of the net. Try it for yourself with a real 
coin. Now tilt Figure 15-29 away from you about its 
east-west axis and at the same time look straight down the 
north-south axis. When you tilt the net through 50° you 
will find that the coin appears to become circular again and 
the stretched facsimile of George Washington appears more 
familiar in form. 

The elliptical great circles on the orthonet represent all 
possible strain ellipses starting from the undeformed circle 
at the periphery of the net. Any two lines. that were 

' 
' 1 

1 

1, 

' ' 1 

''·cleavage 1 

trace ---~-~ 
1 
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initially a.0 apart will still be a.0 ín pitch apart along one 
of these great circles after deformation. AH we need to do 
is find the appropriate great circle and measure its axial 
ratio to find Rs· 

Exercise 15-11 
One deformed brachiopod has been found on an outcrop 

that also contains a cleavage trace (Fig. 15-30a). 
Step 1: Measure the angular relationship between 

hinge (h) and median (m) line and transfer this information 
to a sheet of tracing paper, making the two lines, h and m, 
any length (Fig. 15-30b). 

Step 2: Measure the cleavage trace orientation with 
respect to either hinge or median líne and draw a labeled 
line on the tracing paper to represent it. Make sure that the 
cleavage trace line goes through the hinge/median line 
intersection point (Fig. 15-30b). 

Step 3: Overlay the tracing paper onto the orthonet 
so that the cleavage trace is aligned with the north-south 
axis of the net. Do not rotate the tracing paper overlay at 
any subsequent stage. 

Step 4: Inspect the great circles until the one is 
found where the median and hinge lines are 90° in pitch 
apart (Fig. 15-30c). Draw in this great circle on both sides 
of the axis to form an ellipse. 

Step 5: Measure the strain ratio, R8 , directly from 
the ellipse. 

Step 6: Repeat the method to find the strain ratio 
for the fossil in Figure 15-31. 

Exercise 15-12 
The outcrop surface depicted in Figure 15-32 contains 

two brachiopods but no cleavage trace. 

Figure 15-30. De Paor's method - procedure. (a) Deformed brachio
pod on bedding surface with obvious cleavage trace; m = median line 
and h = hinge line of fossil; (b) angular relationships of (a) transferred 
onto tracing overlay; (e) tracing overlay on orthonet with cleavage trace 
aligned north-south. 
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-cleavage 
trace 

1 

Figure 15-31. A deformed brachiopod on 
bedding surface for use in Exercise 15-11. 

Step 1: Transfer the hinge and median line 
orientations for fossil A onto a piece of tracing paper as ín 
step l of Exercise 15-11. Use a colored pencil and label 
these lines h A and m A-

S te p 2: Follow the same procedure for fossil B, 
using the same piece of tracing paper but a different colored 
pencil, and making sure l:hat l:he two hinge/median line 
intersection points for the two fossíls are superimposed. 

Step 3: Put the tracing paper onto the orthonet so 
that the pin goes through the two hinge/median line 
intersections. 

Step 4: Rotate the tracing paper overlay until it is 
positioned so that one great circle simultaneously gives a 
90° pitch angle between hA and mA, and between hB and 
mB. Note that the same great circle must be used for each 
side of the net axis. 

Step 5: Draw in this great circle on both sides of 
lhe axis and measure Rs. 

DePaor's method is extremely simple and works well with 
only one specimen, provided that there is an independent 
estimate of the principal stretch direction, such as the 
cleavage trace. If there is no independent means to 

Figura 15-32. Two deformed brachiopods 
on bedding surface with no visible cleavage 
trace. See Exercise 15-i 2. 
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determine the principal stretch direction, then two fossils 
are required, and if neither of these has maintained bilateral 
symmetry after deformation, a simple adaptation of the 
method in Exercise 15-12 will provide a unique solution 
(see De Paor, 1986, pp. 90-91). The method also works 
weH for other geometrical!y regular fossils such as 
graptolites (if the initial angle between two lines was 60°, 
then find the unique great circle that contains 60° of pitch 
between the two lines in their deformed state) and for 
deformed sedimentary structures such as cross bedding and 
mudcracks, as long as the original angle between two lines 
in the structure is known. 

15°8 USE OF ORIGINAllY 
ElllPSOIDAl MARKERS 

ln the final series of exercises we will discuss methods to 
calculate strain by observing the deformation of particles 
that were initially ellipsoidal. Of course, if we knew for 
certain that particular objects were originally spherical, 
then we would need only to find the principal stretch 
directions and measure the axial ratios directly. But most 
objects were not originally completely spherical, and the 
superimposition of a strain ratio onto an initiaUy elliptical 
shape will produce different final shapes depending on lhe 
relatíve orientations of the ellipses (Fig. 15-33). Other 
factors that influence the final shape of the objects are their 
composition with respect to that of their matrix, the 
mechanism of deformation (crystal plasticity, pressure 

Figure 15-33. A strain ellipse 's' superimposed on an initial elliptical 
shape 'i' produces different final shapes 'f' depending on relatíve 
orientation of s and i. (a) s and i are orthogonal; (b) s and i are parallel; 
(e) s and i are oblique. 



352 

solution, cataclasis, etc.), and the degree of interaction 
among the objects. 

ln the examples that follow we will assume that the 
objects have a uniform composition and are not 
significantly different in strength from their matrix (e.g., 
quartz pebbles in a quartz-sand matrix or ooids in a 
limestone). We will not auempt to analyze objects that 
have a significant strength contrast with their matrix, such 
as granite pebbles in a shaly matrix, because in such rocks 
the strain becomes distributed differently in the two 
lithologies. 

First, consider what we would see on a two
dimensional plane cut through a group of three-dimensional 
ellipsoids. There will be elliptical shapes wíth two 
variables to consider: Rf, the final shape ratio, and <j>, the 
final orientation of the long axis of each ellipse. Note that 
the observed area variations do not necessarily indicate 
original variations in the volume of the objects. A two
dimensional cut goes through the centers of some objects 
but may just skim the edges of others. We must also 
consider the initial distribution of the objects in space -
Was <!> random in the undeformed state? Or was there 
some preferred orientation of the ellipsoid axes, such as is 
often found in pebble layers in river beds or on beaches? 

We can also think of the objects as a collection of 
central points, ignoring the shape of the objects for the 
moment. The strain of the whole rock may be represented 
by the spatial distribution of the centers. ln a two
dimensional section the majority of pebbles or ooids are a 
certain minimum distance apart. Rarely, very small 
pebbles or ooids may occur side by side to give a very 
small separation of their centers. This kind of distribution 
of points that tend to be a minimum distance apart is called 
an anticlustered distribution. If the ellipsoids have a 
random orientation in three dimensions, then the mimmum 
distance tends to be uniform, í.e., the same in all 
directions. If the sediment is imbricated, then the 
minimum distance may be longer in one direction than 
another. 

There are various methods for the analysis of deformed 
ellipsoids. We will use the three simplest and yet most 
practical of them: the Fry (1979) method, which uses 
particle center distributions; the Rf/<I> method (e.g., Lisle, 
1985) and De Paor's (1987) adaptation of it, which use 
axial ratios and their orientations; and the Robin ( 1977) 
method, which uses irregularly shaped objects such as 
pillow forms in lava flows or enclaves in granitic rocks. 

The Fry Method 

The Fry method is based on the assumption that an 
initially uniform anticlustered distribution of points will 
change after deformation into a nonuniform distribution. 
Distances bet~.veen points become increased in the 

Special Topics Part 11 

extensional field and decreased in the contractional field of 
strain (Fig. 15-34). Maximum distances between points 
occur parallel to the principal stretch direction, S 1; 
minimum distances occur parallel to s2. So if we can 
measure the distances between the centers of objects in the 
deformed state, we can use these data to calculate the finite 
strain. 

a) 
b) . . . 

•• „ • 
• • •• „ 

••• „ 
. ·:· .... 
. ·-:.· ·„ ...... . . . . 
.... ·:. 
„ • „ 0 

••• „ 
„ • • • 

Figure 15-34. The principle behind Fry's 
method. (a) lnitial uniform anticlustered distri
bution of points inside a unit circle; (b) after 
strain the distribution becomes non- uniform. 

Exercise 15-13 
Figure 15-35 is a thin-section photomicrograph of 

deformed ooids from South Mountain, Maryland. Note 
that few of the particles have truly elliptical shapes, so 
measuring axial ratios directly would give an incorrect 
result. 

Step 1: Take a tracíng paper sheet and mark the 
center point of each ooid on it. N umber the points as you 
go, and draw a reference line somewhere to the side of the 
po1ntsg ín soine oi the tXatHpies, (.-:aiLií.~ \,..•y;s~;:, VÜ3cur...:.. 

the ooid center, so you will have to estimate the central 
position. 

Step 2: Mark a central reference cross on a separate 
sheet of tracing paper. Overlay this sheet onto the first so 
that the cross coincides with point 1. Trace the reference 
line through onto the top sheet. Trace the position of all 
other points (2, 3, 4, ... ) onto the overlay. 

Step 3: Move the top sheet so that the cross is on 
point 2 and the reference lines remain parallel. Trace the 
position of all other points (1, 3, 4, 5, ... ). 

Step 4: Repeat the procedure for all the points on 
the lower sheet. Y ou will end up with an empty space 
around the reference cross and a concentration of points just 
outside this space. It is the shape of the space that is of 
interest to us; a circular space means a uniform distribution 
of points (i.e., no strain), and an elliptical shape is a direct 
representation of the strain ellipse. After moving the 
overlay four or five times you will see at each station that 
those points at a considerable distance from the cross do 
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Figura 15-35. Thin section photograph of 
deformed ooids, South Mountain, Maryland. 
Sc;ale bar 0.5 mm. From the archives of E. 
Cloos, Department of Earth and Planetary 
Sciences, Johns Hopkins University, with 
permission. 

not play a role in defining the space and so need not be 
plotted. 

Step S: After all the points have been covered, 
remove the upper tracing sheet and find the best fit ellipse 
to the space around the reference cross. 

Step 6: Measure the strain ratio, R8 , and note its 
orientation with respect to Figure 15-35. 

The Fry method is extremely simple and relatively 
rapid. It can be carried out on rocks that have considerable 
pressure solution along particle-particle contacts. 
However, it requires at least 25 points, and preferably many 
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more, to produce a reasonably ellipse-shaped space. 
Ellipticity estimates can be quite inaccurate, especially at 
low point concentrations or where there is a significant size 
distribution of particles. It is quite common to find "stray" 
points inside the elliptical space, and one must decide 
whether to draw the ellipse inside all points, to include the 
first points at the edge of the space, or to draw the ellipse 
just outside the space. Finally, the method cannot be used 
where it is suspected that the ellipsoidal particles had an 
initial preferred orientation of their axes before deformation. 

The Rtl<I> Method 

A principal aim of strain analysis is to find the initial 
shape of deformed objects such as fossils and pebbles. ln a 
deformed conglomerate, initial pebble shapes, if known, 
could give important clues to the sedimentary and tectonic 
environments at the time of their deposition. The Rf/<I> 
method of strain analysis assumes that the ellipsoidal 
object is deformed together with its matrix. On a 
two-dimensional cut through the rock, the initial shape 
factor, Rj. is changed to the finally observed axial ratio, 
Rf. The orientation of the ellipse long axis is changed 
from e in the undeformed state to <l> after deformation (Fig. 
15-36). The equations that govem this transformation are 
presented in Lisle (1985) and derived by Ramsay (1967, pp. 
205-9). The Rf/<l> method allows calculation of the 
ellipticity of the strain ellipse CRs) by measuring the 

y 

before strain 

y 

after strain of R5 = 1.3 

Figura 15-36. Oeformation of elliptical 
shape, Rj. by strain of As = 1.3 to produce a 
new ellipse, Rt. {Modified from Lisle, 1985.) 
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observed ellipticities (Rf) and orientations (<j>) of a number 
of objects. Note that in the undeformed state, R8 = 1.0. 

The final axial ratio, Rf, and orientation, <j>, of any 
object will depend on the relative orientations of the initial 
ellipse, Ri, and the strain ellipse, Rs. Refer back to Figure 
15-33 to verify this for yourself. If we start with a group of 
ellipses such as in Figure 15-37a, having identical Rj 
values but variable orientations, 0, and deform them by an 
amount Rs, the final Rf and <j> values will all vary as in 

a) 

~oO 
0 0 

.~ 
Ri = 2.5 

orientation variable 

e) 

b) 

R5 = 4.0 

R5 =4.0 

Figure 15-37. Elliptical markers with a 
constant Ri but variable orientation and their 
representation after strain. (Modified from 
Lisle, 1985.) (a) Undeformed state, Ri = 2.5; 
(b) after a strain of Rs = 4.0; (e) Rt and cp 
values far ellipses in (b) plotted on log Rtllinear 
cp graph paper. F = fluctuation. 

Figure 15-37b. If we now measure Rf and ej> for each 
ellipse and plot the values on a log Rf / linear ej> graph 
such as in Figure 15-37c, the points should farm a 
characteristically onion-shaped plot (in practice, the angle <I> 

is measured with respect to an arbitrary reference line; in 
Figure 15-37c the reference line was drawn parallel to the 
principal stretch). The long axes of the deformed ellipses 
fluctuate by an amount F on either side of the principal 
stretch direction. F is least at the greatest R8 values (i.e., 
where the "anion" is thinnest). Maximum Rf values occur 
where Ri and Rs ellipse long axes coincide (Rf max = Rs 
Rj). and minimum Rf values occur where Rs and Ri 
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ellipses are mutually perpendicular (Rf min= R5/Ri or 
Ri/Rs, whichever is the greater). ln these two extreme 
cases the ej> value will be zero; hence, the onion-shaped 
curve is ideally biaxially symmetrical about the ej>= 0° axis 
(Fig. 15-37c). 

If we take a second series of ellipses with Rj values 
identical to one another, but different from those in Figure 
15-37a, and subject them to the same R8, we will find that 
their Rf and ej> values also plot as an onion-shaped 
distribution. We can build up a series of "onion-ring" Ri 
curves for any given value of Rg. Figure 15-38 shows one 
typical series of curves for R5 = 4.0 and Ri = 1.25, 1.5, 
1.75, 2.0, 7.5, 3.0, 4.0, and 6.0. 

Suppose that the series of ellipses are all in the same 
orientation ínitially but that they have different initial 
shape factors (Fig. 15-39a). Superposition of a strain, Rs 
(Fig. 15-39b), will produce Rr/<l> values that fall on a 
differently shaped curve (Fig. 15-39c) known as a 
theta-curve (Lisle, 1977). A series of theta-curves for 
values e = 0° to e ::;: 90° (Fig. 15-40) can be drawn for 
every value of R8. The curve 0 = 45° is also known as the 
50%-of-data curve (Fig. 15-40). Together wíth the ej> = 0°, 

log R t 

n -., .... ~ „.-..,..... 
__...--;.---1 •1-u• "~..J 

..,._____ - cp + -
Figura 15-38. Rtlcfi curves far a strain ratio 
Rs "' 4.0. lnnermost curve is far Rj = 1.25, 
dashed curve is Rj = 1.75, outermost is Rj = 
6.0. {Adapted from Lis!e, 1985.) 
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Figure 15-39. Elliptical markers with a constant initial orientation but 
variable Ri and their representation after strain. (Modified from 
Lisle, 1985.) (a) Undeformed state; (b) after a strain of Rs = 2.0; (e) Rt 

and c)l values tor ellipses in (b). When plotted on log Rt / linear tjl graph 
paper, the points fali on a 9 curve. 

0 
0 
(J) 

1 
11 

<D 

0 

lO i'o 
"f 0 -<;)" 

11 11 11 

<D <D <D 

---- <P +-
Figure 15-40. A typical set of 9 curves for 
Rtl<P analysis. S!rain ratio R8 = 4.0. (Modified 
from Lisle, 1985.) 

0 
(J) 

<D 

e = 0° line it divides the plot into four quadrants (Fig. 
15-41), each of which should contain 25% of the data 
points provided that the original ellipsoids were randomly 
oriented. Thus, a symmetrical distribution of points about 
the $ = 0° line (Fig. 15-4 la) is usually taken to indicate 

a) b) log R1 

(J =45° 

" 
-(50%- ol- dala curve)-- „ 

„ „ „ 
" „ „ „ „ 

" „ „ 
„ 

<P </> 
symmetrical distribution asymmetrical distribution 

figura 15-41. Division of the Rt14> plot into 
four quadrants by use of the 50%-of-data 
curve (9 = 45°). (a) A symmetrical distribution 
- 25% of points fali into each quadrant; (b) an 
asymmetrical distributíon. (Modified frorn Lisle, 
1985.) 

the absence of an original sedimentary fabric, whereas an 
asymmetrical distribution (Fig. 15-4lb) is thought to 
result from an initial fabric such as imbricated pebbles in a 
stream bed. For a further discussion of interpretation of 
Rf/$ pattems, see Lisle (1985). 

Exercise 15-14 
A singie set of Rf/$ curves for the value Rs = 4.0 is 

shown in Figure 15-42. We need similar curves for all 
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Figure 15-42. R11qi and 
A curves for R~ = 4.0. 
(Modified from Lisle, 
1985.) 

values of Rs, and a complete set is provided by Lisle 
(1985). The method for their use is as follows: 

Step 1: Use a sheet of tracing paper over Figure 
15-35 and draw a reference line in any orientation. You 
will find it helpful to draw the line close to the apparent 
maximum principal stretch axis, but the orientation is not 
critical. 

Step 2: Measure the longest and shortest axis of 
each ooid and the orientation, <I>. of each long axis with 
respect to the reference line (<j> measured clockwise is 
positive, counterclockwise is negative). Tabulate your data 
and calculate Rf far each ooid. 

Step 3: Plot the Rf and <I> values for each ooid onto 
transparent log/linear graph paper (or use an overlay) with 
axes as shown in Figure 15-41. For use with Lisle's 
(1985) curves, you will need a <I> scale of 10° = 1 cm and 
an Rf iogarithmic axis wiLh a 12.5-cm cycie. 

Step 4: Fitting the R_I</> curves to the data. First, 

we need to find the orientation of the long axis of the strain 
ellipse. If your reference line was exactly parallel to S1, 
then the data should be symmetrical about the <I> = 0° line. 
If your reference line lay at some angle to S1, then find the 
axis of symmetry of the plot and thís will gíve <j> 8, the 
orientation of S1 with respect to your reference line. Now 
center your plot so that its symmetry axis <l>s lies along the 
<I> = 0° line. 

Y ou must now go through the different Rf/<I> curves of 
Lisle (1985) for the various R8 values and find the set that 
divides the data equally. ln other words, 25% of the data 
should fall in each of the four quadrants formed by the e = 
0° and e = 45° curves. Ideally, an equal number of poínts 
should fall between each pair of adjacent e curves. This is 
a time-consuming exercise and one that cannot be carried 
out if the data are not symmetrically distributed about the 
<Ps line. In this case more sophisticated techniques are 
required (see Dunnet and Siddans, 1971, and Lisle, 1985). 
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Step 5: When the appropriate Rr/<I> curves have been 
found, simply record their Rs value. 

Step 6: The initial shape factor, Rj, for each pebble 
can now be read directly from the graph by noting the 
position of each point plotted relatíve to the Ri contours. 

This now traditional approach to strain analysis can be 
extremely accurate but it is not rapid, nor is it easy to use 
if the sediment had an initial fabric, as many sediments do! 
However, the detailed information obtained is well worth 
the extra effort involved. One drawback is that a suite of 
different graphs must be examined before the Rs value can 
be found, and even then. it is seldom easy to select among 
two or three that could equally well fit the data. 

De Paor's Adaptation of the Rtl<I> Method 

A simpler, more rapid technique for dealing with the Rr/<I> 
data has been developed by De Paor (1988). The complete 
set of 0 curves for all values of Rs have been combined 
onto one diagram known as a hyperbolic net (Fig. 15-43). 
There are two halves to the net. One hemisphere is labeled 
R and the other E, the natural strain, where E = 0.5 ln{R). 
We need only concem ourselves here with the R side of 
the net. The R-axis of the net is divided on a logarithmic 
scale and represents any axial ratio (Rs, Ri, or Rf). <I> is 
measured evenly around the periphery of the net (Fig. 
15-44). Points are plotted in this "Rr/<I> space" just aSLhey 
would be on a more familiar stereonet: Rf = 1.0 occurs at 

N 

R 

E 

Figura 15-43. The hyperbolic net. (After De 
Paor, 1988.) 

e= 45° for 
Rs = 3.0 
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e= 45° tor 
Rs = 2.0 

W1---------'---------+-E 
(<!> = -90°) (<!> = 90°) 

s 
Figura 15-44. Axes and scales of the R 
side of the hyperbolic net shown in Figura 
15-43. (After De Paor, 1988.) 

the net center; high values of Rf are nearest the periphery. 
The acute hyperbolas represent Lisle's 0 = 45° 
(50%-of-data) curves for every value of Rs from 1.0 to 
10.0. 

Exercise 15-15 
We will use the Rr/<I> data that you collected in 

Exercise 15-14. 
Step 1: Place a tracing sheet over the hyperbolic net 

and mark the north axis, N. Plot the Rf and <I> values for 
each ooid as follows: (a) Mark the <I> value on the periphery 
of the net; (b) rotate the tracing paper until the desired <I> 
value is at the north axis of the underlying net; (e) count 
out the Re value along the north-south axis starting from 
the center pin which is at Rf = 1.0 (note that any Rf 
values greater than 10.0 would plot between the two 
perimeter circles). Repeat this procedure for each point. 

Step 2: After all points are plotted, rotate the tracing 
paper until the N-S axis becomes the axis of symmetry for 
the data set. Draw this line through the data set and label it 
<l>s (Fig. 15-45a). 

Step 3: Examine the 0 = 45° curves until you find 
one that divides the population of points in half (Fig. 
15-45b). The intersection of this 50%-of-data curve with 
the north-south axis gives the value Rs for the outcrop. 
Mark this point and read Rs (Note: the scale for Rs is the 
same as that for Rf). 

Step 4: Rotate the tracing paper back to its starting 
position and read the angle <l>s around the periphery. You 
now have the strain ratio, Rs, and its orientation with 
respect to your reference line. 
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Step S: To test for symmetry in the undeformed 
rock, count the number of data in each quadrant defined by 
the <l>s and e = 45° curves (Fig. 15-45b). If there is not a 
more-or-less equal number of data in each segment, then 
the original ellipsoids had a preferred orientation. Such a 
result would invalidate the estimation of <l>s in step 2, and a 
further sequence of steps would then be required in order to 

accurately determine Rs (see De Paor, 1988). 

The main advantage of the hyperbolic net over the 
traditional Rr/<I> and theta-curves is its convenience and ease 
of application, especially in the field. Determination of Ri 
values for each object is also possible (see De Paor, 1988). 
A minimum of 16 data are necessary for a valid analysis, in 
comparison to the traditional methods for Rr/<I>, which 
require on the order of 50 data or more. 

The final method of strain analysis in two dimensions 
that we will cover is Robin's (1977) method, which is 
ideally suited to irregularly shaped strain markers. 

Robin's Method 

For homogeneous strain the center of gravity, or centroid, 
of any unstrained object remains its centroid in the 
deformed state, however irregular the initial shape of the 
object (Fig. 15-46). We can therefore use the change in 
length of lines drawn through the centroid and parallel to 
the principal stretch axes (Fig. 15-47) to calculate the axial 
ratio of the strain ellipse. 

Exercise 15-16 
For this final exercise we will again use the deformed 

ooids in Figure 15-35. 
Step 1: Estimate the centroid for each ooid. This 

can be done fairly accurately by finding the midpoint 
between the two farthest-apart points on the circumference 
of the ooid. ln the case of a field example with pebbles 
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Flgure 15-45. The hyperbolic 
net - procedure. 

several centimeters across, you could carefully trace the 
pebble shape onto paper, cut out the shape equally 
carefully, and find the centroid by balancing the paper shape 
on the eraser tip of a pencil (provided there is no wind that 
day!), or by suspending the paper by a thin string, marking 
a vertical line, resuspending from another position, and 
finding where the two vertical lines cross. 

Step 2: Draw two lines, x', and y', parallel to the 
S 1 and s2 axes and through the centroid, for each ooid 
(Fig. 15-47b). 

Step 3: Measure x' and y' and calculate the ratio 
x'/y' for each ooid. 

Step 4: Find the strain ratio, R8 , from the 
geometric mean of the x'/y' ratios, using: 

R8 = n.y((x 1'/y l')(x 2'/y 2') ... (x n'/y n')) (Eq. 15-16), 

where n is the number of ooids measured. (Note: If your 
calculator is not very sophisticated, you will have to find 
the geometric mean by using Iogarithms.) 

Robin's method is a simple and rapid technique that 
can be used in the lab or field, on outcrop or thin-section 
scale, and on many different kinds of strain markers. No 
assumptions about initial shape are needed, bot estimation 

a) 0 0-. 
b) 

a-0 
Figure 15-46. Principle behind Robin's 
method. (a) A spherical object; (b) an 
irregularly shaped object such as a pillow of 
lava. Centroid of undeformed object, on 
left-hand side of each figura, remains the 
object's centroid after deformation. 
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Figura 15-47. Robin's method -
procedure. (a) lrregularly shaped 
objects in undeformed state; (b) 
after deformation. '-----------j! .... x 
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of the centroid is not always easy, especially for highly 
irregular shapes. The assumption of a random inítial 
orientation of the shapes i.s probably not valid in many 
cases, but this can be tested by standard statistical 
techniques (see Robin, 1977). 

15-9 CONCLUDING REMARKS 

The exercises ín this chapter have covered the most 
commonly used of the many methods of two-dimensional 
finite strain analysis. Some have a more complex 
theoretical background than others, but all are really very 
simple to carry out. A geologist should, therefore, be able 
to quantify the strain in any rock, provided, of course, that 
it contains some sort of strain marker - and we can usually 
find something, somewhere if we look hard enough and use 
a little imagination! Converting the two-dimensional data 
into three dimensions is less simple, but the tensor 
operations required are straightforward with the help of a 
computer. The simp!est way to convert two-dimensional 
strain data into three dimensions is to measure the strain on 
two or more principal planes of strain, i.e., the s1;s2, 
Sz/S3, and S1/S3 planes of the strain ellipsoid. ln some 
field locations it may be possible to select the planes on 
which two-dimensional strain is measured so that strain in 
the principal planes is measured directly. Equations to 
convert such data into three-dimensional form can be found 
in Ramsay (1967), Owens (1984), and references therein. 
W e strongly recommend that the interested student read 
Ramsay and Huber's (1983) excellent book for a more 
in-depth treatment of modem strain analysis techniques. 

What do we do with the numbers once we have thcm? 
The first step is to convey infonnation about the strain in 
an area to other geologists. Two-dimensional strain data 
are readily represented by drawing a correctly proportioned 
and oriented strain ellipse at a point on a map or cross 
section where the strain measurement was made. A 
regional map or cross section on which a number of such 
straín eHipses are drawn shows graphically the variation in 
strain with location. If all three principal strains are 

known, the strain ellipsoid can be drawn, using the 
techniques of perspective drawing, or the strain can be 
represented as a point on a Flinn diagram or a related strain 
plot (see Ramsay and Huber, 1983; Davis, 1984; and 
Suppe, 1985 for examples). 

One of the main applications for strain analysis is in 
producing balanced cross sections across orogenic belts 
(Chapter 14). Clearly, in a deformed continental shelf 
sequence, the strain will tend to vary in intensity from the 
relatively strong !imestones and sandstones to the rather 
weak shale units. So if we wish to create a palinspastic 
reconstruction of a fold-and-thrust belt, we will have to 
"unstrain" each unit separately. 

Another major application of strain analysis is in 
"unstraining" deformed objects such as fossils, so that we 
can identify the species (e.g., Bambach, 1973), or pillow 
lavas, so that we can identify the original "way-up" of the 
rock (e.g., Borradaile and Poulsen, 1981). Therc are many 
such applications in the geologic fücrature. 

Last, but by no means least, we wish to understand 
how the tectonic forces on our planct operate. To do this 
we must also understand exactly how each small piece of 
rock became deformed. One of the keys to such 
understanding lies in unraveling the sometimes rather 
complex strain history recorded in the rock. 
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16-1 INTRODUCTION 

A poly-deformed terrane is a region where rocks have 
undergone more than one phase or episode of deformation. 
Such terranes are common, for example, along ancient and 
modern-day convergent margins, in Precambrian shield 
regions, or in low- to high-grade metamorphic terranes. ln 
these areas superimposed ductile deformations are often 
accompanied by metamorphism. The coupling of meta
morphism and deformation can produce distinctive rock 
fabrics that are powerful tools for unraveling complex 
geologic histories. Fold geometries, fold interference 
pattems, and fold styles are also useful for such analysis. 

The objectives of studying a poly-deformed area are (1) 
to isolate the individual phases of deformation and 
metamorphism, (2) to determine the temporal and spatial 
relationships between the phases of deformation (i.e„ to 
decide whether they comprise one or more deformational 
events), and (3) to determine the kinematic significance of 
deformation phases. The purpose of this chapter is to 
discuss techniques for analyzing and interpreting 
poly-deformed terranes. 

1~2 NOMENCLATURE 

A generation of structures refers to the suite of structures 
(lineations, foliations, cleavages, folds, faults) that form 
during the same time interval in response to the same 
stresses. A phase of deformation is the time interval 
during which a single generation of structures is produced. 

During a phase of progressive deformation several 
generations of structures can be produced. A deformational 
event consists of one or more phases of deformation that 
are temporally and genetically related. The structural 
generations that define a deformational event form 
sequentially over a specific interval of time. An orogeny 
comprises one or more deformational events associated 
with a major period of tectonism or mountain-building. 
Thus, a poly-deformed terrane can result from (a) a phase of 
progressive deformation; (b) a multiphase deformational 
event; (e) two or more deformational events that may, but 
need not, be time separated; or (d) two or more orogenies. 

A shorthand notation is commonly used to classify 
structures by type and by generation. A capital letter 
denotes the type of structure, and a numerical subscript 
indicates the generation. For linear features, F1. F2 •... , 
Fn denote fold axes, and L1, L2, ... , Ln denote other 
lineations (e.g„ mineral or intersection lineations, 
crenulation axes, rods, mullions, elongated detrital clasts or 
grains). For planar surfaces, So denotes bedding, and S1. 
S2 •.. „ Sn denote cleavages, foliations, or axial planar 
surfaces. lf a lineation lies on an S-surface, two subscripts 
are used. The first subscript gives the generation of the 
lineation, the second the generation of the surface. L31, 
for example, denotes a third-generation lineation on an S 1 
surface. The term structural e/ement is commonly used for 
a structural feature that can be labeled using the preceding 
notation. Finally, D1, D2, .. „ Dn indicate deformational 
events, which, as noted above, may include one or more 
generations of structures. 
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16-3 MAPPING AND DATA ANALYSIS 

Structural analysis of poly-deformed terrancs begins with 
mapping and collection of structural data. Mapping of 
poly-deformed terranes differs from mapping of less 
dcformed or undeformed areas in three important respects. 
First, it is best to map poly-deformed terrancs at a large 
scale (greater than 1:10,000; for example, 1:2000) so that 
complex relationships and data for small structures can be 
shown in adequate detail. Second, it is bcst to make 
outcrop maps rather than contact maps of poly-dcformed 
terranes (sec Appendix 3) so that all structural 
interpretations shown on the map can be objectively 
evaluatcd. Third, it is better to map lithologic units or 
distinctive lithologies (markcr beds) rather than 
stratigraphic units because they show the structurc best and 
bccause unique stratigraphic units cannot, in some cases, 
be dcfined. When you begin mapping, thc rclative agcs of 
structural elements will be unknown, so the earliest 
gencration obscrved should be labelcd with letter subscripts 
(S A, FA, etc.). Once the relatíve ages have been 
establishcd, thcse subscripts can be changed to numbers 
(S 1, F1, etc.). 

Treatment of structural data in poly-dcformed terranes 
differs from that in simpler regions in the following 
respects: 

1. ln addition to measuring the orientations of 
structural elements in the field, you should collect oriented 
specimens (Appendix 3) from which oricnted thin sections 
can be made. Microscopic examination of the thin scctions 
can help to substantiate your interpretation of the relative 
ages of different structures, for magnification will allow 
yo:.; to """ rm<:<:c111ring relations morc clearly. 

2. Equal-area or equal-angle plots (hereafter referred to 
in this chapter informally as stereoplots) must be used to 
illustrate structural relationships, to check hypotheses, and 
to find relationships that show up only regionally. For 
example, a stereoplot allows you to test graphically 
whether a given fold axis lies in a given cleavage plane and 
thus that the cleavage and the fold are probably of the same 
generation. A stereoplot may also emphasize geometric 
relationships that are subtle or obscure in the field. Data 
from across a region, for example, may show that 
cleavages are földed by large, regional folds that have no 
small-scale counterparts, and a generation of lineations that 
locally maintains a common orientation may regionally 
define a great or small circle, indicating that they are folded 
or were fonned on földed surfaces. 

3. The familiar angular relationships of cylindrical 
folds with planar axial planes (specifically, that poles to 
földed surfaces lie on a great circle 90° from the fold axis, 
and axial-planar cleavages contain the fold axis; see Chapter 
8) usually do not holdon a rcgional scale in po!y-deformed 
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terranes. Superposition of two or more generations of 
folds can cause one or more fold generations to be 
noncylindrical and can result in földed axial planes. It is 
necessary, therefore, to divide poly-deformed terranes into 
domains in which folds are roughly cylindrical ín order to 
display the characteristic angular relationships on 
stereoplots. Domain boundaries are usually related to 
late-phase folds or to faults. Figure 16-1 (see also Fig. 
16-23b) shows a map that has been divided into domains 
and provides corresponding equal-area plots for three of the 
domains. The plots can be combined in a synoptic diagram 
that shows the overall geometry of the structure in the area. 

One of the premises in studying any defonned region 
is that the orientation and style of small, outcrop-scale 
structures (hereafter referred to as minor structures) mimic 
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Flgure 16-1. An example of the use of 
structural domains from the lachlan Fold Belt, 
Australia. (Adapted from Powell et al., 1985.) 
(a) Map of area divided into nine domains. 
late-stage kink bands have folded the earlier 
structures. The axial traces of the kink bands 
are the domain boundaries. F1 fold axes and 
S1 change orientation across boundaries; (b), 
(e), (d) lower-hemisphere, equal-area nets tor 
domains 1, 3, and 6 on the map. Orientations of 
an early claavage (S1) and cleavage-bedding 
intersections (l1) are shown. 
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the orientation and style of regional-scale structures. This 
premise is a particularly useful guide in studying 
poly-deformed terranes, because by characterizing the 
orientation and style of an individual generation of minor 
structures in outcrop, you have a clue to the orientations 
and styies of regional structures of the same generation. 

As a final. note we emphasize that when mapping and 
collecting structural data in poly-defonned terranes it is 
imperative to determine as rnuch ,as possible about the 
relative ages, orientations, and styles of different 
generations of structures while in the field. There is a 
tendency for beginníng students to coUect orientation data 
on strnctures without regard to the relative age or 
signíficance of the structures, with the mistaken belief that 
later analysis with stereoplots wm somehow distinguish 
amoog structural. generations. Thís practice inevitably leads 
to confusion. Successful field work of any type, 
particularly ín poly-deformed terranes, involves the 
continual testing and refinement of multiple working 
hypotheses (see Chapter 9) during the field-work stage of 
research rather than at some later date. 

Type 1 Type 2 

l 
' 
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16m4 SUPERIMPOSED MINOR FOLDS 

lnterference Patterns 

A ref olded fold is one whose fold axis or axial plane is 
itself földed by a younger fold. Superimposed folds that 
have axes parallel to one another are called coaxial; all 
others are noncoaxial. Refolding of folds produces 
characteristic interference patterns. The type of interference 
pattem provides information on the orientations and 
angular relationships of the two fold generations. Three 
"end-member" types of interference patterns can be 
recognized on the hasis of the orientation of fold axes and 
axial planes of the superimposed folds (Fig. 16-2; Ramsay, 
1967). The three types can be remembered by the visual 
pauem they create when viewed in a particular orientation, 
namely, eyes or domes and basins (type 1), mushrooms 
(type 2), and zigzags (type 3). Superimposed folds 
produced during refolding are coaxial for type 3 pattems and 
noncoaxial for types l and 2. 

Although most fold interference patterns have 

Figure 16-2. Three end-member types of interference patterns 
produced by superimposing two generations of folds. (Adapted from 
Ramsay, 1962; 1967.) Rows A and B show the geometry of first and 
second folds, respectively; row C the resulting interference pattern; row 
D an idealized plan (map) view of each pattern, similar to what would be 
seen looking down on the top of each box in row C. 
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geometries intermediate to those of these end members, it 
is helpful to understand the angular relationships of the 
three end members. Examples of the large number of 
possible interference pattems can be found in Ramsay 
(1967) and in Thiessen and Means (1980). 

One of the best ways to visualize these angular 
relationships is by folding paper (Fig. 16-3). It is 
important to realize that the visual appearance of an 
interference pattern changes when viewed in different 
orientations. Thus, the actual pattem observed depends on 
the orientation of the outcrop face with respect to the folds. 
Try to visualize or draw the pattems that would result from 
erosion that exposed or cut the refolded folds in Figure 16-2 
along different planes. 

Step Step 2 

Type 

-____, 
Type 3 

figure 16-3. Folding paper to produce the 
three end-member interference patterns. 

Stereoplot Patterns for Refolded Folds 

The angular relationships of the three end-member 
interference pattems are well displayed on stereoplots. 
These plots can help determine the type of refolding in 
regions where interference patterns are not well exposed. 
The distinctive stereoplot patterns of end-member 
interference pattems are described next with the aid of 
paper-model examples (Fig. 16-3). The sheet of paper 
represents a földed layer (S0). As you read the following 
descriptions, fold a piece of paper as directed, then study 
the corresponding stereoplot of structural elements (Fig. 
16-4). 

Type 1 (Eyes or domes and basins): Create an 
upright anticline (vertical axial plane, S1). Ben<l Lhis fold 

N 
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Fkrnrn 16-4. ldealized stereoplots tor the 
three end-member interference patterns and 
the effects of curved (a, e) and planar (b, d) 
limbs on the distribution of F1 and F2 fold axes. 
Open circles ara poles to S1 ; X's and dots ara 
F1 and F2 axes, respectively. 

around an imaginary second upright anticline whose hinge 
is perpendicular to the hinge of the first fold. The resulting 
form resembles a dome (Fig. 16-3a). ln this dome the 
axial planes of both fold generations are not földed (i.e., 
planar) and are nearly vertical, and F 1 and F2 are curved 
lines, each lying in its respective axial plane (S 1 and S2). 
The stereoplot in Figure 16-4a shows the orientations of 
the domes' axial planes and fold axes. (To match the figure, 
hold the fold so that the S 1/S 2 intersection plunges 
northward and S 1 strikes northeast.) The amount of 
clustering of fold axes depends on the shape of the folds; if 
both folds have curved limbs, fold axes are evenly 
distributed along the s1 and S2 great circles (Fig. 16-4a). 
If the limbs are planar, fold axes cluster (Fig. 16-4b). 
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Type 2 (Mushrooms): Create a recumbent fold 
(horizontal axial plane, S 1). Bend this fold into an upright 
anticline-syncline pair whose hinges are perpendicular to 
the hinge of the füst fold (Fig. 16-3b). Hold so F2 
plunges slightly southward. The F2's lie in the axial plane 
of the F2 folds (S2) but are concentrated along only part of 
the great circle (see representative stereoplot, Fig. 16-4c). 
F 1 's lie on a great circle perpendicular to the average F2 
axis and the s2 plane; this great circle also contains the 
S 1 poles. The amount of spread of fold axes on the net 
depends on the shape of the other generation fold limbs. If 
F2's have planar limbs, then there will be two clusters of 
F1's (Fig. 16-4d), otherwise F1's spread along the great 
circle (Fig. 16-4c). If the limbs of the F1 fold are planar, 
then the F2's will describe two point concentrations (Fig. 
16-4d). 

Type 3 (Zigzags): Create a recumbent fold with a 
piece of paper (horizontal axial plane, S1). Bend this fold 
to form a second recumbent fold with an axis parallel to the 
first fold axis (Fig. 16-3c). Hold so F1 and F2 plunge 
slightly southward. On a stereoplot (Fig. 16-4e) F1's and 
F2's fall in a single point concentration and lie in the S2 
plane. The poles to S1 should lie on a great circle that is 
perpendicular to the F1 and F2 axes. 

Note that if the refolded paper in the preceding 
examples is rotated about any axis, the orientations of all 
structural elements will change (except those parallel to the 
rotation axis). The appearance of the stereoplot pattem 
must also change, as must the appearance of the 
interference pattern on a map. The angular relationships 
among strnctural elements, however, remaín constant To 
make sure that you understand the basic types of 
interference patterns, work through the following exercises. 

Problem 16ul 
(a) Create a type 2 (mushroom) fold out of paper, as 

just described. Make the fold limbs of both fold 
generations planar and the F1 fold tight Make the F2 
folds open (Fig. 16-3b). 

( b) Position the refolded fold so that the F2's trend 
north and the F2's on the upper F1 limb have no plunge. 
Sketch a stereoplot of F 1 and F2 axes and poles to S 1 and 
S2 planes. Label thern Fia• F2a• S1a• and S2a· 

(e) Rotate the upper F2 so it plunges 45°S and 
trends north. Plot the same structural elements as in (a) on 
the same overlay. Label the new orientations of the 
structural elements F1b• Fzb• S1b• and S2b· 

( d) Rotate the upper F2 to vertical, and plot the 
same structural elements on the stereoplot again, labeling 
as before. 

(e) Is it ever possible to have F2's plunging both 
north and south? 

(f) Which, if any, structural element(s) did not 
change orientation? 
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(g) IfF2 was isoclinal, could you mistake these for 
coaxial folds? Why or why not? 

(h) Why do you think this pattem is referred to as a 
mushroom fold? 

Problem 16-2 
(a) Create a type l paper fold. Make the Hmbs of 

the paper dome curved and folds of both generations open, 
asin Figure 16-3a. 

( b) Hold the fold so that the intersection of the F 1 
and F2 axial planes is oriented 300N and S 1 strikes 
northeast Sketch a stereoplot of F 1 and F2 axes, S1 and 
s2 axial planes, and S1 and S2 poles. 

(e) Rotate the S 1 and S2 axial planes toward each 
other until they are 600 apart. Plot the same structural 
elements asin (a) on a different sketch. 

(d) Repeat asin (b) but with the axial planes about 
30° apart. 

(e) As the angle between S 1 and S2 decreases from 
perpendicular, what structural element(s) plot differently 
and ín what way? 

Real field data, when plotted on stereoplots, are 
usually not as easily interpreted as the preceding examples. 
There are several reasons, including the following: 

1. Lithology, previous orientations of S-surfaces, and 
faults can influence the orientation of folds in ways 
unrelated to the refolding geometries themselves. 

2. The size (amplitude and wavelength) of a fold 
generation has an effect on the type and amount of data 
collected and, therefore, on the stereoplot pattern. If a fold 
is observed only on an outcrop or smaller scale, you may 
not measure enough data to completely define the geometry 
of the fold on a stereoplot. For example, both folds ín 
Figure 16-5 have the same orientations, but in case (a), 
F 1's are larger than F2's, whereas in case (b) the opposite 
is true. If the minor effects of the smaller generation of 
folds are ignored when taldng measurements, the stereoplot 
patterns will be quüe different, even though the 
orientations of the F 1's and F2's in both (a) and (b) are the 
same. 

3. Data can be incorrectly measured or recorded, or 
outcrops can be out of place. 

Use of Fold Asymmetry 

If interference pattems are recognized in outcrop, similar 
pattems may be presem regionally (see Figs. 16-19a and 
16-23a). One way of locating regional-scale fold axial 
traces from outcrop-scale interference patterns is to use 
parasitic fold asymmetries (S- and Z-shapes). A parasitic 
fold is one that forms on the limbs of a larger fold; 
parasitic folds can occur at aH scales. When viewed 
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Flgure 16-5. Effect of fold size on data 
collection and the resultant stereoplot 
patterns. Folds in (a) and (b) have the same 
orientations, but different relative sizes. ln 
each case, one fold generation has a minor 
effect on bedding and the other generation fold 
axes. Unless care is taken in the fiaid, the 
minor effect of a fold generation will not be 
measured, resulting in different stereoplot 
patterns, as in (a) and (b). Unlabeled points on 
stereoplots are poles to bedding. (Fold 
sketches from Turner and Weiss, 1963.) 

down-plunge, a parasitic fold is shaped like an S, Z, or M, 
depending on its location on the major structure (Figs. 
16-6a and b). The axial trace of the regional fold separates 
a domain of minor S-folds from a domain of minor Z-folds. 

Characteristic pattems result from interference of two 
generations of asymmetric folds (Fig. 16-6c). For 

A. B. 
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example, if first-generation folds (those deforming only 
bedding) are Z-shaped, and second-generation folds (those 
deforming bedding and the axial planes to füst folds) are 
S-shaped, then the resulting interference pattem looks like 
an S-shaped fold superimposed on a Z-shaped fold (called S 
on Z fold; Fig. 16-6c). 

To use parasitic fold asymmetries, define areas or 
domains on the map which contain S on Z, Z on S, S on 
S, or Z on Z folds. The domain boundaries are the axial 
traces of the two generations of larger folds (Fig. 16-6c). 
Each type of regional fold interference pattem (type 1, 2, or 
3) has a distinctive pattern of parasitic-fold domains 
(Ramsay, 1967, Fig. 10-19). 

Use of Vergence Boundaries 

When two or more generations of noncoaxial folds are 
mapped, fold vergence is often more useful than fold 
asymmetry in determining the location of regional fold 
axial traces (Bell, 1981). Fold vergence is the horizontal 
direction, within the plane of the fold profile, in which the 
upper, long limb of an asymmetric fold appears to have 
moved to cause the rotation of the short limb (Roberts, 
1974; Bell, 1981; Fig. 16-7a). Fold vergence is defined 
with respect to a geographic reference frame (north, south, 
east, and west). The vergence of an asymmetric minor fold 
does not, therefore, depend on the plunge of the fold; folds 
of the same generation that verge in the same direction are 
classified together even if they plunge in opposite 
directions. ln Figure 16-7b, for example, both minor folds 
verge north, but when viewed down-plunge, one is an 
S-fold and the other is a Z-fold, although both are on the 
same limb of the earlier fold. 

A vergence boundary separates parasitic folds of 
different vergence and represents the ax1aI trace of a larger 
fold. Vergence boundaries can be extended to areas of 
multiple folding in a manner completely analogous to fold 
asymmetry (S on Z, etc.) domain boundaries. It should be 

Figure 16-6. An example of 
domainal mapping on the basis of 

~~~~.-...,r-"'l.,..__,~s2 

asymmetric minor fold interference 
patterns. lnterference of large
scale first folds (a) and second 
folds (b) produces four domains (e) 
that are separated by the axial 
traces of the first and second folds, 
labeled S1 and S2. Each domain is 
characterized by the type of 
small-scale interference pattern 

tN present (i.e., Z on Z, Z on S, S on S, 
S on Z). The circled areas are 
enlarged to show examples of 
Z-on-S and S-on-Z folds. 
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Flgure 16-7, Fold vergence. (From Bell, 
1981.) (a) Sketch illustrating the definition of 

fold vergence; (b) telationship between 
vergence and Z and S folds. Viewed down 
plunge, fold A is an S and fold B is a Z, but both 

verge N. 

noted that the technique of using either fold asymmetry or 
vergence to locate regional fold axial traces is useful only 
where pattems of minor folds are well exposed over a large 
area and are easy to recognize and interpret. 

Problem 16-3 
What is the vergence direction of each fold generation 

for the S-on-Z-fold in Figure 16-6c? The Z-011-S- fold? 

S olution 16-3 
For the Z-011-S-fold, the Z-fold is east-verging and the 

S-fold is west-verging. For the S-on-Z-fold, the S-fold is 
west-verging, and the Z-fold is east-verging. 

H.>-5 UNRAVEUNG MUl TIPLE FABRICS 

Use of Follatlons 

Foliations or deavages are useful in understanding poly
phase deformation ín two ways: (1) In areas where 
depositional features are stiU preserved, cleavage/bedding 
relationships coupled wüh the direction of sedimentary 
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younging can be used to unravel complex fold geometries; 
and, (2) Multiple foliations provide cross-cutting 
relationships that can be used to derive the relative age of 
different generations of structures. 

In rocks that have been földed only once, the 
relationship of cleavage and bedding can indicate whether a 
unit is right-side up or overturned where both deavage and 
bedding dip in the same direction (Fig. 16-8a). On the 
right-side-up limb of a fold, cleavage is steeper than 
bedding, whereas on the overturned limb of a fold, bedding 
is steeper than cleavage. Sedimentary features (e.g., graded 
bedding) will show the same younging direction (i.e., 
direction of stratigraphically younger rocks) as the 
cleavage/bedding relationshíps. In rocks that have been 
földed more than once, sedimentary younging and 
cleavage/bedding may disagree. If the generation of the 
cleavage can be determined (e.g., by cross-cutting 
relationships), then it is possible to determine wlüch part 
of the larger refolded structure the outcrop represents, as 
shown in Figure 16-8b. 

Problem 16~4 

At an outcrop, bedding is overtumed, cleavage is 
steeper than bedding, and bedding and deavage dip in the 
same direction. From what location on Figure 16-8b is the 
outcrop if (a) the deavage is S 1; (b) the cleavage is S2? 

B. 

figure 16-8. The relationship of c!eavage, 
bedding, and younging (stippling shows 
direction of sedimentary grading). (a) Single
fold generation; when cleavage and bedding 
dip in the same direction, cleavage dips 
steeper than bedding on right-way-up limb, 
shallower than bedding on overturned limb; (b) 
refolded recumbent fold showing two 
cleavages. (Adapted iram Wilson, 1982.) A, 
B, C, and D ara locations referred to in Problem 
16-4. 
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S olution 16-4 
(a) The outcrop is at location C; (b) the outcrop is at 

location D. Note that at locatíon C, S2 is also steeper 
than bedding but dips in the opposite direction. 

The foldfacing direction is the younging direction 
measured normal to the fold axis on an axial-planar surface 
(Fig. 16-9; Shackleton, 1957). It is equivalent to the 
younging direction in the hinge of a fold. ln rocks that 
have been földed only once, the fold facing direction will 
always be the same, regardless of where it is measured. In 
rocks that have been földed more than once, fold facing 
directions may change across an area or even on a single 
axial-planar surface (Fig. 16-9). The change in fold facing 
can be used to locate the axial traces of folds that predate 
those for which facing has been determined. The axial 

Opposed younging 
directions 

Flgure 16-9. 

Axial p!ane cleavage 

Facing direction 

Refolded recumbent fold 
show1ng roia iacing anJ yuu11gi11\:J r<.:;:,t;.:,,, 
ships. On opposite limbs of the early fold, the 
fold facing direction changes. The axial trace 
of the recumbent fold is located where the 
facing direction changes. Stippling represent 
graded bedding. (Adapted !rom Borradaile, 
1976.) 

25m 
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trace of the earlier fold is located where the facing direction 
changes (Fig. 16-9). Note that in all cases the younging 
directions on opposite limbs of a fold will point in 
opposite directions. 

Problem 16-5 
The incomplete cross section shown in Figure 16-10 

is of folded quartzites and schists at Bonnet Shores, Rhode 
Island. F2 folds that can be traced in outcrop are shown; 
the folded surface is bedding. The facing directions on s2 
surfaces are shown where measurable. Late-stage, open, 
monoclinal folds and their axial planes (dashed lines) are 
also shown. The depths of F2 fold hinges were determined 
using down-plunge projection (see Chapter 13). Finish the 
cross section, using the facing information and the style of 
folding shown. Connect all layers with solid lines below 
the surface and dashed lines above. Is this a unique 
solution? Do you have enough information to say in 
which direction F1 folds verge? Do you have enough 
information to say in which direction F2 folds verge? If 
so, what is the vergence direction? 

Where multiple foliations are present, their relative 
ages can be determined by studying cross-cutting 
relationships. Cross-cutting relationships are sometimes 
easy to determine, as when an early cleavage is crenulated 
to form another. At other times relationships must be 
determined using thin sections, or by correlation with fold 
generations. ln many terranes, especially metamorphic 
terranes, relict and incipient cleavages that are rarely 
observed in the field can be identified in thin section. For 
example, Fígure 16-11 shows a rock that displays two 
macroscopic foliations: a metamorphic foliation (S 1) cut 
by a differentiated crenulation cleavage (S2). Microscopic 
examínation, however, mai1,;ai.cs Üaat i.Í•<> mi\;a._.:;..,..,;; 

minerals in the sample are aligned in another direction, 
defining an S3 fabric. S 1 and S2 are both defined by 
concentrations of micaceous minerals, and s3 is defined by 
the alignment of the micaceous minerals. 

If rnore than one foliation exists over a large area, then 
more than one phase of folding has, in most cases, 

Figure 16-10. An incomplete cross section across Bonnet Shores, 
Rhode Island. (From Reck, 1985.) Tight folds of layering ara F2; open, 
monoclinal folds with axial pianes dashed are F 4. Arrows point in tha 
direction of facing of the tight folds. 
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2mm. 
1...-..-.J 

Figure 16-11. Sketch of three cross
cutting cleavages from the Rough Ridge 
Formation, Uano Uplift, Texas. (Mosher, 
unpublished data.) S1 is a metamorphic 
layering, S2 is a differentiated crenulation 
cleavage, and 83 is an alignment of micas ina 
third orientation. Expanded views: elongate 
grains are biotite and muscovite; equant grains 
are quartz and feldspar. 

occurred. Exceptions to this generalization occur in wide 
shear zones (e.g., S-C fabrics, as described in Chapter 11) 
and where more than one cleavage has been produced by 
progressive defonnation during a single phase of folding. 

Use of UneaUons 

Many different types of lineations can develop during 
deformation, including intersection lineations, slip 
lineations (e.g„ slip fibers and grooves), mineral 
lineations, crenulations (the crests and troughs of a 
crenulation define a lineation; the crenulation cleavage 
itself is a planar structure), and elongated dasts or grains. 
Mineral lineations can be defined by stretched crystals, 
pressure-shadow overgrowths, alignment of inequant 
grains, or streaks of microcrystalline mineral clusters. 
Most lineations form either ín the direction of extension 
during shearing (stretching lineations) or parallel to the 
long axis (X-direction) of the finite strain ellipsoid during 
folding. ln general, the study of lineations can provide 
information on the kinematics of deformation, can be used 
to determine relative ages of superimposed structures, and 
can help to trace the orientations of fold axes in an area. 
There are three common applications of lineation analysis: 

1. Multiple generations of shear-related lineations may 
indicate changes ín the direction of motion during shearing 
and can be used to reconstruct complex movement histories 
within and across shear zones. 
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2. Intersection lineations that are defined by the 
intersection of a foliation wüh a földed surface (e.g., 
bedding with S1) give the trend and plunge of fold axes. 

3. ln pelitic rocks several generations of nonparallel 
crenulations may develop (Fig. 16-12). Cross-cutting 
relationships among crenulations may be discemible on the 
crenulated surface but usually must be determined using 
thin sections. If the crenulation cleavages associated with 
the crenulation lineations are axial planar to larger folds, 
the orientations and crosscutting relationships observed for 
the crenulations indicate the relative ages and orientations 
of the larger folds. 

Figure 16-12. Cross-cutting crenulations 
in the Condrey Mountain Schist, northern 
California. Pencils parallel crenulation axes. 

16=6 CORRELATION OF STRUCTURAL 
GENERATIONS 

One of the most difficult aspects of working in 
poly-deformed terranes is establishing age equivalency 
among minor structurcs from outcrop to outcrop or area to 
area. Assigning a structure to a particular generation is 
simple when all generations of structures are present, and 
mutual cross-cuuing relationships can be observed. This 
süuation is, unfortunatel y, the exception rather than the 
rule. A combination of information on orientation and 
style of minor structures, coupled with knowledge of the 
conditions of deformation during which the slrnctures 
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formed, provides the soundest basis for correlation. 
Structures cannot be correlated on the basis of a single 
criterion. We discuss next the individual components of a 
structural correlation. 

Correlatlon Using Orlentatlon 

Correlation of structures between outcrops using 
orientation assumes that the orientation of a generation of 
structures is constant across the region. If this assumption 
is accepted, all folds of a single generation, for example, 
should be coaxial and coplanar, and the axes and axial 
surfaces of parasitic folds should parallel those of 
larger-scale folds (Pumpelly's rule). Regional constancy of 
orientation can occur only when the directions and 
magnitudes of stresses are uniform across an area. 
Although uniform stresses rarely prevail along or across an 
entire orogenic belt, it is often reasonable to assume that 
stresses were uniform within a discrete portion of the belt. 
Several other factors that are discussed next can also affect 
regional constancy of orientation. 

Problem 16-6 
Cleavage planes in a quartzite unit are oriented 

Nl0°E,45°SE; Nll0 E,40°SE; N05°E,48°SE; Nl3°E, 
43°SE; N04°E,42°SE. Folds of the same generation 
cannot be found. The cleavage in the quartzite resembles a 
cleavage (in terms of conditions of formation) found in a 
nearby schist unit. The cleavage in the schist is 
axial-planar to mappable folds. The axes of the folds in the 
schist are oriented S40°E,28°SE, and the axial-planar 
cleavage Nl 1°E,46°SE. Can the two cleavages be of the 
sarne generation? 

Method 16-6 
Plot the poles to the cleavages and the fold axis on a 

stereoplot. All cleavage poles plot in the same point 
concentration. The fold axis lies in the plane of cleavage. 
On the hasis of these relationships, you can tentatively 
conclude that the cleavages in both units arc of the same 
generation. 

Two factors must be considered before the orientation 
of minor linear structures can be used for correlation. 
First, only initial orientations can be compared. If, for 
example, an area contains F1 through F3, then the present 
orientation of F1 is probably of little value for correlation. 
The orientation of F2's might be usable, however, if they 
all fali on a great or small circle with F3 as the pole or 
axis. Second, the orientations of fold axes arc influenced 
by the orientation of the surfaces that they fold. If two 
limbs of an early fold (e.g., F 1) are in different orientations 
relative to the stresses that produce the next fold generation 
(e.g., F2), then the orientations of the fold axes on the two 
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opposing limbs will be different (Fig. 16-13). This effect 
can cause unexpected variations in stereoplot patterns as 
well as misidentification of the generation of structure. 
When early folds are tight to isoclinal, the effect of initial 
surface orientations on later folds is usually negligible. 

First fotds Superimposed fotds 

Flgure 16-13. Effect of the orientation of 
first-fold (F1) limbs on the orientation of 
second-fold axes (F2). (From Ramsay, 1967.) 
(a) First folds with divergent limbs; (b) 
superimposed second folds. F1 axis 
orientations differ on opposite F1 limbs. AxPl2 
is the F2 axial plane. 

When correlating planar elements, it is also important 
to compare only initial orientations. The orientation of the 
!ast-förmed S-surface generally shows minor variation in 
orientation, unless it is a crenulation cleavage or a cleavage 
that fans around folds. The orientation of a crenulation 
c!eavage depends on the orientation of the surface that is 
crenulated. The orientation of cleavages in sedimentary 
TOCKS can oe Si.füngiy aHecte<l Üy iiÜ1ulvgy, ,.;~\Oavüg(.i> ~ü 
competent beds tend to fan around folds and therefore have 
the same strike as the axial plane, but have different dips. 
If the last-formed S-surface is not a crenulation cleavage 
and does not fan on a mesoscopic scale, yet its poles scatter 
on a stereoplot, then there has probably been subsequent 
deformation. 

Other factors that must be considered when using 
orientation of linear and planar structures for correlation of 
structural generations between outcrops include (1) the 
presence of faults that locally reorient folds, (2) the 
presence of rigid objects (e.g., plutons) that can locally 
perturb the stress system and thus the orientations of 
structures, (3) the formation of coeval cross- or 
conjugate-folds with two orientations of axes and/or axial 
planes, and (4) the transposition (reorientation by 
deformation) of earlier structures into parallelism with the 
later structures. These complicating factors can usually be 
detected, and where appropriate, the affected areas can be 
treated as separate domains. 



Chapter 16 lnterpretation of Poly-Deformed T erranes 

Correlatlon Uslng Style 

The style of a fold refers to all the morphological features 
of a fold, such as the imerlimb angle, the fold shape in 
profile or in three dirncnsions, and the type of axial-planar 
foliation. When analyzed with down-phmge projection 
techniques, fold styles derived from the study of minor 
strnctures in different fühologies provide an additional 
constraint on regional-scale fold geometries at depth. 
Correlation of structures between outcrops using fold style 
assumes ihat folds belonging to a given generation share a 
characteristic range of styles that reflect the conditions of 
deformation. For example, all F1 folds ina region can be 
isodinal and have highly thinned limbs and thickened 
hinges, whereas all F2 folds can be tight similar folds, and 
all F3 folds can be open chevron folds (Fig. 16-14a). Fold 
style is, however, strongly influenced by lithologic factors 
(unit composition, layer thickness, and ductility contrast 
between layers) and variations ín strain magnitude. 

Several generalizations should be rernembered when 
analyzing fold style. First, well-foliated rocks will tend to 
form angular, concentric folds regardless of generation or 
conditions of deformation. In the preceding example, 
well-foliated schists and phyllites will be likely to form 

A 

'~ 
-
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chevron folds during both F2 and F3 (Fig. 16-14a and b), 
whcreas massive quartzites wiH probably not fonn chevron 
folds during F3 (Fig. 16-14c). Second, interlimb angle 
depends on both lithology and the degree of shortening; 
thickly layered and competent unüs will tend to form open 
folds regardless of generation. Third, fold tightness can 
also reflect the number of times the fold has been refolded 
and the location of the fold relatíve to later structures; the 
observed tightness does not necessarily reflect the original 
tightness. For exarnple, first-generation folds are often 
isoclinal, second tight, and third open. Thus, in the 
preceding example, if F1 folds were originally closed, 
present F 1 folds on limbs of F2 folds and away from F3 
folds can be closed or tight, whereas all others can be 
isoclinal. Fourth, fold shapes are affected by the 
orientation of the surfaces they fold. For example, the 
shape of an F2 fold may be different on nonparallel limbs 
of an F1 fold (Fig. 16-15). 

One of the most useful aspects of style for correlation 
is the type of axial-planar foliation. For example, the 
axial-planar foliation of F1 folds may be a slaty cleavage, 
whereas the axial-planar foliation of the F2 folds may be a 
crenulation deavage. Caution must be used in correlating 
folds using their associated foliations, for the formation and 

Figura 16-14. Fold styles. (Examp!es from Beaverhead, Rhode 
Island; Mosher, unpublished data.) (a) Typical styles for F1, F2. and F3 
folds; (b), (e) effect of lithology on fold style; (b} is example of F2 fold 
style in schists (compare F2 in (a)), (e) is example of F3 fold style in 
thickly bedded quartzites (compare F3 in (a)). 
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Superimposed fotds 

First fold 

type of a foliation is influenced hy lithology and the 
magnitude of strain. Crenulation cleavages, for example, 
are common in schists and phyllites and rare in quartzites, 
because the former contain a preexisting, closely spaced 
layering. 

Problem 16-7 
Broken Hill, Australia, is one of the leading 

lead-zinc-silver districts in the world. Ore minerals are 
found in poly-deformed Precamhrian rocks. Original 
hedding is completely transposed, and the oldest planar 
element (laheled So) is a metamorphic compositional 
handing defined hy quartzo-feldspathic layers and quartz
mica schist layers. The schistosity in the schist (S 1) is 
sometimes parallel to s0, hut not always. Figure 16-16 
shows carefully drawn fold profiles from the area 
(Anderson, 1971). The geologist studying these folds 
divided them into groups on the hasis of fold style and the 
relationship between folds and foliations. 

(a) Study the sketches of fold profiles and describe 
completely the style of one fold from each group. Include 
the relationship hetween s0 and S1 and any other 
foliations. 

( b) What criteria do you think the geologist used to 
divide the folds into the three groups? Do you disagree 
:.=:.·~~~ ~ ........ _. ~~<:'~~!'!'~?-rtt!:.r) Tf t:'-"' n1hu? Tn 'lUh'.lt orfiP_r illrl thP: .„ .... „„ ........ „J _ ........... 0------..-""'""-"- .:;..:;. ~'"'-'·· „~ __ J - - -- ----- -- ' - - cc 

groups of folds form (i.e., which group is F1)? 

Correlation Based on Condltions 
of Deformation 

Another, often neglected, method of correlating generations 
of structures is the grouping of structures hy the conditions 
of deformation prevalent during their formation. Clues to 
deformation conditioninclude (1) the type of rock fahric 
present and (2) the metamorphic grade indicated hy minerals 
förmed along foliation planes or that define lineations. The 
relatíve ages of structures can be constrained hy recognition 
of the time(s) of mineral growth with respect to a structural 
element. Next, we hriefly outline approaches used for 
correlation using conditions of deformation. To fully 
appreciate the possible complexity of rock fabrics in 
poly-deformed terranes requires specialized training (see 
books by Spry, 1969; Nicolas and Poirier, 1976; and 
Hobbs, Means, and Williams, 1976). 

Under the same conditions of deformation, similar 

Symmetric 
new folds 

Asymmetric 
new folds 

flgure 16-15. Effect of the 
orientation of first-fold limbs on the 
shapes of second folds. (From 
Ramsay, 1967.) 

lithologies should contain similar fabrics. If, for example, 
metamorphic conditions during F1 were upper amphibolite 
facies and during F2, lower greenschist facies, then 
distinctly different fabrics would be associated with each 
fold generation. S1 might be defined by aligned muscovite 
and sillimanite, and s2 might be a pressure-solution 
cleavage. ln different lithologies, S1 and S2 might be 
different (e.g., S1 defined by aligned homblendes and s2 a 
crenulation cleavage with no associated new mineral 
growth in mafic schists), but in each lithology, S1 and s2 
formed under a different set of metamorphic conditions. 
Thus, each fabric can be correlated between outcrops despite 
fabric differences in different lithologies. When conditions 
during two deformations are similar, such as during a phase 
of progressive deformation, or when successive meta
morphic events cause partial or complete replacement of an 
earlier fabric by mimetic recrystallization (cf. Williams, 
1985), correlation by fabric style will be difficult. ln these 
situations correlation of minor structures on the hasis of 
fabric type requires careful study of thin sections that show 
cross-cutting relationships and critical mineral assem
blages. Deformation conditions can also be assessed by 
studying the deformation mechanisms (e.g., pressure 
solution versus dynamic recrystallization) affecting rocks 
during a given event. This too requires careful thin-section 
work 

Grouping of structures by their ages relative to periods 
of metamorphic mineral growth provides another way of 
correlating minor structures. Structures are classified as 
pre-, syn-, or post- a given metamorphism on the hasis of 
whether, in thin section, metamorphic minerals are aligned 
along or cross-cut a foliation. This approach can yield 
detailed chronologies of conditions during deformation and 
fabric formation in successive deformational (and 
metamorphic) events. ln some lithologies porphyroblasts 
may overgrow foliations and trap inclusions that provide a 
glimpse of an earlier fabric. The matrix to the 
porphyroblasts (particularly if quartz-rich) records the latest 
event(s). Many micaceous minerals will often define relict 
and incipient foliations. 

When using deformation conditions to correlate 
generations of structures across an area, it must be 
remembered that different conditions can occur during a 
single phase of deformation, so that this is not a unique 
tool for correlation. Changes in metamorphic grade across 
an area, for example, may be accompanied by changes in 
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the type of rock fabric developed during a single phase of 
de/ ormation if the defonnation and metamorphism were 
contemporaneous. As another example, a fault may 
juxtapose rocks that were being deformed near the surface 
with rocks that were deformed at greater depths. Units on 
opposite sides of the faults may have expcrienced the same 
phases of folding, yet the conditions they experienced 
during dcfonnation could be quite different. 

16·7 POSSIBLE ORIGINS OF POLYPHASE 
STRUCTURAL PATTERNS 

Polyphase Pattems Formed 
During a Single Phase of Deformatlon 

In some regions rocks that display more than one 
generation of structures are the result of a single phase of 
nonprogressive deformation. For example, a type 1 
interferencelike pattern may merely reflect differential 
shortening along the length of a fold or extension parallel 
to the lcngth, which results in doubly plunging folds. A 
pattern formed from doubly plunging single-generation 
folds can be distinguished from a pattern formcd from two 
overprinted folds by studying the foliations. The farmer 
pattern can have only a single axial-planar foliation, 
whereas the latter pattem may contain two. The case for 
two stages of folding will be further supported if it can be 
shown that the two fold generations formed at different 
times relatíve to metamorphism. Sheath folds, which are 
highly noncylindrical tongue-shaped folds, also display 
eye-type interference patterns but form in shear zones 
during a single stage of shearing. These folds do not reílect 
the overprinting of two noncoaxial folds. A sheath-fold 
pattem can be dlstmgmshea rrom a uue lllLerierem:e paucm 
by studying the structural setting in which it occurs; sheath 
folds arc commonly associated with other structures, such 
as mylonitic foliation, indicative of their position in a 
shear zonc. 

Two cleavages can form during a single phase of 
folding. Early, layer-parallel compression can produce a 
cleavage that is reoriented during continued folding. At a 
later stage in the folding, a second axial-planar cleavage 
may develop, which will overprint the first cleavage (cf. 
Boulter, 1979). Flattening of folds during the final stage 
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of a deformation event may reorient an early cleavage and 
generate a second cleavage. The absence of two fold 
orientations in a region of two cleavages is a clue that both 
cleavages formed during the same phase of folding. ln 
addition, it is likely that there will be only one orientation 
for intersection lineations and that the cleavage planes 
themselves wíll not be folded. 

Dlstlngulshlng Progresslve Deformatlon 
from Tlme-Separated Deformatlon 

One of the most difficult challenges that a geologist faces 
when working in poly-defonned terranes is detennining 
whether multiple generations of structures resulted from a 
single phase of progressive deformation or discrete, 
lime-separated phases of deformation. Often this task is 
impossible. 

Progressive deformation is usually the result of a 
phase of shearing. Such a defonnation can produce coaxial 
or noncoaxial structures depending on the orientalion of 
layering with respect to the shear stresses. ln areas 
involved in thrust-related ductile shearing, coaxial or nearly 
coaxial superimposed folding predominates. ln ductile 
shear zones related to strike-slip or transpressive motion, 
noncoaxial folds farm. 

Progressive deformation can clearly be ruled out if 
minerals related to different fabrics can be dated, using 
isotopic techniques, as having formed at distinctly different 
limes. If an area is known to have undergone more than 
one orogeny (or an orogeny is known from work in other 
areas to have distinct events), and different structures clearly 
förmed under different conditions and/or at dislinct limes 
relative to metamorphic minerals, it may be possible to 
interpret (but not prove) that the deformalions are the result 
oi separale orugellleS \Or cVefüSJ. H 1s i.rnuw.q ea<>tc.: m 
detennine whether a defonnation is not progressive than 
whether it is. All the following criteria should be true for 
a deformation to be progressive: (1) all structural 
generations arc formed under the same metamorphic 
conditions or show evidence of a gradual change in 
metamorphic conditions as the deformation progresses; (2) 
the age of all structures relative to metamorphic minerals 
will be the same or again show a gradual change; and (3) 
all generations of structures must be able to be produced by 
the same or a gradually changing stress field. 

EXERCISES 

Equal-angle plots are provided for the following exercises. To answer many of 
the questions, you will need to transfer some infonnalion onto an overlay. Trace 
the primitive great circle and label north on all overlays. For most exercises, you 
can draw a dashed line around the cluster of points in question or sketch ín the 
average great circle or pole. A small equal-angle net at the same scale as the 
figures is provided as Figure 16-17. 



Chapter 16 lnterpretation of Poly-Deformed Terranes 

1. Figure 16-18 is a photograph of a fold interference pattem in an outcrop of the 
Condrey Mountain Schist, northcrn California. Lay a piece of tracing papcr over 
thc photograph and skctch the white, quartz-rich layers. Draw and labcl the axial 
plancs to all fold generations. How many gencrations of folds arc thcre in this 
profile? What typc of interference pattern docs this appcar to be? What additional 
information would you nced in order to verífy this conclusion? 

N 

flgure 16-17. Wulff net for use with the 
exercises. 

Figure 16-18. Fold interference pattern in 
the Condrey Mounlain Schist, northern 
California. 

2. The map in Figure 16-19a (Barberton Mm:mtain Land, Eastern Transvaal, South 
Africa) shows a sequence of Archean slate, quartzite, metaconglomerate, 
metagreywacke, and metachert. The metagreywacke (unit 3) is the oldest unit in 
the area; slates (unit 1) and quartzites and metaconglomerates (unit 2) are 
interlayered. The outcrop pattern shows the imerference of two generations of 
folds. 

(a) Draw on the map the axial traces of the two fold generations. Label the 
earliest generation FA and the latest generation FB. Show whether they are 
anticlines or syndines and indicate the direction of plunge. What type of 
interference pauem is this? How do you know? 
(b) Sketch and label the types of fold interference patterns (e.g., S on Z, and so 
forth) you would expect to see at map locations A, B, C, and D. 
(e) When did the slaty cleavage fönn relatíve to FA? Fs? What is your evidence? 
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o. 

N 

+ 

Slaty cleavage 

Figure 16-19. Barberton Mountain land, 
Eastern Transvaal, South Africa. (Adapted 
from Ramsay, 1965.) (a) Geologic and struc· 
ture map showing inlerferance pattern with 
localities A, B, C, and D indicated. Units ara 
1-slate, 2-quartzite and metaconglomerate, 
and 3-metagraywacke and rnetachert; (b), (e) 
lower-hemisphere, equal-angle net for the 
northwest and southeast FA fold limbs. 
Bedding poles define graat circles; (d) 
equal-angle net showing polas to slaty 
cleavage. 

(d) In Figure 16-19b and e, poles to bedding for the northwest and southeast limbs 
of FA are plotted on separate stereoplots and define two great circles. The poles to 
these great circles are FB axes. What is the angle between these axes? Why are 
the Fs axes on the two limbs not parallel? 
(e) Poles iO the slaty cleavage define a great cirde (Figure 16-19d). Sketch in the 
average great circle and find its pole. Has thls cleavage been földed by FB? If so, 
would you expect the fold axis to coincide with those for the FA fold limbs? Does 
it? 

3. Figure 16-20 shows photographs of fold styles in Proterozoic units of north central 
New Mexico. The units in this area are multiply deformed schists and quartzites. 
The area has been divided into three structural domains. This exercise allows you 
to follow the actual steps taken when interpreting a poly-deformed region. Each 
domain will be analyzed separately and then compared to previously analyzed 
domains. Each new domain may provide information that changcs earlier 
interpretations or darifies remaining questions. When all domains are mapped, a 
final interpretation of the entire area is made. 

(a) In the first domain, a pronounced metamorphic foliation (S 1) is parallel to 
bedding (So) and is földed by isoclinal, overtumed to recumbent, second-generation 
folds (F2) with an axial-planar cleavage (Sz) (Fig. 16-20a). SmaU, open F3 folds 
and an axial-planar crenulation cleavage (S3) clearly cross-cut and deform F2 and 
S2. Equal-angle plots of poles to SofS 1, S2, and S3, and of F1, F2, and F3 axes 
are shown in Figure 16-2la. Most F3 axes on the plot are measurements of 
crenulation axes on So/S 1. Some minor, open, chevron or box folds also fold 
SofS1, but the relationships between these folds and F3/S3 cannot be determined. 
When plotted on a stereoplot their orientatíons overlap or are close to that of F2; 
for this reason, they have been grouped with F2 folds. 

(i) What is the orientation of the regional fold axis as defined by the great 
circle containing the poles to SofS l? 
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Figure 16-20. Fold styles of 
Proterozoic rocks in north central 
New Mexico. (a) F2 fold s; (b) F 4 
folds. 

(ii) Poles to Sz surfaces define a díffuse great círcle, but most Sz poles are 
concentrated in a point maximum wiLhin Lhis great circle. The point 
maximum represents the predominant {or average) orientation of Sz in the 
area. What is the orientation of Lhe average Sz plane? (Use the second 
stereoplol. The center of Lhe area with Lhe highest density of points will be 
most representative of Lhe average orientation). Does this plane contain the 
minor Fz fold axes? Docs this plane contain Lhe regional fold axes? Where do 
the minor Fz folds plot relatíve to the regional fold axis? What do you think 
is Lhe generation of the regional fold? 
(iii) Now find the best-fit great circle to the Sz poles. (Use the second 
stereoplot). What is the orientation of Lhe pole to this great circle? This 
represents the axis about which the Sz surfaces are refolded. Does it plot 
within the clustcr of minor F3 fold axes? Remembering that F3 fold axes are 
mostly crenulations of SofS 1, how can you explain the divergence of Lhis axis 
and the measured F3 fold axes? 
(iv) F3 axes and s3 poles also show a large amount of scatter. If S3 surfaces 
were folded, the fold axis would be the pole to the best-fit great circle. What 
is the orientation of that pole? Remembering that s3 is a crenulatíon 
cleavage, what are some other possibie causes of the scatter? 
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(b) ln a nearby domain (domain 2), the same struclural elements (Figure 16-2lb) 
show the same styles. ln this domain, however, open chevron or box folds of 
So/S 1 locally fold S3 surfaces, indicating that they are F 4 folds (Fig. 16-20b). 
(Measurements of F 4 folds are from F 4's that fold SofS 1.) These folds overlap ín 
orientation with the isoclinal, overtumed to recumbent F2 folds, but the F4 folds 
generally trend S60°W, whereas the F2 folds generally trend east-west. A cross 
section of this domain requires two styles of large-scale folds, which mimic F2 
and F 4 minor fold sty les, to describe the variations in strike and dip of SofS 1. 

(i) What is the orientation of the regional fold axis defined by the great circle 
containing the poles to SofS1 in this domain? 
(ii) Poles to S2 surfaces also define a very diffuse great circle, within which is 
an equally ill-defined point maximum. What is the orientation of the average 
S2 plane? (Find this plane using Lhe method given above ín part (ii) of (a); 
this plane should contain the minor F2 fold axes.) Does it contain the 
regional fold axis? Where do the minor F2 folds plot relatíve to the regional 
fold axis? minor F3 folds? minor F4 folds? To what generation(s) of 
structure(s) do you think the regional folds belong? Why? 
(iii) The amount of scatter of S2 poles on the stereoplot reflects both F3 and 
F 4 folding. Find the best-fit great circle to the S2 poles. What is the 
orientation of the pole to this great circle? To which minor fold axes, F3 or 
F 4, does it plot closest? Does this answer fit the information given about the 
large-scale folds in this domain? 

(iv) What is the orientation of the pole to the great circle containing poles to 
S3? Why does this pole diverge somewhat from the measured F4 fold axes? 
(v) Compare the pole to the great circle defined by poles to s3 in domain 1 
with the orientation of the minor F 4 fold axes in domain 2. Now, what do 
you think is the most likely cause of the scatter in poles to s3 in domain l? 
To what generation of structure do you think the open, chevron to box folds 
observed in domain 1 belong? If you could go out into the field, what would 
you check Lo verify this conclusion, remembering that the relationship to 
F3/S3 ín domain 1 cannot be determined? 
(vi) After comparing domains 1 and 2, what generation do you think thc 

. ~ - - . . . . . - ,... _,.. ~ 

-- ------ --
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generation, what common structural feature could cause the difference ín 
orientation? 

(e) A third domain is several miles northwest of the other two domains. Here few 
minor structures are observed, but many regional-scale, east-northcast-plunging 
folds are defined by the outcrop pattcm. Stereoplot data are shown in Figure 
16-2lc. 

(i) What is the orientation of the regional fold axis in this domain defined by 
the great circle containing the poles to SofS 1? Does the average s2 plane 
contain the regional fold axis? Where does the regional fold axis plot relative 
to measured minor fold axes? Are the regional folds of the same generation of 
structures as s2 and measured fold axes? 
(ii) Compare the regional fold axis orientation and the minor folds for this 
domain to minor and regional fold orientations in the other two domains. To 
what generation of structure do you think the regional folds in domain 3 
belong? What is a possible cause for the change in plunge direction? 
(iii) Using the information from all three domains, give the sequence of 
events, including the style and orientations of the structures. 
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A. 

0 

4. Beaverhead and Bonnet Shores are two small areas, approximately 2 km apart, 
within the Naragansett Basin of Rhode Island. The basin metasediments are 
polydeformed, and not all structural elements or generations are found at both 
localities. 

(a) ln the Beaverhead area, graphitic schists and quartzites show rare, isoclinal F 1 
folds of bedding that have an associated well-developed axial planar schistosity 
(S 1). An s2 crenulation cleavage of S1 and small mesoscopic F2 folds are 
observed locally. F3 folds deform S1 into upright box and chevron folds and 
reorient the s2 deavage. An associated axial-planar crenulatíon cleavage (S2) is 
locally present. Sketches of F1, F2, and F3 fold styles are shown in Figure 
16-14. 

(i) On a stereoplot (Fig. 16-22a), bedding poles define a weak great circle 
girdle that is about 90° from F 1, and both bedding and S 1 poles fall on a great 
circle 90° from F3. Minor F2 folds (oriented Nl0°W,00°) have little effect 
on the distribution of s0 and S1 poles and have been omitted for clarity. 
What type of interference pattern would cause the angular relationships shown 
by the stereoplot? 
(ii) Assuming that no other deformation occurred after F3, why do the poles 
to s3 plot in three clusters? (Hint: Think about the style of F3 folds.) 
(iii) In this area, F2 and F3 fold styles are identical in the schists. What two 
features could you use to distinguish them when mapping? 

(b) At Bonnet Shores, there are four distinctly different and cross-cutting cleavages 
and four generations of nearly coaxial folds ín schists and quartzites. The latter 
preserve younging indicators such as graded- and cross-bedding. F 1, F2, and F 4 are 
shown in your completed version of Figure 16-10. F3 folds (not shown) are 
small-amplitude, closed folds with axial planes that fan around the F4 folds. S1 is 
defined by aligned biotite, muscovite, and elongate quartz grains, s2 is defined by 

N B. 

0 „ 

N 

0 

0 
0 

Figure 16Q22. lower-hemisphern, equal-angle nets of (a) 
Beaverhead (from Burks, 1981) and (b) Bonnet Shores, Rhode Island. 
(From Reck, 1985.) 
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muscovite and biotite, and S3 is a crenulation cleavage. S1, S2, and S3 were 
folded by open, monoclinal folds (F 4) with no associated axial-planar cleavage. A 
crenulation cleavage oriented approximately east-west clearly postdates s3 and 
changes orientation across F4 fold limbs. 

(i) The poles to all cleavages fall on the same great circle (Fig. 16-22b) and 
cannot be separated. Does this require that the folds be coaxial? 
(ii) The different amounts of scatter of the poles for the three cleavages 
reflects the relatíve ages. lndicate the age (i.e., S1, S2, and S3) of SA, Ss, 
and Se (they are not in chronological order) on the stereoplot. Why is this 
technique for sorting generations usable in this area, even though s3 is a 
crenulation cleavage? 
(iii) The east-west striking crenulation cleavage that postdates s3 could be 
folded by F 4 because it changes orientation across F 4 fold limbs. Could the 
cleavage have förmed after F4? Why or why not? 
(iv) Using style, orientation, and deformation conditions, which, if any, of 
these generations could (or are likely to) have förmed during a phase of 
progressive deformation? What are your reasons? 

(e) Construct a table showing style and orientation by generation for both 
Beaverhead and Bonnet Shores. Use this table to correlate the different generations 
(e.g., F*, S* at Beaverhead correspond to F#, S# on Bonnet Shores). 

5. A portion of the Connecticut Valley Synclinorium near Strafford Village, 
Vermont, is shown in Figure 16-23a. The inset in the lower right comer is a map 
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Figurn 16-23. Strafford Vil!age area, Vermont. (a) Structure rnap 
showing interferenca pattem; one marker bed shown. (Adapted frorn 
White and Jahns, 1950.) (b) Lower hemisphere, equal-angle nets 
showing L (crosses) and poles to S (dots) tor entire area and each 
domain. Note domains 11 and 111 are similar and can be merged to farm a 
single domain. 

of the regional fold pattem for the same units. The units define an interference 
pattem. Axial traces of the two fold generations are shown (FA is older than FB); 
a single, upright FB antidine separates a series of overtumed FA anticlines and 
synclines. Also shown are the orientations of the prominent schístosity (S) and an 
intersection lineation (L) parallel to the axes of FA minor folds. The area is 
divided into three structural domains whose boundaries are parallel to fold axial 
traces. 
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(a) ln what direction do the axial planes of FA folds dip in domains II and III? ln 
domain I? 
(b) Note the change in trend and plunge of the intersection lineations. ln what 
general direction do the FA folds plunge in domains Il and Ili? ln domain I? 
(e) ln what direction(s) does the FB anticline plunge? Look at the outcrop pauem 
shown on the inset map as well as the structural data. 
(d) Fold a piece of paper to produce the interference pattern shown. Use the 
outcrop pattem, the axial traces, and the structural data. What type of interference 
pattem do you think FA and FB fonn? 
(e) If the schistosity shown on the map is S 1, are the FA axial traces F 1 folds or 
F2 folds? Explain why. 
(f) The map pattem and data indicates that another phase of folding (Fc) occurred 
after formation of the F A-FB interference pattem. Give two pieces of evidence. 
(g) Figure 16-23b shows stereoplots for each domain. Domains II and III show 
equivalent pattems and can be merged, whereas domain 1 shows a distinctively 
different pattem. What is the orientation of the pole to the great circle containing 
most of the S-surfaces in domains II and Ili? ln domain I? What is the acute angle 
between them? Domains II-lll and I lie on opposite limbs of a large FB. If the 
primary influence on the orientation of S was FB, then the poles to these two 
great circles should coincide. They do not, however; thus domain II-III (or domain 
I) shows the effects of FA and possibly Fc. and the angle between the poles to the 
great circles for domains I and II-III is the present interlimb angle for FB. (Note: 
FA folds S.) For domain 11-III, what is the angular relationship between FA and S? 
Is this the correct relationship for only FA folding? For domain I? 
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This part includes four appendices. The first provides a coné.:ise review of the basic 
concepts of maps, cross sections, and diagrams and thus can serve as an introduction or 
a refresher to the chapters of Part I. Appendix l also serves as a basic reference to such 
topics as calculation of map scales and interpretation of map grids. Appendix 2 
provides the basic trigonometric functions that are used in Chapters 3 and 4. Appendix 
3 provides a summary of suggestions concerning the mapping of geologic structures 
and can serve as part of an introduction to field trips held in conjunction with a 
structural geology course. Appendix 4 provides templates for use in plotting geologic 
data; the pages are perforated so that the templates can be easily removed from the book. 
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APPENDIX 

1 
REVIE 

OF THE KEY CONCEPTS 
F PS, CROSS SECTIONS, 
DIAG S, AND PHOT S 

A1-1 INTRODUCTION 

The collection of data is only one step ina geologic study. 
To complete a project it is necessary to communicate your 
observations and their interpretation to an audience of 
interested geologists. For many purposes such commun
ication is done through the use of maps, cross sections, 
photos, sketches, and block diagrams. In this appendix we 
review the key components of these tools. This basic 
information may be familiar to you from a previous course 
in geology or geography; our purpose here is to refresh 
your memory so that we can use the information through
out this book. 

A 1-2 ElEMENTS OF MAPS 

Types of Maps 

A map is a two-dimensional plane on which information 
about the earth's surface, a portion of the earth's surface, or 
a portion of the earth's subsurface are displayed (Fig. 
Al-1). Typically, a map provides a plan-view, meaning 
that the map plane is considered to be horizontal. The 
discipline that studies ways in which maps can be created 
and used is called cartography. 

A variety of types of maps are used in geology, each 
of which is intended to display a specific class of 
information. The most commonly used types of maps 
include the following: 

1. Topographic maps (landfonns) 
2. Surface geology maps (alluvial dcposits and soil) 
3. Bedrock geology maps (rock units) 
4. Tectonic maps (intcrprctation of the distríbuLion 

of gcologic provinccs) 
5. F abric maps (paucm of foliations and lincations) 
6. Structure contour mnps (shapc of a structurally 

significant surfacc) 
7. Isopach maps (variations in unit thickncss) 

Because a map is a plane, the intersection of a planar 
geologic feature with a map is a line. Such a line is called 
a trace. For example, fault planes or contacts appear as 
traces on a geologic map (Fig. Al-lb). The pattem of 
contacts, fold-hinge traces, and fault traces can convey 
information on the shape of structures in three dimensions. 
Such pattems can be emphasized by plotting attitude data 
(e.g., strike and dip symbols) on the map. A skilled map 
reader can quickly visualize the shape of geologic structures 
in a region, the so-called structural geometry of a region, 
by studying a map. There are no set rules as to what 
information can be included on a given map, but the author 
of the map should avoid plotting so much data that there 
will be overlap of symbols. 

All maps represent some level of interpretation, so 
there is no such thing as a "righf' map. There are "good" 
maps, however, which are defined as maps that accurately 
portray spatial relationships among features in the map 
area. For example, if a map indicates that Wilkerson 
Formation occurs at the junction of Highways 4 and 6, 
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contact fault 
trace trace 

N 

1 

(a) 

then an outcrop at this junction should be composed of 
Wilkerson Formation. If you visit this locality and find 
outcrops composed of Hodder Limestone, then the map is 
wrong. 

Latitude and Longltude 

A line of longitude is a line on the surface of the earth that 
passes through the two geographic poles of the earth and is 
a great circle. A great circle, by definition, represents the 
intersection between a sphere and a plane that passes 
through the center of the sphere. On a given sphere the 
lengths of all great circles are the same (Fig. Al-2a). 
Lines of latitude are parallel to the equator of the earth and 
are perpendicular to lines of longitude. With the exception 
of the equator itself, lines of latitude are small circles. A 
small circle represents the intersection of a sphere with a 

N 

(a) 
s 

(b) 

Flgure A1-2. Meaning of latitude and long
itude. (a) Lines of longitude created by great 
circles that pass through the poles; (b) lines of 
latitude created by small circles parallel to the 
equator. 

(b) 

Flgure A1-1. Map representation 
of features on the surface of the 
earth. (a) Projection of features from 
a block of the earth onto a map plane; 
(b) a simple geologic map. Note that 
planar geologic features, such as the 
fault and the contact, appear as 
traces on the map. 

plane that does not pass through the center of the sphere 
(Fig. Al-2b). Small circles also represent the intersection 
of a cone with a sphere (if the tip of the cone is at the 
center of the sphere), and the intersection of two spheres. 
The length of each successive line of latitude decreases 
from equator to pole. Note that it is possible to draw great 
or small circles that are oblique to the earth's poles, but 
these circles are not latitude or longitude lines. 

The lines of latitude and longitude define a coordinate 
grid on the earth's surface called a graticule (Fig. Al-3). 
The location of any point on or near the earth's surface can 
be indicated by specifying its latitude and longitude and its 
distance above or below a reference plane (usually mean sea 
level) as measured along a vertical line. Both latitude and 
longitude are measured in degrees. Longitude is measured 
as a number between 0° and 1800 east or west of 
Greenwich, England. Lines of longitude are also called 
meridians; the meridian passing through Greenwich is 
called the prime meridian. Latitude is measured as a 

Figure A 1-3. The graticule defined by lines 
of latitude and longitude. (Greenhood, Map
ping, © 1964, p. 9. Adapted by permission of 
The University of Chicago Press, Chicago, 
Illinois.) 
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number between 0° and 900 north or south of the equator. 
Lines of latitude are also called para//els. For more precise 
location specification, degrees can be subdi vided into 
minutes (1° = 60'), and minutes can be subdivided into 
seconds {l' = 60"). 

Because meridians merge at the poles, the distance 
between meridians varies as a function of latitude. At the 
equator, 1° of longitude is about 111 km, at the latitude of 
New York, it is about 82 km, and at the pole, it is, of 
course 0 km. The distance between parallels remains 
almost constant with latitude, and this distance is about 
111 km (there is a variation of about 0.5 km due to 
flattening of the earth at the poles by centrifugal force). ln 
general, 

1° longitude = 1° 1atitude X cos latitude (Eq. Al-1). 

Time zones are roughly 15° of longitude wide (360°/24 h 
= 15°), although there are many local irregularities in 
time-zone boundaries that have been created for political 
reasons. 

Map Projectlons 

A projection is a representation of a three-dimensional 
surface on a two-dimensional sheet. The shadow that you 
cast on a wall when you stand in the sun is a familiar 
example of a projection. The outline of your shadow is the 
boundary between rays of the sun that intersect your body 
and rays that do not. Maps are projections; if the map area 
is small enough, a map projection can be made by passing 
an array of parallel vertical lines through the features of a 
map area to where they intersect a sheet of paper (Fig. 
3-1). Creation of maps covering larger portions of the 
earth's entire surface is more difficult because the earth is a 
sphere. A straight-ray projection of the earth onto a plane, 
for example, would create a circle. On such a projection, 
features from opposite hemispheres would be superimposed 
and there would be great distortion (change in shape) along 
the edge of the projection. A great variety of clever map 
projections have been invented in order to decrease the 

Figure A1-4. The three types of 
projection surfaces. (a) Planar; (b) 
cylindrical; (e) conical. (a) 

distortion. These projections differ from one another in 
the type of surface onto which the map is projected and in 
the configuration of the projection rays. There are three 
basic types of projection surface (cy/indrica/, conica/, and 
planar; Fig. Al-4) and two basic ray configurations (point 
source and parallel; Fig. 3-1). The shape and/or area of 
features on the surface of the globe are distorted to some 
extent in all these projections, but distortion can be 
minimized by carefully choosing the projection type that is 
best suited to the scale and purpose of the map. 

One way to produce an undistorted map of the world 
would be simply to cut up and flatten out the surface of the 
globe. Such a map would have large discontinuities. 
Perhaps the most common projection of the entire globe is 
the Mercator projection (Fig. Al-5a), which is a type of 
cylindrical projection. For a Mercator projection the 
cylindrical projection plane is parallel to the spin axis of 
the earth and is tangent to the earth's surface at the equator. 
The rays used to construct a Mercator projection emanate 
from a point source at the center of the earth. Adjustments 
are made to the map to reduce distortions of shapes in high 
latitudes. Nevertheless, the area of regions in high latitudes 
is gre~tly enlarged. For example, on a Mercator projection 
Greenland appears to be as large as the United States, 
although in reality it is much smaller. The Mercator 
projection has the advantage that longitude and latitude 
lines and any compass direction appear as straight lines, 
but on a Mercator projection the trace of a great circle on 
the earth is not a straight line. 

Maps that portray the entire United States are 
commonly drawn using a Lambert conic projection (Fig. 
Al-Sb). The projection surface for this projection is a cone 
whose apex lies in space high above the North Pole. The 
surface of this cone passes inside the surface of the earth. 

Most U.S.G.S. topographic quadrangle maps, which 
are the standard base map for geologists working in the 
United States, and Ordnance Survey maps, which are the 
standard base for geologists working in Great Britain, are 
constructed on a Universal Transverse Mercator (UTM) 
projection. For a UTM map, the projection cylinder is 
oriented so that its axis is perpendicular to the spin axis of 

(b) (e) 
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Figure A1-5. Commonly used map projections. (a) Mercator 
projection, showing the latitude and longitude grid across the Atlantic 
region. Lines of latitude are labeled. The curved line represents the 
trace of a great circle; (b) Lambert conic projection. The top part of the 
figura shows the projection cone intersecting the earth. Shaded interval 
represents the band in which the projection cone lies beneath the 
earth's surface. The lower part of the figura shows the grid across the 
United States; (c) universal transverse Mercator (UTM) projection 
showing the projection cylinder intersecting the earth. (Greenhood, 
Mappíng, © 1964, pp. 130, 139, 134. Adapted by permission oi Thc. 
University of Chicago Press, Chicago, Illinois.) 

the earth. The diameter of the UTM projection cylinder is 
slightly less than the diameter of the globe; therefore, the 
cylinder cuts the globe and defines a north-south trending 
ring (Fig. Al-5c). The diameter of the cylinder is chosen 
so that the ring, which is called a zone, is 6° of longitude 
wide at the equator. Definition of each zone requires a 
rotation of the projection cylinder around the earth's spin 
axis. Distortion of areas in the United States on a UTM 
map is much less than on a standard Mercator projection. 

Additional discussion of map projections is available 
in standard cartography or geography texts (e.g.,Greenhood, 
1964; Robinson and Sale, 1969; Raisz, 1962). 

Map Scales 

ln order to represent dimensions and positions of features, a 
map must include a scale. The scale of a map is the ratio 
between the distance separating two points on the map and 

the distance separating the same two points in the real 
world. This ratio is also called the representative fraction 
(RF) or the scale factor. For example, if the distance 
between outcrop A and outcrop B is 10 cm on the map, and 
the RF of the map is 1:10,000, then the distance between 
the two outcrops in the real world will be 100,000 cm, or 
1 km. Altematively, ifthe two outcrops are separated by 1 
km in the real world, and the RF of the map is 1: 10,000, 
then the distance between those two outcrops on the map 
will be 0.00001 km; or 10 cm. If a map is drawn at a 
scale of 1: 1, then the map will be the same size as the area 
that it is intended to represent. 

Problem Al-1 
The distance between Illyria and Elysium on a map is 

2 in. The RF for the map is 1:24,000. How far apart, in 
miles, are the two localities? 
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Method Al-1 
The trne distance (D) bel.Ween the two locafüies is 

2 in. X 24,000 = 48,000 in. 

48,000 in./12 = 4000 ft 

1/5280 = D/4000 

D = 0.758 mi. 

Clearly, the selection of an appropriate scale is an 
import.ant step in the production of a map. For example, 
imagine a small quarry that is 100 m X 100 min area. On 
a map whose scale was 1:1, lhe quarry would be 100 m X 
100 m. It would be impossible to find a piece of paper 
large enough to permit you to draw such a map. 
Altematively, if the map scale was 1: 1,000,000, the quarry 
would be invisible and it would be impossible to display 
the geologic features that occur in the quarry. The 
geologist studying the quarry could, however, map the 
quarry at a scale of l: 1000. At this scale, the quarry would 
occupy an area of 100 cm X 100 cm, a reasonably sized 
piece of paper. 

Problem Al-2 
How large a sheet of paper is required to produce a 

1:5000 map of a structure whose dimensions are 1 km X l 
km? 

Method Al-2 
l km= 1000 m. At a scale of 1:5000, 1000 m will 

cover a distance of 

1000 m/5000 = 0.2 m = 20 cm. 

There is frequently confusion about the terms large 
scale and small scale. A large-scale map is a map the 
shows a lot of detail in a small area, and a small-scale map 
is one that includes such an extensive area that only general 
features can be shown on the map sheet For example, a 
1: 1000-scale map is a larger-scale map than a 1: 1,000,000-
scale map. A l ín. = l mi map is a larger-scale map than 
a l in. = 20 mi map. Of course, large and small are 
relative terms; a scale that is considered large for one 
purpose may be considered small for another purpose. 
Confusion arises when someone uses the term large-scale 
study to refer to the study of a largc area, because, as we 
just noted, a large-scale map generally covers only a small 
area. To avoid this confusion, we suggest using the terms 
broad-scale or regional-scale with reference to studies of a 
large region, and local-scale with reference to studies of a 
restrícted area. 

The scale of a map can be indicated in several ways. 

First, the representative fraction (e.g., 1:1000) can be 
wriuen in the comer of the map. Second, a scale bar (Fig. 
Al-6) can be drawn, which translates map distances into 
real-world distances. Third, the scale can be indicated by 
latitude and longitude lines or some other survey grid (see 
below), assuming the map user remembers the translation 
factor between degrees and kilometers. Topographic 
quadrangle maps for the United States are prepared by the 
U.S.G.S. and generally come in one of two scales: 7.5' 
(minute) maps are 7.5' of latitude or longitude on a side, 
and are usually prepared at a scale of 1:24,000. 15' maps 
are 15' of latüude or longitude on a side and are usually 
prepared at a scale of 1:62,500. Recently, U.S.G.S. maps 
have been issued that use metric measurements and are at a 
scale of 1:25,000. 

5 0 

~-- kilometers 

5 
1 

10 

1 

figure A 1-6. A scale bar. lt is common to 
subdivide the bar into smaller units to the lett of 
the zero point. 

It is possible to translate from one scale system to 
another just by using simple arithmetic. For example, a 
scale of 1:63,360 is equivalent to 1 in. :::: l mi, because 
there are 63,360 irt ina mile. Remember, on smaH-scale 
maps, the area shown may be so large that, because of 
earth curvature and the nature of the map projection, the 
scale may vary as a function of position on the map. 

Problem Al-3 
The representative fraction for a map is 1:8,000. At 

this scale, how long is a scale bar that represents 1 km? 

Method Al-3 

1 km/8000 = 0.000125 = 0.125 m = 12.5 cm. 

Distance Measurements on Maps 

Distances on the surface of the earth or elevations above or 
below the surface of the eanh are usually measured by 
either l.he English system (inches, feet, miles) or the metric 
system (centimeters, meters, kilometers). Table Al-1 is a 
conversion chart between these two. In the English 
system, a statute mile is arbitrarily asigned a value of 5280 
feet. The distance around the earth at the equator is 24,902 
miles; using Table Al-1, this can be converted into 40,075 
km. Navigators often use a different measure called a 
nautical mile, which is 1 sccond of arc as measured at the 
equator, and thus is equal to about 6080 ft A kilometer 
(1000 m) is defined to be 1/10,000 of thc distance between 
the equator and the pole as measured on a meridian. 
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1 km 
1 cm 
1m 
1 ft 
1 in. 
1 mi 

Table A1-1 
Unit Conversions 

3281 ft 
0.0394 in. 

= 39.37 in. 
30.48 cm 
2.540 cm 
1609 m 

= 

= 
= 

míles are statute miles 

0.6214 mi 
0.0328 ft 
3.281 ft 
0.3048 m 
0.0254 m 
1.609 km 

Because metric measures are always divisible by 10, they 
are much easier to work with. Many maps in the United 
States, however, are designed to be used with English 
measurement. 

Problem Al-4 
What is the width of a single time zone at a latitude 

40°? Express your answer in both kilometers and miles. 

Method Al-4 
At a latitude of 400, 1° lat = 111 km. Remember, 

the distance represented by a degree of latitude is constant. 

1° long = 111 km X cos 40° = 85 km 

1 time zone = 15 X 85 :::; 1275 km. 

To express the answer in miles: 

1 mi/1.61 km= X mi/85 km 

1° long = 0.62(85) = 52.8 mi 

1 time zone = 15 X 52.8 = 792 mi. 

Geologlc Map Symbols 

All maps should contain a legend, explanation, or key. 
These terms are different names for the table that describes 
the symbols used on a map. Symbols are used on geologic 
maps to indicate the attitude of rocks and structures (e.g., 
bedding, folíation, and joints; Figs. 1-9 and 1-13), the 
positions of structural features (e.g., faults, fold hinges, 
and unconformities), and the distribution of rock units. 

A sequence of rocks that can be recognized and 
identified throughout a map area is called a map unit. A 
unit should have a definable top and bottom. The region 
on the ground in which outcrops of a map unit are exposed 
is caHed an outcrop belt. A map unit c:m be thick enough 
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to be represented on a map by a visible band which is 
labeled, colored, or patterned, and may correspond to a 
formally defined geologic unit such as a formation, a group 
of formations, or a tectonic assemblage. On some maps a 
map unit may merely be a layer of a distinctive lithology 
that can be traced across the countryside. Such a distinctive 
traceable layer is called a marker horizon. The width a 
marker horizon may be exaggerated on a map. 

On colored geologic maps, different colors may be 
used to indicate different map units, whereas on black
and-white maps, these distinctions are usually made by 
using different patterns or shadings. On maps produced in 
the United States, an abbreviation indicating a unit name is 
often written directly on the map within the outcrop belt of 
the unit (e.g., Db for Devonian Becraft Formation). The 
first letter of the abbreviation indicates the age, and the 
second letter (and third, if necessary) indicates the formation 
name (Fig. Al-7). On many European maps the identity 
of the pattern is specified in the legend by a number, and 
the unit name and description are given ín a figure caption. 
In general, units are listed in an explanation in order from 
youngest to oldest, with the youngest unit at the top of the 
explanation. 

Map Reference Frames and Survey Grlds 

A map is of little use if it cannot be oriented with respect 
to the real world. The reference frame on a map can be 
indicated by simply drawing a north arrow on the map. 
The reference frame is also provided by the locations of 
landmarks (e.g., roads, towns, mountain peaks, and rivers). 
Benchmarks, which are surveyed location points whose 
position and elevation are accurately known, can also be 
shown. On the ground, benchmarks are indicated by a 

on a map they are indicated by a small x with the 
abbreviation BM and the elevation written next to it (e.g., 
BM 2135). Most maps also contain an oriented grid, 
which is a network of línes whose orientation and position 
have been accurately determined by surveying. 

If you have ever used a detailed map, you will notice 
that it contains a latitude and longitude grid and one or 
more additional grids. The other grids, which cover only 
local areas, are called survey grids and have been set up by 
municipalities, states, or countries for the purpose of 
surveying. A survey grid is simply an array of mutually 
perpendicular lines whose position has been determined by 
accurate surveying (Greenhood, 1964). Survey grid 
positions are usually determined by triangulation and are 
ultimately pinned to lines of latitude and longitude. 

On U.S.G.S. quadrangle maps it is common to find a 
UTM grid. This is a rectangular grid keyed to the meridian 
at the center of each 6° zone on a UTM projection. The 
convention for specifying a location in a UTM grid is as 
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flgure A1-7. Representation of geologic units on a map. (a) 
American convention; (b) European convention; (e} common lithologic 
symbols. 

follows: The value of the abscissa is called an easting, and 
the value of the ordinate is called a northing. Eastings 
increase to the east and northings to the north. UTM grid 
lines are specified by a number in meters; the central 
meridian of each zone is assigned an easting value of 
500,000 m, and the equator is assigned a northing value of 
0 m. On the east-west map border the UTM reference 
marks are labeled in the form 310000 (Fig. Al-8a). This 
symbol refers to an easting of 310,000 m (i.e., 190,000 m 
west of the zone's central meridian). On the north-south 
map border, reference marks in the United States are labeled 
in the form 4880000. This is a northing of 4,880,000 m 
(i.e., 4880 km north of the equator). The coordinate of the 
point in the map area that lies at the intersection of these 
two grid lines can be specified simply by the number 1080. 
The first two digits indicate the easting, and the second two 
indicate the northing. The small initial numbers are not 
needed if you are referring to a known map area. To 
specify points that are not precisely on the intersection of 
two grid lines, additional digits can be added. For example, 
a point P with UTM grid coordinates of 104807 lies to the 
northeast of point 1080 (Fig. Al-8b). 

A second grid found on many maps is defined by the · 
State Plane-Coordinate System (SPC), which was set up in 
the 1930s by the U.S. Coast and Geodetic Survey. Each 

Figurn A1-8. A portion of a UTM 
grid. The eastings and northings to 
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loca!e point P are indicated. (a) The 8 

6° zones; (b) Subdivisions in a zone. 
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state is covered by üs own rectangular grid, measured in 
feet, which is designed to accommodate for the shape of the 
state, and which is pinned to national survey marks. Many 
states are divided into zones, each with its own grid. Grid 
lines in this system are 10,000 ft apart and increase in 
value to the north and to the east from a surveyed base line. 

Land-office grids were created by the federal land offi.ce 
(a federal agency administering public lands) in the 1930s 
to represent the results of a nationwide land survey. Ali 
states, except for 19 eastem and southeastern states, were 
included in this survey and have public lands. On the basis 
of this survey, land is divided into blocks called townships, 
which are 6 mi on a side (Fig. Al-9). An east-west row of 
townships is a tier, and a north-south column i.s a range. 
In order to accommodate the curvature of the earth, the 
trace of a range line steps over a little where it crosses a 
tier line, at every fourth range line. Townships are 
identified by their row and column, with rows increasing in 
value northward and columns increasing in value eastward. 
Counting is done with reference to an east-west baseline 
and a north-south principal meridian. There are 31 pairs of 
these reference lines in the United States. A specific 
township is labeled, for example, T.3N., R.3E., or, in 
words, Township 3 North (the word tier is not used), and 
Range 3 East. Townships are further subdivided into 
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36-mi2 blocks called sections. These are numbered starting 
from the northeast corner; to count off progressively 
increasing numbers, first count west along a row, then drop 
down a row and count east, and so forth. 

A1m3 PATTERNS OF SIMPLE GEOLOGIC 
STRUCTURES ON MAPS 

ln first-year geology courses most students have the 
opportunity to see the map patterns of simple structures. 
Next we review the map patterns of simple structures as 
they would appear on a surface of no topographic relief, to 
refresh your memory. As you read the following material, 
visualize the attitude of the planes and lines that are 
described so that you can develop a sense for what any 
structural geometry will look like when projected on a 
plane . 

. -~---~ ---1:--1 ~ ...... ,,,,„~ 
~ IViilH1.iVöiiiii...._iii 

On a surface of no relief, the width of an outcrop belt 
depends on the dip of the bed (Fig. Al-lüa). This 
relationship is described by the equation 

outcrop width = true thickness/sin(true dip) (Eq. A 1-1 ). 

From this equation it is clear that a decrease ín the dip 
of a unit leads to an increase in the width of the unit's 
outcrop belt. The widl.h of a vertically dipping bed is the 
same as the true thickness, whereas the width of a 
horizontal bed is "infinite" (i.e., the unit extends in all 
directions until it pinches out or changes orientation or 
until topographic relief appears). Note Ihat on a horizontal 
surface l.he strike of a bed is parallel to the bearing of the 
trace of the contact (Fig. Al-lüb). On a sloping surface 
the strike of a bed is parallel to the map trace of the bed 
only if the strike direction is perpendicular to the slope 
direction (A 1- lüc ). Otherwise, the strike is oblique to the 
outcrop trace (Al-lüc). 
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Figure A 1-9. Township and range 
designation. 
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Figure A1-10. Outcrop patterns of contacts 
and planar layers. (a) Relationship between 
outcrop width and dip. t1 is the true thickness 
and lm is the outcrop thickness on horizontal 
ground; (b) Diagram showing that the strike is 
parallel to bed trace on a horizontal plane; (e) 
Diagram showing that the strike is parallel to 
bed trace on a slope where the bed trace is 
parallel to contours; (d) Diagram showing that 
the strike is oblique to the bed trace on a 
ge:ieral s!ope. 
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Contacts 

A contact is the planar boundary between two units. We 
briefly review the map patterns of four types of contacts. 
Remernber that the relative ages of structures can be 
determined by cross-cutting relationships between contacts. 
Where contacts intersect, younger contacts always cut 
across older contacts. 

Conformable Contacts: If the contact between 
two units is parallel to the stratification of both units and 
does not represent a significant time gap or a surface on 
which rnovement has t.aken place, the contact is said to be 
conformable. Conformable contacts are usually found in 
stratified sedimentary or volcanic rocks in which the rock 
layers have been deposited in sequence, with the oldest 
layer at the base. The symbol for a conformable contact is 
usually a thin smooth line (Fig. Al-lla). 

Fault Contacts: On a geologic map, the presence 
of a fault is indicated by a heavy line (Fig. Al-lla). If the 
1.race of the fault lies entirely within a single unit, or if the 
displacement on the fault cannot be recognized in the field 
(e.g., the fault trace is not well exposed or the offset across 
the fault is minor) the presence of the fault symbol may be 
the only indication of the fault Often, however, the 
presence of a fault on a map may be indicated by other 
features, such as the juxtaposition of out-of-sequence map 
units, by the occurrence of anomalously thin or thick 
sections of a unit, by the offset of markers (Fig. Al-llb), 
or by a sudden change in the attitude of units (Fig. 
Al-llc). Faults are planar structures; thus, a map shows 
the trace of the intersection between the fault and the 
ground surface. If the sense of displacement on the fault is 
known, the symbols shown in Figure A1-12a can be used 

conformable 
contact 

' \ 
1 
\ 

inferred 
contact 

\ \ 
-unconformity fault 

(a) 

to represent lhe fault trace. The symbols U and D indicate 
the relative upthrown and downthrown sides of a fault, 
straight barbs are used for normal faults (with the barbs 011 
the hangi11g-wali side), and teeth are used for thrust faults 
(with the teelh on the hanging-wall side). If information 
on the auitude and direction of slip on lhe fault is known, 
it can be indicated as shown in Figure Al-12b. The strike 
and dip mark on the fault trace indicates the attitude of the 
fault plane, and the arrow indicates the plunge and bearing 
of the slip lineations 011 the fault plane. 

lntrusive Contacts: Intrusive contacts represent 
the boundary between an igneous body and older rocks or 
structures. Depending on the type of igneous body, the 
trace of the contact can be straight (e.g., for sheet 
intrnsions like dikes, sills, and laccoliths) or curved and 
irregular (e.g., for a granitic pluton or stock). Intrusíve 
contacts can be concordanf (i.e., parallel to the layering of 
the wall rock), as is the case for a sill, or discordant (i.e., 
nonparallel to the layering of the wall rock), as is the case 
for a dike or a pluton (Fig. Al-13). Discordant intrusive 
contacts can be recognized simply from their map pattem 
(they cut across older contacts), but concordant intmsions 
may be apparent only from the unit descriptions in the map 
explanation. 

Unconformities: An unconformity is a contact 
between two units that represents the occurrence of an 
interval of nondeposition and/or an interval of erosion. 
Unconformities are delineated either by a thin line on a 
map that is indistinguishable from the symbol for a 
concordant stratigraphic contact or by a wavy line. Be sure 
to check the map explanation for the definition of the 
symbols that are used; on many Canadian maps the 
wavy-line symbol is used for faults. Unconformities that 

(b) (e) 

Figure A 1-11. (a) Symbols used for contacts; (b) fault trace 
indicated by offset marker bed (shaded); (e) fault indicated by the 
presence of an anomalously thin unit (unit C), out-of-sequence units (B 
adjacent to D), or sudden change in bed attitude. 

Figure A1-12. (a) Common map 
symbols for faults; (b) symbol used to 
show strike and dip of fault plane and 
plunge and bearing of slip lineations 
on the fault plane. 
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separate similarly oriented sections of strata can be 
recognized only by the age discordance between units above 
and below the unconformity ( contact between Oa and JRd 
in Fig. Al-13). Angular unconformities cut across the 
structures of underlying units and thus will stand out on a 
map (contact between Te andJRb in Fig. Al-13). 

Slmple Folds 

Opposing limbs of nonplunging upright folds (folds with a 
horizontal hinge and a vertical axial plane) are mirror 
images of one another (Fig. Al-14a). Outcrop widths of a 
given unit on opposite limbs of such a fold are equal if 
there are no variations in the true thickness of the unit 
within the map area. Remember that in the case of a 
syncline, the youngest unit occurs in the core of the fold, 
and in the case of an anticline, the oldest unit occurs in the 

(a) (b) 

(e) (d) 

Figure A1-14. Map patterns of simple 
folds. Note relative ages of units in each 
sketch. (a) Nonplunging fold train. Blank unit 
is youngest and dark shaded unit is oldest; (b) 
nonplunging inclined fold; (e) plunging chevron 
fold; (d) plunging fold train. 
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Flgure A1-13. Simple geologic 
map showing the map patterns of 
various types of contacts. Note that 
the dike, pluton, and angular uncon
formity can be recognized because 
their contacts are discordant with 
adjacent units, whereas the sill is 
evident only by reading the legend, 
and the bed-parallel unconformity is 
evident only from the map symbol and 
the absence of section. 

core of the fold. Diff erentiation between anticlines and 
synclines is, therefore, possible without strike and dip 
information, if age relationships are known. The map 
pattern of some folds shows a variation in the width of 
outcrop belts on opposing limbs, because of the contrast 
between the dips of the limbs (Fig. Al-14b). 

lf a fold is plunging (i.e., its hinge is not horizontal), 
then outcrop belts of a unit on opposing limbs converge 
with one another, and the map may show a locality where 
the unit can be traced completely around from one limb to 
another. lf such a closure does occur in the map area, the 
map pattern of the unit will have a V or U shape (Fig. 
Al-14d; for horizontal ground), depending on the actual 
shape of the fold hinge. A V shape, for example, indicates 
that the fold has a chevron profile. The apparent thickness 
of stratigraphic units in the plane of the map varies from 
limb to hinge of a plunging fold, because the true dip of 
the földed layer varies around the fold hinge. The thickness 
of a unit on opposing limbs is the same if the fold is 
upright and is different if the fold is inclined. The map 
pattern of a plunging/old train, which is a series of related 
fclds, wi!l appear as a series of zigzags (Fig. Al-14d; for 
horizontal ground). 

Doubly plunging folds are folds whose hinges change 
in plunge direction along their trace. ln a map view a bed 
can be traced around the hinge of the fold at more than one 
locality along the hinge (Fig. Al-15a). Remember that if 
the lateral dimensions of the structure are approximately 
the same in all directions, then the structure is called a 
dome (if it is concave down) or a basin (if it is concave 
up). The traces of contacts around domes and basins 
approach a circular fönn. 

Superimposed folding occurs when folded rock is 
subsequently refolded. A number of map patterns 
characterize superimposed folds (e.g., Ramsay, 1967; 
Suppe, 1985), but we present only two simple examples 
here. The first (Fig. Al-15a) exemplifies dome-and-basin 
structure, and the second (Fig. Al-15b) exemplifies an 
anticline refolded around a plunging syncline. Description 
and interpretation of the patterns of polyphase 'folds is 
presented in Chapter 16. 
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(a) 

(b) 

Figure A 1-15. Map patterns of simple 
refolded folds. (a) Geologic map of dome
and-basin structure (adapted from Roberts, 
1982); (b) geologic map of a refolded syncline. 

A1·4 ELEMENTS OF CROSS SECTIONS 
AND PROFILES 

A cross section is a vertical two-dimensional slice through 
a region. There are several sources of data that can be used 
in construction of the cross section. Geologic features 
mapped on the ground can be extrapolated to depth, and 
control at depth may be provided by drilling data, mine 
data, seismic-reflection data, or, indirectly, from structure
contour maps. 

A line along which a cross section is to be constructed 
is called a /ine. of section. Lines of section are usually 
labeled X-X', A-A', or something similar. To construct a 
cross section from a map (Fig. Al-16), place an overlay 
over the line of section (the line of section forms the edge. 
ofthe overlay). Transfer topographic data and points where 

Figure A1-16. Construction of a 
cross section. (a) Block diagram 
showing the relationship between a 
map and a cross section; (b) key 
points indicated on a section strip. 
Note that the section is perpen
dicular to strike; (e) completed sec
tion (no topography is shown). 

HAP 

GROSS 
SECTION 

(a) 

the line of section crosses contacts or layers of known 
attitude to the overlay. Indicate dip measurements by a ball 
and tick mark inclined by the angle of dip. You may 
project structure attitudes a short distance along strike onto 
the line of section. Once you have plotted all the data on 
the overlay, remove the overlay and transfer the data to a 
new sheet of paper; imagine that the new sheet of paper 
represents the plane of the cross section. Construct a 
topographic profile on this new piece of paper. If the line 
of section is perpendicular to strike, the dip indicated on the 
line of section is true dip. Otherwise, the dip indicated will 
be an apparent dip that you will have to calculate using the 
methods described in Chapters 3 or 5. You may sketch 
contacts and other structures on the section, taking care to 
obey your dip symbols. Based on the data plotted on the 
line of section, the geology in the plane of section may be 
extrapolated to depth (Chapters 13 and 14 provide 
suggestions conceming methods for such extrapolation). 

If the vertical scale of a cross section is larger than the 
horizontal scale, then the section is said to have vertical 
exaggeration. If the vertical scale of a cross section is the 
same as the horizontal scale, then the section is said to 
display no vertical exaggeration. For example, if the 
horizontal scale on a line of section is 1:10,000 and the 
vertical scale is 1: 1000, the section displays a vertical 
exaggeration of lOX. On sections that have vertical 
exaggeration, dips of units are much steeper than they are 
in nature. For example, a dip of 45° on a cross section at 
1: 1 becomes a dip of 84° on a cross section that has a 
vertical exaggeration of lOX (Fig. Al-17). Stratigraphic 
thicknesses are also distorted as a consequence of vertical 
exaggeration. Consider a section with lOX vertical 
exaggeration. A flat-lying unit is shown to be 10 times its 
proper thickness. If the same unit had a vertical dip, then 
its thickness would not be exaggerated, but the bed length 
would be stretched to 10 times its correct length. Because 
of the distortion inherent in exaggerated sections, 1: 1 
sections are generally preferred for structural geology, 
unless details of stratigraphy must be shown that will not 
be visible unless the section is exaggerated. 

Because of the significance of vertical exaggeration, it 
is important that both the horizontal and vertical scales be 

Nan. A. 

l~b~ 

(b) Cc) 
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(a) (b) 

figure A 1-17. Demonstration of vertical 
exaggeration. (a) Gross section drawn with no 
vertical exaggeration; (b) same section drawn 
with 2X vertical exaggeration. Note how the dip 
of the bed has changed. Coordinates of a point 
on the bed ara given. Also note the change in 
shape of Ayers Mountain. 

indicated on the cross section. It is also important to 
indicate the orientation of the section with respect to north. 
This is usually done by putting a compass bearing (or a 
compass quadrant) at each end of the section and by 
providing a location map that shows the position of the 
line of section. If required, there may be bends in a section 
where the line of section changes direction. These bends 
are indicated by a vertical line across the section. If 
appropriate, surface topography and sea levei are also 
indicated on the section. 

A profile of a structure is a two-dimensional projection 
of a structure that is drawn perpendicular to the bearing or 
strike of the structure. If the structure plunges, then the 
profile plane is not a vertical plane. Profiles drawn 
perpendicular to the plunging axis of a fold are called 
down-plunge projections (see Chapter 13). 

z 

y 

(a) x 

(e) 

(b) 
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A1-5 DIAGRAM$, SKETCHES, 
AND PHOTOS 

Block Diagrams 

ln many cases it is easiest to visualize a geometric problem 
if it is viewed in three dimensions. It is possible to 
simulate three dimensions on a two-dimensional sheet of 
paper by using block diagrams. On a block diagram, three 
faces are visible at one time, with each face containing two 
coordinate axes. The visual effect of a block diagram is 
analogous to viewing a photograph of a block. The three 
coordinate axes, which are mutually perpendicular in the 
real world, make acute angles with respect to one another 
ina blockdiagram (Fig. Al-18a). 

There are three basic types of block diagrams. The 
first is an isometric diagram (Fig. Al-18b) and is the 
easiest to draw. ln an isometric diagram, lines that are 
parallel in the real world are parallel in the diagram, lines 
that are the same length in the real world are the same 
length in the diagram, ratios between dimensions in the 
real world are maintained in the diagram, the sum of the 
angles defining the corners of the block must add to 360°, 
and opposing angles on a face of the block must be equal. 
Isometric diagrams have the advantage that transfer of 
geologic data onto the block is very easy, but they have the 
dísadvantage that they present a visually distorted image 
(i.e., they do not look right). More realistic looking block 
diagrams employ an artistic trick known as perspective. A 
perspective diagram is one in which parallel lines merge 
toward a vanishing point on the paper, just like parallel 
lines appear to merge in the distance in the real world. On 
a one-point perspective diagram (Fig. Al-18c), there is one 

a' 

(d) 

Figure A1-18. Examples of block 
diagrams. (a) Coordinate axes for a 
block diagram; (b) isometric diagram; 
(e) one-point perspective diagram; (d) 
two-point perspective diagram. 
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vanishing point, whereas on a two-point perspective 
diagram, there are two vanishing points (Fig. Al-18d). 

Sketches and Photos 

In many appiications a topographic map provides an 
excellent base map on which geological relations can be 
represented. The view represented by a map is comparable 
that of a vertical air photo. ln some cases, the vertical air 
photo itself may prove to be a more useful base for 
mapping than a topographic map, because surface 
landmarks of the map area may be recognized more easily 
(especiaHy if there are shadows), and the outcrops 
themselves are often visible. It is now possible to obtain 
inexpensive half-tone vertical air photographs, called 
orthophotoquads, that are at the same scale as 7.5'' 
quadrangle maps. Stereo pairs of vertical air photos 
(photos that overlap in coverage, thereby simulating the 
parallax created by your eyes that permits your brain to 
visualize in three dimensions), when viewed with a 
stereoscope, produce a three-dimensional image of the 
ground surface in the map area. 

(b) 

A common way to communicate information about 

Figure A1-19. Examples of geol
ogic photographs. (a) Outcrop photo. 
Solid line is parallel to bedding; 
dashed line is parallel to cleavage. 
Ruler provides scale and is 22 cm 
long; (b) panorama photo of a 
roadcut through folded and faulted 
Devonian strata in New York State; 
(e) sketch of the photo shown in (b), 
emphasizing the positions of major 
faults (solid lines) and the attitude of 
bedding (dotted lines). 

the structure in an outcrop is to present an outcrop 
photograph (Fig. Al-19a). Remember that it is essential 
that such photographs contain a scale indicator. If a scale 
indicator is not present, a person looking at the photo will 
have no reference frame with which to judge the size of 
features in the picture. It will not be clear, for example, if 
the beds of the outcrop are l cm thick or 10 m thick. The 
best scale indicator is a ruler with clearly defined centimeter 
or meter increments, but geologists often use familiar 
objects, such as hammers, knives, coins, pens, people, or 
notebooks to indicate scale. Outcrop relations over a 
broader scale can be indicated by a panorama photograph 
(an oblique photograph of a fairly large area; oblique means 
that the line of sight of the camera is not perpendicular to 
the plane of the outcrop that is photographed). ln 
panoramas (Fig. A l - l 9b) it is also important that a scale 
be present (have your field assistant or car present ín the 
field of view). It is also valuable to emphasize contacts or 
structures in the photo area with lines that are inked onto 
the print. Sometimes the relations will be more clearly 
displayed in a panorama sketch (a line drawing of an area; 
Fig. Al-l9c). With effort, it may be possible to transfer 
observations indicated in a panorama sketch or photo onto 
amap. 

(a) 
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EXERCISES 

1. (a) What is the distance in kilometers represented by a degree of longitude at the 
latitude of Caracas (Venezuela). 
(b) What is the distance in kilometers represented by a degree of longitude at the 
latitude of Oslo (Norway). 

2 . (a) On a good atlas map of Italy, determine the distance between Florence and 
Rome in kilometers, then convert the distances to miles. 
(b) Is the map of Italy at a larger scale or smaller scale than the map of the world 
that you used? 
(c) What is the representative fraction describing the scale of each map that you 
have used? 

3. (a) Determine the distance in kilometers between New Delhi and Bombay (India). 
If the representative fraction on a map is 1:80,000, what is the distance between 
these two cities on the map? 
(b) What is the representative fraction that describes the scale on a map for which 
1 cm= 100 km? 
(c) The distance between the islands at the two ends of the Mariana island chain 
on a given map is 7.5 cm. ln reality, these two islands are 750 km apart. What 
is the representative fraction that describes the scale of the map? 
(d) The distance between Calcutta (India) and Kathmandu (Nepal) is about 600 
km. What is the distance between these two cities on a map whose scale is defined 
by an RF of 1 :5000? 

4. Figure Al-Ml is a simple geologic map of a locality in central Maine. 

(a) Construct a vertical cross section along line XX'. 
(b) Construct the same cross section with 5X vertical exaggcration. Be surc to 
adjust the dips of beds and thc thickncss of units appropriatcly. Assumc that thc 
fold is chevron (i.e„ the limbs arc straight and the hingc is angular). 

1 !· .) 1 \-.·\ 1\ \ 
.~ :! ~30\20-j 

\~ \" ~ 1 
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0 200 
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Figure A 1-M1. For use in exercise 4. 
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B SIC 
TRIG NO ETRY 

A2-1 FUNDAMENTAL IDENTITIES 

Thc fundamental identities of trigonometry (sine, cosine, 
and tangent) refer to the angles and limbs of a right trianglc 
(Fig. A2-l). The idcntities are prcsented bclow for quick 
reference. If x is the length of the limb adjacent to thc 
angle 0, y is the length of the limb opposite to the angle 
0, and h is the length of the hypotenuse, then 

sin 0 = y/h (opposite/hypotenuse) (Eq. A2-la) 

cos 0 == x/h (adjacent/hypotenuse) (Eq. A2-lb) 

tan 0 == y/x (opposite/adjacent) (Eq. A2-lc) 

csc 0 = h/y = l/sin 0 (Eq. A2-ld) 

sec 0 == h/x = l/cos 0 (Eq. A2-lc) 

cot 0 == x/y == 1/tan 0 (Eq. A2-lf). 

If the angle 0 is not known, ü can be determined from 
the ratios of the triangie limbs. For example, the angle 
whose tangent is y/x is the arc tangent (abbrcviatcd arctan) 
of y/x or, alternatively, the inverse tangcnt (abbreviated 
tan-1) of y/x. In other words, 

arctan(y/x) = tan-l(y/x) = 0 (Eq. A2-2). 

The tcrms arcsin and arccos are used in thc same way. 

~' 
x 

Figure A2-1. Right triangle used far defin
ition of the trigonometric functions. 

In addition to the basic identities listed above, it is 
also useful to keep in mind a number of simple equations 
that are useful in deriving some of the formulas used in 
this book. For a complete list of trigonometric equations, 
check a standard trigonometry textbook or handbook of 
mailiematics. 

tan 0 = sin 0/cos 0 (Eq. A2-3a) 

sin20 + cos20 = l (Eq. A2-3b) 

sin(!/>+ 13) =(sin 0)(cos B) + (cos 0)(sin B) (Eq. A2-3c) 

sin(!/> - B) = (sin 0)(cos B) - (cos 0)(sin B) (Eq. A2-3d) 

cos(0 + B) =(cos 0)(cos 13) - (sin !/>)(sin 13) (Eq. A2-3c) 

cos(0 - l3) = (cos 0)(cos B) + (sin 0)(sin B) (Eq. A2-3t) 

cos(90o - B) == sin B 

sin(90o - B) = cos B 

(Eq. A2-3g) 

(Eq. A2-3h). 
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A2·2 LAW OF SINES 
AND LAW OF COSINES 

If a triangle does not contain a right angle, trigonometry 
may still be employed for some problems. Consider a 
triangle whose three angles are a, b, and c (Fig. A2-2). 

A/'\n 
L_j 

e 

Figure A2·2. Triangle used tor specification 
of the Law of Sines and the Law of Cosines. 
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The side of the triangle opposite a is A units long, the side 
opposite b is B units long, and the side opposite c is C 
units long. The following equations apply: 

Law of Sines 

N2 sin a = B/2 sin b = C/2 sin c 

Law of Cosines 

cos a = (B2 + C2 - A2)/2BC 

cos b = (C2 + A2 - B2)/2CA 

cos c = (A2 + B2 - C2)/2AB 

(Eq. A2-4). 

(Eq. A2-Sa) 

(Eq. A2-5b) 

(Eq. A2-5c). 
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SOGGESTI NS 
FOR PPING 

GEOL GIC STR(JCTORES 

A3~1 INTRODUCTION 

Mapping technique is developed by experience. In that 
respect, it is somewhat like an art form. Geologists tend 
to use variations on the basic theme of mapping that best 
suit their interests and goals. ln this appendix we list a 
number of ideas that have helped students faced with a 
mapping project. Our intent is only to suggest ways to 
think about mapping, not, of course, to lay out a recipe 
that must be followed. There is a lot of trial and error in 
producing a map, and even the most experienced mappers 
must modify their goals and techniques as they proceed. 

A3-2 MATCHING MAPPING TECHNIQUE 
TO THE PROBLEM 

1. The first step of a mapping project is to outline the 
problem that is to be solved by the mapping. There are a 
great number of problems that can be solved by mapping, 
ranging from the general (e.g., What rocks are in this area?) 
to the specific (e.g., What is the relationship between s2 
cleavage attitude and fold attitude?). 

2. Don't worry if, at the beginning of a project, the 
details of the problem are not clear. As you work, new 
questions will arise and old ones will become obsolete (see 
the discussion of working hypotheses in Chapter 9). 

3. Once you have decided on the nudeus of a problem, 
make a reconnaissance of the potential map area. Try to 
get a feel for the quafüy of exposure, the types of rocks 

present, the general distribution of fühologies and 
structures, the ruggedness of the terrane, and the distri
bution of landowners with dogs. Determine whether your 
base map adequately represents the topography of the area. 

4. From the reconnaissance, estimate the amount of 
area that you can cover ín the time you have available, and 
estimate the detail necessary to represent the structures. 

5. Choose an appropriate scale for your map (see 
Chapter 9). The scale should be such that the map can 
show sufficient detail to make the structural relations clear. 
The area that you plan to cover should be sufficiently large 
to include representative structural geometries. Don't 
worry if the boundaries of the map area or the scale must 
be changed as your work progresses. In some projects 
different portions of the map area must be mapped at 
different scales, as a function of the complexity in the area. 

6. Based on your reconnaissance, make an ínitial 
choice of the type of mapping that is best suited to display 
the geologic structures that interest you. There are three 
basic types: 

(a) Outcrop Mapping: The positions and shapes of 
discrete outcrops are located on the base map. At each 
outcrop the unit is identified, and appropriate 
measurements are made. This method is suitable for 
regions in which there is little continuüy between 
outcrops. It is often used in metamorphic terranes or 
in regions with a lot of cover. Such maps are helpful 
to other geologists who are trying to find outcrops. 
(b) Station Mapping: Pinpricks or x's are marked on a 
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map at points where measurements are made, and each 
point is assigned a station number. The number and 
the measurements are recorded in a notebook. Some of 
the measuremcnts are then plotted on the map. This 
method is suitable for regions where there is a lot 
more structural detail (e.g., fabric data, mesoscopic 
structures) at a locality than the geologist can plot on 
the map. 
(e) Traverse Mapping: Using this method, a geologist 
walks out traverses and plots structural measurements 
direclly on the base map as she goes along. The map 
of the area covered each day is complete at the end of 
that day. Traverses are commonly planned so that a 
given contact or structure is traced across the 
countryside. Such mapping is suited for areas where 
outcrop is good, the density of data is such that it can 
be well represented on the map, and structural 
complexity is such that extrapolation may be 
dangerous. The positions of contacts are documented 
by the distribution of attitude measuremcnts on the 
map. 

7. Depending on circumstances, a combination of 
these techniques may provide the best approach to a 
specific problem. Don't worry if you start with one 
method and discover that you have to use another. The 
main point is that you choose the method that most 
efficiently lets you document the structural relations in an 
area. 

A3-3 ASPECTS OF MAPPING STRATEGY 

8. If you blindly start mapping in an area, you may 

stumble across cannot be viewed in any rational context. 
That is why a reconnaissance is an important first step. 
Using the infonnation gained from your reconnaissance, 
start mapping in areas where you can understand the 
structures and recognize the stratigraphy (or lithologic 
sequence). 

9. If you find yourself in an area where you are lost 
(geologically), wander around until you find a relation or 
unit of whose identity you are confident. Then, trace your 
path back from the "known" into the "unknown." Often 
such backtracking puts the previously mysterious outcrop 
into a geologic context, so that it can be understood. 
Sometimes it helps to approach a difficult outcrop from 
different directions. Don't worry if the relations at a 
specific outcrop are unclear; if an outcrop seems to be hard 
to understand, it probably is hard to understand. Not all 
outcrops can be understood. Visít these difficult outcrops 
again toward the end of your mapping work, and with the 
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understanding you have developed from the mapping, you 
may be able finally to figurc them out. 

10. Early in your work, begin to employ the method 
of multiple working hypotheses. You should be 
constantly developing ideas that will be proven or 
disproven by the next step in your traverse. Plan your 
traverses around the problems to be solved (not vice versa). 
B y do ing this, the process of mapping becomes the process 
of problem solving and therefore becomes more interesting. 
Furthermore, your data collection becomes a focused rather 
than a random process. Needless to say, your hypotheses 
will evolve as your work progresses. New ones develop 
and old ones die. 

11. Early in your work, characterize the structural 
assemblage that occurs in your map area (e.g., are you ina 
fold-thrust belt, a continental platform, a rift terrane, or a 
polydeformed metamorphic terrane). The reason for doing 
this is not to bias you observations, but to sensitize you to 
the geologic problems in the area and help you to 
formulate working hypotheses based on established 
concepts. Kncwledge of the structural assemblage may 
help you identify potenlial problems with your map. 

12. Early in your work, sensitize your eyes to 
recognize variations in lithology. You may find at first 
that all rocks in your map area look the same, but as you 
work, you will find that different units become more 
distinctive. Pay special attention to guide fossils, 
characteristic lithologies, and unique minerals. These 
features help you to identify a unit. Don't worry ifit takes 
a long time for you to acclimate to your field area (i.e., to 
recognize units and structures and formulate working 
hypotheses). There is always a period of muddling around 
before you can really make progress. 

13. As you test your individual working hypotheses, 
-~ -•-'---- -'-- ---~~~= 1-~~o~l -C ~~-..J:'~~'""""'"'"""" ;,,... ,....ro.roh l-,,„,._,..,.,_tl-...,..,...~0 "r:;',..,.,_~ 
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example, after visiting a specific outcrop (where beds dip 
east), you may be about 20% sure that you are on the limb 
of a syncline. You then plan your traverse to test this 
hypothesis. At the next outcrop, beds dip west, and you 
become 80% sure that you have crossed a syncline. 
Without seeing the hinge, however, you cannot be 
posilive, so you predict where the hinge will be and plan 
your traverse accordingly. If you find the hinge, then you 
may be 100% positive that the syncline is present. 

14. Keep track of which order structure you are 
working in (see Chapter 11). Are you looking at a 
first-order regional fold or a local parasitic fold? If you find 
an isolated outcrop with overturned beds, it does not 
necessarily mean that the whole ridge you are mapping is 
overtumed. 

15. Use your hands (yes, physically use your hands) 
to help yourself trace out structures along strike. Set your 
hand to simulate bedding attitude at a starting point, and 
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then walk down the structure. Your hand reminds you of 
layer auüude at the at the starting point and thus helps you 
to detect changes in layer attitude. 

16. Use marker horizons to trace out structures. 
Search for a distinctive layer and walk it out. Be sure to 
determine whether the layer is parallel to S 1, S2, or S3. 

17. Visualize structures that you are studying in your 
mind. If you cannot visualize the structure, you probably 
do not understand it. Make lots of sketches in your 
notebook. You do not really understand a structure until 
you can sketch a cross section of it and can figure out its 
kinematic evolution. You should not only show the 
geometry of the rocks in their present configuration but 
also try to figure out the movement paths that the rocks 
followed to get into their present configuration. It helps if 
you have collectcd data on kinematic indicators. 

18. If you have thought about a structure for a long 
time, have tried diligently to mak:e sketches of it, and stíl! 
cannot figure out its geometry or evolution, go on to the 
next outcrop. The structure may be too complex or 
unusual for even an experienced geologist to figure out at 
the first try. Remember, you have limited time to 
complete your rnap. If you can, retum to the mystery 
outcrop later, and apply the knowledge you gained mapping 
elsewhere to figuring out the mystery outcrop. 

19. Every day, and again upon completion, intcrprct 
your map as ifit were drawn by someone else. Follow the 
guidclines described in Chapter 9. This step will help 
reveal any errors or inconsistencies before you go to the 
effort of drafting a final copy. 

20. H is often preferable to map on a Mylar overlay 
rather than directly on a paper base map. Mylar is much 
morc durable, doesn't get ruined when wet, and can be 
erased many times. Be sure to transfer landmarks on your 
base map onto the overlay so that you can register the 
overlay with the base map. Label each overlay so that you 
can rapidly identify the area that it covers. Ink in data that 
you arc confident of so that it cannot be erased. 

21. Systernatically record fabric data. You never 
know whether you can get back to an outcrop, so collect 
this data while you arc there for the first time. Be sure you 
carefully note the locality at which a set of data is 
coHected. Indent, or use some othcr method of high
lighting data in your notebook, so that you can quickly 
find it later for plouing on a stereonet. 

22. Always carry your camera and an extra roll of 
film. You never know when you will find a photogenic 
outcrop or an outcrop that displays a critical structural 
relation. Do not plan on taking aU photos in the map area 
on your last day in the area (it may rain). Be sure each 
photo has a scale (see Appendix 1). Number and dcscribe 
each photo in your notebook immediately after shooting it. 
It may be a while before you have a chance to label the 
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slides or prints, and by then you may have forgotten why 
they were tak:en. Indicate the direction in which the camera 
was pointing when you took the photo. 

23. To the extent possible, document all measurement 
locafüies with a symbol on your map. A person who reads 
your map will judge the certainty of a contact or structure 
by the density of measurements around it. Of course, don't 
waste time tak:ing extraneous measurements, but avoid 
having blank areas in regions where there is outcrop. The 
blank area on your map might give the impression of lack 
of outcrop. Even if bedding or foliation maintains the 
same orientation over a large area, it is important to have 
measurements to prove that. 

24. Do not delay putting measurements on your field 
map. Do not just record measurements in your notebook 
and plan to put them on in the evening. By not plotting 
measurements, you are eliminating the possibility of using 
your map to guide your traverse or to create or modify 
working hypotheses. It is important to sec how the 
strnctural relations develop on your map. Also, by 
plotting your measurements immediately, you will be ab le 
to teli if you made a mistak:e and therefore will be able to 
correct it while still in the field. At night, compile your 
map by transferring the data from the day's overlay to a 
master clean copy. 

25. Any time that you put a structurc on your map, 
be sure that there arc enough measurements to document it. 
Think of the kinds of questions that your audicnce might 
have when they study your map. 

26. Record mcasurements in your notebook ín 
addition to putting thcm on your map to make it easicr to 
plot them on a stereonct latcr. 

27. Mak:e surc that your field notes will be intelligible 
to othcr gcologists. Use standard terminology for 
dcscribing structures, be neat, and make sure localitics arc 
clearly identificd. It should be possible for another 
gcologist to takc your notebook and rcconstruct your 
traverses and your thinking. It may hclp you to make 
descriptive notcs about your travcrsc ín your notebook to 
remind yoursclf of whcrc you were. If you have lunch on 
an outcrop say so, bccause it may help you remember 
which outcrop is which. Frequently photocopy your field 
maps and notcbooks so that you will have a spare copy in 
case the orig inal is lost. 

28. If you arc collccting sarnplcs for a structural 
study, be surc that thcy arc oriented. It is very frustrating 
to cut a thin scction of an sample and find a beautiful 
kincmatic indicator only to discover that you have no way 
to dcfine the orientation of the indicator. To take an 
oriented sample, it is bcst to mark thc strikc and dip clearly 
on a structurally significant surface (e.g., a foliation plane) 
while the thc samplc is still ín the outcrop. Indicate the 
azimuth of strikc with an arrow and mark the azimuth in 
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degrees at the the tip of the arrow. Indicate stratigraphic up 
or the up direction on the outcrop with an arrow on the side 
of the sample. Then remove the sample. Remember that 
the orientation mark on the sample should be sufficient to 
allow you to be able to determine the attitude of a thin 
section that you cut from the sample or to be able to 
calculate the orientation of a mesoscopic feature that you 
see ín the sample. 

29. Ask permission to get on land if you can. If that 
is not feasible, either stay off the land or stay out of sight. 

Appendices Part 111 

If you get caught trespassing, act as innocent as possible 
(presumably you really don't mean any harm anyway). 

30. The truth is always right! Be sure to record data 
even if they seem anomalous and do not fit any of your 
working hypotheses. If the data are correct, you will 
eventually be able to explain them, or you will have to 
admit that they represent an unsolved problem. Never 
select data so that they fit your favored hypothesis. Y ou 
may, however, select representative data for plotting on 
your map if you have only limited space. 
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A4-1 EQUAL-ANGLE (WULFF) NET 
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A4-2 EQUAl-AREA (SCHMIDT) NET 

N 
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A4-4 LAMBERT POLAR EQUAL-AREA NET 
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A4~7 SCHMIDT COUNTER 

Circular hole 
(1.5 cm diameter) 

Slot 
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A4-8 ORTHOGRAPHIC NET 
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A4·9 HYPERBOLIC NET 
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A 

Accommodatíon structures, 308 
Admissible restored fault shapes, 311 
Anderson theory of faulting, 261 
Angle, bisection of, on stereonet, 109-10 
Angle between line and plane, on stereonet, 108-9 
Angle between two planes, on stereonet, 107-8 
Angular shear, 335 
Anisotropy, of rock, 238 
An tícline, 216 
Apparent dip (see Dip) 
Apparent strike line, 133 
Apparent thickness (see Thickness) 
Area balance, of cross section, 310-11, 320 
Area calculation, of dipping plane, 80-81 
Asperity, 230 
Attitude, 3 

IND 

calculation of (see Descriptive geometry; Equal-area plot; 
Stereonet; Three-point problem) 

of lines, 7 (see Bearing; Line; Plunge) 
of planes, 4, (see Dip; Plane; Strike) 

Augen mylonite, 229 
Azimuth, 5 
Azimuthal projection, 87 

B 

Backlimb, 305 
Backthrust, 304 
Balanced cross section, 310 (see Cross-section balancing) 
Basal detachment, 304 
Base map, 14 

Bathymetric map, 24 
Bearing, of a line, 7 

compass measurement, 13 
Bed-length balance, of cross section, 311, 317-20 
Benchmark, 392 
Bends on fault planes, 231-32 
B-diagram (S-pole diagram), 105, 157-8 
Blastomylonite, 229 
Block diagram, 269, 398 

construction of, 292-97 
isometric diagram, 398 
perspective diagram, 398 

Blind thrust, 305 
Boudinage, 243-44 
Break-forward sequence, 312 
Breccia (see Fault breccia) 
Brittle behavior, fracture, 200-201 
Brittle-ductile transition, 201-2 
Brunton cornpass (see Compass) 
Busk method, foldprofile, 271-76 

e 

Cartography, 387 
Cataclasíte, 226-28 
Celestial sphere, 87 
Circles, on stereonet, 137-39 
Cleavage, 239-42 

axial planar, 24 I 
classífication of, 240-43 
crenulation, 240-41 
disjunctive, 239 
fanning, 242 
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Cleavage ( continued) 
in poly-defonned terranes, 367-68 
transection, 242 

Cleavage domain, 239 
Cleavage refraction, 242 
Clinometer, 10 
Clockwise vergence (see Vergence) 
Closure: 

of fold, 216, 223 
on structure-contour map, 28 

Coefficient of friction, 199, 204 
Compass, 8-16 

Brunton type, 9-10 
bull's eye levei, 10 
plate, 12 
pointer, 9 
setting declination, 11 
use of, 10-16 

Conjugate system, of fractures, 250 
Connecting arcs, 46 
Connecting lines, 46 
Conservation of area (in cross section), 310 
Conservation of bed length, 311 
Conservation ofslip (on a fault), 313-14 
Contact, geologic, 3, 179-80, 395-96 

conformable, 395 
fault (see Fault) 
intersections of, 179-80 
intrusive (see Intrusive contact) 
unconformable (see Unconfonnity) 

Contouring equal-area plots, 148-55 
interpretation of, 155-64 
Kalsbeek method, 153 
Kamb method, 153-55, 253 
Mellis method, 151-53 
Schmidtor grid method, 149-51, 419, 421 

Contour map, 19, 22-31 
contour interval, 19 
comour ime, i ') 

constraints on drawing, 21 
construction of, 32-34 

Contractional fault, 81 
Control point, on map, 20, 32 
Core, in drill hole: 

unorientedcore, 131-32 
oriented core, 132-34 
(see also Drill-hole data) 

Correlation, of structural generations, 369-74 
use of conditions of deformation, 372-74 
use of orientation, 370 
use of style, 371-72 

Cotangent vector, 54-56 
Coulomb-Mohr failure criterion, envelope, 199, 209 
Crack-seal defonnation, 231, 246-47 
Crenulation cleavage, 240-41 
Crenulation lineation, 243-44, 369 
Cross-cutting relations, 179-80, 395-96 
Cross section, 397 

admissable, 309 
balanced, 310 

Index 

choosing the line of section, 270 
construction of, 271-81, 397 (see also Profile construction) 
defonned-state, 309, 314-17 
folds, cross sections of, 270-84 (see also Busk method; 

Grid method; Kink method; Profile construction) 
restored, 310, 317-20 
vertical exaggeration, 397-98 
viable, 310 (see also Area balance; Conservation of area; 

Conservation of bed length) 
Cross-section balancing, 303-25 (see a/so Cross section) 

applications of, 325 
area balance, 310 
bed-length balance, 311 
checking balance, 320-21 
constraints on, 312-14 
improving a cross section, 321-24 
projection, 45, 269 
reference lines, 308-9 

Cuesta, 23 
Culmination, of fold, 223 
Cutoff, against fault, 305 
Cutoff angle, 305 
Cut point, 29 
Cyclographic trace, 89-90 
Cylindrical fold (see Fold) 

D 

D, deformation-sequence nomenclature, 361 
Datum, 32 
Decollement, 303 
Deep-sea drilling project (DSDP), 131 
Deformational event, 361 
Deformation ofrock (see Rock-deformation experiments) 
Deformation path, 334 
Deformed-state cross section, 309 

construction of, 314-17 
D~?:=".~!"'~ -rY1oa.!_h_0r1 f0r ~tr~1n mp~o;;:urf":m~nt_ 14Q-:<=il 

Depression, of fold, 223 
Depth calculation, 67-73 

ina vertical hole, 67-70 
in an inclined hole, 70-3 

Depth to detachment calculation, 324-25 
Descriptive geometry, 45 (see also Orthographic projection) 

attitude calculation, 52-60 
depth calculation, 67-73 
fault-offset calculation, 81-83 

Detachment fault, 303, 304 
calculation of depth to, 324-25 

Detachment fold, 306 
Detachment horizon, 304 
Dihedral angle, 107-8 
Dip, 5 

apparent dip, 5 
apparent dip calculation, 50-56 
apparent dip calculation with stereonet, 99-101 
apparent dip computer, 58 
apparent dip nomogram (see Nomogram) 
compass measurement, 11-13 
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dip direction, 4, 8 
true dip, 5 
true dip calculation, 50-56 

Dip domain, 277-78, 306 
Dip isogon, 221-22 

use in fold-profile construction, 282-84 
Dipmeter surveying, 134-36 
Dip slip component, fault offset, 81 
Dip slope, 23 
Displacement-vector field, 333 
Displacement-vector pattems, 333-35 
Distance, measures of, 391-92 
Domain (see Cleavage domain; Dip domain; Structural domain) 
Dome and basin, 396 

on structure-contour map, 27 
Doubly plunging fold, 223 
Downhole logging, 131 

dipmeter (see Dipmeter surveying) 
sonde, 131 

Down-plunge projection, 218-19, 270, 287-92, 398 
computer for, 297 

Down-structure viewing, 287-88 
Drift, in drill holes, 134 
Drill-hole data, for calculation oflayer attitude, 131-43 

data from one drill hole, 131-36 
data from two drill holes, 136-40 
data from three drill holes, 140-42 

Ductile rock deformation, 202-4 
Ductilíty, 196, 220 

ductility contrast, 220 
mean ductifüy, 220 

Duplex, 307-8 

E 

Elasticas, 216-17 
Elastic deformation, 195 
Ellipticity, strain, 336 
Emergent thrust, 305 
En echelon "tension" gash array, 342 
Enveloping surface (see Fold) 
Equal-angle net (Wulff net), 409 
Equal-angle projection (see Stereographic projection) 
Equal-area plots, pattems of data on, 155-57 

annotated, 259 
S-diagram, 157-58 
calculation of attitudes, lines and planes, 164-66 
contouring of (see Contouring equal-area plots) 
fabric data representation, 159-64 
fold data representation, 157-62 
folds, refolded, 364-64 
great-circle girdle, 156 
joint data, 253 
n:-diagrams (se e n-diagrams) 
point maximum, 156 
small-circle girdle, 156-57 
uniform point dist:ribution, 156 

Equal-area projection, 145 
construction of, 146-4 7 
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contouring point data on, 148-55 (see Contouring equal-area 
plots) 

properties of, 147-48 
Schmidt net, 145, 411 

Experimental rock deformation (see Rock-deformation 
experirnents) 

Explanation, on map (see Map; Map symbols) 
unit symbols, 393 

Extensional fault, 81 
Extensional terrane, rift, 303 
Extension fracture, 257 
Extension gash, 342 
Extension, st:rain, 335 
Extemal zone, of orogenic be!t, 304 

F 

F, fold-axis nomenclature, 361 
Fabrics, 159 

analysis of with equal-area net, 159-64 
fabric domain, 162 
tectonite (see Tectonite) 

Facing, of fold, 219, 368 
Failure, rock deformation, 195 
Failure criterion, 198-202, 209 
Failure envelope, 199 

for brittle fracture, 200-201 
for frictional sliding, 205-7 

Fault, 226, 249 
calculation of net slip, 81-83, 120-22 
calculation of net slip with a stereonet, 120-22 
conservation of slip on, 313-14 
contour map of (see Contour map) 
dip-slip, 81 
in fold-thrust belts, 304-6 
footwall, 81 
frictional sliding on, 204-6 
hanging wall, 81 
intersections, on map, J 79-80, 182, 186 
map representation of, 179-80, 182-86, 395 
oblique slip, 81 
relation to stress, 261-63 
rotational faulting, 122-24 
separation, 81 
steps on, 231-32 
strike-slip, 81 
structure-contour map, representation on, 28-29 
thrust, map representation, 179 
thrust system, 307-8 
topographic expression, 23-24 

Fault array, 258-63 
anastamosing, 259 
complex, 259 
conjugate, 259, 261-63 
parallel, 259 
principal stress directions, determination of, 261-63 
relay, 259 
slip-linear plot of, 259-61 
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Fault-bend fold, 306-8 
angles of, 7 

Fault breccia, 226-28 
Fault gap, 28 
Fault gouge, 209-11, 226-27 
Fault grooves, 230-31 
Fault-line scarp, 24 
Fault-propagation fold, 306 
Fault scarp, 23 
Fault zone, 226 

kinematic indicators in, 229-32 
Fiber lineations, 231 
Fibrous veins, 246 
Floating point, in map construction, 32 
Fiat, on thrust fault, 305-7 
Floor thrust, 307 
Fold: 

amplitude, 219 
analysis with equal-area net, 157-59 
asymmetry, 218, 365-66 
axial plane, 215 
axis, 214 
block diagram of (see Block diagram) 
chevron, 216-17 
classes, 221 
closure, 216, 223, 396 
conjugate, 224 
constructíon, in profile (see Profile construction) 
contour map of (see Structure-contour map) 
crest line, 214 
crest surface, 215 
cross section of (see Cross section; Profil e) 
culmination, 223 
cylindrical folds, 157-59, 269 
cylindroidal fold, 269 
depression, 223 
description of, general, 213-26 
description of folded surface shape, 214-16 

description of orientation, 221-23 
dome and basin, 396-97 
doubly plunging, 223, 396 
enveloping surface, 215 
equal-area plots of (see Equal-area plot~) 
facing, 219 
fault-bend, 306-8 
fault-propagation, 306 
flexural slip, 166-67 
földed lineation, 166-68 
in fold-thrust belts, 306-8 
hinge/limb ratio, 217 
hinge/limb shape, 216-17 
hinge line, 214 
hinge surface, 214-15 
hinge zone, 214 
inclined, 222 
inflection line, 214 
interference pattern, 363-64 
intersection with topography, 26-27 
isoclinal, 217 

kink, 216-17 
kink band, 224 
kink-domain, 224, 277-78, 306-7 
limb, 214 
limb thickness, 221 
map representation of, 363, 396-97, 284-92 
median surface, 215 
monocline, 224 
noncylindrical földs, 157, 159-62 
order, 216 
overturned, 223 
parallel, 271-72 
parasitic, 216, 365-66 
passive, 167 
pattem on topographic map, 26-27, 290-92 
plunging, 222 
profile construction of (see Profile construction) 
ptygmatic, 224 
ramp anticline, 306 
reclined, 222 
recumbent, 222 
refolded, 363-65 
representation of on a map, 223-24 
rollover, 303-4, 306 
shape of folded surface, 214-16 
sheath, 224, 374 
special types, 224-26 
stereoplot patterns (see Equal-area plots) 
s ty les, 269-71 
superposed (superimposed), 168-71, 363-65, 396-97 
symmetry of, 217-19 
thickness variation of földed layer, 219-21 
tightness, 216 
topographic expression, 22-23 
trace, on map, 223-24 
trough line, 214 
trough surface, 215 
unfölding of, on stereonet, 119-22 

vergence, 218-19, 366-67 
wavelength, 219 

Fold axis, 214 
measurement of, 215 

Folded layering, as kinematic indicator, 237-38 
Fold hinge, 214 

measurement of, 223 
Folding line, 45 
Fold order, 216 
Fold system, 215 
Fold-thrust belt, 303 

faults in (see Fault) 
fold types ín, 306 (see also Fold) 
ramp-flat geometry, 305-6 
ramping direction in, 312-13 
sequence of faulting in, 312 
tenninology för, 304-9 
transport direction in, 312 

Foliation, 238-43 
description of, 241-4 3 
use of in analyzing poly-deformed terranes, 367-69 

Index 



Index 

Footwall, 81 
Foreland, of orogenic belt, 304 
Forelimb, 305 
Forethrust, 304 
Form-line contour map, 29-30 
Fracture, 193, 195, 249 (see also Extension fracture; Joint; 

Modes; Shear fracture) 
Fracture strength, 196 
Friction, 204-11 
Fry method, for strain measurement, 352-53 

G 

Geologic map (see Map) 
Generation of structures, 361 (see also Correlation) 
Girdle, on an equal-area plot (see Equal-area plots) 
Glide horizon, 304 
Gneissic layering, 240-41 
Gouge (see Fault gouge) 
Grade, of slope, 21 
Gradient, on contour map, 19 
Grain boundary sliding, 229 
Graphic interpolation, 33 
Graticule, 388 
Great circle, 89, 388 

girdle on equal-area plot (see Equal-area plots) 
on stereonet grid, 92-93 

Grid method, for fold-profile construction, 288-90 

H 

Hanging wall, 81 
Hanging-wall anticline, 306 
Hanson slip-line method (see Slip-!ine method) 
Haughton-Breddin rnethod, for strain, 345-46 
Hinge zone (see Fold) 
Hinterland, of orogenic belt, 304 
Histogram, 252 

rake, 259 
hkO fracture (see Joint) 
Hogback, 23 
Homoclinal dip, 47 
Horse, in thrust system, 307 
Hybrid shear fracture, 257 
Hyperbolic net, 357-58, 425 

lmbricate fan, in thrnst system, 307 
Inclined fold, 222 
Index contour, 20 
Interference pattems, of folds, 363-65 
Intemal zone, of orogenic belt, 304 
Interpolation, 33 
Interpretive contouring, 32-34 
Intersection lineation, 59, 243-44 

calculation of, 59-60 

calculation using poles, 106-7 
stereonet calculation, 101-2 

Intersection of contacts (see Contact) 
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Intrusive contact, map representation, 179, 395 (se e also Map) 
Isobath, 24 
Isochore map, 30-31 
Isogon, dip (see Dip isogon) 
Isogonal thickness, of fold limb, 220-21 
Isoline map, 19 
Isometric diagram, 398 
Isopach map, 30-31 

J 

Jacob's staff, 73-74 
J-intersection, 257 
Joint, 249-58 

array, 250 
attitude data on, sarnpling of, 250-51 
bedding-contained, 249, 256 
cross-strike, 256 
description of, 249-50 
dynamic interpretation of, 257-58 
frequency, 250 
graphical presentation of data on, 251-55 
hkü, 256 
intensity, 250, 256 
intersections, 257 
mineralization on, 257 
rnorphology, 250, 256 
nonsysternatic, 249 
prorninent, 249 
set, 250 
size, 249 
strike, 256 
style, 256 
surface rnorphology, 250, 256 
systern, 250 
systematic, 249 
trace length, 249 

Joint intersections, 257 

K 

Kalsbeek method of contouring (see Contouring equal-area plots) 
Kalsbeek net, 417 
Kamb method of contouring (see Contouring equal-area plots) 
Key horizon, 27 
Kinematic analysís, 213 
Kinematic indicators, 229-38, 342 

in ductile shear zones, 232-38 
in faults, 229-33 

Kink: 
kink band, 224-6 
kínk-domain fold, 224, 277-78, 306-7 
kink fold, 216-17 
kink-intersection axis, 224-25 
kink-intersection surface, 224-25 

Kink method, of fo!d-profile construction, 277-81 
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L 

L, lineation nomenclature, 361 
L, LS-tectonite (see Tectonite) 
Lambert conic projection, map, 389 
Lambert equal-area projection, 252, 415 
Lateral ramp, on thrust fault, 306 
Latitude 4, 388-89 
Layer attitude (see Drill-hole data; Plane) 
Layer thickness (see Thickness) 
Leading edge (of thrust sheet), 304 
Legencl, map (see Map, explanation) 
Length vs. strike diagram, 253-54 
Line, 7-8 

angle between line and plane (see Stereonet) 
attitude of, 7-8 (see a/so Equal-area plot; Stereonet) 
compass measurement, 13-14 
determination of length, 79-80 
length of (see Line-length calculation) 
line on a plane (on stereonet), 96-7 
of no longitudinal strain, 336 
rake of (see Equal-area plot; Rake; Stereonet) 
of section, 270, 397 
stereonet plotting, 90-91, 96-98 

Lineament, on maps and images, 264 
analysis of, 264 

Lineation, 7, 243-46 
folding of, 166-68 
interpretatíon, 244-46 
intersection (see lntersection líneation) 
polydeformed terranes, use of in, 369 
rotation of, in a plane, 115-17 

Line-length calcu lation, 79-80 
Line of no longitudinal strain, 336 
Line of section, 270, 397 
Location, 3 
Logging (see Downhole Jogging) 
Longitude, 4, 388-89 

Loose line, 309 

M 

Magnetic pole, 9-10 
Magnetic declination, 10-11 
Map, 387 (see also Contour map) 

distance measurements on, 391-92 
elements of, 387-93 
explanation (legend), 181-82, 392 (see also Map symbols) 
fabric, 387 
form-line contour, 29-30 
interpretation of, 177-87 
ísochore/isopach, 30-32 
local details, 178 
scanning procedure, for geologic maps, 182-85 
structure contour, 27-28, 387 
surface geology, 387 
tectonic, 387 
topographic, 19, 22-27, 387 

Index 

Map pattems of structures, on geologic maps, 179-80, 394-97 
contacts, 395 
faults, 395 
folds, 396-97 
homoclinal strata, 394 

Mapping technique, 362-63, 403-6 
Map projection, 45, 389 

conical, 389 
cylindrical, 389 
Lambert conic, 389 
Mercator, 389 
planar, 389 
survey grids (see Survey grids) 
Universal transverse Mercator, 389-90 

Map scale, 177-78, 390-91 
Map symbols, 7, 9, 392, 395 

for folds, 224 
for units, 393 

Map unit, 178 
Marker bed (horizon), 27, 392 
Median surface (see Fold) 
Mell is method of contouring (see Contouring equal-area plots) 
Mercator projection, 389 
Merid.ian, 388 
Mesoscopic structures, 213 
Mica fish, 236-37 
Mícrolithon, 239 
Mineral lineation, 243-44 
Minor folds (see Interference pattems) 
Minor structures, in poly-deformed terranes, 362-63 
Mist, on fracture surface, 250 
Modes, of fracture opening, 257-58 
Monocline, 224 
M-plane, for fault, 260-63 
Mohr diagram (Mohr-Coulomb diagram), 197-99, 258 
Mullíon, 244 
Multíple working hypothesis, method of, 185-86, 403-6 
Mylonite, 226-29 

N 

Net slip (see Fault) 
Nomogram, 56 

0 

for apparent dip, 56-58 
circular nomogram, 58 
for layer thickness, 79 

Objective contouring, 32-34 
Oblique section, 270 
Oriented core (see Core) 
Origin, of fracture, 250 
Orogeny, 361 
Orthographic projection, 45, 292 

attitude calculations, use of in, 45-69 
dimension calculations, use of in, 67-83 
fold-profile construction, use of in, 284-86 
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Orthographic net (orthonet), 292-93, 423 
block diagrams, use in construction of, 292-97 

Orthophotoquad, 399 
Outcrop belt, 392 
Outcrop mapping, technique, 403 
Outcrop photos and sketches, 399 
Outcrop trace, calculation of, 49-50 
Out-of-sequence faults, 312 
Overlay, on stereonet, 95 
Overtumed bedding, 6 
Overtumed fold, 222-23 

p 

Pace and compass maps, 15 
Paleotopography, 31 
Panorama photo, 399 
Parallel, latitude on map, 389 
Parallel contouring, 32, 34 
Parallel fold, 270-71 
Penci! structure, 244 
Perspective diagram, 398 (see Block diagram) 
Phase of deformation, 361, 374 
Photogrammetry, 32 
Photography of structures, 399 
Phyllonite, 229 
n:-diagrams, 105, 158-62 
Pin line, 309 
Pitch (see Rake) 
Plane: 

angle between two planes (see Stereonet) 
attitude description, 4-7 
calculation of area, 80-81 
compass mea5urement, 10-13 
stereonet plotting, 95-96 

Plane strain: 
in fold-thrust belts; 313 

Plan view, 45 
Plastic behavior, rock deformation, 195 
Plume axis, on joinl, 250 
Plumose structure, on joint, 250 
Plunge, of a line, 7 

compass measurement, 13-14 
detemúnation from rake, 98-99 
representation of, 7 

Point data, on map, 32 
Pointer, compass, 9 
Pole, stereographic, 105 

method of plotting, 105-6 
Pole circle, 139 
Poly-deformed terrane, 361-74 

correlation of structural generations, 369-74 (see a/so 

Correlation) 
mapping and data analysis of, 362-63 
multiple fabrics, interpretation of, 367-69 
nomenclature for, 361 
origins of, 374 
superimposed minor folds, interpretation of, 363-67 

Porphyroblast, 229 

Porphyroclast, 229 
Porphyroclast tail, 235-36 
Preferred orientation, 145, 238 
Pressure: 

confining pressure, l 95 
effective confining pressure, 195 
pore pressure, 195 

Pressure shadows, 243, (see also Porphyroclast tail) 
Pressure solution, 239, 342 
Primary deformation, structures, 213 
Prime meridian, 388 
Primitive circle, 88 
Profile, 216-17, 270 
Profile construction, of folds, 271-92 

Busk method, 271-76 
dip-isogon method, 282-84 
grid method, 288-90 
kink method, 277-82 
from maps of regions with high relief, 290-92 
orthographic projection, use of for, 284-86 
plunging folds, construction of, 286-90 

Progressive deforrnation, 361, 374 
Projection, 45, 389 

line, 45, 87-88 
map, 389-91 
plane, 45 
rotated, 46 

Pseudotachylite, 226-27 
Pure shear, strain, 336-37 
P-value, fold shape, 217-18 

Q 

Quadrant, cornpass, 5 
Quadratic stretch, elongation, 335 
Quasiplastic mylonite, 229 

R 

Rake, 8 
histograrn, 259 
rneasurement of, 14 
stereonet plotting, 97-99 

Ramp, 305 
Ramp anticline, 306 
Ramp-flat geometry, of thrust fault, 305-8 
Ramp height, 316 
Ramsay's method, for strain measurernent, 348-49 
Reclined fold, 222 
Recoverable deformation, 195-96 
Recumbent fold, 222 
Reference frame, 3-4, 45, 392 
Reference line, in thrust sheet, 308-9 
Reference p!ane, 46 
Refolded folds, 363-65 

stereoplot representation of, 364-65 
Regional dip, 309 
Regional levei, 309 
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Regional shortening calculation, 325 
Realeasing step or bend, on fault, 232 
Representative fraction, map scale, 390-91 
Restoration, of cross section, 303 
Restored cross section, 310, 317-20 
Restraining step or bend, on fault, 232 
Rr0 method, 353-58 
Rift terrane, 303 
Right-hand rule, for compass, 7 
Rigid body rotation, 333-34 
Rigid body translation, 333-34 
Robin's method, for strain analysis, 358-59 
Rock-deformation experiments, 193-211 

analysis of brittle-ductile transition, 201-2 
analysis of brittle failure envelope, 200-202 
analysis of ductile deformation, 202-4 
analysis of rock friction, 204-9 
analysis of rock strength, 199-200 
analysis of sliding on gouge, 209-11 
experimental apparatus, 193-95 
representation of data, 195-99 
types of experiments, 195 

Roof thrust 307 
Rose diagram, 251-52, 413 
Rotated grains, 236-37 
Rotation, on stereonet: 

applications, 118-24 
around horizontal axis, 112-16 
around inclined axis, 116-18 
around vertical axis, 111-12 
problems, on stereonet, 110-18 
use in drill-hole problems, 141-42 

Rotational faulting, 122-24 
Rule of V's, topographic pattems, 24-26, 178-79 
Running average, 252-53 

s 

S-C mylonites, 234-35 
Scale (see Map scale) 
Scaled drawing, 45 
Scale factor, 390 
Schistosity, 240-42 
Schmidt counter, 149-50, 421 
Schmidt net, 411 (see also Equal-area projection) 
Schmidt (grid) method of contouring, 419 (see also Contouring 

equal-area plots) 
Section, on map grid, 394 
Section line, for cross section (see Line of section) 
Separatior1, fault, 81 
Separation arc, 232-33 
S-fold, 218 
Shear band, 234-35 
Shear box demonstration, 337-41 
Shear fracture, 198-99, 257-58 
Shear zone, 226 

brittle shear zone, 226 
brittle-ductile shear zone, 226 
ductile shear zone, 226 

kinematic indicators in, 229-38 
rocks, 226-29 
strain in, 341-42 

Sheath fold, 224, 374 
Shortening, region (see Regional shortening calculation) 
Sigmoidal foliation, 233-34 
Simple shear, 336-42 

heterogeneous, 341-42 
Sketches, of outcrops, 399 
Slaty cleavage, 239-40 
Slickenline (see Slip lineation) 
Slickenside, 226 
Slickolite, 232 
Slip-linear plot (of fault data), 259-61 
Slip lineation, 230-31 
Slip-line method, 232-33 
Slope, 21 

angle of, 21 
grade, 21 
slope fraction, 21 

Small circle, 91, 388 
stereographic projection of, 91, 94-95 

Sonde (see Downhole logging) 
Spherical projection, 87-88 
S-pole diagram (B-diagram) (see B-diagram) 
S-surface, 361 
S tation mapping, technique, 403-4 
Statistical analysis of angular data, for joints, 255-56 
S-tectonite (see Tectonite) 
Stereogram, 92 
Stereographic projection: 

concept, 87-89 
of a line, 90-91 
of a plane, 89-90 
of a small circle, 91, 137-39 
properties of, 145, 147-48 

Stereonet (equal-angle net), use of, 92-95 
bisecting angle between two planes, 109-10 
r<>kuhtirm nf on~IP hPtWPPn line and nla_ne_ 108-9 
calculation of dihedral angle, 107-9 
calculation of intersection lineation, 106-7 
calculation of intersection of two planes, 101-2 
calculation of plunge, 98-99 
calculation of rake, 97-98 
calculation of true/apparent dip, 99-101 
calibration of, 95 
construction of, 92-95 
overlay, 95 
preparation for plotting, 95 
plotting a line, 96 
plotting a line on a plane, 96-97 
plotting a plane, 95-96 
plotting a pole to a plane, 105-6 
representation of circles, 137-39 
rotation problems, (see Rotation) 
template for, 411 
true and apparent dip calculations, 99-101 

Stereoscopic plotter, 32 
Strain, 333 (sec also Strain marker; Strain measurement) 

axial, 194 (see Rock-deformation experiments) 
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coaxial, 336-7 
deformation path, 334 
displacement-vector pattems, 333-35 
ellipse (ellipsoid), 335 
ellipticity, 336 
finite (total), 333 
general, 3 36 
homogeneous, 334 
incremental, 333 
irrotational, 336 
line of no longitudinal strain, 336 
longitudinal, 335 
measures of, 335-36 
principal, 336 
pure shear, 336-37 
rigid rotation, 336 
shear, 335 
shear-box demonstration, 3 37-41 
simple shear, 336-42 
thrust sheet, in, 308 

Strain hardening, 195-97 
Strain marker, 342-44 
Strain measurement, techniques for, 343-59 

bilaterally symmetrical fossils, use of, 345-51 
DePaor's method, 349-51 
ellipsoidal markers, use of, 351-9 
Fry method, 352-53 
Haughton-Breddin method, 345-46 
linear markers, use of, 343-45 
Ramsay's method, 348-49 
Rf'lll method, 353-58 
Robin's method, 358-59 
Wellman's method, 346-48 

Strain rate, 195 
constant strain-rate experiment, 195 

Strain softening, 195-97 
Stratigraphic trap, 31 
Strength, of rock, 196 
Stress, 193 

constant stress experiment, creep test, 195 
differential stress, 19 5 
effective stress, 195 
ellipsoid, 196 
mean stress, 198 
principal planes, 197 
principal stresses, 197 
state of stress in the crust, 207-9 
tensor, 197 

Stress-strain plot, 195-97 
Stretched markers, lineatíon, 243-44 
Strike, of a plane, 5 

azimuthal convention, 5 
compass measurement, 10-13 
quadrantconvention,5 
representation of, 6 
rotation around, 114-15 
strike line, 5 

Strike-slip component, fault offset, 81 
Strike vs. traverse distance diagram, 253 
Structural domain, 251, 362 
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Structural element:„ in poly-deformed terrane, 361 
Structural generations, correlation of, 369-74 (see a/so Correlation) 
Structural geometry, 387 
Structural grain, 24 
Structural relief, 309 
Structural style, 371-72 
Structure-contour map, 27-29 

representation of faults, 28-29 
Stylolite, 232, 342 
Subsurface layering (see Descriptive Geometry; Drill-hole data; 

Plane; Structure-contour map) 
Superplastícity, 229 
Superplastic mylonite, 229 
Superposed folds (see Fold) 
Survey grid, 392-94 

land-office grid, 393-94 
state plane-coordinate grid, 393 
UTM grid, 392-93 

Symbols, for map (see Map symbols) 
Syncline, 216 

T 

Tangent vector, 54, 56 
Tape and compass maps, 14-15 
Tectonic deformation, 213 
Tectonite, fabric, 160-63, 243-44 
Template constraint, 313 
Templates for plotting data„ 407-25 
Tension gash, 342 
Texture, 238 
Thickness, on a geologic map, 180-81, 394 

of a fold limb, 78-9, 219-21 
Thickness calculation, 73-79 

apparent thickness, 74 
from drill data, 77-8 
of a folded layer, 78-9 
Jacob's staff, 73-4 
nomogram for, 79 
of a nonparallel layer, 78 
from tape or map data, 74-7 

Thin-skinned deformation, 303 
Three-point problem, 47-49 

use of outcrop pattems for, 49 
Throw, of fault, 28 
Thrust sheet, 304 

reference lines in, 308-9 
strain in, 308 

Thrust system, 307-8 
sequence of faulting in, 312 
transport direction, 312 

Tilt correction, for joint data, 255 
Tip line, of fault, 305 
Topographic maps, 19, 22-27 

intersection of folds with, 26-27 
intersection of planes with, 24-26 
pattems of structures, 22-24, 178-79 

Trace, 5 
on map, 387 
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Trailing edge, of thrust sheet, 304 
Transport direction, of thrust sheet, 304, 312 
Transposition, 370 
Traverse correction, for joint data, 254-55 
Traverse line, 20, 67 
Traverse mapping, technique, 404 
Trend, 7 
Triangulation (map making), 16 

triangulation net, 16 
Triaxial load machine, 193-95 (see a/so Rock-deformation 

experiments) 
Trigonometric functions, 401-2 

use of, 53-78 
True dip (see Dip) 
Twist hackle, 250 
Two- or three-point sighting, 15-16 

u 

Ultramylonite, 227-29 
Unconformity, 395 

map representation, 179, 395-96 
pretilt orientation of underlying structures, 118-19 

Unit conversions (for distance), 392 
Universal transverse Mercator projection, 389-90 (see also 

UTMgrid) 
Ultimate strength, 196 
UTM grid, 392-3 (see also Universal transverse Mercator 

projection) 

v 

Valley and Ridge province, 23 
Veins, 246-47 

antitaxial, 247 
blocky, 246 
composite, 247 
stretched crystal, 247 
syntaxial, 247 

Yergence, of fold, 218-19, 366-67 
Yergence boundary, in poly-deformed terrane, 366-67 
Yertical exaggeration, on cross section, 397-98 
Yiable cross section, 310 

testing viability of, 310-12 
Y's, rule of (see Rule of V's) 

w 

Wellman's method, for strain measurement, 346-48 
Wulff net (see Stereonet) 

y 

Younging direction, ofbeds, 6, 219, 367 
Yield, rock deformation, 195 
Yield strength, 196 

L. 

Zero isopach, isochore, 30 
Zenith, 88 
Z-fold, 218 
Zone, on UTM map projection, 390 

Index 


	LIbro.pdf
	Parte 1.pdf
	Parte 2

	Parte 3
	Üres lap



