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Preface 

Beginning with the first edition of this book. the goal has been to introduce a broad 
array of techniques for the examination and analysis of a wide variety of data that 
may be encountered in diverse areas of biological studies. As such, the book has been 
called upon to fulfill two purposes. First. it has served as an introductory textbook. 
assuming no prior knowledge of statistics. Second, it has functioned as a reference 
work consulted long after formal instruction has ended. 

Colleges and universities have long offered an assortment of introductory statistics 
courses. Some of these courses are without concentration on a particular field in 
which quantitative data might be collected (and often emphasize mathematics and 
statistical theory). and some focus on statistical methods of utility to a specific field 
(such as this book. which has an explicit orientation to the biological sciences). 
Walker (1929: 148-163) reported that. although the teaching of probability has 
a much longer history. the first statistics course at a'V.S. university or college 
probably was at Columbia College (renamed Columbia University in 1896) in 
1880 in the economics department; followed in 1887 by the second-the first in 
psychology-at the University of Pennsylvania; in 1889 by the first in anthropology, 
at Clark University; in 1897 by the first in biology, at Harvard University; in 1898 
by the first in mathematics, at the University of Illinois; and in 1900 by the first in 
education. at Teachers College. Columbia University. In biology. the first courses 
with statistical content were probably taught by Charles B. Davenport at Harvard 
(1887-1899), and his Statistical Methods in Biological Variation. first published in 
1899. may have been the first American book focused on statistics (ibid.: 159). 

The material in this book requires no mathematical competence beyond very 
elementary algebra. although the discussions include many topics that appear seldom. 
if at all. in other general texts. Some statistical procedures are mentioned though not 
recommended. This is done for the benefit of readers who may encounter them in 
research reports or computer software. 

Many literature references and footnotes are given throughout most chapters. 
to provide support for material discussed. to provide historical points. or to direct 
the reader to sources of additional information. More references are given for 
controversial and lesser-known topics. 

The data in the examples and exercises are largely fictional, though generally 
realistic, and are intended to demonstrate statistical procedures. not to present actual 
research conclusions. The exercises at the end of chapters can serve as additional 
examples of statistical methods, and the answers are given at the back of the book. 
The sample sizes of most examples and exercises are small in order to conserve space 
and to enhance the ease of presentation and computation. Although the examples 
and exercises represent a variety of areas within the biological sciences. they are 
intended to be understood by biology students and researchers across a diversity of 
fields. 

There are important statistical procedures that involve computations so demanding 
that they preclude practical execution without appropriate computer software. Basic 
principles and aspects of the underlying calculations are presented to show how results 
may be obtained; for even if laborious calculations will be performed by computer, the 
biologist should be informed enough to interpret properly the computational results. 
Many statistical packages are available. commercially or otherwise, addressing various 
subsets of the procedures in this book: but no single package is promoted herein. 

xi 



xii Preface 

A final contribution toward achieving a book with self-sufficiency for most bio­
statistical needs is the inclusion of a comprehensive set of statistical tables, more 
extensive than those found in similar texts. 

To be useful as a reference, and to allow for differences in content among 
courses for which it might be used, this book contains much more material than 
would be covered during one academic term. Therefore, I am sometimes asked to 
recommend what I consider to be the basic topics for an introduction to the subject. 
I suggest these book sections (though not necessarily in their entirety) as a core 
treatment of biostatistical methods, to be augmented or otherwise amended with 
others of the instructor's preference: 1.1-1.4,2.1-2.4,3.1-3.3,4.1,4.4-4.6,6.1-6.4, 
7.1-7.4,7.6-7.7,8.1-8.5,8.10-8.11,9.1-9.3,10.1-10.4, 11.1-11.4, 12.1-12.4, 14.1, 
15.1,17.1-17.7,18.1-18.3,19.1-19.3,19.9, 20.2-20.4, 22.1-22.3, 22.5, 23.1-23.4: and 
the introductory paragraph(s) to each of these chapters. 

Jerrold H. Zar 
DeKalb, Illinois 
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CHAPTER 1 

Data: Types and Presentation 

1.1 TYPES OF BIOLOGICAL DATA 
1.2 ACCURACY AND SIGNIFICANT FIGURES 
1.3 FREQUENCY DISTRIBUTIONS 
1.4 CUMULATIVE FREQUENCY DISTRIBUTIONS 

Scientific study involves the systematic collection, organization. analysis. and presen­
tation of knowledge. Many investigations in the hiological sciences are quantitative. 
where knowledge is in the form of numerical ohservations called data. (One numerical 
observation is a dawl11.*) In order for the presentation and analysis of data to be 
valid and useful, we must use methods appropriate to the type of data obtained. to 
the design of the data collection. and to the questions asked of the data: and the 
limitations of the data. of the data collection. and of the data analysis should be 
appreciated when formulating conclusions. This chapter. and those that follow. will 
introduce many concepts relevant to this goal. 

The word statistics is derived from the Latin for "state." indicating the historical 
importance of governmental data gathering, which related principally to demographic 
information (including census data and "vital statistics") and often to their use in 
military recruitment and tax collecting. t 

The term statistics is often encountered as a synonym for data: One hears of college 
enrollment statistics (such as the numbers of newly admitted students. numbers of 
senior students, numbers of students from various geographic locations). statistics of 
a basketball game (such as how many points were scored by each player. how many 
fouls were committed). lahor statistics (such as numbers of workers unemployed. 
numbers employed in various occupations). and so on. Hereafter. this usc of the word 
statistics will not appear in this hook. Instead, it will be used in its other common 
manner: to refer to the orderly collection, analysis. and interpretatiol1 (~f data with 
a view to objective evaluatioll of conclusions based Oil the data. (Section 2.4 will 
introduce another fundamentally important use of the term statistic.) 

Statistics applied to biological problems is simply called biostatistics or, sometimes. 
biometry* (the latter term literally meaning "biological measurement"). Although 

*The IeI'm dllfll is sometimes seen as a singular noun meaning "numcrical information." This 
hook rdrains from that usc. 

t Peters (llJ~7: 79) and Walker (llJ29: 32) attrihute the first use of the term Sflllistin to a German 
professor. Gottfried Achenwall (1719-1772). who uscd the German word Swti.wik in I 74lJ. and the 
lirst puhlished use of the English word to John Sinclair (1754-1~35) in 1791. 

*The word biollletry. which literally means "biological measurement." had. since the nineteenth 
century. hcen found in sl.!veral contexts (such as demographics and. later. yuantitative genetics: 
Armitage. 1 9~S: Stigler. 2(K)O). but using it to mean the application of statistical methods to niological 
information apparently was conceived hetween IX92 and 1901 by Karl Pearson. along with the name 
Biollletrika for the still·important English journal he helped found: and it was first publi~hed in the 
inaugural is!\uc of this journ,,1 in IlJO} (Sncdccor. 1954). The Biometrics Section of the Amcric,m 

1 
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their magnitudes relative to each other: or success in learning to run a maze may be 
recorded as A. B. or C. 

It is often true that biological data expressed on the ordinal scale could have been 
expressed on the interval or ratio scale had exact measurements been obtained (or 
obtainable). Sometimes data that were originally on interval or ratio scales will be 
changed to ranks: for example, examination grades of99. 85. 73. and 66% (ratio scale) 
might be recorded as A, B. C, and D (ordinal scale), respectively. 

Ordinal-scale data contain and convey less information than ratio or interval data, 
for only relative magnitudes are known. Consequently. quantitative comparisons are 
impossible (e.g., we cannot speak of a grade of C being half as good as a grade of 
A, or of the difference between cell sizes I and 2 being the same as the difference 
between sizes 3 and 4). However. we will see that many useful statistical procedures 
are, in fact. applicable to ordinal data. 

(d) Data in Nominal Categories. Sometimes the variable being studied is classified 
by some qualitative measure it possesses rather than by a numerical measurement. 
In such cases the variable may be called an attribute, and we are said to be dealing 
with nominal, or categorical. data. Genetic phenotypes are commonly encountered 
biological attributes: The possible manifestations of an animal's eye color might be 
brown or blue: and if human hair color were the attribute of interest, we might 
record black. brown. blond, or red. As other examples of nominal data (nominal 
is from the Latin word for "name"), people might be classified as male or female, 
or right-handed or left-handed. Or, plants might be classified as dead or alive, or 
as with or without fertilizer application. Taxonomic categories also form a nominal 
classification scheme (for example, plants in a study might be classified as pine, spruce. 
or fir). 

Sometimes. data that might have been expressed on an ordinal. interval, or ratio 
scale of measurement may be recorded in nominal categories. For example. heights 
might be recorded as tall or short. or performance on an examination as pass or fail. 
where there is an arbitrary cut-off point on the measurement scale to separate tall 
from short and pass from fail. 

As will be seen. statistical methods useful with ratio. interval. or ordinal data 
generally are not applicable to nominal data. and we must. therefore. be able to 
identify such situations when they occur. 

(e) Continuous and Discrete Data. When we spoke previously of plant heights. we 
were dealing with a variable that could be any conceivable value within any observed 
range; this is referred to as a continuous variable. That is. if we measure a height of 
35 cm and a height of 36 cm, an infinite number of heights is possible in the range 
from 35 to 36 cm: a plant might be 35.07 cm tall or 35.988 cm tall, or 35.3263 cm tall, 
and so on. although, of course, we do not have devices sensitive enough to detect this 
infinity of heights. A continuous variable is one for which there is a possible value 
between any other two values. 

However, when speaking of the number of leaves on a plant, we are dealing 
with a variable that can take on only certain values. It might be possible to observe 
27 leaves. or 28 leaves, but 27.43 leaves and 27.9 leaves are values of the variable 
that are impossible to obtain. Such a variable is termed a discrete or discontinuous 
variable (also known as a meristic variable). The number of white blood cells in 1 mm3 

of blood. the number of giraffes visiting a water hole. and the number of eggs laid 
by a grasshopper are all discrete variables. The possible values of a discrete variable 
generally are consecutive integers. but this is not necessarily so. If the leaves on our 



plants are always formed in pairs, then only even integers are possible values of the 
variable. And the ratio of number of wings to number of legs of insects is a discrete 
variable that may only have the value of 0,0.3333 ...• or 0.6666 ... (i.e., ~, ~, or ~, 
respectively). * 

Ratio-, interval-, and ordinal-scale data may be either continuous or discrete. 
Nominal-scale data by their nature are discrete. 

1.2 ACCURACY AND SIGNIFICANT FIGURES 

Accuracy is the nearness of a measurement to the true value of the variable being 
measured. Precision is not a synonymous term but refers to the closeness to each other 
of repeated measurements of the same quantity. Figure 1.1 illustrates the difference 
between accuracy and precision of measurements . 

• • •• ••• ••• I 

o 2 3 4 

(a) 

• • •• ••• ·r··, I 

o 2 3 4 

(c) 

5 6 kg 0 

5 6 kg 0 

• •••••••• I I I 

234 

(b) 

5 

• ••••••• I I I 

2 3 4 5 

(d) 

6 kg 

6 kg 

FIGURE 1.1: Accuracy and precision of measurements. A 3-kilogram animal is weighed 10 times. The 10 
measurements shown in sample (a) are relatively accurate and precise; those in sample (b) are relatively 
accurate but not precise; those of sample (c) are relatively precise but not accurate; and those of sample 
Cd) are relatively inaccurate and imprecise. 

Human error may exist in the recording of data. For example. a person may 
miscount the number of birds in a tract of land or misread the numbers on a heart­
rate monitor. Or, a person might obtain correct data but record them in such a way 
(perhaps with poor handwriting) that a subsequent data analyst makes an error in 
reading them. We shall assume that such errors have not occurred, but there are other 
aspects of accuracy that should he considered. 

Accuracy of measurement can be expressed in numerical reporting. If we report 
that the hind leg of a frog is 8 cm long, we are stating the number 8 (a value of a 
continuous variable) as an estimate of the frog's true leg length. This estimate was 
made using some sort of a measuring device. Had the device been capable of more 
accuracy, we might have declared that the leg was 8.3 em long, or perhaps 8.32 em 
long. When recording values of continuous variables. it is important to designate the 
accuracy with which the measurements have been made. By convention, the value 
8 denotes a measurement in the range of 7.50000 ... to 8.49999 ... , the value 8.3 
designates a range of 8.25000 ... to 8.34999 ...• and the value 8.32 implies that the 
true value lies within the range of 8.31500 ... to 8.32499 .... That is, the reported 
value is the midpoint of the implied range. and the size of this range is designated 
by the last decimal place in the measurement. The value of 8 cm implies an ability to 

*The ellipsis marks ( ... ) may be read as "and so on." Here. they indicate that ~ and ~ are 
repeating decimal fractions. which could just as well have been written as 0.3333333333333 ... and 
0.6666666666666 .... respectively. 
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determine length within a range of 1 cm. 8.3 cm implies a range of 0.1 cm. and 8.32 cm 
implies a range of 0.01 cm. Thus. to record a value of 8.0 implies greater accuracy 
of measurement than does the recording of a value of 8, for in the first instance the 
true value is said to lie between 7.95000 ... and 8.049999 ... (i.e., within a range of 
0.1 cm). whereas 8 implies a value between 7.50000 ... and 8.49999 ... (i.e .• within a 
range of I cm). To state 8.00 cm implies a measurement that ascertains the frog's limb 
length to be between 7.99500 ... and 8.00499 ... cm (i.e .. within a range of 0.01 cm). 
Those digits in a number that denote the accuracy of the measurement are referred 
to as significant figures. Thus. 8 has one significant figure, 8.0 and 8.3 each have two 
significant figures, and 8.00 and 8.32 each have three. 

In working with exact values of discrete variables. the preceding considerations 
do not apply. That is. it is sufficient to state that our frog has four limbs or that its 
left lung contains thirteen flukes. The use of 4.0 or 13.00 would be inappropriate. for 
as the numbers involved are exactly 4 and 13. there is no question of accuracy or 
significant figures. 

But there are instances where significant figures and implied accuracy come into 
play with discrete data. An entomologist may report that there are 72,000 moths in 
a particular forest area. In doing so. it is probably not being claimed that this is the 
exact number but an estimate of the exact number. perhaps accurate to two significant 
figures. In such a case. 72,000 would imply a range of accuracy of 1000. so that the true 
value might lie anywhere from 71,500 to 72,500. If the entomologist wished to convey 
the fact that this estimate is believed to be accurate to the nearest 100 (i.e .. to three 
significant figures), rather than to the nearest 1000, it would be better to present the 
data in the form of scientific l1otation,* as follows: If the number 7.2 x 104 ( = 72.000) 
is written, a range of accuracy of 0.1 x 104 (= 1000) is implied. and the true value 
is assumed to lie between 71,500 and 72,500. But if 7.20 x 1(}4 were written. a range 
of accuracy of 0.01 x 104 ( = 100) would be implied, and the true value would be 
assumed to be in the range of 71,950 to 72,050. Thus. the accuracy of large values (and 
this applies to continuous as well as discrete variables) can be expressed succinctly 
using scientific notation. 

Calculators and computers typically yield results with more significant figures than 
are justified by the data. However. it is good practice-to avoid rounding error-to 
retain many significant figures until the last step in a sequence of calculations. and on 
attaining the result of the final step to round off to the appropriate number of figures. 
A suggestion for the number of figures to report is given at the end of Section 6.2. 

1.3 FREQUENCY DISTRIBUTIONS 

When collecting and summarizing large amounts of data, it is often helpful to record 
the data in the form of a frequency table. Such a table simply involves a listing of all 
the observed values of the variable being studied and how many times each value is 
observed. Consider the tabulation of the frequency of occurrence of sparrow nests 
in each of several different locations. This is illustrated in Example l.l, where the 
observed kinds of nest sites are listed, and for each kind the number of nests observed 
is recorded. The distribution of the total number of observations among the various 
categories is termed a frequency distribution. Example 1.1 is a frequency table for 
nominal data. and these data may also be presented graphically by means of a bar 
graph (Figure 1.2). where the height of each bar is proportional to the frequency 
in the class represented. The widths of all bars in a bar graph should be equal so 

*The use of scientific notation-by physicists-can be traced back to at least the 18605 (Miller. 
2004b). 



EXAMPLE 1.1 
Nominal Data 

Section 1.3 Frequency Distributions 7 

The Location of Sparrow Nests: A Frequency Table of 

The variable is nest site. and there are four recorded categories of this variable. 
The numbers recorded in these categories constitute the frequency distribution. 

Nest Site Number of Nests Observed 

A. Vines 56 
B. Building eaves 60 
C. Low tree branches 46 
D. Tree and building cavities 49 

60 I- r--

.----
50 I- r--

'" r--
'Iii v 40 I-Z 
'0 ... 
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30 l-s:. e 
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10 -
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A B C D 

Nest Site 

FIGURE 1.2: A bar graph of the sparrow nest data of Example 1.1. An example of a bar graph for 
nominal data. 

that the eye of the reader is not distracted from the differences in bar heights; this 
also makes the area of each bar proportional to the frequency it represents. Also. 
the frequency scale on the vertical axis should begin at zero to avoid the apparent 
differences among bars. If. for example. a bar graph of the data of Example 1.1 were 
constructed with the vertical axis representing frequencies of 45 to 60 rather than 0 to 
60. the results would appear as in Figure 1.3. Huff (1954) illustrates other techniques 
that can mislead the readers of graphs. It is good practice to leave space between 
the bars of a bar graph of nominal data. to emphasize the distinctness among the 
categories represented. 

A frequency tabulation of ordinal data might appear as in Example 1.2. which 
presents the observed numbers of sunfish collected in each of five categories. each 
category being a degree of skin pigmentation. A bar graph (Figure 1.4) can be 
prepared for this frequency distribution just as for nominal data. 
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60 r-

FIGURE 1.3: A bar graph of the sparrow nest data of Example 1.1, drawn with the vertical axis starting 
at 45. Compare this with Figure 1.1, where the axis starts at O. 

EXAMPLE 1.2 Numbers of Sunfish, Tabulated According to Amount of 
Black Pigmentation: A Frequency Table of Ordinal Data 

The variable is amount of pigmentation, which is expressed by numerically 
ordered classes. The numbers recorded for the five pigmentation classes compose 
the frequency distribution. • 

Pigmentation Class Amount of Pigmentation Number of Fish 

o No black pigmentation 13 
1 Faintly speckled 68 
2 Moderately speckled 44 
3 Heavily speckled 21 
4 Solid black pigmentation 8 
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FIGURE 1.4: A bar graph of the sunfish pigmentation data of Example 1.2. An example of a bar graph 
for ordinal data. 
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In preparing frequency tables of interval- and ratio-scale data, we can make a 
procedural distinction between discrete and continuous data. Example 1.3 shows 
discrete data that are frequencies of litter sizes in foxes, and Figure 1.5 presents this 
frequency distribution graphically. 

EXAMPLE 1.3 Frequency of Occurrence of Various Litter Sizes in Foxes: 
A Frequency Table of Discrete, Ratio-Scale Data 

The variable is litter size, and the numbers recorded for the five litter sizes make 
up frequency distribution. 

Utter Size Frequency 

3 10 
4 27 
5 22 
6 4 
7 1 

30 ' .. 

25 -
~ -
~ 20 -
~ 
''0 ... 
0 15 , -.D 
E 
:::l 

Z 
10 - ,--- ., 

5 -

0 
~ 4 6 7 

Li tter Sin: 

FIGURE 1.5: A bar graph of the fox litter data of Example 1.3. An example of a bar graph for discrete, 
ratio-scale data. 

Example 1.4a shows discrete data that are the numbers of aphids found per clover 
plant. These data create quite a lengthy frequency table, and it is not difficult 
to imagine sets of data whose tabulation would result in an even longer list of 
frequencies. Thus, for purposes of preparing bar graphs, we often cast data into a 
frequency table by grouping them. 

Example l.4b is a table of the data from Example 1.4a arranged by grouping the 
data into size classes. The bar graph for this distribution appears as Figure 1.6. Such 
grouping results in the loss of some information and is generally utilized only to make 
frequency tables and bar graphs easier to read, and not for calculations performed on 
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the data. There have been several "rules of thumb" proposed to aid in deciding into 
how many classes data might reasonably be grouped, for the use of too few groups will 
obscure the general shape of the distribution. But such "rules" or recommendations 
are only rough guides, and the choice is generally left to good judgment, bearing in 
mind that from 10 to 20 groups are useful for most biological work. (See also Doane, 
1976.) In general, groups should be established that are equal in the size interval of 
the variable being measured. (For example, the group size interval in Example].4b 
is four aphids per plant.) 

EXAMPLE 1.4a Number of Aphids Observed per Clover Plant: A Fre-
quency Table of Discrete, Ratio-Scale Data 

Number of Aphids Number of Number of Aphids Number of 
011 a Plant Plants Observed on a Plant Plallts Observed 

0 3 20 17 
1 1 21 18 
2 I 22 23 
3 1 23 17 
4 2 24 19 
5 3 25 18 
6 5 26 19 
7 7 27 21 
8 8 28 18 
9 II 29 13 

IO 10 30 10 
11 11 31 14 
12 13 32 9 
13 12 33 10 
14 16 34 8 
15 13 35 5 
16 14 36 4 
17 ]6 37 1 
18 ]5 38 2 
19 14 39 1 

40 0 
41 I 

Total number of observations = 424 

Because continuous data, contrary to discrete data. can take on an infinity of 
values, one is essentially always dealing with a frequency distribution tabulated by 
groups. If the variable of interest were a weight, measured to the nearest 0.1 mg, 
a frequency table entry of the number of weights measured to be 48.6 mg would 
be interpreted to mean the number of weights grouped between 48.5500 ... and 
48.6499 ... mg (although in a frequency table this class interval is usually written as 
48.55-48.65). Example 1.5 presents a tabulation of 130 determinations of the amount 
of phosphorus, in milligrams per gram, in dried leaves. (Ignore the last two columns 
of this table until Section 1.4.) 
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EXAMPLE 1.4b Number of Aphids Observed per Clover Plant: A Fre-
quency Table Grouping the Discrete, Ratio-Scale Data of Example 1.4a 
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Number of Aphids 
on a Plant 

0-3 
4-7 
8-11 

12-15 
16-19 
20-23 
24-27 
28-31 
32-35 
36-39 
40-43 

Number of 
Plants Observed 

6 
17 
40 
54 
59 
75 
77 
55 
32 
8 
1 

Total number of observations = 424 
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Observed Number of Aphids per Plant 

FIGURE 1.6: A bar graph of the aphid data of Example 1.4b. An example of a bar graph for grouped 
discrete, ratio-scale data. 
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EXAMPLE 1.5 Determinations of the Amount of Phosphorus in Leaves: A 
Frequency Table of Continuous Data 

Frequency 
Cumulative frequency 

Phosphorus (i.e .• number of Starting with Startillg with 
(mglg of leaf) determinations) Low Values High Vailies 

8.15-8.25 2 2 130 
8.25-8.35 6 8 128 
8.35-8.45 8 16 122 
8.45-8.55 11 27 114 
8.55-8.65 17 44 103 
8.65-8.75 17 61 86 
8.75-8.85 24 85 69 
8.85-8.95 18 103 45 
8.95-9.05 13 116 27 
9.05-9.15 10 126 14 
9.15-9.25 4 130 4 

Total frequency = 130 = n 

In presenting this frequency distribution graphically, one can prepare a histogram: 
which is the name given to a bar graph based on continuous data. This is done in 
Figure 1.7: note that rather than indicating the range on the horizontal axis. we 
indicate only the midpoint of the range, a procedure that results in less crowded 
printing on the graph. Note also that adjacent bars in a histogram are often drawn 
touching each other, to emphasize the continuity of the scale of measurement, whereas 
in the other bar graphs discussed they generally are not. 

25 

>. g 20 

" ::s 

! 15 

III 

8.2 8.3 K4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 
Phosphorus (mglg or lear) 

FIGURE 1.7: A histogram of the leaf phosphorus data of Example 1.5. An example of a histogram for 
continuous data. 

*The term histogram is from Greek roots (referring to a pole-shaped drawing) and was first 
published by Karl Pearson in 1895 (David \995). 
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FIGURE 1.8: A frequency polygon for the leaf phosphorus data of Example 1.5. 

Often a frequency polygon is drawn instead of a histogram. This is done by plotting 
the frequency of each class as a dot (or other symbol) at the class midpoint and 
then connecting each adjacent pair of dots by a straight line (Figure 1.8). It is. of 
course. the same as if the midpoints of the tops of the histogram bars were connected 
by straight lines. Instead of plotting frequencies on the vertical axis, one can plot 
relative frequencies, or proportions of the total frequency. This enables different 
distributions to be readily compared and even plotted on the same axes. Sometimes, 
as in Figure 1.8, frequency is indicated on one vertical axis and the corresponding 
relative frequency on the other. (Using the data of Example 1.5, the relative frequency 
for 8.2 mglg is 2/130 = 0.015, that for 8.3 mglg is 6/130 = 0.046, that for 9.2 mglg is 
4/130 = 0.030, and so on. The total of all the frequencies is n, and the total of all the 
relative frequencies is 1.) 

Frequency polygons are also commonly used for discrete distributions, but one can 
argue against their use when dealing with ordinal data, as the polygon implies to the 
reader a constant size interval horizontally between points on the polygon. Frequency 
polygons should not be employed for nominal-scale data. 

If we have a frequency distribution of values of a continuous variable that falls 
into a large number of class intervals, the data may be grouped as was demonstrated 
with discrete variables. This results in fewer intervals, but each interval is, of course, 
larger. The midpoints of these intervals may then be used in the preparation of a 
histogram or frequency polygon. The user of frequency polygons is cautioned that 
such a graph is simply an aid to the eye in following trends in frequency distributions, 
and one should not attempt to read frequencies between points on the polygon. Also 
note that the method presented for the construction of histograms and frequency 
polygons requires that the class intervals be equal. Lastly, the vertical axis (e.g., the 
frequency scale) on frequency polygons and bar graphs generally should begin with 
zero, especially if graphs are to be compared with one another. If this is not done, the 
eye may be misled by the appearance of the graph (as shown for nominal-scale data 
in Figures 1.2 and 1.3). 
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1.4 CUMULATIVE FREQUENCY DISTRIBUTIONS 

A frequency distribution informs us how many observations occurred for each value 
(or group of values) of a variable. That is. examination of. the frequency table of 
Example 1.3 (or its corresponding bar graph or frequency polygon) would yield 
information such as. "How many fox litters of four were observed?". the answer 
being 27. But if it is desired to ask questions such as, "How many litters of four or 
more were observed?", or "How many fox litters of five or fewer were observed?", 
we are speaking of cumulative frequencies. To answer the first question, we sum 
all frequencies for litter sizes four and up, and for the second question, we sum all 
frequencies from the smallest litter size up through a size of five. We arrive at answers 
of 54 and 59, respectively. 

In Example 1.5, the phosphorus concentration data are cast into two cumulative 
frequency distributions, one with cumulation commencing at the low end of the 
measurement scale and one with cumulation being performed from the high values 
toward the low values. The choice of the direction of cumulation is immaterial. 
as can be demonstrated. If one desired to calculate the number of phosphorus 
determinations less than 8.55 mg/g, namely 27, a cumulation starting at the low end 
might be used, whereas the kn'owledge of the frequency of determinations greater 
than 8.55 mg/g, namely 103, can be readily obtained from the cumulation commencing 
from the high end of the scale. But one can easily calculate any frequency from a low­
to-high cumulation (e.g .. 27) from its complementary frequency from a high-lo-Iow 
cumulation (e.g., 103), simply by knowing that the sum of these two frequencies is the 
total frequency (i.e., n = 130): therefore, in practice it is not necessary to calculate 
both sets of cumulations. 

Cumulative frequency distributions are useful in determining medians, percentiles. 
and other quantiles, as discussed in Sections 3.2 and 4.2. They are not often presented 
in bar graphs, but cllmulative frequency polygons (sometimes called ogives) are not 
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FIGURE 1.9: Cumulative frequency polygon ofthe leaf phosphorus data of Example 1.5, with cumulation 
commencing from the lowest to the highest values of the variable. 
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FIGURE 1.10: Cumulative frequency polygon of the leaf phosphorus data of Example 1.5, with cumulation 
commencing from the highest to the lowest values of the variable. 

uncommon. (See Figures 1.9 and 1.10.) Relative frequencies (proportions ofthe total 
frequency) can be plotted instead of (or, as in Figures 1.9 and 1.10, in addition to) 
frequencies on the vertical axis of a cumulative frequency polygon. This enables 
different distributions to be readily compared and even plotted on the same axes. 
(Using the data of Example 1.5 for Figure 1.9, the relative cumulative frequency for 
8.2 mglg is 2/130 = 0.015, that for 8.3 mglg is 8/130 = 0.062, and so on. For Figure 
1.10, the relative cumulative frequency for 8.2 mg/g is 130/130 = 1.000, that for 8.3 
mglg is 128/130 = 0.985, and so on.) 



CHAPTER 2 

Populations and Samples 

2.1 POPULAnONS 
2.2 SAMPLES FROM POPULATIONS 
2.3 RANDOM SAMPLING 
2.4 PARAMETERS AND STATISTICS 
2.5 OUTLIERS 

2.1 POPULATIONS 

The primary objective of a statistical analysis is to infer characteristics of a group 
of data by analyzing the characteristics of a small sampling of the group. This 
generalization from the part to the whole requires the consideration of such important 
concepts as population. sample. parameter. statistic. and random sampling. These 
topics are discussed in this chapter. 

Basic to statistical analysis is the desire to draw conclusions about a group of 
measurements of a variable being studied. Biologists often speak of a "population" 
as a defined group of humans or of another species of organisms. Statisticians 
speak of a population (also called a universe) as a group of measurements (not 
organisms) about which one wishes to draw conclusions. It is the latter definition. 
the statistical definition of population. that will be used throughout this book. For 
example. an investigator may desire to draw conclusions about the tail lengths of 
bobcats in Montana. All Montana bobcat tail lengths are. therefore. the population 
under consideration. If a study is concerned with the blood-glucose concentration in 
three-year-old children, then the blood-glucose levels in all children of that age are 
the population of interest. 

Populations are often very large. such as the body weights of all grasshoppers in 
Kansas or the eye colors of all female New Zealanders. but occasionally populations 
of interest may be relatively small. such as the ages of men who have traveled to the 
moon or the heights of women who have swum the English Channel. 

2.2 SAMPLES FROM POPULATIONS 

16 

If the population under study is very small. it might be practical to obtain all 
the measurements in the population. If one wishes to draw conclusions about the 
ages of all men who have traveled to the moon. it would not be unreasonable to 
attempt to collect all the ages of the small number of individuals under consider­
ation. Generally. however. populations of interest are so large that obtaining all 
the measurements is unfeasible. For example. we could not reasonably expect to 
determine the body weight of every grasshopper in Kansas. What can be done in such 
cases is to obtain a subset of all the measurements in the population. This subset of 
measurements constitutes a slImple. and from the characteristics of samples we can 
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draw conclusions about the characteristics of the populations from which the samples 
came.* 

Biologists may sample a population that does not physically exist. Suppose an 
experiment is performed in which a food supplement is administered to 40 guinea 
pigs. and the sample data consist of the growth rates of these 40 animals. Then 
the population about which conclusions might be drawn is the growth rates of 
all the guinea pigs that conceivably might have been administered the same food 
supplement under identical conditions. Such a population is said to be "imaginary" 
and is also referred to as "hypothetical" or "potential." 

2.3 RANDOM SAMPLING 

Samples from populations can be obtained in a number of ways; however, for a sample 
to be representative of the population from which it came, and to reach valid con­
clusions about populations by induction from samples, statistical procedures typically 
assume that the samples are obtained in a random fashion. To sample a population 
randomly requires that each member of the population has an equal and independent 
chance of being selected. That is, not only must each measurement in the population 
have an equal chance of being chosen as a member of the sample, but the selection 
of any member of the population must in no way influence the selection of any other 
member. Throughout this book, "sample" will always imply "random sample . .,t 

It is sometimes possible to assign each member of a population a unique number 
and to draw a sample by choosing a set of such numbers at random. This is equivalent 
to having all members of a population in a hat and drawing a sample from them while 
blindfolded. Appendix Table B.41 provides 10,000 random digits for this purpose. In 
this table, each digit from 0 to 9 has an equal and independent chance of appearing 
anywhere in the table. Similarly, each combination of two digits, from 00 to 99, is 
found at random in the table, as is each three-digit combination, from 000 to 999, and 
soon. 

Assume that a random sample of 200 names is desired from a telephone directory 
having 274 pages, three columns of names per page, and 98 names per column. 
Entering Table B.41 at random (i.e., do not always enter the table at the same place), 
one might decide first to arrive at a random combination of three digits. If this 
three-digit number is 001 to 274, it can be taken as a randomly chosen page number (if 
it is 000 or larger than 274, simply skip it and choose another three-digit number, e.g., 
the next one on the table). Then one might examine the next digit in the table: if it is 
a 1,2, or 3, let it denote a page column (if a digit other than 1,2, or 3 is encountered, it 
is ignored, passing to the next digit that is 1,2, or 3). Then one could look at the next 
two-digit number in the table: if it is from 01 to 98, let it represent a randomly selected 
name within that column. This three-step procedure would be performed a total of 
200 times to obtain the desired random sample. One can proceed in any direction in 
the random number table: left to right, right to left, upward, downward, or diagonally; 
but the direction should be decided on before looking at the table. Computers are 
capable of quickly generating random numbers (sometimes called "pseudorandom" 
numbers because the number generation is not perfectly random), and this is how 
Table B.41 was derived. 

*This use of the terms pOPlllatioll and .mmple was established by Karl Pearson (1903). 
tThis concept of random sampling was established by Karl Pearson between 1897 and 1903 

(Miller.2004a). 
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Very often it is not possible to assign a number to each member of a population. 
and random sampling then involves biological. rather than simply mathematical. 
considerations. That is. the techniques for sampling Montana hobcats or Kansas 
grasshoppers require knowledge about the particular organism to ensure that the 
sampling is random. Researchers consult relevant books, periodical articles. or 
reports that address the specific kind of biological measurement to he obtained. 

2.4 PARAMETERS AND STATISTICS 

Several measures help to describe or characterize a population. For example. generally 
a preponderance of measurements occurs somewhere around the middle of the range 
of a population of measurements. Thus. some indication of a popUlation "average" 
would express a u!;eful bit of descriptive information. Such information is called a 
measure of central tendency (also called a measure of location), and several such 
measures (e.g .• the mean and the median) will be discussed in Chapter 3. 

It is also important to describe how dispersed the measurements are around the 
"average." That is. we can ask whether there is a wide spread of values in 
the population or whether the values are rather concentrated around the middle. 
Such a descriptive property is called a measure of variability (or a measure of disper­
sian), and several such measures (e.g., the range and the standard deviation) will be 
discussed in Chapter 4. 

A quantity such as a measure of central tendency or a measure of dispersion 
is called a parameter when it describes or characterizes a popUlation, and we shall 
be very interested in discussing parameters and drawing conclusions about them. 
Section 2.2 pointed out. however. that one seldom has data for entire populations. 
but nearly always has to rely on samples to arrive at conclusions about populations. 
Thus. one rarely is able to calculate parameters. However. by random sampling of 
populations. parameters can be estimated well. as we shall see throughout this book. 
An estimate of a population parameter is called a statistic.* It is statistical convention 
to represent population parameters by Greek letters and sample statistics by Latin 
letters; the following chapters will demonstrate this custom for specific examples. 

The statistics one calculates will vary from sample to sample for samples taken from 
the same population. Because one uses sample statistics as estimates of population 
parameters, it behooves the researcher to arrive at the "best" estimates possible. As 
for what properties to desire in a "good" estimate, consider the following. 

First, it is desirable that if we take an indefinitely large number of samples from a 
population. the long-run average of the statistics obtained will equal the parameter 
being estimated. That is. for some samples a statistic may underestimate the parameter 
of interest. and for others it may overestimate that parameter; but in the long run the 
estimates that are too low and those that are too high will "average out." If such a 
property is exhibited hy a statistic. we say that we have an unbiased statistic or an 
unbiased estimator. 

Second, it is desirable that a statistic obtained from any single sample from a 
population be very close to the value of the parameter being estimated. This property 
of a statistic is referred to as precision.t efficiency, or reliability. As we commonly 
secure only one sample from a population, it is important to arrive at a close estimate 
of a parameter from a single sample. 

*This use of the terms parameter and statistic was defined by R. A. Fisher as early as 1922 
(Miller. 2004a: Savage. 1976). 

tThe precision of a sample statistic. as defined here. should not be confused with the precision 
of a measurement. defined in Section 1.2. 
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Third, consider that one can take larger and larger samples from a population (the 
largest sample being the entire population). As the sample size increases, a consistent 
statistic will become a better estimate of the parameter it is estimating. Indeed, if the 
sample were the size of the population, then the best estimate would be obtained: the 
parameter itself. 

In the chapters that follow, the statistics recommended as estimates of parameters 
are "good" estimates in the sense that they possess a desirable combination of 
unbiasedness, efficiency, and consistency. 

Occasionally, a set of data will have one or more observations that are so different, 
relative to the other data in the sample, that we doubt they should be part of the 
sample. For example. suppose a researcher collected a sample consisting of the body 
weights of nineteen 20-week-old mallard ducks raised in individual laboratory cages. 
for which the following 19 data were recorded: 

1.87,3.75,3.79,3.82,3.85,3.87.3.90.3.94,3.96,3.99, 

3.99,4.00,4.03,4.04,4.05,4.06,4.09,8.97, and 39.8 kilograms. 

Visual inspection of these 19 recorded data casts doubt upon the smallest datum 
(1.87 kg) and the two largest data (8.97 kg and 39.8 kg) because they differ so greatly 
from the rest of the weights in the sample. Data in striking disagreement with nearly 
all the other data in a sample are often called outliers or discordant data, and the 
occurrence of such observations generally calls for closer examination. 

Sometimes it is clear that an outlier is the result of incorrect recording of data. In 
the preceding example, a mallard duck weight of 39.8 kg is highly unlikely (to say the 
least!), for that is about the weight of a 12-year-old boy or girl (and such a duck would 
probably not fit in one of the laboratory cages). In this case, inspection of the data 
records might lead us to conclude that this body weight was recorded with a careless 
placement of the decimal point and should have been 3.98 kg instead of 39.8 kg. And, 
upon interrogation. the research assistant may admit to weighing the eighteenth duck 
with the scale set to pounds instead of kilograms, so the metric weight of that animal 
should have been recorded as 4.07 (not 8.97) kg. 

Also, upon further examination of the data-collection process, we may find that 
the 1.87-kg duck was taken from a wrong cage and was, in fact, only 4 weeks old. 
not 20 weeks old, and therefore did not belong in this sample. Or. perhaps we find 
that it was not a mallard duck, but some other bird species (and, therefore. did not 
belong in this sample). Statisticians say a sample is contaminated if it contains a datum 
that does not conform to the characteristics of the population being sampled. So the 
weight of a 4-week-old duck. or of a bird of a different species, would be a statistical 
contaminant and should be deleted from this sample. 

There are also instances where it is known that a measurement was faulty-for 
example. when a laboratory technician spills coffee onto an electronic measuring 
device or into a blood sample to be analyzed. In such a case, the measurements 
known to be erroneous should be eliminated from the sample. 

However. outlying data can also be correct observations taken from an intended 
population, collected purely by chance. As we shall see in Section 6.1, when drawing 
a random sample from a population, it is relatively likely that a datum in the 
sample will be around the average of the population and very unlikely that a sample 
datum will be dramatically far from the average. But sample data very far from the 
average still may be possible. 
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It should also be noted that in some situations the examination of an outlier may 
reveal the effect of a previously unsuspected factor. For example. the 1.87-kg duck 
might, indeed. have been a 20-week-old mallard but suffering from a genetic muta­
tion or a growth-impeding disease deserving of further consideration in additional 
research. 

In summary, it is not appropriate to discard data simply because they appear (to 
someone) to be unreasonably extreme. However, if there is a very obvious reason 
for correcting or eliminating a datum, such as the situations described previously. the 
incorrect data should be corrected or eliminated. In some other cases questionable 
data can be accommodated in statistical analysis, perhaps by employing statistical 
procedures that give them less weight or analytical techniques that are robust in that 
they are resistant to effects of discrepant data. And in situations when this cannot 
be done, dubious data will have to remain in the sample (perhaps encouraging the 
researcher to repeat the experiment with a new set of data). 

The idea of rejecting erroneous data dates back over 200 years; and recommen­
dations for formal, objective methods for such rejection began to appear about 150 
years ago. Major discussions of outliers, their origin, and treatment (rejection or 
accommodation) are those of Barnett and Lewis (1994), Beckman and Cook (1983), 
and Thode (2002: 123-142). 



CHAPTER 3 

Measures of Central Tendency 

3.1 THE ARITHMETIC MEAN 
3.2 THE MEDIAN 
3.3 THE MODE 
3.4 OTHER MEASURES OF CENTRAL TENDENCY 
3.5 CODING DATA 

In samples. as well as in populations. one generally finds a preponderance of values 
somewhere around the middle of the range of observed values. The description of 
this concentration near the middle is an average. or a measure of central tendency to 
the statistician. It is also termed a meaSllre of location, for it indicates where. along 
the measurement scale. the sample or population is located. Various measures of 
central tendency are useful population parameters. in that they describe an important 
property of populations. This chapter discusses the characteristics of these parameters 
and the sample statistics that are good estimates of them. 

3.1 THE ARITHMETIC MEAN 

The most widely used measure of central tendency is the arithmetic mean.* usually 
referred to simply as the mean.t which is the measure most commonly called an 
"average." 

Each measurement in a popUlation may be referred to as an Xi (read "X sub i") 
value. Thus. one measurement might be denoted as XI, another as X2, another as X.,. 
and so on. The subscript i might be any integer value up through N. the total number 
of X values in the population.* The mean of the popUlation is denoted by the Greek 
letter J.L (lowercase mu) and is calculated as the sum of all the X; values divided by 
the size of the population. 

The calculation of the population mean can be abbreviated concisely by the formula 

J.L= 
;= I 

N 
(3.1 ) 

* As an adjective. arithmetic is pronounced with the accent on the third syllable. In early 
literature on the subject. the adjective arithmetical was employed. 

7The term meall (as applied to the arithmetic mean. as well as to the geometric and harmonic 
means of Section 3.4) dates from ancient Greece (Walker. 1929: IH3). with its current statistical 
meaning in use hy 1755 (Miller. 2004a; Walker, 1929: 170); central tellliellcy appeared by the laIC 
1920s (Miller, 2(Xl4a). 

* Charles Babbagc (1791-1871) (O'Connor and Robertson. 1998) wasem English mathematician 
and inventor who conceived principles used by modern computers-well hefore the advent of 
electronics-and who, in IR32, proposed the modern convention of italicizing Latin (also calleu 
Roman) Icttcrs to denotc quantitics: non italicized letters had already been cmployed for this 
purpose for more than six centuries (Miller. 2(01). 

21 
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The Greek letter ~ (capital sigma) means "summation"* and ~f= I X means "sum­
mation of all Xi values from XI through XN." Thus. for example. ~i= I Xi = 

XI + X2 + X3 + X4 and L~=3 Xi = X3 + X4 + X5. Since, in statistical com­
putations. summations are nearly always performed over the entire set of Xi values, 
this book will assume L Xi to mean "sum Xi'S over all values of i." simply as a 
matter of printing convenience, and p. = L Xii N would therefore designate the same 
calculation as would p. = ~~ I Xii N. 

The most efficient, unbiased, and consistent estimate of the population mean, p.. is 
the sample mean, denoted as X (read as "X bar"). Whereas the size of the population 
(which we generally do not know) is denoted as N, the size of a sample is indicated 
by n, and X is calculated as 

1/ 

~Xi 
X = i=1 

n 
or 

- ~Xi 
X= --, (3.2) 

n 

which is read "the sample mean equals the sum of all measurements in the sample 
divided by the number of measurements in the sample. tot Example 3.1 demonstrates 
the calculation of the sample mean. Note that the mean has the same units of 
measurement as do the individual observations. The question of how many decimal 
places should be reported for the mean will be answered at the end of Section 6.2; 
until then we shall simply record the mean with one more decimal place than the data. 

EXAMPLE 3.1 
Lengths 

A Sample of 24 from a Population of Butterfly Wing 

Xi (in centimeters): 3.3,3.5,3.6,3.6,3.7.3.8,3.8,3.8,3.9,3.9.3.9,4.0, 4.0. 4.0. 4.0. 
4.1,4.1. 4.1, 4.2, 4.2. 4.3, 4.3, 4.4, 4.5. 

~Xi = 95.0cm 
n = 24 

X - ~Xi - 95.0cm - 3% - -- - - . cm 
n 24 

·Mathematician Leonhard Euler (1707-1783; born in Switzerland. worked mostly in Russia). 
in 1755. was the first to use ~ to denote summation (Cajori. 1928/9. Vol. II: (1). 

tThc modern symbols for plus and minus ( .. +" and .. - ") appear to have first appeared 
in a 1456 unpublished manuscript by German mathematician and astronomer Regiomontanus 
(Johannes Muller. 1436-1476). with Bohemia-born Johann (Johannes) Widman (1562-1498) the 
first. in 1489. to use them in print (Cajori. 1928/9. Vol. I: 128.231-232). The modern equal sign 
("=") was invented by Welsh physician and mathematician Robert Recorde (15\0-1558). who 
published it in 1557 (though its use then disappeared in print until 1618). and it was wcll recognized 
starting in 1631 (Cajori. ibid.: 298; Gullberg. 1997: 107). Recorde also was the first to use the plus 
and minus symbols in an English work (Miller, 2004b). Using a horizontal line to express division 
derives from its use. in denoting fractions. by Arabic author AI-f:lalj~ar in the twelfth century. 
though it was not consistently cmployed for several more centuries (Cajori. ibid. I: 269.3(0). The 
slash mark (u/"; also known as a solidus. virgule. or diagonal) was recommended to denote division 
by the English logician and mathematician Augustus De Morgan (1806-1871) in 1845 (ibid. I: 
312-313). and the India-born Swiss author Johann Heinhirch Rahn (1622-1676) proposed. in 1659. 
denoting division by the symbol" +". which previously was often used by authors as a minus sign 
(ibid.: 211.270: Gullberg. 1997: 105). Many other symbols were used for mathematical operations. 
before and after these introductions (e.g .. Cajori. ibid.: 229-245). 
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If, as in Example 3.1, a sample contains multiple identical data for several values 
of the variable, then it may be convenient to record the data in the form of a 
frequency table, as in Example 3.2. Then Xi can be said to denote each of k different 
measurements and f; can denote the frequency with which that Xi occurs in the 
sample. The sample mean may then be calculated, using the sums of the products of 
f; and Xi, as* 

k 

~f;X; 
X = _;=_1 __ (3.3) 

n 

Example 3.2 demonstrates this calculation for the same data as in Example 3.1. 

EXAMPLE 3.2 The Data from Example 3.1 Recorded as a Frequency Table 

Xi (cm) f; f;Xj (cm) 

3.3 1 3.3 k = 13 
3.4 0 0 k 

3.5 1 3.5 ~f; = n = 24 
3.6 2 7.2 ;= 1 

3.7 1 3.7 k 

3.8 3 11.4 ~f;Xi 
95.0cm 

3.9 3 11.7 X = ;=1 = = 3.96 cm 
4.0 4 16.0 n 24 

4.1 3 12.3 median = 3.95 em + (1) (0.1 em) 
4.2 2 8.4 
4.3 2 8.6 :::; 3.95 em + 0.025 em 

4.4 ] 4.4 = 3.975 cm 
4.5 ] 4.5 

'Lf; = 24 'Lf;Xj = 95.0 cm 

A similar procedure is computing what is called a weighted mean, an expression 
of the average of several means. For example, we may wish to combine the mean of 
3.96 em from the sample of 24 measurements in Example 3.1 with a mean of 3.78 em 
from a sample of 30 measurements and a mean of 4.02 em from a sample of 15. These 
three means would be from a total of 24 + 30 + 15 = 69 data; and if we had all 
69 of the data we could sum them and divide the sum by 69 to obtain the overall 
mean length. However, that overall mean can be obtained without knowing the 69 

*Denoting the multiplication of two quantities (e.g., a and b) by their adjacent placement (Le., 
ab) derives from practices in Hindu manuscripts of the seventh century (Cajori, 1928/9. Vol. I: 77, 
250). Modern multiplication symbols include a raised dot (as in a • b), which was suggested in a 
1631 posthumous publication of Thomas Harriot (1560? -1621) and prominently adopted in 1698 by 
the outstanding mathematician Gottfried Wilhelm Lcibniz (1646-1716. in what is now Germany); 
the St. Andrew's cross (as in a X b). which was used in 1631 by English mathematician William 
Oughtrcd (1574-1660) though it was not in general use until more than 200 years later; and the 
letter X, which was used, perhaps by Oughtred. as early as 1618 (Cajori. ibid.: 251; Gullberg, 1997: 
104; Miller 2004b). Johann Rahn's 1659 usc of an asterisk-like symbol (as in (/ * b) (Cajori. ibid: 
212-213) did not persist but resurfaced in electronic computer languages of the latter half of the 
twentieth century. 
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3.2 THE MEDIAN 

individual measurements, by employing Equation 3.3 with f1 = 24, XI = 3.96 em. 
h = 30. X2 = 3.78 em. h = 15, X3 = 4.02 em, and n = 69. This would yield a 
weighted mean of X = [(24)(3.96cm) + (30)(3.78em) + (15)(4.02em)]/69 = 
(268.74 em)/69 = 3.89 em. 
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FIGURE 3.1: A histogram of the data in Example 3.2. The mean (3.96 em) is the center of gravity of the 
histogram. and the median (3.975 em) divides the histogram into two equal areas. 

If data are plotted as a histogram (Figure 3.1). the mean is the center of gravity 
of the histogram. * That is, if the histogram were made of a solid material, it would 
balance horizontally with the fulcrum at X. The mean is applicable to both ratio­
and interval-scale data; it should not be used for ordinal data and cannot be used for 
nominal data. 

The median is typically defined as the middle measurement in an ordered set of 
data. t That is, there are just as many observations larger than the median as there 
are smaller. The sample median is the best estimate of the population median. In a 
symmetrical distribution (such as Figures 3.2a and 3.2b) the sample median is also an 
unbiased and consistent estimate of p.. but it is not as efficient a statistic as X and 
should not be used as a substitute for X. If the frequency distribution is asymmetrical, 
the median is a poor estimate of the mean. 

The median of a sample of data may be found by first arranging the measurements in 
order of magnitude. The order may be either ascending or descending, but ascending 
order is most commonly used as is done with the samples in Examples 3.1. 3.2. and 
3.3. Then, we define the sample median as 

sample median = X(tl+ I )/2' (3.4) 

*Thc concept of the mean as the center of gravity was used by L. A. J. Quetelet in 1846 (Walker. 
1929: 73). 

tThe concept of the median was conceived as early as 1816, by K. F. Gauss; enunciated and 
reinforced by olhers, including F. Galton in 1869 and 1874; and independently discovered and 
promoled by G. T. Fechner beginning in 1874 (Walker. 1929: 83-88,184). It received its name. in 
English. from F. Galton in 1882 (David. 1995) and. in French. from A. A. Cournot in 1843 (David. 
1998a). 
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FIGURE 3.2: Frequency distributions showing measures of central tendency. Values of the variable 
are along the abscissa (horizontal axis), and the frequencies are along the ordinate (vertical axis). 
Distributions (a) and (b) are symmetrical, (c) is asymmetrical and said to be positively skewed, and 
(d) is asymmetrical and said to be negatively skewed. Distributions (a), (c), and (d) are unimodal, and 
distribution b is bimodal. In a unimodal asymmetric distribution, the median lies about one-third the 
distance between the mean and the mode.· 

EXAMPLE 3.3 Ufe Span for Two Species of Birds in Captivity 

The data for each species are arranged in order of magnitude 

Species A 
Xi (mo) 

16 
32 
37 
39 
40 
41 
42 
50 
82 

n=9 
median = X(n+ 1 )/2 = X(9+ 1 )/2 

= Xs = 40mo 
X = 42.11 mo 

Species B 
Xi (mo) 

34 
36 
38 
45 
50 
54 
56 
59 
69 
91 

n = 10 
median = X(n+ I )/2 = X(lO+ 1 )/2 

= XS.5 = 52mo 
X = 53.20mo 

• An interesting relationship among the mean, median, and standard deviation is shown in 
Equation 4.21. 
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If the sample size (n) is odd, then the subscript in Equation 3.4 will be an integer 
and will indicate which datum is the middle measurement in the ordered sample. For 
the data of species A in Example 3.3. n = 9 and the sample median is X(II+ 1)/2 = 
X(9+ I )/2 = Xs = 40 mo. If n is even. then the subscript in Equation 3.4 will be a 
number midway between two integers. This indicates that there is not a middle value 
in the ordered list of data: instead. there are two middle values. and the median is 
defined as the midpoint between them. For the species B data in Example 3.3, n = 10 
and X( Il + 1 )/2 = X(1o+ I )/2 = Xs.s, which signifies that the median is midway 
between Xs and X6. namely a median of (50 mo + 54 mo )/2 = 52 mo. 

Note that the median has the same units as each individual measurement. If data are 
plotted as a frequency histogram (e.g .. Figure 3.1), the median is the value of X that 
divides the area of the histogram into two equal parts. In general, the sample median 
is a more efficient estimate of the population median when the sample size is large. 

If we find the middle value(s) in an ordered set of data to be among identical 
observations (referred to as tied values), as in Example 3.1 or 3.2, a difficulty arises. 
If we apply Equation 3.4 to these 24 data. then we conclude the median to be 
X12.5 = 4.0 cm. But four data are tied at 4.0 cm, and eleven measurements are less 
than 4.0 cm and nine are greater. Thus, 4.0 cm does not fit the definition above or the 
median as that value for which there is the same number of data larger and smaller. 
Therefore, a better definition of the median of a set of data is that value for which no 
more than half the data are smaller and no more than half are larger. 

When the sample median falls among tied observations. we may interpolate to 
better estimate the population median. Using the data of Example 3.2, we desire to 
estimate a value below which 50% of the observations in the population lie. Fifty 
percent of the observations in the sample would be 12 observations. As the first 
7 classes in the frequency table include 11 observations and 4 observations are in class 
4.0 cm, we know that lhedesiredsample median lies within the rangeor3.95 to 4.05 cm. 
Assuming that the four observations in class 4.0 cm are distributed evenly within the 
O.l-cm range of 3.95 to 4.05 cm. then the median will be G) (0.1 cm) = 0.025 cm into 
this class. Thus, the median = 3.95 cm + 0.025 cm = 3.975 cm. In general, for the 
sample median within a class interval containing tied observations. 

d· ( lower limit) ( 0.5n - cum. freq. ) ( interval) (3 5) me Ian = f . I + . ,. 
o mterva no. of observations in interval sIze 

where "cum. freq." refers to the cumulative frequency of the previous classes! By 
using this procedure, the calculated median will be the value of X that divides the 
area of the histogram of the sample into two equal parts. As another example, refer 
back to Example 1.5. where, by Equation 3.5, median = 8.75 mg/g + ([ (0.5)( 130) -
61]/24}{0.1O mg/g} = 8.75 mg/g + 0.02 mg/g = 8.77 mg/g. 

The median expresses less information than does the mean. for it does not take 
into account the actual value of each measurement, but only considers the rank 
of each measurement. Still, it offers advantages in some situations. For example. 
extremely high or extremely low measurements ("outliers"; Section 2.5) do not affect 
the median as much as they affect the mean (causing the sample median to be called 
a "resistant" statistic). Distributions that are not symmetrical around the mean (such 
as in Figures 3.2c and 3.2d) are said to be skewed.t When we deal with skewed 

*This procedure was enunciated in 1878 by the German psychologist Gustav Theodor Fechner 
(Uml-1887) (Walker. 1929: 86). 

tThis term. applied to a distribution and to a curve, was used as early as 1895 by Karl Pearson 
(Miller.2004a). 
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populations and do not want the strong influence of outliers, we may prefer the 
median to the mean to express central tendency. 

Note that in Example 3.3 the researcher would have to wait 82 months to compute 
a mean life expectancy for species A and 91 months for species B, whereas the 
median for species A could be dctcrmined in only 40 months and in only 52 months 
for species B. Also, to calculate a median one does not need to have accurate 
data for all members of the sample. If, for example, we did not have the first 
three data for species A accurately recorded, but could state them as "less than 
39 months," then the median could have been determined just as readily as if we 
had all 9 data fully recorded. while calculation of the mean would not have been 
possible. 

The expression "LD fifty" (LD50), used in some areas of biological research, is 
simply the median lethal dose (and is so named because the median is the 50th 
percentile. as we shall see in Section 4.2). 

The median can be determined not only for interval-scale and ratio-scale data, but 
also for data on an ordinal scale, data for which the use of the mean usually would 
not be considered appropriate. But neither the median nor the mean is applicable to 
nominal data. 

The mode is commonly defined as the most frequently occurring measurement in a 
set of data.* In Example 3.2, the mode is 4.0 cm. But it is perhaps better to define 
a mode as a measurement of relatively great concentration. for some frequency 
distributions may have more than one such point of concentration. even though these 
concentrations might not contain precisely the same frequencies. Thus. a sample 
consisting of the data 6. 7. 7, 8, 8, 8. 8. R. 8. 9, 9, 10, 11, 12. 12. 12. 12. 12. 13, 13, and 
14 mm would be said to have two modes: at 8 mm and 12 mm. (Some authors would 
refer to 8 mm as the "major mode" and cal112 mm the "minor mode. ") A distribution 
in which each different measurement occurs with equal frequency is said to have no 
mode. If two consecutive values of X have frequencies great enough to declare the X 
values modes. the mode of the distribution may be said to be the midpoint of these 
two X's: for example. the mode of 3.5, 7, 7. 7. 8,8, 8. and 10 liters is 7.5 liters. A 
distribution with two modes is said to be bimodal (e.g., Figure 3.2b) and may indicate 
a combination of two distributions with different modes (e.g., heights of men and 
women). Modes are often discerned from histograms or frequency polygons; but we 
should be aware that the shape of such graphs (such as Figures 1.6. 1.7. and 1.8), and 
therefore the appearance of modes. may be influenced by the measurement intervals 
on the horizontal axis. 

The sample mode is the best estimate of the population mode. When we sample a 
symmetrical unimodal popUlation, the mode is an unbiased and consistent estimate 
of the mean and median (Figure 3.2a), but it is relatively inefficient and should not 
be so used. As a measure of central tendency, the mode is affected by skewness less 
than is the mean or the median. but it is more affected by sampling and grouping 
than these other two measures. The mode, but neither the median nor the mean, 
may be used for data on the nominal, as well as the ordinal. interval, and ratio scales 
of measurement. In a unimodal asymmetric distribution (Figures 3.2c and 3.2d). the 
median lies about one-third the distance between the mean and the mode. 

The mode is not often used in biological research, although it is often interesting 
to report the number of modes detected in a population, if there are more than one. 

*Thc term mode was introduced by Karl Pearson in IH95 (David. 1995). 
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3.4 OTHER MEASURES OF CENTRAL TENDENCY 

(a) The Geometric Mean. The geometric mean is the nth root* of the product of the 
n data: 

- 1!G' XG = ~X1X2X3 ",XII = n TI Xi. 
i= 1 

(3.6) 

Capital Greek pi, n. means "take the product"t in an analogous fashion as L indicates 
"take the sum." The geometric mean may also be calculated as the antilogarithm of 
the arithmetic mean of the logarithms of the data (where the logarithms may be in 
any base); this is often more feasible computationally: 

n 
~ logX; 

X '1 (IOg X l + 10gX, + ... + 10gXn ) '1 i=1 
G = antI og - = antI og :.......:---

n n 
(3.7) 

The geometric mean is appropriate to use only for ratio-scale data and only when 
al1 of the data are positive (that is, greater than zero). If the data are all equal, 
then the geometric mean, X G, is equal to the arithmetic mean, X (and also 
equal to the harmonic mean described below); if the data are not an equal. thent 
XG < X. 

X G is sometimes used as a measure of location when the data are highly skewed to 
the right (i.e., when there are many more data larger than the arithmetic mean than 
there are data smaller than the arithmetic mean). 

X G is also useful when dealing with data that represent ratios of change. As 
an illustration of this. Example 3.4 considers changes in the size of a popu­
lation of organisms over four decades. Each of the original data (population 
size at the end of a decade) is expressed as a ratio, Xi, of the population size 
to the popUlation size of the previous decade. The geometric mean of those 
ratios is computed and may be thought of as representing the average rate of 
growth per decade (which is the same as a constant rate of compound inter­
est), This example demonstrates that the arithmetic mean of those ratios is X = 
1.1650 (i.e., 16.50% growth) per decade. But over the four decades of pop­
ulation change, this mean would have us calculate a final population size of 
(10,000)(1.1650)(1.1650)(1.1650)(1.1650) = 18,421, which is 1101 the population size 
recorded at the end of the fourth decade. However, using the geometric mean. X G. to 
indicate the average rate of growth, the final population size would be computed to be 
(10,000)(1.608)(1.608)(1.608)(1.608) = 18,156, which is the fourth-decade population 
size that was observed. 

*The second footnote in Section 4.5 outlines the origin of the square-root symbol. J; indicating 
the cube root as ~ was suggcsted by Albert Girard (1595-1632. French-born but studied and 
worked in the Netherlands) as early as 1629, but this symbol was not generaly used until well 
into the eighteenth century (Cajori. 1928/9. Vol. J: 371-372). The cube-root symbol eventually was 
expanded to 'V to denote the nth root. 

t Use of this symbol to indicate taking the product was introduced by Rene Descartes (Gull berg. 
1997: 105). 

*The symbols "<" and "Y' (meaning "less than" and "greater than") were inserted by 
someone else into a 1631 posthumous publication by the English mathematician and astronomer 
Thomas Harriot (1560?-1621). (Cajori. 1928/9. Vol. I: 199; Gullberg. 1997: 109: Miller. 2004b). The 
symbols for "less than or equal to" (:::) and "greater than or equal to" (2:) were written as ii and?; 
when introduced by the French scientist Pierre Bouguere (1698-) 758) in 1734. (Gullberg. 1997: 109). 
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EXAMPLE 3.4 The Geometric Mean of Ratios of Change 

Population Ratio of Change 
Decade Size Xi 

0 10,000 

1 10,500 10,500 = 1.05 
10,000 

2 11,550 11,550 = 1.10 
10,500 

3 13,860 13,860 = 1.20 
11,550 

4 18,156 18,156 = 1.31 
13,860 

X = 1.05 + 1.10 + 1.20 + 1.31 = 4.66 = 1.1650 
4 4 

and (l0,(00)(0.1650)(1.650)(1.650)(1.650) = 18,421 

But, 
XG = ~(1.05)(1.1O)(1.20)(1.31) = ~11.8157 = 1.1608 

or 

X '1 [IOg( 1.05) + log( 1.10) + log( 1.20) + log( 1.31 )] 
G = antI og --=-'------'--~----'------4-=-'---=-----=--'----'-

= antilog(0.0212 + 0.0414 + 0.0792 + 0.1173) = antilog(0.2591) 
4 4 

= antilog 0.0648 = 1.1608 

and (10,000)( 1.1608) ( 1.1608)( 1.1608)( 1.1608) = 18,156 

(b) The Harmonic Mean. The harmonic mean is the reciprocal of the arithmetic 
mean of the reciprocals of the data: 

- 1 _ n 
XII = ! L.l - ~ 1 . 

n Xi Xi 

(3.8) 

It may be used for ratio-scale data when no datum is zero. If all of the data are 
identical, then the harmonic mean, Xu, is equal to the arithmetic mean, X (and 
equal to the geometric mean, X G)' If the data are all positive and not identical, then 
Xu < XG < X . 

. Xu finds use when desiring an average of rates, as described by Croxton, Cowden, 
and Klein (1967: 182-188). For example, consider that a flock of birds flies from a 
roosting area to a feeding area 20 km away, flying at a speed of 40 kmlhr (which 
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takes 0.5 hr). The Hock returns to the roosting area along the same route (20 km). 
Hying at 20 kmlhr (requiring 1 hr of Hying time). To ask what the average flying 
speed was. we might employ Equation 3.2 and calculate the arithmetic mean as 
X = (40 kmlhr + 20 km/hr )/2 = 30 km/hr. However, this answer may not be 
satisfying, because a total of 40 km was traveled in 1.5 hr, indicating a speed of 
(40 km )/( 1.5 hr) = 26.7 kmlhr. Example 3.5 shows that the harmonic mean (X (I) is 
26.7 km/hr. 

EXAMPLE 3.5 The Harmonic Mean of Rates 

XI = 40 kmlhr. X2 = 20 kmlhr 

X = 40 kmlhr + 20 kmlhr = 60 km/hr = 30 kmlhr 
2 2 

But 

XH = 
2 2 

= 

+ 0.0250 hr/km + 0.0500 hr/km 
40kmlhr 20 km/hr 

2 
= 26.67 km/hr = 

0.075 hr/km 

(c) The Range Midpoint. The range midpoint. or midrange. is a measure of location 
defined as the point halfway between the minimum and the maximum values in the 
set of data. It may be used with data measured on the ratio, interval. or ordinal 
scale: but it is not generally a good estimate of location. for it utilizes relatively 
little information from the data. (However. the so-called mean daily temperature is 
often reported as the mean of the minimum and maximum and is. therefore. a range 
midpoint.) 

The midpoint of any two symmetrically located percentiles (see Section 4.2). such 
as the point midway between the first and third quartiles (i.e., the 25th and 75th 
percentiles). may be used as a location measure in the same fashion as the range 
midpoint is used (see Dixon and Massey. 1969: 133-134). Such measures are not as 
adversely affected by aberrantly extreme values as is the range midpoint. and they 
may be applied to ratio or interval data. If used with ordinal data, they (and the range 
midpoint) would be the same as the median. 

3.5 CODING DATA 

Often in the manipulation of data, considerable time and effort can be saved 
if coding is employed. Coding is the conversion of the original measurements 
into easier-to-work-with values by simple arithmetic operations. Generally coding 
employs a linear transformation of the data. such as multiplying (or dividing) or 
adding (or subtracting) a constant. The addition or subtraction of a constant is 
sometimes termed a translation of the data (i.e .. changing the origin). whereas the 
multiplication or division by a constant causes an expansion or contraction of the 
scale of measurement. 



Section 3.5 Coding Data 31 

EXAMPLE 3.6 Coding Data to Facilitate Calculations 

Sample 1 (Coding by Subtraction: 
A = -840 g) 

Xi (g) coded Xi = Xi - 840 g 

842 
844 
846 
846 
847 
848 
849 

2 
4 
6 
6 
7 
8 
9 

~Xi = 5922g 

X = 5922g 
7 

coded ~ Xi = 42 g 

- 42g 
coded X =-

= 846g 

X = coded X - A 

= 6 g - (-840 g) 

= 846g 

7 
= 6g 

Sample 2 (Coding by Division: 
M = O.OOlliterslml) 

X;{ml) coded Xi = (Xi )(0.001 Iiters/ml) 
= Xi liters 

8,000 
9,000 
9,500 

11,000 
12,500 
13,000 

~ Xi = 63,000 ml 

X = 10,500 ml 

- x X = coded-
M 

8.000 
9.000 
9.500 

11.000 
12.500 
13.000 

coded ~Xi 

= 63.000 liters 

coded X 
= 10.500 liters 

10.500 liters 
= 

0.001 liters/ml 
= 10,500 ml 

The first set of data in Example 3.6 are coded by subtracting a constant value of 
840 g. Not only is each coded value equal to Xi - 840 g, but the mean of the coded 
values is equal to X - 840 g. Thus, the easier-to-work-with coded values may be 
used to calculate a mean that then is readily converted to the mean of the original 
data, simply by adding back the coding constant. 

In Sample 2 of Example 3.6, the observed data are coded by dividing each 
observation by 1000 (i.e., by multiplying by 0.001).* The resultant mean only needs 
to be multiplied by the coding factor of 1000 (Le., divided by 0.001) to arrive at the 
mean of the original data. As the other measures of central tendency have the same 
units as the mean, they are affected by coding in exactly the same fashion. 

Coding affects the median and mode in the same way as the mean is affected. 
The widespread use of computers has greatly diminished the need for researchers to 

*In 1593, mathematician Christopher Clavi us (1538-1612. born in what is now Germany but 
spent most of his life in what is now Italy; also credited with proposing the currently used Gregorian 
calendar rules regarding leap years: O'Connor and Robertson. 1996) became the first to use a 
decimal point to separate units from tenths; in 1617, the Scottish mathematician John Napier 
(1550-1617) used both points and commas for this purpose (Cajori. 1928/9. Vol. 1: 322-323), and 
the comma is still so used in some parts of the world. In some countries a raised dot has been 
used-a symbol Americans sometimes employ to denote multiplication. 
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utilize coding (although computer software may use it). Appendix C presents coding 
for a variety of statistics. 

EXERCISES 

3.1. If XI = 3.1 kg. X2 = 3.4 kg. X3 = 3.6 kg. 
X4 = 3.7 kg. and Xs = 4.0 kg, calculate the 
value of 

4 

(a) ~ X;. 
;-1 

4 

(b) ~ X;. 
;-2 

5 
(c) ~ X;. 

;-1 

(d) ~X;. 

3.2. (a) Calculate the mean of the five weights in Exer­
cise 3.1. 

(b) Calculate the median of those weights. 

3.3. The ages. in years. of the faculty members of a 
university biology department are 32.2, 37.5, 41.7. 
53.8. 50.2. 48.2. 46.3. 65.0. and 44.8. 
(a) Calculate the mean age of these nine faculty 

members. 

(b) Calculate the median of the ages. 

(c) If the person 65.0 years of age retires and 
is replaced on the faculty with a person 46.5 
years old. what is the new mean age? 

(d) What is the new median age? 

3.4. Consider the following frequency tabulation of leaf 
weights (in grams): 

Xi f; 

1.85-1.95 2 
1.95-2.05 1 
2.05-2.15 2 
2.15-2.25 3 
2.25-2.35 5 
2.35-2.45 6 
2.45-2.55 4 
2.55-2.65 3 
2.65-2.75 I 

Using the midpoints of the indicated ranges of Xi. 
(a) Calculate the mean leaf weight using Equation 

3.2. and 
(b) Calculate the mean leaf weight using Equation 

3.3. 
(c) Calculate the median leaf weight using Equa­

tion 3.4. and 
(d) Calculate the median using Equation 3.5. 
(e) Determine the mode of the frequency distri­

bution. 
3.5. A fruit was collected from each of eight lemon 

trees. with the intent of measuring the calcium 
concentration in the rind (grams of calcium per 
100 grams of dry rind). The analytical method used 
could only detect a concentration of at least 0.80 
gllOO g of dry weight. Six of the eight concentra­
tions were measured to be 1.02. 0.98. 0.91. 0.84. 
0.87. 1.04 gllOO g of dry weight. and two of the 
concentrations were known to be less than 0.80 
gll00 g of dry weight. What is the median of this 
sample of eight data? 
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Measures of Variability and Dispersion 
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4.1 THE RANGE 

In addition to a description of the central tendency of a set of data. it is generally 
desirahle to have a description of the variability, or of the dispersion.* of the data. A 
measure of variability (or measure of dispersion. as it is often called) is an indication 
of the spread of measurements around the center of the distribution. Measurements 
that are concentrated around the center of a distribution of data have low variability 
(low dispersion). whereas data that are very spread out along the measurement scale 
have high variability (high dispersion). Measures of variability of a population are 
population parameters. and sample measures of variabili ty are statistics that estimate 
those parameters. 

The difference hetween the highest and lowest measurements in a group of data 
is termed the range. t If sample measurements are arranged in increasing order of 
magnitude. as if the median were about to be determined. then 

sample range = X" - XI. (4.1 ) 

which is 
sample range = largest X - smallest X. 

Sample I in Example 4.1 is a hypothetical set of ordered data in which XI = 1.2 g and 
X" = 2.4 g. Thus. the range may be expressed as 1.2 to 2.4 g. or as 2.4 g - 1.2 g = 1.2 g. 
Note that the range has the same units as the individual measurements. Sample 2 in 
Example 4.1 has the same range as Sample I. 

~'The statistical use of this term tirst ,Ippeared in an Unfl publication by Francis Galton (David. 
IYl)Xa ). 

';'This statistical term d<ltes from ,10 IX4X paper by H. Lloyd (David. 1995). It was already used 
by the Greek <Istronomer Hipparchus <IS a me,lsure of dispersion in the secoml century R.CE. (Davit!' 
IYYXb ). 

33 
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EXAMPLE 4.1 Calculation of Measures of Dispersion for Two Hypotheti-
cal Samples of 7 Insect Body Weights 

Xi (g) 

1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

LXi 
= 12.6 g 

Sample 1 

Xi - X (g) IXi - XI (g) 

-0.6 0.6 
-0.4 0.4 
-0.2 0.2 

0.0 0.0 
0.2 0.2 
0.4 0.4 
0.6 0.6 

L(Xi - X) LIXi - XI 
= O.Og = 2.4 g 

(Xi - X)2 (g2) 

0.36 
0.16 
0.04 
0.00 
0.04 
0.16 
0.36 

L(Xi - X)2 
= 1.12 g2 

= sum of squared deviations 
from the mean 

= "sum of squares" 

LXi = 12.6g = 1.8g 
n 7 

n = 7: X 

range 

interquartile range 

X7 - XI = 2.4 g - 1.2 g = 1.2 g 

= Q3 - QI = 2.2g - l.4g = 0.8g 

= L IXi - XI = 2.4 g = 0.34 g 
n 7 

mean deviation 

variance = s2 
~(K - X)2 112 2 
£.J I = . g = 0.1867 g2 

n - 1 6 

standard deviation = s == ~0.1867 g2 = 0.43 g 

Sample 2 

Xi (g) Xi - X (g) IXi - XI (g) 

1.2 -0.6 0.6 
1.6 -0.2 0.2 
1.7 -0.1 0.1 
1.8 0.0 0.0 
1.9 0.1 0.1 
2.0 0.2 0.2 
2.4 0.6 0.6 

LX; L(Xi - X) LIXi - XI 
= 12.6 g = 0.0 g = 1.8 g 

n = 7; X = ~ = 12.6 g = 1.8 g 
1/ 7 

(Xi - X)2 (g2) 

0.36 
0.04 
0.01 
0.00 
0.01 
0.04 
0.36 

~ -2 £.J(Xi - X) 
= 0.82 g2 

= sum of squared deviations 
from the mean 

= "sum of squares" 

range = X7 - XI = 2.4g - 1.2g = 1.2g 
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interquartile range 

mean deviation 

variance = ... 2 

standard deviation = s 

Q3 - QI = 2.0 g - 1.6 g = 0.4 g 

= ~ IX; - XI = 1.8 g = 0.26 g 
n 7 

~ - 2 2 
= ~(Xi - X) = 0.82 g = 0.1367 g2 

n - 1 6 

= ~0.1367 g2 = 0.37 g 

The range is a relatively crude measure of dispersion, inasmuch as it does not 
take into account any measurements except the highest and the lowest. Furthermore, 
it is unlikely that a sample will contain both the highest and lowest values in 
the population, so the sample range usually underestimates the population range; 
therefore, it is a biased and inefficient estimator. Nonetheless, it is considered useful 
by some to present the samplc range as an estimate (although a poor onc) of the 
population range. For example, taxonomists are often concerned with having an 
estimate of what the highest and lowest values in a population are expected to be. 
Whenever the range is specified in reporting data, however, it is usually a good 
practice to report another measure of dispersion as well. The range is applicable to 
ordinal-, interval-. and ratio-scale data. 

4.2 DISPERSION MEASURED WITH QUANTILES 

Because the sample range is a biased and inefficient estimate of the population range, 
being sensitive to extremely large and small measurements, alternative measures of 
dispersion may be desired. Just as the median (Section 3.2) is the value above and 
below which lies half the set of data, one can define measures. called quantiles, above 
or below which lie other fractional portions of the data. 

For example. if the data are divided into four equal parts, we speak of quartiles. 
One-fourth of all the ranked observations are smaller than the first quartile. one­
fourth lie between the first and second quartiles. one-fourth lie between the second 
and third quartiles, and one-fourth are larger than the third quartile. The second 
quartile is identical to the median. As with the median, the first and third quartiles 
might be one of the data or the midpoint between two of the data. The first quartile, 
QJ, is 

( 4.2) 

if the subscript, (n + 1)/4, is not an integer or half-integer, then it is rounded up 
to the nearest integer or half-integer. The second quartile is the median. and the 
subscript on X for the third quartile, Q3, is 

n + 1 - (subscript on X for Q\, after any rounding). (4.3) 

Examining the data in Example 3.3: For species A, n = 9, (n + ] )/4 = 2.5, 
and QJ = X2.5 = 34.5 mo; and Q3 = XIO-2.5 = X7.5 = 46 mo. For species 
B, n = to, (n + ] )/4 = 2.75 (which we round up to 3), and QI = X3 = 38 mo, and 
Q3 = X.I-3 = Xl! = 59 mo. 

The distance between QJ and Q3, the first and third quartiles (i.e., the 25th and 
75th percentiles), is known as the interquartile range (or semiquartile range): 

interquartile range = Q3 - Q •. (4.4 ) 
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One may also encounter the semi-imerquartile rallge: 

semi-interquartile range = Q3 QI 
2 

(4.5 ) 

also known as the quartile deviation. * 
If the distribution of data is symmetrical, then 50% of the measurements lie within 

one quartile deviation above and below the median. For Sample 1 in Example 4.1. 
QI = 1.4 g, Q3 = 2.2 g, and the interquartile range is 2.2 g - 1.4 g = 0.8 g. And for 
Sample 2. QI = 1.6 g, Q3 = 2.0 g. and the interquartile range is 2.0 g - 1.6 g = 0.4 g. 

Similarly. values that partition the ordered data set into eight equal parts (or as 
equal as n will allow) are called octiles. The first octile. 0 1• is 

(4.6 ) 

and if the subscript, (n + 1 )/8, is not an integer or half-integer, then it is rounded 
up to the nearest integer or half-integer. The second. fourth. and sixth octiles are the 
same as quartiles; that is. (h = QI' 04 = Q2 = median and 06 = Q3. The subscript 
on X for the third octile. 03, is 

2(subscript on X for QI) - subscript on X for 0 1: 

the subscript on X for the fifth octile, (;,. is 

II + 1 - subscript on X for 03: 

and the subscript on X for the seventh octile. (h. is 

( 4.7) 

( 4.8) 

n + 1 - subscript on X for 01. (4.9) 

Thus. for the data of Example 3.3: For species A. n = 9. (11 + 1 )/8 1.5 and 
C1 = X\.5 = 35mo:2(2.5) -1.5=3.5.s003=X3.5=38mo:n + 1 - 3.5=6.5. 
so 05 = X6.5 = 41.5 mo; and n + 1 - 1.5 = 8.5, so (17 = 61. For spccies 
B. n = 10, (11 + 1 )/8 = 1.25 (which we round up to 1.5) and 01 = X\., = 35 mo; 
2(3) - 1.5 = 4.5, so (i3 = X 4.5 = 39.5 mo: n + 1 - 4.5 = 6.5. so (5, = X6.5 = 
41.5 mo; and n + 1 - 1.5 = 9.5, so (h = 44.5 mo. 

Besides the median, quartiles, and octiles, ordered data may be divided into fifths, 
tenths. or hundredths by quantities that are respectively called quill tiles. deciles, and 
centiles (the latter also called percentiles). Measures that divide a group of ordered 
data into equal parts are collectively termed quantiles.t The expression "LD50." used 
in some areas of biological research, is simply the 50th percentile of the lethal doses, 
or the median lethal dose. That is, 50% of the experimental subjects survived this 
dose, whereas 50% did not. Likewise, "LC,o" is the median lethal concentration, or 
the 50th percentile of the lethal concentrations. 

Instead of distance between the 25th and 75th percentiles. distances between other 
quantiles (e.g .. 10th and 90th percentiles) may be used as a dispersion measure. 
Quantile-based measures of dispersion are valid for ordinal-. interval-. or ratio-scale 
data, and they do not exhibit the bias and inefficiency of the range. 

*This measure was proposed in IH46 hy L. A.J. Quetelet (1796-IH74); Sir Francis Galton 
(1822-1911) later called it the "quartile deviation ,. (Walker. 1929: 84) and, in 1882. used the terms 
"quartile" and "interquartile range" (David. 1(95). 

tSir Francis Galton developed the concept of percentiles. quartiles, deciles. and other quantiles 
in writings from 1869 to 1885 (Walker. 1929: 86-87. 177. 179). The term qllamile was introduced in 
1940 hy M. G. Kendall (David. 19(5). 
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4.3 THE MEAN DEVIATION 

As is evident from the two samples in Example 4.1. the range conveys no information 
about how clustered about the middle of the distribution the measurements are. As 
the mean is so useful a measure of central tendency, one might express dispersion in 
terms of deviations from the mean. The sum of all deviations from the mean, that is. 
2(Xj - X). will always equal zero. however. so such a summation would be useless 
as a measure of dispersion (as seen in Example 4.1). 

Using the absolute values of the deviations from the mean eliminates the negative 
signs of the deviations. and summing those absolute values results in a quantity that 
is an expression of dispersion about the mean. Dividing this quantity by n yields a 
measure known as the mean deviation. or mean absolute deviation" of the sample; 
this measure has the same units as do the data. In Example 4.1. Sample 1 is more 
variable (or more dispersed, or less concentrated) than Sample 2. Although the two 
samples have the same range. the mean deviations. calculated as 

.. ~IXj - XI 
sample mean devIatIon = , ( 4.10) 

n 

express the differences in dispersion. t A different kind of mean deviation can 
be defined by using the sum of the absolute deviations from the median instead of 
from the mean. 

Mean deviations are seldom encountered. because their utility is far less than that 
of the statistics in Sections 4.4 and 4.5. 

4.4 THE VARIANCE 

Another method of eliminating the negative signs of deviations from the mean 
is to square the deviations. The sum of the squares of the deviations from the 
mean is often simply called the slim of squares, abbreviated SS, and is defined as 
follows:~ 

population SS = ~ (Xi 

sample SS = ~ (Xi 

(4.11) 

(4.12) 

It can be seen from the above two equations that as a measure of variability. or 
dispersion. the sum of squares considers how far the Xj's deviate from the mean. In 

·The Icrm mean deviatiol1 is apparently due to Karl Pearson (1857-1936) (Walker. 1929: 55) 
and mean absolllle deviation. in 1972. to D. F. Andrews. P. J. Bickel. F. R. Hampel. P. J. Huber. 
W. H. Rogers. and J. W. Tukey (David. 1995). 

t Karl Weierstrass. in 1841. was the first to denote the absolute value of a quantity by enclosing 
it within two vertical lines (Cajori. 1928/9. Vol. II: p. 123): that is.lal = a and I-al = a. 

*The modern notation using raised numerals as exponents was introduced by Rene Descartes in 
1637. and many other kinds of notation for exponents were employed before and after that (Cajori. 
1928/9. Vol. I: 358: Gullberg. 1997: 134). An 1R45 notation of Augustus De Morgan. a 1\ b to indicate 
0" (Cajori. ibid.: 358). has reemerged in modern computer use. Nicolas Chuquet (1445-1488) was 
the first to use negative exponents. and Nicole (also known as Nicolaus) Oresme (1323-1382) was 
the first to use fractional exponents. though neither of these French mathematicians employed the 
modern notation of Isaac Newton (1642-1727). the colossal English mathematician. physicist. and 
astronomer (Cajori. ibid.: 91. 102.354-355): 

X-II = _1_: X;, = Vi. 
Xu 

Using parentheses or brackets to group quantities dates from the mid-sixteenth century. though it 
was not common mathematical notation until more than two centuries later (ibid.: 392). 
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Sample 1 of Example 4.1, the sample mean is 1.8 g and it is seen (in the last column) 
that 

Sample SS = (1.2 - 1.8)2 + (1.4 - 1.8)2 + (1.6 - 1.8)2 + (1.8 - 1.8)2 

+ (2.0 - 1.8f + (2.2 - 1.8)2 + (2.4 - 1.8)2 

= 0.36 + 0.16 + 0.04 + 0.00 + 0.04 + 0.16 + 0.36 
= 1.12 

(where the units are grams2).* The sum of squares may also be visualized as a measure 
of the average extent to which the data deviate from each other, for (using the same 
seven data from Sample 1 in Example 4.1): 

SS = [( 1.2 - 1.4 f + (1.2 - 1.6)2 + (1.2 - 1.8)2 + (1.2 - 2.0)2 

+ (1.2 - 2.2)2 + (1.2 - 2.4)2 + (1.4 - 1.6)2 + (1.4 - 1.8)2 

+ (1.4 - 2.0)2 + (1.4 - 2.2)2 + (1.4 - 2.4)2 + (1.6 - 1.8)2 

+ (1.6 - 2.0)2 + (1.6 - 2.2)2 + (1.6 - 2.4)2 + (1.8 - 2.0)2 

+ (1.8 - 2.2)2 + (1.8 - 2.4)2 + (2.0 - 2.2)2 + (2.0 - 2.4)2 

+ (2.2 - 2.4)2]/7 
= [0.04 + 0.16 + 0.36 + 0.64 + 1.00 + 1.44 + 0.04 + ... + 0.04 + 0.16 

+ 0.04]/7 
= 7.84/7 = 1.12 

(again in grams2). 
The mean sum of squares is called the variance (or mean square,t the latter being 

short for mean squared deviation). and for a population is denoted by (T2 ("sigma 
squared." using the lowercase Greek letter): 

(T2 = ~(Xi - p.)2 (4.14) 
N 

The best estimate of the population variance, (T2, is the sample variance, s2: 

~ -2 i = ~(Xi - X) (4.15) 
n - 1 

If, in Equation 4.14. we replace p. by X and N by n. the result is a quantity that is a 
biased estimate of (T2 in that it underestimates (T2. Dividing the sample sum of squares 

·Owing to an important concept in statistics. known as least sqllares. the sum of squared 
deviations from the mean is smaller than the sum of squared deviations from any other quantity 
(e.g .. the median). Indeed. if Equation 4.12 is applied using some quantity in place of the mean. the 
resultant "sum of squares" would be 

( 4.13) 

where d is the difference between the mean and the quantity used. For the population sum of 
squares (defined in Equation 4.11). 'the relationship would be SS + Nd2• 

tThe term mean sqlltlre dates back at least to an 1875 publication of Sir George Biddel Airy 
(1801-1892). Astronomer Royal of England (Walker. 1929: 54). The term variance was introduced 
in 1918 by English statistician Sir Ronald Aylmer Fisher (l890-1962) (ibid.: 189: David. 1995). 
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by n - 1 (called the degrees of freedom,· often abbreviated OF), rather than by n, 
yields an unbiased estimate, and it is Equation 4.15 that should be used to calculate 
the sample variance. 

If all observations in a sample are equal, then there is no variability (that is, 
no dispersion) and ,<;2 = O. And s2 becomes increasingly large as the amount of 
variability, or dispersion, increases. Because s2 is a mean sum of squares, it can never 
be a negative quantity. 

The variance expresses the same type of information as does the mean deviation, 
but it has certain very important mathematical properties relative to probability and 
hypothesis testing that make it superior. Thus, the mean deviation is very seldom 
encountered in biostatistical analysis. 

The calculation of s2 can be tedious for large samples, but it can be facilitated by 
the use of the equality 

sample SS = ~ xl _ (~Xi)2 
n 

(4.16) 

This formula is equivalent to Equation 4.12 but is much simpler to work with. 
Example 4.2 demonstrates its use to obtain a sample sum of squares. 

Because the sample variance equals the sample SS divided by DF, 

(4.17) 

This last formula is often referred to as a "working formula:' or "machine formula," 
because of its computational advantages. There are, in fact, two major advantages in 
calculating SS by Equation 4.16 rather than by Equation 4.12. First, fewer computa­
tional steps are involved, a fact that decreases chance of error. On many calculators 
the summed quantities, ~ Xi and ~ xl, can both be obtained with only one pass 
through the data, whereas Equation 4.12 requires one pass through the data to calcu­
late X and at least one more pass to calculate and sum the squares of the deviations, 
Xi - X. Second, there may be a good deal of rounding error in calculating each 
Xi - X. a situation that leads to decreased accuracy in computation, but that is 
avoided by the use of Equation 4.16. t 

For data recorded in frequency tables. 

sample SS = ~ f;xl ( 4.18) 
n 

*Given the sample mean (X) and sample size (n) in Example 4.1. degrees of freedom means that 
the data could have been weights different from those shown. but when any six (i.e .. n - I) of the 
seven weights are specified. then the seventh weight is also known. The term was first used. though 
in a different context. by Ronald Aylmer Fisher in 1922 (David. 1955). 

t Computational formulas advantageous on calculators may not prove accurate on computers 
(Wilkinson and Dallal. \977).largcly because computers may use fewer significant figures. (Also see 
Ling. 1974.) Good computer programs use calculation techniques designed to help avoid rounding 
errors. 
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where f; is the frequency of observations with magnitude Xi. But with a calculator 
or computer it is often faster to use Equation 4.18 for the individual observations. 
disregarding the class groupings. 

The variance has square units. If measurements are in grams, their variance will be 
in grams squared, or if the measurements are in cubic centimeters, their variance will 
be in terms of cubic centimeters squared, even though such squared units have no 
physical interpretation. The question of how many decimal places to report for the 
variance will be considered at the end of Section 6.2. 

EXAMPLE 4.2 "Machine Formula" Calculation of Variance. Standard 
Deviation. and Coefficient of Variation (These are the data of 
Example 4.1) 

Xi (g) 

1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

Sample 1 

1.44 
1.96 
2.56 
3.24 
4.00 
4.84 
5.76 

LXi = 12.6 g Lxl = 23.80 g2 

n=7 

X - 12.6g - 18 ----.g 
7 

SS = Lxl _ (LXi 
n 

= 23.80 g2 _ (12.6 g)2 
7 

= 23.80 g2 _ 22.68 g2 

= 1.12 g2 

;=~ 
n - 1 

1.12 g2 = 0.1867 g2 
6 

s = J0.1867 g2 = 0.43 g 

V = s = 0.43 g = 0.24 = 24% 
X 1.8g 

Xi (g) 

1.2 
1.6 
1.7 
1.8 
1.9 
2.0 
2.4 

Sample 2 

1.44 
2.56 
2.89 
3.24 
3.61 
4.00 
5.76 

LXi = 12.6g Lxl = 23.50g2 

n=7 

X - 12.6g - 18 ----.g 
7 

( 12.6 g)2 
SS = 23.50 g2 -

7 
= 0.82g2 

s2 = 0.82 g2 = 0.1367 g2 
6 

s = JO.l367 g2 = 0.37 g 

V = 0.37g = 0.21 = 21% 
1.8 g 
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4.S THE STANDARD DEVIATION 

The standard deviation* is the positive square roott of the variance; therefore, it has 
the same units as the original measurements. Thus, for a population. 

N 
(4.19) u= 

And for a sample,* 

n-1 
( 4.20) s= 

Examples 4.1 and 4.2 demonstrate the calculation of s. This quantity frequently is 
abbreviated SD. and on rare occasions is called the root mean square deviation or 
root mean square. Remember that the standard deviation is, by definition, always 
a nonnegative quantity.§ The end of Section 6.2 will explain how to determine 

*It was the great English statistician Karl Pearson (1857 -1936) who coined the term stuntiorti 
deviation and its symbol, u, in 1893, prior to which this quantity was called the mean error (Eells, 1926; 
Walker. 1929: 54-55.183.188). In early literature (e.g .• by G. U. Yule in 1919). it was termed root 
mean sql/are deviation and acquired the symbol .~. and (particularly in the fields of education and 
psychology) it was occasionally computed using deviations from the median (or even the mode) 
instead of from the mean (Eells. 1926). 

tThe square root sign ( J ) was introduced by Silesian-born Austrian mathematician Christoff 
Rudolff (1499-1545) in 1525; by 1637 Rene Descartes (1596-1650) combined this with a vinculum 
(a horizontal bar placed above quantities to group them as is done with parentheses or brackets) 
to obtain the symbol r. but Gottfried Wilhelm Leibniz (1646-1716) preferred J( ), which is 
still occasionally seen (Cajori. 1928/9. Vol. I: 135.208.368.372.375). The first footnote in Section 
3.4 speaks to the origin of the cube root symbol ( V). 

:J:The sample s is actually a slightly biased estimate of the population u. in that on the average it 
is a slightly low estimate. especially in small samples. But this fact is generally considered to be offset 
by the statistic's usefulness. Correction for this bias is sometimes possible (e.g .. Bliss. 1967: 131; 
Dixon and Massey. 1969: 136; Gurland and Tripathi. 1971; Tolman. 1971). but it is rarely employed. 

§It can be shown that the median of a distribution is never more than one standard deviation 
away from the mean (IL): that is. 

I median - IL I S u ( 4.21 ) 

(Hotelling and Solomon. 1932; O·Cinneide. 1990; Page and Murty, 1982; Watson. 1994). This is a 
special case. where p = 50. of the relationship 

p/l00 
1 - p/lOO' 

( 4.22) IL - CT 
1 - p/100 < X < + u 

p/lOO - p - IL 

where Xp is the pth percentile of the distribution (Dharmadhikari, 1991). Also. Page and Murty 
(1982) have shown these population-parameter relationships between the standard deviation and 
the range and between the standard deviation and the mean. median. and mode: 

range/.fbi SeTS range/2; 

I mode - IL I S cT~n/ m and I mode - median I S eT( n/ m) • 

where m is the number of data at the modal value. 

( 4.22a) 

(4.22b) 
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the number of decimal places that may appropriately he recorded for the standard 
deviation. 

4.6 THE COEFFICIENT OF VARIATION 

The coefficient o/variation* or coefficiel1t o/variability, is defined as 

s s 
V = = or V = = . 100%. 

X X 
(4.23 ) 

As s/ X is generally a small quantity, it is frequently multiplied by 100% in order to 
express Vas a percentage. (The coefficient of variation is often abbreviated as CV.) 

As a measure of variability, the variance and standard deviation have magnitudes 
that are dependent on the magnitUde of the data. Elephants have ears that are perhaps 
100 times larger than those of mice. If elephant ears were no more variable. relative 
to their size, than mouse ears, relative to their size, the standard deviation of elephant 
ear lengths would be 100 times as great as the standard deviation of mouse ear lengths 
(and the variance of the former would be 1002 = 10.000 times the variance of the 
latter). The sample coefficient of variation expresses sample variability relative to 
the mean of the sample (and is on rare occasion referred to as the "relative standard 
deviation"). It is called a measure of relative variability or relative dispersion. 

Because sand X have identical units, V has no units at all, a fact emphasizing that it 
is a relative measure, divorced from the actual magnitude or units of measurement of 
the data. Thus, had the data in Example 4.2 been measured in pounds, kilograms. or 
tons, instead of grams, the calculated V would have been the same. The coefficient of 
variation of a sample, namely V, is an estimate of the coefficient of variation of the 
population from which the sample came (i.e .. an estimate of uj JL). The coefficient 
of variation may be calculated only for ratio scale data: it is, for example, not valid 
to calculate coefficients of variation of temperature data measured on the Celsius or 
Fahrenheit temperature scales. Simpson, Roe. and Lewontin (1960: 89-95) present 
a good discussion of V and its biological application. especially with regard to 
zoomorphological measurements. 

4.7 INDICES OF DIVERSITY 

For nominal-scale data there is no mean or median or ordered measurements to serve 
as a reference for discussion of dispersion. Instead, we can invoke the concept of 
diversity, the distribution of observations among categories. Consider that sparrows 
are found to nest in four different types of location (vines, caves, branches. and cavi­
ties). If, out of twenty nests observed, five are found at each of the four locations. then 
we would say that there was great diversity in nesting sites. If, however. seventeen 
nests were found in cavities and only one in each of the other three locations, then we 
would consider the situation to be one of very low nest-site diversity. In other words. 
observations distributed evenly among categories display high diversity. whereas a 
set of observations where most of the data occur in very few of the categories is one 
exhibiting low diversity. 

A large number of diversity measures have been introduced, especially for ecolog­
ical data (e.g .. Brower. Zar. and von Ende, 1998: 177-184; Magurran. 2004). a few of 
which are presented here. 

*Thc term ('oeJjicielll of variation was introduced hy the statistical giant Karl Pearson 
(1857-1936) in IH96 (David. 1995). In early literature the term was variously applied to the 
ratios of different measures of dispersion and different measures of central tendency (Eells. 1926). 
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Among the quantitative descriptions of diversity available are those based on a 
field known as information theory.* The underlying considerations of these measures 
can be visualized by considering uncertainty to be synonymous with diversity. If 
seventeen out of twenty nest sites were to be found in cavities. then one would be 
relatively certain of being able to predict the location of a randomly encountered 
nest site. However. if nests were found to be distributed evenly among the various 
locations (a situation of high nest-site diversity). then there would be a good deal 
of uncertainty involved in predicting the location of a nest site selected at random. 
If a set of nominal scale data may be considered to be a random sample. then a 
quantitative expression appropriate as a measure of diversity is that of Shannon 
(1948): 

k 

H' = - ~ Pi log Pi (4.24 ) 
i= 1 

(often referred to as the Shannon-Wiener diversity index or the Shannon-Weaver 
index). Here. k is the number of categories and Pi is the proportion of the observa­
tions found in category i. Denoting 11 to be sample size and /; to be the number 
of observations in category i. then Pi /;/ n; and an equivalent equation for 
H' is 

k 

nlog n ~/; log /; 
H' = ____ :...i=....:I __ _ (4.25 ) 

11 

a formula that is casier to use than Equation 4.24 because it eliminates the neces­
sity of calculating the proportions (Pi). Published tables of n logn and /; log/; are 
available (e.g .• Brower, Zar, and von Ende, 1998: 181; Lloyd, Zar, and Karr, 1968). 
Any logarithmic base may be used to compute H'; bases 10. e. and 2 (in that 
order of commonness) are the most frequently encountered. A value of H' (or 
of any other measure of this section except evenness measures) calculated using 
one logarithmic base may be converted to that of another base; Table 4.1 gives 
factors for doing this for bases 10, e. and 2. Unfortunately. H' is known to be an 
underestimate of the diversity in the sampled population (Bowman et aI., 1971). 
However, this bias decreases with increasing sample size. Ghent (1991) demonstrated 
a relationship between H' and testing hypotheses for equal abundance among the k 
categories. 

The magnitude of H' is affected not only by the distribution of the data but also by 
the number of categories. for, theoretically. the maximum possible diversity for a set 
of data consisting of k categories is 

H:nax = logk. ( 4.26) 

Therefore. some users of Shannon's index prefer to calculate 

J'=~ 
H:nax 

( 4.27) 

instead of (or in addition to) H', thus expressing the observed diversity as a proportion 
of the maximum possible diversity. The quantity J' has been termed evenness (Pielou, 
1966) and may also be referred to as homogeneity or relative diversity. The measure 

·CJaude Elwood Shannon (1916-2()OI) founded what he first called"a mathematical theory of 
communication" and has hecome known as "information theory:' 
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TABLE 4.1: Multiplication Factors for Converting among 
Diversity Measures (H, H', Hmax, or H~ax) Calculated 
Using Different Logarithmic Bases* 

To convert to: To convert from: 

Base 2 Basee Base 10 

Base 2 1.0000 1.4427 3.3219 
Base e 0.6931 1.0000 2.3026 
Base 10 0.3010 0.4343 1.0000 

For example. if H' = 0.255 using base 10: H' would be 
(0.255)(3.3219) = 0.847 using base 2. 

*Tbc measures} and}' are unaffected by change in logarithmic 
base. 

1 - i' may then be viewed as a measure of heterogeneity; it may also be considered a 
measure of dominance, for it reflects the extent to which frequencies are concentrated 
in a small number of categories. The number of categories in a sample (k) is typically 
an underestimate of the number of categories in the population from which the 
sample came, because some categories (especially the rarer ones) are likely to be 
missed in collecting the sample. Therefore, the sample evenness. J'. is typically an 
overestimate of the population evenness. (That is, i' is a biased statistic.) Example 4.3 
demonstrates the calculation of H' and 1'. 

If a set of data may not be considered a random sample. then Equation 4.24 
(or 4.25) is not an appropriate diversity measure (Pielou. 1966). Examples of such 

EXAMPLE 4.3 Indices of Diversity for Nominal Scale Data: The Nesting 
Sites of Sparrows 

Category (i) Observed Frequencies if;) 

Sample J 

Vines S 
Eaves 5 
Branches 5 
Cavities S 

, n logn - ~/; log/; 
H = = [20 log 20 - (510g S + Slog S + Slog S 

n + SlogS)1/20 

= [26.0206 - (3.4949 + 3.4949 + 3.4949 

+ 3.4949) 1/20 

= 12.0410/20 = 0.602 

H:nax = log 4 = 0.602 

i' = 0.602 = 1.00 
0.602 



Vines 
Eaves 
Branches 
Cavities 

Section 4.7 

Sample 2 

1 
1 
1 

17 
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H' = nlogn - ~f;logf; = [201og20 - (1logl + llogl + Ilog1 

Vines 
Eaves 
Branches 
Cavities 

I n logn 
H = 

n 
+ 17 log 17)]/20 

= [26.0206 - (0 + 0 + 0 + 20.9176)]/20 
= 5.1030/20 = 0.255 

H:nax = log 4 = 0.602 

l' = 0.255 = 0.42 
0.602 

Sample 3 

2 
2 
2 

34 

- ~f;logf; = [401og40 - (21og2 + 2log2 + 21og2 
n 

+ 34 log 34 )1/40 
= [64.0824 - (0.6021 + 0.6021 + 0.6021 

+ 52.0703)1/40 
= 10.2058/40 = 0.255 

H:nax = log 4 = 0.602 

J' = 0.255 = 0.42 
0.602 

situations may be when we have, in fact, data composing an entire population, or data 
that are a sample obtained nonrandomly from a population. In such a case, one may 
use the information-theoretic diversity measure of Brillouin (1962: 7 -8):* 

log (TIt 1"., ) l=iJ" 
H = ------'------'- ( 4.28) 

n 

*The notation n! is read as "II factorial" and signifies the product (n )( II - 1)( If - 2) ... (2) ( 1 ). 
It was proposed by French physician and mathematician Christian Kramp (1760-1826) around 
1798; he originally called this function faculty ("facuhes" in French) but in 1808 accepted the 
term faclOrial ("factorielle" in French) used by Alsatian mathematician Louis Franl;ois Antoine 
Arbogast(1759-1803)(Cajori, 1928/9. Vol. II: 72; Gull berg. 1997: 106; Miller. 2004a; O'Connor and 
Robertson, 1997). English mathematician Augustus De Morgan (1806-1871) decried the adoption 
of this symbol as a "barbarism" because it introduced into mathematics a symbol that already had 
an established meaning in written language. thus giving "the appearance of expressing surprise or 
admiration" in a mathematical result (Cajori. ibid.: 328). 
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where n (capital Greek pi) means to take the product. just as ~ means to take the 
sum. Equation 4.28 may be written. equivalently. as 

I n! 
ogf: 'I: ' ~ , H = (·2 .... 'k· ( 4.29) 

n 

or as 
H = (Iogn! - ~ log!;!). 

( 4.30) 
n 

Table B.4O gives logarithms of factorials to ease this calculation. Other such tables are 
available. as well (e.g .• Brower. Zar. and von Ende 1998: 183: Lloyd. Zar. and Karr. 
1968: Pearson and Hartly. 1966: Table 51).* Ghent (1991) discussed the relationship 
between H and the test of hypotheses about equal abundance among k categories. 

The maximum possible Brillouin diversity for a set of n observations distributed 
among k categories is 

_ logn! - (k - d) loge! - dlog(c + I)! 
Hmax - • ( 4.35) 

n 

where c is the integer portion of n/ k. and cI is the remainder. (For example. if Il = 17 
and k = 4. then n/ k = 17/4 = 4.25 and c = 4 and d = 0.25.) The Brillouin-based 
evenness measure is. therefore. 

J=~. 
Hmax 

(4.36 ) 

with 1 - J being a dominance measure. When we consider that we have data from 
an entire population. k is a population measurement. rather than an estimate of one. 
and J is not a biased estimate as is J'. 

For further considerations of these and other diversity measures. see Brower. Zar. 
and von Ende (1998: Chapter 58) and Magguran (2004: 100-121). 

4.8 CODING DATA 

Section 3.5 showed how coding data may facilitate statistical computations of measures 
of central tendency. Such benefits are even more apparent when calculating SS. S2. 

*For moderate to large II (or !;). "Stirling's approximation" is excellent (see note after Table 
B.40): 

n! = J21Tn(n/e)n = .[i;.jiie-"n". 

of which this is an easily usable derivation: 

logn! = (n + 0.5) log 11 - 0.434294n + 0.399090. 

An approximation with only half the error of the above is 

( + 0 'i)f1+05 
n! =.[i; II .. 

(' 

and 

(4.31 ) 

( 4.32) 

(4.33 ) 

log II! = (n + 0.5) log( n + 0.5) - 0.434294 ( II + 0.5) + 0.399090. ( 4.34 ) 

This is named for James Stirling. who published something similar to the latter approximation 
formula in 1730. making an arithmetic improvement in the approximation earlier known by 
Abraham de Moivre (Kemp. 19N9: Pearson. 1924: Walker. 1929: 16). 
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and s, because of the labor, and concomitant chances of error. involved in the unwieldy 
squaring of large or small numbers. 

When data are coded by adding or subtracting a constant (call it A), the measures 
of dispersion of Sections 4.1 through 4.5 are not changed from what they were for the 
data before coding. This is because these measures are based upon deviations, and 
deviations are not changed by moving the data along the measurement scale (e.g .. the 
deviation between 1 and 10 is the same as the deviation between 11 and 20). Sample 
1 in Example 4.4 demonstrates this. 

However, when coding by multiplying by a constant (call it M), the measures of 
dispersion are affected, for the magnitudes of the deviations will be changed. With 
such coding, the range. mean deviation. and standard deviation are changed by a 
factor of M, in the same manner as the arithmetic mean and the median are, whereas 
the sum of squares and variance are changed in accordance with the square of the 
coding constant (i.e .• M2), and the coefficient of variance is not affected. This is 
demonstrated in Sample 2 of Example 4.4. 

Appendix C presents the results of coding these and many other statistics, where a 
coded datum is described as 

[Xi] = MXi + A. ( 4.37) 

EXAMPLE 4.4 Coding Data to Facilitate the Calculation of Measures of 
Dispersion 

Sample 1 (Coding by Subtraction: A = -840 g) 

Without Coding Xi Using Coding [Xi] 
Xi (g) Xl (g2) [X;] (g) [Xi]2 (g2) 

842 708.964 2 4 
843 710,649 3 9 
844 712,336 4 16 
846 715,716 6 36 
846 715,716 6 36 
847 717,409 7 49 
848 719,104 8 64 
849 720,801 9 81 

:LXi = 6765 g :L xl = 5,720,695 g2 :L[X;] = 45 g :L[X;f = 295 g2 

5720695 g2 -
(6765 g)2 295 g2 _ (45 g)2 

8 [s2] = 8 
s2 = 

7 7 

= 5.98 g2 = 5.98 g2 

s = 2.45 g [s] = 2.44 g 

X = 845.6g [X] = 5.6 g 

V = s = 2.45 g 
X 845.6 g 

= 0.0029 = 0.29% 
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Sample 2 (Coding by Division: M = 0.01) 

Withow Coding Xi Using Coding [Xi] 

Xi (sec) Xl (sec2) [X;] (sec) [Xi]2 (sec2) 

800 640,000 8.00 64.00 
900 810.000 9.00 81.00 
950 902.500 9.50 90.25 

1100 1,210,000 11.00 121.00 
1250 1,562,500 12.50 156.25 
1300 1.690,000 13.00 169.00 

LXi = 6300 sec L xl = 6.815,000 sec2 L[X;] = 63.00 sec L[Xif = 681.50 sec2 

(6300 sec)2 681.50 sec2 -
(63.00 sec)2 

6815000 sec2 - 6 [;] = s2 = 6 
5 

5 = 4 sec2 
= 40,000 sec2 

[s] = 2.00 sec 
s = 200 sec 

X = 1050 sec [X] = 10.50 sec 

V = 0.19 = 19% [V] = 0.19 = 19% 

EXERCISES 

4.1. Five body weights. in grams. collected from a pop­
ulation of rodent body weights are 

66.1. 77.1. 74.6. 61.8. 71.5. 

(8) Compute the "sum of squares" and the vari­
ance of these data using Equations 4.12 and 
4.15. respectively. 

(b) Compute the "sum of squares" and the vari­
ance of these data by using Equations 4.16 and 
4.17. respectively. 

4.2. Consider the following data, which are a sam­
ple of amino acid concentrations (mg/IOO ml) in 
arthropod hemolymph: 

240.6.238.2.236.4.244.8.240.7.241.3.237.9. 

(8) Determine the range of the data. 
(b) Calculate the "sum of squares" of the data. 
(c) Calculate the variance of the data. 
(d) Calculate the standard deviation of the data. 
(e) Calculate the coefficient of variation of the 

data. 

4.3. The following frequency distribution of tree 
species was observed in a random sample from 
a forest: 

Species Frequency 

White oak 44 
Red oak 3 
Shagbark hickory 28 
Black walnut 12 
Basswood 2 
Slippery elm 8 

(8) Use the Shannon index to express the tree 
species diversity. 

(b) Compute the maximum Shannon diversity 
possible for the given number of species and 
individuals. 

(c) Calculate the Shannon evenness for these 
data. 

4.4. Assume the data in Exercise 4.3 were an entire 
popUlation (e.g.. all the trees planted around a 
group of buildings). 
(a) Use the Brillouin index to express the tree 

species diversity. 
(b) Compute the maximum Brillouin diversity 

possible for the given number of species and 
individuals. 

(c) Calculate the Brillouin evenness measure for 
these data. 



CHAPTER 5 

Probabilities 

5.1 COUNTING POSSIBLE OUTCOMES 
5.2 PERMUTATIONS 
5.3 COMBINATIONS 
5.4 SETS 
5.5 PROBABILITY OF AN EVENT 
5.6 ADDING PROBABILITIES 
5.7 MULTIPLYING PROBABILITIES 
5.8 CONDITIONAL PROBABILITIES 

Everyday concepts of "likelihood," "predictability." and "chance" arc formalized by 
that branch of mathematics called probability. Although earlier work on the subject 
was done by writers such as Giralamo Cardano (1501-1576) and Galileo Galilci 
(1564-1642). the investigation of probability as a branch of mathematics sprang in 
earnest from 1654 correspondence between two great French mathematicians, Blaise 
Pascal (1623-1662) and Pierre Fermat (1601-1665). These two men were stimulated 
by the desire to predict outcomes in the games of chance popular among the French 
nobility of the mid-seventeenth century: we still use the devices of such games (e.g., 
dice and cards) to demonstrate the basic concepts of probability: 

A thorough discourse on probability is well beyond the scope and intent of this 
book. but aspects of probability are of biological interest and considerations of 
probability theory underlie the many procedures for statistical hypothesis testing 
discussed in the following chapters. Therefore. this chapter will introduce probability 
concepts that bear the most pertinence to biology and biostatistical analysis. Although 
mastery of this chapter is not essential to apply the statistical procedures in the 
remainder of the book. occasionally later reference will be made to it. 

Worthwhile presentations of probability specifically for the biologist are found 
in Batschelet (1976: 441-474): Eason. Coles. and Gettinby (19HO: 395-414): and 
Mosimann (1968). 

5.1 COUNTING POSSIBLE OUTCOMES 

Suppose a phenomenon can occur in anyone of k different ways. hut in only one of 
those ways at a time. For example. a coin has two sides and when tossed will land 

*The first puhlished work on the suhject of probability and gaming was by the Dutch astronomer. 
physicist. and mathematician Christiaan (also known as Christianus) Huygens (I (121)-lhI)5). in 1f157 
(Asimov. II)~Q: 13X: David. 1%2: 113. 133). This. in turn. aroused the interest of other major 
minds. such as Jacob (also known as Jac4ues. Jakoh. and James) Bernoulli (1654- 1705. whose 
1713 hook was the first devoted entirely to probability). several other members of the remarkable 
Bernoulli family of Swiss mathematicians, and others such as Abraham de Moivre (1667 -1754), 
Pierre Remond de Montmort (167H-1711)), and Pierre-Simon Laplace (1741)-1 X27) of France. Th~ 
term prohllhilify in its modern mathematical sense was used liS early as 171 X hy de Moivrc (Miller. 
2IKl4a). For more dCI.ailed history of the suhject. see David (1962) and Walker (11)2X: 5- 13). 

49 
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with either the "head" side (H) up or the "tail" side (T) up, but not both. Or. a die 
has six sides and when thrown will land with either the], 2, 3, 4, 5, or 6 side up.* We 
shall refer to each possible outcome (i.e .• H or T with the coin: or t, 2, 3, 4, 5. or 6 
with the die) as an event. 

If something can occur in anyone of k J different ways and something else can occur 
in anyone of k2 different ways, then the number of possible ways for both things to 
occur is k, X k2. For example. suppose that two coins are tossed, say a silver one and 
a copper one. There are two possible outcomes of the toss of the silver coin (H or T) 
and two possible outcomes of the toss of the copper coin (H or T). Therefore. kJ = 2 
and k2 = 2 and there are (k, )(k2) = (2)(2) = 4 possible outcomes of the toss of 
both coins: both heads, silver head and copper tail. silver tail and copper head, and 
both tails (i.e., H,H: H,T; T.H: T,T). 

Or. consider tossing of a coin together with throwing a die. There are two possible 
coin outcomes (k, = 2) and six possible die outcomes (k2 = 6), so there are 
(k, )( k2) = (2)( 6) = 12 possible outcomes of the two events together: 

H,I; H,2; H,3; H.4; H,5: H.6; T,t; T,2; T,3; T,4; T,5; T.6. 

If two dice are thrown, we can count six possible outcomes for the first die and six 
for the second, so there are (k,)( k2) = (6)( 6) = 36 possible outcomes when two 
dice are thrown: 

1,1: 1,2; 1.3: 1.4; 1,5: 1,6; 

3.1: 3.2: 3,3; 3.4: 3,5: 3,6: 

5,1; 5.2; 5.3: 5,4: 5.5: 5.6; 

2,1; 2.2: 2,3; 2,4; 2,5; 2,6; 

4.1: 4.2: 4,3: 4.4: 4,5: 4,6: 

6.1; 6,2: 6.3; 6,4; 6.5: 6,6. 

The preceding counting rule is extended readily to determine the number of ways 
more than two things can occur together. If one thing can occur in anyone of k, 
ways, a second thing in anyone of k2 ways, a third thing in any of k3 ways, and so on, 
through an nth thing in anyone of k" ways, then the number of ways for all n things 
to occur together is 

(k, ) (k2 ) (k3 ) ... (k" ). 

Thus, if three coins are tossed, each toss resulting in one of two possible outcomes, 
then there is a total of 

possible outcomes for the three tosses together: 

H,H,H; H,H,T: H,T.H; H.T.T: T,H.H, T,H,T; T,T,H; T.T,T. 

Similarly. if three dice are thrown. there are (k, )( k2)( k3) = (6) (6)( 6) = 63 = 216 
possible outcomes: if two dice and three coins are thrown, there are 

*What we recognize as metallic coins originated shortly after 650 B.c.E.-perhaps in ancient 
Lydia (located on the Aegean Sea in what is now western Turkey). From the beginning, the obverse 
and reverse sides of coins have had different designs. in earliest times with the obverse commonly 
depicting animals and, later, deities and rulers (Sutherland. 1992). Dice have long been used for 
both games and religion. They date from nearly 3000 years S.C.E., with the modern conventional 
arrangement of dots on the six faces of a cubic die (I opposite 6, 2 opposite 5, and 3 opposite 
4) becoming dominant around the middle of the fourteenth century B.C.E. (David, 1962: 10). Of 
course. the arrangement of the numbers I through 6 on the six faces has no effect on the outcome 
of throwing a die. 
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(kd(k2)(k3)(k4)(ks) = (6)(6)(2)(2)(2) = (62 )(23) = 288 outcomes; and so 
on. Example 5.1 gives two biological examples of counting possible outcomes. 

EXAMPLE 5.1 Counting Possible Outcomes 

5.2 PERMUTATIONS 

(a) A linear arrangement of three deoxyribonucleic acid (DNA) nucleotides is 
called a triplet. A nucleotide may contain anyone of four possible bases: 
adenine (A), cytosine (C), guanine (G), and thymine (T). How many different 
triplets are possible? 
As the first nucleotide in the triplet may be anyone of the four bases (A; C; 
G; T), the second may be anyone of the four. and the third may be anyone 
of the four. there is a total of 

(k d (k2)( k3) = (4)( 4 )( 4) = 64 possible outcomes: 

that is, there are 64 possible triplets: 

A. A. A; A. A, C; A. A, G; A. A. T; 
A. C, A; A. C. C; A, C, G; A. C, T; 
A, G. A; A. G. C; A, G. G; A. G. T; 
and so on. 

(b) If a diploid cell contains three pairs of chromosomes. and one member of 
each pair is found in each gamete, how many different gametes are possible? 
As the first chromosome may occur in a gamete in one of two forms, as may 
the second and the third chromosomes. 

Let us designate one of the pairs of chromosomes as "long," with the members 
of the pair being L, and L2; one pair as "short." indicated as S, and S2; and 
one pair as "midsized," labeled M, and M2. Then the eight possible outcomes 
may be represented as 

L,.M,.S,: L,.M"S2: L"M2,S,: L"M2,S2: 
L2.M"S,: L2,M"S2: L2. M2,S,: L2, M2.S2. 

<a) Linear Arrangements. A permutation· is an arrangement of objects in a specific 
sequence. For example. a horse (H). cow (C). and sheep (S) could be arranged 
linearly in six different ways: H.C.S; H.S.C; C.H.S; C.S.H: S.H,C; S.c'H. This set of 
outcomes may be examined by noting that there are three possible ways to fill the 
first position in the linear order; but once an animal is placed in this position, there 
are only two ways to fill the second position: and after animals are placed in the 
first two positions, there is only one possible way to fill the third position. Therefore, 
k, = 3. k2 = 2. and k3 = 1. so that by the method of counting of Section 5.1 there 
are (k, )(k2)(k3) = (3)(2)( 1) = 6 ways to align these three animals. We may say 
that there are six permutations of three distinguishable objects. 

*The term permllllllion was invented by Jacob Bernoulli in his landmark posthumous 1713 book 
on probability (Walker. 1929: 9). 
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In general, if there are n linear positions to fill with n objects. the first position may 
be filled in anyone of n ways. the second may be filled in anyone of n - 1 ways. 
the third in anyone of n - 2 ways, and so on until the last position. which may be 
filled in only one way. That is, the filling of n positions with n objects results in nPII 

permutations. where 

"P,,=n(n- l)(n - 2)···(3)(2)(1). (5.1 ) 

This equation may be written more simply in factorial notation as 

"P" = n!. (5.2) 

where "n factorial" is the product of 11 and each smaller positive integer*: that is. 

II! = 11(11 - 1)(11 - 2)···(3)(2)(1). (5.3) 

Example 5.2 demonstrates such computation of the numbers of permutations. 

EXAMPLE 5.2 The Number of Permutations of Distinct Objects 

In how many sequences can six photographs be arranged on a page? 

"P" = 6! = (6)(5)(4)(3)(2)(1) = 720 

(b) Circular Arrangements. The numbers of permutations considered previously 
are for objects arranged on a line. If objects are arranged on a circle. there is no 
"starting position" as there is on a line, and the number of permutations is 

n! n?'" = - = (n - I)!. (5.4) 
II 

(Observe that the notation "P:/ is used here for circular permutations to distinguish it 
from the symbol "P" used for linear permutations.) 

Referring again to a horse, a cow, and a sheep, there are nP;/ ;;: ~ = (n - I)! = 

" (3 - 1)! = 2! = 2 distinct ways in which the three animals could be seated around a 
table, or arranged around the shore of a pond: 

H H 
or 

sec s 
In this example, there is an assumed orientation of the observer, so clockwise and 

counterclockwise patterns are treated as different. That is, the animals are observed 
arranged around the top of the table, or observed from above the surface of the 
pond. But either one of these arrangements would look like the other one if observed 
from under the table or under the water: and if we did not wish to count the results 
of these two mirror-image observations as different. we would speak of there being 
one possible permutation, not two. For example, consider each of the preceding two 
diagrams to represent three beads on a circular string, one bead in the shape of a 
horse, one in the shape of a cow. and the other in the shape of a sheep. The two 
arrangements of H, C, and S shown are not really different, for there is no specific 
way of viewing the circle: one of the two arrangements turns into the other if the 
circle is turned over. If n > 2 and the orientation of the circle is not specified. then 

·See the second footnote in Section 4.7. 
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the number of permutations of n objects on a circle is 

P.' = n! = (n - 1 )! 
"II 211 2' 

(5.5) 

(c) Fewer than n Positions. If one has n objects, but fewer than It positions in which 
to place them, then there would be considerably fewer numbers of ways to arrange 
the objects than in the case where there are positions for all n. For example, there are 
4 P4 = 4! = (4)( 3)( 2)( 1) = 24 ways of placing a horse (H), cow (C), sheep (S), and 
pig (P) in four positions on a line. However. there are only twelve ways of linearly 
arranging these four animals two at a time: 

H,C: H.S; H.P: C,H; C.S: c.P: S,H; S,C; S.P; P,H; P,C; P,S. 

The number of linear permutations of n objects taken X at a time is· 

P _ n! 
" x - (n - X)! 

(5.6) 

For the preceding example. 

P = 4! = 4! = (4)(3)(2)(1) = 12. 
4 2 (4 _ 2)! 2! (2)(1) 

Equation 5.2 is a special case of Equation 5.6. where X = n; it is important to know 
that O! is defined to be l.t 

If the arrangements are circular. instead of linear, then the number of them poss­
ible is 

P'. - n! 
/I x - (n _ X)!X (5.7) 

So, for example, there are only 4!j[ (4 - 2) !2] = 6 different ways of arranging two 
out of our four animals around a table: 

H H 
C S 

H C C S 
P S P P 

for C seated at the table opposite H is the same arrangement as H seated across from 
C, S seated with H is the same as H with S, and so on. Example 5.3 demonstrates this 
further. Equation 5.4 is a special case of Equation 5.7, where X = n; and recall that 
O! is defined as 1. 

EXAMPLE 5.3 The Number of Permutations of n Objects Taken X at a 
Time: In How Many Different Ways Can a Sequence of Four Slides Be Chosen 
from a Collection of Six Slides? 

"Px = 
p _ 6! _ 6! _ (6)(5)(4)(3)(2)(1) 

6 4 - (6 _ 4)! - 2! - (2)(1) 

= (6)(5)(4)(3) = 360 

*Notation in the form of "PX to indicate permutations of n items taken X at a time was used 
prior to 1869 by Harvey Goodwin (Cajori, 1929: 79). 

tWhy is O! defined to be I? In general. II! = tI[ (" - I)!): for example. 5! = 5( 4! ). 4! = 4( 3! ), 
3! = 3(2!),and2! = 2(1!).Thus.l! = I(O!).whichissoonlyifO! = I. 
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If 11 > 2, then for every circular permutation viewed from above there is a mirror 
image of that permutation. which would be observed from below. If these two mirror 
images are not to be counted as different (e.g .. if we are dealing with beads of different 
shapes or colors on a string), then the number of circular permutations is 

P" _ Il! 
n X - 2(11 _ X)!X (5.8) 

(d) If Some of the Objects Are Indistinguishable. If our group of four animals 
consisted of two horses (H), a cow (C), and a sheep (S). the number of permutations 
of the four animals would be twelve: 

H,H.c'S; H,H,S,C; H,C,H,S; H.C,S.H; H.S.H.C; H,S.C,H; 

C,H.H,S; C,H.S.H; C,S,H.H; S.H,H.e: S,H.c'H; S.C,H,H. 

If Ili represents the number of like individuals in category i (in this case the number 
of animals in species i), then in this example III = 2.112 = 1, and 113 = 1. and we can 
write the number of permutations as 

41 
= -- = 12. 

2!!!1! 

If the four animals were two horses (H) and two cows (C). then there would be only 
six permutations: 

H.H.c'e: C,C,H.H; H,C,H.C; C,H,C,H; H,C.c'H; C,H.H.C. 

In this case, 11 = 4.111 = 2, and 112 = 2. and the number of permutations is calculated 
tobel/PnlJI2 =11!/(111!1l2!) =4!/(2!2!) = (4)(3)(2)/[(2)(2)] =6. 

In general, if III members of the first category of objects are indistinguishable. as 
are 112 of the second category, 113 of the third category, and so on through Ilk members 
of the kth category. then the number of different permutations is 

(5.9) 

where the capital Greek letter pi (n) denotes taking the product just as the capital 
Greek sigma (~. introduced in Section 3.1) indicates taking the sum. This is shown 
further in Example 5.4. 

EXAMPLE 5.4 Permutations with Categories Containing Indistinguish-
able Members 

There are twelve pOlled plants. six of one species. four of a second species, and 
two of a third species. How many different linear sequences of species are possible 
(for example, if arranging the pots on a shelf)? 

P = _11_ 
n nlJl2.nJ n.f 

Il" 

P _ 121 
12 6.4.2 - 6!4!2! 

= ...:-( 1--=2 )....;..,( 1_1 ~)( _10-,-,)(--=9 )....;..,( 8....:...,)(,,--7..:.....:.)( --=.6 )....:...,( 5....:....)(=--4 '-'-)( 3....;..)-,-( 2....:....;)(,--,-1) = 13,860. 
(6)(5)(4)(3)(2)(1)(4)(3)(2)(1)(2)(1) 
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Note that the above calculation could have been simplified by writing 

~ = (12)(11)(1O)(9)(8)(7)6! = (12)(11)(10)(9)(8)(7) = \3.860. 
6!4!2! 6!(4)(3)(2)(2) (4)(3)(2)(2) 

Here. "( 1)" is dropped: also. "6!" appears in both the numerator and denominator. 
thus canceling out. 

5.3 COMBINATIONS 

In Section 5.2 we considered groupings of objects where the sequence within the 
groups was important. In many instances, however. only the components of a group. 
not their arrangement within the group. are important. We saw that if we select two 
animals from among a horse (H). cow (C), sheep (S), and pig (P). there are twelve 
ways of arranging the two on a line: 

H,C; H.S: H.P; C.H; C.S; C,P; S,H: S,C: S.P; P,H: P.C: P.S. 

However. some of these arrangements contain exactly the same kinds of animals, only 
in different order (e.g., H.C and C.H; H,S and S.H). If the groups of two are important 
to us, but not the sequence of objects within the groups, then we are speaking of 
combinations,* rather than permutations. Designating the number of combinations 
of n objects taken X at a time as "Cx. we havet 

C - "Px _ n! 
" x - X! - X!(n X)! 

(5.10) 

So for the present example. II = 4. X = 2. and 

C - 4! = ~ = (4)(3)(2)(1) = (4)(3) = 6 
4 2 - 2!( 4 - 2)! 2!2! (2)(1 )(2)( 1) 2 ' 

the six combinations of the four animals taken two at a time being 

H.C; H.S; H.P: C.S; c.P: S.P. 

Example 5.5 demonstrates the determination of numbers of combinations for another 
set of data. 

It may be noted that 
(5.11 ) 

meaning that there is only one way of selecting all n items; and 

(5.12) 

indicating that there are n ways of selecting 11 items one at a time. Also, 

(5.13) 

*The word comhin(/(ion was used in this mathematical sense by Blaise Pascal (1623-1662) in 
1654 (Smith. 1953: 528). 

tNotation in the form of "ex (0 indicate comhinations of n items taken X at a lime was used 
hy G. Chrystal in 1899 (Cajori. 1929: 80). 
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EXAMPLE 5.5 Combinations of n Objects Taken X at a Time 

Of a total of ten dogs. eight are to be used in a laboratory experiment. How many 
different combinations of eight animals may be formed from the ten? 

c - C - to! 
" x -10 8 - 8!( 10 _ 8)! = 8-!-2! = 

1O! (10)(9)(8)(7)(6)(5)( 4 )(3)(2)( 1) 
(8)(7)(6)(5)( 4)(3 )(2)( 1 )(2)( I) 

= 45. 

It should be noted that the above calculations with factorials could have been 
simplified by writing 

c - 10! _ (1O)(9)8! _ (10)(9) - 45 
J() II - 8!2! - 8!2! - 2 - • 

so that "8!" appears in both the numerator and denominator. thus canceling each 
other out. 

which means that if we select X items from a group of n. we have at the same 
time selected the remaining II - X items; that is. an exclusion is itself a selection. 
For example. if we selected two out of five persons to write a report. we have 
simultaneously selected three of the five to refrain from writing. Thus. 

c - 5! = 5! = 10 
5 2 - 2!(5 _ 2)! 2!3! 

and 
5! 5! 

SCs 2 = ",C3 = = - = 10 
• - .1. 3!(5 - 3)! 3!2! • 

meaning that there are ten ways to select two out of five persons to perform a 
task and ten ways to select three out of five persons to be excluded from that task. 
This question may be addressed by applying Equation 5.9. reasoning that we are 
asking how many distinguishable arrangements there are of two writers and three 
nonwriters: SP2.3 = 5!/ (2!3!) = 10. 

The product of combinatorial outcomes may also be employed to address questions 
such as in Example 5.4. This is demonstrated in Example 5.6. 

EXAMPLE 5.6 Products of Combinations 

This example provides an alternate method of answering the question of Exam­
ple 5.4. 

There are twelve potted plants. six of one species. four of a second species. and 
two of a third. How many different linear sequences of species are possible? 

There are twelve positions in the sequence. which may be filled by the six 
members of the first species in this many ways: 

C - 12! = 924. 
12 () - (12 - 6)!6! 

The remaining six positions in the sequence may be filled by the four members of 
the second species in this many ways: 

C - 6! = 15. 
() 4 - (6 _ 4) !4! 
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And the remaining two positions may be filled by the two members of the third 
species in only one way: 

c - 2! = 1. 
2 2 - (2 _ 2)!2! 

As each of the ways of filling positions with members of one species exists in 
association with each of the ways of filling positions with members of each other 
species, the total different sequences of species is 

(924) ( 15)( 1) = 13,860. 

From Equation 5.10 it may be noted that, as nCX = nPX/ X!, 

nPX = X!I/Cx, (5.14) 

It is common mathematical convention to indicate the number of combinations 

of 11 objects taken X at a time as ( ; ) instead of "Cx, so for the problem at the 

beginning of Section 5.3 we could have written* 

(;) = (~) = 2!(4 4~ 2)! = 6. 

Binomial coefficients, which are discussed in Section 24.1, take this form. 

A set is a defined collection of items. For example, a set may be a group of four 
animals, a collection of eighteen amino acids, an assemblage of twenty-five students, 
or a group of three genetic traits. Each item in a set is termed an element. If a set of 
animals includes these four elements: horse (H), cow (C), sheep (S), and pig (P), and 
a second set consists of the elements p, S, H. and C, then we say that the two sets are 
equal, as they contain exactly the same elements. The sequence of elements within 
sets is immaterial in defining equality or inequality of sets. 

If a set consisted of animals Hand p, it would be declared a subset of the above 
set (H, C, S, P). A subset is a set, all of whose elements are elements of a larger set. t 
Therefore. the determination of combinations of X items taken from a set of 11 items 
(Section 5.3) is really the counting of possible subsets of items from the set of 11 items. 

In an experiment (or other phenomenon that yields results to observe), there is a set 
(usually very large) of possible outcomes. Let us refer to this set as the outcome set. t 

Each element of the set is one of the possible outcomes of the experiment. For 
example. if an experiment consists of tossing two coins. the outcome set consists of 
four elements: H,H; H,T; T,H; T,T. as these are all of the possible outcomes. 

A subset of the outcome set is called an event. If the outcome set were the possible 
rolls of a die: 1, 2, 3, 4, 5. 6. an event might be declared to be "even-numbered 
rolls" (i.e .. 2, 4, 6), and another event might be defined as "rolls greater than 4" 

*This parenthetical notation for combinations was introduced by Andreas von Ettingshauscn in 
1826 (Miller. 20()4c). Some authors have used a symbol in the form of C~ (or "Cx) instead of "Cx 
for combinations and i>'.r (or" P x) instead of n P X for permutations: those symbols will not be used 
in this book, in order to avoid confusing II with an exponent. 

t Utilizing the terms set and subset in this fashion dates from the last half of the nineteenth 
century (Miller. 2004a). 

* Also called the sample space. 
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(i.e., 5, 6). In tossing two coins, one event could be "the two coins land differently" 
(Le .. T.H: H,T), and another event could be "heads do not appear" (i.e., T.T). If the 
two events in the same outcome set have some elements in common, the two events 
are said to intersect; and the intersection of the two events is that subset composed 
of those common elements. For example, the event "even-numbered rolls" of a die 
(2, 4. 6) and the event "rolls greater than 4" (5. 6) have an element in common 
(namely, the roll 6); therefore 6 is the intersection of the two events. For the events 
"even-numbered rolls" (2,4, 6) and "rolls less than 5" (1. 2. 3, 4). the intersection 
subset consists of those elements of the events that are both even-numbered and less 
than 5 (namely. 2,4).* 

If two events have no clements in common. they are said to be mutually exclusive. 
and the two sets are said to be disjoint. The set that is the intersection of disjoint sets 
contains no elements and is often called the empty set or the /lull set. For example. 
the events "odd-numbered rolls" and "even-numbered rolls" are mutually exclusive 
and there are no elements common to both of them. 

If we ask what elements are found in either one event or another, or in both 
of them, we are speaking of the union of the two events. The union of the events 
"even-numbered rolls" and "rolls less than 5" is that subset of the outcome set that 
contains elements found in either set (or both sets). namely J, 2, 3,4,6. t 

Once a subset has been defined, all other elements in the outcome set are said to 
be the compiemelll of that subset. So, if an event is defined as "even-numbered rolls" 
of a die (2, 4. 6). the complementary subset consists of "odd-numbered rolls" (I. 3, 
5). If subset is "rolls less than 5" (1,2.3,4), the complement is the subset consisting 
of rolls 5 or greater (5, 6). 

The above considerations may be presented by what are known as Venn diagrams, ~ 
shown in Figure 5.1. 

The rectangle in this diagram denotes the outcome set. the set of all possible 
outcomes from an experiment or other producer of observations. The circle on the 

FIGURE 5.1: A Venn diagram showing the relationships among the outcome set represented by the 
rectangle and the subsets represented by circles A, B, and C. Subsets Band C intersect, with no 
intersection with A. 

*The term illlerseclion had been employed in this manner by 1909 (Miller, 2004a). The 
mathematical symbol for intersection is "n", first used by Italian mathematician Giuseppe Peano 
(1858-1932) in 1888 (Miller. 2004a): so, for example, the intersection of set A (consisting of 2.4.6) 
and set B (consisting of 5. 6) is set A n B (consisting of 6). 

tThe term /Inion had been employed in this way by 1912 (Miller. 2004a). The mathematical 
symbol for union is .. U ". first used by Giuseppe Peano in I HHH (Miller, 2004a); so. for example, if 
set A is composed of even-numbered rolls of a die (2,4,6). and set B is odd-numbered rolls (t, 3, 
5), the union of the two sets. namely A U B. is 2. 4. 6, I. 3. 5. 

*Named for English mathematical logician John Venn (1834-1923). who in tAAO greatly 
improved and popularized the diagrams (sometimes called "Euler diagrams") devised by Leonhard 
Euler (1707-1783) (Gullberg. 1997: 242: O'Connor and Robertson. 20(3). 
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left represents a subset of the outcome set that we shall refer to as event A, the circle 
in the center signifies a second subset of the outcome set that we shall refer to as 
event B, and the circle on the right depicts a third subset of the outcome set that 
we shall call event C. If, for example, an outcome set (the rectangle) is the number 
of vertebrate animals in a forest, subset A might be animals without legs (namely, 
snakes), subset B might be mammals, and subset C might be flying animals. Figure 5.1 
demonstrates graphically what is meant by union, intersection. mutually exclusive, 
and complementary sets: The union of Band C (the areas with any horizontal or 
vertical shading) represents all birds and mammals: the intersection of Band C (the 
area with both horizontal and vertical shading) represents flying mammals (i.e., bats); 
the portion of C with only vertical shading represents birds: A is mutually exclusive 
relative to the union of Band C, and the unshaded area (representing all other 
vertebrates-namely, amphibians and turtles) is complementary to A, B, and C (and 
is also mutually exclusive of A, B, and C). 

5.5 PROBABILITY OF AN EVENT 

As in Section 1.3, we shall define the relative frequency of an event as the proportion 
of the total observations of outcomes that event represents. Consider an outcome set 
with two elements, such as the possible results from tossing a coin (H: T) or the sex 
of a person (male; female). If n is the total number of coin tosses and f is the total 
number of heads observed. then the relative frequency of heads is f / n. Thus. if heads 
are observed 52 times in 100 coin tosses. the relative frequency is 52/100 = 0.52 (or 
52%). If 275 males occur in 500 human births, the relative frequency of males is 
fin = 275/500 = 0.55 (or 55%). In general. we may write 

. frequency of that event f 
relatIVe frequency of an event = = -. 

total number of all events n 
(5.15) 

The value off may, of course, range from 0 to n, and the relative frequency may, there­
fore. range from 0 to 1 (or 0% to 100%). A biological example is given as Example 5.7. 

EXAMPLE 5.7 Relative Frequencies 

A sample of 852 vertebrate animals is taken randomly from a forest. The sampling 
was done with replacement, meaning that the animals were taken one at a time. 
returning each one to the forest before the next one was selected. This is done 
to prevent the sampling procedure from altering the relative frequency in the 
sampled population. If the sample size is very small compared to the population 
size, replacement is not necessary. (Recall that random sampling assumes that 
each individual animal is equally likely to become a part of the sample.) 

Vertebrate Relative 
Subset Number Frequency 

amphibians 53 53/852 = 0.06 
turtles 41 41/852 = 0.05 
snakes 204 204/852 = 0.24 
birds 418 418/852 = 0.49 
mammals 136 136/852 = 0.16 

total 852 1.00 
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The probability of an event is the likelihood of that event expressed either by the 
relative frequency observed from a large number of data or by knowledge of the 
system under study. In Example 5.7 the relative frequencies of vertebrate groups have 
been observed from randomly sampling forest animals. If. for the sake of the present 
example, we assume that each animal has the same chance of being caught as part of 
our sample (an unrealistic assumption in nature), we may estimate the probability, P. 
that the next animal captured will be a snake (P = 0.24). Or, using the data of the 
preceding paragraph. we can estimate that the probability that a human birth will be a 
male is 0.55, or that the probability of tossing a coin that lands head side up is 0.52. A 
probability may sometimes be predicted on the basis of knowledge about the system 
(e.g .• the structure of a coin or of a die, or the Mendelian principles of heredity). If 
we assume that there is no reason why a tossed coin should land "heads" more or less 
often than "tails," we say there is an equal probability of each outcome: P( H) = ~ and 

P( T) = ~ states that "the probability of heads is 0.5 and the probability of tails is 0.5." 
Probabilities. like relative frequencies. can range from 0 to t. A probabil­

ity of 0 means that the event is impossihle. For example, in tossing a coin. 
P(neither H nor T) = 0, or in rolling a die. P( number > 6) = O. A probability 
of 1 means that an event is certain. For example. in tossing a coin, P(H or T) = 1: or 
in rolling a die, P{l $ number $ 6) = l. * 

5.6 ADDING PROBABILITIES 

(a) If Events Are Mutually Exclusive. If two events (call them A and B) are mutually 
exclusive (e.g., legless vertebrates and mammals are disjoint sets in Figure 5.1). then 
the probability of either event A or event B is the sum of the probabilities of the two 
events: 

P( A or B) = P( A) + P( B ). (5.16) 

For example. if the probability of a tossed coin landing head up is ~ and the probability 

of its landing tail up is ~. then the probability of either head or tail up is 

P( H or T) = P( H) + P( T) = ! + ! = 1. 
2 2 

(5.17) 

And. for the data in Example 5.7. the probability of selecting, at random. a reptile 
would be P(turtle or snake) = P(turtle) + P(snake) = 0.05 + 0.24 = 0.29. 

This rule for adding probabilities may be extended for more than two mutually 
exclusive events. For example. the probability of rolling a 2 on a die is ~. the 

probability of rolling a 4 is ~. and the probability of rolling a 6 is ~; so the prohability 
of rolling an even number is 

P(evennumber) = P(20r40r6) = P(2) + P(4) + P(6) 

1+!+!=~=! 
6 6 6 6 2 

* A concept related to probability is the odd.~ for an event. namely the ratio of the probability of 
the event occurring and the probability of that event not occurring. For example. if the probability 
of a male birth is 0.55 (and. therefore. the probability of a female birth is 0.45). then the odds in 
favor of male births are 0.55/0.45. expressed as "II to 9." 
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And, for the data in Example 5.7, the probability of randomly selecting a reptile or 
amphibian would be P(turtle) + P(snake) + P(amphibian) = 0.05 + 0.24 + 0.06 = 
0.35. 

(b) If Events Are Not Mutually Exclusive. If two events are not mutually exclu­
sive-that is, they intersect (e.g., mammals and ftying vertebrates are not disjoint 
sets in Figure 5.1)-then the addition of the probabilities of the two events must be 
modified. For example. if we roll a die, the probability of rolling an odd number is 

P(oddnumber) = P(1 or30r5) = P(l) + P(3) + P(5) 
1 1 1 3 1 

= 6 + 6 + 6 = 6 = 2: 
and the probability of rolling a number less than 4 is 

P(number < 4} = P(l or20r3) = P(l) + P(2} + P(3} 
1 1 1 3 I = - + - + - = - = -. 
6 6 6 6 2 

The probability of rolling either an odd number or a number less than 4 obviously is 
not calculated by Equation 5. t 6. for that equation would yield 

P( odd number or number < 4) 
? 

~ P(odd} + P(number < 4) 

= P[(I or 3 or 5) or (1 or 2 or 3)] 

= [P( I} + P( 3) + P( 5 )] + I P( 1) + P( 2) + P( 3 )] 

= (! + ! + !) + (! + ! + !) = I 
666 666 ' 

and that would mean that we are certain (P = 1) to roll either an odd number or a 
number less than 4. which would mean that a roll of 4 or 6 is impossible! 

The invalidity of the last calculation is due to the fact that the two elements (namely 
1 and 3) that lie in both events are counted twice. The subset of elements consisting 
of rolls 1 and 3. is the intersection of the two events and its probability needs to be 
subtracted from the preceding computation so that P(l or 3) is counted once, not 
twice. Therefore, for two intersecting events, A and B, the probability of either A or 
B is 

P(A or B) = P(A) + P(B) - P(A and B). (5.18) 

In the preceding example. 

P(odd number or number < 4) 

= P(odd number) + P(number < 4) 

- P(odd number and number < 4) 

= P[(l or 3 or 5) or (lor 2 or 3)] - P(I or 3) 

= [P( 1) + P( 3) + P( 5 )] + [P( 1) + P( 2) + P( 3 )] - [P( 1) + P( 3 )] 

= (~ + ~ + ~) + (~ + ~ + ~) - (~ + ~) = ~ = ~. 
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It may be noted that Equation 5.16 is a special case of Equation 5.18, where P(A and 
B) = O. Example 5.8 demonstrates these probability calculations with a different set 
of data. 

EXAMPLE 5.8 Adding Probabilities of Intersecting Events 

A deck of playing cards is composed of 52 cards, with thirteen cards in each of 
four suits called clubs. diamonds. hearts. and spades. In each suit there is one card 
each of the following thirteen denominations: ace (A). 2. 3. 4. 5.6. 7, 8. 9. to. jack 
(1). queen (Q). king (K). What is the probability of selecting at random a diamond 
from the deck of 52 cards? 

The event in question (diamonds) is a subset with thirteen elements: therefore, 

P( diamond) = 13 = ! = 0.250. 
52 4 

What is the probability of selecting at random a king from the deck? 
The event in question (king) has four elements: therefore, 

Peking) = ~ = J.- = 0.077. 
52 13 

What is the probability of selecting at random a diamond or a king? 
The two events (diamonds and kings) intersect, with the intersection having one 

element (the king of diamonds): therefore. 

P( diamond or king) = P( diamond) + Peking) - P( diamond and king) 

=13+~_J.-
52 52 52 

= 16 = ~ = 0.308. 
52 13 

If three events are not mutually exclusive, the situation is more complex, yet 
straightforward. As seen in Figure 5.2. there may be three two-way intersections. 
shown with vertical shading (A and B: A and C: and B and C). and a three-way 

AGURE 5.2: A Venn diagram showing three intersecting sets: A. B. and C. Here there are three two-way 
intersections (vertical shading) and one three-way intersection (horizontal shading). 
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intersection. shown with horizontal shading (A and B and C). If we add the probabil­
ities of the three events. A, B, and C, as P( A) + P( B) + P( C), we are adding the 
two-way intersections twice. So, we can subtract P(A and B), P(A and C), and PCB and 
C). Also, the three-way intersection is added three times in P( A) + P( B) + P( C), 
and subtracted three times by subtracting the three two-way intersections: thus, P(A 
and B and C) must be added back into the calculation. Therefore, for three events, 
not mutually exclusive, 

P(AorBorC) = P(A) + P(B) + P(C) 
- P(A and B) - P(A and C) - P(B and C) (5.19) 

+ P(A and B and C). 

5.7 MULTIPLYING PROBABILITIES 

Iftwoor more events intersect (as A and B in Figure 5.1 and A, B, and C in Figure 5.2), 
the probability associated with the intersection is the product of the probabilities of 
the individual events. That is, 

P(A and B) = [P(A)][P(B)), 

P(A and B and C) = [P(A )][P( B)][P( C)), 
and so on. 

(5.20) 

(5.21 ) 

For example, the probability of a tossed coin landing heads is ~. If two coins are 
tossed, the probability of both coins landing heads is 

P(H,H) = [P(H))[P(H)) = (~) (~) = (1) = 0.25. 

This can be verified by examining the outcome set: 

H,H: H,T: T.H: T.T, 

where P( H, H) is one outcome out of four equally likely outcomes. The probability 
that 3 tossed coins will land heads is 

P(H,H,H) = [P(H)][P(H)][P(H») = (~) (~) (~) = (~) = 0.125. 

Note, however. that if one or more coins have already been tossed, the probability 
that the next coin toss (of the same or a different coin) will be heads is simply ~. 

5.8 CONDITIONAL PROBABILITIES 

There are occasions when our interest will be in determining a conditional probability, 
which is the probability of one event with the stipulation that another event also 
occurs. An illustration of this, using a deck of 52 playing cards (as described in 
Example 5.8), would be the probability of selecting a queen, given that the card is a 
spade. In general. a conditional probability is 

. P( A and B jointly) 
P(event A, gIven event B) = , 

P(B) 
(5.22) 

which can also be calculated as 

P( t A . B) frequency of events A and B jointly 
even , gIVen event = . 

frequency of event B 
(5.23) 
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So, the probability of randomly selecting a queen, with the specification that the card 
is a spade. is (using Equation 5.22) 

. .. P(queen of spades) 
P(queen, gIven It IS a spade) = --'-"-----'--....;. 

P(spade) 
= (1/52)/( 13/52) = 0.02/0.25 = 0.08. 

which (by Equation 5.23) would be calculated as 

P( "t . d) frequency of queen of spades queen, gIven I IS a spa e = -~-~-...!----!..--
frequency of spades 

= 1/13 = 0.8. 

Note that this conditional probability is quite different from the probability of 
selecting a spade, given that the card is a queen, for that would be (by Equation 5.23) 

P( d . .. ) frequency of queen of spades spa e, gIven It IS a queen = -~-~--'----'--
frequency of queens 

= 1/4 = 0.25. 

EXERCISES 

5.1. A person may receive a grade of either high (H), 
medium (M), or low (L) on a hearing test, and a 
grade of either good (G) or poor (P) on a sight test. 
(8) How many different outcomes are there if 

both tests are taken? 
(b) What are these outcomes? 

5.2. A menu lists three meats, four salads. and two 
desserts. In how many ways can a meal of one 
meat. one salad, and one dessert be selected? 

5.3. If an organism (e.g .• human) has 23 pairs of chro­
mosomes in each diploid cell. how many different 
gametes are possible for the individual to produce 
by assortment of chromosomes? 

5.4. In how many ways can five animal cages be 
arranged on a shelf? 

5.5. In how many ways can 12 different amino acids 
be arranged into a polypeptide chain of five amino 
acids? 

5.6. An octapeptide is known to contain four of one 
amino acid. two of another. and two of a third. How 
many different amino-acid sequences are possible? 

5.7. Students are given a list of nine books and told that 
they will be examined on the contents of five of 
them. How many combinations of five books are 
possible? 

5.S. The four human blood types below are genetic phe­
notypes that are mutually exclusive events. Of 5400 
individuals examined. the following frequency of 
each blood type is observed. What is the relative 
frequency of each blood type? 

B/ood Type Frequency 

o 2672 
A 2041 
B 486 
AB 201 

5.9. An aquarium contains the following numbers of 
tropical freshwater fishes. What is the relative fre­
quency of each species? 

Species Number 

Paracheirodon innesi. 
neon tetra 11 

Cheirodon axe/rodi. 
cardinal tetra 6 

Pterophylllll1l sea/are. 
angelfish 4 

Pterophyllum allum. 
angelfish 2 

Pterophyllllm dllmerilii. 
angelfish 2 

NannoslolnllS marginallls. 
one-lined pencil fish 2 

Nannostomus anolna/u!i 
golden pencilfish 2 



5.10. Use the data of Exercise 5.8. assuming that each 
of the 5400 has an equal opportunity of being 
encountered. 
(a) Estimate the probability of encountering a 

person with type A blood. 
(b) Estimate the probability of encountering a 

person who has either type A or type A8 
blood. 

5.11. Use the data of Exercise 5.9. assuming that each 
individual fish has the same probability of being 
encountered. 
(a) Estimate the probability of encountering an 

angelfish of the species Pterophyllllm sea/are. 
(b) Estimate the probability of encountering a 

fish belonging to the angelfish genus Ptero­
phyllllm. 

5.12. Either allele A or a may occur at a particular genetic 
locus. An offspring receives one of its alleles from 
each of its parents. If one parent possesses alleles 
A and a and the other parent possesses a and a: 
(a) What is the probability of an offspring receiv-

ing an A and an a? 
(b) What is the probability of an offspring receiv­

ing two a alleles? 
(c) What is the probability of an offspring receiv­

ing two A alleles? 

Exercises 6S 

5.13. In a deck of playing cards (see Example 5.8 for a 
description ). 
(a) What is the probability of selecting a queen of 

clubs? 
(b) What is the probability of selecting a black 

(i.e .. club or spade) queen? 
(c) What is the probability of selecting a black 

face card (i.e .. a black jack. queen, or king)? 
5.14. A cage contains six rats. two of them white (W) 

and four of them black (8); a second cage contains 
four rats. two white and two black: and a third cage 
contains five rats, three white and two black. If one 
rat is selected randomly from each cage. 
(a) What is the probability that all three rats 

selected will be white? 
(b) What is the probability that exactly two of the 

three will be white? 
(e) What is the probability of selecting at least 

two white rats? 
5.15. A group of dogs consists of three brown males. 

two brown females, four white males. four white 
females. five black males. and four black females. 
What is the probability of selecting at random 
(a) A brown female dog? 
(b) A female dog, if the dog is brown? 
(e) A brown dog. if the dog is a female? 
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Commonly. a distribution of interval- or ratio-scale data is observed to have a 
preponderance of values around the mean with progressively fewer observations 
toward the extremes of the range of values (see. e.g .. Figure \.5). If 11 is large. the 
frequency polygons of many biological data distributions are "bcll-shaped"* and look 
something like Figure 6.1. 

Figure 6.1 is a frequency curve for a normal distrilmtio17. t Not all bell-shaped curves 
are normal: alLhough biologists are unlikely to need to perform calculations with this 
equation. it can be noted that a l10rmal disrrilmliol1 is defined as one in which height 
of the curve at Xi is as expressed by the relation: 

I (X)~ 1 ~ Yi = ---e - ,-Il ~" 
(T J2ii . (6.1 ) 

The height of the curve. Yi• is referred to as the Ilormal density. It is not a frequency. for 
in a normally distributed popUlation of continuous data the frequency of occurrence 
of a measurement exaclly equal to Xi (e.g .. exactly equal to 12.5000 cm. or exactly 
equal to 12.50001 cm) is zero. Equation 6.1 contains two mathematical constants: 

*Comparing the curve's shape to that of a bell has been traced as far back as IX72 (Stigler. 199: 
4(15). 

':'The normal distribution is sometimes calleu the GIII/.Hill/l distrilJlltio/l. after [Johann] Karl 
Friedrich Gauss (1777 -IX55), a phenomenal German mathematician contributing to many fid&. 
of mathematics and for whom the unit of m<lgnctic induction ("'gauss") is named. Gauss di! .. cussed 
this uistribution in IH09. but the influential French mathematician and astronomer Pierre-Simon 
Laplace (1749-IX27) mentioned it in 1774. and it was first announced in 17.:n by mathematician 
Abraham de Moivre (1667-1754: also spelled De Moivre and Demoivre). who was born in France 
but t:mignttcd to Englanu at age 21 (after three years in prison) to escape religious persecution ns 
a Protestant (DllVid. 1902: 161-I7X: Pearson. 1924: Stigler. \9XO: Wnlker. 1934). This situation hns 
been cited as an example of "'Stigler's Law of Eponymy:' which states that "'no scientific discovery 
is named after its original discoverer" (Stigler. It)SO). The distribution was first used. by de Moivrt:. 
to approximate a binomial distribution (discussed in Section 24.1) (Stigler. 19t)t): 4(7). The adjective 
Ilormal was first used for the distribution by Charles S. Peirce in IX73. and by Wilhelm Lexis and Sir 
Francis Galton in IS77 (Stigler. I t)1}l): 40 .. -415): Karl Pcnrson recommended the routine lise of that 
term 10 avoid "'an international question of priority" although it "has the disadvantage of leauing 
people to believe thaI all other distributions of frequency are in one sense or another 'abnormar" 
(Pearson. 1l)20). 
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P.-:"T p.-21T p.-u P. p.+u p.+2u P.+3'T 

X 

FIGURE 6.1: A normal distribution. 

'IT (lowercase Greek pi)" which equals 3.14159 ... ; and e (the base of Naperian, or 
natural, logarithms),t which equals 2.71828 .... There are also two parameters (J.t and 
0'2) in the equation. Thus, for any given standard deviation, u, there are an infinite 
number of normal curves possible. depending on J.t. Figure 6.2a shows normal curves 
for u = 1 and J.t = O. 1. and 2. Likewise. for any given mean, J.t, an infinity of normal 
curves is possible, each with a different value of u. Figure 6.2b shows normal curves 
for J.t = 0 and u = 1. 1.5. and 2. 

A normal curve with J.t = 0 and u = 1 is said to be a standardized normal curve. 
Thus. for a standardized normal distribution, 

Y; = 1,.fi;e-xl/2. (6.2) 

·The lowercase Greek letter pi. 7T. denotes the ratio between the circumfercnce and the diameter 
of a circle. This symbol was advanced in 1706 by Wales-born William Jones (1675-1749). after it 
had been used for over 50 years to represent the circumference (Cajori. 192819, Vol. II: 9; Smith. 
1953: 312); but it did not gain popularity for this purpose until Swiss Leonhard Euler (1707-1783) 
began using it in 1736 instead of p (Blatner. 1997: 78; Smith. 1953: 312). According to Gullberg 
(1997: 85), Jones probably selected this symbol because it is the first letter of the Greek word 
for "periphery." (See also Section 26.1.) Pi is an "irrational number." meaning that it cannot be 
expressed as the ratio of two integers. To 20 decimal places its value is 3.14159 26535 89792 33846 
(and it may be noted that this number rounded to 10 decimal places is sufficient to obtain. from the 
diameter. the circumference of a circle as large as the earth's equator to within about a centimeter 
of accuracy). Beckmann (1977). Blatner (1997). and Dodge (1996) present the history of 7T and its 
calculation. By 2000 D.C.E., the Babylonians knew its value to within 0.02. Archimedes of Syracuse 
(287 -212 D.C.E.) was the first to present a procedure to calculate 7T to any desired accuracy. and he 
computed it accurate to the third decimal place. Many computational methods were subsequently 
developed, and 7T was determined to six decimal places of accuracy by around 500 C.E., to 20 decimal 
places by around 1600. and to 100 in 1706: tOOO decimal places were reached, using a mechanical 
calculating machine. before electronic computers joined the challenge in 1949. In the computer era. 
with advancement of machines and algorithms, one million digits were achieved in 1973. by the 
end of the 1980s there were calculations accurate to more than a billion digits. and more than one 
trillion (1.000.000.000.000) digits have now been attained. 

t e is an irrational number (as is 7T: see the preceding footnote). To 20 decimal places e is 2.71828 
18284 59045 23536. The symbol, e. for this quantity was introduced by the great Swiss mathematician 
Leonhard Euler (1707 -1783) in 1727 or 1728 and published by him in 1736 (Cajori. 1928/9. Vol. 2: 
13: Gullberg, 1997: 85). Johnson and Leeming (1990) discussed the randomness of the digits of e. 
and Maor (1994) presented a history of this number and its mathematical ramifications. In 2000. e 
was calculated to 17 billion decimal places (Adrian. 2006: 63). 
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y 

FIGURE 6.2a: Normal distribution with u = 1, varying in location with different means {JI). 

y 

-5 -4 

FIGURE 6.2b: Normal distributions with IJ. = 0, varying in spread with different standard deviations (Ir). 

6.1 PROPORTIONS OF A NORMAL DISTRIBUTION 

If a population of 1000 body weights is normally distributed and has a mean. J-L. 
of 70 kg, one-half of the population (500 weights) is larger than 70 kg and one-half 
is smaller. This is true simply because the normal distribution is symmetrical. But 
if we desire to ask what portion of the population is larger than 80 kg, we need 
to know a, the standard deviation of the population. If (J' = 10 kg, then 80 kg is 
one standard deviation larger than the mean. and the portion of the population in 
question is the shaded area in Figure 6.3a. If. however. (J' = 5 kg, then 80 kg is two 
standard deviations above J-L, and we are referring to a relatively small portion of the 
population. as shown in Figure 6.3b. 

Appendix Table B.2 enables us to determine proportions of normal distributions. 
For any Xi value from a normal population with mean J-L, and standard deviation (J', 

the value 
Z = Xi - J-L (6.3) 

tells us how many standard deviations from the mean the Xi value is located. Carrying 
out the calculation of Equation 6.3 is known as normalizing, or standardizing, Xi; and 
Z is known as a normal deviate, or a standard score.* The mean of a set of standard 
scores is 0, and the variance is 1. 

*This standard normal curve was introduced in 1899 by W. F. Sheppard (Walker. 1929: IXX). 
and the tenn normal deviate was first used. in 1907. by F. Galton (David, 1995). 



y 

Section 6.1 

40 50 flO 70 !lO 90 100 

X.in kg 

(a) 

Proportions of a Normal Distribution 69 

y 

40 50 flO 70 

X.in kg 

(h) 

FIGURE 6.3: Two normal distributions with JL = 70 kg. The shaded areas are the portions of the curves 
that lie above X = 80 kg. For distribution (a). JL = 70 kg and (J' = 10 kg; for distribution (b). JL = 70 kg 
and (J' = 5 kg. 

Table B.2 tells us what proportion of a normal distribution lies beyond a given value 
ofZ.*lfJL = 70 kg. 0' = 10 kg, and Xi = 70 kg, then Z = (70 kg -70kg)/1Okg = O. 
and by consulting Table B.2 we see that P(Xi > 70 kg) = P(Z > 0) = 0.5000. t 
That is, 0.5000 (or 50.00%) of the distribution is larger than 70 kg. To determine the 
proportion of the distribution that is greater than 80 kg in weight. Z = (80 kg -
70 kg)/1O kg = 1.andP(Xi > 80 kg) = P(Z > 1) = 0.1587 (or 15.87%). This could 
be stated as being the probability of drawing at random a measurement. Xi. greater 
than 80 kg from a population with a mean (JL) of 70 kg and a standard deviation (0') of 
10 kg. What, then, is the probability of obtaining. at random. a measurement, Xi. which 
is less than 80 kg? P( Xi > 80 kg) = 0.1587. so P( Xi < 80 kg) = 1.0000 - 0.1587 = 
0.8413: that is. if 15.87% of the population is greater than Xi. then 100% - 15.87% 
(i.e .• 84.13% of the population is less than Xi).* Example 6.1a presents calculations 
for determining proportions of a normal distribution lying between a variety of 
limits. 

Note that Table B.2 contains no negative values of Z. However, if we are concerned 
with proportions in the left half of the distribution. we are simply dealing with areas 
of the curve that are mirror images of those present in the table. This is demonstrated 
in Example 6.1b.§ 

*The first tables of areas under the normal curve were published in 1799 by Christian Kramp 
(Walker, 1929: 58). Today, some calculators and many computer programs determine normal 
probabilities (e.g., see Boomsma and Molenaar. 1994). 

tRead P( Xi > 70 kg) as "the probability of an Xi greater than 711 kg": P( Z > 0) is read as 
"the probability of a Z greater than 0." 

tThe statement that "P(Xi > 80kg) = 0.1587. therefore P(X; < 80) = l.OOOO - O.158T' 
does not take into account the case of Xi = 80 kg. But, as we are considering the distribution at 
hand to be a continuous one. the probability of Xi being exactly 80.000 '" kg (or being exactly 
any other stated value) is practically nil. so these types of probability statements offer no practical 
difficulties. 

*Some old literature avoided referring to negative Z's by expressing the quantity. Z + 5, called 
a prohit. This term was introduced in 1934 by C. I. Bliss (David. 1995). 
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EXAMPLE 6.1a Calculating Proportions of a Normal Distribution of Bone 
lengths, Where p. = 60 mm and (T = 10 mm 

y 

X. in millimeters 

1. What proportion of the population of bone lengths is larger than 66 mm? 

Z = X; - J.L = 66 mm - 60 mm = 0.60 
u 10mm 

P(X; > 66 mm) = P(Z > 0.60) = 0.2743 or 27.43% 

2. What is the probability of picking. at random from this population. a bone 
larger than 66 mm? This is simply another way of stating the quantity 
calculated in part (1). The answer is 0.2743. 

3. If there are 2000 bone lengths in this population. how many of them are 
greater than 66 mm? 

(0.2743)(2000) = 549 

4. What proportion of the population is smaller than 66 mm? 

P(X; < 66mm) = 1.0000 - P(X; > 66mm) = 1.0000 - 0.2743 = 0.7257 

5. What proportion of this population lies between 60 and 66 mm? Of the total 
population. 0.5000 is larger than 60 mm and 0.2743 is larger than 66 mm. 
Therefore. 0.5000 - 0.2743 = 0.2257 of the population lies between 60 
and 66 mm. That is. P( 60 mm < X; < 66 mm) = 0.5000 - 0.2743 == 
0.2257. 

6. What portion of the area under the normal curve lies to the right of 77.5 mm? 

Z = 77.5 mm - 60mm = 1.75 
IOmm 

P(X; > 77.5 mm) = P(Z > 1.75) = 0.0401 or4.01% 

7. If there are 2000 bone lengths in the population. how many of them are larger 
than 77.5 mm? 

(0.0401 )(2000) = 80 

8. What is the probability of selecting at random from this population a bone 
measuring between 66 and 77.5 mm in length? 

P(66 mm < Xi < 77.5 mm) = P(0.60 < Z < 1.75) = 0.2743 - 0.0401 
= 0.2342 
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EXAMPLE 6.1 b Calculating Proportions of a Normal Distribution of Su-
crose Concentrations, Where IL = 65 mg/100 ml and u = 25 mg/100 ml 

15 25 45 65 85 105 115 
X. in mgllOO ml 

1. What proportion of the population is greater than 85 mg/IOO ml? 

Z = (Xi - p.) = 85 mg/lOO ml - 65 mg/IOO ml = 0.8 
(1' 25 mg/tOO ml 

P(Xi > 85 mg/lOO ml) = P(Z > 0.8) = 0.2119 or 21.19% 

2. What proportion of the population is less than 45 mg/loo ml? 

Z = 45 mg/IOO ml - 65 mg/l00 ml = -0.80 
25 mg/IOO ml 

P(Xi < 45 mg/too ml) = P(Z < -0.80) = P(Z > 0.80) = 0.2119 

That is, the probability of selecting from this population an observation 
less than 0.80 standard deviations below the mean is equal to the probability 
of obtaining an observation greater than 0.80 standard deviations above the 
mean. 

3. What proportion of the population lies between 45 and 85 mg/IOO ml? 

P( 45 mg/ 100 ml < Xi < 85 mg/ 100 ml) = P( -0.80 < Z < 0.80) 

= 1.0000 - P(Z < -0.80 

or Z > 0.80) 

= 1.0000 - (0.2119 + 0.2119) 

= 1.0000 - 0.4238 

= 0.5762 

Using the preceding considerations of the table of normal deviates (Table B.2). we 
can obtain the following information for measurements in a normal population: 

The interval of p. ± (1' will contain 68.27% of the measurements.* 
The interval of p. ± 2(1' will contain 95.44% of the measurements. 
The interval of p. ± 2.5(1' will contain 98.76% of the measurements. 
The interval of p. ± 3(1' will contain 99.73% of the measurements. 
50% of the measurements lie within p. ± 0.67(1'. 
95% of the measurements lie within p. ± 1.96(1'. 
97.5% of the measurements lie within p. ± 2.24CT. 

*Thc symbol .. ± .. indicates "plus or minus" and was first published by William Oughtred in 
1631 (Cajori. 1928: 245). 
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99% of the measurements lie within JL ± 2.58/T. 
99.5% of the measurements lie within JL ± 2.81/T. 
99.9% of the measurements lie within JL ± 3.29/T. 

6.2 THE DISTRIBUTION OF MEANS 

If random samples of size n are drawn from a normal population. the means of 
these samples will conform to normal distribution. The distribution of means from 
a nonnormal population will not be normal but will tend to approximate a normal 
distribution as n increases in size.* Furthermore, the variance of the distribution 
of means will decrease as n increases; in fact. the variance of the population of all 
possible means of samples of size n from a population with variance /T- is 

2 /T2 
/Tx = -

n 
(6.4) 

The quantity O'~ is called the variance of the mean. A distribution of sample statistics is 
called a sampling distribution t; therefore, we are discussing the sampling distribution 
of means. 

Since O'~ has square units, its square root, O'x, will have the same units as 
the original measurements (and. therefore, the same units as the mean. JL, and 
the standard deviation, 0'). This value, /Ty, is the standard deviation of the mean. 
The standard deviation of a statistic is referred to as a standard error, thus, O'x is 
frequently called the standard error of the mean (sometimes abbreviated SEM). or 
simply the standard error (sometimes abbreviated SE)*: 

"x = J? or "X = ;.. (6.5) 

Just as Z = (Xi - JL)/O' (Equation 6.3) is a normal deviate that refers to the normal 
distribution of Xi values, 

Z = _X_-----'----JL (6.6) 
/Tx 

is a normal deviate referring to the normal distribution of means (X values). Thus. 
we can ask questions such as: What is the probability of obtaining a random sample 
of nine measurements with a mean larger than 50.0 cm from a population having a 
mean of 47.0 cm and a standard deviation of 12.0 cm? This and other examples of 
the use of normal deviates for the sampling distribution of means are presented in 
Example 6.2. 

As seen from Equation 6.5, to determine O'x one must know /T2 (or 0'). which is a 
population parameter. Because we very seldom can calculate population parameters, 
we must rely on estimating them from random samples taken from the population. 
The best estimate of O'~. the population variance of the mean. is 

2 s2 
Sy = -, 

n 

*This result is known as the cell1rallimit theorem. 

tThis term was apparently first used by Ronald Aylmer Fisher in 1922 (Miller. 2004a). 

(6.7) 

*This relationship between the standard deviation of the mean and the standard deviation 
was published by Karl Friedrich Gauss in 1809 (Walker. 1929: 23). The term .flalldarc/ error was 
introduced in 1897 by G. U. Yule (David, 1995). though in a different context (Miller. 2004a). 
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EXAMPLE 6.2 Proportions of a Sampling Distribution of Means 

1. A population of one-year-old children's chest circumferences has J.L = 47.0 cm 
and u = 12.0 cm. what is the probability of drawing from it a random sample 
of nine measurements that has a mean larger than 50.0 cm? 

12.0cm 40 ux= j9 =.cm 

Z = X - J.L = 50.0cm - 47.0cm = 0.75 
Ux 4.0cm 

P(X > 50.0cm) = P(Z > 0.75) = 0.2266 

2. What is the probability of drawing a sample of 25 measurements from the 
preceding population and finding that the mean of this sample is less than 
40.0cm? 

- 12.0cm - 24 Ux - - . cm g:s 

Z = 40.0 cm - 47.0 cm = -2.92 
2.4cm 

P(X < 40.0cm) = P(Z < -2.92) = P(Z > 2.92) = 0.0018 

3. If 500 random samples of size 25 are taken from the preceding population, 
how many of them would have means larger than 50.0 cm? 

- 12.0cm - 24 Ux - - . cm g:s 

Z = 50.0 cm - 47.0 cm = 1.25 
2.4 g 

P( X > 50.0 em) = P( Z > 1.25) = 0.1056 

Therefore, (0.1056)( 500) = 53 samples would be expected to have means 
larger than 50.0 cm. 

the sample variance of the mean. Thus. 

SJ{ ~ J?; or s-r 5n (6.8) 

is an estimate of U x and is the sample standard error of the mean. Example 6.3 
demonstrates the calculation of SX. 

The importance of the standard error in hypothesis testing and related procedures 
will be evident in Chapter 7. At this point. however. it can be noted that the magnitude 
of sx is helpful in determining the precision to which the mean and some measures of 
variability may be reported. Although different practices have been followed by many. 
we shall employ the following (Eisenhart. 1968). We shall state the standard error to 
two significant figures (e.g .• 2.7 mm in Example 6.3; see Section 1.2 for an explanation 
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of significant figures). Then the standard deviation and the mean will be reported 
with the same number of decimal places (e.g., X == 137.6 mm in Example 6.3*). The 
variance may be reported with twice the number of decimal places as the standard 
deviation. 

EXAMPLE 6.3 The Calculation of the Standard Error of the Mean, Sx 
The Following are Data for Systolic Blood Pressures, in mm of Mercury, of 
12 Chimpanzees. 

121 
125 
128 
134 
136 
138 
139 
141 
144 
145 
149 
151 

~X = 1651 mm 

~X2 = 228,111 mm2 

n = 12 

x = 1651 mm = 137.6 mm 
12 

SS = 228,111 mm2 _ (1651 mm? 

= 960.9167 mm2 
12 

S2 = 960.9167 mm2 = 87.3561 mm2 
11 

s = J87.3561 mm2 == 9.35 mm 

s 9.35 mm 27 SX = - = = . mm or 
In v'I2 

87.3561 mm2 = h.2797 mm2 = 2.7 mm 
12 

6.3 INTRODUCTION TO STATISTICAL HYPOTHESIS TESTING 

A major goal of statistical analysis is to draw inferences about a popUlation by 
examining a sample from that population. A very common example of this is the 
desire to draw conclusions about one or more popUlation means. 

We begin by making a concise statement about the population mean, a statement 
called a null hypothesis (abbreviated Ho)t because it expresses the concept of "no 
difference." For example, a null hypothesis about a population mean (f.L) might assert 
that f.L is not different from zero (i.e., f.L is equal to zero): and this would be written as 

Ho: f.L = o. 
Or, we could hypothesize that the population mean is not different from (i.e., is equal 
to) 3.5 cm, or not different from to.5 kg, in which case we would write Ho: f.L = 3.5 cm 
or Ho: f.L = to.5 kg, respectively. 

*In Example 6.3. s is written with more decimal places than the Eisenhart recommendations 
indicate because it is an intermediate. rather than a final. result: and rounding off intermediate 
computations may lead to serious rounding error. Indeed. some authors routinely report extra 
decimal places. even in final results. with the consideration that readers of the results may use them 
as intermediates in additional calculations. 

tThe term null hypothesis was first published by R. A. Fisher in 1935 (David. 1995; Miller. 
2004a; Pearson. 1947). J. Neyman and E. S. Pearson were the first to use the symbol "Ho" and the 
term alternate hypothesis. in 1928 (Pearson. 1947; Miller. 2004a, 2004c). The concept of statistical 
testing of something akin to a null hypothesis was introduced 300 years ago by John Arbuthnot 
(1667-1725). a Scottish-English physician and mathematician (Stigler. 1986: 225-226). 
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If statistical analysis concludes that it is likely that a null hypothesis is false. 
then an alternate hypothesis (abbreviated HA or Hd is assumed to be true (at 
least tentatively). One states a null hypothesis and an alternate hypothesis for each 
statistical test performed. and all possible outcomes are accounted for by this pair of 
hypotheses. So, for the preceding examples! 

Hu: J.L = O. HA : J.L * 0: 

Ho: J.L = 3.5 cm, HA : J.L * 3.5 cm; 

Ho: J.L = 10.5 kg. H A: J.L * 10.5 kg. 

It must be emphasized that statistical hypotheses are to be stated before data 
are collected to test them. To propose hypotheses after examination of data can 
invalidate a statistical test. One may. however. legitimately formulate hypotheses 
after inspecting data if a new set of data is then collected with which to test the 
hypotheses. 

(a) Statistical Testing and Probability. Statistical testing of a null hypothesis about 
J.L, the mean of a population, involves calculating X, the mean of a random sample 
from that population. As noted in Section 2.1, X is the best estimate of J.L; but it is only 
an estimate, and we can ask, What is the probability of an X at least as far from the 
hypothesized J.L as is the X in the sample. if Hu is true? Another way of visualizing this 
is to consider that, instead of obtaining one sample (of size 11) from the population, 
a large number of samples (each sample of size n) could have been taken from that 
population. We can ask what proportion of those samples would have had means at 
least as far as our single sample's mean from the J.L specified in the null hypothesis. 
This question is answered by the considerations of Section 6.2 and is demonstrated in 
Example 6.4. 

EXAMPLE 6.4 Hypothesis Testing of Ho: p. = 0 and HA: p. ::1= 0 

The variable. Xi, is the weight change of horses given an antibiotic for two weeks. 
The following measurements of Xi are those obtained from 17 horses (where a 
positive weight change signifies a weight gain and a negative weight change denotes 
a weight loss): 

2.0, 1.1. 4.4, -3.1. -1.3. 3.9, 3.2, -1.6 .3.5 
1.2. 2.5. 2.3, 1.9, 1.8, 2.9, -0.3, and -2.4 kg. 

For these 17 data, the sample mean (X) is 1.29 kg. Although the population 
variance (0'2) is typically not known, for the demonstration purpose of this exam­
ple. 0'2 is said to be 13.4621 kg2• Then the population standard error of the mean 
would be 

13.4621 kg2 = JO.7919 kg2 = 0.89 kg 
17 

*The symbol "#-" denotes "is not equal to": Ball (1935: 242) credits Leonhard Euler with its 
early. if not first, use (though it was first written with a vertical. not a diagonal. line through the 
equal sign). 
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and 

Z = X - jJ. = 1.29 kg - 0 = 1.45. 
(1){ 0.89 kg 

Using Table B.2. 

P(X ~ 1.29 kg) = P(Z ~ 1.45) = 0.0735 

and. because the distribution of Z is symmetrical. 

Therefore. 

P(X:5 -1.29 kg) = P(Z :5 -1.45) = 0.0735. 

P(X ~ 1.29 kg or X :5 -1.29 kg) 

= P(Z ~ 1.45 or Z :5 -1.45) 

= 0.0735 + 0.0735 = 0.1470. 

As 0.1470 > 0.05. do not reject Ho. 

In Example 6.4, it is desired to ask whether treating horses with an experimental 
antibiotic results in a change in body weight. The data shown (Xi values) are the 
changes in body weight of 17 horses that received the antibiotic. and the statistical 
hypotheses to be tested are Ho: jJ. = 0 kg and H A: jJ. # 0 kg. (As shown in this example. 
we can write "0" instead of "0 kg" in these hypotheses, because they are statements 
about zero weight change, and zero would have the same meaning regardless of 
whether the horses were weighed in kilograms, milligrams, pounds. ounces. etc.) 

These 17 data have a mean of X = 1.29 kg and they are considered to represent a 
random sample from a very large number of data, namely the body-weight changes 
that would result from performing this experiment with a very large number of horses. 
This large number of potential Xi'S is the statistical population. Although one almost 
never knows the actual parameters of a sampled population, for this introduction 
to statistical testing let us suppose that the variance of the population sampled for 
this example is known to be (1.2 = 13.4621 kg2. Thus, for the population of means 
that could be drawn from this population of measurements. the standard error of the 
mean is CTx = ~a2/n = ~13.4621 kg2f17 = ~0.7919 kg2 = 0.89 kg (by Equation 6.5). 
We shall further assume that the population of possible means follows a normal 
distribution, which is generally a reasonable assumption even when the individual 
data in the population are not normally distributed. 

This hypothesis test may be conceived as asking the following: 

If we have a normal population with JJ. = 0 kg. and (Tx = 0.89 kg. what is the probability 
of obtaining a random sample of 17 data with a mean (X) at least as far from 0 kg as 1.29 
kg (i.e., at least 1.29 kg larger than 0 kg or at least 1.29 kg smaller than 0 kg)? 

Section 6.2 showed that probabilities for a distribution of possible means may 
be ascertained through computations of Z (by Equation 6.6). The preceding null 
hypothesis is tested in Example 6.4, in which Z may be referred to as our test statistic 
(a computed quantity for which a probability will be determined). In this example, Z 
is calculated to be 1.45. and Appendix Table B.2 informs us that the probability of a 
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Z 2: ].45 is 0.0735.* The null hypothesis asks about the deviation of the mean in either 
direction from 0 and. as the normal distribution is symmetrical, we can also say that 
P( - Z $ 1.45) = 0.0735 and, therefore, P( IZI 2: 1.45) = 0.0735 + 0.0735 = 0.1470. 
This tells us the probability associated with a IZI (absolute value of Z) at least as 
large as the IZI obtained; and this is the probability of a Z at least as extreme as that 
obtained, if the null hypothesis is true. 

It should be noted that this probability. 

P( IZI 2: Icomputed ZI. if Ho is true). 

is 110t the same as 

P(Ho is true, if IZI 2: Icomputed ZI), 

for these are conditional probabilities, discussed in Section 5.B. In addition to the 
playing-card example in that section, suppose a null hypothesis was tested 2500 times. 
with results as in Example 6.5. By Equation 5.23. the probability of rejecting Ho, if Ho 
is true, is P(rejecting Ho, if Ho is true) = (number of rejections of true Ho's)/(number 
oftrue Ho's) = 100/2000 = 0.05. And the probability that Ho is true, if Ho is rejected, 
is P(Ho true. if Ho is rejected) = (number of rejections of true Ho's)/(number of 
rejections of Ho's) = 100/550 = O.1S. These two probabilities (0.05 and 0.18) are 
decidedly not the same, for they are probabilities based on different conditions. 

EXAMPLE 6.5 Probability of Rejecting a True Null Hypothesis 

Hypothetical outcomes of testing the same null hypothesis for 2500 random 
samples of the same size from the same population (where the samples are taken 
with replacement). 

If Ho is true If Ho is false Row total 

If Ho is rejected 
If Ho is not rejected 

Column total 

100 
190(} 

2000 

450 
50 

500 

Probability that Ho is rejected if Ho is true = 100/2000 = 0.05. 
Probability that Ho is true if Ho is rejected = 100/550 = O.lS. 

550 
1950 

2500 

In hypothesis testing, it is correct to say that the calculated probability (for example, 
using Z) is 

P(the data, given Ho is true) 

and it is not correct to say that the calculated probability is 

P(Ho is true, given the data). 

Furthermore, in reality we may not be testing Ho: JJ- = 0 kg in order to conclude 
that the population mean is exactly zero (which it probably is 110t). Rather, we 

*Note that "~ .. and "::;'" are symbols for "greater than or equal to" and "less than or equal to:' 
respectively. 
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are interested in concluding whether there is a very small difference between the 
population mean and 0 kg: and what is meant by very small will be discussed in 
Section 6.3(d). 

(b) Statistical Errors in Hypothesis Testing. It is desirable to have an objective 
criterion for drawing a conclusion about the null hypothesis in a statistical test. Even 
if Ho is true. random sampling might yield a sample mean (X) far from the population 
mean (J,L). and a large absolute value of Z would thereby be computed. However. 
such an occurrence is unlikely, and the larger the IZI, the smaller the probability that 
the sample came from a population described by Ho. Therefore. we can ask how 
small a probability (which is the same as asking how large a IZI) will be required to 
conclude that the null hypothesis is not likely to be true. The probability used as the 
criterion for rejection of Ho is called the significance level. routinely denoted by a 
(the lowercase Greek letter alpha).* As indicated below. an a of 0.05 is commonly 
employed. The value of the test statistic (in this case, Z) corresponding to a is 
termed the critical value of the test statistic. In Appendix Table B.2 it is seen that 
P( Z 2: l. 96) = 0.025: and, inasmuch as the normal distribution is symmetrical. it is 
also the case that P( Z :5 -1.96) = 0.025. Therefore. the critical value for testing the 
above Ho at the 0.05 level (i.e., 5% level) of significance is Z = 1.96 (see Figure 6.4). 
These values of Z may be denoted as ZO.025( I) = 1.96 and ZO.OS(2) = 1.96, where the 
parenthetical number indicates whether one or two tails of the normal distribution 
are being referred to. 

y 

FIGURE 6.4: A normal curve showing (with shading) the 5% of the area under the curve that is 
the rejection region for the null hypothesis of Example 6.4. This rejection region consists of 2.5% of 
the curve in the right tail (demarcated by ZO.05(2) = 1.96) and 2.5% in the left tail (delineated by 
-ZO.05(2) = -1.96). The calculated test statistic in this example. Z = 1.45. does not lie within either tail; 
so Ho is not rejected. 

So. a calculated Z greater than or equal to 1.96. or less than or equal to -1.96. 
would be reason to reject Ho. and the shaded portion of Figure 6.4 is known as the 
"rejection region." The absolute value of the test statistic in Example 6.4 (namely, 
IZ/ = 1.45) is not as large as the critical value (i.e., it is neither 2: 1.9 nor :S-1.96), so 
in this example the null hypothesis is not rejected as a statement about the sampled 
population. 

*David (1955) credits R. A. Fisher as the first to refer to "Ievel of significance:' in 1925. Fisher 
(l925b) also was the first to formally recommend use of the 5% significance level as guidance for 
drawing a conclusion about the propriety of a null hypothesis (Cowles and Davis. 1982). although 
he later argued that a fixed significance level should not be used. This use of the Greek "a" /irsl 
appears in a 1936 publication of J. Neyman and E. S. Pearson (Miller. 2004c). 
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It is very important to realize that a true null hypothesis will sometimes be rejected. 
which of course means that an error has been committed in drawing a conclusion 
about the sampled population. Moreover. this error can be expected to be committed 
with a frequency of ex. The rejection of a null hypothesis when it is in fact true is what 
is known as a Type I error (or "Type 1 error" or "alpha error" or "error of the first 
kind"). On the other hand, a statistical test will sometimes fail to detect that a HI) is 
in fact false. and an erroneous conclusion will be reached by not rejecting Ho. The 
probability of committing this kind of error (that is. not rejecting HI) when it is false) 
is represented by (3 (the lowercase Greek letter beta). This error is referred to as a 
Type II error (or "Type 2 error" or "beta error" or "error of the second kind"). The 
power of a statistical test is defined as 1 - (3: the probability of correctly rejecting 
the null hypothesis when it is false. * If HI) is not rejected, some researchers refer to it 
as having been "accepted." but most consider it better to say "not rejected." for low 
statistical power often causes failure to reject. and "accept" sounds too definitive. 
Section 6.3(c) discusses how both the Type I and the Type II errors can be reduced. 

Table 6.1 summarizes these two types of statistical errors. and Table 6.2 indicates 
their probabilities. Because. for a given n, a relatively small probability of a Type I 
error is associated with a relatively large probability of a Type II error, it is appropriate 
to ask what the acceptable combination of the two might be. By experience. and 
by convention. an ex of 0.05 is typically considered to be a "small enough chance" 
of committing a Type J error while not being so small as to result in "too large a 
chance"of a Type II error (sometimes considered to be around 20%). But the 0.05 
level of significance is not sacrosanct. I t is an arbitrary. albeit customary, threshold for 
concluding that there is significant evidence against a null hypothesis. And caution 
should be exercised in emphatically rejecting a null hypothesis if p = 0.049 and not 
rejecting if p = 0.051. for in such borderline cases further examination-and perhaps 
repetition-of the experiment would be recommended. 

TABLE 6.1: The Two Types of Errors in Hypothesis Testing 

If /-In is rejected: 
If Ho is not rejected: 

If Ho is true 

Type I error 
No error 

If Ho is false 

No error 
Type II error 

Although 0.05 has been the most widely used significance level, individual 
researchers may decide whether it is more important to keep one type of error 

*The distinction between these two fundamental kinds of statistical errors, and the concept of 
power. date back to the pioneering work, in England. of Jerzy Neyman (1894-1981: Russian-born, 
of Polish roots, emigrating as an adult to Poland and then to England, and spending the last 
half of his life in the United States) and the English statistician Egon S. Pearson (1895-1980) 
(Lehmann and Reid, 1982: Neyman and Pearson, 1928a: Pearson. 1947). They conceived of the 
two kinds of errors in 1928 (Lehmann, 1999) and named them. and they formulated the concept of 
power in 1933 (David. 1995). With some influence by W. S. Gosset ("StudenC) (Lehmann. 1999). 
their modifications (e.g., Neyman and Pearson. 1933) of the ideas of the colossal British statistician 
(1890-1962) R. A. Fisher (1925b) provide the foundations of statistical hypothesis testing. However. 
from the mid-1930s until his death. Fisher disagreed intensely with the Neyman-Pearson approach, 
and the hypothesis testing commonly used today is a fusion of the Fisher and the Neyman-Pearson 
procedures (although this hybridi7.ation of philosophies has received criticism-e.g .• by Hubbard 
and Bayarri. 2(03). Over the years there has been further controversy regarding hypothesis testing, 
especially-but not entirely-within the social sciences (e.g., Harlow, Mulaik, and Steiger, 1997). 
The most extreme critics conclude that hypothesis tests should never be used. while most others 
advise that they may be employed but only with care to avoid abuse. 
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TABLE 6.2: The Long-Term Probabilities of Outcomes in Hy!?othesis Testing_ 

II II" i~ I rtll' 

I r 1111 is n:.il:l:ll'J tr 

II 1111 is 1101 rl:kl:I~:J I - (I 

-------
- P ("pll\\l''''') 

I~ 
----------------- ------_.-_. ---

or the other low. In some instances. we may he "'illin!! to h:st with an H !!I\.'all:r 
than 11.05. An example of the later decision could be when there i ... an adverse health 
or safety implication if \\'e incorrectly fail to reject a false null hypothesis. So in 
perrormin~ an experinll'nt such as in Example 6'-+. perhaps it is deemed important 
to the continuetl usc of this antihiotic that it not cause a chan~e in hod~ \\'ei!!ht: and 
we want to have a small chance or conc\udin,!! that the dru~ causes no \\'ei~ht chan!!l' 
when such a tI~.'cision is inl'orrecl. In other words. we may be especiall~ desirous of 
a\'()iding a Type" error. In that cas~:. an cr 01'0.10 (i.e .. IO'~',,) mi~ht he ll',ed. ror that 
would del'fease the probahility of a Type II error. allhough it would wncomit:ll1tly 
increase the likelihood or incorrectly n:jectin~ a true 110 (i.e .. commillin~ a Type I 
error). In other cases. such as indicated in Section 6 .. ~(d). a (1.(15 (i.e .. )lIj,J chance of 
an incorrect rejeclion of 1111 may he fell to he unacceptahly hi~h. so a lower (I \\CHlld 
I'll.' employed in order to reduce the prnhahilit~ or a Type I error (ch.'n though Ihat 
woultl increase the likelihood of a Type" error). 

It is necessary. of course. to slate Illl' signilicance h.:vel us~,:d when cOl11munil'atin!! 
the results of a statistical tes\. Illlked. rathl'r than simply statin~ whether the null 
hypothesis is rejectetl. it is good procedure to report also the sample size. thl' 
test statistic. anti the hest estimate of the exact prohahility of the slatistic (and such 
prohahilitics arc ohtainahle from many computer pro!!rams anti Soml' calculators. and 
may he estimatetl fromtahlcs such as those in Appendix t-n Note that in lxampk h.-t 
it is reported that /I == 17. Z == 1 A:'i. and I' = ll.l..J70. in addition to expre,,"sin!! the 
conclusion that 110 is not rejected. In this \\ay. realkrs of the rese;m:h results ma~ 
draw their own conclusions. even if their choke of signilicance level is diffen:nt from 
the author·s. It is also gOOl.I practice to report rl'sults regardless of \\hether 110 is 
rejected. Bear in mind. hmvever. that the choice of tr is to he madc hefore seein!! thc 
tlata. Othe\'\\ ise there is a great risk of having the choice inlluenced hy examination of 
the data. introducing hi as instead of ohjecti\ it)' into the proceedings. The hl'st practicl' 
!!l'nerally is to decide on the null and .. lIernate hypothese .... and the si!!nilicancl' Ie\el. 
hefore coml11cncin!! with data collcction and. after performing the statisticaltl'sl. to 
l'xpress thl' prohahility that the sClmpk camc from a population for \\hkh 1111 is tnll·. 
It is conventional 10 refer to rejection of /-III at the 5% si!!nilicance 1c\'l'I as denotin~ Cl 
"statistically si!!nilicant" dilTcrence hdwecn X and the J1 hypothesiZl'd in /III (e.g .. in 
Example 6.4. hcl\wen X -- 1.-t5 kg and J1 = II kg).' Hut. in analyzing hiolo~kal data. 
we shoulll consider whether a statistically ddeeted dilTlTence relleets a hi%gimlly 
sigllil1cW/I lIiffercnce. as will he discussed in Scct ion 6.3( d). 

(c) Onc-THiIed \'crsus Two-Tuiled Tcstin~. In Section 6.3(a). Fxampk' 6.-1 tcsh 
wlwther a population mcan \\as signilicantly differcnt from a hypothesi/cd \·alue. 
\\ here the alternate hypothesis emhodies dilTcrence in l'ithcr direction (i.l' .. !!reater 
than or kss than) from that valuc. This is known as III'o-'iit!et!. or III·tHai/ct!. testin!!. 

, In n:p(lrJing. n:Sl:a.-dl rl'slllh. SIIIll\.: alilhors han: illladll:d an a"ll·ri,~ ( : ) 10 a Il"1 'lali,Iil' if.I 
i, assol:iall'd "ith a probability ::":11.05 alld t\\-(I a:-.krisk~ ( '.) if Ihl: probabilit~ j .. --(1.01. sOIlll.'lillll." 
rdl:rring 10 rl:stllt~ <II ~(UII a' ··hig.hl~ ,ignilkanl": hut 11ll.' lalkr krill i~ bl·~I<I\lljlkd. ill prdl:l'l:ll\.:l· 
10 rl.'pllrJing Ihl: Illagnillllk' or fl. 
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for we reject Ho if Z (the test statistic in this instance) is within either of the two tails 
of the normal distribution demarcated by the positive and negative critical values of 
Z (the shaded areas in Figure 6.4). 

However. there are cases where there is good scientific justification to test for a 
significant difference specifically in one direction Dilly. That is. on occasion there is 
a good reason to ask whether a population mean is significantly larger than p.o, and 
in other situations there is a good rationale for asking whether a population mean is 
significantly smaller than p.o. Statistical testing that examines difference in only one 
of the two possible directions is called one-sided, or one-tailed, testing. 

Example 6.4 involved a hypothesis test interested in whether a drug intended to 
be an antibiotic caused weight change as a side effect of its use. For such a test. Ho is 
rejected if Z (the test statistic in this instance) is within the rejection region in either 
the right-hand or the left-hand tail of the normal distribution (i.e., within the shaded 
areas of Figure 6.4 and Figure 6.5a). However, consider a similar experiment where 
the purpose of the drug is to cause weight loss. In that case. the statistical hypotheses 
would be Ho: p. ~ 0 versus H A: p. < O. That is. if the drug works as intended and there 

y 

y 

-3 -I 

Z 

(a) 

o 
Z 

(h) 

2 3 

FIGURE 6.5: (a) As in Figure 6.4, a normal curve showing (with shading) the 5% of the area under the 
curve that is the rejection region for the two-tailed null hypotheses, Ho: p. = p.o versus HA: p. 'F #l0' 
This rejection region consists of 2.5% of the curve in the right tail (demarcated by ZO.05(2) = 1.96). 
and 2.5% in the left tail (delineated by -ZO.05(2) = -1.96). (b) A normal curve showing (with shading) 
the 5% of the area under the curve that is the rejection region for the one-tailed null hypotheses. 
Ho: #l ~ p.o vs. HA: p. < p.o. This rejection region consists of 5% of the curve in the left tail (demarcated 
by ZO.05( 1) = 1.645). 
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is a mean weight loss. then Ho would be rejected; and if the drug does not work (that 
is, there is a mean weight gain or the mean weight did not change), Ho would not be 
rejected. In such a situation. the rejection region would be entirely in one tail of the 
normal distribution, namely the left-hand tail. This is an example of a one-tailed test. 
whereas Example 6.4 represents a two-tailed test. 

It can be seen in Appendix B.2 that. if one employs the 5% level of significance. the 
one-tailed Z value is 1.645. The normal distribution's tail defined by this one-tailed Z 
is the shaded area of Figure 6.5b. If the calculated Z is within this tail, Ho is rejected 
as a correct statement about the population from which this sample came. 

Figure 6.5a shows the rejection region of a normal distribution when performing 
two-tailed testing of Ho: f.L = f.LO at the 5% significance level (i.e .. the same shaded 
area as in Figure 6.4. namely 2.5% in each tail of the curve); and Figure 6.5b shows the 
rejection region for one-tailed testing of Ho: f.L ~ () versus H A: f.L < 0 at the 5% level. 
(If the experimental drug were intended to result in weight gain. not weight loss, then 
the rejection region would be in the right-hand tail instead of in the left-hand tail.) 

In general, one-tailed hypotheses about a mean are 

in which case Ho is rejected if the test statistic is in the left-hand tail of the distribution, 
or 

in which case Ho is rejected if the test statistic is in the right-hand tail of the 
distribution. * 

The one-tailed critical value (let's call it Za( I) is found in Appendix Table B.2. 
It is always smaller than the two-tailed critical value (Za(2»: for example. at the 
5% significance level Za( I) = 1.645 and Za(2) = 1.96. Thus. as will be noted in 
Section 6.3(d), for a giyen set of data a one-tailed test is more powerful than a 
two-tailed test. But it is inappropriate to employ a one-tailed test unless there is a 
scientific reason for expressing one-tailed, in preference to two-tailed, hypotheses. 
And recall that statistical hypotheses are to be declared before examining the data. 
Another example of one-tailed testing of a mean is found in Exercise 6.5(a). 

(d) What Affects Statistical Power. The power of a statistical testing procedure 
was defined in Section 6.3(b) as the probability that a test correctly rejects the null 
hypothesis when that hypothesis is a false statement about the sampled population. It 
is useful to be aware of what affects the power of a test, and later chapters will show 
how to estimate the power a test will have and to estimate how small a difference 
will be detected between a population parameter (e.g .. f.L) and a hypothesized value 
(e.g., f.Lo). 

Figure 6.6a represents a normal distribution of sample means, where each sample 
was the same size and each sample mean estimates the same population mean. This 
mean of this distribution is J.L(J, the population mean specified in the null hypothesis. 
This curve is the same as shown in Figure 6.5. As in Figure 6.5. the shaded area in 
each of the two tails denotes 0.025 of the area under the curve; so both shaded areas 
compose an area of 0.05. the probability of a Type I error (a). 

·Some authors write the first of these two pairs of hypotheses as Ho: #l = #lO and H A: #l < #lo. 
and the second pair as Ho: #l = JLO and H A: #l > #lO. ignoring mention of the tail that is not of 
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FIGURE 6.6: (a) A normal curve, such as that in Figure 6.4, where IL, the mean of the distribution, is ILO, 
the value specified in the null and alternate hypotheses. The shaded area in each of the two tails is 
0.025 of the area under the curve, so a total of 0.05 (i.e., 5%) of the curve is the shaded critical region, 
and a, the probability of a Type I error, is 0.05. (b) The same normal curve, but where IL is larger than 
ILO and the shaded area is the probability of a Type II error (P). (c) The same normal curve, but where IL 
is much larger than ILO. 

Figure 6.6b is the same normal curve, but with a population mean. /-L. different from 
(i.e., larger than) /Lo. If Ho: /L = /Lo is not a true statement about the population, yet 
we fail to reject Ho, then we have committed a Type II error, the probability of which 
is {3, indicated by the shaded area between the vertical dashed lines in Figure 6.6b. 
The power of the hypothesis test is defined as 1 - {3, which is the unshaded area 
under this curve. 

Figure 6.6c is the same depiction as in Figure 6.6b, but with a population mean, /L, 
even more different· from /-LO. An important result is that, the farther /-L is from the 
/LO specified in Ho. the smaller {3 becomes and the larger the power becomes. 

*The symbol ">" has been introduced as meaning "greater than." and "<" as meaning "less 
than," The symbols "»" and "«" mean "much greater than" and "much less than:' respectively. 
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Figure 6.7 indicates the outcome if a larger a is used. namely 10% instead of 5% 
(meaning that 5%. instead of 2.5%. of the curve is in each tail). If the probability of a 
Type I error (a) is increased, then the probability of a Type II error (13) is decreased, 
and the power of the test is increased. 

y 

(a) 

J.I.>J.I.() 

y 

(b) 

J.I.»J.l.lI 

y 

(c) 

FIGURE 6.7: (a) A normal curve, such as that in Figure 6.6, where J.I., the mean of the distribution, is J.I.(J, 

the value specified in the null and alternate hypotheses, but where the shaded area in each of the two 
tails is 0.05 of the area under the curve, so a total of 0.10 (i.e., 10%) of the curve is the shaded critical 
region, and a, the probability of a Type I error, is 0.10. (b) The same normal curve, but where J.I. is larger 
than J.l.O and the shaded area is the probability of a Type II error (f3). (c) The same normal curve, but 
where J.I. is much larger than J.l.O' 

Another important outcome is seen by examining Equations 6.5 and 6.6. With 
larger sample size (n), or with smaller variance (u2), the standard error Ux becomes 
smaller, which means that the shape of the normal distribution becomes narrower. 
Figure 6.3 shows an example of this narrowing as the variance decreases in a 
population of data, and the figures would appear similar if they were for a population 
of means. So, for a given value of a and of JL, either a smaller u 2 or a larger 11 will 
result in a smaller u x' which will result in a smaller 13 and greater power to reject Ho. 
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In some circumstances. a larger n can be used. but in other situations this would 
be difficult because of cost or effort. A smaller variance of the sampled population 
will result if the population is defined as a more homogeneous group of data. In 
Example 6.4. the experiment could have been performed using only female horses, or 
only horses of a specified age. or only hors ~s of a specified breed. Then the hypothesis 
test would be about the specified sex. age, and/or breed. and the population variance 
would probably be smaller; and this would result in a greater power of the test. 

To summarize what influences power, 

• For given a, (12. and n. power is greater for larger difference between IL and lLo. 

• For given fl. (12. and difference between IL and ILl), power is greater for larger a. 
• For given a. (12. and difference between IL and J.Lo. power is greater for larger 11. 

• For given a. n, and difference between IL and ILl), power is greater for smaller 
(12. 

• For given a. n. (1.2, and difference between IL and JLO, power is greater for 
one-tailed than for two-tailed tests (but one-tailed tests may be employed only 
when the hypotheses are appropriately one-tailed). 

(e) Summary of Statistical Hypothesis Testing. Earlier portions of Section 6.3 intro­
duced the principles and practice of testing hypotheses about population parameters. 
using sample statistics as estimates of those parameters. It is also good practice to 
report an estimate of the precision with which a parameter has been estimated, 
by expressing what are known as "confidence limits." which will be introduced in 
Section 6.4. 

To summarize the steps for testing of statistical hypotheses. 

1. State Ho and H A. using two-tailed or one-tailed hypotheses depending upon the 
objective of the data analysis. 

2. Declare the level of significance, a. to be employed. 
3. Collect the data and calculate the test statistic (Z in this chapter). 
4. Compare the test statistic to the critical value(s) of that statistic (that is. the 

value(s) delimiting the rejection region of the statistical distribution of the test 
statistic). For the testing in this chapter. the critical values are both Za(2) and 
- Za(2) for a two-tailed test and the critical value is Za( I) for a one-tailed test. 
If the calculated Z exceeds a critical value, Ho is rejected. 

5. State P. the probability of the test statistic if Ho is true. 
6. State confidence limits (two-tailed or one-tailed) for the population parameter. 

as discussed in Section 6.4. 
7. State conclusion in terms of biological or other practical significance. 

~ CONFIDENCE LIMITS 

Sections 6.3a and 6.3b discussed the distribution of all possible samples of size n from 
a population with mean IL. [t was noted that 5% of the values of Z (by Equation 6.6) 
for those sample means will be at least as large as ZO.OS(2) or no larger than -ZO.()5(2)' 
This can be expressed as 

[ X-IL 1 P -ZO.05(2) =::; (1x =::; ZO.05(2) = 95%. (6.9) 
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and this can be rearranged to read 

P[X - ZO.05(2)UX :=;; J-L :=;; X + ZO.05(2)UX] = 0.95. 

Tn general, we can say 

P[X - Za(2)Ux :=;; J-L :=;; X + Za(2)uxl = 1 - a. 

The lower confidence limit is defined as 

and the upper confidence limit is 

L2 = X + Za(2)Ux· 

The distance between LI and L2, namely 

X ± Za(2)Ux 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(where "±" is read as "plus or minus"), is called a confidence interval (sometimes 
abbreviated el). 

When referring to a confidence interval, t - a is known as the confidence level 
(or confidence coefficient or confidence probability). * 

Although X is the best estimate of J-L, it is only an estimate, and the calculation 
of a confidence interval for J-L allows us to express the precision of this estimate. 
Example 6.6 demonstrates this for the data of Example 6.4, determining the confi­
dence interval for the mean of the population from which the sample came. As the 
95% confidence limits are computed to be -0.45 kg and 3.03 kg, the 95% confidence 
interval may be expressed as P( -0.45 kg :=;; J-L :=;; 3.03 kg) = 95%. This means that, 
if all possible means of size n (n = 17 in this example) were taken from the population 
and a 95% confidence interval were calculated from each sample, 95% of those 
intervals would contain J-L. (It does not mean that there is a 95% probability that the 
confidence interval computed from the one sample in Example 6.6 includes J-L.) 

EXAMPLE 6.6 Confidence Limits for the Mean 

For the 17 data in Example 6.4, X = t .29 kg and Ux = 0.89 kg. 
We can calculate the 95% confidence limits for J-L using Equations 6.13 and 6.14 
and ZO.05(2) = 1.96: 

L[ = X - Za(2)Ux 

= 1.29 kg - (1.96)(0.89 kg) 

= 1.29 kg - 1.74 kg = -0.45 kg 

*We owe the development of confidence intervals to Jerzy Neyman. between 1928 and 1933 
(Wang. 2(00). although the concept had been enunciated a hundred years before. Neyman 
introduced the terms confidence ;llIerval and confidence coejficielll in 1934 (David. 1995). On rare 
occasion, biologists may see reference to "fiducial intervals," a concept developed by R. A. Fisher 
beginning in 1930 and identical to confidence intervals in many, but not all, situations (Pfanzagl. 
1978). 
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L2 = X + Za(2)Ux 

= 1.29 kg + (1.96)(0.89kg) 

= 1.29 kg + 1.74 kg = 3.03 kg. 

So, the 95% confidence interval could be stated as 

P( -0.45 kg =:; JL =:; 3.03 kg). 

Note that the JLO of Example 6.4 (namely 0) is included between LJ and L2, 
indicating that Ho is not rejected. 

As seen in Equation 6.15, a small Ux will result in a smaller confidence interval, 
meaning that JL is estimated more precisely when Ux is small. And, recall from 
Equation 6.5 that Ux becomes small as 11 becomes large. So. in general, a parameter 
estimate from a large sample is more precise than an estimate of the same parameter 
from a small sample. 

If. instead of a 95% confidence interval, we wished to state an interval that 
gave us 99% confidence in estimating JL, then ZO.OJ(2) (which is 2.575) would have 
been employed instead of ZO.05(2). and we would have computed LJ = 1.29 kg -
(2.575) (0.89 kg) = 1.29 kg - 2.29 = - 1.00 and L2 = 1.29 kg + (2.575) (0.89 kg) 
= 1.29 kg + 2.29 kg = 3.58 kg. It can be seen that a larger confidence level (e.g., 
99% instead of 95%) results in a larger width of the confidence interval, evincing 
the trade-off between confidence and utility. Indeed, if we increase the confidence 
to 100%, then the confidence interval would be -00 to 00, and we would have a 
statement of great confidence that was useless! Note, also, that it is a two-tailed value 
of Z (i.e., ZO.05(2» that is used in the computation of a confidence interval when we 
set confidence limits on both sides of JL. 

In summary, a narrower confidence interval will be associated with a smaller 
standard error (ux->' a larger sample size (n), or a smaller confidence coefficient 
(1 - a). 

It is recommended that a 1 - a confidence interval be reported for JL whenever 
results are presented from a hypothesis test at the a significance level. If Ho: JL = JLO 
is not rejected, then the confidence interval includes JLO (as is seen in Example 6.6, 
where JLO = 0 is between LJ and L2). 

(a) One-Tailed Confidence Limits. In the case of a one-tailed hypothesis test. it is 
appropriate to determine a one-tailed confidence interval; and, for this, a one-tailed 
critical value of Z (i.e., Za( J» is used instead of a two-tailed critical value (Z(r(2». 
For Ho: JL =:; JLO and HA: JL > JLO, the confidence limits for JL are L) = X - Za( I )ux 
and L2 = 00. For Ho: JL 2: JL() and HA: JL < JLO. the confidence limits are L) = -00 

and L2 = X + Za( J lUx. An example of a one-sided confidence interval is Exercise 
6.6(b). If a one-tailed null hypothesis is not rejected, then the associated one-tailed 
confidence interval includes JL{). 

6.5 SYMMETRY AND KURTOSIS 

Chapters 3 and 4 showed how sets of data can be described by measures of central 
tendency and measures of variability. There are additional characteristics that help 
describe data sets. and they are sometimes used when we want to know whether 
a distribution resembles a normal distribution. Two basic features of a distribution 
of measurements are its symmetry and its kurtosis. A symmetric distribution (as in 
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FIGURE 6.8: Symmetric frequency distributions. Distribution (a) is mesokurtic ("normal"), (b) is platykurtic, 
and (e) is leptokurtie. 

distributed populations have /32 = 3), some asymmetric distributions have a symmetry 
measure of 0 and some nonnormal distributions exhibit a kurtosis value of 3 (Thode, 
2002: 43). 

In practice, researchers seldom calculate these symmetry and kurtosis measures. 
When they do, however. they should be mindful that using the third and fourth 
powers of numbers can lead to very serious rounding errors, and they should employ 
computer programs that use procedures minimizing this problem. 

(c) Quantile Measures of Symmetry and Kurtosis. Denoting the ith quartile as Qi 
(as in Section 4.2), QI is the first quartile (i.e .. the 25% percentile), Q3 is the third 
quartile (the 75% percentile), and Q2 is the second quartile (the 50% percentile, 
namely the median). A quantile-based expression of skewness (Bowley, 1920: 116: 
Groeneveld and Meeden, 1984) considers the distance between Q3 and Q2 and that 
between Q2 and QI: 

Quantile skewness measure = (Q3 - Q2) - (Q2 
(Q3 - Q2) + (Q2 

= Q3 + QI - 2Q2 
Q3 - Q. 

(6.18) 

which is a measure, without units, that may range from -1, for a distribution with 
extreme left skewness; to 0, for a symmetric distribution; to I, for a distribution with 
extreme right skewness. Because Equation 6.18 measures different characteristics of 
a set of data than ./liI does, these two numerical measures can be very different (and, 
especially if the skewness is not great. one of the measures can be positive and the 
other negative). 

Instead of using quartiles QI and Q3. any other symmetric quantiles could be 
used to obtain a skewness coefficient (Groeneveld and Meeden, 1984), though the 
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numerical value of the coefficient would not be the same as that of Equation 6.18. 
For example, the 10th and 90th percentiles could replace Ql and Q3, respectively, in 
Equation 6.18, along with Q2 (the median). 

A kurtosis measure based on quantiles was proposed by Moors (1988), using 
octiles: (h. the first octile, is the L2.5th percentile; 03, the third octile, is the 37.5th 
percentile; 05 is the 62.5th percentile; and 07 is the 87.5th percentile. Also, (j2 

Ql. C'4 = Q2. and ()'6 = Q3. The measure is 

Quantile kurtosis measure = 
(07 Os) + (03 Od 

(06 (2) 

(07 - Os) + (03 - Od (6.19) = 
(Q3 Qd 

which has no units and may range from zero. for extreme platykurtosis, to 1.233, for 
mesokurtosis; to infinity, for extreme leptokurtosis. 

Quantile-based measures of symmetry and kurtosis are rarely encountered. 

6.6 ASSESSING DEPARTURES FROM NORMALITY 

It is sometimes desired to test the hypothesis that a sample came from a population 
whose members follow a normal distribution. Example 6.7 and Figure 6.9 present 
a frequency distribution of sample data, and we may desire to know whether the 
data are likely to have come from a population that had a normal distribution. 
Comprehensive examinations of statistical methods applicable to such a question 
have been reported (e.g .. by D'Agostino, 1986; Landry and Lepage, 1992; Shapiro, 
1986; and Thode, 2002), and a brief overview of some of these techniques will be 
given here. The latter author discusses about 40 methods for normality testing and 
notes (ibid.: 143-157) that the power of a testing procedure depends upon the sample 
size and the nature of the nonnormality that is to be detected (e.g., asymmetry, 
long-tailedness, short-tailedness). 
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FIGURE 6.9: The frequency polygon for the student height data in Example 6.7 (solid line) with the 
frequency curve that would be expected if the data followed a normal distribution (broken line). 
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EXAMPLE 6.7 The Heights of the First 70 Graduate Students in My Bio-
statistics Course 

Height Observed Cumulative 
(Xi) Frequency Frequency f;Xi f;X? 
(in.) (f; ) (cum.f;) (in.) (in.2) 

63 2 2 126 7.938 
64 2 4 128 8.192 
65 3 7 195 12,675 
66 5 12 330 21.780 
67 4 16 268 17.956 
68 6 22 408 27.744 
69 5 27 345 23,805 
70 8 35 560 39,200 
71 7 42 497 35,287 
72 7 49 504 36,288 
73 10 59 730 53.290 
74 6 65 444 32.856 
75 3 68 225 16.875 
76 2 70 152 11,552 

'I-f; = 'I-f;X; = 'I-f;X;2 = 

n = 70 4,912 in. 345,438 in.2 

SS='I-f;X? - 'I-(f;Xi)2 = 345,438in.2 _ (14.912in.)2 = 755.9429in.2 
Il 70 

;. = ~ = 755.9429 in.2 = 10.9557 in.2 

n - 1 69 

(a) Graphical Assessment of Normality. Many methods have been used to assess 
graphically the extent to which a frequency distribution of observed data resembles a 
normal distribution (e.g., Thode, 2002: 15-40). Recall the graphical representation of 
a normal distribution as a frequency curve. shown in Figure 6.1. A frequency polygon 
for the data in Example 6.7 is shown in Figure 6.9, and superimposed on that figure 
is a dashed curve showing what a normal distribution, with the same number of data 
(n) mean (X). and standard deviation (s), would look like. We may wish 10 ask 
whether the observed frequencies deviate significantly from the frequencies expected 
from a normally distributed sample. 

Figure 6.10 shows the data of Example 6.7 plotted as a cumulative frequency 
distribution. A cumulative frequency graph of a normal distribution will be S-shaped 
(called "sigmoid"). The graph in Figure 6.10 is somewhat sigmoid in shape, but in this 
visual presentation it is difficult to conclude whether that shape is pronounced enough 
to reflect normality. So, a different approach is desired. Note that the vertical axis 
on the left side of the graph expresses cumulative frequencies and the vertical axis 
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FIGURE 6.10: The cumulative frequency polygon of the student-height data of Example 6.7. 

on the right side displays relative frequencies (as introduced in Figure 1.9), and the 
latter may be thought of as percentiles. For instance, the sample of 70 measurements 
in Example 6.7 contains 22 data, where Xi ~ 68 inches, so 68 in. on the horizontal 
axis is associated with a cumulative frequency of 22 on the left axis and a cumulative 
relative frequency of 22/70 = 0.31 on the right axis; thus. we could say that a height 
of 68 in. is at the 31st percentile of this sample. 

Examination of the relative cumulative frequency distribution is aided greatly 
by the use of the normal probability scale, as in Figure 6.11, rather than the linear 
scale of Figure 6.10. As the latter figure shows, a given increment in Xi (on the 
abscissa, the horizontal axis) near the median is associated with a much larger 
change in relative frequency (on the ordinate, the vertical axis) than is the same 
increment in Xi at very high or very low relative frequencies. Using the normal­
probability scale on the ordinate expands the scale for high and low percentiles and 
compresses it for percentiles toward the median (which is the 50th percentile). The 
resulting cumulative frequency plot will be a straight line for a normal distribution. 
A leptokurtic distribution will appear as a sigmoid (S-shaped) curve on such a 
plot, and a platykurtic distribution will appear as a reverse S-shape. A negatively 
skewed distribution will show an upward curve, as the lower portion of an S, and a 
positively skewed distribution will manifest itself in a shape resembling the upper 
portion of an S. Figure 6.11 shows the data of Example 6.7 plotted as a cumulative 
distribution on a normal-probability scale. The curve appears to tend slightly toward 
leptokurtic. 

Graph paper with the normal-probability scale on the ordinate is available com­
mercially, and such graphs are produced by some computer software. One may also 
encounter graphs with a normal-probability scale on the abscissa and Xi on the 
ordinate. The shape of the plotted curves will then be converse of those described 
previously. 

(b) Assessing Normality Using Symmetry and Kurtosis Measures. Section 6.5 indi­
cated that a normally distributed population has symmetry and kurtosis parameters 
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FIGURE 6.11: The cumulative relative frequency distribution for the data of Example 6.7, plotted with 
the normal probability scale as the ordinate. The expected frequencies (Le., the frequencies from a 
normal distribution) would fall on the straight line shown. 

of JlJI = 0 and {32 = 3. respectively. Therefore. we can ask whether a sample of 
data came from a normal population by testing the null hypothesis Ho: ,JJJJ = 0 
(versus the alternate hypothesis, HA: ./lI1:¢: 0) and the hypothesis Ho: f32 = 3 (versus 
HA : (32 :¢: 3), as shown in Section 7.16. There are also procedures that employ the 
symmetry and kurtosis measures simultaneously. to test Ho: The sample came from 
a normally distributed population versus HA: The sample came from a population 
that is not normally distributed (Bowman and Shenton. 1975. 1986; D'Agostino and 
Pearson, 1973; Pearson, D'Agostino, and Bowman, 1977; Thode. 2002: 54-55. 283). 

Statistical testing using these symmetry and kurtosis measures. or the procedure 
of Section 6.6(d), is generally the best for assessing a distribution's departure from 
normality (Thode. 2002: 2). 

(c) Goodness-of-Fit Assessment of Normality. As will be discussed in Chapter 22. 
procedures called goodness-of-fit tests are applicable when asking whether a sample of 
data is likely to have come from a population with a specified distribution. Goodness­
of-fit procedures known as chi-square, log-likelihood, and Kolmogorov-Smirnov. or 
modifications of them. have been used to test the hypothesis of normality (e.g., Zar, 
1984: 88-93); and Thode (2002) notes that other goodness-of-fit tests. such as that of 
Kuiper (1960, which is alluded to in Section 27.18 for other purposes) may also be 
used. These methods perform poorly. however. in that they possess very low power; 
and they are not recommended for addressing hypotheses of normality (D' Agostino. 
1986; D'Agostino, Belanger. and D'Agostino, 1990; Moore. 1986; Thode, 2002: 152). 
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(d) Otber Methods of Assessing Normality. Shapiro and Wilk (1965) presented a test 
for normality involving the calculation of a statistic they called W. This computation 
requires an extensive table of constants, because a different set of n/2 constants is 
needed for each sample size, n. The authors provided a table of these constants 
and also of critical values of W. but only for n as large as 50. The power of this 
test has been shown to be excellent when testing for departures from normality 
(0' Agostino, 1986; Shapiro, Wilk. and Chen, 1968). Royston (1982a, 1982b) provided 
an approximation that extends the W test to n as large as 2000. Shapiro and 
Francia (1972) presented a modified procedure (employing a statistic they called 
W') that allows n to be as large as 99; but Pearson. D'Agostino, and Bowman 
(1977) noted errors in the published critical values. Among other modifications of 
W, Rahman and Govindarajulu (1997) offered one (with a test statistic they called 
W) declared to be applicable to any sample size, with critical values provided for n 
up to 5000. Calculation of W or its modifications is cumbersome and will most likely 
be done by computer; this test is unusual in that it involves rejection of the null 
hypothesis of normality if the test statistic is equal to or less than the one-tailed critical 
value. 

The performance of the Shapiro-Wilk test is adversely affected by the common 
situation where there are tied data (i.e., data that are identical. as occur in Example 6.7. 
where there is more than one observation at each height) (Pearson. O'Agostino, and 
Bowman, 1977), but modifications of it have addressed that problem (e.g., Royston, 
1986, 1989). Statistical testing using the Shapiro-Wilk test. or using symmetry and 
kurtosis measures (Section 6.6(b». is generally the preferred method for inquiring 
whether an underlying population is normally distributed (Thode. 2002: 2). 

EXERCISES 

6.L The following body weights were measured in 37 
animals: 

Weight (Xi) 
(kg) 

4.0 
4.3 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 

Frequency 
Vi) 
2 
3 
5 
8 
6 
5 
4 
3 
1 

(8) Calculate the symmetry measure • ../51. 
(b) Calculate the kurtosis measure. b2. 
(c) Calculate the skewness measure based on 

quantiles. 
(d) Calculate the kurtosis measure based on quan­

tiles. 

6.2. A normally distributed population of lemming 
body weights has a mean of 63.5 g and a standard 
deviation of 12.2 g. 
(8) What proportion of this popUlation is 78.0 g 

or larger? 

(b) What proportion of this popUlation is 78.0 g 
or smaller? 

(c) If there are 1000 weights in the population. 
how many of them are 78.0 g or larger? 

(d) What is the probability of choosing at random 
from this population a weight smaller than 
41.0 g? 

6.3. (a) Considering the popUlation of Exercise 6.2. 
what is the probability of selecting at random 
a body weight between 60.0 and 70.0 g? 

(b) What is the probability of a body weight 
between 50.0 and 60.0 g? 

6.4. (a) What is the standard deviation of all possible 
means of samples of size 10 which could be 
drawn from the popUlation in Exercise 6.2? 

(b) What is the probability of selecting at random 
from this population a sample of 10 weights 
that has a mean greater than 65.0 g? 

(c) What is the probability of the mean of a sample 
of to being between 60.0 and 62.0 g? 

6.5. The following 18 measurements are obtained of a 
pollutant in a body of water: to.25, 10.37. 10.66. 
10.47.10.56. 10.22, 10.44, 10.38, 10.63, 10.40. 10.39, 
10.26, 10.32, 10.35, 10.54. 10.33. 10.48. 10.68 mil­
ligrams per liter. Although we would not know this 
in practice. for the sake of this example let us say 
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we know that the standard error of the mean is 
OX = 0.24 mg/liter in the population from which 
this sample came. The legal limit of this pollutant 
is 10.00 milligrams per liter. 
(a) Test whether the mean concentration in 

this body of water exceeds the legal limit 
(Le., test Ho: p. :S 10.00 mg/L versus HA: 
IL > 10.00 mg/L). using the 5% level of signifi­
cance. 

(b) Calculate the 95% confidence interval for p.. 

6.6. The incubation time was measured for 24 alligator 
eggs. Let's say that these 24 data came from a pop­
ulation with a variance of 002 = 89.06 days2. and 
the sample mean is X = 61.4 days. 
(a) Calculate the 99% confidence limits for the 

population mean. 
(b) Calculate the 95% confidence limits for the 

popUlation mean. 
(c) Calculate the 90% confidence limits for the 

popUlation mean. 
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This chapter will continue the discussion of Section 6.3 on how to draw inferences 
ahout population parameters hy testing hypotheses about them using appropri­
ate sample statistics. It will consider hypotheses about each of several population 
parameters. including the population mean. median. variance, standard deviation. 
and coefficient of variation. The chapter will also discuss procedures (introduced 
in Section 6.4) for expressing the confidence one can have in estimating population 
parameters from sample statistics. 

7.1 TWO-TAILED HYPOTHESES CONCERNING THE MEAN 

Section 6.4 introduced the concept of statistical testing using a pair of statistical 
hypotheses, the null and alternate hypotheses. as statements that a popUlation mean 
(JL) is equal to some specified value (let's call it JLI)): 

Ho: JL = JLo: 

H;t: JL * J.L(1· 

For example. let us consider the body temperatures of 25 intertidal crabs that we 
exposed to air at 24.3' C (Example 7.1). We may wish to ask whether the mean 
body temperature of members of this species of crah is the same as the ambienl air 
temperature of 24,3"C. Therefore, 

Ho: JL = 24.3 C. and 

H;t: JL -F 24.::r c. 

97 
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where the null hypothesis states that the mean of the population of data from which 
this sample of 25 came is 24.3°C (i.e., p. is "no different from 24.3°C"), and the 
alternate hypothesis is that the population mean is not equal to (i.e .. p. is different 
from) 24.3°C. 

EXAMPLE 7.1 The Two-Tailed t Test for Difference between a Population 
Mean and a Hypothesized Population Mean 

Body temperatures (measured in <1C) of25 intertidal crabs placed in air at 24.3°C: 
25.8,24.6,26.1,22.9,25.1.27.3.24.0.24.5,23.9, 26.2, 24.3. 24.6, 23.3, 25.5, 28.1,24.8. 
23.5,26.3,25.4,25.5.23.9,27.0.24.8.22.9,25.4. 

Ho: p. = 24.3°C 

HA: p."* 24.3"'C 

a = 0.05 

11 = 25 

X = 25.03°C 

s2 = 1.80( oC)2 

1.80( ° C )2 = 0.270 C 
25 

I = X - p. = 25.03cC - 24.3°C = 0.73°C = 2.704 
Sx 0.27"C 0.27°C 

v = 24 

10.05 ( 2).24 = 2.064 

As III > 10.U5(2). 24, reject Ho and conclude that the sample of 25 body tempera­
tures came from a population whose mean is not 24.3 ° C. 

0.0] < P < 0.02 [P = 0.012]* 

In Section 6.1 (Equation 6.6), Z = (X - p.)/ux was introduced as a normal 
deviale. and it was shown how one can determine the probability of obtaining a 
sample with mean X from a population with a specified mean p.. And Section 6.3 
discussed how the normal deviate can be used to test hypotheses about a population 
mean. Note, however, that the calculation of Z requires the knowledge of UX' which 
we typically do not have. The best we can do is to calculate Sx as an estimate 
of UX. If 11 is very, very large. then Sx is a good estimate of ux, and we can be 

*Throughout the examples in this book. the exact probability of a calculated test statistic 
(such as I). as determined by computer software. is indicated in brackets. It should not be assumed 
that the many decimal places given by computer programs are all accurate (McCullough, 1998. 
1999); therefore. the book's examples will routinely express these probabilities to only two or 
three (occasionally four) decimal places. The term "software" was coined by John Wilder Tukey 
(Leonhardt. 2(00). 
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tempted to calculate Z using this estimate. However, for most biological situations n 
is insufficiently large to do this; but we can use, in place of the normal distribution (Z), 
a distribution known as t, the development of which was a major breakthrough in 
statistical methodology:* 

X-II. 
1= r-. (7.1 ) 

SX 
Because the I-testing procedure is so readily employed, we need not wonder 

whether n is large enough to use Z; and, in fact, Z is almost never used for hypothesis 
testing about means. 

As do some other distributions to be encountered among statistical methods, the I 
distribution has different shapes for different values of what is known as degrees of 
freedom (denoted by v, the lowercase Greek nu}.t For hypotheses concerning a mean, 

II=n-l. 

.".--v=x> ,- .. """ 
,', ... ,~~v = 3 

I~' ,\ v=l 
" " , I, \, I, \, 

I~ \'. 
'I \' :' \' ., ~ 

-4 -3 -2 -\ o 2 

(7.2) 

3 4 

FIGURE 7.1: The t distribution for various degrees of freedom, II. For II =- 00, the t distribution is identical 
to the normal distribution. 

Recall that n is the size of the sample (i.e., the number of data from which X has been 
calculated). The influence of II on the shape of the t distribution is shown in Figure 7.1. 

*The I statistic is also referred to as "Studenfs t' because of William Sealy Gosset (1876-1937), 
who was an English statistician with the title "brewer" in the Guinness brewery of Dublin. He used 
the pen name "Student" (under his employer's policy requiring anonymity) to publish noteworthy 
developments in statistical theory and practice, including ("Student," 1908) the introduction of 
the distribution that bears his pseudonym. (See Boland, 1984,2000; Irwin, 1978; Lehmann, 1999; 
Pearson, 1939; Pearson. Plackett. and Barnard, 1990; Zabell. 2008.) Gosset originally referred to his 
distribution as z: and, especially between 1922 and 1925, R. A. Fisher (e.g., 1925a, 1925b: 106-113, 
117 -125; 1928) helped develop its potential in statistical testing while modifying it; Gosset and 
Fisher then called the modification "I" (Eisenhart, 1979). Gosset was a modest man. but he was 
referred to as "one of the most original minds in contemporary science" by Fisher (1939a), himself 
one of the most insightful and influential statisticians of all time. From his first discussions of the I 
distribution, Gosset was aware that it was strictly applicable only if sampling normally distributed 
popUlations, though he surmised that only large deviations from normality would invalidate the use 
of I (Lehmann. 1999). 

tIn early writings of the I distribution (during the 1920s and 1930s), the symbol n or f was used 
for degrees of freedom. This was often confusing because these letters had commonly been used to 
denote other quantities in statistics so Maurice G. Kendall (1943: 292) recommended II. 
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This distribution is leptokurtic (see Section 6.5), having a greater concentration of 
values around the mean and in the tails than does a normal distribution; but as n 
(and, therefore, /I) increases, the I distribution tends to resemble a normal distribution 
more closely, and for /I = 00 (i.e .. for an infinitely large sample*), the t and normal 
distributions are identical; that is, la.oo = Za. 

The mean of the sample of 25 data (body temperatures) shown in Example 7.1 is 
25.03 0 C. and the sample variance is 1.80( 0 C)2. These statistics are estimates of the 
mean and variance of the population from which this sample came. However. this is 
only one of a very large number of samples of size 25 that could have been taken at 
random from the population. The distribution of the means of all possible samples 
with n = 25 is the t distribution for /I = 24, which is represented by the curve of 
Figure 7.2. In this figure, the mean of the I distribution (i.e., t = 0) represents the mean 
hypothesized in Ho (i.e., p. = p.o = 24.3° C). for, by Equation 7.1, t = 0 when X = p.. 
The shaded areas in this figure represent the extreme 5% of the total area under the 
curve (2.5% in each tail). Thus. an X so far from p. that it lies in either of the shaded 
areas has a probability of less than 5% of occurring by chance alone, and we assume 
that it occurred because Ho is. in fact, false. As explained in Section 6.3 regarding the 
Z distribution, because an extreme t value in either direction from p. will cause us to 
reject Ho, we are said to be considering a "two-tailed" (or "two-sided") test. 

~ . . ;;; 
c .. 
C 

-) 

-2.1164 2.064 

FIGURE 7.2: The t distribution for I' = 24, showing the critical region (shaded area) for a two-tailed test 
using a = 0.05. (The critical value of t is 2.064.) 

For /I = 24, we can consult Appendix Table B.3 to find the following two-tailed 
probabilities (denoted as "a(2 )") of various values of t: 

II a(2): 0.50 0.20 0.10 0.05 0.02 0.01 

24 0.685 1.318 1.711 2.064 2.492 2.797 

Thus. for example. for a two-tailed a of 0.05, the shaded areas of the curve begin at 
2.064 t units on either side of p.. Therefore. we can state: 

P( It I ~ 2.064) = 0.05. 

That is, 2.064 and - 2.064 are the critical values of t; and if t (calculated from 
Equation 7.1) is equal to or greater than 2.064. or is equal to or less than -2.064, 
that will be considered reasonable cause to reject Ho and consider H A to be a true 

*The modern symbol for infinity (00) was introduced in 1655 by inHuential English mathematician 
John Wallis (1616-1703) (Cajori. 1928/9. Vol. 2: 44), but it did not appear again in print until a 
work by Jacob Bernoulli was published posthumously in 1713 by his nephcw Nikolaus Bernoulli 
(Gullberg. 1997: 30). 
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statement. That portion of the I distribution beyond the critical values (i.e., the shaded 
areas in the figure) is called the crilical region.* or rejection region. For the sample of 
25 body temperatures (see Example 7.1). I = 2.704. As 2.704 lies within the critical 
region (i.e .. 2.704 > 2.064). Ho is rejected. and we conclude that the mean body 
temperature of crabs under the conditions of our experiment is not 24.3°C. 

To summarize. the hypotheses for the two-tailed test are 

Ho: J.L = J.LO and H A: J.L "* ILl)' 

where J.LO denotes the hypothesized value to which we are comparing the population 
mean. (In the above example. J.LO = 24.3°C.) The test statistic is calculated by 
Equation 7.1. and if its absolute value is larger than the two-tailed critical value of I 
from Appendix Table B.3, we reject Ho and assume HA to be true. The critical value 
of I can be abbreviated as la(2). '" where a( 2) refers to the two-tailed probability of a. 
Thus. for the preceding example. we could write 10.05(2).24 = 2.064. In general, for a 
two-tailed I test. 

if III ~ 1«(2).", then reject Ho. 

Example 7.1 presents the computations for the analysis of the crab data. A t of 
2.704 is calculated, which for 24 degrees of freedom lies between the tabled critical 
values of IU.02(2).24 == 2.492 and 10.01(2).24 == 2.797. Therefore. if the null hypothesis. 
Ho, is a true statement about the population we sampled, the probability of X being at 
least this far from J.L is between 0.01 and 0.02; that is, 0.01 < P( III ~ 2.704) < 0.02.t 
As this probability is Jess than 0.05, we reject Ho and declare it is not a true statement. 
For a consideration of the types of errors involved in rejecting or accepting the null 
hypothesis, refer to Section 6.4. 

Frequently, the hypothesized value in the null and alternate hypotheses is zero. For 
example. the weights of twelve rats might be measured before and after the animals 
are placed on a regimen of forced exercise for one week. The change in weight of 
the animals (i.e .. weight after minus weight before) could be recorded, and it might 
have been found that the mean weight change was -0.65 g (i.e .. the mean weight 
change is a 0.65 g weight loss). If we wished to infer whether such exercise causes any 
significant change in rat weight, we could state Ho: J.L == 0 and HA: J.L "* 0; Example 7.2 
summarizes the I test for this Ho and HA . This test is two tailed, for a large X - J.L 
difference in either direction will constitute grounds for rejecting the veracity of Ho.t 

EXAMPLE 7.2 A Two-Tailed Test for Significant Difference between a 
Population Mean and a Hypothesized Population Mean of Zero 

Weight change of twelve rats after being subjected to a regimen of forced exercise. 
Each weight change (in g) is the weight after exercise minus the weight before. 

1.7 Ho: J.L == 0 
0.7 HA: J.L "* 0 

-0.4 a = 0.05 

·David (1995) traces the first use of this term to J. Neyman and E. S. Pearson in 1933. 
tSome calculators and many computer programs have the capability of determining the 

probability of a given r (e.g .. see Boomsma and Molenaar. 1994). For the present example. we would 
thereby find that P(Jrl ~ 2.7(4) = 0.012. 

*Data that result from the differences between pairs of data (such as measurements before and 
after an experimental treatment) are discussed further in Chapter 9. 
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-1.8 
0.2 
0.9 

-1.2 
-0.9 
-1.8 
-1.4 
-1.8 
-2.0 

n = 12 
X = -0.65 g 
s2 = 1.5682 g2 

1.5682 g2 = 0.36 Sx = 12 g 

t = X -p. = -0.65 g = -1.81 
!ix 0.36 g 

v=Il-1=11 

to.OS(2).I1 = 2.201 

Since III < 10.05(2).11' do not reject Ho. 

0.05 < P < 0.10 [P = 0.098] 

Therefore. we conclude that the exercise does not cause a weight change in the 
population from which this sample came. 

It should be kept in mind that concluding statistical significance is not the same 
as determining biological significance. In Example 7.1, statistical significance was 
achieved for a difference of 0.73°C between the mean crab body temperature 
(25.03° C) and the air temperature (24.3° C). The statistical question posed is whether 
that magnitude of difference is likely to occur by chance if the nun hypothesis of no 
difference is true. The answer is that it is unlikely (there is only a 0.012 probability) 
and. therefore, we conclude that Ho is not true. Now the biological question is whether 
a difference of 0.73"C is of significance (with respect to the crabs' physiology, to 
their ecology. or otherwise). If the sample of body temperatures had a smaller 
standard error. sX' an even smaller difference would have been declared statistically 
significant. But is a difference of, say, 0.1 c, Cor 0.01 ° C of biological importance (even 
if it is statistically significant)? In Example 7.2, the mean weight change, 0.36 g, was 
determined not to be significant statistically. But if the sample mean weight change 
had been 0.8 g (and the standard error had been the same), t would have been 
calculated to be 2.222 and Ho would have been rejected. The statistical conclusion 
would have been that the exercise regime does result in weight change in rats. but 
the biological question would then be whether a weight change as small as 0.8 g has 
significance biologically. Thus, assertion of statistical difference should routinely be 
followed by an assessment of the significance of that difference to the objects of the 
study (in these examples. to the crabs or to the rats). 

(a) Assumptions. The theoretical basis of t testing assumes that sample data came 
from a normal population. assuring that the mean at hand came from a normal 
distribution of means. Fortunately, the t test is robust,* meaning that its validity is 
not seriously affected by moderate deviations from this underlying assumption. The 
test also assumes-as other statistical tests typically do-that the data are a random 
sample (see Section 2.3). 

The adverse effect of nonnormality is that the probability of a Type I error 
differs substantially from the stated a. Various studies (e.g .. Cicchitelli. 1989; Pearson 
and Please, 1975: and Ractliffe. 1968) have shown that the detrimental effect of 
nonnormality is greater for smaller a but less for larger n, that there is little effect if 

*Thc term robustness was introduced by G. E. P. Box in 1953 (David. 191)5). 
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the distribution is symmetrical, and that for asymmetric distributions the effect is less 
with strong leptokurtosis than with platykurtosis or mesokurtosis; and the undesirable 
effect of nonnormality is much less for two-tailed testing than for one-tailed testing 
(Section 7.2). 

It is important to appreciate that a sample used in statistical testing such as that 
discussed here must consist of truly replicated data. where a replicale* is defined 
as the smallest experimental unit to which a treatment is independently applied. In 
Example 7.1, we desired to draw conclusions about a population of measurements 
representing a large number of animals (Le .. crabs). Therefore. the sample must 
consist of measurements (i.e .. body temperatures) from n (i.e .. 25) animals; it 
would nol be valid to obtain 25 body temperatures from a single animal. And. 
in Example 7.2. 12 individual rats must be used: it would nol be valid to employ 
data obtained from subjecting the same animal to the experiment 12 times. Such 
invalid attempts at replication are discussed by Hurlbert (1984), who named them 
pseudoreplicalion. 

7.2 ONE-TAILED HYPOTHESES CONCERNING THE MEAN 

In Section 7.1, we spoke of the hypotheses Ho: J.L = J.LO and HA: J.L "* J.LO. because we 
were willing to consider a large deviation of X in either direction from J.L<) as grounds 
for rejecting Ho. However, in some instances. our interest lies only in whether X is 
significantly larger (or significantly smaller) than J.LO. and this is termed a "one-tailed" 
(or "one-sided") test situation. For example. we might be testing a drug hypothesized 
to cause weight reduction in humans. The investigator is interested only in whether 
a weight loss occurs after the drug is taken. (In Example 7.2, using a two-sided test. 
we were interested in determining whether either weight loss or weight gain had 
occurred.) It is important to appreciate that the decision whether to test one-tailed 
or two-tailed hypotheses must be based on the scientific question being addressed. 
before data are collected. 

In the present example. if there is either weight gain or no weight change. the 
drug will be considered a failure. Therefore. for this one-sided test. we should state 
Ho: J.L 2: 0 and HA: J.L < O. Here. the null hypothesis states that there is no mean 
weight loss (i.e .. the mean weight change is greater than or equal to zero). and the 
alternate hypothesis states that there is a mean weight loss (i.e., the mean weight 
change is less than zero). By examining the alternate hypothesis, HA. we see that Ho 
will be rejected if I is in the left-hand critical region of the (distribution. In general, 

for H A: J.L < J.LO. 

if I :5 - la( I ) .• " then reject Ho. t 

Example 7.3 summarizes such a set of 12 weight change data tested against this pair 
of hypotheses. From Appendix Table 8.3 we find that to.05( I ).11 = 1.796, and the 
critical region for this test is shown in Figure 7.3. From this figure, and by examining 
Appendix Table B.3, we see that ta( I ) .• ' = 12a(2).1' or la(2).v = tal2( I ).v: that is, for 
example. the critical value of I for a one-sided test at a = 0.05 is the same as the 
critical value of I for a two-sided test at a = 0.10. 

·The term repliCllte, in the context of experimental design. was introduced by R. A. Fisher in 
1926 (Miller. 2004a). 

'!'For one-tailed testing of this Ho. prohahilities of t up to 0.25 are indicated in Appendix 
Tahle B.3. If ( = n. then P = 1).50; sO if -tn.2.'1( I ) .• ' < ( < O. then 0.25 < P < 0.511; and if ( > O. 
then P > 0.50. 
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EXAMPLE 7.3 
HA: II- < 0 

A One-Tailed t Test for the Hypotheses Ho: II- i!: 0 and 

The data are weight changes of humans, tabulated after administration of a drug 
proposed to result in weight loss. Each weight change (in kg) is the weight after 
minus the weight before drug administration. 

0.2 
-0.5 
-1.3 
-1.6 
-0.7 

0.4 
-0.1 

0.0 
-0.6 
-1.1 
-1.2 
-0.8 

n = 12 
X = -0.61 kg 

S2 = 0.4008 kg2 

0.4008 kg2 = 0.18 k 
12 g 

1= x-p. = -0.61 kg = -3.389 
Sx 0.18 kg 

v=n-l=l1 

IO.OS( 1 ).11 = 1.796. 
If t ~ - to.OS( I ). II, reject Ho. 
Conclusion: reject Ho. 

0.0025 < P(I ~ -3.389) < 0.005 [P = 0.0030] 

We conclude that the drug does cause weight loss. 

FIGURE 7.3: The distribution of t for I' = 11, showing the critical region (shaded area) for a one-tailed 
test using a = 0.05. (The critical value of t is -1.796.) 

If we are interested in whether X is significantly greater than some value, /LO, the 
hypotheses for the one-tailed test are Ho: IL ~ ILl) and HA: IL > J.t(). For example. 
a drug manufacturer might advertise that a product dissolves completely in gastric 
juice within 45 sec. The hypotheses appropriate for testing this claim are Ho: IL ~ 45 
sec and HA: IL > 45 sec, because we are not particularly interested in the possibility 
that the product dissolves faster than is claimed. but we wish to determine whether 
its dissolving time is longer than advertised. Thus. the rejection region would be 
in the right-hand tail. rather than in the left-hand tail (the latter being the case in 
Example 7.3). The details of such a test are shown in Example 7.4. In general. 

for HA: IL > J.tO. 
if t ~ la( I ).P' then reject Ho. * 

* For this HI). if t = O. then P = 0.50: therefore. if 0 < t < to.2S( I ).1" then 0.25 < P < 0.50. 
and if t < O. then P > 0.50. 
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EXAMPLE 7.4 The One-Tailed t Test for the Hypotheses Ho: p. ~ 45 sec 
and HA: p. > 45 sec 

Dissolving times (in sec) of a drug in gastric juice: 42.7,43.4,44.6,45.1,45.6,45.9, 
46.8,47.6. 

Ho: JL::5 45 sec 
HA : JL > 45 sec 

a = 0.05 
n=8 
X = 45.21 sec 
SS = 18.8288 sec2 

s2 = 2.6898 sec2 

Sx = 0.58 sec 

I = 45.21 sec - 45 sec = 0.36 
0.58 sec 

" = 7 
lo.oS( I ).7 = 1.895 

If 1 ~ to.OS( 1).7, reject Ho. 
Conclusion: do not reject Ho. 

P(I ~ 0.36) > 0.25 [P = 0.36] 

We conclude that the mean dissolving time is not greater than 45 sec. 

7.3 CONFIDENCE LIMITS FOR THE POPULATION MEAN 

When Section 7.1 defined 1 = (X - JL)/SX, it was explained that 5% of all possible 
means from a normally distributed population with mean JL will yield 1 values that are 
either larger than to.OS(2). v or smaller than - 10.05(2). v; that is, It I ~ 10.05(2). v for 5% of 
the means. This connotes that 95% of all 1 values obtainable lie between the limits of 
-to.05(2).v and to.05(2).v; this may be expressed as 

P [-to.05(2).V ::5 X - JL ::5 to.05(2).V] = 0.95. 
Sx 

(7.3) 

It follows from this that 

P[X - lo.05(2).v Sx S JL S X + to.05(2).v sx] = 0.95. (7.4) 

The value of the population mean. JL. is not known. but we estimate it as X. and 
if we apply Equation 7.4 to many samples from this population, for 95% of the 
samples the interval between X - to.05(2)."SX and X + to.05(2).vSX will include JL. As 
introduced in Section 6.4. this interval is called the confidence interval (abbreviated CI) 
for JL. 

In general, the confidence interval for JL can be stated as 

P[X - ta(2).v Sx ::5 JL ::5 X + ta(2)." sx] = 1 - a. (7.5) 

As defined in Section 6.4, X - ta (2).v Sx is called the lower confidence limit 
(abbreviated LI); and X + la(2)." Sx is the upper confidence limil (abbreviated L2); 
and the two confidence limits can be stated as 

X ± ta (2).v Sx (7.6) 

(reading "±" to be "plus or minus"). In expressing a confidence interval, we 
call the quantity 1 - a (namely. 1 - 0.05 = 0.95 in the present example) 
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the confidence level (or the confidence coefficient. or the confidence prohabil­
ity)! 

Although X is the hest estimate of /-L. it is only an estimate (and not necessarily 
a very good one). and the calculation of the confidence interval for /-L provides an 
expression of the precision of the estimate. Example 7.5. part (a). refers to the data 
of Example 7.1 and demonstrates the determination of the 95% confidence interval 
for the mean of the population from which the sample came. As the 95% confidence 
limits are computed to be LI = 24.47'-'C and L2 = 25.59°C, the 95% confidence 
interval may be expressed as P(24.47"C $ /-L $ 25.59~C). The meaning of this kind of 
statement is commonly expressed in nonprobahilistic terms as having 95% confidence 
that the interval of 24.4r C to 25.59° C contains /-L. This does no( mean that there 
is a 95% prohability that the interval constructed from this one sample contains the 
population mean, /-L; but it does mean that 95% of the confidence limits computed for 
many independent random samples would bracket /-L (or. this could be stated as the 
probahility that the confidence interval from a future sample would contain /-L). And, 
if the J,Li1 in Hu and HA is within the confidence interval. then Ho will not he rejected. 

EXAMPLE 7.5 Computation of Confidence Intervals and Confidence Lim-
its for the Mean, Using the Data of Example 7.1 

(a) At the 95% confidence level: 
X = 25.03"C 
Sx = O.27"C 

to.05(2).24 = 2.064 
" = 24 

95% confidence interval = 

= 

= 

95% confidence limits: LI 

L2 = 

(b) At the 99% confidence level: 

(o.ot (2).24 = 2.797 

99% confidence interval = 

= 

= 

99% confidence limits: L 1 

L2 = 

X ± to.05( 2).24 Sx 
25.03°C ± (2.064 )(O.27"C) 

25.03"C ± O.56'·C 

25.03°C - O.56 c C = 24.47'T 

25.03°C + O.56"C = 25.59°C 

X ± to.III(2).24 Sx 
25.03° ± (2.797)(O.27"C) 

25.03°C ± O.76°C 

25.03°C - O.76°C = 24.2rC 

25.03°C + O.76°C = 25.79°C 

In both parts (a) and (b), the hypothesized value. J,Li1 = 24.3' C in Example 7.1, 
lies outside the confidence intervals. This indicates that Ho would be rejected using 
either the 5% or the 1 % level of significance. 

·We owe the development of confidence intervals to Jerzy Neyman. between 1928 and 1933 
(Wang. 2000). although the concept had been enunciated a hundred years before. Neyman 
introduced the terms confidence interval and l'Ollfidence coefficient in 1934 (David. 19(5). On rare 
occasion. the biologist may see reference to "fiducial intervals." a concept developed by R. A. Fisher 
beginning in 1930 and identical to confidence intervals in some. but not all. situations (Pfanzagl, 
1(78). 
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The smaller sx is, the smaller will be the confidence interval. meaning that /.1. 
is estimated more precisely when "'x is small. Also, it can be observed from the 
calculation of .'ix (see Equation 6.8) that a large 11 will result in a small 5X and, 
therefore. a narrower confidence interval. As introduced in Section 6.4, a parameter 
estimate from a large sample is generally more precise that an estimate of the same 
parameter from a small sample. 

Setting confidence limits around /.1. has the same underlying assumptions as the 
testing of hypotheses about /.1. (Section 7.1a), and violating those assumptions can 
invalidate the stated level of confidence (1 - ex). 

If. instead of a 95% confidence interval. it is desired to state a higher level of 
confidence, say 99%. that LI and L2 encompass the population mean. then to.OI( 1 ).24 
rather than to.OI(2).24 would be employed. From Appendix Table B.3 we find that 
10.01(1).24 = 2.797, so the 99% confidence interval would be calculated as shown in 
Example 7.5, part (b). where it is determined that P( 24.27or :5 /.1. :5 25. 79°C) = 0.99. 

(a) One-Tailed Confidence Limits. As introduced in Section 6.4(a), one-tailed 
confidence intervals are appropriate in situations that warrant one-tailed hypothesis 
tests. Such a confidence interval employs a one-tailed critical value of I (i.e., la( I). ") 
instead of a two-tailed critical value (lu(2), v). For H(): /.1. :5 /.1.0 and HA : /.1. > /.1.{)' the 
confidence limits for /.1. are L 1 = X - la( 1 ). II 5X and L2 = 00; and for Ho: /.1. ~ /.1.0 

andHA:/.1. < 1.L(.I,theconfidence limits are LI = -00 andL2 = X + tu(I).IISX.For 

the situation in Example 7.4, in which Ho: /.1.:5 45 sec and HA : /.1. > 45 sec, L, would 
be 45.21 sec - (1.895)(0.58 sec) = 45.21 sec - 1.10 sec = 44.11 and L2 = 00. And the 
hypothesized /.l.O (45 sec) lies within the confidence interval, indicating that the null 
hypothesis is not rejected. 

(b) Prediction Limits. While confidence limits express the precision with which a 
population characteristic is estimated, we can also indicate the precision with which 
future observations from this population can be predicted. 

After calculating X and s2 from a random sample of 11 data from a popUlation, 
we can ask what the mean would be from an additional random sample, of an 
additional m data. from the same population. The best estimate of the mean of those 
m additional data would be X. and the precision of that estimate may be expressed 
by this two-tailed prediction inlerval (abbreviated PI): 

X ± l,r(2).I' 
52 s2 

+ -
m It 

(7.7) 

where v = It - 1 (Hahn and Meeker. ]991: 61-62). If the desire is to predict the 
value of one additional datum from that popUlation (i.e .. m = 1). then Equation 7.7 
becomes 

-~ 
X ± tU (2)."V s- + -;;. (7.8) 

The prediction interval will be wider than the confidence interval and will approach 
the confidence interval as m becomes very large. The use of Equations 7.7 and 7.8 is 
demonstrated in Example 7.6. 

One-tailed prediction intervals are not commonly obtained but are presented 
in Hahn and Meeker (1991: 63), who also consider another kind of interval: the 
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tolerance interval, which may be calculated to contain at least a specified proportion 
(e.g., a specified percentile) of the sampled population; and in Patel (1989), who 
also discusses simultaneous prediction intervals of means from more than one 
future sample. The procedure is very much like that of Section 7.3a. If the desire 
is to obtain only a lower prediction limit, Ll (while L2 is considered to be 00), 
then the first portion of Equation 7.7 (or 7.8) would be modified to be X -
tu( J ).p (i.e., the one-tailed t would be used); and if the intent is to express only 
an upper prediction limit, L2 (while regarding LJ to be -00), then we would 
use X + la( J ).p. As an example, Example 7.6 might have asked what the highest 
mean body temperature is that would be predicted, with probability a, from an 
additional sample. This would involve calculating L2 as indicated above, while 
L( = -00. 

EXAMPLE 7.6 Prediction Limits for Additional Sampling from the Popu-
lation Sampled in Example 7.1 

From Example 7. J, which is a sample of 25 crab body temperatures, 

n = 25, X = 25.03°C, and s2 = 1.80( vC)2. 

(a) If we intend to collect 8 additional crab body temperatures from the same 
population from which the 25 data in Example 7.1 came, then (by Equation 7.7) we 
can be 95% confident that the mean of those 8 data will be within this prediction 
interval: 

1.80( "C)2 1.80(,'C)2 
25.03~C ± to.OS(2).24 8 + 2 

= 25.03°C ± 2.064(O.545°C) 

= 25.03:)C ± 1.12°C. 

Therefore, the 95% prediction limits for the predicted mean of these additional 
data are L\ = 23.9PC and L2 = 26.15°C. 

(b) rf we intend to collect 1 additional crab body temperature from the same 
population from which the 25 data in Example 7.1 came, then (by Equation 7.8) 
we can he 95% confident that the additional datum will be within this prediction 
interval: 

25.03°C ± 10.05(2).24 

= 25.03°C ± 2.064( 1.368"C) 

= 25.03°C ± 2.82°C. 

Therefore, the 95% prediction limits for this predicted datum are LJ = 22.21 "c 
and L2 = 27.85"C. 

7.4 REPORTING VARIABILITY AROUND THE MEAN 

It is very important to provide the reader of a research paper with information 
concerning the variability of the data reported. But authors of such papers are often 
unsure of appropriate ways of doing so, and not infrequently do so improperly. 
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If we wish to describe the population that has been sampled, then the sample 
mean (X) and the standard deviation (s) may be reported. The range might also 
be reported, but in general it should not be stated without being accompanied by 
another measure of variability, such as s. Such statistics are frequently presented as 
in Table 7.1 or 7.2. 

TABLE 7.1: Tail Lengths (in mm) of Field Mice from Different Localities 

X±SD 
Location 11 (range in parentheses) 

Bedford. Indiana 18 56.22 ± 1.33 
(44.8 to 68.9) 

Rochester, Minnesota 12 59.61 ± 0.82 
(43.9 to 69.8) 

Fairfield, Iowa 16 60.20 ± 0.92 
(52.4 to 69.2) 

Pratt. Kansas 16 53.93 ± 1.24 
(46.1 to 63.6) 

Mount Pleasant. Michigan 13 55.85 ± 0.90 
(46.7 to 64.8) 

TABLE 7.2: Evaporative Water Loss of a Small Mammal at Various Air Temperatures. Sample 
Statistics Are Mean ± Standard Deviation, with Range in Parentheses 

Air Temperature eq 
16.2 24.8 30.7 36.8 40.9 

Sample size 10 13 10 8 9 
Evaporativewater 0.611 ±0.164 0.643±O.l94 0.890±O.212 1.981 ±0.230 3.762±0.641 

loss (mg/g/hr) (0.49 to 0.88) (0.38 to 1.13) (0.64 to \.39) (1.50 to 2.36) (3.16 to 5.35) 

If it is the author's intention to provide the reader with a statement about the 
precision of estimation of the population mean, the use of the standard error (sx) is 
appropriate. A typical presentation is shown in Table 7.3a. This table might instead 
be set up to show confidence intervals, rather than standard errors, as shown in 
Table 7.3b. The standard error is always smaller than the standard deviation. But this 
is not a reason to report the former in preference to the latter. The determination 
should be made on the basis of whether the desire is to describe variability within the 
popUlation or precision of estimating the population mean. 

There are three very important points to note about Tables 7.1,7.2, 7.3a, and 7.3b. 
First, n should be stated somewhere in the table, either in the caption or in the body 
of the table. (Thus, the reader has the needed information to convert from SD to SE 
or from SE to SD, if so desired.) One should always state n when presenting sample 
statistics (X, s, sx, range, etc.), and if a tabular presentation is prepared, it is very 
good practice to include n somewhere in the table, even if it is mentioned elsewhere 
in the paper. 

Second, the measure of variability is clearly indicated. Not infrequently, an author 
will state something such as "the mean is 54.2 ± 2.7 g," with no explanation of what 
"± 2.7" denotes. This renders the statement worthless to the reader, because "± 2.1" 
will be assumed by some to indicate ± SD, by others to indicate ± SE, by others to 
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TABLE 7.3a: Enzyme Activities in the Muscle of Various 
Animals. Data Are X ± SE, with n in Parentheses 

Animal 

Mouse 
Frog 
Trout 
Crayfish 

Enzyme Activity 
(#Lmole/min/g of tissue) 

Isomerase Transketolase 

0.76 ± 0.09 (4) 0.39 ± 0.04 (4) 
1.53 ± 0.08 (4) 0.18 ± 0.02 (4) 
1.06 ± 0.12 (4) 0.24 ± 0.04 (4) 
4.22 ± 0.30 (4) 0.26 ± 0.05 (4) 

TABLE 7.3b: Enzyme Activities in the Muscle of Various 
Animals. Data Are X ± 95% Confidence Limits 

Animal n 

Mouse 4 
Frog 4 
Trout 4 
Crayfish 4 

Enzyme Activity 
(#Lmole/min/g of tissue) 

Isomerase Transketolase 

0.76 ± 0.28 0.39 ± 0.13 
1.53 ± 0.25 0.18 ± 0.05 
1.06 ± 0.38 0.24 ± 0.11 
4.22 ± 0.98 0.26 ± 0.15 

indicate the 95% (or 99%, or other) confidence interval. and by others to indicate 
the range! There is no widely accepted convention; one must state explicitly what 
quantity is meant by this type of statement. If such statements of' ±" values appear 
in a table. then the explanation is best included somewhere in the table (either in the 
caption or in the body of the table). even if it is stated elsewhere in the paper. 

Third. the units of measurement of the variable must be clear. There is little 
information conveyed by stating that the tail lengths of 24 birds have a mean of 
8.42 and a standard error of 0.86 if the reader does not know whether the tail 
lengths were measured in centimeters, or inches, or some other unit. Whenever data 
appear in tables. the units of measurement should be stated somewhere in the table. 
Keep in mind that a table should be self-explanatory; one should not have to refer 
back and forth between the table and the text to determine what the tabled values 
represent. 

Frequently. the types of information given in Tables 7.1. 7.2, 7.3a. and 7.3b are 
presented in graphs. rather than in tables. In such cases, the measurement scale is 
typically indicated on the vertical axis. and the mean is indicated in the body of 
the graph by a short horizontal line or some other symbol. The standard deviation, 
standard error. or a confidence interval for the mean is commonly indicated on such 
graphs via a vertical line or rectangle. Often the range is also included, and in such 
instances the SD or SE may be indicated by a vertical rectangle and the range by 
a vertical line. Some authors will indicate a confidence interval (generally 95%) in 

... In older literature the ± symbol referred to yet another measure. known as the "probable 
error" (which fell into disuse in the early twentieth century). In a normal curve. the probable error 
(PE) is 0.6745 limes the standard error. because X ± PE includes 50% of the distribution. The term 
probable error was first used in 1815 by German astronomer Friedrich Wilhelm Bessel (1784-1846) 
(Walker. 1929: 24. 51. 186). 
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FIGURE 7.4: Tail lengths of male field mice from different localities, indicating the mean, the mean ± 
standard deviation (vertical rectangle), and the range (vertical line), with the sample size indicated for 
each location. The data are from Table 7.1. 
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FIGURE 7.5: Levels of muscle isomerase in various animals. Shown is the mean ± standard error (shaded 
rectangle), and ± the 95% confidence interval (open rectangle). For each sample, n = 4. The data are 
from Tables 7.3a and 7.3b. 

addition to the range and either SD or SE. Figures 7.4. 7.5, and 7.6 demonstrate how 
various combinations of these statistics may be presented graphically. 

Instead of the mean and a measure of variability based on the variance, one may 
present tabular or graphical descriptions of samples using the median and quartiles 
(e.g .• McGill, Tukey. and Larsen. 1978). or the median and its confidence interval. 
Thus. a graphical presentation such as in Figure 7.4 could have the range indicated 
by the vertical line. the median by the horizontal line. and the semiquartile range 
(Section 4.2) by the vertical rectangle. Such a graph is discussed in Section 7.5. Note 
that when the horizontal axis on the graph represents an interval or ratio scale 
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Air Temperature. ·C 

FIGURE 7.6: Evaporative water loss of a small mammal at various air temperatures. Shown at each 
temperature is the mean ± the standard deviation, and the sample size. The data are from Table 7.2. 

variable (as in Figure 7.6), adjacent means may be connected by straight lines to aid 
in the recognition of trends. 

In graphical presentation of data, as in tabular presentation, care must be taken to 
indicate clearly the following either on the graph or in the caption: The sample size 
(n), the units of measurement, and what measures of variability (if any) are indicated 
(e.g., SO. SE, range, 95% confidence interval). 

Some authors present X ± 2\'x in their graphs. An examination of the t table 
(Appendix Table 8.3) will show that, except for small samples, this expression will 
approximate the 95% confidence interval for the mean. But for small samples, the 
true confidence interval is, in fact. greater than X ± l\'x. Thus, the general use of this 
expression is not to be encouraged. and the calculation of the accurate confidence 
interval is the wiser practice. 

A word of caution is in order for those who determine confidence limits. or SOs 
or SEs, for two or more means and. by observing whether or not the limits overlap, 
attempt to determine whether there are differences among the population means. 
Such a procedure is not generally valid (see Section 8.2); The proper methods for 
testing for differences between means are discussed in the next several chapters. 

7.5 REPORTING VARIABILITY AROUND THE MEDIAN 

The median and the lower and upper quartiles (Q) and Q3) form the basis of a 
graphical presentation that conveys a rapid sense of the middle, the spread, and the 
symmetry of a set of data. As shown in Figure 7.7. a vertical box is drawn with its 
bottom at Q\ and top at Q3, meaning that the height of the box is the semi-quartile 
range (Q3-Q\). Then. the median is indicated by a horizontal line across the box. 
Next, a vertical line is extended from the bottom of the box to the smallest datum that 
is no farther from the box than 1.5 times the interquartile range; and a vertical line is 
drawn from the top of the box to the largest datum that is no farther from the box 
than 1.5 times the interquartile range. These two vertical lines, below and above the 
box, are termed "whiskers." so this graphical representation is called a box plot or 
box-and-whiskers plot.* If any data are so deviant as to lie beyond the whiskers, they 

*The term ho:c plot was introduced by John W. Tukey in 1970 (David. 1995). 



I (X) 

9() 

80 

70 

'0 60 .s 
c 
~ 

50 D-
Vl 

~ 
:.::i 

40 

3U -

2U 

10 

0 

Section 7.S Reporting Variability around the Median 113 
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FIGURE 7.7: Box plots for the data of Example 3.3. (The wording with arrows is for instructional purposes 
and would not otherwise appear in such a graph.) 

are termed outliers and are placed individually as small circles on the graph. If any 
are so aberrant as to lie at least 3 times the interquartile range from the box (let's call 
them "extraordinary outliers"). they may be placed on the graph with a distinctive 
symbol (such as "*") instead of a circle.· In addition, the size of the data set (n) 
should be indicated. either near the box plot itself or in the caption accompanying 
the plot. 

Figure 7.7 presents a box plot for the two samples in Example 3.3. For species A, the 
median = 40 mo, QI = QIO/4 = X2.5 = 34.5 mo, and Q3 = XlO-2.5 = X7.5 = 46 mo. 
The interquartile range is 46 mo - 34.5 mo = 11.5 mo, so 1.5 times the interquartile 
range is (1.5)(11.5 mo) = 17.25 mo. and 3 times the interquartile range is (3)(11.5) 
= 34.5 mo. Therefore. the upper whisker extends from the top of the box up to the 
largest datum that does not exceed 46 mo + 17.25 mo = 63.25 mo (and that datum 
is Xs = 50 rno), and the lower whisker extends from the bottom of the box down to 
the smallest datum that is no smaller than 34.5 rno - 17.25 rno = 17.25 rno (namely. 
X2 = 32 rno). Two of the data. XI = 16 mo and X9 = 79 rn~. lie farther from the 
box than the whiskers: thus they are outliers and. as X9 lies more than 3 times the 
interquartile range from the box (i.e., is more than 34.5 mo greater than Q3). it is an 
extraordinary outlier. Therefore. X, is indicated with a circle below the box and X9 
is denoted with a "*" above the box. 

·The vertical distances above and below the box by an amount 1.5 times the interquanile range 
are sometimes called inner fences. with those using the factor of 3 being called outer fences. Also. 
the top (Q3) and bottom (Q,) of the box are sometimes called the hinges of the plot. 
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For species B, the median = 52 mo. QI = QII/4 = Q2.75. which is rounded up to 
QI = 38 mo, and Q3 = X II -3 = Xx = 59 mo. The interquartile range is 59 mo -
38 mo = 21 mo. so (1.5)(21 mol = 31.5 mo and (3)(21 mol = 63 mo. Thus, the upper 
whisker extends from the box up to the largest datum that does not exceed 59 mo + 
21 mo = 80 mo (namely. X9 = 69 mol. and the lower whisker extends from the box 
down to the smallest datum that is no smaller than 38 mo - 21 mo = 17 mo (namely. 
XI = 34 mol. As only XIO = 91 lies farther from the box than the whiskers. it is 
the only outlier in the sample of data for species B: it is not an extraordinary outlier 
because it is not (3)(21 mol, namely 63 mo. above the box. 

Box plots are especially useful in visually comparing two or more sets of data. In 
Figure 7.7. we can quickly discern from the horizontal lines representing the medians 
that, compared to species A. species B has a greater median life span: and. as the box 
for spccies B is larger. that species' sample displays greater variability in life spans. 
Furthermore. it can be observed that species B has its median farther from the middle 
of the box, and an upper whisker much longcr than the lower whisker, indicating that 
the distribution of life spans for this species is more skewed toward longer life than is 
thc distribution for species A. 

David (1995) attributes the 1970 introduction of box plots to J. W. Tukey. and 
the capability to produce such graphs appears in many computer software packages. 
Some authors and some statistical software have used multiplication factors other 
than 1.5 and 3 to define outliers. some have proposed modifications of box plots 
to provide additional information (e.g .. making the width of each box proportional 
to the number of data, or to the square root of that number). and some employ 
quartile determination different from that in Section 4.2. Indeed, Frigge. Hoaglin, 
and Iglewicz (1989) report that. although common statistical software packages only 
rarely define the median (Q2) differently than that presented in Scction 3.2, they 
identified eight ways QJ and Q3 are calculated in various packages. Unfortunately, 
the different presentations of box plots provide different impressions of the data, 
and some of the methods of expressing quartiles are not recommended by the latter 
authors. 

7.6 SAMPLE SIZE AND ESTIMATION OF THE POPULATION MEAN 

A commonly asked question is. "How large a sample must be taken to achieve a 
desired precision* in cstimating the mean of a popUlation?" The answer is related to 
the concept of a confidence interval, for a confidence interval expresses the precision 
of a sample statistic. and the precision increases (i.e., the confidence interval becomes 
narrower) as the sample size increases. 

Let us write Equation 7.6 as X ± d, which is to say that d = la(2).vSx. We 
shall refer to d as the half-width of the confidence interval, which means that JL 
is estimated to within ±d. Now, the number of data we must collect to calcu­
late a confidence interval of specified width depends upon: (1) the width desired 
(for a narrower confidence interval-Le., more precision in estimating IL-requires 
a larger sample: (2) the variability in the popUlation (which is estimated by s2, 

and larger variability requires larger sample size); and (3) the confidence level 
specified (for greater confidence-e.g .• 99% vs. 95%-requircs a larger sample 
size). 

*Recall from Section 2.4 that the precision of a sample statistic is the closeness with which it 
estimates the population parameter: it is not to be confused with the concept of the precision of 
a measurement (defined in Section 1.2), which is the nearness of repeated measurements to each 
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If we have a sample estimate (s2) of the variance of a normal population, then we 
can estimate the required sample size for a future sample as 

s2p __ a12-,-)._" n= 
cf2 

(7.9) 

In this equation, s2 is the sample variance, estimated with v = 11 - 1 degrees of 
freedom, d is the half-width of the desired confidence interval, and 1 - ex is the 
confidence level for the confidence interval. Two-tailed critical values of Student's t. 
with v = n - 1 degrees of freedom, are found in Appendix Table B.3. 

There is a basic difficulty in solving Equation 7.9. however; the value of 
(a(2). (1/-1) depends upon 11, the unknown sample size. The solution may be 
achieved by iteration-a process of trial and error with progressively more accurate 
approximations-as shown in Example 7.7. We begin the iterative process of estima­
tion with an initial guess; the closer this initial guess is to the finally determined n, 
the faster we shall arrive at the final estimate. Fortunately, the procedure works well 
even if this initial guess is far from the final 11 (although the process is faster if it is a 
high, rather than a low, guess). 

The reliability of this estimate of n depends upon the accuracy of.o;2 as an estimate 
of the population variance. (F2. As its accuracy improves with larger samples. one 
should use s2 obtained from a sample with a size that is not a very small fraction of 
the 11 calculated from Equation 7.9. 

EXAMPLE 7.7 Determination of Sample Size Needed to Achieve a Stated 
Precision in Estimating a Population Mean, Using the Data of Example 7.3 

If we specify that we wish to estimate J.L with a 95% confidence interval no wider 
than 0.5 kg, then d = 0.25 kg, I - a = 0.95. and a = 0.05. From Example 7.3 we 
have an estimate of the population variance: s2 = 0.4008 kg2• 

Let us guess that a sample of 40 is necessary; then, 

(0.05(2).:\9 = 2.023. 

So we estimate (by Equation 7.7): 

11 = (0.4008)( 2.023 )2 = 26.2. 
(0.25 )2 

Next, we might estimate n = 27, for which to.05(2).26 = 2.056, and we calculate 

11 = (0.4008)(2.056)2 = 27.1. 
(0.25)2 

Therefore, we conclude that a sample size greater than 27 is required to achieve 
the specified confidence interval. 

7.7 SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER IN TESTS CONCERNING THE MEAN 

(a) Sample Size Required. If we are to perform a one-sample test as described in 
Section 7.1 or 7.2, then it is desirable to know how many data should be collected 
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to detect a specified difference with a specified power. An estimate of the minimum 
sample size (n) required will depend upon u 2• the population variance (which can 
be estimated by s~ from previous similar studies). The beginning of Section 8.4 lists 
considerations (based upon Lenth. 2001 ) relevant to the determination of sample size. 

We may specify that we wish to perform a I test with a probability of a of committing 
a Type I error and a probability of f3 of committing a Type II error: and we can state 
that we want to be able to detect a difference between #1- and J.LO as small as 5 (where J..L 

is the actual population mean and #1-0 is the mean specified in the null hypothesis).· To 
test at the a significance level with 1 - f3 power. the minimum sample size required 
to detect 5 is 

S2 ? 

n = 52 (la.v + IJ3(I).v)-. (7.10) 

where a can be either 0'(1) or 0'(2), respectively, depending on whethcr a one-tailed 
or two-tailed test is to be used. However, ." depends on n, so n cannot be calculated 
directly but must be obtained by iteration t (i.e .• by a series of estimations. each 
estimation coming closer to the answer than that preceding). This is demonstrated in 
Example 7.8. 

Equation 7.10 provides bctter estimates of n when s2 is a good estimate of the 
population variance, u 2, and the latter estimate improves when :;2 is calculated from 
larger samples. Therefore. it is most desirable that s2 be obtained from a sample with 
a size that is not a small fraction of the estimate of 12: and it can then be estimated 
how large an n is needed to repeat the experiment and use the resulting data to test 
with the designated a. f3. and 5. 

EXAMPLE 7.8 Estimation of Required Sample Size to Test Ho: p. = Po 

How large a sample is needed to reject the null hypothesis of Example 7.2 when 
sampling from the population in that example? We wish to test at the 0.05 level 
of significance with a 90% chance of detecting a population mean different from 
J.LO = 0 by as little as 1.0 g. In Example 7.2. s2 = 1.5682 g2. 

Let us guess that a sample size of20 would be required. Then. v = 19.10.05(2). 19 = 
2.093. f3 = 1 - 0.90 = 0.10, lo.IO( 1).19 = 1.328, and we use Equation 7.8 to cal­
culate 

11 = 1.56822 (2.093 + 1.328 f = 18.4. 
( 1.0) 

We now use n = 19 as an estimate. in which case." = 18, lo.05(2).Il! = 2.101. 
IO.IO( I ).ll! = 1.330. and 

n = 1.5682 (2.101 + 1.330)2 = 18.5. 
( 1.0)2 

Thus. we conclude that a new sample of at least 19 data may be taken from this 
population to test the above hypotheses with the specified a, f3, and 5 . 

• 1) is lowercase Greek delta. 
tlf the popUlation variance. u 2• were actually known (a most unlikely situation). rather than 

estimated by s2. then Za would be substituted for fa in this and the other computations in lhis 
section. and 11 would be determined in one step instead of iteratively. 
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(b) Minimum Detectable Difference. By rearranging Equation 7.10, we can ask 
how small a 1) (the difference between p. and p.() can be detected by the t test 
with 1 - {3 power. at the a level of significance. using a sample of specified 
size 11: 

(7.11 ) 

where tao p, can be either la( 1 ). p or ta(2). p. depending on whether a one-tailed 
or two-tailed test is to be performed. The estimation of 1) is demonstrated in 
Example 7.9. Some literature (e.g., Cohen, 1988: 811-814) refers to the "effect size," 
a concept similar to minimum detectable difference. 

EXAMPLE 7.9 Estimation of Minimum Detectable Difference in a One-
Sample t Test for Ho: IL = ILo 

In the two-tailed test of Example 7.2, what is the smallest difference (i.e., difference 
between p. and p.o) that is detectable 90% of the time using a sample of 25 data 
and a significance level of 0.05? 

Using Equation 7.9: 

~ ~ 1.5682 ( + ) (]::; ---zs lO.oS( 2).24 to. JO( 1 ).24 

= (0.25)(2.064 + 1.318) 

= 0.85 g. 

(c) Power of One-Sample Testing. If our desire is to express the probability of 
correctly rejecting a false Ho about p.. then we seek to estimate the power of a I test. 
Equation 7.10 can be rearranged to give 

1) 
113(1).,,= fs2 

\j-;; 

- ta• I" (7.12) 

where a refers to either a(2) or a( 1). depending upon whether the null hypothesis 
to be tested is two-tailed or one-tailed, respectively. As shown in Example 7.10, for 
a stipulated 1), a. s2, and sample size, we can express Ip( I). p. Consulting Appendix 
Table B.3 allows us to convert Ip( I). p to {3. but only roughly (e.g., (3 > 0.25 in 
Example 7.10). However, Ip( 1 ).11 may be considered to be approximated by Zp( I), 
so Appendix Table B.2 may be used to determine {3.* Then, the power of the test 
is expected to be 1 - {3, as shown in Example 7.10. Note that this is the estimated 
power of a test to be run on a new sample of data from this population. not the power 
of the test performed in Example 7.2. 

*Some calculators and computer programs yield f3 given '13.'" Approximating '(J( 1 ).". by Z(J( 1) 

apparently yields a f3 that is an underestimate (and a power that is an overestimate) of no more 
than 0.01 for /I of at least 11 and no more than 0.02 for /I of at least 7. 
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EXAMPLE 7.10 
Ho: #L = #Lo 

Estimation of the Power of a One-Sample t Test for 

What is the probability of detecting a true difference (i.e .. a difference between 
11- and 11-0) of at least 1.0 g. using a = 0.05 for the hypotheses of Example 7.2. 
if we run the experiment again using a sample of 15 from the same popula­
tion? 

Forn = 15. JI = 14: a = 0.05.10.05(2).14 = 2.145,,<;2 = 1.5682g2. and 5 = 1.0 
g; and we use Equation 7.12 to find 

1.0 
tp( 1 ). 14 = ---;:.=== 

1.5682 g2 
- 2.145 

15 
= 0.948. 

Consulting Appendix Table B.3 tells us that, for Ip( 1 ).14 = 0.948, 0.10 < f3 < 0.25, 
so we can say that the power would be 0.75 < 1 - f3 < 0.90. Alternatively. by 
considering 0.948 to be a normal deviate and consulting Appendix Table B.2, we 
conclude that f3 = 0.17 and that the power of the test is 1 - f3 = 0.83. (The exact 
probabilities, by computer, are f3 = 0.18 and power = 0.82.) 

When the concept of power was introduced in the discussion "Statistical Errors in 
Hypothesis Testing" in Section 6.4, it was stated that. for a given sample size (11). a is 
inversely related to f3: that is, the lower the probability of committing a Type I error, 
the greater the probability of committing a Type II error. It was also noted that a and 
f3 can be lowered simultaneously by increasing n. Power is also greater for one-tailed 
than for two-tailed tests. but recall (from the end of Section 6.4 and from Section 7.2) 
that power is not the criterion for performing a one-tailed instead of a two-tailed test. 
These relationships are shown in Table 7.4. Table 7.5 shows how power is related to n. 
s2. and 5. It can be seen that. for a given s2 and 5, an increased sample size (n) results 
in an increase in power. Also. for a given nand 5. power increases as s2 decreases, 
so a smaller variability among the data yields greater power. And for a given nand 
s2, power increases as 5 increases, meaning there is greater power in detecting large 
differences than there is in detecting small differences. 

Often a smaller .<;2 is obtained by narrowing the definition of the population of 
interest. For example, the data of Example 7.2 may vary as much as they do because 
the sample contains animals of different ages. or of different strains, or of both sexes. It 
may be wiser to limit the hypothesis, and the sampling. to animals of the same sex and 
strain and of a narrow range of ages. And power can be increased by obtaining more 
precise measurements: also, greater power is associated with narrower confidence 
intervals. A common goal is to test with a power between 0.75 and 0.90. 

7.S SAMPLING FINITE POPULATIONS 

In general we assume that a sample from a population is a very small portion of 
the totality of data in that population. Essentially, we consider that the popUlation 
is infinite in size. so that the removal of a relatively smalI number of data from the 
popUlation does not noticeably affect the probability of selecting further data. 

However. if the sample size. n. is an appreciable portion of the population size 
(a very unusual circumstance). N (say, at least 5%), then we are said to be sampling 
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TABLE 7.4: Relationship between 01, /3, Power (1 - /3), and n, for the 
Data of Example 7.9 
Sample Variance (sl = 1.5682 g2) and True Difference (l) = 1.0 g) 
of Example 7.10, Using Equation 7.12 

Two-Tailed Test One-Tailed Test 

n 01 {3 1-{3 n 01 {3 1 - {3 

10 0.10 0.25 0.75 10 0.10 0.14 0.86 
10 0.05 0.40 0.60 10 0.05 0.25 0.75 
10 0.01 0.76 0.24 10 0.01 0.61 0.39 
12 0.10 0.18 0.82 12 0.10 0.09 0.91 
12 0.05 0.29 0.71 12 0.05 0.18 0.82 
12 0.01 0.73 0.27 12 0.01 0.48 0.52 
15 0.10 0.10 0.90 15 0.10 0.05 0.95 
15 0.05 0.18 0.82 15 0.05 0.10 0.90 
15 0.01 0.45 0.S5 15 0.01 0.32 0.68 

20 0.10 0.04 0.96 20 0.10 0.02 0.98 
20 0.05 0.08 0.92 20 0.05 0.04 0.96 
20 om 0.24 0.76 20 0.01 0.16 0.84 

TABLE 7.5: Relationship between n, sl, 8, and Power (for Testing at 
01 = 0.05) for the Hypothesis of Example 7.9, Using Equation 7.10 

Power of Power of 
Il .\2 8 Two-~ailed Test One-Tailed Test 

Effect of n 
10 1.5682 1.0 0.60 0.75 
12 1.5682 1.0 0.71 0.82 
15 1.5682 1.0 0.82 0.90 
20 1.5682 1.0 0.92 0.96 
Effect of 52 

12 2.0000 1.0 0.60 0.74 
12 1.5682 1.0 0.71 0.82 
12 1.0000 1.0 0.88 0.94 
Effect of l) 
12 1.5682 1.0 0.71 0.82 
12 1.5682 1.2 0.86 0.92 
12 1.5682 1.4 0.96 0.97 

a finite population. In such a case, X is a substantially hetter estimate of JL the closer 
n is to N; specifically, 

(7.13) 

where n/ N is the sampling fraction and 1 - n/ N is referred to as the finite population 
correction. * 

Obviously, from Equation 7.13, when n is very small compared to N, then the 
sampling fraction is almost zero, the finitt: population correction will be nearly one, 

*One may also calculate 1 - n/ N as (N - n)/ N. 
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and s x will be nearly Js2 In. just as we have used (Equation 6.8) when assuming the 
population size. N. to be infinite. As n becomes closer to N, the correction becomes 
smaller, and Sx becomes smaller. which makes sense intuitively. If n = N. then 
I - III N = 0 and Sx = O. meaning there is no error at all in estimating p. if the 
sample consists of the entire population; that is, X = p. if n = N. In computing 
confidence intervals when sampling finite populations (i.e .• when Il is not a negligibly 
small fraction of N). Equation 7.13 should be used instead of Equation 6.8. 

If we are determining the sample size required to estimate the population mean 
with a stated precision (Section 7.6), and the sample size is an appreciable fraction of 
the population size. then the required sample size is calculated as 

n m= 
1 + (Il - 1)1 N 

(Cochran, 1977: 77 - 78). where 11 is from Equation 7.9. 

(7.14) 

7.9 HYPOTHESES CONCERNING THE MEDIAN 

In Example 7.2 we examined a sample of weight change data in order to ask whether 
the mean change in the sampled population was different from zero. Analogously, we 
may test hypotheses about the popUlation median, M. such as testing Ho: M = Mo 
against H A: M :1: Mo, where Mo can be zero or any other hypothesized popUlation 
median.* 

A simple method for testing this two-tailed hypothesis is to determine the confi­
dence limits for the population median, as discussed in Section 23.9, and reject Ho 
(with probability:s a of a Type I error) if Mo :S L, or Mo ~ L2. This is essentially a 
binomial test (Section 23.6), where we consider the number of data < Mo as being in 
one category and the number of data> Mo being in the second category. If either of 
these two numbers is less than or equal to the critical value in Appendix Table B.27, 
then Ho is rejected. (Data equal to Mo are ignored in this test.) 

For one-tailed hypotheses about the median, the binomial test may also be 
employed. For Ho: M ~ Mo versus HA : M < Mo, Ho is rejected if the number of 
data less than Mo is :S the one-tailed critical value, Ca ( I ).11' For Ho: M :S Mo versus 
H A: M > Mo, Ho is rejected if the number of data greater than Mo is ~ Il - Ca ( I ).,,' 

As an alternative to the binomial test, for either two-tailed or one-tailed hypotheses, 
we may use the more powerful Wilcoxon signed-rank test. The Wilcoxon procedure 
is applied as a one-sample median test by ranking the data as described in Section 9.5 
and assigning a minus sign to each rank associated with a datum < Mo and a plus 
sign to each associated with a datum> Mo. Any rank equal to Mo is ignored in this 
procedure. The sum of the ranks with a plus sign is called T + and the sum of the ranks 
with a minus sign is T _. with the test then proceeding as described in Section 9.5. The 
Wilcoxon test assumes that the sampled population is symmetric (in which case the 
median and mean are identical and this procedure becomes a hypothesis test about 
the mean as well as about the median, but the one-sample t test is typically a more 
powerful test about the mean). Section 9.5 discusses this test further. 

7.10 CONFIDENCE LIMITS FOR THE POPULATION MEDIAN 

The sample median (Section 3.2) is used as the best estimate of M, the population 
median. Confidence limits for M may be determined by considering the binomial 
distribution, as discussed in Section 24.9. 

*Here M represents the Greek capital letter mu. 
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HYPOTHESES CONCERNING THE VARIANCE 

The sampling distribution of means is a symmetrical distribution. approaching the 
normal distribution as n increases. But the sampling distribution of variances is not 
symmetrical, and neither the normal nor the t distribution may be employed to test 
hypotheses about (1'2 or to set confidence limits around u 2• However. theory states 
that 

(7.15 ) 

(if the sample came from a population with a normal distribution), where X2 represents 
a statistical distribution* that. like t, varies with the degrees of freedom. v. where 
v = Il - 1. Critical values of X~." are found in Appendix Table B.l. 

Consider the pair of two-tailed hypotheses, Ho: u 2 = ~ and HA: u 2 #: (1'~. where 
ufi may be any hypothesized popUlation variance. Then, simply calculate 

'1 I 2_SS or, equJva ent y, X - 2' 
(1'0 

(7.16) 

and if the calculated X2 is 2: x!/2." or ~ xrl-a/2).v' then Hn is rejected at the 
a level of significance. For example, if we wished to test Ho: u 2 = 1.0( oC)2 and 
HA : u 2 #: I.O( "C)2 for the data of Example 7.1. with a = 0.05. we would first calculate 
X2 = SSj u5. In this example. v = 24 and s2 = 1.80( 0 C)2 , so SS = vs2 = 43.20(,' C)2. 
Also, as u2 is hypothesized to be 1.0( "C)2, X2 = SSju~ = 43.20( "C)2j1.0( "C)2 = 
43.20. Two critical values are to be obtained from the chi-square table (Appendix 

Table B.1): XrO.05/2).24 = X6.025.24 = 39.364 and xrl-O.05/2).24 = X~.975.24 = 12.401. 
As the calculated X2 is more extreme than one of these critical values (i.e., the 
calculated X2 is > 39.364), Ho is rejected, and we conclude that the samfle of data 
was obtained from a population having a variance different from l.O( °C) . 

It is more common to consider one-tailed hlPotheses concerning variances. For 
the hypotheses Ho: u 2 ~ ufi and H A: u2 > uo' Ho is rejected if the X2 calculated 
from Equation 7.16 is 2: X~.II' For Ho: u 2 2: ufi and HA : u2 < ufi. a calculated 
X2 that is ~ xr I -a}. II is grounds for rejecting Hn. For the data of Example 7.4, a 
manufacturer might be interested in whether the variability in the dissolving times of 
the drug is greater than a certain value-say, 1.5 sec. Thus. Ho: u 2 ~ 1.5 sec2 and 
HA : u 2 > 1.5 sec2 might be tested, as shown in Example 7.11. 

EXAMPLE 7.11 A One-Tailed Test for the Hypotheses Ho: 0'2 ~ 1.5 sec2 

and HA: 0'2 > 1.5 sec2, Using the Data of Example 7.4 

SS = 18.8288 sec2 
v=7 
52 = 2.6898 sec2 

X2 = s~ = IIUI2!!1! ~c2 = 12.553 
Un 1.5 sec· 

X~.05. 7 = 14.067 

*The Greek letter "chi"' (which in lowercase is X) is pronounced as the "ky" in "sky." 
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Since 12.553 < 14.067, Ho is not rejected. 

0.05 < P < 0.10 [P = O.OM] 

We conclude that the variance of dissolving times is no more than 1.5 sec2. 

As is the case for testing hypotheses about a population mean, J.I. (Sections 7.1 
and 7.2), the aforementioned testing of hypotheses about a population variance, u, 
depends upon the sample's having come from a population of normally distributed 
data. However, the F test for variances is not as robust as the t test for means: that 
is, it is not as resistant to violations of this underlying assumption of normality. The 
probability of a Type 1 error will be very different from the specified a if the sampled 
population is nonnormal, even if it is symmetrical. And. likewise. a will be distorted if 
there is substantial asymmetry (say. l../Fi I > 0.6), even if the distribution is normal 
(Pearson and Please. 1975). 

7.12 CONFIDENCE LIMITS FOR THE POPULATION VARIANCE 

Confidence intervals may be determined for many parameters other than the 
population mean. in order to express the precision of estimates of those param­
eters. 

By employing the X2 distribution, we can define an interval within which there is 
a 1 - a chance of including u 2 in repeated sampling. Appendix Table B.I tells us 
the probability of a calculated X2 being greater than that in the Table. If we desire 
to know the two r values that enclose 1 - a of the chi-square curve. we want the 
portion of the curve between X~I-O'/2)." and X!/2." (for a 95% confidence interval. 

this would mean the area between X5.975." and X~.025.,,).1t follows from Equation 7.13 
that 

2 
2 < ~ < 2 

X( 1-0'/2)." - 2 - Xa/2.,,' 
U 

(7.17) 

and 
1IS2 2 1Is2 

-2 - 5. U 5. --;;-2 ---

XO'/2." X(I-a/2)." 
(7.18) 

Since vs2 = SS, we can also write Equation 7.16 as 

~S 5. u 2 5. 2 SS (7.l9) 
XO'/2.v X( 1-0'/2)." 

Referring back to the data of Example 7.1. we would calculate the 95% confidence 
interval for u 2 as follows. As v = 24 and s2 = 1.80( oC)2, SS = vs2 = 43.20( cC)2. 
From Appendix Table B.1, we find X5.025.24 = 39.364 and X5.97S.24 = 12.401. There­
fore, LI = SS/X!/2." = 43.20(oC)2/39.364 = l.10CC)2, and L2 = SS/Xll_a)." = 
43.20(OC)/12.401 = 3.48("'C)2. If the null hypothesis Hu: (1"2 = u5 would have 
been tested and rejected for some specified variance. Uo • then (TO would be outside 
of the confidence interval (i.e., u5 would be either less than LI or greater than 
L2). Note that the confidence limits. l.lO( "C)2 and 3.48( "C)2, are not symmetrical 
around s2; that is. the distance from LIto s2 is not the same as the distance from l­
to L2. 
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To obtain the 1 - a confidence interval for the population standard deviation. 
simply use the square roots of the confidence limits for u 2• so that 

~ss< < SS 2 -u- 2 
Xa/2.v X(I-a/2).v 

(7.20) 

For the preceding example. the 95% confidence interval for u would be ~1.10( °C)2 :5 

u :5 b.48( °C)2. or 1.0°C :5 U :5 1.9"C. 
The end of Section 7.11 cautioned that testing hypotheses about u 2 is adversely 

affected if the sampled population is nonnormal (even if it is symmetrical) or if the 
population is not symmetrical (even if it is normal). Determination of confidence 
limits also suffers from this unfavorable effect. 

(a) One-Tailed Confidence Limits. In a fashion analogous to estimating a population 
mean via a one-tailed confidence interval. a one-tailed interval for a population 
variance is applicable in situations where a one-tailed hypothesis test for the variance 
is appropriate. For Ho: u 2 :5 u5 and HA: u 2 > U5, the one-tailed confidence limits 
for u2 are LI = SS/ Xct.v and L2 = 00; and for Ho: (1'2 2!: ~ and HA: (1'2 < u5. the 
confidence limits are L I = 0 and L2 = sS/ XI -a. I" Considering the data in Example 
7.4, in which Ho: q2 :5 45 sec2 and HA: u > 45 sec2. for 95% confidence, LI would 
be SS/X5.0S.7 = 18.8188 sec2/14.067 = 1.34 sec2 and L2 = 00. The hypothesized u6 
(45 sec2) lies within the confidence interval, indicating that the null hypothesis would 
not be rejected. 

If the desire is to estimate a population's standard deviation (u) instead of the 
population variance (u2), then simply substitute u for u 2 and Uo for U5 above and 
use the square root of LI and L2 (bearing in mind that roo = (0). 

(b) Prediction Limits. We can also estimate the variance that would be obtained 
from an additional random sample of m data from the same population. To do so. the 
following two-tailed I - a prediction limits may be determined: 

S2 
LI = -----

Fu (2).1I-l.m-1 
(7.21 ) 

L2 = i Fa(2).m-I.1I-1 (7.22) 

(Hahn. 1972: Hahn and Meeker, 1991: 64, who also mention one-tailed prediction 
intervals; Patel. 1989). A prediction interval for s would be obtained by taking the 
square roots of the prediction limits for s2. 

The critical values of F, which will be employed many times later in this book. are 
given in Appendix Table B.4. These will be written in the form Fa.vl.v2' where VI 

and V2 are termed the "numerator degrees of freedom" and "denominator degrees 
of freedom," respectively (for a reason that will be apparent in Section 8.5). So, if we 
wished to make a prediction about the variance (or standard deviation) that would 
be obtained from an additional random sample of 10 data from the population from 
which the sample in Example 7.1 came, n = 25, n - 1 = 24, m = 10. and m - 1 = 9: 
and to compute the 95% two-tailed prediction interval, we would consult Table B.4 
and obtain Fa (2).1I-I.m-1 = FO.OS(2).24.9 = 3.61 and Fa (2).m-l.n-1 = FO.OS(2).9.24 = 
2.79. Thus, the prediction limits would be LI = 1.BO( "C)2/3.61 = 0.50( "C)2 and 
L2 = [1.BO( 'C)2][2.79] = 5.02( oC)2. 
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7.13 POWER AND SAMPLE SIZE IN TESTS CONCERNING THE VARIANCE 

(a) Sample Size Required. We may ask how large a sample would be required to 
perform the hypothesis tests of Section 7.12 at a specified power. For the hypotheses 
Ho: u2 ::5 u5 versus HA: u2 > u5, the minimum sample size is that for which 

2 2 
XI_~." _ Uo 
-2- - s2' 

Xa ." 

(7.23) 

and this sample size, n, may be found by iteration (i.e .• by a directed trial and error). 
as shown in Example 7.12. The ratio on the left side of Equation 7.23 increases in 
magnitude as 11 increases. 

EXAMPLE 7.12 Estimation of Required Sample Size to Test Ho: (T2 s (T~ 
versus HA: (T2 > (T~ 

How large a sample is needed to reject Ho : u 2 ::5 1.50 sec2• using the data of 
Example 7.11, if we test at the 0.05 level of significance and with a power of 0.90? 
(Therefore, ex = 0.05 and (3 = 0.10.) 

From Example 7.11. s2 = 2.6898 sec2. As we have specified u5 = 1.75 sec2, 

u6/ s2 = 0.558. 
To begin the iterative process of estimating n, let us guess that a sample size of 

30 would be required. Then. 

2 
X~.90.29 = 19.768 = 0.465. 
X O.OS. 29 42.557 

Because 0.465 < 0.558. our estimate of n is too low. So we might guess that 
n = 50 is required: 

2 
X~.90.49 = 36.818 = 0.555. 
XO.05.49 66.339 

Because 0.555 is a little less than 0.558, n = 50 is a little too low and we might 
guess n = 55, for which X5.90.S4/ x5.0S.S4 = 41.183/70.153 = 0.571. 

Because 0.571 is greater than 0.558. our estimate of n is high. so we could try 
n = 51, for which X6.90.S0/ X5.os.so = 37.689/67.505 = 0.558. 

Therefore, we estimate that a sample size of at least 51 is required to perform 
the hypothesis test with the specified characteristics. 

For the hypotheses Ho: u2 :=: u6 versus HA: u2 < ufi, the minimum sample size is 
that for which 

2 2 
X{3." _ Uo 

-2-- - 2' 
XI-a." S 

(7.24) 

(b) Power of the Test. If we plan to test the one-tailed hypotheses Ho: (7'2 ::5 0'5 
versus H A: a2 > 0'6. using the ex level of significance and a sample size of n, then the 
power of the test would be 

(7.25) 
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Thus. if the experiment of Example 7.11 were to be repeated with the same sample 
size. then n = 8. v = 7. a = 0.05. Xk05. I.) = 14.067. s2 = 2.6898 sec2• O"~ == 1.5 sec2• 

and the predicted power of the test would be 

I - (3 = P[x2 ~ (14.067)( 1.5)/2.6898] = p(i ~ 7.845). 

From Appendix Table 8.] we see that. for X2 ~ 7.845 with v = 7. P lies between 
0.25 and 0.50 (that is. 0.25 < P < 0.50). By linear interpolation between Ai.25.7 and 
X~50. 7' we estimate P( X2 ~ 7.845), which is the predicted power of the test. to be 
0.38.* H greater power is preferred for this test. we can determine what power would 
be expected if the experiment were performed with a larger sample size. say n = 40. 
In that case. v = 39. X~.05.31.) = 54.572, and the estimate of the power of the test 
would be 

I - (3 = P[X2 ~ (54.572)( 1.5)/2.68981 = P(X2 ~ 30.433). 

Consulting Table Bl for v = 39, we see that 0.75 < P < 0.90. By linear interpolation 
between X6.75.31.) and X~.90.3\)' we estimate P(X2 ~ 54.572). the power of the test. to 
be 0.82:t 

One-tailed testing of H,,: 0"2 ~ <Tij versus H,,: 0"2 $ 0"1, would also employ 
Equation 7.25. For two-tailed testing of Ho: CT2 = <T~ versus HA : u2 :;: oT,. substitute 
X~/2.11 for X~.II in Equation 7.25. 

7.14 HYPOTHESES CONCERNING THE COEFFICIENT OF VARIATION 

Although rarely done. it is possible to ask whether a sample of data is likely 
to have come from a population with a specified coefficient of variation, call it 
(ul p. )". This amounts to testing of the following pair of two-tailed hypotheses: 
H,,: u I p. = (CT I p. )" and H A: u I p. :;: (<TIp. )". Among the testing procedures proposed. 
that presented by Miller (199]) works well for a sample size of at least 10 if the sampled 
population is normal with a mean > O. with a variance> O. and with a coefficient of 
variation. ulp.. no greater than 0.33. For one-tailed testing (Le .• Ho: 0"1p. $ (ulp.)o 
vs. HA:O"Ip. > (<Tlp.)o, or H,,:CTIp. ~ (<Tlp.)" vs. H,,:O"Ip. < (<Tlp.),,). the test 
statistic is 

Z = Jil=l [V - (<TIp. ),,] 

(p.I u )oJO.5 + (<TIp. )~ , 
(7.26) 

the probability of which may be obtained from Appendix Table B.2: or Z may be 
compared to the critical values of Zer. read from the last line of Appendix Table B.3. 
Miller also showed this procedure to yield results very similar to those from a X2 
approximation by McKay (1932) that, although applicable for n as small as 5, lacks 
power at such small sample sizes. 

Miller and Feltz (1997) present an estimate of the power of this test. 

*See the beginning of Appendix B for a discussion or interpolation. [n this example. lin­
ear interpolation yields P = (UX. harmonic interpolation concludes P = 0.34. and the true 
probability (from appropriate computer software) is P = (U5. So interpolation gave very good 
approximations. 

tThe actual prohahility (via computer) is O.X4. while linear and harmonic interpolations each 
produced a prohahility of O.X2. an excellent approximation. 
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7.15 CONFIDENCE LIMITS FOR THE POPULATION COEFFICIENT OF VARIATION 

The 1 - a confidence limits for the population coefficient of variation may be 
estimated as 

V JO.5 + V2Za/ 2 . 
V ± Jv . (7.27) 

see Miller and Feltz (1997). 

7.16 HYPOTHESES CONCERNING SYMMETRY AND KURTOSIS 

Section 6.5 introduced the assessment of a population's departure from a normal 
distribution. including a consideration of a population parameter. JlJi. for symmetry 
around the mean and a parameter. f32, for kurtosis; and their respective sample 
statistics are JliI and h2. Methods will now be discussed for testing hypotheses about 
a population's symmetry and kurtosis. Such hypotheses are not often employed, but 
they are sometimes called upon to conclude whether a sampled population follows a 
normal distribution, and they do appear in some statistical computer packages. 

(a) Testing Symmetry around the Mean. The two-tailed hypotheses Ho: JlJI = 
o versus Ho: JlJI *- 0 address the question of whether a sampled population's 
distribution is symmetrical around its mean. The sample symmetry measure, ./51, is 
an estimate of .Ji3i and may be calculated by Equation 6.16. Its absolute value may 
then be compared to critical values, ( JliI)rr(2)JP in Appendix Table 8.22. 

As an illustration of this, let us say that the data of Example 6.7 yield ./bi = 0.351. 
To test the above Ho at the 5% level of significance. the critical value from Table 
B.22 is ( Jb1)0.05(2). 70 = 0.556. So, Ho is not rejected and the table indicates that 
P( I AI > 0.10). 

One-tailed testing could be employed if the interest were solely in whether the 
distribution is skewed to the right (Ho: JlJI ~ 0 vs. Ho: JlJI > 0). in which case Ho 
would be rejected if Jb1 ~ ( .J5\)a( 1 ).11" Or, a one-tailed test of Ho: 51 ~ 0 versus 
Ho: J7Ji < 0 could be used to test specifically whether the distribution is skewed to 
the left; and Ho would be rejected if A ~ - ( ./lil)a( 1 ).11' 

If the sample size. 11. does not appear in Tanle 8.22, a conservative approach (i.e., 
one with lowered power) would be to use the largest tabled 11 that is less than the 
II of our sample: for example, if n were 85, we would use critical values for n = 80. 
Alternatively. a critical value could be estimated, from the table's critical values for 
n's immediately above and below n under consideration, using linear or harmonic 
interpolation (see the introduction to Appendix B), with harmonic interpolation 
appearing to be a little more accurate. There is also a method (D'Agostino, 1970, 
1986: D' Agostino, Belanger, and D' Agostino, 1990) by which to approximate the 
exact probability of Ho. 

(b) Testing Kurtosis. Our estimate of a population's kurtosis (f32) is h2' given by 
Equation 6.17. We can ask whether the population is not mesokurtic by the two-tailed 
hypotheses Ho: f32 = 3 versus Ho: f31 =1= 3. Critical values for this test are presented in 
Tanle 8.23, and Ho is rejected if b2 is either less than the lower-tail critical value for 
(b2 )n(21.11 or greater than the upper-tail critical value for (b2 )a(2). n' 

For the data of Example 6.7. h2 = 2.25. To test the above Ho at the 5% level of sig­
nificance, we find that critical values for n = 70 do not appear in Table B.23. A conser­
vative procedure (i.e., one with lowered power) is to employ the critical values for the 
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tabled critical values for the largest 11 that is less than our sample's n. In our example, 
this is n = 50, and Ho is rejected if b2 is either less than the lower-tail (b2 )0.05(2).50 = 
2.06 or greater than the upper-tail (b2)O.05(2).50 = 4.36. In the present example, 
b2 = 2.25 is neither less than 2.06 nor greater than 4.36, so Ho is not rejected. And. 
from Table B.23, we see that 0.05 < P < 0.10. Rather than using the nearest lower 11 in 
Table 8.23, we could engage in linear or harmonic interpolation between tabled crit­
ical values (see introduction to Appendix B), with harmonic interpolation apparently 
a little more accurate. There is also a method (D'Agostino. 1970. 1986: D'Agostino. 
Belanger. and D'Agostino. 1990) to approximate the exact probability of Ho. 

One-tailed testing could be employed if the interest is solely in whether the 
population's distribution is leptokurtic. for which H(): {h ~ 3 versus Ho: {32 > 3 
would apply; and Ho would be rejected if b2 ~ the upper-tail (b2 )a( I ).11" Or. if testing 
specifically whether the distribution is platykurtic. a one-tailed test of Ho: {32 ~ 3 
versus Ho: {32 < 3 would be applicable: and Ho would be rejected if b2 ~ the lower-tail 
(b2)a(1 ).n· 

EXAMPLE 7.13 Two-Tailed Nonparametric Testing of Symmetry Around 
the Median, Using the Data of Example 6.7 and the Wilcoxon Test of 
Section 9.5 

Ho: The population of data from which this sample came is distributed 
symmetrically around its median. 

HA : The population is not distributed symmetrically around its median. 

11 = 70; median = X(7o+ I )/2 = XJ5.5 = 70.5 in. 

X d Idl Rank of Signed rank 
(in.) (in.) f (in.) ltil of Idl (f)(Signed rank) 

63 -7.5 2 7.5 69.5 -69.5 -139 
64 -6.5 2 6.5 67.5 -67.5 -135 
65 -5.5 3 5.5 64 -64 -192 
66 -4.5 5 4.5 57.5 -57.5 -287.5 
67 -3.5 4 3.5 48.5 -48.5 -194 
68 -2.5 6 2.5 35.5 -35.5 -213 
69 -1.5 5 1.5 21.5 -21.5 -107.5 
70 -0.5 8 0.5 8 -8 -64 
71 0.5 7 0.5 8 8 56 
72 1.5 7 1.5 21.5 21.5 160.5 
73 2.5 10 2.5 35.5 35.5 355 
74 3.5 6 3.5 48.5 48.5 291 
75 4.5 3 4.5 57.5 57.5 172.5 
76 5.5 2 5.5 64 64 128 

70 

T_ = 1332 

T+ = 1163 
TO.05(2).70 = 907 (from Appendix Table B.12) 
As neither T _ nor T + < TO.05(2).70. do not reject Ho. [P > 0.50] 
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(c) Testing Symmetry around the Median. Symmetry of dispersion around the 
median instead of the mean may be tested nonparametrically by using the Wilcoxon 
paired-sample test of Section 9.5 (also known as the Wilcoxon signed-rank test). For 
each datum (Xi) we compute the deviation from the median (di = Xi - median) and 
then analyze the di'S as in Section 9.5. For the two-tailed test (considering both L 
and T + in the Wilcoxon test), the null hypothesis is Ho: The underlying distribution 
is symmetrical around (i.e., is not skewed from) the median. For a one-tailed test, 
T _ is the critical value for Ho: The underlying distribution is not skewed to the right 
of the median; and T + is the critical value for Ho: The underlying distribution is not 
skewed to the left of the median. This test is demonstrated in Example 7.13. 

EXERCISES 

7.1. The following data are the lengths of the menstrual 
cycle in a random sample of 15 women. Test the 
hypothesis that the mean length of human men­
strual cycle is equal to a lunar month (a lunar 
month is 29.5 days). 

The data are 26. 24. 29. 33. 25. 26. 23. 30. 31. 30. 
28.27.29.26. and 28 days. 

7.2. A species of marine arthropod lives in seawa­
ter that contains calcium in a concentration of 
32 mmole/kg of water. Thirteen of the animals are 
collected and the calcium concentrations in their 
coelomic fluid are found to be: 28. 27. 29. 29. 30. 
30.31. 30. 33. 27. 30. 32. and 31 mmole/kg. Test the 
appropriate hypothesis to conclude whether mem­
bers of this species maintain a coelomic calcium 
concentration less than that of their environment. 

7.3. Present the following data in a graph that shows 
the mean. standard error. 95% confidence interval. 
range. and number of observations for each month. 

Table of Caloric Intake (kcal/g of Body Weight) 
of Squirrels 

Number Stant/ard 
Month of Data Mean Error Range 

January 13 0.458 0.026 0.289-0.612 
February 12 0.413 0.027 0.279-0.598 
March 17 0.327 0.018 0.194-0.461 

7.4. A sample of size 18 has a mean of 13.55 cm and a 
variance of 6.4512 cm2. 

(a) Calculate the 95°/., confidence interval for the 
population mean. 

(b) How large a sample would have to be taken 
from this population to estimate p. to within 
1.00 cm. with 95% confidence? 

(c) to within 2.00 cm with 95% confidence? 
(d) to within 2.00 cm with 99% confidence? 
(e) For the data of Exercise 7.4. calculate the 95% 

prediction interval for what the mean would 

be of an additional sample of 10 data from the 
same population. 

7.5. We want to sample a population of lengths and to] 
perform a test of Ho: p. = p.o versus /-I A: p. #- 1L(j, a~ 
the 5% significance level. with a 95% probabilit 
of rejecting /-10 when Ip. - p.ol is at least 2.0 em 
The estimate of the population variance, u 2, • 
s2 = 8.44 cm2. 

(a) What minimum sample size should be used?' 
(b) What minimum sample size would be requir -

if a were om '? 
(c) What minimum sample size would be requir 

if a = 0.05 and power = 0.99? 
(d) If 11 = 25 and a = 0.05. what is the small 

difference.lp. - p.ol. that can be detected wi 
95% probability? 

(e) If II = 25 and a = 0.05, what is the probabilit 
of detecting a difference, Ip. - p.ol. as sm 
as 2.0 cm? 

7.6. There arc 200 members of a state legislatur 
The ages of a random sample of 50 of them ar 
obtained. and it is found that X = 53.87 yr and s 
9.89 yr. 
(a) Calculate the 95% confidence interval for th 

mean age of all members of the legislature. 
(b) If the above X and s had been obtained fro 

a random sample of 100 from this populatio 
what would the 95% confidence interval fo 
the population mean have been'? 

7.7. For the data of Exercise 7.4: 
(a) Calculate the 95% confidence interval for th 

population variance. 
(b) Calculate the 95% confidence interval for th 

population standard deviation. 
(c) Using the 5'Yo level of significance. t 

Ho:;;'2 :S; 4.4000 cm2 vers~s /-I,,: (r2 

4.4000 cm2. 

(d) Using the 5% level of significance. te­
Ho: (T 2! 3.00 cm versus H A : (T < 3.00 cm. 

(e) How large a sample is needed to t 
I/o: u 2 :s; 5.()(XlO cm~ if it is desired to t 



at the 0.05 level of significance with 75% 
power? 
For the data of Exercise 7.4. calculate the 95% 
prediction interval for what the variance and 
standard deviation would be of an additional 
sample of 20 data from the same population. 
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7.8. A sample of 100 body weights has ../51 = 0.375 
and b2 = 4.20. 
(a) Test Ho: ../fJi = 0 and HA: ../fJi ::F 0, at the 

5% significance level. 
(b) Test Ho: fh = 3 and HA: {32 ::F 3, at the 5% 

significance level. 
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Two-Sample Hypotheses 

8.1 TESTING FOR DIFFERENCE BETWEEN TWO MEANS 
8.2 CONFIDENCE UMITS FOR POPULATION MEANS 
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8.6 CONFIDENCE UMITS FOR POPULATION VARIANCES 
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8.8 TESTING FOR DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 
8.9 CONFIDENCE UMITS FOR THE DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 
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8.13 TWO-SAMPLE TESTING OF NOMINAL-SCALE DATA 
8.14 TESTING FOR DIFFERENCE BETWEEN TWO DIVERSITY INDICES 
8.15 CODING DATA 

Among the most commonly employed hiostatistical procedures is the comparison 
of two samples to infer whether differences exist between the two populations 
sampled. This chapter will considcr hypotheses comparing two population means. 
medians. variances (or standard deviations). cocfficients of variation. and indices of 
diversity. In doing so. we introduce another very important sampling distribution. 
the F distribution-named for its discoverer. R A. Fisher-and will demonstrate 
further use of Student's I distribution. 

The objective of many two-sample hypotheses is to make inferences about popula­
tion parameters by examining sample statistics. Other hypothesis-testing procedures. 
however. draw inferences about popUlations without referring to parameters. Such 
procedures are called IlOflparamelric methods. and several will be discussed in this 
and following chaptcrs. 

8.1 TESTING FOR DIFFERENCE BETWEEN TWO MEANS 

130 

A very common situation for statistical testing is whcre a researcher desires to infer 
whether two population means are the same. This can be done by analyzing the 
difference hetwcen the means of samples taken at random from those populations. 

Example 801 presents the results of an experiment in which adult male rabbits 
were divided at random into two groups, one group of six and one group of seven.· 
The members of the first group were given one kind of drug (called "BOO). and the 

·Sir Ronald Aylmer Fisher (IXl)(I-I%2) is crcditcd with the first explicit rccommendation ufthe 
important concept of assigning subjccts tit rtllll/olll to groups for different cxpcrimcntClllrcalmcnts 
(Bartlell. Il)():'i: Fisher. 1925h: Ruhin. 19l)(1). 
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members of the second group were given another kind of drug (called "G"). Blood is 
to be taken from each rabbit and the time it takes the blood to clot is to be recorded. 

EXAMPLE 8.1 A Two-Sample t Test for the Two-Tailed Hypotheses, Ho: 
1L1 = 1L2 and HA: 1L1 :1= 1L2 (Which Could Also Be Stated as Ho: 1L1 - 1L2 = 0 
and HA: 1L1 - 1L2 :1= 0). The Data Are Blood-Clotting Times (in Minutes) of 
Male Adult Rabbits Given One of Two Different Drugs 

Ho: ILl = 1L2 

HA: ILI"* IL2 
Given drug B 

nl = 6 
VI = 5 

8.8 
8.4 
7.9 
8.7 
9.1 
9.6 

XI = 8.75 min 

SSI = 1.6950 min2 

Given drug G 

9.9 
9.0 

11.1 
9.6 
8.7 

10.4 
9.5 

n2 = 7 
V2 = 6 

X2 = 9.74 min 

SS2 = 4.0171 min2 

S2 = SSI + SS2 = 1.6950 + 4.0171 = 5.7121 = 0.5193 min2 
P VI + V2 5 + 6 11 

+ 0.5193 = JO.0866 + 0.0742 
7 

I = Xl - X2 = 8.75 - 9.74 = -0.99 = -2.475 
sX1 -X2 0.40 0.40 

to.OS( 2 ).1' = to.OS( 2 ).11 = 2.20 I 
Therefore, reject Ho. 

0.02 < P( It I ~ 2.475) < 0.05 [P = 0.031] 

We conclude that mean blood-clotting time is not the same for subjects receiving 
drug B as it is for subjects receiving drug G. 

We can ask whether the mean of the population of blood-clotting times of all adult 
male rabbits who might have been administered drug B (Jet's call that mean ILl) is 
the same as the population mean for blood-clotting times of all adult male rabbits 
who might have been given drug G (call it IL2). This would involve the two-tailed 
hypotheses Hu: ILl - 1L2 = 0 and HA: ILl - 1L2 "* 0; and these hypotheses are 
commonly expressed in their equivalent forms: HI): ILl = IL2 and H A : ILl "* 1L2. The 
data from this experiment are presented in Example 8.1. 
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In this example. a total of 13 members of a biological population (adult male 
rabbits) were divided at random into two experimental groups. each group to 
receive treatment with one of the drugs. Another kind of testing situation with 
two independent samples is where the two groups are predetermined. For example. 
instead of desiring to test the effect of two drugs on blood-clotting time. a researcher 
might want to compare the mean blood-clotting time of adult male rabbits to that 
of adult female rabbits. in which case one of the two samples would be composed 
of randomly chosen males and the other sample would comprise randomly selected 
females. In that situation. the researcher would not specify which rabbits will be 
designated as male and which as female; the sex of each animal (and, therefore. the 
experimental group to which each is assigned) is determined before the experiment 
is begun. Similarly. it might have been asked whether the mean blood-clotting time is 
the same in two strains (or two ages, or two colors) of rabbits. Thus. in Example 8.1 
there is random allocation of animals to the two groups to be compared, while in the 
other examples in this paragraph. there is random sampling of animals within each of 
two groups that arc already established. The statistical hypotheses and the statistical 
testing procedure are the same in both circumstances. 

If the two samples came from two normally distributed populations, and if the 
two populations have equal variances. then a t value to test such hypotheses may 
be calculated in a manner analogous to its computation for the one-sample t test 
introduced in Section 7.1. The I for testing the preceding hypotheses concerning the 
difference between two population means is 

t = XI - X2. (8.1 ) 

The quantity X I X 2 is the difference between the two sample means; and 
SXI-X2 is the standard error of the difference between the sample means (explained 
further below). which is a measure of the variability of the data within the two 
samples. Therefore, Equation 8.1 compares the differences between two means to 
the differences among all the data (a concept to be enlarged upon when comparing 
more than two means-in Chapter 10 and beyond). 

The quantity SXI -X2' along with S~I_X2' the variance of the difference between the 

means. needs to be considered further. Boths~'_X2 and SXI -Xl are statistics that can 
be calculated from the sample data and are estimates of the popUlation parameters, 
U~I-X2 and UXI-X2' respectively. It can be shown mathematically that the variance 
of the difference between two independent variables is equal to the sum of the 
variances of the two variables. so that U~I-:X2 ::; ujl + uj2. Independence means 
that there is no association correlation between the data in the two populations.* As 
u~ = u 2jn. we can write 

2 _ ui 01 u- - - - + - (8.2) 
XI- X 2 III n2 

Because the two-sample t test requires that we assume ui = u~. we can write 

2 u 2 u 2 
u- - = - + -

XI-XZ nl 112 
(8.3) 

*If there is a unique relationship between each datum in one sample and a specific datum in 
another sample. then the data are considered paired and the considerations of Chapter 9 apply 
instead of the methods of the present chapter. 
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Thus. to calculate the estimate of U~I-X2' we must have an estimate of u 2• Since both 

s1 and s~ are assumed to estimate u 2, we compute the pooled variance, s~. which is 
then used as the best estimate of u 2: 

~ = SSI + SS2 
P VI + V2 ' 

(8.4) 

and 
., s2 

s?:... _ = sf, + 1-
XI- X 2 nl n2 

(8.5) 

Thus: 

(8.6) 

and Equation 8.1 becomes 

1= 
X2 

0;2 
., , 

s-
:.J!. + 1 

(8.7a) 

nl n2 

which for equal sample sizes (Le .. nl = n2. so each sample size may be referred 
toasn), 

XI - X2 t= fl· (8.7b) 

Example 8.1 summarizes the procedure for testing the hypotheses under consider­
ation. The critical value to be obtained from Appendix Table B.3 is la(2).(vl +"2)' the 
two-tailed I value for the a significance level. with VI + V2 degrees of freedom. We 
shall also write this as la(2).". defining the pooled degrees of freedom to be 

V = VI + V2 or. equivalently, V = nl + 112 - 2. (8.8) 

In the two-tailed test, Ho will be rejected if either I 2: la(2)." or I :s -la (2).v- Another 
way of stating this is that Ho will be rejected if It I 2: la( 2).v-

This statistical test asks what the probability is of obtaining two independent 
samples with means (XI and X2) at least this different by random sampling from 
populations whose means (ILl and IL2) are equal. And. if that probability is a or less. 
then Ho: ILl = IL2 is rejected and it is declared that there is good evidence that the 
two population means are different. t 

Ho: ILl = IL2 may be written Ho: ILl - IL2 = 0 and HA: ILl *" IL2 as H,1: ILl - IL2 *" 0; 
the generalized two-tailed hypotheses are Ho: ILl - IL2 = ILO and HA: ILl - IL2 *" ILO. 
tested as 

, = IXI - X21 - ILO. (8.9) 
SXI-X2 

where ILO may be any hypothesized difference between population means. 

*The standard error of the difference between means may also be calculated as s XI _ Xl = 

~Ns~/(nln2). where N = nl + n2· 

tlnstead of testing this hypotheses. a hypothesis of "correlation" (Section 19.1lb) could be 
tested, which would ask whether there is a significant linear relationship between the magnitude of 
X and the group from which it came. This is not commonly done. 
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By the procedure of Section 8.9. one can test whether the measurements in one 
population are a specified amount as large as those in a second population. 

(a) One-Tailed Hypotheses about the Difference between Means. One-tailed 
hypotheses can be tested in situations where the investigator is interested in detecting 
a difference in only one direction. For example, a gardener may use a particular 
fertilizer for a particular kind of plant. and a new fertilizer is advertised as being an 
improvement. Let us say that plant height at maturity is an important characteristic 
of this kind of plant. with taller plants being preferable. An experiment was run, 
raising ten plants on the present fertilizer and eight on the new one. with the resultant 
eighteen plant heights shown in Example 8.2. If the new fertilizer produces plants that 
are shorter than. or the same height as. plants grown with the present fertilizer. then 
we shall decide that the advertising claims are unfounded; therefore. the statements 
of ILl > IL2 and ILl = IL2 belong in the same hypothesis, namely the null hypothesis, 
Ho. If. however, mean plant height is indeed greater with the newer fertilizer. then it 
shall be declared to be distinctly better. with the alternate hypothesis (H A: ILl < J.l.2) 
concluded to be the true statement. The 1 statistic is calculated by Equation 8.1, just 
as for the two-tailed test. But this calculated 1 is then compared with the critical value 
la( I ) .• " rather than with lu(2).,,' 

EXAMPLE 8.2 A Two-Sample t Test for the One-Tailed Hypotheses, Ho: 
IL, ~ IL2 and HA: IL, < IL2 (Which Could Also Be Stated as Ho: IL' - IL2 ~ 0 
and HA: IL1 - IL2 < 0). The Data Are Heights of Plants, Each Grown with 
One of Two Different Fertilizers 

Ho: J.l.1 ~ J.l.2 

HA: J.l.1 < J.l.2 

Presenl fertilizer 

48.2 cm 
54.6 
58.3 
47.8 
51.4 
52.0 
55.2 
49.1 
49.9 
52.6 

nl = 10 
PI = 9 
XI = 51.91 em 

SSI = 102.23 cm2 

Newer fertilizer 

n2 = 8 
P2 = 7 

52.3 cm 
57.4 
55.6 
53.2 
61.3 
58.0 
59.8 
54.8 

X2 = 56.55 em 

SS2 = 69.20 cm2 

S2 = 102.23 + 69.20 = 171.43 = 10.71 cm2 
II 9 + 7 16 

10.71 + 10.71 _ J2.41 = 1.55 cm .\"X.-X2 = 10 8 
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t = XI X2 = 51.91 - 56.55 = -4.64 = -2.99 
SXI-X2 1.55 1.55 

to.05( I ).16 = 1.746 

As t of-2.99 is less than -1.746,Ho is rejected. 

0.0025 < P < 0.005 [P = 0.0043] 

The mean plant height is greater with the newer fertilizer. 

In other cases. the one-tailed hypotheses. Ho: ILl ~ IL2 and HA: ILl > IL2. may be 
appropriate. Just as introduced in the one-sample testing of Sections 7.1 and 7.2. the 
following summary of procedures applies to two-sample t testing: 

For H A: ILl #: IL2, if It I ;::= tu(2).I" then reject Ho. 

For HA:ILI < IL2. if 1 ~ -lu(I).IJ' then reject Ho.* 

For HA: ILl >IL2. ift;::= 'a(I).". then reject Ho.t 

As indicated in Section 6.3. the null and alternate hypotheses are to be decided upon 
before the data are collected. 

Also. Ho: ILl ~ IL2 and HA: ILl > IL2 may be written as Ho: ILl - IL2 ~ 0 and 
HA: ILl - IL2 > O. respectively. The generalized hypotheses for this type of one-tailed 
test are Ho: ILl - IL2 ~ J.L<J and HA: ILl - IL2 > ILO. for which the 1 is 

XI - X2 - ILO t = • (8.10) 
SXI-X2 

and J.L<J may be any specified value of ILl - IL2. 
Lastly. Ho: ILl ;::= IL2 and H A: ILl < IL2 may be written as Ho: ILl - IL2 ;::= 0 

and HA: ILl - IL2 < O. and the generalized one-tailed hypotheses of this type are 
Ho: ILl - IL2 ;::= ILo and HA: ILl - IL2 < J.LQ. with the appropriate I statistic being that of 
Equation 8.10. For example. the gardener collecting the data of Example 8.2 may have 
decided, because the newer fertilizer is more expensive than the other, that it should 
be used only if the plants grown with it averaged at least 5.0 cm taller than plants grown 
with the present fertilizer. Then. /LO = ILl - IL2 = -5.0 cm and, by Equation 8.10. 
we would calculate t = (51.91 - 56.55 + 5.0)/1.55 = 0.36/1.55 = 0.232, which is 
not ;::= the critical value shown in Example 8.2; so Ho: ILl - IL2 ;::= -5.0 cm is not 
rejected. The following summary of procedures applies to these general hypotheses: 

For HA: ILl - IL2 #: /LO. if It I ;::= '«(2).", then reject Ho. 

For HA: ILl - IL2 < /L{). if I ~ -Ia(t ).IJ' then reject Ho. 

For H A: ILl - IL2 > ILl), if t ;::= ta( I ).1" then reject Ho. 

*For this one-tailed hypothesis test. probabilities of I up to 0.25 are indicated in Appendix 
Table 8.3. If I = O. then P = 0.50; so if -fU.2S( I ).11 < I < O. then 0.25 < P < 0.50; and if I > 0 
then P > 0.50. 

tFor this one-tailed hypothesis test, I = 0 indicates P = 0.50; therefore. if 0 < I < IO.2S( I ).11' 

then 0.25 < P < 0.50; and if I < O. then P > 0.50. 
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(b) Violations of the Two·Sample t·test Assumptions. The validity of two-sample 
t testing depends upon two basic assumptions: that the two samples came at random 
from normal populations and that the two populations had the same variance. 
Populations of biological data will not have distributions that are exactly normal or 
variances that are exactly the same. Therefore, it is fortunate that numerous studies. 
over 70 years, have shown that this t test is robust enough to withstand considerable 
nonnormality and some inequality of variances. This is especially so if the two sample 
sizes are equal or nearly equal, particularly when two-tailed hypotheses are tested 
(e.g., Boneau, 1960; Box, 1953; Cochran, 1947; Havlicek and Peterson, 1974; Posten, 
Yen, and Owen, 1982; Srivastava, 1958; Stonehouse and Forrester. 1998; Tan. 1982; 
WeIch, 1938) but also in one-tailed testing (Posten, 1992). 

In general, the larger and the more equal in size the samples are, the more robust 
the test will be; and sample sizes of at least 30 provide considerable resistance 
effects of violating the t-test assumptions when testing at a = 5% (i.e., the 0.05 level 
of signficance), regardless of the disparity between uf and u~ (Donaldson. 1968; 
Ramsey, 1980; Stonehouse and Forrester. 1998); larger sample sizes are needed for 
smaller a's, smaller n 's will suffice for larger significance levels, and larger samples 
are required for larger differences between UI and U2. 

Hsu (1938) reported remarkable robustness, even in the presence of very unequal 
variances and very small samples, if nl = n2 + 1 and CTT > CT~. SO, if it is believed 
(by inspecting sf and s~) that the population variances (uT and u~) are dissimilar. one 
might plan experiments that have samples that are unequal in size by 1. where the 
larger sample comes from the population with the larger variance. But the procedure 
of Section 8.1c, below, has received a far greater amount of study and is much more 
commonly employed. 

The two-sample t test is very robust to non normality if the population variances 
are the same (Kohr and Games, 1974; Posten, 1992; Posten, Yeh, and Owen, 1982; 
Ramsey. 1980; Stonehouse and Forrester. 1998; Tomarkin and Serlin, 1986). If the two 
populations have the same variance and the same shape. the test works well even if that 
shape is extremely nonnormal (Stonehouse and Forrester, 1998; Tan, 1982). Havlicek 
and Peterson (1974) specifically discuss the effect of skewness and leptokurtosis. 

If the population variances are unequal but the sample sizes are the same. then the 
probability of a Type I error will tend to be greater than the stated a (Havlicek and 
Peterson, 1974; Ramsey, 1980). and the test is said to be liberal. As seen in Table 8.1 a, 
this departure from a will be less for smaller differences between uT and u~ and for 
larger sample sizes. (The situation with the most heterogeneous variances is where 
uTi CT~ is zero (0) or infinity (00).) 

If the two variances are not equal and the two sample sizes are not equal, then 
the probability of a Type I error will differ from the stated a. If the larger u 2 is 
associated with the larger sample, this probability will be less than the stated a (and 
the test is called conservative) and this probability will be greater than the stated a 
(and the test is called liberal) if the smaller sample came from the population with 
the larger variance (Havlicek and Peterson. 1974; Ramsey, 1980; Stonehouse and 
Forrester, 1998; Zimmerman, 1987).* The greater the difference between variances, 
the greater will be the disparity between the probability of a Type I error and the 
specified a, larger differences will also result in greater departure from a. Table 8.1 b 

*The reason for this can be seen from Equations 8.4-8.7a: If the larger 4 is coupled with the 

larger nj. then the numerator of.\"~ (which is visi + V2S~) is greater than if the larger variance is 

associated with the smaller n. This makes s~ larger. which translates into a larger S~I -X2' which 

produces a smaller I. resulting in a probability of a Type I error lower than the stipulated a. 
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TABLE B.1a: Maximum Probabilities of Type I Error when Applying the Two-Tailed (or, 
One-Tailed) t Test to Two Samples of Various Equal Sizes (nl = n2 = n). Taken from Normal 
Populations Having Various Variance Ratios. (TV (T~ 

CTVCT~ n: 3 5 10 15 [16] 20 30 00 

For a = 0.05 

3.33 or 0.300 0.059 0.056 0.054 0.052 0.052 0.051 0.050 
5.00 or 0.200 0.064 0.061 0.056 0.054 0.053 0.052 0.050 
10.00 or 0.100 0.068 0.059 0.056 0.055 0.053 0.050 

ooorO 0.109 0.082 0.065 0.060 0.057 0.055 0.050 
ooorO (0.083) (0.068) (0.058) (0.055) (0.054) (0.053) (0.050) 

For a = 0.01 

3.33 or 0.300 0.013 0.013 0.012 [0.011 J O.otl 0.01 I 0.010 
5.00 or 0.200 0.015 0.015 0.013 lO.012] 0.011 0.D11 0.010 
10.00 or 0.100 0.020 OJ119 0.015 [0.013] 0.012 0.012 0.0) a 

ooorO OJ144 (1.028 0.Ql8 [0.015] 0.014 0.013 0.010 
ooorO (0.032) (0.022) (0.015) (0.014) (0.013) (0.012) (0.010) 

These probabilities arc gleaned from the extensive analysis of Ramsey (1980). and from Table I of 
Posten, Yeh. and Owen (1982). 

shows this for various sample sizes. For example, Table 8.1 a indicates that if 20 data 
are distributed as n I = n2 = 10 and the two-tailed t test is performed at the 0.05 
significance level, the probability of a Type I error approaches 0.065 for greatly 
divergent population variances. But in Table 8.1b we see that if a = 0.05 is used and 
20 data are distributed as nl = 9 and 112 = 11, then the probability of a Type I error 
can be as small as 0.042 (if the sample of 1] came from the population with the larger 
variance) or as large as 0.096 (if the sample of 9 came from the population with the 
smaller variance). 

Section 6.3b explained that a decrease in the probability of the Type I error (a) 
is associated with an increase in the probability of a Type II error ({3); and, because 
power is 1 - {3, an increase in {3 means a decrease in the power of the test (1 - f3). 
Therefore, for situations described above as conservative-that is, P(Type I error) 
<a-there will generally be less power than if the population variances were all equal; 
and when the test is liberal-that is, P(Type I error) >a-there will generally be more 
power than if the variances were equal. (See also Zimmerman and Zumbo, 1993.) 

The power of the two-tailed I test is affected very little by small or moderate 
skewness in the sampled populations, especially if the sample sizes are equal, but 
there can be a serious effect on one-tailed tests. As for kurtosis, the actual power of 
the test is less than that discussed in Section 8.4 when the populations are platykurtic 
and greater when they are leptokurtic. especially for small sample sizes (Boneau, 
1960; Glass, Peckham, and Sanders, 1972). The adverse effect of non normality is less 
with large sample sizes (Srivastava, 1958). 

(c) The Two-sample I Test with Unequal Variances. As indicated above, the 1 test 
for difference between two means is robust to some departure from its underlying 
assumptions: but it is not dependable when the two population variances are very 
different. The latter situation is known as the Behrens-Fisher problem, referring 
to the early work on it by Behrens (1929) and Fisher (e.g., 1939b), and numerous 



138 Chapter 8 Two-Sample Hypotheses 

TABLE 8.1b: Maximum Probabilities of Type I Error when Applying the 
Two-Tailed (or One-Tailed) t Test to Two Samples of Various Unequal Sizes, 
Taken from Normal Populations Having the Largest Possible Difference 
between Their Variances 

For a = 0.05 For a = 0.01 

nl n2 err large ur small u7 large "7 small 

11 9 0.042 0.096 0.0095 0.032 
(0.041) (0.079) (0.0088) (0.026) 

22 18 0.036 0.086 0.0068 0.026 
(0.038) (0.073) (0.0068) (0.021) 

33 27 0.034 0.082 0.0059 0.024 
(0.037) (0.072) (0.0062) (0.020) 

55 45 0.032 0.080 0.0053 0.022 
(0,036) (0.070) (0.0057) (0.019) 

12 8 0.025 0.13 0.0045 0.054 
(0.028) (0.098) (0.0046) (0.040) 

24 16 0.020 0.12 0.0029 0.044 
(0.025) (0.096) (0.0033) (0.034) 

36 24 (UI] 9 0.12 0.0024 0.04\ 
(0.023) (0.094) (0.0029) (0.032) 

60 40 0.018 0.11 0.0021 0.039 
(0.023) (0.092) (0.0026) (0.031 ) 

From Posten. Yeh. and Owen (1982) and Posten (1992). 

other studies of this problem have ensued (e.g., Best and Raynor, 1987; Dixon and 
Massey, 1969: 119; Fisher and Yates, 1963: 60-61;* Gill, 1971; Kim and Cohen,1998; 
Lee and Fineberg. 1991; Lee and Gurland, 1975: Satterthwaite, 1946; Schcffe, 1970; 
Zimmerman and Zumbo. 1993). Several solutions have been proffered. and they give 
very similar results except for very small samples. One of the easiest, yet reliable, 
of available procedures is that attributed to Smith (1936) and is often known as the 
"Welch approximate ,n·t (Davenport and Webster, 1975: Mehta and Srinivasan. 1971; 
Wang, 1971; Welch, 1936.1938. 1947). It has been shown to perform well with respect 
to Type I error. and it requires no special tables. 

The test statistic is that of Equation 8.1 or 8.9, but with SX,-X2 (the standard error 
of the difference between the means) calculated with the two separate variances 
instead of with a pooled variance; that is, 

(8.11a) 

instead of Equation 8.6. And, because sX; = s~ / ni (Equation 6.7), this can be written 
equivalently as 

*In Fisher and Vates (1963), s refers to the standard error, not the standard deviation. 
tBernard Lewis Welch (1911-1989), English statistician. (See Mardia. 1990.) 

(8.11 b) 
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Therefore, Equation S.l becomes 

I' XI X2 

J41 + S~2 
(S.11c) 

Equation S.11 becomes 

(S.l1d) 

and two-tailed and one-tailed hypotheses are tested as described earlier for I. 
Tables of critical values of I' have been published, but they are not extensive. 

Satterthwaite (1946) and Scheffe (1970) approximated the distribution of I' well by 
using I with degrees of freedom of 

., 
(s~ + s~ r 

v'= XI X2 (S.12) 
(s~J2 (s~J2 

+ 
n) - 1 nz - 1 

These degrees of freedom can be as small as nl - 1 or m - 1, whichever is 
smaller, and as large as n) + n2 - 2. However, v' is typically not an integer, 
so the critical value of I' often will not be found in Appendix Table B.3. If v' is 
not an integer, the needed critical value, la.v, can be obtained via some computer 
software; or these values can be interpolated from the fs in Table B.3 (the beginning 
of Appendix B explains interpolation, and at the end of Table B.3 there is an 
indication of the accuracy of interpolation for t); or, less accurately, the closest 
integer to v' (or, to be conservative, the nearest integer less than v') can be used 
as the degrees of freedom in Table B.3. The Behrens-Fisher test is demonstrated in 
Example 8.2a.* 

*In the highly unlikely situation where the variances (ui and (T~) of the two sampled populations 
are known, the test for difference betwcen means could be effected with 

(8.12a) 

and it can be recalled that Za = la.oo. If the variance (ui) of one of the two populations is known. 
this test statistic and degrees of freedom may be employed (Maity and Sherman. 2006): 

1= I X\ - Xz I -ILO . 

J(TT /"\ + .\'~/"z . 
(8.12b) 

(8.12c) 



140 Chapter 8 Two-Sample Hypotheses 

EXAMPLE S.2a The Behrens-Fisher Test for the Two-Tailed Hypotheses, 
Ho: 1'1 = 1'2 and HA: 1'1 * 1'2 

The data are the times for seven cockroach eggs to hatch at one laboratory 
temperature and for eight eggs to hatch at another temperature. 

Ho: ILl = ILz 
HA: ILI::f. IL2 

40 days 
38 
32 
37 
39 
41 
35 

nl = 7 

VI = 6 

n2 = 8 

V2 = 7 

36 days 
45 
32 
52 
59 
41 
48 
55 

XI = 37.4 days 

SSI = 57.71 daysZ 

si = 9.62 daysZ 

s~, = 1.37 days2 

X Z = 46.0 days 

SS2 = 612.00 days2 

s~ = 87.43 daysZ 

S~2 = to.93 days2 

SX1-X2 = J4, + S~2 = J1.37 + 10.83 = 3.51 days 

I' = XI - X2 = 37.4 - 46.00 = -2.450 
s~ 'i7 3.51 

10.05(2).8.7 = 2.274* 

Therefore, reject Ho. 

[P = 0.038.]* 

A,-A2 

V' = (S~, + 4J2 

(s~,Y + (s~J2 
VI V2 

(1.37 + 10.93)2 

(1.37)2 + (to.93 )2 

6 7 
= 8.7 

*These values were obtained by computer. 
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As with I, the robustness of I I is greater with large and with equal sample sizes. If 
O"T = O"~, then either t or t I can be used, but t will be the more powerful procedure 
(Ramsey, 1980). but generally with only a very slight advantage over I' (Best and 
Rayner, 1987). If n I = n2 and sT = s~, then I I = t and v I = v; but t I is not as powerful 
and not as robust to non normality as I is (Stonehouse and Forrester, 1998; Zimmerman 
and Zumbo, 1993). However, Best and Rayner (1987) found l'to be much better 
when the variances and the sample sizes are unequal. They, and Davenport and 
Webster (1975). reported that the probabilty of a Type 1 error in the t I test is related 
to the ratio (n2CTT)/(nJO"~) (let's call this ratio r for the present): When r > 1 and 
III > n2. then this error is near the ex specified for the significance test; when r > 1 
and /1[ < 112. then the error diverges from that ex to an extent reflecting the magnitude 
of r and the difference betwen n[ and n2. And. if r < 1, then the error is close to the 
stated ex if n[ < 112. and it departs from that ex if Il[ > 112 (differing to a greater extent 
as the difference between the sample sizes is larger and the size of r is greater). But. 
larger sample sizes result in less departure from the ex used in the hypothesis test. 

The effect of heterogeneous variances on the t test can be profound. For example. 
Best and Rayner (1987) estimated that a t test with 11[ = 5 and 112 = 15, and 
0"[/0"2 = 4. has a probabilty of a Type I error using I of about 0.16; and, for those 
sample sizes when CTt!0"2 = 0.25, P(Type I error) is about 0.01; but the probability 
of that error in those cases is near 0.05 if t I is employed. When the two variances 
are unequal. the Brown-Forsythe test mentioned in Section lO.1g could also be 
employed and would be expected to perform similarly to the Behrens-Fisher test, 
though generally not as well. 

If the Behrens-Fisher test concludes difference between the means, a confidence 
interval for that difference may be obtained in a manner analogous to that in Section 
8.2: The procedure is to substitute sX,_x~ for SX,-X2 and to use v' instead of v in 
Equation 8.14. 

Because the I test is adversely affected by heterogeneity of variances, some authors 
have recommended a two-step testing process: (1) The two sample variances are 
compared, and (2) only if the two population variances are concluded to be similar 
should the t test be employed. The similarity of variances may be tested by the 
procedures of Section 8.5. However, considering that the Behrens-Fisher t I test is so 
robust to variance inequality (and that the most common variance-comparison test 
performs very poorly when the distributions are non normal or asymmetrical), the 
routine test of variances is not recommended as a precursor to the testing of means 
by either t or t I (even though some statistical software packages perform such a test). 
Gans (1991) and Markowski and Markowski (1990) enlarge upon this conclusion; 
Moser and Stevens (1992) explain that there is no circumstance when the testing 
of means using either t or t I is improved by preliminary testing of variances; and 
Sawilowski (2002) and Wehrhahn and Ogawa (1978) state that the t test's probability 
of a Type 1 error may differ greatly from the stated ex if such two-step testing is 
employed. 

(d) Which Two-Sample Test to Use. It is very important to inform the reader of a 
research report specifically what statistical procedures were used in the presentation 
and analysis of data. It is also generally advisable to report the size (/1), the mean (X), 
and the variability (variance. standard deviation, or standard error) of each group 
of data; and confidence limits for each mean and for the difference between the 
means (Section 8.2) may be expressed if the mean came from a normalIy distributed 
population. Visualization of the relative magnitudes of means and measures of 
variability may be aided by tables or graphs such as described in Section 7.4. 
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Major choices of statistical methods for comparing two samples are as follows: 

• If the two sampled populations are normally distributed and have identical 
variances (or if they are only slightly to moderately nonnormal and have 
similar variances): The I test for difference between means is appropriate and 
preferable. (However. as samples nearly always come from distributions that are 
not exactly normal with exactly the same variances. conclusions to reject or not 
reject a null hypothesis should not be considered definitive when the probability 
associated with t is very near the specified a. For example. if testing at the 5% 
level of significance. it should not be emphatically declared that Hn is false if 
the probability of the calculated t is 0.048. The conclusion should be expressed 
with caution and. if feasible. the experiment should be repeated-perhaps with 
more data.) 

• If the two sampled populations are distributed normally (or are only 
slightly to moderately nonnormal), but they have very dissimilar variances: 
The Behrens-Fisher test of Section 8.1 c is appropriate and preferable to compare 
the two means. 

• If the two sampled populations are very different from normally dis­
tributed, but they have similar distribution shapes and variances: The 
Mann-Whitney test of Section 8.11 is appropriate and preferable. 

• If the two sampled populations have distributions greatly different from 
normal and do not have similar distributions and variances: (I) Consider 
the procedures of Chapter 13 for data that do not exhibit normality and variance 
equality but that can be transformed into data that are normal and homogeneous 
of variance; or (2) refer to the procedure mentioned at the end of Section 8.11. 
which modifies the Mann-Whitney test for Behrens-Fisher situations; or (3) 
report the mean and variability for each of the samples. perhaps also presenting 
them in tables andlor graphs (as in Section 7.4). and do not perform hypothesis 
testing.* 

(e) Replication of Data. It is important to usc data that are true replicates of 
the variable to be tested (and recall that a replicate is the smallest experimental 
unit to which a treatment is independently applied). Tn Example 8.1 the purpose 
of the experiment was to ask whether there is a difference in blood-clotting times 
between persons administered two different drugs. This necessitates obtaining a 
blood measurement on each of nl individuals in the first sample (receiving one of the 
drugs) and n2 individuals in the second sample (receiving the other drug). It would 
not be valid to use n I measurements from a single person and n2 measurements 
from another person. and to do so would be engaging in what Hurlbert (1984). and 
subsequently many others. discuss as pseudoreplicalion. 

8.2 CONFIDENCE LIMITS FOR POPULATION MEANS 

In Section 7.3. we defined the confidence interval for a population mean as X ± 
la(2 ).v,'ix. where Sx is the best estimate of Ux and is calculated as ~s2 / n. For the 

*Anothcr procedure. seldom encountered but highly recommended by Yuen (1974). is to 
perform the Behrens-Fisher test on trimmed mean.s (also known as "truncated means"). A trimmed 
mean is a sample mean calculated after deleting data from the extremes of the tails of the data 
distribution. There is no stipulated number of data to be deleted. but it is gen:!rally the same number 
for each tail. The degrees of freedom are those pertaining to the number of data remaining after 
the deletion. 
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two-sample situation where we assume that (TI = (T~, the confidence interval for 
either J.LI or J.L2 is calculated using s~ (rather than either si or s~) as the best estimate 
of (T2. and we use the two-tailed tabled I value with v = VI + V2 degrees of freedom. 
Thus, for J.Li (where i is either I or 2. referring to either of the two samples), the 1 - a 
confidence interval is 

(8.13) 

For the data of Example 8.1. Js~/n2 = ~0.5193 min2/7 = 0.27 min. Thus, the 95% 

confidence interval for J.L2 would be 9.74 min ± (2.201 )(0.27 min) = 9.74 min ± 
0.59 min, so that LI (the lower confidence limit) = 9.15 min and L2 (the upper 
confidence limit) = 10.33 min. and we can declare with 95% confidence that. for 
the population of blood-clotting times after treatment with drug G, the population 
mean, J.L2, is no smaller than 9.15 min and no larger than 10.33 min. This may 
be written as P(9.15 min :s; J.L2 :s; 10.33 min) = 0.95. The confidence interval 
for the population mean of data after treatment with drug B would be 8.75 min 
±(2.201 )~0.5193 min2/6 = 8.75 min ± 0.64 min; so LI = 8.11 min and L2 = 9.39 min. 
Further interpretation of the meaning of the confidence interval for each of these two 
population means is in Section 7.3. 

Confidence limits for the difference between the two population means can also 
be computed. The 1 - a confidence interval for J.LI - J.L2 is 

(8.14) 

Thus, for Example 8.1, the 95% confidence interval for J.LI J.L2 is (8.75 min -
9.74 min) ± (2.201 )(0.40 min) = -0.99 min ± 0.88 min. Thus. LI = -1.87 min and 
L2 = -0.11 min. and we can write P( -1.87 min :s; J.LI - J.L2 :s; -0.11 min) = 0.95. 

If Ho: J.LI = J.L2 is not rejected. then both samples are concluded to have come from 
populations having identical means, the common mean being denoted as J.L. The best 
estimate of J.L is the "pooled" or "weighted" mean: 

X - Il I X I + 1l2X2 
p- , 

III + 112 
(8.15) 

which is the mean of the combined data from the two samples. Then the I - a 
confidence interval for J.L is 

- f?S~ Xp ± to (2).v • 
III + 112 

(8.16) 

If Ho is not rejected. it is the confidence interval of Equation 8.16, rather than those 
of Equations 8.13 and 8.14, that one would calculate. 

As is the case with the t test, these confidence intervals are computed with the 
assumption that the two samples came from normal populations with the same 
variance. If the sampled distributions are far from meeting these conditions, then 
confidence intervals should be eschewed or, if they are reported, they should be 
presented with the caveat that they are only approximate. 

If a separate I - a confidence interval is calculated for J.LI and for J.L2. it may 
be tempting to draw a conclusion about Ho: J.LI = J.L2 by observing whether the 
two confidence intervals overlap. Overlap is the situation where LI for the larger 
mean is less than L2 for the smaller mean, and such conclusions are made visually 
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enticing if the confidence intervals are presented in a graph (such as in Figure 7.5) 
or in a table (e.g .• as in Table 7.3b). However, this is not a valid procedure for 
hypothesis testing (c.g .. Barr, t 969; Browne. 1979: Ryan and Leadbetter. 2002; 
Schenker and Gentleman. 2(01). If there is no overlap and the population means 
are consequently concluded to be different, this inference will be associated with a 
Type I error probability less than the specified a (very much less if the two standard 
errors are similar): and if there is overlap. resulting in failure to reject Ho. this 
conclusion will be associated with a probability of a Type n error greater than (i.e .• 
a power less than) if the appropriate testing method were used. As an illustration 
if this, the data of Example 8.1 yield L I = 8.11 min and L2 = 9.39 min for the 
mean of group Band LI = 9.15 min and L2 = 10.33 min for the mean of group 
G: and the two confidence intervals overlap even though the null hypothesis is 
rejected. 

(a) One-Tailed Confidence Limits for Difference between Means. If the two-sample 
t test is performed to assess one-tailed hypotheses (Section 7.2), then it is appropriate 
to determine a one-tailed confidence interval (as was done in Section 7.3a following 
a one-tailed one-sample t test). Using one-tailed critical values of I. the following 
confidence limits apply: 

For Ho: ILl :5 IL2 versus ILl > IL2. or ILl - IL2 :5 ILIl versus Ho: ILl - IL2 > J.LO: 

LI = X - (ta(I).,,)(."'X 1-X2) and L2 = 00. 

For Ho: ILl "2= IL2 versus ILl < IL2. or ILl - IL2 "2= IL() versus ILl - IL2 < J.LO: 

LI = -00 and L2 = X + (la (I).V)(SXI-X2)' 

In Example 8.2, one-tailed confidence limits would be LI = -00 and L2 = 
( 1.746)( 1.55) = 2.71 cm. 

(b) Confidence Limits for Means when Variances Are Unequal. If the population 
variances are judged to be different enough to warrant using the Behrens-Fisher test 
(Section 8.1e) for Ho: ILl = IL2, then the computation of confidence limits is altered 
from that shown above. If this test rejects the null hypothesis, a confidence interval 
for each of the two popUlation means (ILl and IL2) and a CI for the difference between 
the means (ILl - IL2) should be determined. The 1 - a confidence interval for ILi is 
obtained as 

l. - s· - 2 
Xi ± ta(2).v' ....!.., which is Xi ± la(2).II' ~, 

lli y"X; (8. t 7) 

rather than by Equation 8.13, where v I is from Equation 8. t 2. The confidence interval 
for the difference between the two population means is computed to be 

(8.18) 

rather than by Equation 8.14, where s-x' -x is from Equation 8.lla or 8.llb. 
1- 2 

One-tailed confidence intervals are obtained as shown in Section 8.2a above, but 
using s -x' -x instead of Sx _ x . A confidence interval (two-tailed or one-tailed) for 

1- 2 ( 2 

ILl - IL2 includes zero when the associated Ho is not rejected. 
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In Example S.2a, Hu is rejected, so it is appropriate to determine a 95% CI 
for ILl, which is 37.4 ± 2.274 Jf37 = 37.4 days ± 2.7 days; for IL2, which 
is 46.0 ± 2.274JlO.93 = 46.0 days ± 7.5 days: and for ILl - IL2, which is 
37.4 - 46.0 ± (2.274)(3.51) = -S.6days ± 7.98 days. 

If Ho: ILl = IL2 is not rejected, then a confidence interval for the common mean, 
Xp (Equation S.15), may be obtained by using the variance of the combined data 
from the two samples (call it s~) and the degrees of freedom for those combined data 
(v/ = 11) + 112 - 1): 

(S.19) 

(c) Prediction Limits. As introduced in Section 7.3b. we can predict statistical char­
acteristics of future sampling from populations from which samples have previously 
been analyzed. Such a desire might arise with data from an experiment such as in 
Example S.1. Data were obtained from six animals treated with one drug and from 
seven animals treated with a second drug: and the mean blood-clotting times were 
concluded to be different undcr these two treatments. Equations 8.14 and S.18 showed 
how confidence intervals can be obtained for the difference bctween means of two 
samples. It could also be asked what the difference between the means would be of 
an additional sample of m) animals treated with the first drug and a sample of an 
additional nl2 animals treated with the second. 

For those two additional samples the best prediction of the difference between the 
twosamplemeanswouldbeXt - X2,which in Example8.l is 8.75 min - 9.74min = 
-0.99 min; and there would be a 1 - a probability that the difference between the 
two means would be contained in this prediction interval: 

XI - N - X2 ± ta (2).v sC' (S.19a) 

where 
s2 2 s2 s2 

i =..J!... + 
Sp 

+ J!... + 1.. (S.19b) c m) 11) m2 112 

(Hahn, 1977). For example, if an additional sample of 10 data were to be obtained 
for treatment with the first drug and an additional sample of 12 were to be acquired 
for treatment with the second drug, the 95% prediction limits for the difference 
between means would employ sJ, = 0.5193 min2, III = 6,112 = 7, mt = to, nl2 = 12, 

to.05(2).v=2.201. and v = 11; and s~ = 0.51 min. so the 95% prediction limits would be 
L) = -2.11 min and L2 = 0.13 min. 

As the above procedure uses the pooled variance, s~, it assumes that the two 
sampled populations have equal variances. If the two variances are thought to be 
quite different (the Behrens-Fisher situation discussed in Section S.lc). then it is 
preferable to calculate the prediction interval as 

XI - N - X2 ± ta(2).v' s£"' (S.19c) 

where 
s2 2 s2 ? 

i=-I + ~ + -L + ''2 (8.l9d) (' 

ml III m2 112 
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2. Sample sizes not large enough to result in detection of a difference of biological 
importance can expend resources without yielding useful results, and sample 
sizes larger than needed to detect a difference of biological importance can 
result in unnecessary expenditure of resources. 

3. Sample sizes not large enough to detect a difference of biological importance can 
expose subjects in the study to potentially harmful factors without advancing 
knowledge, and sample sizes larger than needed to detect a difference of 
biological importance can expose more subjects than necessary to potentially 
harmful factors or deny them exposure to potentially beneficial ones. 

Assuming each sample comes from a normal population and the population 
variances are similar, we can estimate the minimum sample size to use to achieve 
desired test characteristics: 

2s2 
n ~ 5: (Ia.v + 1f3( I ),v)2 (8.22) 

(Cochran and Cox, 1957: 19-21).* Here,5 is the smallest population difference we 
wish to detect: 5 = ILl - 1L2 for the hypothesis test for which Equation 8.1 is used; 
5 = IILI - 1L21 - 1Li) when Equation 8.9 is appropriate; 5 = ILl - 1L2 - ILO when 
performing a test using Equation 8.10. In Equation 8.22, la.p may be either la( 1 ).v or 
ta (2).v, depending, respectively, on whether a one-tailed or two-tailed test is to be 
performed. 

Note that the required sample size depends on the following four quantities: 

• 5, the minimum detectable difference between population means.t If we desire 
to detect a very small difference between means, then we shall need a larger 
sample than if we wished to detect only large differences. 

• u 2, the population variance. If the variability within samples is great, then a 
larger sample size is required to achieve a given ability of the test to detect 
differences between means. We need to know the variability to expect among the 
data; assuming the variance is the same in each of the two populations sampled. 
u2 is estimated by the pooled variance, s;" obtained from similar studies. 

• The significance level, a. If we perform the I test at a Iowa, then the critical 
value, ta•v , will be large and a large n is required to achieve a given ability to 
detect differences between means. That is, if we desire a low probability of 
committing a Type I error (i.e., falsely rejecting HII)' then we need large sample 
sizes. 

• The power of the test, 1 - f3. If we desire a test with a high probability of 
detecting a difference between population means (i.e., a low probability of 
committing a Type II error), then f3( 1) will be small. lf3( I) will be large. and 
large sample sizes arc required. 

Example 8.4 shows how the needed sample size may be estimated. As la(2).v and 
lf3( 1 ).v depend on n. which is not yet known. Equation 8.22 must be solved iteratively. 
as we did with Equation 7.10. It matters little if the initial guess for n is inaccurate. 
Each iterative step will bring the estimate of 11 closer to the final result (which is 

*The method of Section 1 n.3 may also be used for estimation of sample size. but it offers no 
substantial advantage over the present procedure. 

t /j is lowercase Greek delta. If JLO in the statistical hypotheses is not zero (see discussion 
surrounding Equations 8.9 and 8. 10). then /j is the amount by which the absolute value of the 
difference between the population means differs from JLo. 
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declared when two successive iterations fail to change the value of n rounded to 
the next highest integer). In general, however, fewer iterations are required (i.e .• the 
process is quicker) if one guesses high instead of low. 

EXAMPLE 8.4 
Test 

Estimation of Required Sample Size for a Two-Sample t 

We desire to test for significant difference between the mean blood-clotting times 
of persons using two different drugs. We wish to test at the 0.05 level of significance. 
with a 90% chance of detecting a true difference between population means as 
small as 0.5 min. The within-population variability, based on a previous study of 
this type (Example 8.1). is estimated to be 0.52 min2. 

Let us guess that sample sizes of 100 will be required. Then, " = 2(n - 1) = 
2(100 - 1) = 198.to.05(2).I9!!:::; 1.972,{3 = 1 - 0.90 = 0.10,tO.IO(I).19!! = 1.286, 
and we calculate (by Equation 8.22): 

11 ~ 2( O.5~) (1.972 + 1.286)2 = 44.2. 
(0.5) 

Let us now use II = 45 to determine JI = 2(n - 1) = 88, lo.()5(2).88 1.987. 
to.IO( I ).88 = 1.291. and 

11 ~ 2(0.5~) {1.987 + 1.291)2 = 44.7. 
(0.5 ) 

Therefore. we conclude that each of the two samples should contain at least 45 
data. 

If nl were constrained to be 30, then, using Equation 8.21, the required 112 would 
be 

11 = (44.7)(30) = 88. 
2 2(30) - 44.7 

For a given total number of data (nl + n2), maximum test power and robustness 
occur when III = m (i.e., the sample sizes are equal). There are occasions, however, 
when equal sample sizes are impossible or impractical. If, for example. III were fixed. 
then we would first determine n by Equation 8.22 and then find the required size 
of the second sample by Equation 8.21. as shown in Example 8.4. Note. from this 
example. that a total of 45 + 45 = 90 data are required in the two equal-sized 
samples to achieve the desired power. whereas a total of 30 + 88 = 118 data are 
needed if the two samples are as unequal as in this example. If 2n - 1 ~ 0, then see 
the discussion following Equation 8.21. 

(b) Minimum Detectable Difference. Equation 8.22 can be rearranged to estimate 
how small a population difference (5, defined above) would be detectable with a 
given sample size: 

(8.23) 

The estimation of 5 is demonstrated in Example 8.5. 
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EXAMPLE 8.5 
Sample t Test 

Estimation of Minimum Detectable Difference in a Two-

In two-tailed testing for significant difference between mean blood-clotting times 
of persons using two different drugs, we desire to use the 0.05 level of significance 
and sample sizes of 20. What size difference between means do we have a 90% 
chance of detecting? 

Using Equation 8.23 and the sample variance of Example 8.1, we calculate: 

5= 2{ 0.5193 ) ( ) 
20 tu.US( 2 ).3X + to. I O( I ).3X 

= (0.2279)(2.024 + 1.304) = 0.76 min. 

I n a Behrens-Fisher situation (i.e., if we don't assume that uT = u~). Equation 8.23 

would employ JsV'" + s~/,., instead of J2s;'; n. 

(c) Power of the Test. Further rearrangement of Equation 8.22 results in 

5 
tf3( I )." ~ ~ - ta.", 

2'ip 

n 

(8.24) 

which is analogous to Equation 7.12 in Section 7.7. On computing tf3( I ).", one 
can consult Appendix Table B.3 to determine f3( I), whereupon 1 - f3( 1) is the 
power. But this generally will only result in declaring a range of power (e.g., 
0.75 < power < 0.90). Some computer programs can provide the exact probability 
of f3( 1 ), or we may, with only slight overestimation of power (as noted in the footnote 
in Section 7.7) consider tf3( I) to be approximated by a normal deviate and may thus 
employ Appendix Table B.2. 

If the two population variances are not assumed to be the same, then JST/11 + s~/n 
would be used in place of J2\';'; 11 in Equation 8.24. 

The above procedure for estimating power is demonstrated in Example 8.6. along 
with the following method (which will be expanded on in the chapters on analysis of 
variance). We calculate 

~~~:; (8.25) 

(derived from Kirk. 1995: 182) and cf> (lowercase Greek phi) is then located in 
Appendix Figure 8.1a, along the lower axis (taking care to distinguish between cP's 
for a = 0.01 and a = 0.(5). Along the top margin of the graph are indicated pooled 
degrees of freedom, v, for a of either 0.01 or 0.05 (although the symbol V2 is used 
on the graph for a reason that will be apparent in later chapters). By noting where 
cf> vertically intersects the curve for the appropriate v, one can read across to either 
the left or right axis to find the estimate of power. As noted in Section 7.7c. the 
calculated power is an estimate of the probability of rejecting a false null hypothesis 
in future statistical tests; it is not the probability of rejecting Hu in tests performed on 
the present set of data. 
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EXAMPLE 8.6 Estimation of the Power of a Two-Sample t Test 

What would be the probability of detecting a true difference of 1.0 min between 
mean blood-clotting times of persons using the two drugs of Example 8.1. if 
nl = n2 = 15. and a(2) = 0.05? 

For n = 15. v = 2(1l - 1) = 28 and to.IIS(2).2R = 2.048. Using Equation 8.24: 

1.0 
tp( I ).28 ~ ----,==== - 2.048 = 1.752. 

2(0.5193) 

15 

Consulting Appendix Table B.3. we see that. for one-tailed probabilities and 
v = 28: 0.025 < P{t ;:: 1.752) < 0.0.s. so 0.025 < f3 < 0.05. 

Power = 1 - f3. so 0.95 < power < 0.975. 

Or. by the normal approximation. we can estimate f3 by P( Z ~ 1.752) = 0.04. 
So power = 0.96. [The exact figures are f3 = 0.045 and power = 0.955.] 

To use Appendix Figure B.l. we calculate 

(15)( 1.0) = 2.69. 
4(0.5193 ) 

In the first page of Appendix Figure B.l. we find that 4J = 2.69 and v( = V2) = 28 
are associated with a power of about 0.96. 

(d) Unequal Sample Sizes. For a given total number of data. nl + n2. the two­
sample t test has maximum power and robustness when nl = n2. However. if nl =I- "2. 
the above procedure for determining minimum detectable difference (Equation 8.23) 
and power (Equations 8.24 and 8.25) can be performed using the harmonic mean of 
the two sample sizes (Cohen. 1988: 42): 

n = 2n)n2 . 
111 + n2 

Thus. for example. if nl = 6 and n2 = 7. then 

n = 2(6)(7) = 6.46. 
6 + 7 

~.5 TESTING FOR DIFFERENCE BETWEEN TWO VARIANCES 

(8.26) 

If we have two samples of measurements. each sample taken at random from a 
normal population, we might ask if the variances of the two populations are equal. 
Consider the data of Example 8.7, where sT. the estimate of aT. is 21.87 moths2• and 
s~, the estimate of O"~, is 12.90 moths2 . The two-tailed hypotheses can be stated as 
Ho: O"T = O"~ and HA : O"T 'i: O"~. and we can ask. What is the probability of taking two 
samples from two populations having identical variances and having the two sample 
variances be as different as are sy and s~? If this probability is rather low (say $ 0.05. 
as in previous chapters). then we reject the veracity of Ho and conclude that the two 
samples came from populations having unequal variances. If the probability is greater 
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than a, we conclude that there is insufficient evidence to conclude that the variances 
of the two populations are not the same. 

(a) Variance-Ratio Test. The hypotheses may be submitted to the two-sample 
variance-ratio test, for which one calculates 

2 
or F = s~, whichever is larger.* 

sl 
(8.27) 

That is, the larger variance is placed in the numerator and the smaller in the denomi­
nator. We then ask whether the calculated ratio of sample variances (i.e., F) deviates 
so far from 1.0 as to enable us to reject Ho at the a level of significance. For the data 
in Example 8.7. the calculated F is 1.70. The critical value, FO.05(2).10.9. is obtained 
from Appendix Table 8.4 and is found to be 3.59. As 1.70 < 3.59, we do not reject 
Hot. 

Note that we consider degrees of freedom associated with the variances in both 
the numerator and denominator of the variance ratio. Furthermore, it is important to 
realize that Fa ./1I./1l and Fa./1l./11 are not the same (unless, of course, VI = lI2), so the 
numerator and denominator degrees of freedom must be referred to in the correct 
order. 

If Ho: oi = (7'~ is not rejected, then sT and s~ are assumed to be estimates of 
the same population variance, (7'2. The best estimate of this (7'2 that underlies both 
samples is called the pooled variance (introduced as Equation 8.4): 

S2 = SSI + SS2 = vlsT + V2S~ 
P VI + "2 VI + V2 

(8.28) 

One-tailed hypotheses may also be submitted to the variance ratio test. For 
Ho: uT ~ oi and HA: (7'T < u~,s~ is always used as the numerator of the variance 
ratio; for Ho: oi $ u~ and HA: uT > u~,sT is always used as the numerator. (A look 
at the alternate hypothesis tells us which variance belongs in the numerator of F in 
order to make F > 1.) 

The critical value for a one-tailed test is Fa( I ),"1,v2 from Appendix Table B.4, where 
"I is the degrees of freedom associated with the numerator of F and V2 is the degrees 
of freedom associated with the denominator. Example 8.8 presents the data submitted 
to the hypothesis test for whether seeds planted in a greenhouse have less variability 
in germination time than seeds planted outside. 

The variance-ratio test is not a robust test, being severely and adversely affected by 
sampling non normal populations (e.g., Box. 1953; Church and Wike, 1976: Markowski 
and Markowski. 1990: Pearson. 1932: Tan, 1982), with deviations from mesokurto­
sis somewhat more important than asymmetry; and in cases of non normality the 
probability of a Type I error can be very much greater than a. 

·What we know as the F statistic is a ratio of the variances of two normal distributions and was 
first described by R. A. Fisher in 1924 (and published in 1928) (Lehmann. 1999): the statistic was 
named in his honor by G. W. Snedecor (1934: 15). 

tSome calculators and many computer programs have the capability of determining the 
probability of a given F. For the present example, we would thereby find that P( F ~ 1.70) = 0.44. 
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EXAMPLE 8.7 The Two-Tailed Variance Ratio Test for the Hypothesis 
Ho: oi = 01 and HA: oi :I: 01. The Data Are the Numbers of Moths Caught 
During the Night by 11 Traps of One Style and 10 Traps of a Second Style 

Ho: CT~ = CT~ 
H 2 ., 

A: CT,:F 02 

a = 0.05 

Trap type J 

n, = 11 

v, = 10 

41 
35 
33 
36 
40 
46 
31 
37 
34 
30 
38 

Trap type 2 

52 
57 
62 
55 
64 
57 
56 
55 
60 
59 

SS] = 218.73 moths2 SS2 = 116.10 moths2 

s~ = 21.87 moths2 

2 
F = s~ = 21.87 = 1.70 

s2 12.90 

FO.05(2).JO.9 = 3.96 

Therefore. do not reject Ho. 

s~ = 12.90 moths2 

P(0.20 < F < O.50)[P = 0.44] 

S2 = 218.73 moths2 + 116.10 moths2 = 17.62 moths2 
'p 10 + 9 

The conclusion is that the variance of numbers of moths caught is the same for the 
two kinds of traps. 

(b) Other Two-Sample Tests for Variances. A large number of statistical procedures 
to test differences between variances have been proposed and evaluated (e.g .• Brown 
and Forsythe. 1974c; Church and Wike. 1976; Draper and Hunter. 1969: Levene. 
1960; Miller. 1972: O'Neill and Mathews. 2000). often with the goal of avoiding the 
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EXAMPLE 8.8 A One-Tailed Variance-Ratio Test for the Hypothesis That 
the Germination Time for Pine Seeds Planted in a Greenhouse Is Less Variable 
Than for Pine Seeds Planted Outside 

Ho: 

a = 0.05 

1T2 > 1T2 
v I - "2 

crt < cr~ 

Germination Time (in Days) 
of Pine Seeds 

Greenhouse 

69.3 
75.5 
81.0 
74.7 
72.3 
78.7 
76.4 

111 = 7 

"I = 6 

SSI = 90.57 days2 

sT = 15.10 days2 

F = 87.62 = 5.80 
15.10 

FO.05( I ).8.6 = 4.15 

Therefore. reject Ho. 

112 = 9 

"2 = 8 

Outside 

69.5 
64.6 
74.0 
84.8 
76.0 
93.9 
81.2 
73.4 
88.0 

SS2 = 700.98 days2 

s~ = 87.62 days2 

0.01 < P(F ~ 5.80) < 0.025 [P = 0.023] 

The conclusion is that the variance in germination time is less in plants grown in 
the greenhouse than in those grown outside. 

lack of robustness of the variance-ratio test when samples come from nonnormal 
populations of data. A commonly encountered one is Levene's test, and its various 
modifications, which is typically less affected by non normal distributions than the 
variance-ratio test is. 

The concept is to perform a two-sample t test (two-tailed or one-tailed, as the 
situation warrants; see Section 8.1), not on the values of X in the two samples but 
on values of the data after conversion to other quantities. A common conversion 
is to employ the deviations of each X from its group mean or median; that is, the 
two-sample I test is performed on IXij - Xii or on IXij - median of group il. Other 
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data conversions. such as the square root or the logarithm of IXij - Xii. have also 
been examined (Brown and Forsythe. 1974c). 

Levene's test is demonstrated in Example 8.9 for two-tailed hypotheses. and X' is 
used to denote IXi - XI. This procedure may also be employed to test one-tailed 
hypotheses about variances, either Hu: uy ~ (T~ vs. HA : u1 < u~, or Ho: uy :5 u~ vs. 
HA: uT > u~. This would be done by the one-tailed I-testing described in Section 8.1, 
using u 2 in place of J.L in the hypothesis statements and using IXi - XI instead of Xi 
in the computations. 

EXAMPLE 8.9 The Two-Sample Levene Test for Ho: u~ = u~ and HA: 
u~ =I: u~. The Data Are Those of Example 8.7 

Ho: u1 = u~ 
H A : UT:¢: U~ 

a = 0.05 

For group 1: 2X = 401 moths, n = 11, v = 10, X = 36.45 moths. 

For group 2: 2X = 577 moths, n = 10. v = 9, X = 57.70 moths. 

Trap Type I 

Xi 

41 
35 
33 
36 
40 
46 
31 
37 
34 
30 
38 

2Xj 

= 401 moths 

X' = 

IXi - XI 

4.55 
1.45 
3.45 
0.45 
3.55 
9.55 
5.45 
0.55 
2.45 
6.45 
1.55 

2X; = 

21Xi - XI 

= 39.45 moths 

Trap Type 2 

Xi 

52 
57 
62 
55 
64 
57 
56 
55 
60 
59 

2Xi 

:;;;;: 577 moths 

X' = 
IXi - XI 

5.70 
0.70 
4.30 
2.70 
6.30 
0.70 
1.70 
2.70 
2.30 
1.30 

2X~= 
I 

21Xi - XI 

= 28.40 moths 

For the absolute values of the deviations from the mean: 

Xi = 39.45 moths/II 

= 3.59 moths 

SSj = 77.25 moths2 

X2 = 28.40 moths/1O 

= 2.84 moths 

SSi = 35.44 moths2 
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the calculated confidence intervals are only approximations. with the approximation 
poorer the further from normality the populations are. 

Meeker and Hahn (] 980) discuss calculation of prediction limits for the variance 
ratio and provide special tables for that purpose. 

8.7 SAMPLE SIZE AND POWER IN TESTS FOR DIFFERENCE BETWEEN TWO VARIANCES 

(a) Sample Size Required. In considering the variance-ratio test of Section 8.5. we 
may ask what minimum sample sizes are required to achieve specified test charac­
teristics. Using the normal approximation recommended by Desu and Raghavarao 
(1990: 35). the following number of data is needed in each sample to test at the a 
level of significance with power of 1 - (3: 

2 

n= 
Z" + Z/3( I) 

In(j,) 
+ 2. (8.32) 

For analysts who prefer performing calculations with "common logarithms" (those 
employing base 10) to using "natural logarithms" (those in base e).* Equation 8.32 
may be written equivalently as 

2 

n= 
Za + Z{3(I) + 2. (8.33) 

(2.30259) IOg(j,) 
This sample-size estimate assumes that the samples are to be equal in size. which is 
generally preferable. If. however. it is desired to have unequal sample sizes (which 
will typically require more total data to achieve a particular power), one may specify 
that VI is to be m times the size of V2; then (after Desu and Raghavarao. 1990: 35): 

m = nl • 
n2 - 1 

(8.34) 

112 = (m + 1 )(n - 2) + 2, (8.35) 
2m 

and 

.". 
nl = m( n2 - 1) + 1. (8.36) 

* In this book, 111 will denote the natural, or Naperian, logarithm, and log will denote the common, 
or Briggsian.logarithm. These are named for the Scottish mathematician John Napier (1550-1617), 
who devised and named logarithms. and the English mathematician Henry Briggs (1561-1630). who 
adapted this computational method to base 10: the German astronomer Johann Kepler (1550-1617) 
was the first to use the abbreviation "Log,"' in 1624, and Italian mathematician Bonaventura Cavalieri 
(1598-1647) was the first to use "log"' in 1632 (Cajori.1928/9, Vol. II: 105-106; Gul\ber, 1997: 152). 
Sometimes loge and logw will be seen instead of In and log. respectively. 
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As in Section 8.5. determination of whether sf or s~ is placed in the numerator 
of the variance ratio in Equation 8.32 depends upon the hypothesis test. and Za is 
either a one-tailed or two-tailed normal deviate depending upon the hypothesis to be 
tested; nl and 112 correspond to si and s~, respectively. This procedure is applicable if 
the variance ratio is > I. 

(b) Power of the Test. We may also estimate what the power of the variance ratio 
test would be if specified sample sizes were used. If the two sample sizes are the same 
(Le .• n = nl = 112). then Equations 8.32 and 8.33 may be rearranged, respectively. as 
follows: 

(8.37) 

ZP( I) ~ oj. - 2(2.30259) log ( 1,) - Z •. (8.38) 

After ZP( I ) is calculated. f3( I ) is determined from the last line of Appendix Table B.3, 
or from Appendix Table B.2, or from a calculator or computer that gives probability 
of a normal deviate; and power = 1 - f3( I ). If the two sample sizes are not the same. 
then the estimation of power may employ 

Z/3( I) = 2m(n2 - 2) In(si) _ Za 
m + I s~ 

(8.39) 

or 

Z/3(I) = /2111(112 - 2)(2.30259)IOg(S!) - Za. 
\j 111 + 1 s2 

(8.40) 

where 111 is as in Equation 8.34. 

L8 TESTING FOR DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 

A very useful property of coefficients of variation is that they have no units of 
measurement. Thus. V's may be compared even if they are calculated from data 
having different units. as is the case in Example 8.10. And it may be desired to test the 
null hypothesis that two samples came from populations with the same coefficients of 
variation. 

EXAMPLE 8.10 A Two-Tailed Test for Difference Between Two Coeffi-
cients of Variation 

Ho: The intrinsic variability of male weights is the same as the intrinsic variability 
of male heights (Le .• the population coefficients of variation of weight and 
height are the same, namely Ho: all ILl = a21 IL2). 

Ho: The intrinsic variability of male weight is not the same as the intrinsic 
variability of male heights (i.e., the population coefficients of variation of 
weight and height are not the same, namely Hu: at! ILl #:- a21 IL2)' 
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(a) The variance-ratio test. 

Weight (kg) Log o/weight Height (cm) Log o/height 

72.5 
71.7 
60.8 
63.2 
71.4 
73.1 
77.9 
75.7 
72.0 
69.0 

nl = 10 

VI = 9 

XI = 70.73 kg 

1.86034 
1.85552 
1.78390 
1.80072 
1.85370 
1.86392 
1.89154 
1.87910 
1.85733 
1.83885 

SSI = 246.1610 kg2 

Sf = 27.3512 kg2 

SI = 5.23 kg 

Vi = 0.0739 

(SSlog)1 = 0.00987026 

(sfog») = 0.0010967 

F = 0.0010967 = 2.74 
0.00040019 

FO.05(2),9.10 = 3.78 

Therefore, do not reject Ho. 

183.0 
172.3 
180.1 
190.2 
191.4 
169.6 
166.4 
177.6 
184.7 
187.5 
179.8 

n2 = 11 

V2 = 10 

2.26245 
2.23629 
2.25551 
2.27921 
2.28194 
2.22943 
2.22115 
2.24944 
2.26647 
2.27300 
2.25479 

X 2 = 180.24 cm 

SS2 = 678.9455 cm2 

s~ = 67.8946 cm2 

S2 = 8.24cm 

V2 = 0.0457 

(SSlogh = 0.00400188 

(Sfogh = 0.00040019 

0.10 < P < 0.20 [P = 0.13] 

It is concluded that the coefficient of variation is the same for the population 
of weights as it is for the population of heights. 

(b) The Z test. 

Vp = VI VI + Jl2 V2 = 9(0.0739) + 10(0.0457) = 1.1221 = 0.0591 
VI + V2 9 + 10 19 

V~ = 0.003493 

Z = r====V=1=-=V=2==== 

(
Vp2 V2) + .J!. (0.5 + V~) 
VI V2 
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0.0739 - 0.0457 
= -r========================= 

(0.00;493 + 0.~~493) (0.5 + 0.003493) 

= 0.0282 = 1.46 
0.0193 

ZO.05(2) = 10.05(2).00 = 1.960 

Do not reject Ho. 
0.10 < P < 0.20 [P = 0.14] 

It is concluded that the coefficient of variation is the same for the population 
of weights as it is for the population of heights. 

Lewontin (1966) showed that 

(8.41) 

may be used for a variance-ratio test, analogously to Equation 8.27. In Equation 

8.41, (stag); refers to the variance of the logarithms of the data in Sample i, where 
logarithms to any base may be employed. This procedure is applicable only if all 
of the data are positive (i.e., > 0), and it is demonstrated in Example 8.10a. Either 
two-tailed or one-tailed hypotheses may be tested. as shown in Section 8.5. 

This variance-ratio test requires that the logarithms of the data in each sample 
come from a normal distribution. A procedure advanced by Miller (1991) allows 
testing when the data, not their logarithms, are from normal distributions (that have 
positive means and variances). The test statistic, as demonstrated in Example 8.1 Ob, is 

where 

VI - V2 
Z = r================ 

+ V~)(O.5 
V2 

V - VI VI + V2 V2 
p-

VI + V2 

(8.42) 

(8.43) 

is referred to as the "pooled coefficient of variation," which is the best estimate of 
the population coefficient of variation, u/ J.L, that is common to both populations if 
the null hypothesis of no difference is true. 

This procedure is shown, as a two-tailed test, in Example 8.10b. Recall that critical 
values of Z may be read from the last line ofthe table of critical values of I (Appendix 
Table B.3), so Za(2) = ta(2).oo. One-tailed testing is also possible, in which case the 
alternate hypothesis would declare a specific direction of difference and one-tailed 
critical values (too( I ).a) would be consulted. This test works best if there are at least 
10 data in each sample and each population's coefficient of variation is no larger than 
0.33. An estimate of the power of the test is given by Miller and Feltz (1997). 
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8.9 CONFIDENCE LIMITS FOR THE DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 

Miller and Feltz (1997) have provided this 1 - a confidence interval for uJ/ ILl -
u2/ IL2. where the two sampled populations are normally distributed: 

) vr 2 Vi 2 
VI - V2 ± Zo(2) -(0.5 + Vd + -(0.5 + V2 )· 

VI VI 
(8.44) 

8.10 NONPARAMETRIC STATISTICAL METHODS 

There is a large body of statistical methods that do not require the estimation of 
population parameters (such as IL and u) and that test hypotheses that are not 
statements about population parameters. These statistical procedures are termed 
nonparametric tests. * These are in contrast to procedures such as t tests. which are 
called parametric tests and which do rely upon estimates of population parameters 
and upon the statement of parameters in the statistical hypotheses. Although they 
may assume that the sampled populations have the same dispersion or shape, 
nonparametric methods typically do not make assumptions about the nature of the 
populations' distributions (e.g., there is no assumption of normality)~ thus they are 
sometimes referred to as distribution-free tests.t Both parametric and nonparametric 
tests require that the data have come at random from the sampled populations. 

Nonparametric tests (such as the two-sample testing procedure described in 
Section 8.11) generally may be applied to any situation where we would be justified 
in employing a parametric test (such as the two-sample I test), as well as in some 
instances where the assumptions of the latter are untenable. If either the parametric 
or non parametric approach is applicable. then the former will generally be more 
powerful than the latter (i.e .• the parametric method will typically have a lower 
probability of committing a Type II error). However, often the difference in power 
is not great and can be compensated by a small increase in sample size for the 
nonparametric test. When the underlying assumptions of a parametric test are 
seriously violated, then the non parametric counterpart may be decidedly more 
powerful. 

Most non parametric statistical techniques convert observed data to the ranks of 
the data (i.e., their numerical order). For example. measurements of 2.1, 2.3. 2.9, 
3.6, and 4.0 kg would be analyzed via their ranks of 1, 2. 3. 4, and 5. A possible 
disadvantage of this rank transformation of data is that some information is lost (for 
example, the same ranks would result from measurements of 1.1, 1.3. 2.9, 4.6, and 
5.0 kg). A possible advantage is that outliers (see Section 2.5) will have much less 
influence (for example, the same ranks would result from measurements of 2.1.2.3, 
2.9,3.6, and 25.0 kg). 

It is sometimes counseled that only nonparametric testing may be employed 
when dealing with ordinal-scale data, but such advice is based upon what Gaito 
(1980) calls "an old misconception"; this issue is also discussed by Anderson (1961), 
Gaito (1960), Savage (1957), and Stevens (1968). Interval-scale or ratio-scale mea­
surements are not intrinsically required for the application of parametric testing 
procedures. Thus parametric techniques may be considered for ordinal-scale data if 
the assumptions of such methods are met - typically, random sampling from normally 
distributed populations with homogeneity of variances. But ordinal data often come 

*The term nonparametric was first used by Jacob Wolfowitz in 1942 (David. 1995: Noether. 
1(84). 

tThe terms nonparametric: and (/istril>lttion-/ree are commonly used interchangeably. but they 
do not both define exactly the same set of statistical techniques (Noether. 1(84). 
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from nonnormal populations. in which case properly subjecting them to parametric 
analysis depends upon the robustness of the test to the extent of nonnormality 
present. 

8.11 TWO-SAMPLE RANK TESTING 

Several nonparametric procedures, with various characteristics and assumptions, have 
been proposed for testing differences between the dispersions, or variabilities, of two 
populations (e.g., see Hettmansperger and McKean. 1998: 118-127: Hollander and 
Wolfe, 1999: 141-188; Sprent and Smeeton, 2001: 175-185). A far more common 
desire for nonparametric testing is to compare two populations' central tendencies 
(i.e .. locations on the measurement scale) when underlying assumptions of the t test 
are not met. The most frequently employed such test is that originally proposed, for 
equal sample sizes. by Wilcoxon (1945)* and independently presented by Mann and 
Whitney (1947). for equal or unequal n's. It is called the Wilcoxon-Mann-Whitney 
test or, more commonly, the Mann-Whitney test. 

(a) The Mann-Whitney Test. For this test, as for many other nonparametric proce­
dures, the actual measurements are not employed, but we use instead the ranks of 
the measurements. The data may be ranked either from the highest to lowest or from 
the lowest to the highest values. Example 8.1 t ranks the measurements from highest 
to lowest: The greatest height in either of the two groups is given rank 1, the second 
greatest height is assigned rank 2, and so on, with the shortest height being assigned 
rank N, where 

N = n, + n2. (8.45) 

A Mann-Whitney statistic is then calculated as 

V + nl (nl + I) _ R" = n,n2 
2 

(8.46) 

where nil and nz are the number of observations in samples 1 and 2, respectively. 
and R, is the sum of the ranks in sample 1. The Mann-Whitney statistic can also be 
calculated as 

V , n2 (n2 + 1) R 
= n2n , + - 2 

2 
(8.47) 

(where R2 is the sum of the ranks of the observations in sample 2), because the 
labeling of the two samples as 1 and 2 is arbitrary.t If Equation 8.46 has been used to 
calculate V, then V' can be obtained quickly as 

(8.48) 

·Wilcoxon may have proposed this test primarily to avoid the drudgery of performing numerous 
t tests in a time before ubiquitous computer availability (Noether. 1984). Kruskal (1957) gives 
additional history. including identification of seven independent developments of the procedure 
Wilcoxon introduced. two of them prior to Wilcoxon. the earliest being by the German psychologist 
Gustav Deuchler in 1914. 

tThe Wilcoxon two-sample test (sometimes referred to as the Wilcoxon rank-sum test) uses a 
test statistic commonly called W. which is R\ or R2: the test is equivalent to the Mann-Whitney 
test. for V = Rz - n2(n2 + 1 )/2 and V' = R\ - nl (n\ + I )/2. V (or V') is also equal to 
the number of data in one sample that are exceeded by each datum in the othcr sample. Note in 
Example 8.11: For females. ranks 7 and H each exceed 6 male ranks and ranks 10. 11. and 12 each 
exceed all 7 males ranks. for a total of 6 + 6 + 7 + 7 + 7 = 33 = V: for males. rank 9 exceeds 2 
female ranks for a total of 2 = V'. 
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EXAMPLE 8.11 The Mann-Whitney Test for Nonparametric Testing of 
the Two-Tailed Null Hypothesis That There Is No Difference Between the 
Heights of Male and Female Students 

Ho: Male and female students are the same height. 

HA : Male and female students are not the same height. 

a = 0.05 

Ranks of Ranks of 
Heights of males Heights offemales male heights female heights 

193 em 
188 
185 
183 
180 
175 
170 

nl = 7 

178cm 
173 
168 
165 
163 

V I1I(n) + 1) + -'--'---''--~ - R) = nl1l2 
2 

= (7)(5) + (7)(8) 
2 

= 35 + 28 - 31 

= 32 

V' = 111112 - V 

= (7)(5) - 32 

=3 

VO.OS(2).75 = VO.OS(2).5.7 = 30 

As 32 > 30, Ho is rejected. 

31 

1 
2 
3 
4 
5 
7 
9 

RI = 31 

0.01 < P( V ~ 32 or V' :5 3) < 0.02 [P = 0.018]* 

6 
8 

10 
11 
12 

Therefore, we conclude that height is different for male and female students. 

and if Equation 8.47 has been used to compute V', then V can he ascertained as 

V = 111112 - V'. (8.49) 

*In many of the examples in this book. the exact probability of a statistic from a non parametric 
test (such as U) will be given within brackets. In some cases. this probability is obtainable from 
publishcd sources (e.g., Owen. 1962). It may also be given by computer software. in which case 
there are two cautions: The computer result may not be accurate to the number of decimal places 
given. and the computer may have used an approximation (such as the normal approximation in 
the case of U; sec Section 8.11d). which may result in a probability departing substantially from the 
exact probability. especially if the sample sizes are small. 
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For the two-tailed hypotheses. Ho: male and female students are the same height 
and HA: male and female students are not the same height. the calculated V or 
V' -whichever is larger-is compared with the two-tailed value of Va (2).III.n2 found 
in Appendix Table B.11. This table is set up assuming 11) ~ 112. so if 11) > 112, simply 
use Va (2) JI2J/I as the critical value. If either V or V'is as great as or greater than the 
critical value. Ho is rejected at the ex level of significance. A large V or V' will result 
when a preponderance of the large ranks occurs in one of the samples. As shown 
in Example 8.11, neither parameters nor parameter estimates are employed in the 
statistical hypotheses or in the calculations of V and V'. 

The values of V in the table are those for probabilities less than or equal to the 
column headings. Therefore. the V of 32 in Example 8.11 is seen to have a probability 
of 0.01 < P ~ 0.02. If the calculated V would have been 31. its probability would 
have been expressed as 0.02 < P < 0.05. 

We may assign ranks either from large to small data (as in Example 8.11). or from 
small to large. calling the smallest datum rank 1. the next largest rank 2, and so on. 
The value of V obtained using one ranking procedure will be the same as the value 
of V' using the other procedure. In a two-tailed test both V and V' are employed. so 
it makes no difference from which direction the ranks are assigned. 

In summary. we note that after ranking the combined data of the two samples, 
we calculate V and V' using either Equations 8.46 and 8.48. which requires the 
determination of R" or Equations 8.47 and 8.49. which requires R2. That is. the sum 
of the ranks for only one of the samples is needed. However. we may wish to compute 
both R, and R2 in order to perform the following check on the assignment of ranks 
(which is especially desirable in the somewhat more complex case of assigning ranks 
to tied data. as will be shown below): 

(8.50) 

Thus. in Example 8.11. 

R, + R2 = 30 + 48 = 78 

should equal 

N(N + 1) = 12(12 + 1) =78. 
2 2 

This provides a check on (although it does not guarantee the accuracy of) the 
assignment of ranks. 

Note that hypotheses for the Mann-Whitney test are not statements about param­
eters (e.g., means or medians) of the two populations. Instead. they address the more 
general. less specific question of whether the two population distributions of data are 
the same. Basically, the question asked is whether it is likely that the two samples 
came at random from the two populations described in the null hypothesis. If samples 
at least that different would occur with a probability that is small (i.e., less than the 
significance level, such as 0.05), then Ho is rejected. 

The Mann-Whitney procedure serves to test for difference between medians under 
certain circumstances (such as when the two sampled populations have symmetrical 
distributions), but in general it addresses the less specific hypothesis of similarity 
between the two populations' distributions. The Watson test of Section 26.6 may also 
be employed when the Mann-Whitney test is applicable, but the latter is easier to 
perform and is more often found in statistical software. 
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(b) The Mann-Whitney Test with Tied Ranks. Example 8.12 demonstrates an 
important consideration encountered in tests requiring the ranking of observations. 
When two or more observations have exactly the same value, they are said to be 
tied. The rank assigned to each of the tied ranks is the mean of the ranks that 
would have been assigned to these ranks had they not been tied. * For example, in 
the present set of data, which are ranked from low to high, the third and fourth 
lowest values are tied at 32 words per minute, so they are each assigned the rank 
of (3 + 4 )/2 = 3.5. The eighth, ninth, and tenth observations are tied at 44 words 
per minute, so each of them receives the rank of (8 + 9 + 10)/3 = 9. Once the 
ranks have been assigned by this procedure, V and V' are calculated as previously 
described. 

(c) The One-Tailed Mann-Whitney Test. For one-tailed hypotheses we need to 
declare which tail of the Mann-Whitney distribution is of interest, as this will 
determine whether V or V'is the appropriate test statistic. This consideration 
is presented in Table 8.2. In Example 8.12 we have data that were ranked from 
lowest to highest and the alternate hypothesis states that the data in group 1 
are greater in magnitude than those in group 2. Therefore, we need to compute 
V' and compare it to the one-tailed critical value, Va( 1 ),171 J 12' from Appendix 
Table B.l!. 

TABLE 8.2: The Appropriate Test Statistic for the One-Tailed Mann-Whitney Test 

Ranking done from 
low 10 high 

Ranking done from 
high to low 

Ho: Group 1 ~ Group 2 
HA : Group 1 < Group 2 

v 

V' 

Ho: Group 1 s Group 2 
HA : Group 1 > Group 2 

V' 

V 

(d) The Normal Approximation to the Mann-Whitney Test. Note that Appendix 
Table B.ll can be used only if the size of the smaller sample does not exceed twenty 
and the size of the larger sample does not exceed forty. Fortunately, the distribution 
of V approaches the normal distribution for larger samples. For large 111 and 112 we 
use the fact that the V distribution has a mean of 

111112 
{.Lv = -2-' 

which may be calculated, equivalently, as 

and a standard error of 

/LV = 
V + V' 

2 

uu = 
111112(N + 1) 

12 

(8.51) 

(8.51a) 

(8.52) 

* Although other procedures have been proposed to deal with lies, assigning the rank mean has 
predominated for a long time (e.g., Kendall, 1945). 
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EXAMPLE 8.12 The One-Tailed Mann-Whitney Test Used to Determine 
the Effectiveness of High School Training on the Typing Speed of College 
Students. This Example Also Demonstrates the Assignment of Ranks to Tied 
Data 

HI): Typing speed is not greater in college students having had high school typing 
training. 

H A: Typing speed is greater in college students having had high school typing 
training. 

a = 0.05 

Typing Speed (words per minute) 
With training Without training 

(rank in parentheses) (rank in parentheses) 

44 (9) 
48 (12) 
36 (6) 

32 (3.5) 
51 (13) 
45 (11) 
54 (14) 
56(15) 

32 (3.5) 
40 (7) 
44 (9) 
44 (9) 
34 (5) 
30 (2) 
26 (1) 

Because ranking was done from low to high and the alternate hypothesis states 
that the data of group one are larger than the data of group two, use V f as the test 
statistic (as indicated in Table 8.2). 

v, + n2(n2 + 1) - R2 = 1l2n l 
2 

= (7)(8) + (7)(8) - 36.5 
2 

= 56 + 28 - 36.5 

= 47.5 

VO.05( I ).8.7 = VO.05( I ).7.8 = 43 

As 47.5 > 43. reject Ho. 

0.01 < P < 0.025 [P = 0.012] 

Consequently, it is concluded that college-student typing speed is greater for 
students who had typing training in high school. 

where N = nl + n2. as used earlier. Thus. if a V. or a V f • is calculated from data 
where either nl or n2 is greater than that in Appendix Table B.ll, its significance can 
be determined by computing 

z = _V_---'-J.L~U (8.53) 
(TU 
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or, using a correction for continuity, by 

Z(, = I V - JLV I - 0.5. (8.54) 
(TV 

The continuity correction is included to account for the fact that Z is a continuous 
distribution. but V is a discrete distribution. However, it appears to be advisable 
only if the two-tailed P is about 0.05 or greater (as seen from an expansion of the 
presentation of Lehmann, 1975: 17). 

Recalling that the t distribution with v = 00 is identical to the normal distribution, 
the critical value, Zo, is equal to the critical value, 10 •00, The normal approximation is 
demonstrated in Example 8.13. When using the normal approximation for two-tailed 
testing, only V or V' (not both) need be calculated. If V'is computed instead of U, 
then V'is simply substituted for V in Equation 8.53 or 8.54, the rest of the testing 
procedure remaining the same. 

EXAMPLE 8.13 The Normal Approximation to a One-Tailed Mann-Whitney 
Test to Determine Whether Animals Raised on a Dietary Supplement Reach 
a Greater Body Weight Than Those Raised on an Unsupplemented Diet 

In the experiment, 22 animals (group 1) were raised on the supplemented diet, 
and 46 were raised on the unsupplemented diet (group 2). The body weights were 
ranked from 1 (for the smallest weight) to 68 (for the largest weight). and V was 
calculated to be 282. 

Ho: Body weight of animals on the supplemented diet are not greater than those 
on the unsupplemented diet. 

HA : Body weight of animals on the supplemented diet are greater than those on 
the unsupplemcntcd diet. 

n I = 22, n2 = 46, N = 68 

V = 282 

V' = nln2 - V = (22)(46) - 282 = 1012 - 282 = 730 

/J-V = n 1112 = (22)( 46) = 506 
2 2 

(TV = (22)( 46 )( 68 + 1) = 76.28 
12 

Z = V' - JLV = 224 = 2.94 
(TV 76.28 

For a one-tailed test at a = 0.05, tU.05( I ).00 = ZO.05( I) = 1.6449. 

As Z = 2.94 > 1.6449, reject Ho. [P = 0.0016] 

So we conclude that the supplemental diet results in greater body weight. 

• One-tailed testing may also be performed using the normal approximation. Here 
one computes either V or V', in accordance with Table 8.2. and uses it in either 
Equation 8.55 or 8.56, respectively, inserting the correction term (-0.5) if P is about 
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0.025 or greater: 

Z V - J.LU - 0.5 'f V . d c = • 1 IS use . or (8.55) 
uu 

Z V' - J.LU - 0.5 'f V' . d (' = ,liS use . (8.56) 
CJ'U 

The resultant Zc is then compared to the one-tailed critical value, Za( I), or. equiva­
lently, ta( 1 ).00; and if Z ~ the critical value, then Ho is rejected. * 

If tied ranks exist and the normal approximation is utilized. the computations are 
slightly modified as follows. One should calculate the quantity 

(8.57) 

where t; is the number of ties in a group of tied values, and the summation is performed 
over all groups of ties. Then. 

u = I 111112 • N3 - N - L t 
U 'J N2 - N 12 ' 

(8.58) 

and this value is used in place of that from Equation 8.52. (The computation of L t is 
demonstrated, in a similar context, in Example 10.11.) 

The normal approximation is best for a( 2) = 0.10 or 0.05 [or for a( 1) = 0.05 or 
0.025] and is also good for a( 2) = 0.20 or 0.02 [or for a( 1) = 0.10 or 0.01 J. with 
the approximation improving as sample sizes increase; for more extreme significance 
levels it is not as reliable, especially if nl and 112 are dissimilar. Fahoome (2002) 
determined that the normal approximation (Equation 8.53) performed well at the 
two-tailed 0.05 level of significance (i.e., the probability of a Type I error was between 
0.045 and 0.055) for sample sizes as small as 15. and at a(2) = 0.01 (for P(Type I 
error) between 0.009 and 0.011} for nl and n2 of at least 29. Indeed. in many cases 
with even smaller sample sizes. the normal approximation also yields Type I error 
probabilities very close to the exact probabilities of V obtained from specialized 
computer software (especially if there are few or no ties).t Further observations on 
the accuracy of this approximation are given at the end of Appendix Table B.l1. 

Buckle. Kraft. and van Eeden (1969) propose another distribution. which they refer 
to as the "uniform approximation." They show it to be more accurate for nl #: n2. 
especially when the difference between n1 and 112 is great. and especially for small a. 

Fix and Hodges (1955) describe an approximation to the Mann-Whitney distribu­
tion that is much more accurate than the normal approximation but requires very 
involved computation. Hodges. Ramsey, and Wechsler (1990) presented a simpler 
method for a modified normal approximation that provides very good results for 
probabilities of about 0.001 or greater. Also, the two-sample t test may be applied to 
the ranks of the data (what is known as using the rank transformation of the data). 
with the probability of the resultant t approaching the exact probability for very 
large n. But these procedures do not appear to be generally preferable to the normal 
approximation described above. at least for the probabilities most often of interest. 

*By this procedure. Z must be positive in order to reject Hu. If it is negative. then the probability 
of Ho being true is.P > O.SO. 

t As a demonstration of this. in Example 8.11 the exact probability is n.018 and the probability 
by the normal approximation is 0.019: and for Example 8.12. the exact probability and the normal 
approximalion are both 0.012. In Exercise 8,12. P for U is 0.53 and P for Z is 0.52: and in Exercise 
8.13. P for U is 0.41 and P for Zc is 0.41. 
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(e) The Mann-Whitney Test with Ordinal Data. The Mann-Whitney test may also 
be used for ordinal data. Example 8.14 demonstrates this procedure. In this example, 
25 undergraduate students were enrolled in an invertebratc zoology course. Each 
student was guided through the course by one of two teaching assistants. but the same 
examinations and grading criteria were applied to all students. On the basis of the 
students' final grades in the course. we wish to test the null hypothesis that students 
(students in general. not just these 25) perform equally well under both teaching 
assistants. The variable measured (i.e .• the final grade) results in ordinal data. and the 
hypothesis is amenable to examination by the Mann-Whitney test. 

(f) Mann-Whitney Hypotheses Employing a Specified Difference Other Than Zero. 
Using the two-sample r test. one can examine hypotheses such as Ho: Jl.1 - Jl.2 = ILO. 
where ILO is not zero. Similarly. the Mann-Whitney test can be applied to hypotheses 
such as HII: males are at least 5 em taller than females (a one-tailed hypothesis with 
data such as those in Example 8.11) or Ho: the letter grades of students in one course 
are at least one grade higher that those of students in a second course (a one-tailed 
hypothesis with data such as those in Example 8.14). In the first hypothesis. one would 
list all the male heights but list all the female heights after increasing each of them 
by 5 cm. Then these listed heights would be ranked and the Mann-Whitney analysis 
would proceed as usual. For testing the second hypothesis. the letter grades for the 
students in the first course would be listed unchanged. with the grades for the second 
course increased by onc letter grade before listing. Then all the listed grades would 
be ranked and subjected to the Mann-Whitney test. * 

When dealing with ratio- or interval-scale data. it is also possible to propose 
hypotheses employing a multiplication. rather than an addition. constant. Consider 
the two-tailed hypothesis Hu: the wings of one species of insect are two times the 
length of the wings of a second species. We could test this by listing the wing lengths 
of the first species, listing the wing lengths of the second species after multiplying 
each length by two, and then ranking the members of the combined two lists and 
subjecting the ranks to the Mann-Whitney test. The parametric r testing procedure. 
which assumes equal population variance. ordinarily would be inapplicable for such 
a hypothesis. because mUltiplying the data by a constant changes the variance of the 
data by the square of the constan t. 

(g) Violations of the Mann-Whitney Test Assumptions. If the underlying assump­
tions of the parametric analog of a non parametric test are met. then either procedure 
may be employed but the parametric test will be the more powerful. The Mann­
Whitney test is one of the most powerful of nonparametric tests. When the I-test 
assumptions are met. the power of the Mann-Whitney test approaches 95.5% (i.e .• 
3/11') of the power of the t test as sample size increases (Mood. 1954).t And 

"To increase these grades by one leiter each. a grade of "B" would be changed to an "A." a 
"C" changed to a "B." and so on: a grade of" A" would have to be increased to a grade not on the 
original scale (e.g., call it a .. Z") and. when ranking. we simply have to keep in mind that this new 
grade is higher than an "A." 

• t Mood (1954) credits an earlier statement of this to 1948 lecture notes of E. J. G. Pitman and 
to a 1950 Dutch publication by H. R. Van der Vaart. The statement that statistical test A is 0.955 
as powerful as test B means that the power of lest A with sample size of n tends (as 1/ increases) 
toward having the same power as test B with sample size of 0.95511: and this is referred to as the 
a.~ymplOti(" reltllive efficiel/cy (ARE) of lest A compared to test B. Because of its development 
by Australian statistician Edwin James George Pitman (IS97-1993). ARE is often called Pitman 
efficiel/cy. which distinguishes it from a less commonly encountered definition of asymptotic relative 
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EXAMPLE 8.14 The Mann-Whitney Test for Ordinal Data 

Ho: The performance of students is the same under the two teaching assistants. 
HA : Students do not perform equally well under the two teaching assistants. 

a = 0.05 

Teaching Assistant A Teaching Assistant 8 

Grade Rank of grade Grade 

A 3 
A 3 
A 3 
A- 6 
B 10 
B 10 
c+ 13.5 
c+ 13.5 
C 16.5 
C 16.5 
c- 19.5 

n) = 11 
Rl = 114.5 

V + nl(nl + 1) _ R) 
= n)n2 

2 

= (11)(14) + (11)(12) - 114.5 
2 

= 154 + 66 - 114.5 

= 105.5 

V' = n)n2 - V 
= (11)(14) - 105.5 

= 48.5 

VO.05(2).I1.)4 = 114 

As 105.5 < 114. do not reject Ho. 

A 
A 
B+ 
B+ 
B 
B-
C 
C 
c-
D 
D 
D 
D 
D-

Rank of grade 

3 
3 
7.5 
7.5 
10 
12 
16.5 
16.5 
19.5 
22.5 
22.5 
22.5 
22.5 
25 

• 0.10 < P( V ~ 105.5 or V ::s; 48.5) < 0.20 

Thus, the conclusion is that student performance is the same under both teaching 
assistants. 

efficiency by Bahadur (1967: Blair and Higgins, 1985). Although Pitman efficiency is defined in 
terms of very large n. it is generally a good expression of relative efficiency of two tests even with 
small" (Conover. 1999: 112). 
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for some extremely nonnormal distributions, the Mann-Whitney test is immensely 
more powerful (Blair and Higgins, 1980a, 1980b; Blair, Higgins, and Smitley, 1980; 
Hodges and Lehman, 1956). The power of the Mann-Whitney test will never be less 
than 86.4% of the power of the I test (Conover, 1997: 297; Hodges and Lehman. 
1956). 

The Mann-Whitney test does not assume normality of the sampled populations 
as the ( test does, but the calculated U is affected not only by the difference 
between the locations of the two populations along the measurement scale but also 
by difference between the shapes or dispersons of the two populations' distributions 
(Boneau. 1962). However, the test is typically employed with the desire to conclude 
only whether there are differences between measurement locations. in which case it 
must be assumed that the two sampled populations have the same dispersion and 
shape, a premise that is often ignored, probably in the belief that the test is more 
robust to unequal dispersion than is the I test. But the Mann-Whitney test is, indeed. 
adversely affected by sizable differences in the variances or the shapes of the sampled 
populations, in that the probability of a Type I error is not the specified a (Fligner 
and Policello, 1981).* As with the two-sample I test, if the two sample sizes are not 
equal, and if the larger (7'2 is associated with the larger sample, then the probability of 
a Type I error will be less than a (and the test is called conservalive); and if the smaller 
sample came from the population with the larger variance, then this probability will 
be greater than a (and the test is called liberal) (Zimmerman. 1987). The greater 
the difference between the variances, the greater the departure from a. In situations 
where the Mann-Whitney test is conservative, it has more power than the I test 
(Zimmerman, 1987). The power of the Mann-Whitney test may also be decreased, 
especially in the presence of outliers, to an extent to which the variances differ; but 
this decrease is far less than it is with ( testing (Zimmerman. 1994, 1996, 1998, 20(0). 
But in some cases unequal variances affect the probability of a Type I error using U 
more severely than if tor (' were employed (Zimmerman. 1998). 

The Mann-Whitney test is included in the guidelines (described in Section 8.1d) 
for when various two-sample statistical procedures are appropriate. 

8.12 TESTING FOR DIFFERENCE BETWEEN TWO MEDIANS 

The null hypothesis that two samples came from populations having the same median 
can be tested by the median leSI described by Mood (1950: 394-395). The procedure 
is to determine the grand median for all the data in both samples and then to tabulate 
the numbers of data above and below the grand median in a 2 x 2 contingency 
table, as shown in Example 8.15. This contingency table can then be analyzed by the 
chi-square test of Section 23.3b or G test of Section 23.7. 

Example 8.15 demonstrates the median test for the data of Example 8.14. In 
many cases, such as this one, one or more of the data will be equal to the grand 
median (in this instance a grade of C +) and. therefore, the number of data above 

*F1igncr and Policello (19Rl: Hollander and Wolfe. 1999: 135-139) addrcssed situations where 
the sampled populations hC!Ve dissimilar variances (the "Behrens-Fisher problem" discussed in 
Section 8,1 c). in addition to being nonnormal. They presented a modified Mann-Whitney procedure. 
requiring that the underlying distributions be symmetrical. along with tables of critical values for 
use with sample sizes :s; 12 and with a normal approximation good when the /l's are much larger 
than 12. 



Section 8.12 Testing for Difference between Two Medians 173 

EXAMPLE 8.15 
Example 8.14 

The Two-Sample Median Test, Using the Data of 

Ho: The two samples came from populations with identical medians (i.e., the 
median performance is the same under the two teaching assistants). 

HA: The medians of the two sampled populations are not equal. 

a = 0.05 

The median of a1l25 measurements in Example 8.14 is X(25+ 1)2 = Xl3 = grade 
of C+. The following 2 X 2 contingency table is then produced: 

Number Sample 1 Sample 2 Total 

Above median 6 6 12 
Not above median 3 8 11 

Total 9 14 23 

Analyzing this contingency table (Section 23.3): 

( n2)Z X2 = n 1f11l22 - flzf211 -

c (Ct}(Cz)(Rt}(R2) 
(8.59) 

= 0.473. 

X Z = 3.841 O.OS.I 

Therefore, do not reject Ho. 

0.25 < P < 0.50 [P = 0.49] 

So it is concluded that the two samples did not come from populations with 
different medians. 

and below the median will be less than the number of original data. Some authors 
and computer programs have preferred to tabulate the row categories as "above 
median" and "not above median" (that is. "at or below the median") instead of 
"above median" and "below median." This will retain in the analysis the original 
number of data, but it does not test the median-comparison hypothesis as well, and 
it can produce conclusions very different from those resulting from analyzing the 
same data categorized as "below median" and "not below median" (Le., "at or above 
median "). Others have suggested deleting from the analysis any data that are tied 
at the grand median. This, too, will give results that may be quite different from the 
other procedures. If there are many data at the grand median, a good option is to 
place al1 data in a contingency table with three. instead of two, rows: "above median." 
"at median," and "below median." 
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The median test is about 64% as powerful as the two-sample t test when used on 
data to which the latter is applicable (Mood, 1954). and about 67% as powerful as the 
Mann-Whitney test of the preceding section.· 

If the two sampled populations have equal variances and shapes, then the Mann­
Whitney test (Section B.11) is a test for difference between medians (Fligner and 
Policello, 1981). 

One can also test whether the difference between two population medians is of 
a specified magnitude. This would be done in a fashion similar to that indicated in 
Section B.l1 f for the Mann-Whitney test. For example, to hypothesize that the median 
of population 1 is X units greater than the median of population 2, X would be added 
to each datum in sample 2 (or X would be subtracted from each datum in sample 1) 
prior to performing the median test. 

8.13 TWO-SAMPLE TESTING OF NOMINAL-SCALE DATA 

We may compare two samples of nominal data simply by arranging the data in a 
2 x C contingency table and proceeding as described in Chapter 23. 

8.14 TESTING FOR DIFFERENCE BETWEEN TWO DIVERSITY INDICES 

If the Shannon index of diversity, H' (Section 4.7), is obtained for each of two samples, 
it may be desired to test the null hypothesis that the diversities of the two sampled 
populations are equal. Hutcheson (1970) proposed a t test for this purpose: 

t = Hi - H2• 

where 
s H' - H' = Js2H , + s2H,· 

J 2 I 2 

The variance of each H' may be approximated by 

2 _};. /; log2 /; - (};. /; log/; )2/ n 
Sfl' -

n2 

(B.60) 

(B.61) 

(B.62) 

(Basharin. 1959: LIold, Zar. and Karr. 196B).t where SJI. and n are as defined in 
Section 4.7, and log f signifies (log f)2. Logarithms to any base may be used for 
this calculation, but those to base 10 are most commonly employed. The degrees of 
freedom associated with the preceding t are approximated by 

(B.63) 

(Hutcheson. 1970). 

• As the median test refers to a population parameter in hypothesis testing. it is not a 
non parametric test: but it is a distribution-free procedure. Although it does not assume a specific 
underlying distribution (e.g .• normal). it does assume that the two populations have the same shape 
(a characteristic that is addressed by Schlittgen. 1979). 

tBowman et al. (1971) give an approximation [their Equation (lib)] that is more accurate for 
•• ~_. n_nll •• 
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Example 8.16 demonstrates these computations. If one is faced with many calcu­
lations of 5~;, the tables of f; log2 f; provided by Lloyd, Zar, and Karr (1968) will be 
helpful. One:tailed as well as two-tailed hypotheses may be tested by this procedure. 
Also, the population diversity indices may be hypothesized to differ by some value, 
/LQ, other than zero, in which case the numerator of t would be IH; - Hzl - /L(). 

EXAMPLE 8.16 Comparing Two Indices of Diversity 

Ho: The diversity of plant food items in the diet of Michigan blue jays is the same 
as the diversity of plant food items in the diet of Louisiana blue jays. 

H A: The diversity of plant food items in the diet of Michigan blue jays is not the 
same as in the diet of Louisiana blue jays. 

ex = 0.05 

Michigan Bille Jays 

Diet item f; f; logf; f;log2f; 

Oak 47 78.5886 131.4078 
Corn 35 54.0424 83.4452 
Blackberry 7 5.9157 4.9994 
Beech 5 3.4949 2.4429 
Cherry 3 1.4314 0.6830 
Other 2 0.6021 0.1812 

51 = 6 nl = ~f; ~f; logf; ~f; loi f; 
=99 = 144.0751 = 223.1595 

H' = n log" - ~f; logf; = 197.5679 - 144.0751 
I n 99 

= 0.5403 

2 = ~f; log2 f; - ~~f; logf;)2 In = 0.00137602 5H , 
I n-

Louisiana Blue Jays 

Diet item f; f; logf; f;log2f; 

Oak 48 80.6996 135.6755 
Pine 23 31.3197 42.6489 
Grape 11 11.4553 11.9294 
Corn 13 14.4813 16.1313 
Blueberry 8 7.2247 6.5246 
Other 2 0.6021 0.1812 

52 = 6 n2 = ~f; ~f; logf; ~f; log2 f; 
= 105 = 145.7827 = 213.0909 
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, nlogn - '2Ji log/; = 212.2249 - 145.7827 = 0.6328 
H2 = n 105 

SH; -112 = J!i~; + s~i = JO.OO137602 + 0.00096918 = 0.0484 

JI = 

t = Hi - H2 = -0.0925 = -1.911 
SH; -IIi 0.0484 

(0.00137602 + 0.00096918)2 

(0.00137602 )2 + (0.00096918 )2 

99 105 

= 0.000005499963 = 196 
0.000000028071 

to.05(2).1% = 1.972 

Therefore. do not reject Ho. 

0.05 < P < 0.10 [P = 0.057] 

The conclusion is that the diversity of food items is the same in birds from Michigan 
and Louisiana. 

8.15 CODING DATA 

As explained in Section 3.5, coding raw data can sometimes simplify computations. 
Coding will affect the sample statistics of this chapter (i.e., measures of central 
tendency and of variability, and their confidence limits) as described in Appendix 
C. The test statistics and hypothesis-test conclusions in Sections 8.1-8.7 will not be 
altered by coding. except that coding may not be used in performing the Levene 
test (Section 8.5b). Neither may coding be used in testing for difference between 
two coefficients of variation (Section 8.8). except that it is permissible if using the 
F test and coding by addition (or subtraction, but not multiplication or division). 
There is no effect of coding on the Mann-Whitney test (Section 8.11) or median 
test (Section 8.12). And. for testing difference between two diversity indices (Section 
8.14). coding by multiplication (or division, but not addition or subtraction) may be 
employed. 

Regarding the topics of Chapters 7 and 9, coding affects the sample statistics (and 
their confidence limits) as indicated in Appendix C. Coding may be employed for any 
of the hypothesis tests in those chapters, except that only coding by multiplication (or 
division, but not addition or subtraction) may be used for testing or coefficients of 
variation (Section 7.14). 
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EXERCISES 

&,1. Using the following data. test the null hypothesis 
that male and female turtles have the same mean 
serum cholesterol concentrations. 

Serum Cholesterol (mgll00 ml) 

Male Female 

220.1 223.4 
218.6 221.5 
229.6 230.2 
228.8 224.3 
222.0 223.8 
224.1 230.8 
226.5 

&.2. It is proposed that animals with a northerly dis­
tribution have shorter appendages than animals 
from a southerly distribution. Test an appropriate 
hypothesis (by computing I). using the following 
wing-length data for birds (data are in millimeters). 

Norlhern Southern 

120 116 
113 117 
125 121 
118 114 
116 116 
114 118 
119 123 

120 

8J. Two populations of animal body weights are ran­
domly sampled. and X I = 4.6 kg. sf = 11.02 kg2• 
nl = 18,X2 = 6.0kg,~ = 4.35 kg2, and n2 = 26. 
Testthe hypotheses Ho: III 2: 112 and HA: III < 112 
using the Behrens-Fisher test. 

8.4. If XI = 334.6~. X2 = 349.8g, SSI = 364.34g2, 

SS2 = 286.78g . nl = 19, and n2 = 24. test the 
hypothesis that the mean weight of population 2 
is more than \0 g greater than the mean weight of 
population I. 

8.S. For the data of Exercise 8.1 : 

(a) If the null hypothesis is rejected. compute 
the 95% confidence limits for Ill. 1l2. and 
III - 1l2· If Ho is not rejected. compute 
the 95% confidence limits for the common 
population mean. IIp. 

(b) Calculate the 95% prediction interval for 
the difference between the mean or an addi­
tional 25 data from the male population and 
an additional 20 data from the female popu­
lation. 

8.6. A sample is to be taken from each of two pop­
ulations from which previous samples of size 
14 have had SSI = 244.66 (km/hr)2 and SS2 = 
289.18 (km/hr)2. What size sample should be taken 
from each population in order to estimate III - 112 
to within 2.0 km/hr. with 95% confidence? 

8.7. Consider the populations described in Exercise 8.6. 

(a) How large a sample should we take from 
each popUlation if we wish to detect a differ­
ence between III and 112 of at least 5.0 km/hr. 
using a 5% significance level and a 1 test with 
90% power? 

(b) If we take a sample of20 from one population 
and 22 from the other. what is the smallest 
difference between III and 112 that we have 
a 90% probability of detecting with a 1 test 
using a = 0.05? 

(c) If nl = n2 = 50. and a = 0.05. what is the 
probability of rejecting Ho: III = 112 when 
III - 112 is as small as 2.0 kmlhr? 

8.8. The experimental data of Exercise 8.1 might have 
been collected to determine whether serum choles­
terol concentrations varied as much in male turtles 
as in female turtles. With those data. use the 
variance-ratio test to assess Ho: O"f = O"~ versus 

2 ') 
0'1 :f:; O'i. 

8.9. Let us propose that wings of a particular bird 
species vary in length more in the northern part 
of the species' range than in the southern portion. 
Use the variance ratio test for Ho: 0'1 $ 0'2 versus 
HA : 0'1 > 0"2 with the data of Exercise 8.2. 

8.10. A sample of 21 data from one population has a 
variance of 38.71 g2. and a sample of 20 data from 
a second popUlation has a variance of 21.35 g2. 

(a) Calculate the 95% two-tailed confidence 
interval for the ratio of O'I/O'~' 

(b) How large a sample must be taken from each 
population if we wish to have a 90% chance 
ofrejecting Ho: 0'1 $ O"~ when HA : O'I > O'~ 
is true and we apply the variance-ratio test at 
the 5% level of significance? 

(c) What would be the power of a variance-ratio 
test of this Ho. with a = 0.05. if sample sizes 
of 20 were used? 

8.11. A sample of twenty-nine plant heights of mem­
bers of a certain species had XI = 10.74 em and 
s2 = 14.62 cm2. and the heights of a sample of 
twenty-five from a second species had X2 = 14.32 
cm and s2 = 8.45 cm2. Test the null hypothesis 
that the coefficients of variat ion of the two sampled 
populations are the same. 
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8.12. Using the Mann-Whitney test, test the appropriate 
hypotheses for the data in Exercise 8.1. 

8.13. Using the Mann-Whitney procedure. test the 
appropriate hypotheses for the data in Exer­
cise 8.2. 

8.14. The following data are volumes (in cubic microns) 
of avian erythrocytes taken from normal (diploid) 
and intersex (triploid) individuals. Test the hypoth­
esis (using the Mann-Whitney test) that the volume 
of intersex cells is 1.5 times the volume of normal 
cells. 

Normal Intersex 

248 380 
236 391 
269 377 
254 392 
249 398 
251 374 
260 
245 
239 
255 



CHAPTER 9 

Paired-Sample Hypotheses 

9.1 TESTING MEAN DIFFERENCE BETWEEN PAIRED SAMPLES 
9l CONFIDENCE LIMITS FOR THE POPULATION MEAN DIFFERENCE 
9.3 POWER, DETECTABLE DIFFERENCE AND SAMPLE SIZE IN PAIRED-SAMPLE 

TESTING OF MEANS 
9.4 TESTING FOR DIFFERENCE BETWEEN VARIANCES FROM TWO CORRELATED POPULATIONS 
9.5 PAIRED-SAMPLE TESTING BY RANKS 
9.6 CONFIDENCE LIMITS FOR THE POPULATION MEDIAN DIFFERENCE 

The two-sample testing procedures discussed in Chapter H apply when the two 
samples arc independent. independence implying that each datum in one sample is 
in no way associated with any specific datum in the other sample. However. there 
arc instances when each ohservation in Sample I is in some way physically associated 
with an ohservation in Sample 2. so that the data may he sakI to occur in pairs. 

For example. we might wish to test the null hypothesis that the left foreleg 
and left hind leg lengths of deer arc equal. We could make these two measurc­
ments on a numher of deer. hut we would have to rememher that the variation 
among the data might he owing to two possihle factors. First. the null hypothe­
sis might he false. there heing. in fact. a difference hetween foreleg and hindleg 
length. Second. deer arc of different sizes. and for each deer the hindleg length 
is correlated with the forelcg length (i.e .. a deer with a large front leg is likely to 
have a large hind leg). Thus. as Example Y.I shows. the data can he tahulated in 
pairs. one pair (i.e .. one hindleg measurement and one foreleg measurement) pcr 
animal. 

9.1 TESTING MEAN DIFFERENCE BETWEEN PAIRED SAMPLES 

The two-tailed hypotheses implied hy Example Y.I are 110: f-LI - f-L2 = () and 
II,,: f-L I - f-L2 *" () (which. as pointed out in Section H.1. could also he stated 
110: f-LI = f-L2 and H,,: Jl.1 *" Jl.2). However. we can dcline a mean popUlation dif­
ference. f-Ld. as Jl.1 - Jl.2. and write the hypotheses as 110: Jl.tl = 0 and II,,: f-Ltl *" O. 
Although the usc of either f-Ltf or Jl.1 - f-L2 is correcl. the former will he used here 
when it implies the paired-sample situation. 

The test statistic for the null hypothesis is 

(i 
1=-. (Y.I) 

Therefore. we do not usc the original measurements for the two samples. hut only 
the difference within each pair of measurements. One deals. then. with a sample of 
tlJ values. whose mean is (i and whose variance. standard deviation. and standard 
error arc denoted as .'i~. S,f. and sil respectively. Thus. the pairetj-stIIllple 11('51. as this 
procedure may he called. is essentially a one-sample I test. analogous to that descrihed 

179 
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EXAMPLE 9.1 The Two-Tailed Paired-Sample t Test 

Ho: J.Ld = 0 

HA: J.Ld *- 0 

a = 0.05 

Deer Hindleg length (cm) Foreleg length (cm) 
(j) (Xlj) 

1 142 
2 140 
3 144 
4 144 
5 142 
6 146 
7 149 
8 150 
9 142 

10 148 

n = 10 

s3 = 9.3444 cm2 

v=I1-1=9 

IO.05( 2 ).9 = 2.262 

(X2j) 

138 
136 
147 
139 
143 
141 
143 
145 
136 
146 

d = 3.3 cm 

SJ == 0.97 cm 

d 3.3 
I :=: - :=: - = 3.402 

SCi 0.97 
Therefore, reject H(). 

Difference (cm) 
(dj = Xlj - X2j) 

4 
4 

-3 
5 

-1 
5 
6 
5 
6 
2 

0.005 < P( It I 2: 3.402) < 0.01 [P = 0.008] 

in Sections 7.1 and 7.2. In the paired-sample I test, 11 is the number of differences 
(i.e., the number of pairs of data), and the degrees of freedom are v == n - 1. Note 
that the hypotheses used in Example 9.1 are special cases of the general hypotheses 
Ho: J.LtI :=: J.Lo and H;\: J.LtI *- J.LO, where J.LO is usually, but not always, zero. 

For one-tailed hypotheses with paired samples, one can test either Ho: J.Ld 2: J.LO 
and H;\: J.Ld < J.LO, or Ho: J.Ld :::;; J.Li,) and HA: J.Ld > J.Li,), depending on the question to 
be asked. Example 9.2 presents data from an experiment designed to test whether 
a new fertilizer results in an increase of more than 250 kglha in crop yield over 
the old fertilizer. For testing this hypothesis, 18 test plots of the crop were set up. 
It is probably unlikely to find 18 field plots having exactly the same conditions 
of soil, moisture, wind, and so on, but it should be possible to set up two plots 
with similar environmental conditions. If so, then the experimenter would be wise 
to set up nine pairs of plots, applying the new fertilizer .randomly to one plot 
of each pair and the old fertilizer to the other plot of that pair. As Example 9.2 
shows, the statistical hypotheses to be tested are Ho: J.Ld :::;; 250 kglha and HA: J.Ld > 
250 kglha. 

Paired-sample I-testing assumes that each datum in one sample is associated with 
one, but only one, datum in the other sample. So, in the last example, each yield using 
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EXAMPLE 9.2 A One-Tailed Paired-Sample t Test 

Ho: fJ.d $; 250 kglha 

/I A: fJ.d > 250 kg/ha 

a = 0.05 

Crop Yield (kg/ha) 
Piol Wilh new ferlilizer Will! old ferlilizer 
(j) 

I 
2 
3 
4 
5 
6 
7 
8 
9 

n=9 

s~ = 6502.78 (kg/ha)2 

v=n-I=X 

IO.O:'i( I ).X = I.X60 

(Xlj) 

2250 
2410 
2260 
2200 
2360 
2320 
2240 
2300 
2090 

li = 295.6 kg/ha 

.\",/ = 26.9 kg/ha 

(X2j) 

1920 
2020 
2060 
1960 
1960 
2140 
19XO 
1940 
1790 

I "= li - 250 = 1.695 
s/i 

Therefore, do not reject Ho. 

0.05 < P < 0.10 [P = 0'()641 

dj 

:UO 
3l)O 
200 
240 
400 
IXO 
260 
360 
300 

new fertilizer is paired with only one yield using old fertilizer: and it would have heen 
inappropriate to have some tracts of land large enough to collect two or more crop 
yields using each of the fertilizers. 

The paired-sample I test does not have the normality and equality of varianoes 
assumptions of the two-sample I test. hut it does assume that the differences. 
dj, come from a normally distrihuted population of differences. If a nonnormal 
distribution of differences is douhted. the nonparametric test of Section 9.5 should he 
considered. 

If there is, in fact. pairwise association of data from the two samples, then analysis 
hy the two-sample I test will often he less powerful than if the paired-sample I test 
was employed. and the two-sample test will not have a prohahility of a Type I error 
equal to the specified significance level. a. It appears that the lalter probahility will he 
increasingly less than a for increasingly large correlation hetween the pairwise data 
(and. in the less common situation where there is a negative correlation hetween the 
data. the prohahility will he greater than a): and only a small relationship is needed 
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to make the paired-sample test advantageous (Hines. 1996; Pollak and Cohen. 1981; 
Zimmerman, t 997). If the data from Example 9. t were subjected (inappropriately) 
to the two-sample t test, rather than to the paired-sample t test. a difference would 
not have been concluded. and a Type II error would have been committed. 

9.2 CONFIDENCE LIMITS FOR THE POPULATION MEAN DIFFERENCE 

In paired-sample testing we deal with a sample of differences, dj, so confidence limits 
for the mean of a population of differences, /Ld, may be determined as in Section 7.3. 
In the manner of Equation 7.6, the 1 - a confidence interval for /Lei is 

(9.2) 

For example, for the data in Example 9.1. we can compute the 95% confidence 
interval for /Ld to be 3.3 cm ± (2.262)( 0.97 cm) = 3.3 cm ± 2.2 cm; the 95% 
confidence limits are LI = I. t cm and Lz = 5.5 cm. 

Furthermore. we may ask. as in Section 7.5. how large a sample is required to be 
I - a confident in estimating /LIt to within ± d (using Equation 7.7). 

9.3 POWER, DETECTABLE DIFFERENCE AND SAMPLE SIZE IN PAIRED-SAMPLE 
TESTING OF MEANS 

By considering the paired-sample test to be a one-sample t test for a sample of 
differences, we may employ the procedures of Section 7.7 to acquire estimates of 
required sample size (n). minimum detectable difference (5), and power (l - (3), 
using Equations 7. to, 7. t 1. and 7. t 2. respectively. 

9.4 TESTING FOR DIFFERENCE BETWEEN VARIANCES FROM TWO CORRELATED POPULATIONS 

The tests of Section 8.5 address hypotheses comparing (J"T to (J"~ when the two samples 
of data are independent. For example, if we wanted to compare the variance of the 
lengths of deer forelegs with the variance of deer hindlegs. we could measure a sample 
of foreleg lengths of several deer and a sample of hindleg lengths from a different 
group of deer. As these are independent samples, the variance of the foreleg sample 
could be compared to the variance of the hindleg sample by the procedures of Section 
8.5. However. just as the paired-sample comparison of means is more powerful than 
independent-sample comparison of means when the data are paired (i.e .. when there 
is an association between each member of one sample and a member of the other sam­
pIe). there is a variance-comparison test more powerful than those of Section 8.5 if the 
data are paired (as they are in Example 9. t). This test takes into account the amount 
of association between the members of the pairs of data, as presented by Snedecor 
and Cochran (1989: 192-193) based upon a procedure of Pitman (1939). We compute: 

(F - 1) In - 2· 
I = -'---:"~rF::::::::;(=l =-===:;rz:=) - • (9.3) 

Here, n is the sample size common to both samples, r is the correlation coefficient 
described in Section 19.1 (Equation t 9.1). and the degrees of freedom associated 
with tare" = It - 2. For a two-tailed test (Ho: O"T = O"~ vs. HA : O"T ::1= O"~), either 
F = sTls~ or F = .\"~j.~T may be used. as indicated in Equation 8.29. and Ho is rejected 
if III ~ la(Z).". This is demonstrated in Example 9.3. For the one-tailed hypotheses, 
Ho: (J"T ~ (J"~ versus HA : uT > (T~. use F = sTj.~·~; for Ho: O"T ~ O"~ versus HA : uT < CT~. 
use F = s~/sT; and a one-tailed test rejects Hn if t ~ t(r( I ).1" 
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McCulloch (1987) showed that this t test is adversely affected if the two sampled 
populations do not have a normal distribution. in that the probability of a Type 
I error can depart greatly from the stated a. He demonstrated a testing proce­
dure that is very little affected by nonnormality and is only slightly less powerful 
than t when the underlying populations are normal. It utilizes the differences and 
the sums of the members of the pairs. just as described in the preceding para­
graph; but. instead of the parametric correlation coefficient (r) referred to above. it 
employs the nonparametric correlation coefficient (rs) and the associated significance 
testing of Section 19.9. This technique may be used for two-tailed or one-tailed 
testing. 

EXAMPLE 9.3 Testing for Difference Between the Variances of Two 
Paired Samples 

Ho: 

HA : 

a = 0.05 

,..2 _ ,..2 
"I - V2 

Using the paired-sample data of Example 9.1: 

11 = 10; 1/ = 8 

L x2 = 104.10; L y2 = 146.40 

LXY = 83.20 

sT = 11.57 cm2; s~ = 16.27 cm2 

F = 11.57 cm2/ 16.27 cm2 = 0.7111 

Using Equation 19.1. r = 0.6739. 

Using Equation 9.3: 

t = -0.656 and to.05(2).X = 2.306. so Ho is not rejected . 
• 

P > 0.50 [P = 0.54] 

9.5 PAIRED·SAMPLE TESTING BY RANKS 

The Wilcoxon paired-sample lest (Wilcoxon. 1945; Wilcoxon and Wilcox. 1964: 9) is a 
nonparametric analogue to the paired-sample I test. just as the Mann-Whitney test is 
a nonparametric procedure analogous to the two-sample t test. The literature refers 
to the test by a variety of names, but usually in conjunction with Wilcoxon's name* 
and some wording such as "paired sample" or "matched pairs," sometimes together 
with a phrase like "rank sum" or "signed rank." 

Whenever the paired-sample I test is applicable. the Wilcoxon paired-sample test 
is also applicable. Section 7.9 introduced the Wilcoxon procedure as a nonparametric 

*Frank Wilcoxon (1892-1965), American (born in Ireland) chemist and statistician. a major 
developer of statistical methods based on ranks (Bradley and Hollander. 1978). 
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one-sample test, but it is also very useful for paired-sample testing, just as the 
one-sample 1 and the paired-sample 1 test are basically the same. If the dj values 
are from a normal distribution, then the Wilcoxon test has 3/1T (i.e., 95.5 %) of the 
power in detecting differences as the I test has (Conover. 1999: 363; Mood. 1954). But 
when the d;'s cannot be assumed to be from a normal distribution. the parametric 
paired-sample 1 test should be avoided, for with nonnormality, the Wilcoxon paired­
sample test will be more powerful. sometimes much more powerful (Blair and 
Higgins, 1985). However, the Wilcoxon test assumes the population of differences is 
symmetrical (which the 1 test also does. for the normal distribution is symmetrical). 
The sign test of Section 24.6 could also be used for one-sample testing of the d;'s. 
It has only 2/1T (64%) of the power of the 1 test, and only 67% of the power of the 
Wilcoxon test, when the normality assumption of the 1 test is met (Conover, 1999: 
164). But the sign test does not assume symmetry and is therefore preferable to the 
Wilcoxon test when the differences come from a very asymmetric population. 

Example 9.4 demonstrates the use of the Wilcoxon paired-sample test with the 
ratio-scale data of Example 9.1. and it is best applied to ratio- or interval-scale data. 
The testing procedure involves the calculation of differences. as does the paired­
sample t test. Then one ranks the absolute values of those differences. from low to 
high, and affixes the sign of each difference to the corresponding rank. As introduced 
in Section 8.11, the rank assigned to tied observations is the mean of the ranks that 
would have been assigned to the observations had they not been tied. Differences of 
zero are ignored in this test. 

Then we sum the ranks having a plus sign (calling this sum T +) and the ranks with 
a minus sign (labeling this sum T_). For a two-tailed test (as in Example 9.4), we 
reject Hn if either T + or T _ is less Ihan or equal 10 the critical value, Ta (2),n, from 
Appendix Table B.12. In doing so. n is the number of differences that are not zero. 

or 

Having calculated either T + or T _ , the other can be determined as 

• T _ = n(n + 1) _ T + 
2 

T + = n(n + 1) _ T _ . 
2 

(9.4) 

(9.5) 

A different value of T + (call it T~) or T _ (call it T~ ) will be obtained if rank 1 is 
assigned to the largest. rather than the smallest, d; (i.e., the absolute values of the d;'s 
are ranked from high to low). If this is done, the test statistics are obtainable as 

T + = men + 1) - T'+ (9.6) 

and 
T _ = m(n + 1) - T~, (9.7) 

where m is the number of ranks with the sign being considered. 
Pratt (1959) recommended maintaining differences of zero until after ranking, and 

thereafter ignoring the ranks assigned to the zeros. This procedure may yield slightly 
better results in some circumstances, though worse results in others (Conover, 1973). 
If used, then the critical values of Rahe (1974) should be consulted or the normal 
approximation employed (see the following section) instead of using critical values 
of T from Appendix Table B.12. 
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If data are paired, the undesirable use of the Mann-Whitney test, instead of 
the Wilcoxon paired-sample test, may lead to a greater Type 11 error, with the 
concomitant inability to detect actual population differences. 

EXAMPLE 9.4 
Example 9.1 

The Wilcoxon Paired-Sample Test Applied to the Data of 

Ho: Deer hindleg length is the same as foreleg length. 

HA : Deer hind leg length is not the same as foreleg length. 

a = 0.05 

Hindleg Foreleg 
Deer length (cm) length (cm) Difference Rank of 
(j) (Xlj) (X2j) (dj = Xlj - X2j) Idjl 

1 142 13R 4 4.5 
2 140 136 4 4.5 
3 144 147 -3 3 
4 144 139 5 7 
5 142 143 -1 1 
6 146 141 5 7 
7 149 143 6 9.5 
8 150 145 5 7 
9 142 136 6 9.5 

10 148 146 2 2 

n = 10 

T + = 4.5 + 4.5 + 7 + 7.+ 9.5 + 7 + 9.5 + 2 = 51 

T_ = 3 + 1 = 4 

TO.05(2).IO = 8 

Since T - < TO.05(2).((). Ho is rejected. 

0.01 < P(T_ or T+ :::; 4) < 0.02 [P = 0.014] 

Signed rank of 
Idjl 

4.5 
4.5 

-3 
7 

-1 
7 
9.5 
7 
9.5 
2 

The Wilcoxon paired-sample test has an underlying assumption that the sampled 
population of d/s is symmetrical about the median. Another nonparametric test for 
paired samples is the sign test (described in Section 24.6), which does not have this 
assumption but is less powerful if the assumption is met. 

Section 8.11 f discussed the Mann-Whitney test for hypotheses dealing with dif­
ferences of specified magnitude. The Wilcoxon paired-sample test can be used in a 
similar fashion. For instance, it can be asked whether the hind legs in the population 
sampled in Example 9.4 are 3 cm longer than the lengths of the forelegs. This can be 
done by applying the Wilcoxon paired-sample test after subtracting 3 cm from each 
hindleg length in the sample (or adding 3 cm to each foreleg length). 
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(a) The One-Tailed Wilcoxon Paired-Sample Test. For one-tailed testing we use 
one-tailed critical values from Appendix Table B.12 and either T + or T _ as follows. 
For the hypotheses 

Ho: Measurements in population I $ measurements in population 2 
and HA : Measurements in population 1 > measurements in population 2. 

Ho is rejected if T - $ Ta( I ).tI. For the opposite hypotheses: 

Ho: Measurements in population 1 ~ measurements in population 2 
and H A: Measurements in population 1 < measurements in population 2. 

reject Ho if T + $ Ta( I )JI' 

(b) The Normal Approximation to the Wilcoxon Paired·Sample Test. For data 
consisting of more than 100 pairs* (the limit of Appendix Table B.12). the significance 
of T (where either T + or T _ may be used for T) may be determined by considering 
that for such large samples the distribution of T is closely approximated by a normal 
distribution with a mean of 

and a standard error of 

aT = 

Thus, we can calculate 

, 

n(n + 1) 
JLT = 

4 

n(n + 1)(2n + 1) 

24 

IT - JLTI Z= . 
aT 

(9.8) 

(9.9) 

(9.10) 

where for T we may usc. with identical results, either T + or T _. Then, for a two-tailed 
test, Z is compared to the critical value, Za(2). or, equivalently, ta (2).oo (which for 
a = 0.05 is 1.9600); if Z is greater than or equal to Za(2), then Ho is rejected. 

A normal approximation with a correction for continuity employs 

_ IT - JL TI - 0.5 Zc - . (9.11) 
"T 

As shown at the end of Appendix Table B.12, the normal approximation is better 
using Z for 0'(2) from 0.001 to 0.05 and is better using Zc for 0'(2) from 0.10 to 0.50. 

If there are tied ranks. then use 

where 

n(n + 1)(211 + 1) _ l:t 
2 

24 
(9.12) 

(9.13) 

is the correction for ties introduced in using the normal approximation to the 
Mann-Whitney test (Equation 8.57). applied here to ties of nonzero differences. 

*Fahoome (2002) concludcd that the normal approximation also works well for sample sizes 
smaller than 100. She found that the probability of a Type I error is between 0.045 and 0.055 for 
two-tailed tcsting at the O.OSleveJ of significance with n as small as 10 and is hctwecn 0.009 and 0.011 
when testing at a( 2) = 0.0\ with n as small as 22. Additional information regarding the accuracy of 
this approximation is given at the end of Appendix Table 8.12. 
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If we employ the Pratt procedure for handling differences of zero (described 
above). then the normal approximation is 

IT - n(n + 1) -4 m'(m' + 1) I - 0.5 

Z=r======================= LI 
2 

(9.14) 
n( n + 1)( 2n + 1) - m' (m' + 1)( 2m + 1) 

24 

(Cureton, 1967), where n is the total number of differences (including zero differ­
ences), and m' is the number of zero differences: ~ I is as in Equation 9.13. applied 
to ties other than those of zero differences. We calculate T + or T _ by including the 
zero differences in the ranking and then deleting from considerations both the zero 
d/s and the ranks assigned to them. For T in Equation 9.14, either T + or T _ may 
be used. If neither tied ranks nor zero d/s are present, then Equation 9.14 becomes 
Equation 9.11. 

One-tailed testing may also be performed using the normal approximation (Equa­
tion 9.10 or 9.11) or Cureton's procedure (Equation 9.14). The calculated Z is 
compared to Za( I) (which is the same as la( I ).00)' and the direction of the arrow in the 
alternate hypothesis must be examined. If the arrow points to the left (" <"). then Ho 
is rejected if Z ~ Zlf(l) and T+ < T _: if it points to the right (">"), then reject Ho 
if Z ~ Zu( I ) and T + > T - . 

Iman (1974a) presents an approximation hased on Student's I: 

T - J-LT 
t= -r~==========~========~ 

n2~n + 1)(2n + 1) (T - J-Lr)2 
(9.15) 

2(n - 1) n - 1 

with n - 1 degrees of freedom. As shown at the end of Appendix Table B.12. this 
performs slightly better than the normal approximation (Equation 9.10). The test 
with a correction for continuity is performed by subtracting 0.5 from IT - J-LTI in 
both the numerator and denominator of Equation 9.15. This improves the test for 
a( 2) from 0.001 to 0.10. but the uncorrected I is better for a( 2) from 0.20 to 0.50. 
One-tailed I-testing is effected in a fashion similar to that described for Z in the 
preceding paragraph. * 

Fellingham and Stoker (1964) discuss a more accurate approximation, but it 
requires more computation. and for sample sizes beyond those in Table B.12 the 
increased accuracy is of no great consequence. 

(c) The Wilcoxon Paired-Sample Test for Ordinal Data. The Wilcoxon test nonpara­
metrically examines differences between paired samples when the samples consist of 
interval-scale or ratio-scale data (such as in Example 9.4). which is legitimate because 
the paired differences can be meaningfully ordered. However. it may not work well 
with samples comprising ordinal-scale data because the differences between ordinal 
scores may not have a meaningful ordinal relationship to each other. For example. 
each of several frogs could have the intensity of its green skin color recorded on a scale 
of I (very pale green) to 10 (very deep green). Those data would represent an ordinal 
scale of measurement because a score of 10 indicates a more intense green than a 
score of9. a 9 represents an intensity greater than an 8, and so on. Then the skin-color 

*When Appendix Tahle 8.12 cannot he used. a slightly improved approximation is effected by 
comparing the mean of I and Z to the mean of the critical values of I and Z Oman. 1974a). 
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intensity could be recorded for these frogs after they were administered hormones 
for a period of time, and those data would also be ordinal. Howcver, the differences 
between skin-color intensities before and after the hormonal treatment would not nec­
essarily be ordinal data because. for example. the difference between a score of 5 and a 
score of 2 (a difference of 3) cannot be said to represent a difference in skin color that 
is greater than the difference between a score of 10 and a score of 8 (a difference of2). 

To deal with such a situation. Kornbrot (1990) presented a modification of the 
Wilcoxon paired-sample test (which she called the "rank difference test"), along with 
tables to determine statistical significance of its results. 

(d) Wilcoxon Paired.Sample Test Hypotheses about a Specified Difference Other 
Than Zero. As indicated in Section 9.1. the paired-sample t test can be used for 
hypotheses proposing that the mean difference is something other than zero. Similarly, 
the Wilcoxon paired-sample test can examine whether paired differences arc centcred 
around a quantity other than zero. Thus, for data such as in Example 9.2. the non­
parametric hypotheses could be stated as Ho: crop yield does not increase more than 
250 kg/ha with the new fertilizer. versus HA: crop yield increases more than 250 kglha 
with the new fertilizer. In that case, each datum for the old-fertilizer treatment would 
be increased by 250 kg/ha (resulting in nine data of 1920.2020.2060 kg/ha. etc.) to be 
paired with the nine new-fertilizer data of 2250. 2410. 2260 kg/ha, and so on. Then, 
the Wilcoxon paired-sample test would be performed on those nine pairs of data. 

With ratio- or interval-scale data, it is also possible to propose hypotheses consid­
ering a multiplication, rather than an addition, constant. This concept is introduced 
at the end of Section 8.11 f. 

9.6 CONFIDENCE LIMITS FOR THE POPULATIQN MEDIAN DIFFERENCE 

In Section 9.2, confidence limits were obtained for the mean of a population of 
differences. Given a population of differences, one can also determine confidence 
limits for the population median. This is done exactly as indicated in Section 7.10; 
simply consider the observed differences between members of pairs (dj) as a sample 
from a population of such differences. 

EXERCISES 

9.1. Concentrations of nitrogen oxides and of hydro­
carbons (recorded in ILg/m3) were determined in 
a certain urban area. 

(b) Calculate the 95% confidence interval for ILlt. 
9.2. Using the data of Exercise 9.1. test the appropriate 

hypotheses with Wilcoxon's paired-sample test. 
9.3. Using the data of Exercise 9.1, test for equality of 

the variances of the two kinds of air pollutants. 
(a) Test the hypothesis that both classes of air 

pollutants were present in the same concen­
tration. 

Day Nitrogen oxides Hydrocarhons 

I 104 108 
2 116 118 
3 84 89 
4 77 71 
5 61 66 
6 84 83 
7 81 88 
8 72 76 
9 61 68 

10 97 96 
11 8L 81 
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Multisample Hypotheses and the Analysis 
of Variance 

10.1 SINGLE-FACTOR ANALYSIS OF VARIANCE 
10.2 CONFIDENCE LIMITS FOR POPULATION MEANS 
10.3 SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER 
10.4 NONPARAMETRIC ANALYSIS OF VARIANCE 
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10.6 HOMOGENEITY OF VARIANCES 
10.7 HOMOGENEITY OF COEFFICIENTS OF VARIATION 
10.8 CODING DATA 
10.9 MULTISAMPLE TESTING FOR NOMINAL-SCALE DATA 

When measurements of a varia hie arc ohtained for each of two independently 
collected samples, hypotheses such as those descrihed in Chapter 8 arc appropriate. 
However, biologists often obtain data in the form of three or more samples, which 
are from three or more popUlations, a situation calling for multisample analyses, as 
introduced in this chapter. 

It is tempting to some to test multisample hypotheses hy applying two-sample tests 
to all possihle pairs of samplt!s. In this manner, for example, one might proceed to test 
the null hypothesis Ho: J.LI = J.L2 = J.L?t hy testing each of the following hypotheses hy 
the two-sample f test: 110: J.LI = J.L2, Ho: ILl = J.L3, Ho: 1L2 = 1L3. But such a procedure, 
employing a series of two-sample tests to address a multisample hypothesis, is invalid. 

The calculated test statistic, t, and the critical values we find in the t tahle are 
designed to test whether the two sample statistics, XI and X2, are likely to have come 
from the same population (or from two populations with identical means). In properly 
employing the two-sample test, Wt! could randomly draw two sample means from 
the same population and wrongly concludt! that they are estimates of two different 
populations' means; hut we know that the prohahility of this error (the Type I error) 
will he no greater than a. However, consider that three random samples were taken 
from a single population. In performing the three possihle two-sample f tests indicated 
ahove, with ex = O.OS, the prohahility of wrongly concluding that two of the means 
estimate different parameters is 14'Yc •• considerably greater than lr. Similarly. if a is 
set at S% and four means are tested. two at a time. hy the two-sample f test. there are 
six pairwise Ilo's to he tested in this fashion, and there is a 26% chance of wrongly 
concluding a difference between one or more of the means. Why is this'? 

For each two-sample t test performed at the S% level of significance, there is a 95% 
prohahility that we shall correctly conclude not to reject I/o when the two population 
means are equal. For the set of three hypotheses. the prohahility of ('()rrect/y declining 
to reject all of them is only 0.953 = 0.86. This means that the probability of inCOr,.e('f~\' 
rejl:cting at least one of the Hu's is I - (1 - a)C = I - (0.95).1 = 0.14. where C 

• 
189 
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is the number of possible different pairwise combinations of k samples (see footnote 
to Table to.1). As the number of means increases, it becomes almost certain that 
performing all possible two-sample t tests will conclude that some of the sample 
means estimate different values of J-L. even if all of the samples came from the same 
population or from populations with identical means. Table 10.1 shows the probability 
of committing a Type I error if multiple t tests are employed to assess differences 
among more than two means. If. for example. there are 10 sample means. then 
k = to, C = 45, and 1 - 0.9545 = 1 - 0.10 = 0.90 is the probability of at least one 
Type I error when testing at the 0.05 level of significance. Two-sample tests, it must 
be emphasized, should not be applied to multisample hypotheses. The appropriate 
procedures are introduced in the following sections. 

TABLE 10.1: Probability of Committing at Least 
One Type I Error by Using Two-Sample t Tests 
for All C Pairwise Comparisons of k Means* 

Level of Significance. a. 
Used in the I Tests 

k C 0.10 0.05 0.01 0.005 O'{)()I 

2 I 0.10 0.05 0.01 0.005 O.{){)) 

3 3 0.27 0.14 0.03 0.015 0.003 
4 6 0.47 0.26 0.06 0.030 0.006 
5 10 0.65 0.40 n.1O 0.049 0.010 
6 15 0.79 0.54 0.14 0.072 0.015 

10 45 0.99 0.90 0.36 0.202 0.044 
00 1.00 1.00 1.00 1.000 1.000 

*There are C = k( k - I )/2 pairwise comparisons 
of k means. This is the number of combinations of k 
items taken two at a time: see Equation 5.10. 

10.1 SINGLE-FACTOR ANALYSIS OF VARIANCE 

To test the null hypothesis Ho: J-LI = J-L2 = ... = J-Lk, where k is the number 
of experimental groups, or samples, we need to become familiar with the topic of 
analysis of variance, often abbreviated ANOVA (or less commonly. ANOVor AOV). 
Analysis of variance is a large area of statistical methods. owing its name and much of 
its early development to R. A. Fisher;* in fact, the F statistic was named in his honor 
by G. W. Snedecort (1934: 15). There are many ramifications of analysis of variance 
considerations, the most common of which will be discussed in this and subsequent 
chapters. More complex applications and greater theoretical coverage are found in 
the many books devoted specifically to analysis of variance and experimental design. 
At this point. it may appear strange that a procedure used for testing the equality of 
means should be named analysis of variance, but the reason for this terminology soon 
will become apparent. 

*Sir Ronald Aylmer Fisher (1890-1962). British statistician and geneticist. who introduced 
the name and basic concept of the technique in 1918 (David. 1995: Street. 19(0) and stressed the 
importance of randomness as discussed in this section. When he introduced analysis of variance. he 
did so by way of intraclass correlation (Box. 1978: 101). to which it is related (Section 19.12). 

tOeorge W. Snedecor (1881-1974). American statistician. 
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Let us assume that we wish to test whether four different feeds result in different 
body weights in pigs. Since we are to test for the effect of only one factor (feed 
type) on the variable in question (body weight), the appropriate analysis is termed a 
single-factor (or "single-criterion" or "single-classification" or "one-way") analysis 
of variance.* Furthermore, each type of feed is said to be a level of the factor. The 
design of this experiment should have each experimental animal being assigned at 
random to receive one of the four feeds, with approximately equal numbers of pigs 
receiving each feed. 

As with other statistical testing, it is of fundamental importance that each sample is 
composed of a random set of data from a population of interest. In Example 10.1, each 
of four populations consists of body weights of pigs on one of four experimental diets, 
and 19 pigs were assigned, at random, to the four diets. In other instances, researchers 
do not actually perform an experiment but, instead. collect data from populations 
defined other than by the investigator. For example. the interest might be in comparing 
body weights of four strains of pigs. If that were the case, the strain to which each 
animal belonged would not have been under the control of the researcher. Instead, 
he or she would measure a sample of weights for each strain, and the important 
consideration would be having each of the four samples consist of data assumed to 
have come at random from one of the four populations of data being studied. 

EXAMPLE 10.1 A Single-Factor Analysis of Variance (Modell) 

Nineteen pigs are assigned at random among four experimental groups. Each 
group is fed a different diet. The data are pig body weights. in kilograms. after 
being raised on these diets. We wish to ask whether pig weights are the same for 
all four diets. 

Ho: ILl = IL2 = IL3 = IL4· 

HA: The mean weights of pigs on the four diets are not all equal. 

a = 0.05 

Feed J Feed 2 Feed 3 Feed 4 

60.8 68.7 69.6 61.9 
67.0 67.7 77.1 64.2 
65.0 75.0 75.2 63.1 
68.6 73.3 71.5 66.7 
61.7 71.8 60.3 

i I 2 3 4 

ni 5 5 4 5 
nj 

~Xii 323.1 356.5 293.4 316.2 
;=1 

Xi 64.62 71.30 73.35 63.24 

Because the pigs are assigned to the feed groups at random (as with the aid of 
a random-number table. such as Appendix Table B.4t. described in Section 2.3). 

*Some authors would here refer to the feed as the "independent variable" and to the weight as 
the "dependent variable." 
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the single factor ANOV A is said to represent a completely randomized experimen­
tal design. or "completely randomized design" (sometimes abbreviated "eRD"). 
In general. statistical comparison of groups of data works best if each group has the 
same number of data (a situation referred to as being a balanced. or orthogonal. 
experimental design), and the power of the test is heightened by having sample 
sizes as nearly equal as possible. The present hypothetical data might represent a 
situation where there were, in fact. five experimental animals in each of four groups, 
but the body weight of one of the animals (in group 3) was not used in the analysis 
for some appropriate reason. (Perhaps the animal died. or perhaps it became ill 
or was discovered to be pregnant. thus introducing a factor other than feed into 
the experiment.) The performance of the test is also enhanced by having all pigs 
as similar as possible in all respects except for the experimental factor. diet (i.e., 
the animals should be of the same breed, sex, and age. should be kept at the same 
temperature. etc.). 

Example 10.1 shows the weights of 19 pigs subjected to this feed experiment, and 
the null hypothesis to be tested would be Ho: J.LI = J.L2 = J.L3 = J.L4. Each datum 
in the experiment may be uniquely represented by the double subscript notation, 
where Xij denotes datum j in experimental group i. For example, X23 denotes the 
third pig weight in feed group 2, that is, X23 = 74.0 kg. Similarly. X34 = 96.5 kg, 
X41 = 87.9 kg, and so on. We shall let the mean of group i be denoted by Xi. and 
the grand mean of all observations will be designated by X. Furthermore. ni will 
represent the size of sample i, and N = L~= I ni will be the total number of data in the 
experiment. The alternate hypothesis for this experiment is HA: The mean weight of 
pigs is not the same on these four diets. Note that HA is not J.LI =I' J.L2 =I' J.L3 =I' J.L4 nor 
J.LI =I' J.L2 = J.L3 = J.L4 nor any other specification of which means are different from 
which; we can only say that. if Ho is rejected, then there is at least one difference 
among the four means. * 

The four groups in this example (namely, types of feed) represent a nominal-scale 
variable (see Section l.ld) in that the groups could be arranged in any sequence. 
However, in some situations the groups represent a measurement made on a ratio or 
interval scale (Sections 1.1 a and 1.1 b). For example, the animal weights of Example 
10.1 might have been measured at each of four environmental temperatures or, 
instead of the groups being different types of feed, the groups might have been 
different daily amounts of the same kind of feed. In other situations the groups might 
be expressed on an ordinal scale (Section t.1c); for example, body weights could be 
measured at four environmental temperatures defined as cold, medium, warm. and 
hot, or as quantities of feed defined as very low, low, medium, and high. The analysis 
of variance of this section is appropriate when the groups are defined on a nominal or 
ordinal scale. If they represent a ratio or interval scale, the regression procedures of 
Section J 7.7 may be more appropriate, but the latter methods require more levels of 
the factor than are generally present in an analysis-of-variance experimental design. 

(a) Sources of Variation. The statistical technique widely known as analysis of 
variance (ANOVA) examines the several sources of variation among all of the data 

*There may be situations where the desired hypothesis is not whether k means are equal to 
each other. but whether they are all equal to some particular value. Mee, Shah. and Lefante (1987) 
proposed a procedure for testing Ho: III = IL2 = ... = ILk = JL(), where JLO is the specified mean to 
which all of the other means are to be compared. The alternate hypothesis would be that at least 
one of the means is different from JL() (i.e .. H A: ILi :#: JL() for at least one i). 
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in an experiment. by determining a sum of squares (meaning "sum of squares of 
deviations from the mean," a concept introduced in Section 4.4) for each source. 
Those sums of squares are as shown below. 

In an experimental design with k groups. there are nj data in group i; that is, III 
designates the number of data in group 1. n2 the number in group 2, and so on. The 
total number of data in all k groups will be called N; that is, 

k 

N = ~ni' 
i= I 

(10.1) 

which in Example 10.1 is N = 5 + 5 + 4 + 5 = 19. The sum of squares for all N 
data is 

k 1/, 

total SS = ~ ~(Xij - X)2, 
i= 1 j= 1 

where Xij is datum j in group i and X is the mean of all N data: 

k ni 

~~Xij 
X = 1_'=_I_i=_I_ 

N 

(10.2) 

(1O.2a) 

This is the same as considering the N data in all the groups to compose a single group 
for which the sum of squares is as shown in Equation 4.12. For the data in Example 
10.1. these calculations are demonstrated in Example 1O.1a. 

EXAMPLE 10.1a Sums of Squares and Degrees of Freedom for the Data 
of Example 10.1. 

Feed I Feed 2 

IIi 

~Xij 323.1 356.5 
j=1 

Xi 64.62 71.30 
k ni 

~ ~ Xij = 60.8 + 67.0 + 65.0 + 
i= 1 j= 1 

X = 1289.2 = 67.8526 
19 

k 1/; 

Total SS = ~ ~(Xij - X)2 
i=1 j= 1 

Feed 3 Feed 4 

293.4 316.2 

73.35 63.24 

+ 63.1 + 66.7 + 60.3 = 1289.2 

= (60.8 - 67.8526)2 + (67.0 - 67.8526)2 

+ ... + (66.7 - 67.8526)2 + (60.3 - 6.8526)2 

= 49.7372 + 0.7269 + ... + 1.3285 + 57.0418 = 479.6874. 



total DF = N - 1 = 19 - 1 = 18 
k 

groups SS = ~ni(Xi - X)2 
i= 1 

= 5(64.62 - 67.8526)2 + 5(71.30 - 67.8526)2 

+ 4(73.35 - 67.8526)2 + 5(63.24 - 67.8526)2 

= 52.2485 + 59.4228 + 120.8856 + 106.3804 = 338.9372 

groups DF = k - 1 

k [II; 1 within-groups (error) SS = ~ j~ (Xij - Xi)2 

= (60.8 - 64.62)2 + (67.0 - 64.62)2 

+ ... + (66.7 - 63.24)2 + (60.3 - 63.24)2 

= 14.5924 + 5.6644 + ... + 11.9716 + 8.6436 

= 140.7500 

or, alternatively, 

within-groups (error) SS = Total SS - Groups SS 

= 479.6874 - 338.9373 = 140.7501. 

k 
within-groups (error) DF = ~(ni - 1) 

i= 1 

=(5 - 1) + (5 - 1) + (4 - 1) + (5 - 1)=15 

or within-groups (error) OF = N - k = 19 - 4 = 15 
or within-groups (error) DF = Total DF - Groups DF = 18 - 3 = 15. 

Note: The quantities involved in the sum-of-squares calculations are carried to 
several decimal places (as computers typically do) to avoid rounding errors. All 
of these sums of squares (and the subsequent mean squares) have (kg)2 as units. 
However, for typographic convenience and ease in reading, the units for ANOV A 
computations are ordinarily not printed. 

The degrees of freedom associated with the total sum of squares are 

total D F = N - I, (10.3) 

which for the data in Example 10.1 are 19 - 1 = 18. 
A portion of this total amount of variability of the N data is attributable to 

differences among the means of the k groups; this is referred to as the among-groups 
sum of squares or, simply, as the groups slim of squares: 

k 
groups SS = ~ni(Xi - X)2, 

i=1 
(10.4) 
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where Xi is the mean of the ni data in sample i and X is the mean of all N data. 
Example 10.1 a shows this computation for the data in Example 10.1. Associated with 
this sum of squares are these degrees of freedom: 

groups OF = k - 1, (10.5) 

which for Example 10.1 are 4 - I = 3. 
Furthermore. the portion of the total sum of squares that is not explainable by 

differences among the group means is the variability within the groups: 

k ["; 1 within-groups SS = ~ j~ (Xij - Xi)2 (to.6) 

and is commonly called the error slim of sqllares. Within the brackets Equation 4.12 is 
applied to the data in each one of the k groups. and the within-groups sum of squares 
is the sum of all k of these applications of Equation 4.12. For the data of Example 
10.1, this is shown in Example 10.1 a. 

The degrees of freedom associated with the within-groups sum of squares are 

k 
within-groups OF = L(ni - 1) = N - k. (10.7) 

i= I 

also called the error DF. which for Example 10.1 are 4 + 4 + 3 + 4 = 15 or, 
equivalently. 19 - 4 = 15. 

The within-groups SS and OF may also be obtained by realizing that they represent 
the difference between the total variability among the data and the variability among 
groups: 

within-groups SS = total SS - groups SS (to.8) 

and 
within-groups OF = total OF - groups DF. (1O.8a) 

In summary. each deviation of an observed datum from the grand mean of all data 
is attributable to a deviation of that datum from its group mean plus the deviation of 
that group mean from the grand mean: that is. 

(Xij - X) = (Xij - X;) + (Xi - X). (10.9) 

Furthermore. sums of squares and degrees of freedom are additive, so 

total SS = groups SS + error SS (10.10) 

and 
total OF = groups OF + error OF. (10.11) 

(b) "Machine Formulas." The total sum of squares (Equation 10.2) may be calcu­
lated readily by a "machine formula" analogous to Equation 4.16: 

k II; 

total SS = L L X~ - C. 
i=lj=1 

(10.12) 
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where* 

c = (~~Xii)2 
N 

Example 10.1 b demonstrates these calculations. 

(10.13) 

EXAMPLE 10.1b Sums of Squares and Degrees of Freedom for the Data 
of Example 10.1, Using Machine Formulas 

Feed I Feed 2 Feed 3 Feed 4 

1 2 3 4 
ni 5 5 4 5 

II; 

~Xii 323.1 356.5 293.4 316.2 

/I' 

~Xii ( 
i=1 )2 

)=1 
20878.7220 25418.4500 21520.8900 19996.4480 

ni 

~~Xii = 1289.2 
i i 

total OF = N - 1 = 19 - 1 = 18 

~~X~ = 87955.30 groups OF = k - 1 = 4 - 1 = 3 
i i 

error OF = N - k = 19 - 4 = 15 

C= 
( ~~J' Xii)2 

= (1289.2f = 87475.6126 
N 19 

( 
/I' ) 

, iXii ± ---,--i =_1_.:.-

i= 1 l1i 

= 87814.5500 

total SS = ~ ~ Xi} - C = 87955.3000 - 87475.6]26 = 479.6874 
i i 

(±)2 
k j_1 

groups SS = ~ - - C = 87814.5500 - 87475.6126 = 338.9374 
i= 1 ni 

error SS = total SS - groups SS = 479.68747 - 338.9374 = 140.7500 

A machine formula for the groups sum of squares (Equation 10.4) is 

(± Xii) 
2 

k i-I 
groupsSS = ~ - - C. 

i=1 nj 
(10.14) 

where Lj'~ 1 Xji is the sum of the nj data from group i. 

"The term "machine formula" derives from the formula's utility when using calculating 
machines. The quantity C is often referred to as a "correction tcrm"-an unfortunate expression. 
for it implies that some miscalculation needs to be rectified. 
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The error SS may be calculated as 

( )

2 
ni 

~Xij 
k IIi k i-I 

error SS = L L X3 - L - . 
;=lj=1 ;=1 n; 

(10.15) 

which is the machine formula for Equation 10.6. 
As shown in Example 1O.1b. machine formulas such as these can be very convenient 

when using simple calculators: but they are of less importance if the statistical 
computations are performed by computer. As demonstrated in Examples 10.1 a and 
lO.1b, the sums of squares are the same using the two computational formulas. 

(c) Testing the Null Hypothesis. Dividing the groups SS or the error SS by the 
respective degrees of freedom results in a variance, referred to in ANOV A terminol­
ogy as a mean square (abbreviated MS and short for mean squared deviation from the 
mean). Thus, 

and 

groups SS 
groups MS = =------'--­

groups OF 

MS errorSS error = , 
error DF 

(10.16) 

(10.17) 

and the latter quantity, which may also be called the within-groups mean square, 
is occasionally abbreviated as MSE (for "mean square error"). As will be seen 
below, testing the null hypothesis of equality among population means involves the 
examination of the groups mean square and the error mean square. Because a mean 
square is a kind of variance. this procedure is named analysis of variance. A total 
mean square could also be calculated, as (total SS)/(total OF), but it is not used in the 
ANOVA. 

Statistical theory informs us that if the null hypothesis is a true statement about the 
populations, then the groups MS and the error MS will each be an estimate of u 2, the 
variance common to all k populations. But if the k population means are not equal, 
then the groups MS in the population will be greater than the population's error 
MS.* Therefore, the test for the equality of means is a one-tailed variance ratio test 
(introduced in Section 8.5), where the groups MS is always placed in the numerator 
so as to ask whether it is significantly larger than the error MS: t 

F = groups MS. 
error MS 

(10.18) 

*Two decades before R. A. Fisher developed analysis of variance techniques. the Danish 
applied mathematician. Thorvald Nicolai Thiele (IR3R-1910) presented the concept of comparing 
the variance among groups to the variance within groups (Thiele. 1897: 41-44). Stigler (1986: 244) 
reported that an 1860 book by Gustav Thcodor Fechner included the most extensive discussion of 
the concepts of experimental design prior to R. A. Fisher. 

t An equivalent computation of F is 

F = ( error DF)( (groups SS)/(total SS) ) 
groups DF I - (groups SS)/(total SS) • 

(1O.18a) 

and Levin. Serlin. and Webne-Behrman (1989) show how ANOV A can be performed by considering 
the correlation (the topic of Section 19.1) between observations and their group means. 
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This quantity expresses how the variability of data among groups compares to the 
variability of data within groups. 

The critical value for this test is Fa( I ).(k-I ).(N-k). which is the value of F at the 
one-tailed significance level a and with numerator degrees of freedom (VI = groups 
OF) of k - I and denominator degrees of freedom (V2 = error OF) of N - k. If the 
calculated F is as l<lrge as. or larger than. the critical value (see Appendix Table B.4), 
then we reject Ho: and a rejection indicates that the probability is:5 a that the observed 
data came from populations described by Ho. But remember that all we conclude in 
such <l case is that all the k population means are not equal. To conclude between which 
means the equalities or inequalities lie. we must turn to the procedures of Chapter 11. 

Example IO.lc shows the conclusion of the <lnalysis of variance performed on 
the data and hypotheses of Example 10.1. Table 10.2 summarizes the single-factor 
ANOYA calculations.* 

EXAMPLE 10.1c The Conclusion of the ANOVA of Example 10.1, Using 
the Results of Either Example 10.1a or 10.1b 

Summary of the Analysis of Variance 

SOl/rce of varialio" 5S 

Total 479.6H74 
Groups 33K9374 
Error 140.7500 

F = groups MS = 112.9791 =: 12.04 
error MS 9.3833 

FO.05( I U.l5 = 3.29. so reject 110. 

P < 0.0005 I P = O.()()029] 

DF 

IH 
3 

15 

M5 

112.9791 
9.3H33 

(d) The Case where k = 2. If k =: 2. then Ho: J..q =: J.l.2. and either the two-sample 
1 test (Section 8.1) or the single-factor ANOYA may be applied: the conclusions 
obtained from these two procedures will he identical. The error MS will. in fact. be 
identical to the pooled variance. s~. in the 1 test; the groups OF will be k - 1 = 1; 
the F value determined hy the analysis of variance will be the square of the 1 value 
from the 1 test: and Fu ( I ). \.( N. 2) = (1,,(2 ).( N _ 2) )2. If a one-tailed test between means 
is required. or if the hypothesis Ho: J.LI - J.L2 =: J.Lo is desired for a J.Lo not equal to 
zero. then the 1 test is applicahle. whereas the ANOYA is not. 

*Occasionally the following quantity (or its square root) is called the correlatio/l ratio: 

2 _ groups SS 
11 - ---

total SS 
(1O.IXb) 

This is also called ('ta .w/llt/red. for it is represented using the lowercasc Greek leiter eta. It is always 
between fl and I. it has no units of measurement. and it expresses the proportion of Ihe total 
variability of X that is accounted for hy the effect of differcnces among the groups (and is. therefore. 
reminiscent or the coefficient of determination introduced in Section 17.3a). For Example 10.1. 
112 = 33K.9374/479.6X74 = n.71. or 71 %. 
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TABLE 10.2: Summary of the Calculations for a Single-Factor Analysis of Variance 

Source of variation 

Total (Xi; - Xl 

Groups (i.e .. among 
groups) [Xi - Xl 

Error (i.c .. within 
groups) [Xi; - Xi] 

Sum of 
squares (SS) 

Equation 10.2 
or 10.12 

Oegreesof 
freedom (OF) 

N - 1 

Equation 10.4 k - I 
or 10.14 

Equation 10.6 N - k or Equation 10.8a 
or 10.8 

Mean 
square (MS) 

groups SS 
groups OF 

error SS 
error OF 

Note: For each source of variation. the brackcted quantity indicates the variation bcing assessed: 
k is thc numbcr of groups: Xi; is datum j in group i: Xi is the mean of the datil in group i: X 
is the mean of all N datu. 

(e) ANOVA Using Means and Variances. The above discussion assumes that all 
the data from the experiment to be analyzed are in hand. It may occur. however. that 
all we have for each of the k groups is the mean and some measure of variability 
based on the variances of each group. That is. we may have Xi and either SSi. s; . .'ii. 
or SXi for each group. rather than all the individual values of Xij. For example. we 
might encounter presentations such as Tables 7.1. 7.2. or 7.3a. If the sample sizes. Ili. 
are also known. then the single-factor analysis of variance may still be performed. in 
the following manner. 

First. determine the sum of squares or sample variance for each group: recall that 

Then calculate 

and 

k k 

error SS = ~ SSi = ~(Ili - 1 )s; 
i= I i= I 

k 
~ -2 groups SS = ~ lliXi 
i= I 

(± lliXi)2 
,=1 

k 

~ni 
i= I 

( 10.19) 

( 10.20) 

(10.21 ) 

Knowing the groups SS and error SS, the ANOV A can proceed in the usual fashion. 

(I) Fixed-ERects amd Random-ERects ANOV A. I n Example 10.1. the biologist 
designing the experiment was interested in whether all of these particular four feeds 
have the same effect on pig weight. That is. these four feeds were not randomly 
selected from a feed catalog but were specifically chosen. When the levels of a factor 
are specifically chosen one is said to have designed a fixed-effects model. or a Model 
I. ANOV A. In such a case. the null hypothesis Ho: 1-'1 = /-L2 = /-L3 = ... = /-Lk is 
appropriate. 

However. there are instances where the levels of a factor to be tested are indeed 
chosen at random. For example. we might have been interested in the effect of 
geographic location of the pigs. rather than the effect of their feed. It is possible 
that our concern might be with certain specific locations. in which case we would 



200 Chapter 10 Multisample Hypotheses and the Analysis of Variance 

be employing a fixed-effects mode ANOV A. But we might, instead, be interested in 
testing the statement that in general there is a difference in pig weights in animals 
from different locations. That is, instead of being concerned with only the particular 
locations used in the study, the intent might be to generalize, considering the locations 
in our study to be a random sample from all possible locations. In this random-effects 
model, or Model II. ANOV A,* all the calculations are identical to those for the fixed­
effects model, but the null hypothesis is better stated as HII: there is no difference 
in pig weight among geographic locations (or Ho: there is no variability in weights 
among locations). Examination of Equation 10.18 shows that what the analysis asks is 
whether the variability among locations is greater than the variability within locations. 
Example 10.2 demonstrates the ANOV A for a random-effects model. The relevant 
sums of squares could be computed as in Section 10.1 a or 10.1 b; the machine formulas 
of Section lO.1b are used in this example. Most biologists will encounter Model I 
analyses more commonly than Model II situations. When dealing with more than 
one experimental factor (as in Chapters 12 and 14), the distinction between the two 
models becomes essential, as it will determine the calculation of F. 

(g) Violation of Underlying Assumptions. Recall from Section 8.1 b that to test 
HII: ILl = IL2 by the two-sample t test, we assume that uT = u~ and that each of the 
two samples came at random from a normal population. Similarly, in order to appl~ 
the analysis of variance to ILl = IL2 = ... = ILk. we assume that uT = u~ = ... = Uk 
and that each of the k samples came at random from a normal population. 

However, these conditions are never exactly met, so the question becomes how 
serious the consequences are when there are departures from these underlying 
assumptions. Fortunately. under many circumstances the analysis of variance is a 
robust test, meaning that its Type I and Type II error probabilities are not always 
seriously altered by violation of the test's assumptions. Reports over several decades 
of research have not agreed on every aspect of this issue, but the following general 
statements can be made about fixed-effects (Le .. Model I) ANOV A: 

As with the two-sample t test (Section 8.1 b). the adverse effect of non normality 
is greater with greater departures from normality, but the effect is relatively small if 
samples sizes are equal. or if the n/s are unequal but large (with the test less affected 
by nonnormality as the Il/S increase), or if the variances are equal; and asymmetric 
distributions have a greater adverse effect than do symmetric distributions (Box and 
Anderson, 1955; BUning, 1997; Donaldson, 1968; Glass, Peckham, and Sanders, 1972; 
Harwell et aI., 1992; Lix, Keselman, and Keselman.1996; Srivastava, 1959; Tiku, 1971). 

If the variances of the k populations are not equal, the analysis of variance is 
generally liberal for equal sample sizes. and the extent to which the test is liberal 
(i.e., the probability of a Type I error exceeds a) increases with greater variance 
heterogeneity (BUning. 1997: Clinch and Keselman. 1982; Rogan and Keselman, 
1977) and decreases with increased sample size (Rogan and Keselman. 1977). Myers 
and Well (2003: 221) report that this inflation of P(Type I error) is usually less than 
0.02 at the 0.05 significance level and less than 0.005 when using a = 0.01. when n is 
at least 5 and the largest variance is no more than four times the smallest variance. 

If the group variances are not equal and the ni's also are unequal. then there can 
be very serious effects on P(Type I error). The effect will be greater for greater 
variance heterogeneity (Box. 1954), and if the larger variances are associated with the 
larger sample sizes (what we shall call a "direct" relationship), the test is conservative 

* Also referred to as a components of variance model. The terms components of vttritmce.ji;ced 
effects. random effects. Class I. and Class /I for analysis of variance were introduced by Eisenhart 
(1947). 
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EXAMPLE 10.2 A Single-Factor Analysis of Variance for a Random-Effects 
Model (i.e., Model II) Experimental Design 

A laboratory employs a technique for determining the phosphorus content of hay. 
The question arises: "00 phosphorus determinations differ among the technicians 
performing the analysis?" To answer this question, each of four randomly selected 
technicians was given five samples from the same batch of hay. The results of the 
20 phosphorus determinations (in mg phosphorus/g of hay) are shown. 

Hu: Determinations of phosphorus content do not differ among technicians. 
HA: Determinations of phosphorus content do differ among technicians. 

a = 0.05 

N = 20 

1 

34 
36 
34 
35 
34 

Group sums: 173 

LLXjj = 710 
j j 

LLXV = 25234 
j j 

C = (710)2 = 25205.00 
20 

total SS = 25234 - 25205.00 = 29.00 

Technician 
2 3 4 

37 34 36 
36 37 34 
35 35 37 
37 37 34 
37 36 35 

182 179 176 

(173)2 a(182)2 
groups (i.e .• technicians) SS = -- + 

5 5 

+ (179 )2 + (176 )2 _ 25205.00 
5 5 

= 25214.00 - 25205.00 = 9.00 
error SS = 29.00 - 9.00 = 20.00 

Source of variation 

Total 

F = 3.00 = 2.40 
1.25 

FO.05( I ).3.16 = 3.24 
Do not reject Ho. 

Groups (technicians) 
Error 

SS 

29.00 
9.00 

20.00 

OF MS 

19 
3 3.00 

16 1.25 

0.10 < P < 0.25 [P = 0.11] 
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(i.e., the probability of a Type I error is less than a), while larger variances affiliated 
with smaller samples (what we'll call an "inverse" relationship) cause the test to 
be liberal-that is. P(Type I error) > a (Brown and Forsythe, 1974a: Btining, 1997; 
Clinch and Keselman. 1982; Donaldson, 1968: Glass, Peckham. and Sanders. 1972; 
Harwell et al.. 1992: Kohr and Games. 1974: Maxwell and Delancy. 2004: 131; 
Stonehouse and Forrester, 1998: Tomarkin and Serlin, 1986). For example. if testing 
at a = 0.05 and the largest n is twice the size of the smallest. the probability of a Type 
I error can be as small as 0.006 for a direct relationship between variances and sample 
sizes and as large as 0.17 for an inverse relationship; if the ratio between the largest 
and smallest variances is 5, P(Type I error) can be as small as 0.00001 or as large 
as 0.38. depending upon whether the relationship is direct or inverse, respectively 
(Scheffe. 1959: 340). This huge distortion of P(Type I error) may be reason to avoid 
employing the analysis of variance when there is an inverse relationship (if the 
researcher is primarily concerned about avoiding a Type I error) or when there is a 
direct relationship (if the principal concern is to evade a Type II error). The adverse 
effect of heterogeneous variances appears to increase as k increases (Tomarkin and 
Serlin, 1986). 

Recall (Section 6.3b) that a decrease in the probability of the Type I error (a) 
is associated with an increase in the Type II error «(3), and an increase in (3 means 
a decrease in the power of the test (I - (3). Therefore. for situations described 
above as conservative li.e., P(Type I error) < a], there will generally be less power 
than if the population variances were all equal: and when the test is liberal [i.e., 
P(Type I error) > a], there will generally be more power than if the variances were 
equal. 

If the sample sizes arc all equal, non normality generally affects the power of 
the analysis of variance to only a small extent (Clinch and Keselman. 1982: Glass, 
Peckham, and Sanders, 1972: Harwell et aI., 1992; Tan. 1982), and the effect decreases 
with increased n (Donaldson, 1968). However, extreme skewness or kurtosis can 
severely alter (and reduce) the power (Games and Lucas, 1(66), and nonnormal 
kurtosis generally has a more adverse effect than skewness (Sahai and Agee!. 2000: 
85). With small samplcs, for example. very pronounced platykurtosis in the sampled 
populations will decrease the test's power, and strong lcptokurtosis will increase it 
(Glass. Peckham, and Sanders, 1972). When sample sizes are not equal, the power 
is much reduced, especially when the large samples have small means (Boehnke, 
1984). 

The robustness of random-effects (i.e .. Model II) analysis of variance (Section 
lO.lf) has not been studied as much as that of the fixed-effects (Model I) ANOV A. 
However, the test appears to be robust to departures of normality within the k 
populations, though not as robust as Model I ANOVA (Sahai, 2000: 86). provided 
the k groups (levels) of data can be considered to have been selected at random 
from all possible groups and that the effect of each group on the variable can be 
considered to be from a normally distributed set of group effects. When the procedure 
is nonrobust. power appears to be affected more than the probability of a Type I 
error; and the lack of robustness is not very different if sample sizes are equal or 
unequal (Tan, 1982; Tan and Wong, 1(80). The Model II analysis of variance (as is 
the case with the Model I ANOV A) also assumes that the k sampled popUlations 
have equal variances. 

(h) Testing of Multiple Means when Variances Are Unequal. Although testing 
hypotheses about means via analysis of variance is tolerant to small departures from 
the assumption of variance homogeneity when the sample sizes are equal. it can yield 
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very misleading results in the presence of more serious heterogeneity of variances 
and/or unequal sample sizes. Having unequal variances represents a mUltisample 
Behrens-Fisher problem (i.e., an extension of the two-sample Behrens-Fisher situation 
discussed in Section S.lc). 

Several approaches to this analysis have been proposed (e.g., see Keselman et a\., 
2000; Lix, Keselman, and Keselman, 1996). A very good one is that described by 
Welch (1951), which employs 

where 

k 
:Lc;(Xj - Xw)2 

F' = ____ j_=_I~----~~--~ 
1 ) [1 + 2A (k - 2)]' 

k2 - 1 
(k 

n· 
C. - I ,- "2 

Sj 

k 

C=:Lc; 
j= I 

k 
:L CjXj 

- j=1 XIV = '---....:._-
C 

k (I c/C)2 
A = :L - I • where Vj = nj - 1 

j== I Vj 

and F' is associated with degrees of freedom of VI = k - 1 and 

k2 - 1 
V2 = 

3A 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

(10.26) 

(10.27) 

which should be rounded to the next lower integer when using Appendix Table B.4. 
This procedure is demonstrated in Example 10.3. 

A modified ANOV A advanced by Brown and Forsythe (1974a, b) also works well: 

F" = groups SS 
B ' 

(10.28) 

EXAMPLE 10.3 Welch's Test for an Analysis-of-Variance Experimental 
Design with Dissimilar Group Variances 

The potassium content (mg of potassium per 100 mg of plant tissue) was measured 
in five seedlings of each of three varieties of wheat. 

Ho: JL 1 = JL2 = JL3· 

H A: The mean potassium content is not the same for seedlings of all three 
wheat varieties. 

a = 0.05 
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Variety G Variety A Variety L 

27.9 24.2 29.1 
27.0 24.7 27.7 
26.0 25.6 29.9 
26.5 26.0 30.7 
27.0 27.4 28.8 
27.5 26.1 31.1 

i 1 2 3 
ni 6 6 6 
IIi 5 5 5 

Xi 26.98 25.67 29.55 

sf 0.4617 1.2787 1.6070 

Ci = ni/s~ 12.9955 4.6923 3.7337 C = ~ Ci = 21.4215 
i 

CiXi 350.6186 120.4513 110.3308 ~ C;Xi = 581.4007 
i 

(1 -~y A =L (1 Y 
Ci 

0.0309 0.1220 0.1364 C = 0.2893 
IIi i IIi 

~CiXi 
581.4007 

Xw = i = 27.14 = c 21.4215 

F' = ~Ci(Xi - Xw)2 

(k _ 1)[1 + 2A(k - 2)] 
k2 - 1 

12.9955(26.98 - 27.14)2 + 4.6923(25.67 - 27.14)2 
= _____ --;;-_--:-_+ __ 3-.7 __ 3-:-37.....!(-29-.5 __ 5...,..--2-7.-14~) 

(3 - 1) [1 + 2(0.2893)(3 - 2)] 
32 - 1 

= 0.3327 + 10.1396 + 21.6857 = 32.4144 = 17.5 
2(0.9268) 1.8536 

For critical value of F: 

111 = k - 1 = 3 - 1 = 2 

112 = k2 - 1 = 32 - 1 = _8 _ = 9.22 
3A 3( 0.2893 ) 0.8679 

By harmonic interpolation in Appendix Table B.4 or by computer program: 

FO.05( 1 ).2.9.22 = 4.22. So, reject Ho· 

0.0005 < P < 0.001 [P = 0.0073] 
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where 

and 
k 

B = Lb;. 
;= I 

F" has degrees of freedom of"l = k - 1 and 

8 2 
"2 = ---;:--z. 

Lb; 
;= I "; 

(1O.28a) 

(10.29) 

(10.30) 

If k = 2, both the F' and F" procedures are equivalent to the t' test. The Welch 
method (F') has been shown (by Brown and Forsythe, 1974a; BOning, 1997; Dijkstra 
and Werter, 1981; Harwell et aI., 1992; Kohr and Games, 1974; Levy, 1978a; Lix, 
Keselman, and Keselman, 1996) to generally perform better than F or F" when 
population variances are unequal, especially when 11;'S are equal. However, the 
Welch test is liberal if the data come from highly skewed distributions (Clinch and 
Keselman. 1992; Lix, Keselman, and Keselman, 1996). 

Browne and Forsythe (1974a) reported that when variances are equal, the power 
of F is a little greater than the power of F', and that of F' is a little less than that 
of F". But if variances are not equal. F' has greater power than F" in cases where 
extremely low and high means are associated with low variances, and the power of 
F" is greater than that of F' when extreme means are associated with large variances. 
Also, in general, F' and F" are good if all 11; ~ 10 and F' is reasonably good if all 
It; ~ 5. 

(i) Which Multisample Test to Use. As with all research reports. the reader should 
be informed of explicitly what procedures were used for any statistical analysis. And, 
when results involve the examination of means, that reporting should include the size 
(11), mean (X), and variability (e.g., standard deviation or standard error) of each 
sample. If the samples came from populations having close to normal distributions, 
then presentation of each sample's confidence limits (Section 10.2) might also be 
included. Additional interpretation of the results could include displaying the means 
and measures of variability via tables or graphs such as those described in Section 7.4. 

Although it not possible to generalize to all possible situations that might be 
encountered, the major approaches to comparing the means of k samples, where k is 
more than two, are as follows: 

• If the k sampled populations are normally distributed and have identi­
cal variances (or if they are only slightly to moderately nonnormal and 
have similar variances): The analysis of variance, using F, is appropriate and 
preferable to test for difference among the means. (However, samples nearly 
always come from distributions that are not exactly normal with exactly the same 
variances, so conclusions to reject or not reject a null hypothesis should not be 
considered definitive when the probability associated with F is very near the 
a specified for the hypothesis test: in such a situation the statistical conclusion 
should be expressed with some caution and, if feasible, the experiment should 
be repeated (perhaps with more data). 
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• If the k sampled populations are distributed normally (or are only slightly 
to moderately nonnormal), but they have very dissimilar variances: The 
Behrens-Fisher testing of Section 10.1 h is appropriate and preferable to compare 
the k means. If extremely high and low means are associated with small variances. 
F' is preferable; but if extreme means are associated with large variances, then 
F" works better. 

• If the k sampled populations are very different from normally distributed, 
but they have similar distributions and variances: The Kruskal-Wallis test of 
Section 10.4 is appropriate and preferable. 

• If the k sampled populations have distributions greatly different from 
normal and do not have similar distributions and variances: (1) Consider 
the procedures of Chapter 13 for data that do not exhibit normality and variance 
equality but that can be transformed into data that are normal and homogeneous 
of variance: or (2) report the mean and variability for each of the k samples, 
perhaps also presenting them in tables and/or graphs (as in Section 7.4). but do 
not perform hypothesis testing. 

(j) Outliers. A small number of data that are much more extreme than the rest 
of the measurements are called outliers (introduced in Section 2.5), and they may 
cause a sample to depart seriously from the assumptions of normality and variance 
equality. If, in the experiment of Example 10.1, a pig weight of 652 kg, or 7.12 kg, 
or 149 kg was reported. the researcher would likely suspect an error. Perhaps the 
first two of these measurements were the result of the careless reporting of weights 
of 65.2 kg and 71.2 kg, respectively: and perhaps the third was a weight measured 
in pounds and incorrectly reported as kilograms. If there is a convincingly explained 
error such as this. then an offending datum might be readily corrected. Or. if it is 
believed that a greatly disparate datum is the result of erroneous data collection (e.g., 
an errant technician. a contaminated reagent, or an instrumentation malfunction). 
then it might be discarded or replaced. In other cases outliers might be valid data, 
and their presence may indicate that one should not employ statistical analyses that 
require population normality and variance equality. There are statistical methods that 
are sometimes used to detect outliers, some of which are discussed by Barnett and 
Lewis (1994: Chapter 6). Snedecor and Cochran (1989: 280-281). and Thode (2002: 
Chapter 6). 

True outliers typically will have little or no influence on analyses employ­
ing nonparametric two-sample tests (Sections 8.11 and 8.12) or muItisample tests 
(Section 10.4). 

10.2 CONFIDENCE LIMITS FOR POPULATION MEANS 

When k > 2, confidence limits for each of the k population means may be computed 
in a fashion analogous to that for the case where k = 2 (Section 8.2. Equation 8.13), 
under the same assumptions of normality and homogeneity of variances applicable 
to the ANOV A. The I - a confidence interval for /Li is 

_ $,~2 
Xi ± ta(2).v -. 

ni 
(10.31) 

where s2 is the error mean square and " is the error degrees of freedom from the 
analysis of variance. For example, let us consider the 95% confidence interval for JL4 
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in Example 10.1. Here, X 4 = 63.24 kg. s2 = 9.383 kg2• n4 = 5. and (0.05(2).15 = 2.131. 

Therefore. the lower 95% confidence limit. LI. is 63.24 kg - 2.131J9.383 kg2j5 = 

63.24 kg - 3.999 kg = 59.24 kg. and L2 is 63.24 kg + 2. 131J9.383 kg2j5 = 
63.24 kg + 3.999 kg = 67.24 kg. 

Computing a confidence interval for ILi would only be warranted if that population 
mean was concluded to be different from each other population mean. And calculation 
of a confidence interval for each of the k IL'S may be performed only if it is concluded 
that ILl * IL2 #: ... #: ILk· However, the analysis of variance does not enable conclusions 
as to which population means are different from which. Therefore, we must first 
perform multiple comparison testing (Chapter 11), after which confidence intervals 
may be determined for each different population mean. Confidence intervals for 
differences between means may be calculated as shown in Section 11.2. 

U SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER IN ANALYSIS OF VARIANCE 

t, 
i 

In Section 8.3, dealing with the difference between two means. we saw how to estimate 
the sample size required to predict a population difference with a specified level of 
confidence. When dealing with more than two means. we may also wish to determine 
the sample size necessary to estimate difference between any two population means. 
and the appropriate procedure will be found in Section 11.2. 

In Section 8.4, methods were presented for estimating the power of the two­
sample t test, the minimum sample size required for such a test. and the minimum 
difference between population means that is detectable by such a test. There are also 
procedures for analysis-of-variance situations. namely for dealing with more than two 
means. (The following discussion begins with consideration of Model I -fixed-effects 
model-analyses of variance.) 

If Ho is true for an analysis of variance. then the variance ratio of Equation 10.18 
follows the F distribution. this distribution being characterized by the numerator 
and denominator degrees of freedom (VI and "2. respectively). If. however. Ho is 
false. then the ratio of Groups MS to error MS follows instead what is known as the 
noncentral F distribution. which is defined by "1, "2, and a third quantity known as 
the noncentrality parameter. As power refers to probabilities of detecting a false null 
hypothesis, statistical discussions of the power of ANOV A testing depend upon the 
noncentral F distribution. 

A number of authors have described procedures for estimating the power of an 
ANOV A. or the required sample size. or the detectable difference among means 
(e.g .• BauseH and Li. 2002; Cohen, 1988: Ch. 8; Tiku. 1967. 1972). but the charts 
prepared by Pearson and Hartley (1951) provide one of the best of the methods and 
will be described below. 

(a) Power of the Test. Prior to performing an experiment and collecting data from 
it. it is appropriate and desirable to estimate the power of the proposed test. (Indeed, 
it is possible that on doing so one would conclude that the power likely will be so low 
that the experiment needs to be run with many more data or with fewer groups or. 
perhaps, not run at all.) 

Let us specify that an ANOV A involving k groups will be performed at the a 
significance level, with n data (i.e., replications) per group. We can then estimate the 
power of the test if we have an estimate of 0-2• the variability within the k populations 
(e.g., this estimate typically is s2 from similar experiments. where s2 is the error MS). 
and an estimate of the variability among the populations. From this information we 
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may calculate a quantity called cP (lowercase Greek phi). which is related to the 
noncentrality parameter. 

The variability among populations might be expressed in terms of deviations of 
the k population means, JLi. from the overall mean of all populations. JL. in which 
case 

k 
n:2 (JLi - JL)2 

cP= i= L (10.32) 

(e.g .• Guenther, 1964: 47: Kirk. 1995: 182). The grand population mean is 

k 

LJLi 
i=1 

JL= --
k 

(10.33) 

if all the samples are the same size. In practice, we employ the best available estimates 
of these population means. 

Once cP has been obtained, we consult Appendix Figure B.I. This figure consists of 
several pages, each with a different VI (Le .. groups DF) indicated at the upper left of 
the graph. Values of cP are indicated on the lower axis of the graph for both a = 0.01 
and a = 0.05. Each of the curves on a graph is for a different V2 (Le., error DF). for 
a = 0.01 or 0.05. identified on the top margin of a graph. After turning to the graph 
for the VI at hand. one locates the point at which the calculated cP intersects the curve 
for the given V2 and reads horizontally to either the right or left axis to determine the 
power of the test. This procedure is demonstrated in Example 10.4. 

EXAMPLE 10.4 Estimating the Power of an Analysis of Variance When 
Variability among Population Means Is Specified 

A proposed analysis of variance of plant root elongations is to comprise ten roots 
at each of four chemical treatments. From previous experiments. we estimate 0'2 

to be 7.5888 mm2 and estimate that two of the population means are 8.0 mm. one 
is 9.0 mm, and one is 12.0 mm. What will be the power of the ANOYA if we test 
at the 0.05 level of significance? 

cP= 

= 

k=4 
n = 10 
VI = k - 1 = 3 
V2 = k(n - 1) = 4(9) = 36 
JL = 8.0 + 8.0 + 9.0 + 12.0 = 9.25 

4 

10[(8.0 - 9.25)2 + (8.0 - 9.25)2 + (9.0 - 9.25)2 + (12.0 - 9.25)2] 

4(7.5888) 
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10(10.75) 

4(7.5888) 

= J3.5414 

= 1.88 

In Appendix Figure B.lc, we enter the graph for VI = 3 with cP = 1.88,0' = 0.05. 
and V2 = 36 and read a power of about 0.88. Thus. there will be a 12% chance of 
committing a Type II error in the proposed analysis. 

An alternative. and common, way to estimate power is to specify the smallest 
difference we wish to detect between the two most different population means. 
Calling this minimum detectable difference S, we compute 

(10.34) 

and proceed to consult Appendix Figure 8.1 as above. and as demonstrated in 
Example 10.5. This procedure leads us to the statement that the power will be at least 
that determined from Appendix Figure B.l (and. indeed. it typically is greater). 

EXAMPLE 10.5 Estimating the Power of an Analysis of Variance When 
Minimum Detectable Difference Is Specified 

For the ANOV A proposed in Example 10.3. we do not estimate the popUlation 
means, but rather specify that, using ten data per sample, we wish to detect a 
difference between population means of at least 4.0 mm. 

k=4 

VI = 3 

n = 10 

V2 = 36 

S = 4.0mm 

s2 = 7.5888 mm2 

= 
1O( 4.0)2 

2( 4 )(7.5888) 

= J2.6355 

= 1.62 

In Appendix Figure B.1. we enter the graph for VI = 3 with cP = 1.62, a = 0.05. 
and "2 = 36 and read a power of about 0.72. That is. there will be a 28% chance 
of committing a Type II error in the proposed analysis. 

It can be seen in Appendix Figure B.l that power increases rapidly as cP increases, 
and Equations 10.32 and 10.34 show that the power is affected in the following 
ways: 

• Power is greater for greater differences among group means (as expressed by 
-:£(J-Li - J-L)2 or by the minimum detectable difference, S) . 

• Power is greater for larger sample sizes. ni (and it is greater when the sample 
sizes are equal). 
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• Power is greater for fewer groups, k. 
• Power is greater for smaller within-group variability, c?- (as estimated by s2, 

which is the error mean square). 
• Power is greater for larger significance levels, a. 

These relationships are further demonstrated in Table lO.3a (which shows that for 
a given total number of data, N, power increases with increased 5 and decreases with 
increased k) and Table 10.3b (in which, for a given sample size, nj, power is greater 
for larger 5's and is less for larger k's). 

The desirable power in performing a hypothesis test is arbitrary, just as the 
significance level (a) is arbitrary. A goal of power between 0.75 and 0.90 is often used, 
with power of 0.80 being common. 

TABLE 10.3a: Estimated Power of Analysis of Variance Comparison 
of Means, with k Samples, with Each Sample of Size n; = 20, with 

k 
N = L nj Total Data, and with a Pooled Variance (sl) of 2.00, for 

;=1 
Several Different Minimum Detectable Differences (S) 

k: 2 3 4 5 6 

5 N: 40 60 80 100 120 

1.0 0.59 0.48 0.42 0.38 0.35 
1.2 0.74 0.64 0.58 0.53 0.49 
1.4 0.86 0.78 0.73 0.68 0.64 
1.6 0.94 0.89 0.84 0.81 0.78 

1.8 0.97 0.95 0.92 0.90 0.88 
2.0 0.99 0.98 0.97 0.95 0.94 
2.2 >0.99 0.99 0.99 0.98 0.98 
2.4 >0.99 >0.99 >0.99 0.99 0.99 

The values of power were obtained from UN 1ST A T (2003: 473-474). 

TABLE 10.3b: Estimated Power of Analysis of Variance Comparison 
of Means, with k Samples, with the k Sample Sizes (nj) Totaling 

k 
N = L nj = 60 Data, and with a Pooled Variance (52) of 2.00, for 

j=l 
Several Different Minimum Detectable Differences (S) 

k: 2 3 4 5 6 

5 ni: 30 20 15 12 10 

1.0 0.77 0.48 0.32 0.23 0.17 
1.2 0.90 0.64 0.44 0.32 0.24 
1.4 0.96 0.78 0.58 0.43 0.32 
1.6 0.99 0.89 0.71 0.54 0.42 

1.8 >0.99 0.95 0.82 0.66 0.52 
2.0 >0.99 0.98 0.90 0.76 0.63 
2.2 >0.99 0.99 0.95 0.85 0.72 
2.4 >0.99 >0.99 0.98 0.91 0.81 

The values of power were obtained from UNIST AT (2003: 473-474). 
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Estimating the power of a proposed ANOV A may effect considerable savings in 
time, effort, and expense. For example. such an estimation might conclude that the 
power is so very low that the experiment, as planned. ought not to be performed. 
The proposed experimental design might be revised, perhaps by increasing n, or 
decreasing k, so as to render the results more likely to be conclusive. One may also 
strive to increase power by decreasing s2 , which may be possible by using experimental 
subjects that are more homogeneous. For instance, if the 19 pigs in Example 10.1 were 
not all of the same age and breed and not all maintained at the same temperature. 
there might well be more weight variability within the four dietary groups than if all 
19 were the same in all respects except diet. 

As noted for one-sample (Section 7.7) and two-sample (Section 8.4) testing, 
calculations of power (and of minimum required sample size and minimum detectable 
difference) and estimates apply to future samples, not to the samples already subjected 
to the ANOV A. There are both theoretical and practical reasons for this (Hoenig 
and Heisey, 2001). 

(b) Sample Size Required. Prior to performing an analysis of variance, we might 
ask how many data need to be obtained in order to achieve a desired power. We 
can specify the power with which we wish to detect a particular difference (say, a 
difference of biological significance) among the population means and then ask how 
large the sample from each population must be. This is done, with Equation 10.34. 
by iteration (i.e .• by making an initial guess and repeatedly refining that estimate), as 
shown in Example 10.6. 

How well Equation 10.34 performs depends upon how good an estimate ~.2 is of 
the population variance common to all groups. As the excellence of s2 as an estimate 
improves with increased sample size, one should strive to calculate this statistic 
from a sample with a size that is not a very small fraction of the n estimated from 
Equation 10.34. 

EXAMPLE 10.6 Estimation of Required Sample Size for a One-Way Anal-
ysis of Variance 

Let us propose an experiment such as that described in Example 10.1. How many 
replicate data should be collected in each of the four samples so as to have an 80% 
probability of detecting a difference between popUlation means as small as 3.5 kg. 
testing at the 0.05 level of significance? 

In this situation, k = 4, VI = k - 1 = 3. l) = 3.5 kg. and we shall assume 
(from the previous experiment in Example 10.1) that s2 = 9.383 kg2 is a good 
estimate of 0'2. 

We could begin by guessing that n = 15 is required. Then. V2 = 4( 15 - 1) = 56. 
and by Equation 10.34, 

15(3.5)2 

2( 4 )(9.383) 
= 1.56. 

Consulting Appendix Figure B.l. the power for the above VI, V2. a. and cf> is 
approximately 0.73. This is a lower power than we desire. so we guess again with a 
larger n. say n = 20: 

cf>= 
20( 3.5 )2 

2( 4)( 9.383) 
= 1.81. 
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Appendix Figure B1 indicates that this cP, for "2 = 4(20 - 1) = 76, is associated 
with a power of about 0.84. This power is somewhat higher than we specified, so 
we could recalculate power using n = 18: 

cP = I 18(3.5)2 = 1.71 
'V 2( 4)( 9.383) 

and. for "2 = 4( 18 - 1) = 68, Appendix Figure B.1 indicates a power slightly 
above 0.80. 

Thus, we have estimated that using sample sizes of at least 18 will result in an 
ANOY A of about 80% for the described experiment. (It will be seen that the 
use of Appendix Figure B.l allows only approximate determinations of power; 
therefore, we may feel more comfortable in specifying that n should be at least 19 
for each of the four samples.) 

(c) Minimum Detectable Difference. If we specify the significance level and sample 
size for an ANOY A and the power that we desire the test to have, and if we have 
an estimate of u2• then we can ask what the smallest detectable difference between 
population means will be. This is sometimes called the "effect size." By entering on 
Appendix Figure 8.1 the specified a. "I. and power. we can read a value of cP on 
the bottom axis. Then. by rearrangement of Equation 10.34. the minimum detectable 
difference is 

a ~ ~2~4? (10.35) 

Example 10.7 demonstrates this estimation procedure. 

EXAMPLE 10.1 Estimation of Minimum Detectable Difference in a One-
Way Analysis of Variance 

In an experiment similar to that in Example 10.1. assuming that s2 = 9.3833 (kg)2 
is a good estimate of u 2• how small a difference between p..'s can we have 90% 
confidence of detecting if n = 10 and a = 0.05 are used? 

Ask = 4andn = to,1I2 = 4(tO - 1) = 36. For II) = 3,"2 = 36.1 - f3 = 0.90, 
and a = 0.05, Appendix Figure B.l c gives a cP of about 2.0, from which we compute 
an estimate of 

2( 4 )(9.3833 )(2.0)2 = 5.5 kg. 
to 

(d) Maximum Number of Groups Testable. For a given a. n. S. and u 2, power 
will decrease as k increases. It may occur that the total number of observa­
tions, N, will be limited, and for given ANOYA specifications the number of 
experimental groups, k, may have to be limited. As Example 10.8 illustrates, the 
maximum k can be determined by trial-and-error estimation of power, using Equa­
tion 10.34. 
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EXAMPLE 10.8 Determination of Maximum Number of Groups to be 
Used in a One-Way Analysis of Variance 

Consider an experiment such as that in Example 10.1. Perhaps we have six feeds 
that might be tested. but we have only space and equipment to examine a total of 
50 pigs. Let us specify that we wish to test, with ex = 0.05 and f3 ::; 0.20 (Le .• power 
of at least 80%). and to detect a difference as small as 4.5 kg between population 
means. 

If k = 6 were used, then n = 50/6 = 8.3 (call it 8), v\ = 5.V2 = 6( 8 - 1) = 42, 
and (by Equation 10.34) 

c/J= 
(8)(4.5)2 

-----'---'--'-------'- = 1.20. 
2(6)(9.3833) 

for which Appendix Figure B.I e indicates a power of about 0.55. 
lfk = 5wereused.n = 50/5 = lO.v\ = 4,V2 = 5(10 - 1) = 45. and 

c/J= (10)(4.5)2 = 1.47. 
2(5)(9.3833) 

for which Appendix Figure B.l d indicates a power of about 0.70. 
If k = 4 were used. n = 50/4 = 12.5 (call it 12). v\ = 3.V2 = 4( 12 - 1) = 44. 

and 

c/J= (12)( 4.5)2 = 1.80. 
2( 4 )(9.3833) 

for which Appendix Figure B.Ic indicates a power of about 0.84. 
Therefore, we conclude that no more than four of the feeds should be tested in 

an analysis of variance if we are limited to a total of 50 experimental pigs. 

(e) Random-Effects Analysis of Variance. If the analysis of variance is a random­
effects model (described in Section 1O.lf). the power, 1 - f3. may be determined 
from 

V2,<;2 F a( \ ) "I ." F = . '" 
(\-{3)'''1,''2 ( 2)( MS) V2 - groups 

(10.36) 

(after Scheffe. 1959: 227; Winer, Brown, and Michels. 1979: 246). This is shown in 
Example 10.9. As with the fixed-effects ANOV A. power is greater with larger n, 
larger differences among groups, larger ex. and smaller .~. 

EXAMPLE 10.9 Estimating the Power of the Random-Effects Analysis of 
Variance of Example 10.2 

Groups MS = 3.00: s2 = 1.25: V\ = 3, V2 = 16 

F = F, = 324 a( 1 )'''1'''2 I>.OS( 1 ),3,16 • 
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F(I-(3)./lI./12 = ("2 - 2)(groupsMS) 

(16 )(1.25)(3.24) = 1.54 
(14)(3.00) 

By consulting Appendix Table B.4. it is seen that an F of 1.54, with degrees of 
freedom of 3 and 16, is associated with a one-tailed probability between 0.10 and 
0.25. (The exact probability is 0.24.) This probability is the power. 

To determine required sample size in a random-effects analysis, one can specify 
values of 0:', groups MS, .')2. and k. Then,"1 = k - 1 and "2 = k( n - 1): and, 
by iterative trial and error, one can apply Equation 10.36 until the desired power 
(namely, 1 - /3) is obtained. 

10.4 NONPARAMETRIC ANALYSIS OF VARIANCE 

If a set of data is collected according to a completely randomized design where k > 2, 
it is possible to test nonparametrically for difference among groups. This may be 
done by the Kruskal-Wallis test· (Kruskal and Wallis, 1952), often called an "analysis 
of variance by ranks. ,·t This test may be used in any situation where the parametric 
single-factor ANOV A (using F) of Section 10.1 is applicable, and it will be 3/7r (Le., 
95.5%) as powerful as the latter; and in other situations its power. relative to F, is 
never less than 86.4% (Andrews, 1954; Conover 1999: 297). It may also be employed 
in instances where the latter is not applicable, in which case it may in fact be the 
more powerful test. The nonparametric analysis is especially desirable when the k 
samples do not come from normal populations (Keselman, Rogan, and Feir-Walsh, 
1977: Krutchkoff, 1998). It also performs acceptably if the populations have no more 
than slightly different dispersions and shapes: but if the k variances are not the same, 
then (as with the Mann-Whitney test) the probability of a Type J error departs from 
the specified 0:' in accordance with the magnitude of those differences (Zimmerman, 
2000).t 

As with the parametric analysis of variance (Section 10.1), the Kruskal-Wallis test 
tends to be more powerful with larger sample sizes, and the power is less when the 
n;'s are not equal, especially if the large means are associated with the small n/s 
(Boehnke, 1984): and it tends to be conservative if the groups with large nj's have 
high within-groups variability and liberal if the large samples have low variability 
(Keselman, Rogan, and Feir-Walsh, 1997). Boehnke (1984) advises against using the 
Kruskal-Wallis test unless N > 20. 

If k = 2, then the Kruskal-Wallis test is equivalent to the Mann-Whitney test 
of Section 8.11. Like the Mann-Whitney test, the Kruskal-Wallis procedure does 

·William Henry Kruskal (b. 1919). American statistician, and Wilson Allen Wallis (b. 1912), 
American statistician and econometrician. 

t As will be seen. this procedure does not involve variances, but the term nonpartlmetric analysis 
of variance is commonly applied to it in recognition that the test is a nonparametric analog to the 
parametric ANDV A. 

*Modifications or the Kruskal-Wallis test have been proposed for nonparametric situations 
where the k variances arc not equal (the "Behrens-Fisher problem" addressed parametrically 
in Section to.th) but the k populations are symmetrical (Rust and Fligner, 1984; Conover 1999: 
223-224). 
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not test whether means (or medians or other parameters) may be concluded to be 
different from each other. but instead addresses the more general question of whether 
the sampled populations have different distrubutions. However. if the shapes of the 
distributions are very similar. then the test does become a test for central tendency 
(and is a test for means if the distributions are symmetric). 

The Type I error rate with heterogeneous variances is affected less with the 
Kruskal-Wallis test than with the parametric analysis of variance if the groups with 
large variances have small sample sizes (Keselman. Rogan. and Feir-Walsh. 1977: 
Tomarkin and Serlin. 1986). 

Example to.1O demonstrates the Kruskal-Wallis test procedure. As in other non­
parametric tests. we do not use population parameters in statements of hypotheses, 
and neither parameters nor sample statistics are used in the test calculations. The 
Kruskal-Wallis test statistic. H. is calculated as 

12 k R? 
H= L-' - 3(N + I). 

N(N + 1);=1 n; 
( 10.37) 

where n; is the number of observations in group i. N = Lf= 1 n; (the total number of 
observations in all k groups). and Ri is the sum of the ranks of the ni observations 
in group i. * The procedure for ranking data is as presented in Section 8.11 for the 
Mann-Whitney test. A good check (but not a guarantee) of whether ranks have been 
assigned correctly is to see whether the sum of all the ranks equals N(N + 1)/2. 

Critical values of H for small sample sizes where k S 5 are given in Appendix 
Table B.13. For larger samples and/or for k > 5. H may be considered to be 
approximated by X2 with k - 1 degrees of freedom. Chi-square, X2, is a statistical 
distribution that is shown in Appendix Table B.l, where probabilities are indicated 
as column headings and degrees of freedom (v) designate the rows. 

If there are tied ranks. as in Example to.1 1. H is a little lower than it should be, 
and a correction factor may be computed as 

c = I _ Ll 
N3 N' 

and the corrected value of H is 
H 

H("= -. 
C 

*Inlerestingly. H (or He of Equation 111.41) could also be computed as 

If = groups SS. 
total MS 

(10.40) 

(10.41) 

(10.38) 

applying the procedures of Section 10.1 10 the ranks of the data in order to obtain the Groups SS 
and Total MS. And. because the Total MS is the variance of all N ranks. if there are no ties Ihe 
Total MS is the variance of the integers from 1 to N. which is 

N(N + I )(2N + 1 )/6 - N2(N + 1)2/4N 

N - 1 
(IO.3Ma) 

The following alternate formula (Pearson and Hartley. 1976: 49) shows that H is expressing the 
differcnces among the K groups' mean ranks (R; = Ri/ ni) and the mean of all N ranks. which is 
R = N(N - 1)/2: 

12 f ni(Ri - R)2 
H = ---,i_"'..:....1 ___ _ 

N(N - I) 
( 10.39) 
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EXAMPLE 10.10 
Ranks 

The Kruskal-Wallis Single-Factor Analysis of Variance by 

An entomologist is studying the vertical distribution of a fly species in a deciduous 
forest and obtains five collections of the flies from each of three different vegetation 
layers: herb. shrub. and tree. 

Ho: The abundance of the flies is the same in all three vegetation layers. 
H A: The abundance of the flies is not the same in all three vegetation layers. 

a = 0.05 
The data are as follows (with ranks of the data in parentheses):* 

HO.05.5.5.5 = 5.780 

Reject Ho. 

Numbers of Flieslm3 of Foliage 
Herbs Shrubs Trees 

14.0(15) 
12.1 (14) 
9.6 (12) 
8.2 (10) 

10.2 (13) 

n) = 5 
R, = 64 

8.4 (11) 
5.1 (2) 
5.5 (4) 
6.6 (7) 
6.3 (6) 

n2 = 5 
R2 = 30 

N = 5 + 5 + 5 = 15 

6.9 (8) 
7.3 (9) 
5.8 (5) 
4.1 (1) 
5.4 (3) 

n3 = 5 
R3 = 26 

12 k R2 
H = ~ _i - 3(N + 1) 

N(N + t );~, n, 

= 12 [642 + 302 + 262]_ 3(16) 
15(16) 5 5 5 

= 2~0[1134.400] - 48 

= 56.720 - 48 

= 8.720 

0.005 < P < 0.01 

*To check whether ranks were assigned correctly. the sum of the ranks (or sum of the rank 
sums: 64 + 30 + 26= 120)iscomparedtoN(N + 1)/2= 15(16)/2= 120. This check will 
not guarantee that the ranks were assigned properly. but it will often catch errors of doing so. 
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EXAMPLE 10.11 The Kruskal-Wallis Test with Tied Ranks 

A limnologist obtained eight containers of water from each of four ponds. The 
pH of each water sample was measured. The data are arranged in ascending order 
within each pond. (One of the containers from pond 3 was lost, so n3 = 7, instead 
of 8; but the test procedure does not require equal numbers of data in each group.) 
The rank of each datum is shown parenthetically. 

Ho: pH is the same in all four ponds. 
HA : pH is not the same in all four ponds. 

(X = 0.05 

Pond I Pond 2 Pond 3 Pond 4 

7.68 (1) 7.71 (6*) 7.74 (13.5*) 7.71 (6*) 
7.69 (2) 7.73 (10*) 7.75 (16) 7.71 (6*) 
7.70 (3.5*) 7.74 (13.5*) 7.77 (18) 7.74 (13.5*) 
7.70 (3.5*) 7.74 (13.5*) 7.78 (20*) 7.79 (22) 
7.72 (8) 7.78 (20*) 7.80 (23.5*) 7.81 (26*) 
7.73 (10*) 7.78 (20*) 7.81 (26*) 7.85 (29) 
7.73 (10*) 7.80 (23.5*) 7.84 (28) 7.87 (30) 
7.76 (17) 7.81 (26*) 7.91 (31) 
*Tied ranks. 

n) = 8 n2 = 8 n3 = 7 n4 = 8 
Rl = 55 R2 = 132.5 R3 = 145 R4 = 163.5 

N = 8 + 8 + 7 + 8 = 31 

H = 12 ± R~ _ 3(N + 1) 
N(N + 1) ;=1 n; 

= 12 [552 + 132.52 + 1452 + 163.52]_ 3(32) 
31(32) 8 8 7 8 

= 11.876 

Number of groups of tied ranks = m = 7. 

~t = ~(ljl - Ii) 

= (23 - 2) + (33 - 3) + (33 - 3) + (43 - 4) 
+(33 - 3) + (23 - 2) + (33 - 3) 

= 168 

c = 1 - ~ I = 1 _ 168 = 1 - ~ = 0.9944 
N3 - N 31 3 - 31 29760 

He = H = 11.876 = 11.943 
C 0.9944 

v=k-l=3 
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Xfi.OS.3 = 7.815 

Reject Ho. 
0.005 < P < 0.01 [P = 0.0076] 

or, by Equation 10.43, 

(N - k ) He ( 31 - 4) ( 11. 943 ) F = ---'--------'----"--- = ------''---------'--'-------'--- = 5.95 

Here, 

(k - 1)( N - 1 - He) (4 - 1) (31 - I - 11.943) 

FO.05( 1 }.32li = 2.98 

Reject Ho. 
0.0025 < P < 0.005 [P = 0.0031] 

In 

~ t = ~ (li1 - Ii), 
;=1 

(10.42) 

where Ii is the number of ties in the ith group of ties, and m is the number of 
groups of tied ranks. He will differ little from H when the Ii'S are very small com­
pared to N. 

Kruskal and Wallis (1952) give two approximations that are better than chi-square 
when the n; 's are small or when significance levels less than 1 % are desired: but 
they are relatively complicated to use. The chi-square approximation is slightly 
conservative for a = 0.05 or 0.10 (i.e., the true Type I probability is a little less than 
a) and more conservative for a = 0.01 (Gabriel and Lachenbruch, 1969): it performs 
better with larger nj's. Fahoome (2002) found the probability of a Type I error to be 
between 0.045 and 0.055 when employing this approximation at the 0.05 significance 
level if each sample size is at least 11, and between 0.009 and 0.011 when testing at 
a = 0.01 when each ni ~ 22. 

Because the X2 approximation tends to be conservative, other approximations 
have been proposed that are better in having Type I error probabilities closer to a. 
A good alternative is to calculate 

F= (N-k)H , 
(k - 1 )(N - 1 - H) 

(10.43) 

which is also the test statistic that would be obtained by applying the parametric 
ANOV A of Section 10.1 to the ranks of the data (lman, Quade and Alexander, 
1975). For the Kruskal-Wallis test, this F gives very good results, being only slightly 
liberal (with the probability of a Type I error only a little larger than the specified 
a), and the preferred critical values are F for the given a and degrees of freedom 
of VI = k - 1 and V2 = N - k - 1.* This is demonstrated at the end of 
Example 10.11. 

* A slightly better approximation in some, but not all. cases is to compare 

H [1 + N - k ] 10 _( k __ 1 )_F_Il<.:...I..:...}.k_-_I_.N_-_k_+_X...:;;::..:..k;..._...;.1 

2 N-J-H 2 
( 1O.43a) 
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S TESTING FOR DIFFERENCE AMONG SEVERAL MEDIANS 

Section 8.12 presented the median test for the two-sample case. This procedure may 
be expanded to multisample considerations (Mood. 1950: 398-399). The method 
requires the determination of the grand median of all observations in all k samples 
considered together. The numbers of data in each sample that are above and below 
this median are tabulated, and the significance of the resultant 2 x k contingency 
table is then analyzed, generally by chi-square (Section 23.1), alternatively by the G 
test (Section 23.7). For example, if there were four populations being compared, the 
statistical hypotheses would be Ho: all four populations have the same median, and 
HA: all four populations do not have the same median. The median test would be the 
testing of the following contingency table: 

Sample I Sample 2 Sample 3 Sample 4 Total 

Above medial1 
Below median 

Total 

til 
hi 

11 

This muItisample median test is demonstrated in Example 10.12. Section 8.12 
discusses situations where one or more data in the sample are equal to the grand 
median. Recommended sample sizes are those described is Section 23.4. If Ho is 
rejected, than the method of Section 11.7 can be used to attempt to conclude which 
population medians are different from which. 

EXAMPLE 10.12 The Multisample Median Test 

Ho: Median elm tree height is the same on all four sides of a building. 
H A: Median elm tree height is not the same on all four sides of a building. 

A total of 48 seedlings of the same size were planted at the same time, 12 on 
each of a building's four sides. The heights. after several years of growth, were as 
follows: 

North East South West 

7.1 m 6.9m 7.8m 6.4m 
7.2 7.0 7.9 6.6 
7.4 7.1 8.1 6.7 
7.6 7.2 8.3 7.1 
7.6 7.3 8.3 7.6 
7.7 7.3 8.4 7.8 
7.7 7.4 8.4 8.2 
7.9 7.6 8.4 8.4 
8.1 7.8 8.6 8.6 
8.4 8.1 8.9 8.7 
8.5 8.3 9.2 8.8 
8.8 8.5 9.4 8.9 

medians: 7.7m 7.35 m 8.4 m 8.0m 
grand median = 7.9 m 
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The 2 x 4 contingency table is as follows, with expected frequencies (see Section 
23.1) in parentheses: 

North East South West 

Above median 4 (5.5000) 3 (6.0000) 10 (5.5000) 6 (6.0000) 23 
Below median 7 (5.5000) 9 (6.0000) 1 (5.5000) 6 (6.0000) 23 

Total 11 12 11 12 46 

X2 = 11.182 

xi.1l5.3 = 7.815 

Reject Ho. 
0.0005 < P < 0.001 [P = 0.00083] 

If the k samples came from populations having the same variance and shape, then 
the Kruskal-Wallis test may be used as a test for difference among the k population 
medians. 

10.6 HOMOGENEITY OF VARIANCES 

Section 8.5 discussed testing the null hypothess Ho: uT = u~ against the alternate, 
H A: UT =1= u~. This pair of two-sample hypotheses can be extended to more than 
two samples (i.e., k > 2) to ask whether all k sample variances estimate the same 
population variance. The null and alternate hypotheses would then be Ho: uT = 
u~ = ... = lT~ and Ho: the k population variances are not all the same. The 
equality of variances is called homogeneity of variances. or homoscedasticity: variance 
heterogeneity is called heteroscedasticity. * 

(a) Bartlett's Test. A commonly encountered method employed to test for.homo­
geneity of variances is Bartlett's testt (Bartlett, 1937a, 1937b; based on a principle of 
Neyman and Pearson, 1931). In this procedure, the test statistic is 

B ~ (Ins;>(~ v) -~ Vi1nsi, (10.44) 

where Vi = ni - 1 and ni is the size of sample i. The pooled variance, s~, is calculated 

as before as I.7= I SSi/ I.~= I Vi. Many researchers prefer to operate with common 
logarithms (base 10), rather than with natural logarithms (base e):* so Equation 10.44 
may be written as 

B ~ 2.30259[(IOg.,~)(~ Vi) - ~ v;logsil. (10.45) 

The distribution of B is approximated by the chi-square distribution. § with k -
1 degrees of freedom (Appendix Table B.1), but a more accurate chi-square 

*The two terms were introduced by K. Pearson in 1905 (Walker, 1929: IRI): since then they 
have occasionally been spelled homoskedasticity and heteroskedllsticity. respectively. 

tMaurice Stevenson Bartlett (19\0-2002), English statistician. 
*See footnote in Section 8.7. 
Ii A summary of approximations is given by Nagasenker (1984). 
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approximation is obtained by computing a correction factor. 

c = 1 + 
k 1 
L-
i= I Vi 3(k - 1) 

with the corrected test statistic being 

B Be =-. 
C 

1 
k 

LVi 
i=1 

(10.46) 

(10.47) 

Example 10.13 demonstrates these calculations. The null hypothesis for testing 
the homogeneitl of the variances of four populations may be written symbolically 
as Ho: ui = u2 = U} = u~, or, in words, as "the four population variances are 
homogeneous (i.e., are equal)." The alternate hypothesis can be stated as "The four 
population variances are not homogeneous (i.e., they are not all equal)," or "There is 
difference (or heterogeneity) among the four population variances." If Ho is rejected, 
the further testing of Section 11.8 will allow us to ask which popUlation variances are 
different from which. 

Bartlett's test is powerful if the sampled populations are normal. but it is very badly 
affected by non normal populations (Box, 1953; Box and Anderson, 1955; Gartside, 
1972). If the population distribution is platykurtic, the true ex is less than the stated ex 
(i.e., the test is conservative and the probability of a Type II error is increased); if it 
is leptokurtic, the true ex is greater than the stated ex (i.e., the probability of a Type I 
error is increased). 

When k = 2 and n[ = n2, Bartlett's test is equivalent to the variance-ratio test of 
Section 8.5a. However, with two samples of unequal size. the two procedures may 
yield different results; one will be more powerful in some cases. and the other more 
powerful in others (Maurais and Ouimet. 1986). 

(b) Other Multisample Tests for Variances. Section 8.5b noted that there are other 
tests for heterogeneity (Levene's test and others) but that all are undesirable in many 
situations. The Bartlett test remains commendable when the sampled populations are 
normal, and no procedure is especially good when they are not. 

Because of the poor performance of tests for variance homogeneity and the 
robustness of analysis of variance for multisample testing among means (Section 10.1). 
it is not recommended that the former be performed as tests of the underlying 
assumptions of the latter. 

HOMOGENEITY OF COEFFICIENTS OF VARIATION 

The two-sample procedure of Section 8.8 has been extended by Feltz and Miller 
(1996) for hypotheses where k ~ 3 and each coefficient of variation ( Vi) is positive: 

k 

L lIiV; 
i=1 

(± ViVi)2 
1=[ 

k 

LVi 
x2 = __ --::-__ ---=-i =--:1---=-_ 

V~( 0.5 + Vfo) 
(10.48) 
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EXAMPLE 10.13 Bartlett's Test for Homogeneity of Variances 
Nineteen pigs were divided into four groups, and each group was raised on 
a different food. The data, which are those of Example 10.1, are weights, in 
kilograms, and we wish to test whether the variance of weights is the same for pigs 
fed on all four feeds. 

Ho: CTT = CT~ = CT~ = CT~ 
HA : The four population variances are not all equal (i.e., are heterogeneous). 

a = 0.05 

Feed J Feed 2 
60.8 68.7 
67.0 67.7 
65.0 75.0 
68.6 73.3 
61.7 71.8 

i 1 2 
ni 5 5 

IIi 4 4 

SSi 44.768 37.660 

s? 11.192 9.415 
, 2 

1.0489 0.9738 logsi 

IIi log sf 4.1956 3.8952 

l/Vi 0.250 0.250 

S2 = ~ SSj = 140.750 = 9.3833 
p ~ Vi 15 

log S~ = 0.9724 

B = 2.30259 [ (log ~)(~ Vi) 

- ~ IIi log sT )] 

Feed 3 
69.6 
77.1 
75.2 
71.5 

3 
4 

3 

34.970 

11.657 
1.0666 

3.1998 

0.333 

= 2.30259[(0.9724)( 15) - 14.3558J 

= 2.30259( 0.2302 ) 

Feed 4 

61.9 
64.2 
63.1 
66.7 
60.3 

4 
5 

k 
4 ~Vi = 15 

i= 1 
k 

23.352 ~ SSj = 140.750 
i=1 

5.838 
0.7663 

k 
3.0652 ~ Vi log sf = 14.3558 

i= 1 
k 

0.250 ~ l/v; = 1.083 
i= 1 

c = 1 + 1 
3(k - 1) 

x(~~ __ I) 
Vi ~ Vi 

= 1 + _1_ (1.083 _ 1.-) 
3(3) 15 

=1.113 

B. = B = 0.530 = 0.476 
( C 1.113 

X5.05.3 = 7.815 

= 0.530 Do not reject Ho. 

0.90 < P < 0.95 [P = 0.92] 
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EXERCISES 

The following data are ",eights of food (in kilo­
grams) consumed per day by adult deer collected 
at different times of the year. Test the null hypoth­
esis that food consumption is the same for all the 
months tested. 

Feb. May Aug. Nov. 

4.7 4.6 4.8 4.9 
4.9 4.4 4.7 5.2 
5.0 4.3 4.6 5.4 
4.8 4.4 4.4 5.1 
4.7 4.1 4.7 5.6 

4.2 4.8 

L2. An experiment is to have its results examined by 
analysis of variance. The variable is temperature 
(in degrees Celsius), with 12 measurements to be 
taken in each of five experimental groups. From 

, previous experiments. we estimate the within­
groups variability. u 2, to be 1.54(0C)2. If the 5% 
level of significance is employed, what is the prob­
ability of the ANOV A detecting a difference as 

. small as 2.0'C between population means? 
IJ. For the experiment of Exercise 10.2, how many 

replicates are needed in each of the five groups 
to detect a difference as small as 2.00 C between 
population means, with 95% power'? 

W. For the experiment of Exercise to.2. what is the 
, smallest difference between population means that 

we are 95% likely to detect with an ANOV A using 
10 replicates per group? 

10.5. Using the Kruskal-Wallis test. lest nonparametri­
cally the appropriate hypotheses for the data of 
Exercise 10.1. 

10.6. Three different methods were used to determine 
the dissolved-oxygen content of lake water. Each 
of the three methods was applied to a sample of 
water six times. with the following results. Test 
the null hypothesis that the three methods yield 
equally variable results (ui = u~ = u~). 

Method I MetllOd 2 Method 3 
(mglkg) (mglkg) (mg/kg) 

10.96 10.88 10.73 
10.77 10.75 10.79 
10.90 10.80 10.78 
10.69 10.81 10.82 
10.87 10.70 10.88 
10.60 10.82 10.81 

10.7. The following statistics were obtained from mea­
surements of the circumferences of trees of four 
species. Test whether the coefficients of variation 
of circumferences are the same among the four 
species. 

Species B Species A Species Q Species H 

II: 40 54 58 32 
X (m): 2.126 1.748 1.350 1.392 
~1 (m2): 0.488219 0.279173 0.142456 0.203208 

prakash
Rectangle

prakash
Rectangle

prakash
Rectangle
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where the common coefficient of variation is 

k 
L VjVj 

Vp = -j=-~--

L Vj 
j= 1 

(10.49) 

This test statistic approximates the chi-square distribution with k - 1 degrees of 
freedom (Appendix Table B. t) and its computation is shown in Example 10.14. When 
k = 2, the test yields results identical to the two-sample test using Equation 8.42 (and 
X2 = Z2). As with other tests, the power is greater with larger sample size; for a given 
sample size, the power is greater for smaller coefficients of variation and for greater 
differences among coefficients of variation. If the null hypothesis of equal population 
coefficients of variation is not rejected, then Vp is the best estimate of the coefficient 
of variation common to all k populations. 

EXAMPLE 10.14 Testing for Homogeneity of Coefficients of Variation 

For the data of Example 10.1: 

Ho: The coefficients of the four sampled populations are the same; i.e .• 
(TTl f.Ll = (T~/ f.L2 = (TV f.L3 = (T~/ f.L4· 

HA: The coefficients of variation of the four populations are not all the 
same. 

Feed 1 Feed 2 Feed 3 Feed 4 

ni 5 5 4 5 

Vi 4 4 3 4 

Xi (kg) 64.62 68.30 73.35 66.64 

sJ (kg2) 11.192 16.665 11.657 9.248 

Si (kg) 3.35 4.08 3.41 3.04 

Vj 0.0518 0.0597 0.0465 0.0456 

II 

LVi = 4 + 4 + 3 + 4 = 15 
j= 1 

" 
LViVj = (4)(0.0518) + (4)(0.0597) + (3)(0.0465) + (4)(0.0456) = 0.7679 
j= I 

L VjVj 

Vp = = 0.7679 = 0.05119 
LVj 15 

V~ = (0.7679)2 = 0.002620 
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" Lvvl 
;=1 

= (4)(0.0518)2 + (4)(0.0597)2 + (3)(0.0465)2 + (4)(0.0456)2 

= 0.03979 

0.03979 _ (0.7679)2 
_____ ---'1=5 __ = 0.0004786 = 0.363 
0.OO2620( 0.5 + 0.(02620) 0.001317 

For chi-square: v = 4 - I = 3: X6.05.3 = 7.815. Do not reject Ho. 

0.90 < P < 0.95 [P = 0.948] 

Miller and Feltz (1997) reported that this test works best if each sample size (n; 
is at least 10 and each coefficient of variation (V;) is no greater than 0.33: and the: 
describe how the power of the test (and, from such a calculation, the minimun 
detectable difference and the required sample size) may be estimated. 

10.8 CODING DATA 

In the parametric ANOV A. coding the data by addition or subtraction of a constan 
causes no change in any of the sums of squares or mean squares (recall Section 4.8) 
so the resultant F and the ensuing conclusions are not affected at all. If the coding i: 
performed by multiplying or dividing all the data by a constant, the sums of square: 
and the mean squares in the ANOV A each will be altered by an amount equal to the 
square of that constant. but the F value and the associated conclusions will remail 
unchanged. 

A test utilizing ranks (such as the Kruskal-Wallis procedure) will not be affecte( 
at all by coding of the raw data. Thus. the coding of data for analysis of variance 
either parametric or nonparametric, may be employed with impunity. and cod 
ing frequently renders data easier to manipulate. Neither will coding of data alte' 
the conclusions from the hypothesis tests in Chapter 11 (multiple comparisons) 0: 

Chapters 12, 14, 15, or 16 (further analysis-of-variance procedures). Bartlett's tes 
is also unaffected by coding. The testing of coefficients of variation is unaffecte( 
by coding by multiplication or division, but coding by addition or subtractiOI 
may not be used. The effect of coding is indicated in Appendix C for man~ 
statistics. 

10.9 MULTISAMPLE TESTING FOR NOMINAL-SCALE DATA 

A 2 x c contingency table may be analyzed to compare frequency distributions 0 

nominal data for two samples. In a like fashion. an r X c contingency table ma~ 
be set up to compare frequency distributions of nominal-scale data from r samples 
Contingency table procedures are discussed in Chapter 23. 

Other procedures have been proposed for muItisample analysis of nominal-scale 
data (e.g., Light and Margolin. 1971: Windsor, 1948). 
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The Model I single-factor analysis of variance (ANOY A) of Chapter 10 tests the null 
hypothesis Ho: J.LI = J.L2 = ... = J.Lk. However. the rejection of Ho does not imply 
that all k population means are different from one another, and we don't know how 
many differences there are or where differences lie among the k means. For example, 
if k = 3 and Ho: J.LI = V2 = J.LJ is rejected. we are not able to conclude whether there 
is evidence of J.LI -=I- V2 = J.LJ or of J.LI = V2 -=I- J.LJ or of J.LI -=I- V2 -=I- J.LJ. 

The introduction to Chapter to explained that it is invalid to employ multiple 
two-sample t tests to examine the difference among more than two means, for to 
do so would increase the probability of a Type I error (as shown in Table 10.\). 
This chapter presents statistical procedures that may be used to compare k means 
with each other; they are called mUltiple-comparison procedures" (MCPs). Except 
for the procedure known as the least significance difference test, all of the tests 
referred to in this chapter may be performed even without a preliminary analysis of 
variance. Indeed, power may be lost if a multiple-comparison test is performed only 
if the ANOYA concludes a significant difference among means (Hsu. 1996: 177-178; 
Myers and Well. 2003: 261). And all except the Scheffe test of Section 11.4 are for a 
set of comparisons to be specified before the collection of data. 

The most common principle for multiple-comparison testing is that the significance 
level. ll'. is the probability of committing at least one Type I error when making 
all of the intended comparisons for a set of data. These arc said to be a family of 
comparisons, and this error is referred to as fllmilywise error (FWE) or. sometimes, 
experimentwise error. Much less common are tests designed to express comparisol1lvise 
error, the prohahility of a Type 1 error in a single comparison. 

A great deal has been written about numerous multiple-comparison tests with 
various objectives, and the output of many statistical computer packages enhances 
misuse of them (Hsu. 1996: xi). Although there is not unanimity regarding what the 
"best" procedure is for a givcn situation, this chapter will present some frequently 
encountered highly regarded tests for a variety of purposes. 

If the desire is to test for differences between members of all possible pairs of 
means. then the procedures of Section 11.1 would he appropriate, using Section 1 1.1 a 

*Thc term nIlllliple ('oll1/1ariS(lIIS was introduced by D. E. Duncan in 1951 (David. 1995). 
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if sample sizes are unequal and Section 11.1 b if variances are not the same. If the data 
are to be analyzed to compare the mean of one group (typically called the control) 
to each of the other group means, then Section 11.3 would be applicable. And if the 
researcher wishes to examine sample means after the data are collected and compare 
specific means. or groups of means, of interest, then the testing in Section 11.4 is 
called for. 

Just as with the parametric analysis of variance. the testing procedures of Sections 
11.1-11.4 are premised upon there being a normal distribution of the population 
from which each of the k samples came; but. like the ANOY A. these tests are 
somewhat robust to deviations from that assumption. However. if it is suspected that 
the underlying distributions are far from normal, then the analyses of Section 11.5. or 
data transformations (Chapter 13). should be considered. Multiple-comparison tests 
are adversely affected by heterogeneous variances among the sampled populations. 
in the same manner as in ANOY A (Section 10.1 g) (Keselman and Toothaker. 1974; 
Petrinovich and Hardyck. 1969), though to a greater extent (Tukey, 1993). 

In multiple-comparison testing-except when comparing means to a control­
equal sample sizes are desirable for maximum power and robustness, but the pro­
cedures presented can accommodate unequal n·s. Petrinovich and Hardyck (1969) 
caution that the power of the tests is low when sample sizes are less than 10. 

This chapter discusses multiple comparisons for the single-factor ANOV A exper­
imental design (Chapter 10).* Applications for other situations are found in Section 
12.5 (for the two-factor ANOYA design), 12.711 (for the nonparamctric randomized­
block ANOYA design), 12.9 (for dichotomous data in randomized blocks), 14.6 
(for the multiway ANOYA design). 18.6 and 18.7 (for regression), and 19.8 (for 
correlation ) . 

. 11.1 TESTING ALL PAIRS OF MEANS 

There are k( k - I )/2 different ways to obtain pairs of means from a total of k 
means. t For example. if k = 3. the k(k - 1)/2 = 3(2)/2 = 3 pairs are J.LI and J.L2. 
J.LI and W3, and J.L2 and J.L3: and for k = 4. the k( k - 1 )/2 = 4{ 3 )/2 = 6 pairs are 
J.LI and J.L2. J.LI and J.L3, J.LI and J.L4, J.L2 and J.L3, J.L2 and J.L4, and J.L3 and J.L4. So each 
of k(k - 1 )/2 null hypotheses may be tested, referring to them as Ho: J.LB = J.LA, 
where the subscripts A and B represent each pair of subscripts: each corresponding 
alternate hypothesis is Ho: J.LB *- J.LA. 

An excellent way to address these hypotheses is with the Tl/key test (Tukey, 
1953), also known as the honestly significant difference test (HSD test) or wholly 
significant difference test (WSD test). Example 11.1 demonstrates the Tukey test, 
utilizing an ANOY A experimental design similar to that in Example 10.1, except that 
all groups have equal numbers of data (i.e., all of the nj's are equal). The first step 
in examining these multiple-comparison hypotheses is to arrange and number all five 
sample means in order of increasing magnitude. Then pairwise differences between 
the means, X It - X 8, are tabulated. Just as a difference between means, divided by 

* For nonparametric testing. Conover and Iman (II)XI) recommend applying methods as those 
in Sections 11.1-11.4 on the ranks or the data. However Hsu (1996: 177); Sawilowsky. Blair. and 
Higgins (1999): and Toothaker (1991: 1(1) caution against doing so. 

tThe number of combinations of k groups taken 2 at a timc is (by Equation 5.10): 

c = k! = k(k - 1 )(k - 2)! = k(k - 1) 
k 2 2!(k _ 2)! 2!(k - 2)! 2 

(11.1) 
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EXAMPLE 11.1 Tukey Multiple Comparison Test with Equal Sample Sizes. 

The data are strontium concentrations (mg/ml) in five different bodies of water. 
First an analysis of variance is performed. 

Ho: ILl = IL2 = IL3 = IL4 = IL:.· 

HA: Mean strontium concentrations are not the same in all five bodies of 
water. 

er = 0.05 

GraysolI's POlld Beaver Lake AI/Kla's Cove Applelrt'e Lake Rock Rhw 

2K2 39.6 46.3 41.0 56.3 

33.2 40.X 42.1 44.1 54.1 

36.4 37.9 43.5 46.4 59.4 

34.6 37.1 4KH 40.2 62.7 

29.1 43.6 43.7 3K6 60.0 

31.0 42.4 40.1 36.3 57.3 

XI = 32.1 mg/ml X 2 = 40.2 mglml XJ = 44.1 mg/ml X4 = 41.1 mglml X:. = 5K3 mglml 

III = 6 "2 = 6 "3 = 6 1/4 = 6 II; = 6 

Source of variation SS OF MS 

Total 2437.5720 29 
Groups 2193.4420 4 548.3605 
Error 244.1300 25 9.7652 

k = 5. n = 6 

Samples number (i) of ranked means: 2 4 3 5 

Ranked sample mean (Xi): 32.1 40.2 41.1 44.1 58.3 

To test each Ho: ILU = ILA, 

SE = )9.7:52 = J1.6275 = 1.28. 

As Qn.o5.2:'.k does not appear in Appendix Table B.5, the critical value with the 
next lower OF is used: l/O.05.245=4.ltm. 
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Comparison D~rrerence 

B vs. A (XH - X A ) SE q Conclllsioll 

S vs. I 58.3 32.1 = 26.2 1.28 20.47 Reject 110: JL5 = JL I 
5 vs. 2 5R.3 - 40.2 = 18.1 1.28 14.14 Reject Ho: JL5 = JLl 
5 vs. 4 58.3 - 41.1 = 17.2 1.28 13.44 Reject Ho: w, = JL~ 
5 vs. 3 58.3 44.1 = 14.2 1.28 11.09 Reject lIo: JL5 = JL.< 
3 vs. I 44.1 32.1 = 12.0 1.28 9.38 Reject lIo: JLJ = JLI 

3 vs. 2 44.1 - 40.2 = 3.9 1.28 3.05 Do not re.iect lIo: JL3 = JLl 
3 vs. 4 Do not test 
4 vs. 1 44.1 - 32.1 = 9.0 1.28 7.03 Reject Ho: JL4 = JL I 
4 vs. 2 Do not test 
2 vs. 1 40.2 - 32.1 = 8.1 1.28 6.33 Reject 110: JL2 = JL I 

Thus. we conclude that JLI is different from the other means. that JL5 is different 
from the other means. and that JL2. JL~. and JL3 arc indistinguishable from each 
other: JL I t= JL2 = JL4 = JL3 t= JL5· 

the appropriate standard error. yields a t value (Section 8.1). the Tukey test statistic. 
q. is calculated by dividing a difference between two means by 

SE = {;2. (11.2) V-;; 
where 11 is the number of data in each of groups Band A. and .\'2 is the error mean 
square by ANOVA computation (Equation IO.14). Thus 

X8 - XA 
q = SE (11.3 ) 

which is known as the stlldemized /'lInge* (and is sometimes designated as T). The 
null hypothesis Ho: X 8 = X A is rejected if q is equal to or greater than the critical 
value. l]a.I'.k. from Appendix Table B.S. where v is the error degrees of freedom (via 
Equation IO.15. which is N - k). 

The signifkance level, lX. is the probability of committing at least one Type I error 
(i.e .. the probability of incorrectly rejecting at least one Ho) during the course of 
comparing all pairs of means. And the Tukey test has good power and maintains the 
probability of the familywise Type I error at or below the stated lX. 

The conclusions reached by this multiple-comparison testing may depend upon the 
order in which the pairs of means are compared. The proper procedure is to compare 
first the largest mean against the smallest. then the largest against the next smallest. and 
so on. until the largest has been compared with the second largest. Then one compares 
the second largest with the smallest. the second largest with the next smallest. and 
so on. Another important procedural rule is that if no significant difference is found 

*E. S. Pearson C1nu H. O. Hartley first used this term in 11.)53 (David. 191.)5). 
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between two means, then it is concluded that no significant difference exists between 
any means enclosed by those two, and no differences between enclosed means 
are tested for. Thus, in Example 11.1. because we conclude no difference between 
population means 3 and 2, no testing is performed to judge the difference between 
means 3 and 4, or between means 4 and 2. The conclusions in Example 11.1 are that 
Sample 1 came from a population having a mean different from that of any of the 
other four sampled populations: likewise. it is concluded that the population mean 
from which Sample 5 came is different from any of the other population means, and 
that samples 2, 4, and 3 came from populations having the same means. Therefore, 
the overall conclusion is that /-Lt :I: J.L2 = J.L4 = J.L3 :I: /-L5' As a visual aid in Example 
11.1, each time a null hypothesis was not rejected, a line was drawn beneath means 
to connect the two means tested and to encompass any means between them. 

The null hypothesis Ho: /-LB = /-LA may also be written as J.LB - J.LA = O. The 
hypothesis /-LB - /-LA = J.tO, where /-L() :I: 0, may also be tested: this is done by replacing 
X B - X A with I X B - X A I - J.Lo in the numerator of Equation 11.3. 

Occasionally, a multiple-comparison test, especially if nB :I: /lA, wiJI yield ambiguous 
results in the form of conclusions of overlapping spans of nonsignificance. For 
example, one might arrive at the following: 

Xl X2 X3 X4 

for an experimental design consisting of four groups of data. Here the four samples 
seem to have come from populations among which there were two different population 
means: Samples 1 and 2 appear to have been taken from one population, and Samples 
2,3, and 4 from a different population. But this is clearly impossible, for Sample 2 has 
been concluded to have come from both populations. Because the statistical testing 
was not able to conclude decisively from which population Sample 2 came, at least 
one Type II error has been committed. Therefore, it can be stated that /-Lt :I: /-L3 :I: ,.1.4, 
but it cannot be concluded from which of the two populations Sample 2 came (or jf 
it came from a third population). Repeating the data collection and analysis with a 
larger number of data might yield more conclusive results. 

(a) Multiple Comparisons with Unequal Sample Sizes. If the sizes of the k samples 
are not equal, the Tukcy-Kramer procedure (Kramer, 1956; supported by Dunnett, 
1980a; Stoline, 1981: Jaccard. Becker. and Wood, 1984)* is desirable to maintain 
the probability of a Type I error near a and to operate with good power. For each 
comparison involving unequal /l'S, the standard error for use in Equation 11.3 is 
calculated as 

SE = S2 ( 1 1 ) 
"2 nB + /lA ' 

(11.4) 

which is inserting the harmonic mean of nB and nA (Section 3.4b) in place of n in 
Equation 11.2;t and Equation 11.4 is equivalent to 11.2 when nB = nA. This test is 
shown in Example 11.2, using the data of Example 10.1. 

*This procedure has heen shown to he excellent (e.g., Dunnett. 1980a; Hayter. 1984; Keselman. 
Murray, and Rogan, 1976; Smith, 1971; Somerville. 1993: Stoline. 1(81). with the probability ora 
familywise Type I error no greater than the stated a. 

tSome researchers have replaced 11 in Equation 11.2 with the harmonic mean of all k samples 
or with the median or arithmetic mcan of the pair of means examined. Dunnett (1980a); Kcselman, 
Murray. and Rogan (1976); Keselman and Rogan (1977): and Smith (1971) concluded the Kramer 
approach to be superior to those methods, and it is analogous to Equation 8.7a. which is used for 

__________ --"tw.n.!.[o-~sa<UmlULlDIc...Ltestin2. 
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EXAMPLE 11.2 The Tukey-Kramer Test with Unequal Sample Sizes 

The data (in kg) are those from Equation 10.1. 

k=4 

s2 = Error MS = 9.383 

Error OF = 15 

qO.ns.ls,4 = 4.076 

Samplc number (i) of ranked means: 

Ranked samplc mean (Xj): 

Sample sizes (nj): 

4 2 3 

63.24 64.62 71.30 73.35 

4 5 5 5 

If nB = nA (call it n), then SE = fs2 = )9.383 = J2.i11 = 1.453. \j -;; 5 

+ _1 ) 0.383 (! + !) 
nA 2 5 4 

= -/1.877 = 1.370. 

Comparison Difference 

8vs.A (X8 - X,d SE q Conclusion 

3 vs. 4 73.35 63.24 = 10.11 1.453 6.958 Reject Ho: JL3 = JL4 
3 vs. 1 73.35 64.62 = 8.73 1.370 6.371 Reject Hn: JL3 = JLI 
3 vs. 2 73.35 71.30 = 2.05 1.370 1.496 Do not reject Ho: JL3 = JL2 
2 vs. 4 71.30 63.24 = 8.06 1.453 5.547 Reject Ho: JL2 = JL4 
2 vs. 1 71.30 - 64.62 = 6.68 1.370 4.876 Reject Ho: JL2 = JLI 
1 vs.4 64.62 63.24 = 1.38 1.453 0.950 Do not reject Ho: JLI = JL4 

Thus, we conclude that JL4 and JLI are indistinguishable, that JL2 and JL3 
are indistinguishable. and that JL4 and JLI are different from JL2 and JL3: 

JL4 = JLI #: JL2 = JL3· 

(b) Multiple Comparisons with Unequal Variances. Although the Tukey test can 
withstand some deviation from normality (e.g., Jaccard, Becker, and Wood. 1984), 
it is less resistant to heterogeneous variances. especially if the sample sizes are not 
equal. The test is conservative if small n's are associated with small variances and 
undesirably liberal if small samples come from populations with large variances, and 
in the presence of both nonnormalily and heteroscedasticity the test is very liberal. 
Many investigations· have determined that the Tukey-Kramer test is also adversely 
affected by heterogeneous variances. 

*These include those of Dunnell (l9XOh. 19X2): Games and Howell (1976): Jaccard. Becker, 
and Wood (1984); Kcse1man, Games, and Rogan (1979); Keselman and Rogan (l97X); Keselman 
and Toothaker (1974): Keselman. Toothaker. and Shooter (1975); Ramseyer and Tcheng (1973): 
Jenkdon and Tamhane (1979). 
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As a solution to this problem, Games and Howell (1976) proposed the use of the 
Welch approximation (Section 8.1 b) to modify Equation 11.4 to be appropriate when 
the k population variances are not assumed to be the same or similar: 

SE = ! (s~ + s~). 
2 n8 nA 

( 11.5) 

and q will be associated with the degrees of freedom of Equation 8.12; but each 
sample size should be at least 6. This test maintains the probability of a familywise 
Type I error around ex (though it is sometimes slightly liberal) and it has good power 
(Games, Keselman, and Rogan. 1981; Keselman. Games, and Rogan, 1979; Kcselman 
and Rogan. 1978; Tamhane, 1979). If the population variances are the same, then the 
Tukey or Tukey-Kramer test is preferable (Kirk, 1995: 147-148). If there is doubt 
about whether there is substantial heteroscedacity, it is safer to use the Games and 
Howell procedure. for if the underlying popUlations do not have similar variances, 
that test will be far superior to the Tukey-Kramer test; and if the population variances 
are similar, the former will have only a little less power than the latter (Levy, 1978c). 

(c) Other Multiple-Comparison Methods. Methods other than the Tukey and 
Tukey-Kramer tests have been employed by statisticians to examine pairwise dif­
ferences for more than two means. The Newman-Keul\' test (Newman, 1939; Keuls, 
1952), also referred to as the Student-Newman-Keuls test. is employed as is the Tukey 
test, except that the critical values from Appendix Table B.5 are those for qa.IIJ1 

instead of qa.II.k, where p is the range of means for a given Ho. So. in Example 11.2, 
comparing means 3 and 4 would use p = 4, comparing means 3 and 1 would call 
for p = 3, and so on (with p ranging from 2 to k). This type of multiple-comparison 
test is called a mUltiple-range test. There is considerable opinion against using this 
procedure (e.g., by Einot and Gabriel. 1975; Ramsey, 1978) because it may falsely 
declare differences with a probability undesirably greater than ex. 

The Duncan test (Duncan, 1955) is also known as the Duncan new multiple range 
test because it succeeds an earlier procedure (Duncan, 1951). It has a different 
theoretical basis, one that is not as widely accepted as that of Tukey's test, and it has 
been declared (e.g., by Carmer and Swanson. 1973; Day and Quinn, 1899) to perform 
poorly. This procedure is executed as is the Student-Newman-Keuls test. except that 
different critical-value tables are required. 

Among other tests, there is also a procedure called the least significant difference 
test (LSD), and there are other tests, such as with Dunn or Bonferroni in their names 
(e.g .• Howell, 2007: 356-363). The name wholly significant difference test (WSD test) 
is sometimes applied to the Tukey test (Section 11.1) and sometimes as a compromise 
between the Tukey and Student-Newman-Keuls procedures by employing a critical 
value midway between qa.J •• k and qa.II.p. The Tukey test is preferred here because of its 
simplicity and generally good performance with regard to Type I and Type II errors. 

11.2 CONFIDENCE INTERVALS FOR MULTIPLE COMPARISONS 

Expressing a 1 - ex confidence interval using a sample mean denotes that there is 
a probability of 1 - ex that the interval encloses its respective population mean. 
Once multiple-comparison testing has concluded which of three or more sample 
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means are significantly different. confidence intervals may be calculated for each 
different population mean. If one sample mean (Xi) is concluded to be signifi­
cantly different from all others. then Equation 10.31 (introduced in Section 10.2) 
is used: _ $,2 

Xi ± tu (2).JI -. 
ni 

(10.31) 

In these calculations. s2 (essentially a pooled variance) is the same as the error mean 
square would be for an analysis of variance for these groups of data. If two or more 
sample means are not concluded to be significantly different. then a pooled mean of 
those samples is the best estimate of the mean of the population from which those 
samples came: 

(11.6) 

where the summation is over all samples concluded to have come from the same 
popUlation. Then the confidence interval is 

Xp ± t.(') .• ~ i'n/ (11.6a) 

again summing over all samples whose means are concluded to be indistinguishable. 
This is analogous to the two-sample situation handled by Equation 8.16. and it is 
demonstrated in Example 11.3. 

I f a pair of population means, /LB and /LA. are concluded to be different. the 1 - a 
confidence interval for the difference (/LB - /LA) may be computed as 

(11.7) 

Here. as in Section 11.1. II is the error degrees of freedom appropriate to an ANOV A. 
k is the total number of means, and SE is obtained from either Equation 11.2 or 
Equation 11.4. depending upon whether nB and nA are equal. or Equation 11.5 if 
the underlying population variances are not assumed to be equal. This calculation is 
demonstrated in Example 11.3 for the data in Example 11.1. 

(a) Sample Size and Estimation of the Difference between Two Population Means. 
Section 8.3 showed how to estimate the sample size required to obtain a confidence 
interval of specified width for a difference between the two population means 
associated with the two-sample t test. In a multisample situation. a similar procedure 
may be used with the difference between population means, employing q instead of 
the t statistic. As in Section 8.3, iteration is necessary, whereby n is determined such 
that 

(11.8) 

Here, d is the half-width of the 1 - a confidence interval, s2 is the estimate of error 
variance. and k is the total number of means; II is the error degrees of freedom with 
the estimated n. namely 11 = k(n - 1). 



234 Chapter 11 Multiple Comparisons 

EXAMPLE 11.3 
Example 11.1 

Confidence Intervals (CI) for the Population Means from 

It was concluded in Example 11.1 that ILl "# IL2 = IL4 = IL3 "# ILs. Therefore, we 
may calculate confidence intervals for ILl for IL2.4,3 and for ILS (where IL2.4.3 indicates 
the mean of the common population from which Samples 2, 4, and 3 came). 

Using Equation 10.31: 

95% CIfor ILl = XI ± 10.0S(2).2S~ = 32.1 ± (2.060)~9.7:52 
= 32.1 mglml ± 2.6 mglml. 

Again using Equation 10.31: 

~
-

-- s2 
95% CI for ILs = Xs ± 10.05(2).25 - = 58.3 mglml ± 2.6 mglml. 

n5 

Using Equation 11.6: 

= (6)(40.2) + (6)(41.1) + (6)(44.1) = 41.8mglml. 
6 + 6 + 6 

Using Equation 11.6a: 

-- I s2 
95% CI for IL2.4,3 = X2.4.3 ± lo.05(2).2S\j 6 + 6 + 6 = 41.8 mglml 

±1.5 mglml. 

Using Equation 11.7: 

95% CI for ILS - IL2.4.3 -- -- S2( 1 1) 
= Xs - X2.4.3 ± qo.OS.2S.5 \ 2' ns + n2 + n4 + n3 

= 58.3 - 41.8 ± (4.166)( 1.04) 

= 16.5 mglml ± 4.3 mglml. 

Using Equation 11.7: 

95 % CI for IL2.4.3 - IL I = X 2.4.3 - X I ± QO.OS.2S.S S22 ( 1 + 1) 
\ n2 + n4 + n3 nl 

= 41.8 - 32.1 ± (4.166)(1.04) 
= 9.7 mglml ± 4.3 mglml. 

11.3 TESTING A CONTROL MEAN AGAINST EACH OTHER MEAN 

Sometimes means are obtained from k groups with the a priori objective of concluding 
whether the mean of one group. commonly designated as a control, differs signifi­
cantly from each of the means of the other k - 1 groups. Dunnett (1955) provided 
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an excellent procedure for such testing. Thus, whereas the data descrihed in Section 
11.1 were collected with the intent of comparing each sample mean with each other 
sample mean. the Dunnett test is for multisample data where the ohjective of the 
analysis was stated as comparing the control group's mean to the mean of each other 
group. Tukey's test could be used for this purpose. hut it would he less powerful 
(Myers and Well, 2003: 255). If k = 2, Dunnett's test is equivalent to the two-sample 
I test (Section 8.1). 

As in the previous section, s2 denotes the error mean square, which is an estimate 
of the common population variance underlying each of the k samples. The Dunnett's 
test statistic (analogous to that of Equation 11.3) is 

q' = Xconlrol - XA 

SE 

where the standard error, when the sample sizes are equal. is 

(2;2 
SE = \j --;;. 

and when the sample sizes are not equal, it is 

and when the variances are not equal: 

SE = 
52 ) 
-.A.. + S~ol1lrol 

nA nconlrol 

(I \.9) 

(I 1.10) 

(11.11) 

(1I.1Ia) 

For a two-tailed test, critical values. q~(2).".k' are given in Appendix Tahle B.7. If 
Iq'l 2: q~(2).".k' then H(): J.Lconlrol = J.LA is rejected. Critical values for a one-sample 
test, q~( I ).".k' are given in Appendix Tahle B.6. In a one-tailed test. Ho: J.Lcontrol =5 J.LA 

is rejected if q' 2: q~( I ).".k: and Ho: J.Lcontrol 2: J.LA is rejected if Iq' I 2:q~( 1).1,.k and 

X control < J.LA (i.e., if q =5 -q~( I }.".k)· This is demonstrated in Example 1 1.4. These 
critical values ensure that the familywise Type I error = a. 

The null hypothesis Ho: J.Lcontrol = J.LA is a special case of Ho: J.Lcontrol - 0 = J.LO 
where J.LO = O. However, other values of J.L() may be placed in the hypothesis, and 
Dunnett's test would proceed by placing I X control - X A - J.LO I in the numerator 
of the q' calculation. In an analogous manner, Ho: J.Lcontrol - J.Lo =5 J.L (or Ho: 
J.Lcontrol - J.L() 2: J.L) may be tested. 

When comparison of group means to a control mean is the researcher's stated 
desire, the sample from the group designated as the control ought to contain more 
observations than the samples representing the other groups. Dunnett (1955) showed 
that the optimal size of the control sample typically should he a little less than 
~ times the size of each other sample. 

(a) Sample Size and Estimation of the Difference between One Population Mean 
and the Mean of a Control Population. This situation is similar to that discussed in 
Section 11.2a. but it pertains specifically to one of the k means heing designated as 
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EXAMPLE 11.4 Dunnett's Test for Comparing the Mean of a Control 
Group to the Mean of Each Other Group 

The yield (in metric tons per hectare) of each of several plots (24 plots. as 
explained below) of potatoes has been determined after a season's application of a 
standard fertilizer. Likewise. the potato yields from several plots (14 of them) were 
determined for each of four new fertilizers. A manufacturer wishes to promote at 
least one of these four fertilizers by claiming a resultant increase in crop yield. A 
total of 80 plots is available for use in this experiment. 

Optimum allocation of plots among the five fertilizer groups will be such that the 
control group (let us say that it is group 2) has a little less than ..,Ii(::l = J4 =: 2 
times as many data as each of the other groups. Therefore. it was decided to use 
n2 = 24 and III = n3 =: n4 = 1115 = 14, for a total N of 80. 

Using analysis-of-variance calculations, the error MS (s2) was found to be 10.42 
(metric tons/ha)2 and the error OF = 75. 

10.42 (1.- + 1.-) = 1.1 metric tons/acre 
14 24 

SE = 

Group number (i) of ranked means: 2 3 4 5 

Ranked group mean (X;): 17.3 21.7 22.1 23.6 27.8 

As the control group (i.e .. the group with the standard fertilizer) is group 2, each 
Ho: IL2 ;::: ILA will be tcsted against H A: IL2 < ILA. And for each hypothesis test. 
q' = q' - . a.I'./i. 1 1.05 ( I ).7).5 

Comparison 
B vs.A 

Difference 
(X2 - X A ) SE Iq'l Conclusion 

2 vs. 1 21.7 - 17.3 = 4.4 Because X2 > XI. 

2 vs. 5 
2 vs. 4 
2 vs. 3 

do not reject Ho: IL2 ;::: ILl 
21.7 - 27.8 = -6.1 1.1 5.55 Reject Ho: IL2 ;::: IL5 
21.7 - 23.6 = -1.9 1.1 1.73 Reject Ho: IL2 ;::: IL4 

Do not test 

We conclude that only fertilizer 5 produces a yield greater than the yield from the 
control fertilizcr (fertilizer 2). 

from a control group. The procedure uses this modification of Equation 11.8: 

2s2(q~"k)2 n = .. 
d2 

( 11.12) 

(b) Confidence Intervals for Differences between Control and Other Group Means. 
Using Dunnett's q' statistic and the SE of Equation 11.10. 11.1 Lor 11.11a. two-tailed 
confidence limits can be calculated for the difference between the control mean and 
each of the other group means: 

1- aClforJLcuntrol - ILA = (Xcontrol - XA) ± (q:r(2).v.k)(SE). (11.13) 



Section 11.4 Multiple Contrasts 237 

One-tailed confidence limits are also possible. The 1 - a confidence can be 
expressed that a difference, JLconlrol - JLA. is not less than (i.e .. is at least as large as) 

(Xconlrol - XA) - (q:(I).I'.d(SE). (11.14) 

or it might be desired to state that the difference is no greater than 

(Xcontrol - XA) + (q:(I).I1.k)(SE). (11.15) 

, MULTIPLE CONTRASTS 

Inspecting the sample means after performing an analysis of variance can lead to a 
desire to compare combinations of samples to each other, by what are called multiple 
contrasts. The method of Scheffe* (1953; 1959: Sections 3.4, 3.5) is an excellent way 
to do this while ensuring a familywise Type I error rate no greater than a. 

The data in Example 11.1 resulted in ANOV A rejection of the null hypothesis 
Ho: JLI = JL2 = JL3 = JL4 = JLS; and. upon examining the five sample means, perhaps 
by arranging them in order of magnitude (XI < X2 < X 4 < X3 < Xs), the 
researcher might then want to compare the mean strontium concentration in the 
river (group 5) with that of the bodies of water represented by groups 2. 4, and 3. 
The relevant null hypothesis would be Ho: (JL2 + JL4 + IL3 )/3 = ILs, which can also 
be expressed as Ho: JL2/3 + JL4/3 + JL3/3 - JLS = O. The Scheffe test considers 
that each of the four JL's under consideration is associated with a coefficient, Ci: 

C2 = j. C4 = j, C3 = j, and Cs = -1 (and the sum of these coefficients is always 
zero). The test statistic, S, is calculated as 

(11.16) 

where 

(11.17) 

and the critical value of the test is 

Sa = J(k - I )Fa(I).k-I.N-k . (11.18) 

Also. with these five groups of data, there might be an interest in testing Ho: 
JLI - (JL2 + JL4 + JL3)/3 = 0 or Hn: (JLI + JLs)/2 - (JL2 + JL4 + IL3)/3 = 0 
orHo: {ILl + JL4)/2 - (JL2 + JL3)/2 = O.orothercontrasts.Anynumberofsuch 
hypotheses may be tested, and the familywise Type 1 error rate is the probability 
of falsely rejecting at least one of the possible hypotheses. A significant F from an 
ANOV A of the k groups indicates that there is at least one significant contrast among 
the groups, although the contrasts that are chosen may not include one to be rejected 
by the Scheffe test. And if F is not significant, testing multiple contrasts need not be 
done, for the probability of a Type I error in that testing is not necessarily at a (Hays, 
1994: 458). The testing of several of these hypotheses is shown in Example 11.5. In 
employing the Scheffe test. the decision of which means to compare with which others 
occurs after inspecting the data. so this is referred to as an a posteriori, or post hoc test. 

* Henry Scheffe (1907-1977). American statistician. 
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EXAMPLE 11.5 Scheffe's Test for Multiple Contrasts, Using the Data of Example 11.1 

For ex = 0.05. the critical value. Sc" for each contrast is (via Equation I 1.1 X) J( k - I )Foo:;( I ).k - I.N- k 

=J(5 - I)Fo.05(1)..t.25 

= J4(2.76) 

= 3.32. 

Example 11.1 showed,\'2 = 9.7652 and 11 = 6. 

COlllrtlS/ SE .II Cm/<"illsioll 

: . CY O/+Gt (I )21 x, + X3 + x~ X5 1'1.7052 t ~ = 1.47 11.22 Reject 110: - j. + 
.3 I 1 0 6 6 (, 

= 41./l - 5/l.3 ~ J /J.2 + /J.3 + /J.~ 

3 
= -16.5 -/J.5 = 0 

I 

i 

XI X2 + X3 + X" 
} 7",' 

( I )2 
-I 

(n2 or 
--+-- + G/ 1 

= 1.47 6.N' Reject Ilu: -
3 0 0 0 0 

= .'1.1 - 41./l I /J.I - /J.2 ... /J..' + /J.4 
.3 

= -9.7 =0 
I 

0/ 0/ oY oY C)2 ! - -
XI + X5 

'1.7652 + + + - 1.10 2.93 Accept 110: ---+--
2 6 0 6 6 6 

j X2 r X3 + X4 /J.I + /J.5 - \ 
.3 2 

= 45.2 - 41.R _~L +f.L~~ 
3 

= .3.4 =0 

XI + X4 X2 ::. X3 '1.7652 uY + uY+uY + 
U)2 i 

~ 1.2/l 4.34 Rejeci 1'0: /J.I + /J.~ - --
2 2 

= 36.6 - 42.15 

= -5.55 

6 6 6 /1 + 2 
- /J.2 /J.3 = 0 

\ 2 

The Scheffe test may also be used to compare one mean with one other. It is then 
testing the same hypotheses as is the Tukey test. It is less sensitive than the Tukey 
test to nonnormality and heterogeneity of variances (Hays. 1994: 458. 458: Sahai and 
Aged. 2000: 77): but is less powerful and it is recommended that it not be used for pair­
wisc comparisons (e.g .• Carmer and Swanson. 1973: Kirk. 1995: 154: Toothaker. 1991: 
51. 77. 89-90). Shaffer (1977) described a procedure. morc powerful than Schefff·s. 
specifically for comparing a combination of groups to a group specilied as a control. 

(a) Multiple Contrasts with Unequal Variances. The Schcffc test is suitable when 
the samples in the contrast each came from populations with the same variance. 
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When the population variances differ but the sample sizes arc equal. the probability 
of a Type T error can be different from 0.05 when a is set at 0.05. If the variances 
£Illd the sample sizes arc uneljual. then (as with the ANOYA. Section 1O.1g) the 
test will be very conservative if the large variances are associated with large sample 
sizes and very liberal if the small samples come from the populations with the large 
variances (Keselman and Toothaker. 1974). If the uJ's cannot be assumed to be the 
same or similar. the procedure of Brown and Forsythe (1974b) may be employed. 
This is done in a fashion analogous to the two-sample Welch modification of the (test 
(Section Ric). using 

(' = 

with degrees of freedom of 

.. ~ 

~ c';s,; 
kJ _'_I 

Ilj 

( 11.19) 

( 11.20) 

(b) Confidence Intervals for Contrasts. The Scheffc procedure enables the estab­
lishment of I - a confidence limits for a contrast: 

(11.21 ) 

(with SE from Equation 11.17). Shaffer's (1977) method produces confidence intervals 
for a different kind of contrast. that of a group of means with the mean of a control 
group. 

Example 11.6 demonstrates the determination of conlidence intervals for two of 
the statistically significant contrasts of Example 11.5. 

11.5 NONPARAMETRIC MULTIPLE COMPARISONS 

In the multisample situation where the nonparametric Kruskal-Wallis test (Section 
10.4) is appropriate, the researcher usually will desire to conclude which of the 
samples are significantly different from which others, and the experiment will be 
run with that goal. This may be done in a fashion paralleling the Tukey test of 
Section 11.1. by using rank sums instead of means, as demonstrated in Example 
11.7. The rank sums. determined as in the Kruskal-Wallis test. are arranged in 
increasing order of magnitude. Pairwise differences between rank sums are then 
tabulated. starting with the difference between the largest and smallest rank sums. 
and proceeding in the same sequence as described in Section 11.1. The standard error 
is calculated as 

SE = \ 
11 ( Ilk )( 11k + 1) 

,., (11.22) 
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(Nemenyi, 1963; Wilcoxon and Wilcox, 1964: 10),* and the Studentized range 
(Appendix Table 8.5 to be used is qa.oo.K') 

EXAMPLE 11.6 Confidence Intervals for Multiple Contrasts 

The critical value, Sa, for each confidence interval is that of Equation 11.8: 
~(k - I)Fa(I).k-l.N-k, and for a = 0.05, Sa = 3.32 and s2 = 9.7652 as in 

Example 11.5. 

(a) A confidence interval for J.L2 + ~." + J.L4 - J.L5 would employ SE = 1.47 

from Example 11.5, and the 95% confidence interval is I 

(b) 

eX" + ~3 + X4 - xs) ± SaSE ~ -16.5 ± (3.32)( 1.47) 

= -16.5 mg/ml ± 4.9 mg/ml 

LI = -21.4 mg/ml 

L2 = -11.6 mg/mt. 

A confidence interval for J.Ll - J.L2 + P-'J + J.L4 would employ SE = 1.47 
3 

from Example 11.5, and the 95% confidence interval is 

(XI - X, + ~3 + X4) ± SaSE ~ -9.7 ± (3.32)(1.47) 

= -9.7 mg/ml ± 4.9 mg/ml 

Ll = -14'.6 mg/ml 

L2 = -4.8 mg/mt. 

(a) Nonparametric Multiple Comparisons with Unequal Sample Sizes. Multiple­
comparison testing such as in Example 11.7 requires that there be equal numbers of 
data in each of the k groups. If such is not the case, then we may use the procedure 
of Section 11.7, but a more powerful test is that proposed by Dunn (1964), using a 
standard error of 

SE= N(N + 1)(...!.. +..!..) 
12 nA nB 

(11.24) 

for a test statistic we shall call 

(11.25) 

*Some authors (e.g .• Miller 1981: 166) perform this test in an equivalent fashion by considering 
the difference between mean ranks (RA and RIJ) rather than rank sums (RA and RIJ). in which case 
the appropriate standard error would be 

SE= jk(nk + 1). 
\ J? 

( 11.23) 
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EXAMPLE 11.7 Nonparametric Tukey-Type Multiple Comparisons, Using 
the Nemenyi Test 

The data are those from Example 10.10. 

SE = n(nk)(nk + 1) = 5( 15)(16) = J100 = to.oo 

Comparison 

(8 vs. A) 

1 vs.3 

1 vs. 2 

2 vs. 3 

12 12 

Sample number (i) of ranked rank sums: 3 2 
Rank sum (Rj): 

Difference 

(RB - RA) SE 

26 30 64 

q QO.IlS.oo.3 Conclusion 

64 - 26 = 38 10.00 3.80 3.314 Reject Ho: Fly abundance 
is the same at vegetation 
heights 3 and 1. 

64 - 30 = 34 10.00 3.40 3.314 Reject Ho: Fly abundance 
is the same at vegetation 
heights 2 and 1. 

30 - 26 = 4 10.00 0.40 3.314 Do not reject Ho: Fly abundance 
is the same at vegetation 
heights 3 and 2. 

Overall conclusion: Fly abundance is the same at vegetation heights 3 and 2 but is 
different at height 1. 

where R indicates a mean rank (i.e .• RA = RAinA and R8 = RBII7H). Critical values 
for this test. Qa.k. are given in Appendix Table B.15. Applying this procedure to the 
situation of Example 11.7 yields the same conclusions, but this will not always be the 
case as this is only an approximate method and conclusions based upon a test statistic 
very near the critical value should be expressed with reservation. It is advisable to 
conduct studies that have equal sample sizes so Equation 11.22 or 11.23 may be 
employed. 

If tied ranks are present, then the following is an improvement over Equation 11.24 
(Dunn. 1964): 

SE = ( N(N + 1) _ ~I )( 1 1 ) 
12 12(N - 1) IlA + nB . 

(11.26) 

In the latter equation, 21 is used in the Kruskal-Wallis test when ties are present and 
is defined in Equation 10.42. The testing procedure is demonstrated in Example 11.8: 
note that it is the mean ranks (Rj). rather than the ranks sums (Rj). that are arranged 
in order of magnitude. 

A procedure developed independently by Steel (1960, 1961b) and Dwass (1960) is 
somewhat more advantageous than the tests of Nemenyi and Dunn (Critchlow and 
Fligner, 1991: Miller, 1981: 168-169). but it is less convenient to use and it tends 
to be very conservative and less powerful (Gabriel and Lachenbruch. 1969). And 
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EXAMPLE 11.8 
pie Sizes 

Nonparametric Multiple Comparisons with Unequal Sam-

The data are those from Example 10.11. where the Kruskal-Wallis test rejected 
the null hypothesis That water pH was the same in all four ponds examined 

L t = 168. as in Example 10.11. 

For nA = 8 and 118 = 8. 

SE = C~(~2+1) 12(~~1)) (II~ + II~) 

= (31(32) _ ~)(l + ~) 
12 12(30) X 0 

J20.5500 = 4.53 

For nA = 7 and nu = 8. 

SE = ( 31(32) _ ~)(! + ~) = J22.0179 = 4.69. 
12 12(311) 7 0 

Sample number (i) of ranked means: 2 4 3 
Rank sum (Ri ): 63.24 64.62 71.30 73.35 
Sample size (11;): 8 5 8 7 

Mean rank CR;) 6.88 16.56 20.44 20.71 

To test at the 0.05 significance level. the critical value is QO.05A = 2.639. 

Comparisol1 Difference 

Bvs.A CRu - RA ) SE Q Conclusion 

3 vs. I 20.71 - 6.88 = 13.831 4.69 2.95 Reject Ho: Water pH is the 
same in ponds 3 and 1. 

3 vs. 2 20.71 - 16.56 = 4.15 4.69 0.88 Do not reject Ho: Water pH is 

the same in ponds 3 and 2. 
3 vs. 4 Do not test 

4 vs. I 20.44 - 6.88 = 13.56 4.53 2.99 Reject Ho: Water pH is the 

same in ponds 4 and I. 
4 vs. 2 Do not test 
2 vs. I 16.56 - 6.88 = 9.68 4.53 2.14 Do not reject Ho: Water pH is 

the same in ponds 2 and 1. 

Overall conclusion: Water pH is the same in ponds 4 and 3 but is different in 
pond I. and the relationship of pond 2 to the others is unclear. 
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this test can lose control of Type J error if the data come from skewed populations 
(Toothaker. 1991: 108). 

(b) Nonparametric Comparisons of a Control to Other Groups. Subsequent to 
a Kruskal-Wallis test in which Ho is rejected, a nonparametric analysis may be 
performed to seek either one-tailed or two-tailed significant differences between one 
group (designated as the "control") and each of the other groups of data. This is done 
in a manner paralleling that of the procedure of Section 11.4, but using group rank 
sums instead of group means. The standard error to be calculated is 

SE = 
n(nk )(nk + 1) 

6 
( 11.27) 

(Wilcoxon and Wilcox, 1964: 11), and one uses as critical values either q:( I ).oo.k 

or q:(2).oo.k (from Appendix Table B.6 or Appendix Table 8.7, respectively) for 
one-tailed or two-tailed hypotheses, respectively. * 

The preceding nonparametric test requires equal sample sizes. If the n's are not 
all equal, then the procedure suggested by Dunn (1964) may be employed. By this 
method, group B is considered to be the control and uses Equation 11.27, where the 
appropriate standard error is that of Equation 11.26 or 11.28, depending on whether 
there are ties or no ties, respectively. We shall refer to critical values for this test, which 
may be two tailed or one tailed, as Q~.k: and they are given in Appendix Table B.16. 
The test presented by Steel (1959) has drawbacks compared to the procedures above 
(Miller, 1981: 133). 

11.6 NONPARAMETRIC MULTIPLE CONTRASTS 

Multiple contrasts, introduced in Section 11.4, can be tested nonparametrically using 
the Kruskal-Wallis H statistic instead of the Fstatistic. As an analogof Equation 11.16, 
we compute 

(11.29) 

where Cj is as in Section 11.4. and 

SE = (N(N + 1 »)(~ CT), 
12 IZj 

(11.30) 

unless there are tied ranks, in which cases we use 

SE= (N(N+ 1) _ ~I )(~cT), 
12 12(N - 1) nj 

(11.31) 

*If mean ranks. instead of rank sums. are used. then 

(11.28) 
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where L ( is as in Equation 10.42. The critical value for these multiple contrasts is 
JH(Orl.1I1 .... ' using Appendix Table B.13 to obtain the critical value of H. If the needed 

critical value of H is not on that table. then X~r.( k _ I ) may be used. 

11.7 MULTIPLE COMPARISONS AMONG MEDIANS 

If the null hypothesis is rejected in a multisamplc median test (Section 10.5), then it 
is usually desirable to ascertain among which groups significant differences exist. A 
Tukey-type multiple comparison test has been provided by Levy (1979). using 

q = fIB - !IA. 

SE 
( 11.32) 

As shown in Example 11.19. we employ the values of flj for each group. where 
!Ij is the number of data in group j that arc greater than the grand median. (The 
values of !Ij are the observed frequencies in the first row in the contingency table 
used in the multisample median tcst of Section I n.5.) The values offlj arc ranked, 
and pairwise differences among the ranks arc examined as in other Tukey-type tests. 
The appr;)priatc standard error. when N (the total number of data in all groups) is an 
even number. is 

SE = ~ n( N + I). 
4N 

and, when N is an odd number. the standard error is 

SE = ~ nN 
, 4( N - 1)' 

( 11.33) 

( 11.34) 

The critical values to be used are q".(~.k' This multiple-comparison test appears to 
possess low statistical power. If the sample sizes are slightly unequal. as in Example 
11.9, the test can be used by employing the harmonic mean (see Section 3.4b) of the 
sample sizes, 

k 
n=--k • 

Ll 
j= I nj 

( \1.35) 

for an approximate result. 

11.8 MULTIPLE COMPARISONS AMONG VARIANCES 

If the null hypothesis that k population variances are all equal (see Section 10.6) is 
rejected. then we may wish to determine which of the variances differ from which 
others. Levy (1975a, 1975c) suggests multiple-comparison procedures for this purpose 
based on a logarithmic transformation of sample variances. 

A test analogous to the Tukey test of Section 11.1 is performed by calculating 

Ins1 - Ins;, 
q = -

SE 
(11.36) 
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EXAMPLE 11.9 Tukey-Type Multiple Comparison for Differences among 
Medians, Using the Data of Example 10.12 

Sample number U) of samples ranked by Ilj : 2 

Ranked/lj: 2 
Sample size (IIi) : 12 

k=4 
N = II + 12 + II + 12 = 46 
n = 12 
By Equation 11.35, 

4 
It = ----=-----:----=-1---1:- = 11.48 

+ + + 

By Equation 11.36. 

12 11 12 II 

SE = j(I1.4H)(46) = 1.713. 
\j 4(46 - I) 

4 3 

3 6 9 
11 12 1 1 

Ho: Median of population B = Median of population A. 
H A: Median of population B '# Median of population A. 

Comparison IIH - IIA SE q l/u.o5.4:x.· Conclusion 

3 vs. 2 I} - 2 = 7 1.713 4.0H6 3.633 Reject Hu. 

3 vs. I I} - 3 = 6 1.713 3.503 3.633 Do not reject Ho. 
3 vs. 4 Do not test 

4 vs. 2 6 - 2 = 4 1.713 2.335 3.633 Do not reject Ho. 

4 vs. I Do not test 

1 vs.2 Do not test 

Overall conclusion: The medians of populations 3 and 2 (i.e .. south and east-see 
Example 10.12) are not the same: but the test lacks the power to allow clear 
conclusions about the medians of populations 4 and I. 

where 

SE = l. (11.37) 

if both samples heing compared are of equal size. If VA '# VII. we can employ 

SE = j J... + _I . 
\j VB VA 

( 11.3H) 
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EXAMPLE 11.10 Tukey-Type Multiple Comparison Test for Differences 
among Four Variances (i.e., k = 4) 

s~ 
I ni Vi Insf 

1 2.74 g2 50 49 1.0080 

2 2.83 g2 48 47 1.0403 

3 2.20 g2 50 49 0.7885 

4 6.42 g2 50 49 1.8594 

Sample ranked by variances (i): 3 2 4 
Logorithm of ranked sample variance (In sf): 0.7885 1.0080 1.0403 1.8594 

Sample degrees of freedom (Vi): 49 49 47 49 

Coml'"rislm Di1J('r"I/('(! 

(8 vs. A) (In s7J - Ins~) SE l/ l/U.05.ocA C(mcl"siems 

4 vs. 3 I.H594 - O.78X5 = 1.0709 0.202* :'i.30 I 3.633 Reject Ho: IT~ = fT~ 

4 vs. I I.H594 - I.<KIXO = O.H514 0.202 4.215 3.033 Reject Ho: fT~ = ITT 

4 vs. 2 I.H594 - 1.0403 = (UW)1 0.204'· 4.015 3.033 Reject Ho: fT~ = IT~ 
2 vs. 3 1.(1403 - 0.7HX5 = 0.251 X O.2(J4 1.234 3.633 Do not reject 110: (T~ = IT~ 
2 vs. I Do not test 
I vs.3 Do not test 

* As V4 = v~ : SE = II = IT = 0.202. . ~; ~49 

t As V4 1= V2 : SE = I ~ + ~ = ) ~ V V4 V2 49 

I + - = 0.204. 
47 

Overall conclusion: u~ = ui = u~ 1= u~. 

Just as in Sections 11.1 and 11.2, the subscripts A and B refer to the pair of groups 
being compared; and the sequence of pairwise comparisons must follow that given in 
those sections. This is demonstrated in Example 11.10.* The critical value for this test 
is If(r.:x.k (from Appendix Table B.5). 

A Newman-Keuls-type test can also be performed using the logarithmic trans­
formation. For this test, we calculate q using Equation 11.36: but the critical value, 

*Recall (as in Section 10.6) that "In" refers to natural logarithms (i.e .. logarithms using hase ('). 
If one prefers using common logarithms ("'Iog"; logarithms in base 10). then 

2.30259(logs7J - logs~) 
l/ = SE (11.39) 
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4 are the same as the means of groups 2 
and 3. 

(b) Test the hypothesis that the means of groups 
2 and 4 are the same as the mean of group 3. 

11.6. The following ranks result in a significant Kruskal­
Wallis test. Employ nonparametric multiple-range 
testing to conclude between which of the three 
groups population differences exist. 

Group 1 

8 
4 
3 
5 
1 

Group 2 Group 3 

10 14 
6 13 
9 7 

11 12 
2 15 
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Two-Factor Analysis of Variance 

12.1 TWO-FACTOR ANALYSIS OF VARIANCE WITH EQUAL REPLICATION 
12.2 TWO-FACTOR ANALYSIS OF VARIANCE WITH UNEQUAL REPLICATION 
12.3 TWO-FACTOR ANALYSIS OF VARIANCE WITHOUT REPLICATION 
12.4 ANALYSIS WITH RANDOMIZED BLOCKS OR REPEATED MEASURES 
12.5 MULTIPLE COMPARISONS AND CONFIDENCE INTERVALS 
12.6 SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER 
12.7 NONPARAMETRIC RANDOMIZED-BLOCK OR REPEATED-MEASURES ANALYSIS OF VARIANCE 
12.8 DICHOTOMOUS NOMINAL-SCALE DATA IN RANDOMIZED BLOCKS 
12.9 DICHOTOMOUS RANDOMIZED-BLOCK OR REPEATED-MEASURES DATA 
12.10 INTRODUCTION TO ANALYSIS OF COVARIANCE 

Section 10.1 introduced methods for one-way analysis of variance. which is the 
analysis of the effects of a factor (such as the type of feed) on a variahle (such as the 
hody weight of pigs). The present chapter will discuss how the effects of two factors 
can he assessed using a single statistical procedure. 

The simultaneous analysis to he considered. of the effect of more than one factor 
on population means. is termed a factorial analysis of variallce.* and there can he 
important advantages to such an experimental design. Among them is the fact that 
a single set of data can suffice for the analysis and it is not necessary to perform 
a one-way ANOY A for each factor. This may he economical with respect to time, 
effort. and money: and factorial analysis of variance also can test for the inter­
active effect of factors. The two-factor analysis of variance is introduced in this 
chapter. Examination of the effects of more than two factors will he discussed in 
Chapter 14. 

There have heen attempts to devise dcpendahle non parametric statistical tests 
for experimental designs with two or mort: factors. For a one-factor ANOYA. the 
Mann-Whitney test or an ANOY A on the ranks of the data may he employed 
for non parametric testing (Section 10.4). But, except for the situation in Section 
12.7. non parametric procedures with more than one factor have not heen generally 
acceptahle. For multifactor analyses (this chapter, Chapter 14. and Chapter 15). it has 
heen proposed that a parametric ANOY A may he performed on the ranks of the data 
(and this rank transformation is employed hy some computer packages) or that the 
Kruskal-Wallis test of Section 10.4 may he expanded. However. Akritas (1990): Blair, 
Sawilowsky. and Higgins (19H7): Brunner and Neumann (19H6): McKean and Vidmar 
( 1994): Sawilowsky. Blair. and Higgins (19HlJ): Seaman et a!. (1994): Toothaker and 

*Somc concepts on two-fllctor Hnlllysis of varillnce were discusseu as early as I X\)l) (Thiele. 
IX99). In 1926. R. A. Fisher "as the lirst to present (ompclling arguments for fa<.:torial anlllysis 
(Box. 197X: 15X: Sired. 19l)O). 
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Chang (1980): and Toothaker and Newman (1994) found that these procedures 
perform poorly and should not he employed. 

12.1 TWO-FACTOR ANALYSIS OF VARIANCE WITH EQUAL REPLICATION 

Example 12.1 presents data from an experiment suited to a two-way analysis of 
variance. The two factors are fixed (as defined in Section W.lf and discussed further 
in Section 12.ld). The variahle under consideration is hlood calcium concentration 
in hirds. and the two factors heing simultaneously tested arc hormone treatment and 
sex. Because there are two levels in the first factor (hormone-treated and nontreated) 
and two levels in the second factor (female and male). this experimental design* is 
termed a 2 x 2 (or 22) factorial. The two factors are said to he "crossed" because 
each level of one factor is found in combination with each level of the second factor. t 

There are n = 5 replicate ohservations (i.e .• calcium determinations on each of 
five birds) for each of the 2 x 2 = 4 comhinations of the two factors: therefore. 
there are a total of N = 2 x 2 x 5 = 20 data in this experiment. In general. it is 
advantageous to have equal replication (what is sometimes called a "halanced" or 
"orthogonal" experimental design), but Section 12.2 will consider cases with unequal 
numhers of data per cell. and Section 12.3 will discuss analyses with only one datum 
per combination of factors. 

For the general case of the two-way factorial analysis of variance. we can refer 
to one factor as A and to the other as B. Furthermore, let us have 1I represent the 
numher of levels in factor A. b the numher of levels in factor B. and II the number 
of replicates. A triple subscript on the varia hie. as Xij/. will enable us to identify 
uniquely the value that is replicate I of the combination of levd i of factor A and 
level j of factor B. In Example 12.1. X21~ = 32.3 mgj 100 ml. XI15 = 9.5 mgj 100 mt. 
and so on. Each comhination of a level of factor A with a level of factor B is 
called a cell. The cells may he visualized as the "groups" in a one-factor ANOYA 
(Section 10.1). There arc four cells in Example 12.1: females without hormone treat­
ment. males without hormone treatment. females with hormone treatment. and 
males with hormone treatment. And there are 11 replicate data in each cell. For 
the cell formed by the comhination of level i of factor A and level j of factor 
B. Xii denotes the cell mean: for the data in Example 12.1. the mean of a cell 
is the cell total divided hy 5, so XII = 14.RKXI2 = 12.12.Xzl = 32.52. and 
XZ2 = 27.78 (with the units for each mean being mg/IOO mI). The mean of all 
bl1 data in level i of factor A is Xi" and the mean of all lin data in level j of 
factor B is Xj. That is. the mean for the to non-hormone-treated birds is XI" 
which is an estimate of the population mean, ,ul.: the mean for the hormone­
treated hirds is X 2·. which estimates ,u2·: the mean of the female birds is X.I: 
which estimates ,u'I: and the mean of the male hirds is X.2. which estimates 
,u·2. There arc a total of aim = 20 data in the experiment. and (just as in the 
single-factor ANOV A of Section 10.1) the mean of all N data (the "grand mean") 

* R. A. Fisher (I !(l)()-I %2) is credited with creating and promoting the concept of e.l"perilllentlll 
design (Savage. IlJ7tl). hy which is meant the use of statistical considerations in the planning and 
executing of experiments. 

':Two (or more) factors can exist in an ANOVA without heing crossed. This will he shown in 
Chapter 15. 
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EXAMPLE 12.1 Hypotheses and Data for a Two-Factor Analysis of Vari-
ance with Fixed-Effects Factors and Equal Replication 

The data are plasma calcium concentrations (in mg/IOO ml) of birds of both sexes. 
half of the birds of each sex being treated with a hormone and half not treated 
with the hormone. 

Ho: There is no effect of hormone treatment on the mean plasma calcium 
concentration of birds (i.e .• /-tno hormone = /-thormone or ILl· = /-t2')' 

HA: There is an effect of hormone treatment on the mean plasma calcium 
concentration of hirds (i.e .. /-tno hormone '* /-thormonc or /-t I '* /-t2')' 

Ho: There is no difference in mean plasma calcium concentration hetween 
female and male hirds (i.e .. /-tkmale = /-tmak or /-t I = /-t.'),). 

H A: There is a difference in mean plasma calcium concentration hetween 
female and male hirds (i.e .. /-tIL-mak #- ILmak or /-t·1 '* /-t·2)· 

HI): There is no interaction of sex and hormone treatment on the mean 
plasma calcium concentration of birds. 

H II: There is interaction of sex and hormone treatment on the mean plasma 
calcium concentration of birds. 

a = 0.05 

No Hormone Treatment Hormone Treatment 

Female Male Female Male 

16.3 15.3 38.1 34.0 
20.4 17.4 26.2 22.8 
12.4 10.9 32.3 27.8 
15.8 10.3 35.8 25.0 
9.5 6.7 30.2 29.3 

5 5 :' 5 
Cell totals: 2: XIII =74.4 2: X 121 =60.6 2: x'), II = 162.6 2: X22I= 131(9 

1=1 1=1 1=1 1=1 

Cell means: X II 14.88 X I2 = 12.12 X2I = 32.52 X22 = 27.78 

is the sum of all the data divided by the total number of data. That is. the grand 
mean is 

II " 11 

X = L 2: 2: XiitiN. (12.1 ) 
i=lj=If=1 

(a) Sources of Variation. Recall that the total sum of squares is a measure of 
variability among all the data in a sample. For the two-factor analysis of variance this 
is conceptually the same as for the single-factor ANOV A (see Equation 10.2): 

(/ " 1/ 

total SS = 2: 2: 2: (Xijl - X)2. ( 12.2) 
j= I j= 1/= I 
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with 
total OF = N - 1. ( 12.3) 

Next we may consider the variability among cells (each cell being a combination of 
a level of factor A and a level of factor B), handling cells as we did treated "groups" 
in the single-factor ANOY A (see Equation 10.4): 

a b 
cells SS = Il ~ ~(Xij - X)2; 

i=lj=1 

and, as the number of cells is ab, 

cells DF = ab - 1. 

(12.4) 

(12.5) 

Furthermore, the quantity analogous to the within-groups SS in the single-factor 
ANOY A (Equation 10.6) is 

a b[" 1 within-cells SS = ~ ~ ~ (Xijl - Xij)2 , 
i=lj=1 1=1 

(12.6) 

which may also be calculated as 

within-cells SS = total SS - cells SS (12.7) 

and has degrees of freedom of 

within-cells OF = ab( Il - 1), (12.8) 

which is also 
within-cells OF = total OF - cells OF. (12.9) 

The terms Error 55 and Error DF are very commonly used for within-cells SS and 
within-cells DF, respectively. 

The calculations indicated above are analogous to those for the one-way analysis 
of variance (Section 10.1). But a major desire in the two-factor ANOYA is not to 
consider differences among the cells. but to assess the effects of each of the two 
factors independently of the other. This is done by considering factor A to be the sole 
factor in a single-factor ANOY A and then by considering factor B to be the single 
factor. For factor A this is done as follows: 

a 
factor ASS = btl ~(Xi. - X)2, 

i=1 

which is associated with degrees of freedom of 

Similarly, for factor B. 

factor A OF = a - 1. 

b 
factor B SS = all ~(X.j - X)2. 

j'= 1 

for which the degrees of freedom are 

factor B OF = b - 1. 

( 12.10) 

(12.11) 

(12.12) 

(12.13) 
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In general, the variability among cells is not equal to the variability among levels of 
factor A plus the variability among levels of factor B (i.e., the result of Equation 12.4 
is not equal to the sum of the results from Equations 12.10 and 12.12). The amount of 
variability not accounted for is that due to the effect of interaction* between factors 
A and B. This is designated as the A x B interaction, and its sum of squares and 
degrees of freedom are readily calculated as representing the difference between the 
variability within cells and the variability due to the two factors: 

A X B interaction SS = cells SS - factorA SS - factor B SS, 

and 

A X B interaction OF = cells OF - factor A OF - factor B OF. 

or, equivalently. 

A X B interaction OF = (factor A OF)(factor B OF) 
= (a - 1)( b - 1). 

(12.14) 

(12.15) 

(12.16) 

Example 12.1a shows the above calculations of sums of squares and degrees of 
freedom for the data of Example 12.1. and Example 12.2 shows the ANOYA results. 

EXAMPLE 12.1a Sums of Squares and Degrees of Freedom for the Data 
of Example 12.1 

grand mean: X = (74.4 + 60.6 + 162.6 + 138.9)/20 = 21.825 

treatment means: 

no hormone: XI' = (74.4 + 60.6)/10 = 13.50 

hormone: X2- = (162.6 + 138.9}/1O = 30.15 

sex means: 

female: X.I = (74.4 + 162.6)/10 = 23.70 

male: X.2 = (60.6 + 138.9)/10 = 19.95 
a b /I 

total SS = L L L (Xijk - X)2 
i=lj=lk=1 

= (16.3 - 21.825)2 + (20.4 - 21.825)2 + '" + (29.3 - 21.825)2 

= 1762.7175 

total OF = N - 1 = 20 - 1 = 19 
a b 

cells SS = n L L(Xij - X)2 
i=lj=1 

= 5[(14.88 - 21.825)2 + (12.12 - 21.825)2 

+ (32.52 - 21.825)2 + (27.78 - 21.825)2] 

= 1461.3255 

cells DF = ab - 1 = (2)(2) - 1 = 4 - 1 = 3 

*The term interaction was introduced for ANOV A by R. A. Fisher (David. 1995). 
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within-cel\s(error)SS ~ ~t, [~(Xiik - Xii)'] 

or, equivalently, 

= (16.3 - 14.88)2 + (20.4 - 14.88)2 

+ ... + (29.3 - 27.78)2 

= 301.3920 

within-cells (error) SS = Total SS - Cells SS 

= 1762.7115 - 1461.3255 = 301.3920 

within-cells (error) OF = ab(n - 1) = (2)(2)(5 - 1) = (4)(4) = 16 

or, equivalently, 

within-cells (error) OF = total DF - cells OF = 19 - 3 = 16 
a 

Factor ASS = bn L(X;. - X)2 
i=1 

= (2)(5)[(13.50 - 21.825)2 + (30.15 - 21.825)2] 

= 1386.1125 

factor A OF = a-I = 2 - 1 = 1 
b 

factor B SS = an L(X.j - X)2 
j=1 

= (2)(5)[(23.70 - 21.825)2 + (19.95 - 21.825)2] 

= 70.3125 

factor B DF = b - 1 = 2 - 1 = 1 

A x B interaction SS = cells SS - factor A SS - factor B SS 

= 1461.3255 - 1386.1125 - 70.3125 = 4.9005 

A x B interaction DF = cells DF - factor A OF - factor B DF 

=3-1-1=1 
or, equivalently, 

A x B interaction OF = (factor A DF) (factor B OF) 

=(2-1)(2-1)=1 

An interaction between two factors means that the effect of one factor is not 
independent of the presence of a particular level of the other factor. In Example 12.1, 
no interaction would imply that the difference in the effect of hormone treatment 
on plasma calcium between males and females is the same under both hormone 
treatments.* Therefore, interaction among factors is an effect on the variable (e.g., 

*Symbolically. the null hypothesis for interaction effect could be stated as Ho: Mil - MI2 = 
#1-21 - M22 or Ho : Mil - M21 = MI2 - M22, where Mij is the population mean of the variable in 
the presence of level i of factor A and level j of factor B. 
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EXAMPLE 12.2 Two-Factor ANOVA Summary for the Data and Hypothe-
ses of Example 12.1 

Analysis of Variance Summary Table 
Source of variation SS DF MS 

Total 1762.2175 19 
Cells 1461.3255 3 

Factor A 1386.1125 1 1386.1125 
(hormone) 

Factor B 70.3125 1 70.3125 
(sex) 

AxB 4.9005 1 4.9005 
Within-Cells 301.3920 16 18.8370 

(Error) 

For Ho: There is no effect of hormone treatment on the mean plasma calcium 
concentration of birds in the population sampled. 

F = hormone MS = 1386.1125 = 73.6 
within-cells MS 18.8370 

f(J.()S( 1 ).1.16 = 4.49 

Therefore, reject Ho. 

P < 0.0005 [P = 0.00000022] 

For Ho: There is no difference in mean plasma calcium concentration between 
male and female birds in the population sampled. 

F = sex MS = 70.3125 = 3.73 
within-cells MS 18.8370 

f(J.()S( 1 ).1.16 = 4.49 
Therefore, do not reject Ho. 

0.05 < P < 0.10 [P = 0.071] 

For Ho: There is no interaction of sex and hormone treatment affecting the mean 
plasma calcium concentration of birds in the population sampled. 

F = hormone x sex interaction MS = 4.9005 = 0.260 
within-cells MS 22.8370 

Fo.oS(1 )1.16 = 4.49 
Therefore, do not reject Ho. 

P > 0.25 [P = 0.62] 
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plasma calcium) that is in addition to the sum of the effects of each factor considered 
separately. 

For the one-factor ANOYA it was shown (Section 1O.la) how alternative formulas. 
referred to as "machine formulas." make the sum-of-squares calculations easier 
because they do not require computing deviations from means, squaring those 
deviations. and summing the squared deviations. There are also machine formulas 
for two-factor analyses of variance that avoid the need to calculate grand. cell. and 
factor means and the several squared deviations associated with them. Familiarity 
with these formulas is not necessary if the ANOV A calculations are done by an 
established computer program. but they can be very useful if a calculator is used. 
These are shown in Section 12.1 b. 

Table 12.1 summarizes the sums of squares. degrees of freedom. and mean squares 
for the two-factor analysis of variance. 

(b) Machine Formulas. Just as with one-factor analysis of variance (Section 10.1), 
there are so-called machine formulas for two-factor ANOY A that allow the compu­
tation of sums of squares without first calculating overall, cell, within-cell. and factor 
means. These calculations are shown in Example 12.2a, and they yield the same sums 
of squares as shown in Example 12.1 a. 

TABLE 12.1: Summary of the Calculations for a Two-Factor Analysis of Variance with Fixed 
Effects and Equal Replication 

Source of 
variation 

Total (Xijl - XI 

Cells [Xii - Xl 

Factor A 

[Xi· - Xl 
Factor B 

Sum of s<.Juares (SS) 

Equation 12.2 
or 12.17 

Equation 12.4 

or 12.19 

Equation 12.\0 

or 12.20 

Equation 12.12 

or 12.21 

A X B interaction cells SS - factor A SS 

- factor B SS 

Within cells (Error) Equation 12.6 

[XiiI - Xii! or total SS - cclls SS 

Oegrees of 
freedom (OF) 

N-

lib -

(/ - I 

b - 1 

(a-l)(b-I) 

ab(Il-I) 

or total OF - cells OF 

Mean square 
(MS) 

cells SS 

cells OF 

factor ASS 
factor A OF 

factor B SS 

factor B OF 

A x BSS 
A x BOF 

error SS 

error OF 

Note: For each source of variation. the bracketed quantity indicates the variation hcing assessed; 
(/ is the number of levels in factor A; h is the numher of factors in factor B; II is the number of 
replicate data in each cell: N is the total number of data (which is ahll): XiiI is datum I in the cell 
formed by level i of factor A and level j of factor B; Xi· is the mean of the data in level i of factor A; 
X.j is the mean of the data in level j of factor B: Xii is the mean of the data in the cell formed by 
level i of factor A and level j of factor B: and X is the mean of all N data. 
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EXAMPLE 12.2a Using Machine Formulas for the Sums of Squares in 
Example 12.2 

(/ b I 

L L L Xijl = 436.5 
i=lj=I/=1 

a h I 

L L L X~I = 11354.31 
i=lj=I/=1 

b I 

total for no hormone = L L Xljl = 74.4 + 60.6 = 135.0 
j= 1/=1 

2 I 
total for hormone = L L X2 jl = 162.6 + 138.9 = 301.5 

j= 1/= I 
a I 

total for females = L LXiII = 74.4 + 162.6 = 237.0 
i= 1/= I 

a I 

total for males = L L Xi1.1 = 60.6 + 138.9 = 199.5 
i= 1/= I 

(
a h /I )2 

C = ~ j~ ~ Xijl = (436.5 )2 = 9526.6125 
N 20 

u b n 

total 55 = L L L X~I - C = 11354.31 - 9526.6125 = 1827.6975 
i= I j= 1/= I 

( 
n )2 
LXijl 

a b 1-1 
cells 557 = L L - - C 

i=lj=1 n 

= (74.4)2 + (60.6)2 + (162.6)2 + (138.9)2 

5 
= 1461.3255 

within-cells (i.e., error) 55 = total 55 - cells 55 

- 9526.6125 

= 1827.6975 - 1461.3255 = 366.3720 

II b n ) 2 
L L LXijl 

factor A (hormone group) 55 = i= I j= I 1= 1 - C 
hn 

__ (sum without hormone)2+ (sum with hormone)2 
~------------~--~----------~ - C 

number of data per hormone group 
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= (135.0)2 + (301.5)2 _ 9526.6125 
(2)(5) 

= 1386.1125 

I> (<< /I )2 L L LX;j1 
factor B (sex) SS = j=1 ;=1/=1 - C 

/11/ 

= (sum for femalcs)2 + (sum for males)2 _ C 

number of data per sex 

= (237.0)2 + (199.5)2 _ 9526.6125 = 70.3125 
(2)(5) 

A x B interaction SS = cells SS - factor A SS - factor B SS 

= 1461.3255 - 1386.1125 - 70.3125 = 4.9005 

The total variability is expressed by 

where 

1/ h /I 

total SS = L L L Xb, - C, 
i=lj=I/=1 

c= 
( 

/I h 1/ )2 
~j;~X;il 

N 

The variability among cells is 

± ±(± Xijl)2 
cells SS = ;= 1 j= 1 1= 1 _ C. 

It 

And the variability among levels of factor A is 

~ c~~Xij/r 
factor A SS = - C. 

bll 

( 12.17) 

(12.18) 

(12.19) 

(12.20) 

Simply put, the factor A SS is calculated by considering [actor A to be the sole factor 
in a single-factor analysis of variance of the data. That is. we obtain the sum for each 
level of factor A (ignoring the fact that the data are also categorized into levels of 
factor B); the sum of a level is what is in parentheses in Equation 12.20. Then we 
square each of these level sums and divide the sum of these squares by the number 
of data per level (i.e., bll). On subtracting the "correction term," C, we arrive at 
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the factor A SS. If the data were in fact analyzed by a single-factor ANOV A, then 
the groups SS would indeed be the same as the factor A SS just described. and the 
groups OF would be what the two-foetor ANOV A considers as factor A OF; but the 
error SS in the one-way ANOV A would be what the two-factor ANOV A considers 
as the within-cells SS plus the factor B SS and the interaction sum of squares, and the 
error OF would be the sum of the within-cells. factor B, and interaction degrees of 
freedom. 

For factor B computations. we simply ignore the division of the data into levels of 
factor A and proceed as if factor B were the single factor in a one-way ANOV A: 

±(± i Xijl)2 

f BSS j=1 i=I/=1 
actor = :...-----'------'-- -co (12.21) 

an 

(c) Graphical Display. The cell. column, and row means of Example 12.1 are 
summarized in Table 12.2. Using these means, the effects of each of the two factors. 
and the presence of interaction. may be visualized by a graph such as Figure 12.1. 
We shall refer to the two levels of factor A as A I and A2, and the two levels of 

.,; 
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TABLE 12.2: Cell, Row, and Column 
Means of the Data of Example 12.2 
(in mg/100 mJ) 

Female Male 
(Bd (B2) 

No hormolle 
(Ad 14.9 12.1 13.5 

Hormone 
(A2) 32.5 27.8 30.2 

23.7 20.0 

35 

B. 
3() +------

82 

25 

2() 

15 

HI 

5 

II 
AI 

Effect 
of A 

FIGURE 12.1: The means ofthe two-factor ANOVA data of Example 12.1, as given in Table 12.1. The Ai 
are the levels of factor A, the Bj are the levels of factor B. A plus sign indicates the mean of an Ai over 
all (i.e., both) levels of factor B, and an open circle indicates the mean of a Bj over all (i.e., both) levels 
of factor A. 
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factor Bas BI and B2. The variable, X, is situated on the vertical axis of the figure 
and on the horizontal axis we indicate A I and A2. The two cell means for BI (14.9 
and 32.5 mgllOO mi. which are indicated by black circles) are plotted and connected 
by a line; and the two cell means for B2 (12.1 and 27.8 mg/lOO ml. which are indicated 
by black squares) are plotted and connected by a second line. The mean of all the 
data in each level of factor A is indicated with a plus sign, and the mean of all the 
data in each level of factor B is denoted by an open circle. Then the effect of factor A 
is observed as the vertical distance between the plus signs; the effect of factor B is 
expressed as the vertical distance between the open circles: and nonparallelism of the 
lines indicates interaction between factors A and B. Thus. the ANOV A results of 
Example 12.1 are readily seen in this plot: there is a large effect of factor A (which is 
found to be significant by the F statistic) and a small effect of factor B (which is found 
to be nonsignificant). There is a small interaction effect. indicated in the figure by the 
two lines departing a little from being parallel (and this effect is also concluded to 
be nonsignificant). Various possible patterns of such plots are shown in Figure 12.2. 
Such figures may be drawn for situations with more than two levels within factors. And 
one may place either factor A or factor B on the horizontal axis; usually the factor with 
the larger number of levels is placed on this axis, so there are fewer lines to examine. 

x 

x 

+~. -----ee---~t BI 
~.-----ee---~.B) 

(a) 

----0(3e----1 BI 

+ + 

•• -----e8-----.B~ 

(el 

x 

(b) 

Cd) 

RGURE 12.2: Means in a two-factor ANOVA, showing various effects of the two factors and their 
interaction. (a) No effect of factor A (indicated by the plus signs at the same vertical height on the 
X axis), a small effect of factor B (observed as the circles being only a small distance apart vertically), 
and no interaction of factors A and B (seen as the lines being parallel). (b) Large effect of factor A. 
small effect of factor B, and no interaction (which is the situation in Figure 12.1). (c) No effect of A. 
large effect of B, and no interaction. (d) Large effect of A, large effect of B, and no interaction. (e) No 
effect of A, no effect of B, but interaction between A and B. (f) Large effect of A, no effect of B, with 
slight interaction. (g) No effect of A, large effect of 8, with large interaction. (h) Effect of A, large effect 
of 8, with large interaction. 
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8 2 
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Al A: 
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FIGURE 12.2: (continued) 

(d) Model I ANOVA. Recall. from Section lO.lf. the distinction between fixed and 
random factors. Example 12.1 is an ANOYA where the levels of both factors are 
fixed: we did not simply pick these levels at random. A factorial analysis of variance 
in which all (in this case both) factors are fixed effects is termed a Modell ANOVA. 
In such a model, the null hypothesis of no difference among the levels of a factor 
is tested using F = factor MS/error MS. In Example 12.2, the appropriate F tests 
conclude that there is a highly significant effect of the hormone treatment on the 
mean plasma calcium content, and that there is not a significantly different mean 
plasma calcium concentration between males and females. 

In addition, we can test for significant interaction in a Model I ANOY A by F = 

interaction MS/error MS and find. in our present example. that there is no significant 
interaction between the sex of the bird and whether it had the hormone treatment. 
This is interpreted to mean that the effect of the hormone treatment on calcium is 
not different in males and females (i.e .. the effect of the hormone is not dependent 
on the sex of the bird). This concept of interaction (or its converse. independence) is 
analogous to that employed in the analysis of contingency tables (see Chapter 23). 

If. in a two-factor analysis of variance. the effects of one or both factors are 
significant, the interaction effect mayor may not be significant. In fact, it is possible 
to encounter situations where there is a significant interaction even though each of 
the individual factor effects is judged to be insignificant. A significant interaction 
implies that the difference among levels of one factor is not constant at all levels of 
the second factor. Thus, it is generally not useful to speak of a factor effect-even if 
its F is significant-if there is a significant interaction effect. 
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TABLE 12.3: Computation of the F Statistic for Tests of Significance in a 
Two-Factor ANOVA with Replication 

Modell Model II Model III 
(factors A and B (factors A and B (factor A fixed: 

Hypothesized effect hoth fixed) both random) factor B random) 

Factor A factor A MS factor A MS factor A MS 
error MS A x BMS A X BMS 

Factor B factor B MS factor B MS factor B MS 
error MS A X BMS error MS 

A x B interaction 
A X BMS A X BMS A X BMS 
error MS error MS error MS 

(e) Model II ANOV A. If a factorial design is composed only of factors with 
random levels, then we are said to be employing a Mode/II ANOVA (a relatively 
uncommon situation). In such a case, where two factors are involved, the appropriate 
hypothesis testing for significant factor effects is accomplished by calculating F = 
factor MS/interaction MS (see Tahle 12.3). We test for the interaction effect, as 
before, by F = interaction MS/error MS, and it is generally not useful to declare 
factor effects significant if there is a significant interaction effect. The Model II 
ANOVA for designs with more than two factors will be discussed in Chapter 14. 

(f) Model III ANOV A. If a factorial design has both fixed-effect and random-effect 
factors, then it is said to be a mixed-mode/,* or a Mode/III ANOVA. The appropriate 
F statistics are calculated as shown in Table 12.3. Special cases of this will be discussed 
iA Section 12.4. This book observes Voss's (1999) "resolution" of a controversy over 
the appropriate F for testing a factor effect in mixed models. 

(g) Underlying Assumptions. The assumptions underlying the appropriate applica­
tion of the two-factor analysis of variance are basically those for the single-factor 
ANOVA (Section to.lg): The data in each cell came at random from a normally 
distributed population of measurements and the variance is the same in all of the 
populations represented hy the cells. This population variance is estimated by the 
within-cells mean square (i.e., the error mean square). 

Although these hypothesis tests are robust enough that minor deviations from 
these assumptions will not appreciably affect them, the probahilities associated 
with the calculated F values lose dependability as the sampled popUlations deviate 
from normality and homoscedasticity, especially if the populations have skewed 
distributions. If there is doubt about whether the data satisfy these assumptions, then 
conclusions regarding the rejection of a null hypothesis should not be made if the 
associated P is near the a specified for the test. 

Few alternatives to the ANOV A exist when the underlying assumptions are 
seriously violated. In a procedure analogous to that described in Section lO.lg for 
single-factor analysis of variance with heterogeneous group variances, Brown and 
Forsythe (1974b) present a two-factor ANOV A procedure applicable when the cell 
variances are not assumed to have come from populations with similar variances. In 
some cases an appropriate data transformation (Chapter 13) can convert a set of data 
so the extent of nonnormality and heteroscedasticity is small. As indicated at the end 

*The term mixed mOllel was introduced by A. M. Mood in 1950 (David, 1995). 
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of the introduction to this chapter. there appears to be no nonparametric procedures 
to be strongly recommended for factorial ANOV A. with the exception of that of 
Section 12.7. 

(h) Pooling Mean Squares. If it is not concluded that there is a significant inter­
action effect. then the interaction MS and the within-cells (i.e .. the error) MS are 
theoretically estimates of the same population variance. Because of this, some authors 
suggest the pooling of the interaction and within-cells sums of squares and degrees of 
freedom in such cases. From these pooled SS and OF values, one can obtain a pooled 
mean square, which then should be a better estimate of the population random error 
(i.e .• within-cell variability) than either the error MS or the interaction MS alone: 
and the pooled MS will always be a quantity between the interaction MS and the 
error MS. 

The conservative researcher who does not engage in such pooling can be assured 
that the probability of a Type I error is at the stated a level. But the probability of a 
Type II error may be greater than is acceptable to some. The chance of the latter type 
of error is reduced by the pooling described, but confidence in stating the probability 
of committing a Type I error may be reduced (Brownlee, 1965: 509). Rules of thumb 
for deciding when to pool have been proposed (e.g .• Paull, 1950; Bozivich, Bancroft, 
and Hartley, 1956), but statistical advice beyond this book should be obtained if 
such pooling is contemplated. The analyses in this text will proceed according to the 
conservative nonpooling approach, which Hines (1996). Mead. Bancroft, and Han 
(1995). and Myers and Well (2003: 333) conclude is generally advisable. 

(i) Multiple Comparisons. If significant differences are concluded among the levels 
of a factor, then the multiple comparison frocedures of Section 1 t .1. 11.2, 11.3, or 11.4 
may be employed. For such purposes, s is the within-cells MS. v is the within-cells 
OF. and the n of Chapter 11 is replaced in the present situation with the total number 
of data per level of the factor being tested (i.e .• what we have noted in this section as 
bn data per level of factor A and all data per level of factor B). If there is significant 
interaction between the two factors, then the means of levels should not be compared. 
Instead, multiple comparison testing may be performed among cell means. 

(j) Confidence Limits for Means. We may compute confidence intervals for pop­
ulation means of levels of a fixed factor by the methods in Section 10.2. The error 
mean square, .'12• is the within-cells MS of the present discussion; the error degrees 
of freedom. v, is the within-cells DF: and n in Section 10.2 is replaced in the present 
context by the total number of data in the level being examined. Confidence inter­
vals for differences between population means are obtained by the procedures of 
Section 11.2. This is demonstrated in Example 12.3. 

EXAMPLE 12.3 Confidence Limits for the Results of Example 12.2 

We concluded that mean plasma calcium concentration is different between birds 
with the hormone treatment and those without. 

Xl = total for non hormone group = 135.0 mgj 100 ml = 13.50 mgj tOO ml 
number in nonhormone group 10 

X 2 = total for hormone group = 301.5 mgf 100 ml = 30.15 mgj 100 mt 
number in hormone group 10 
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where N is the total number of data in all cells.· (For example, in Figure 12.3c, there 
are two data on row 3, column 1; and (16)(9)/72 = 2. The appropriate hypothesis tests 
are the same as those in Section 12.1. The sums of squares, degrees of freedom, and 
mean squares may be calculated by some factorial ANOV A computer programs. Or, 
the machine formulas referred to in Table 12.1 may be applied with the following mod· 
ifications: For sums of squares, substitute nij for n in Equations 12.17 and 12.18, and use 

(~ Xijl)2 
a hi-I 

cells SS = L L - : - C , 
i= I j= I nij 

factor A SS ~ f (it ~ Xijl ) 2 : _ C , 

;= I nij 

(f }:Xii)' 
factor B SS = ± i= 1/= I : - C . 

;= I ni; 

a h 
within-cells (error) OF = L L (Il;; 

i= I j= 1 
1) .. 

( 12.23) 

(12.24) 

( 12.25) 

( 12.26) 

(b) Disproportional Replication; Missing Data. In factorial analysis of variance. it is 
generally advisable to have data with equal replication in the cells (Section 12.1). or al 
least to have proportional replication (Section 12.2a). If equality or proportionality is 
not the case, we may employ computer software capable of performing such analyses 
of variance with disproportional replication (see Section 14.5). Alternatively. if only 
a very few cells have numbers of data in excess of those representing equal or 
proportional replications. then data may be deleted. at random, within such cells, so 
that equality or proportionality is achieved. Then the ANOV A can proceed as usual, 
as described in Section 12.1 or 12.2a. 

If one cell is one datum short of the number required for equal or proportional 
replication, a value may be estimated t for inclusion in place of the missing datum, as 
follows (Shearer. 1973): 

II h /lij 

aAi + bBj - L L L Xij/ 
i=I;=I/=1 

X~ = ------------~------­
N+1-a-b 

( 12.27) 

*Thc number of replicatcs in each of the ah cells nccd not be checked against Equation 12.22 
to determine whether proportional replication is present. One need check only one cell in each of 
{/ - 1 levels of factor A and one in each of b - 1 levels of factor 8 (Huck and Layne. 1974). 

tThc estimation of missing values is often referrcd to as impUll/lion and is pcrformed by 
some computer routines. However. therc arc many different methods for imputing missing values, 
especially whcn more than one datum is missing. and these mcthods do not all yield the same 
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where Xijl is the estimated value for replicate I in level i of factor A and level j of 
factor B: Ai is the sum of the other data in level i of factor A: Bj is the sum of the 
other data in level j of factor B: 222 Xijl is the sum of all the known data. and N is 
the total numher of data (including the missing datum) in the experimental design. 
For example. if datum Xl24 had been missing in Example 12.1. it could have had 
a quantity inserted in its place. estimated by Equation 12.27. where a = 2. b = 2. 
N = 20. Ai = A I = the sum of all known data from animals receiving no hormone 
treatment: Bj = B2 = the sum of all known data from males: and 222 Xijl = the 
sum of all 19 known data from both hormone treatments and hoth sexes. After the 
missing datum has heen estimated. it is inserted into the data set and the ANOV A 
computations may proceed, with the provision that a missing datum is not counted in 
determining total and within-cells degrees of freedom. (Therefore. if a datum were 
missing in Example 12.1. the total OF would have heen 18 and the within-cells OF 
would have heen 15.) 

If more than one datum is missing (but neither more than 10% of the total number 
of data nor more data than the number of levels of any factor). then Equation 12.27 
could be used iteratively to derive estimates of the missing data (e.g .• using cell means 
as initial estimates). The numher of such estimates would not enter into the total or 
within-cells degrees-of-freedom determinations. 

If only a few cells (say. no more than the number of levels in either factor) are 
each one datum short of the numbers required for equal or proportional replication. 
then the mean of the data in each such cell may be inserted as an additional datum 
in that cell. In the latter situation. the analysis proceeds as usual but with the total 
OF and the within-cells OF each heing determined without counting such additional 
inserted data. Instead of employing these cell means themselves. however. they could 
he used as starting values for employing Equation 12.27 in iterative fashion. Another 
procedure for dealing with unequal. and nonproportional. replication is by so-called 
unweighted means analysis. which employs the harmonic mean of the Ilij ·s. This will 
not he discussed here. 

None of these procedures is as desirahle as when the data are equally or propor­
tionally distrihuted among the cells. 

12.3 TWO-FACTOR ANALYSIS OF VARIANCE WITHOUT REPLICATION 

It is generally advisahle that a two-factor experimental design have more than one 
datum in each cell. hut situations are encountered in which there is only one datum 
for each comhination of factors (i.e .. 11 = I for all cells). It is sometimes feasihle to 
collect additional data. to allow the usc of the procedures of Section 12.1 or 12.2. hut 
it is also possible to perform a two-factorial ANOV A with nonreplicated data. In a 
situation of no replication. each datum may be denoted by a double suhscript. as Xii. 
where i denotes a level of factor A and j indicates a level of factor B. 

For a levels of factor A and b levels of factor B. the appropriate computations of 
sums of squares. degrees of freedom. and mean squares are shown directly helow. 
These are analogous to equations in Section 12.1. modified by eliminating 11 and any 
summation within cells. 

1/ " 2 
total SS = ~ ~ (Xij - X) • (12.28) 
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where the mean of all N data (and N = ab) is 

Further, 

(/ h 

LLXij 
X = _i=_'_j_=_'_ 

N 

a 2 
factor ASS = b~(Xio - x) : 

1=' 
(/ 2 

factor B SS = a ~ ( X oj - X) 
J= , 

(12.29) 

(12.30) 

(12.31) 

When there is no replication within cells (i.e .. n = 1). the cells SS of Section 12.1 is 
identical to the total SS, and the cells OF is the same as the total OF. Consequently, 
the within-cells sum of squares and degrees of freedom are both zero; that is, with 
only one datum per cell, there is no variability within cells. The variability among the 
N data that is not accounted for by the effects of the two factors is the remainder* 
variability: 

remainder SS = total SS - factor A SS - factor B SS 
remainder OF = total OF - factor A OF - factor B OF 

(12.32) 
(12.33) 

These sums of squares and degrees of freedom, and the relevant mean squares, 
are summarized in Table 12.4. Note that Equations 12.32 and 12.33 are what are 
referred to as "interaction" quantities when replication is present; with no replicates 
it is not possible to assess interaction in the population that was sampled. Table 12.5 

TABLE 12.4: Summary of the Calculations for a Two-Factor Analysis of Variance with No 
Replication 

Source of Sum of 
variation squares (SS) Degrees of freedom (DF) Mean square (MS) 

Total [Xii - XI Equation 12.27 N - 1 
or 12.34 

Factor A Equation 12.29 a-I factor ASS 
factor A DF 

[Xio - X] or 12.35 

Factor B Equation 12.30 b - I 
factor B SS 

factor B DF 
[X.i - X] or 12.26 

Remainder Equation 12.31 (a - l)(b - 1) 

or total DF - factor A DF remainder SS 
remainder DF 

- factor B DF 

Note: For each source of variation. the bracketed quant ity indicates the variation being assessed; a 
is the number of levels in factor A: b is the numher of factors in factor B: N is the total number of 
data (which is lib); Xij is the datum in level i of factor A and levelj of factor B: Xi' is the mean of the 
data in level i of factor A: Xoj is the mean of the data in level j of factor B: and X is the mean of all 
N data. 

·Somc authors refer to "remainder" as "error" or "residual." 

prakash
Rectangle
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TABLE 12.5: Computation of the F Statistic for Tests of Significance in a Two-Factor 
ANOVAwithout Replication 

(a) U It Is Assumed That There May Be a Significant Interaction Effect 
Modell Model II Model III 

(factors A and B (factors A and B (factor A fixed: 
Hypothesized effect both fixed) both random) factor B random) 

Factor A Test with caution· 
factor A MS factor A MS 

remainder MS remainder MS 

Factor B Test with caution* 
factor B MS Test with caution· 

remainder MS 

A X B interaction No test possible No test possible No test possible 

• Analysis can be performed as in Model II. but with increased chance of Type II error. 

(b) Iflt Is Correctly Assumed That There Is No Significant Interaction Effect 
Hypothesi7.ed effect Modell Model II Model III 

Factor A factor A MS factor A MS factor A MS 
remainder MS remainder MS remainder MS 

Factor B 
factor B MS factor B MS factor B MS 

remainder MS remainder MS remainder MS 

A X B interaction No test possible No test possible No test possible 

summarizes the significance tests that may be performed to test hypotheses about 
each of the factors. Testing for the effect of each of the two factors in a Model I 
analysis (or testing for the effect of the random factor in a Model III design) is not 
advisable if there may, in fact, be interaction between the two factors (and there 
will be decreased test power): but if a significant difference is concluded, then that 
conclusion may be accepted. The presence of interaction. also called nonadditivity, 
may be detectable by the testing procedure of Tukey (1949). 

(a) ~'Machine Formulas." If there is no replication in a two-factor ANOV A. the 
machine formulas for sums of squares are simplifications of those in Section 12.1b: 

c ~ (~j~Xij r 
N 

a b 
total SS = L L XO - C. 

;=) j=) 

~ (j~Xh) 
factor : A SS = - C, 

b 

~(~Xjl) 
factor : B SS = - C. 

a 

and the remainder sum of squares is as in Equation 12.32. 

( 12.34) 

(12.35) 

(12.36) 

(12.37) 
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(b) Multiple Comparisons and Confidence Limits. In a two-factor ANOVA with no 
replication. the multiple-comparison and confidence-limit considerations of Sections 
12.li and 12.lj may be applied. However, there is no within-cells (error) mean square 
or degrees of freedom in the absence of replication. If it can be assumed that there 
is no interaction between the two factors. then the remainder MS may be employed 
where .'12 is specified in those sections. the remainder DF is used in place of II, au 
the same as an. and b is the same as bn. If, however. there may be interaction, then 
multiple comparisons and confidence limits should be avoided. 

12.4 TWO-FACTOR ANALYSIS OF VARIANCE WITH RANDOMIZED BLOCKS OR REPEATED 
MEASURES 

The analysis of variance procedure of Section 10.1 (the completely randomized design) 
is for situations where the data are all independent of each other and the experimental 
units (e.g .• the pigs in Example 10.1) are assigned to the k treatments in a randolll 
fashion (that is, random except for striving for equal numbers in each treatment~: 
The following discussion is of two types of ANOV A. for the same null and alternatei 
hypotheses as in Section 10.1, in which each datum in one of the k groups is relat~ 
to one datum in each of the other groups. 

(a) Randomized Blocks. To address the hypotheses of Example 10.1. each of foUJI 
animals from the same litter could be assigned to be raised on each of four diets. Th~ 
body weights of each set of four animals (i.e .• the data for each litter) would be sai~ 
to constitute a block. for the data in a litter are related to each other (namely b~ 
having the same mother). With a experimental groups (denoted as k in Chapter 10 
and b blocks. there would be N = ab data in the analysis. The concept of bl 
is an extension, for more than two groups. the concept of pairs (Section 9.1. whi 
deals with two groups). This experimental plan is called a randomized-complete-bloc 
design. and each block contains a measurement for each of the a treatments. 0 
complete blocks will be considered here, so this will simply be called a randomized 
block design.* When the analysis employs blocks of data within which the data 
related, the hypothesis testing of differences among groups can be more powe 
than in the completely randomized design. 

An illustration of a randomized-block ANOVA is in Example 12.4. The inte 
of the experiment shown is to determine whether there is a difference among thr; 
anesthetic drugs in the time it takes for the anesthetic to take effect when inject 
intramuscularly into cats of a specified breed. Three cats are obtained from each 
five laboratories; because the laboratories may differ in factors such as the food 
exercise the animals have had. the three from each laboratory are considered to 
a block. Thus. the experiment has a = 3 treatment groups and b = 5 blocks. an 
the variable in anesthetic group i and block j is indicated as Xij. The sum of the da 
in group i can be denoted as 'L7= I Xij. the total of the measurements in block j 

'L;= I Xij, and the sum of all ab data as N = 'L~'= I '2..7= I Xij. In this example, there' 
only one datum in each of the ab cells (i.e., one per combination of treatment an 
block). a very common situation when working with randomized blocks. 

In Example 12.4. the interest is whether there is any difference among the effects 
the different anesthetic drugs. not whether there is any difference due to laborato 
source of the animals. (Indeed. the factor defining the blocks is sometimes referred 

*The randomized-block experimental design was developed and so named by R. A. Fi 
( 1926: David. 1995). 
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EXAMPLE 12.4 A Randomized Complete Block Analysis of Variance 
(Model III Two-Factor Analysis of Variance) without Within-Cell Replication 

Ho: The mean time for effectiveness is the same for all three anesthetics 
(i.e., P,I = P,2 = P,3)· 

H A: The mean time for effectiveness is not the same for all three anesthetics. 

ex = 0.05 

Each block consists of three cats from a single source, and each block is from a 
different source. Within a block, the cats are assigned one of the anesthetics at 
random, by numbering the cats 1,2, and 3 and assigning each of them treatment 
1, 2, or 3 at random. For this experiment the randomly designated treatments, 
from 1 to 3, for each block were as follows, with the anesthetic's time for effect (in 
minutes) given in parentheses: 

Animal 1 Animal 2 Animal 3 

Block I: Treatment 3 Treatment 1 Treatment 2 
(10.75) (8.25) ( 11.25) 

Block 2: Treatment 1 Treatment 3 Treatment 2 
(10.00) (11.75) (12.50) 

Block 3: Treatment 3 Treatment 1 Treatment 2 
(11.25) (10.25) (12.00) 

Block 4: Treatment 1 Treatment 2 Treatment 3 
(9.50) (9.75) (9.00) 

Block 5: Treatment 2 Treatment 1 Treatment 3 
(11.00) (8.75) (10.00) 

These data are rearranged as follows in order to tabulate the treatment, block, 
and grand totals (and, if not using the machine formulas, the treatment, block, and 
grand means). 

Treatment (i) Block Total Block Mean 

Block (j) 1 2 3 (±x;;) (X.i) 
1=1 

1 8.25 11.25 10.75 30.25 10.08 
2 11.00 12.50 11.75 35.25 11.75 
3 10.25 12.00 11.25 33.50 11.17 
4 9.50 9.75 9.00 28.25 9.42 
5 8.75 11.00 10.00 29.75 9.92 

b 

Treatment total: LXii 47.75 56.50 52.75 
;=1 

Treatment mean: Xi' 9.55 11.30 10.55 
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a h 
Grand total = L L Xij = 157.00 Grand mean = X = 10.47 

i=1 j=1 
The sums of squares required in the following table may be obtained using the 
equations in Section 12.3, as referenced in Table 12.4. 

Source of variatioll SS OF MS 

Total 21.7333 14 

Treatments 7.7083 2 3.8542 
Blocks 11.0667 4 
Remainder 2.9583 8 0.3698 

F = treatments MS = 3.8542 = 10.4 
remainder MS 0.3698 

FO.05( 1 ).2.8 = 4.46, so reject H". 

0.005 < P < 0.01 [P = 0.0060] 

as a "nuisance factor" or "nuisance variable.") The anesthetics, therefore, are three 
levels of a fixed-effects factor. and the laboratories are five levels of a random-effects 
factor. So the completely randomized experimental design calls for a mixed-model 
(i.e .• Model Ill) analysis of variance (Section 12.1f). Blocking by laboratory is done 
to account for more of the total variability among all N data than would be accounted 
for by considering the fixed-factor effects alone. This will decrease the mean square 
in the denominator of the F that assesses the difference among the treatments, with 
the intent of making the ANOV A more powerful than if the data were not collected 
in blocks. 

The assignment of an experimental unit to each of the animals in a block should be 
done at random. For this purpose. Appendix Table B.41 or other source of random 
numbers may be consulted. In the present example. the experimenter could arbitrarily 
assign numbers 1. 2. and 3 to each cat from each laboratory. The random-number 
table should then be entered at a random place. and for each block a random sequence 
of the numerals 1. 2. and 3 (ignoring all other numbers and any repetition of a 1,2, 
or 3) will indicate which treatments should be applied to the animals numbered 1. 2, 
and 3 in that block. So. in Example 12.4, a sequence of animals numbered 3, 1,2 was 
obtained for the first block: 1,3.2 for the second: 3, 2. 1 for the third: and so on. 

The randomized-block experimental design has found much use in agricultural 
research, where b plots of ground are designated as blocks and where the envi­
ronmental (for example. soil and water) conditions are very similar within each 
block (though not necessarily among blocks). Then a experimental treatments (e.g., 
fertilizer of pesticide treatment) are applied to random portions of each of the b 
blocks. 

(b) Randomized Blocks with Replication. It is common for the randomized­
complete-block experimental design to contain only one datum per cell. That is 
what is demonstrated in Example 12.4. with the calculation of F executed as shown 
in the last column of Tables 12.5a and 12.5b. If there are multiple data per cell 
(what is known as the generalized randomized-block design). this would be handled 
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as a mixed-model two-factor ANOV A with replication. Doing so would obtain the 
mean squares and degrees of freedom as indicated earlier in this chapter; and the 
appropriate F's would be those indicated in the last column of Table 12.3. A case 
where this would be applicable is where the experiment of Example 12.4 employed a 
total of six cats-instead of three-from each laboratory. assigning two of the six at 
random to each of the three treatments. 

(c) Repeated Measures. The hypotheses of Example 12.4 could also be tested using 
an experimental design differing from. but related to. that of randomized blocks. 
In an experimental procedure using what are called repeated measures, each of b 
experimental animals would be tested with one of the a anesthetic drugs: then, after 
the effects of the drug had worn off, one of the other anesthetics would be applied to 
the same animal; and after the effects of that drug were gone, the third drug would 
be administered to that animal. Thus. b experimental animals would be needed. far 
fewer than the ab animals required in the randomized-block experiment of Example 
12.4, for each block of data contains a successive measurements from the same 
experimental animal (often referred to as an experimental "subject"). If possible. 
the application of the a treatments to each of the b subjects should be done in a 
random sequence, comparable to the randomization within blocks in Section 12.4a. 
Also, when collecting data for a repeated-measures analysis of variance, sufficient 
time should be allowed between successive treatments so the effect of a treatment 
is not contaminated with the effect of the previous treatment (i.e .. so there is no 
"carryover effect" from treatment to treatment).* 

Thus. the arrangement of data from a repeated-measures experiment for the 
hypotheses of Example 12.4 would look exactly like that in that example. except that 
each of the five blocks of data would be measurements from a single animal, instead 
of from a animals, from a specified laboratory. 

There are some repeated-measures studies where the treatments are not admin­
istered in a random sequence to each subject. For example. we might wish to test 
the effect of a drug on the blood sugar of horses at different times (perhaps at 1, 
2, and 5 hours) after the drug's administration. Each of b horses ("subjects") could 
be given the drug and its blood sugar measured before administering the drug and 
subsequently at each ofthe three specified times (so a would be 4). In such a situation. 
the levels of factor A (the four times) are fixed and are the same for all blocks. and 
carryover effects are a desired part of the study.t 

The repeated-measures experimental design is commonly used by psychological 
researchers, where the behavioral response of each of several subjects is recorded for 
each of several experimental circumstances. 

(d) Randomized-Block and Repeated-Measures Assumptions. In a randomized­
block or repeated-measures experiment, we assume that there are correlations among 
the measurements within a block or among measurements repeated on a subject. For 
the randomized-block data in Example 12.4. it may be reasonable to suppose that if 
an animal is quickly affected by one anesthetic, it will be quickly affected by each 

* Although the experiment should be conducted to avoid carryover effects. the times of 
administering the drug (first. second. or third) could be considered the levels of a third factor. and 
a three-factor ANOV A could be performed in what is referred to as a "crossover experimental 
design" (described in Section 14.1 a). 

tKirk (1995: 255) calls randomized levels of factor A within blocks a "subjects-by-treatment" 
experimental design and uses the term .mbjects-by-trials to describe a design where the sequence of 
application of the levels of factor A to is the same in each block. 
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of the others. And for the repeated-measures situation described in Section 12.4c, 
it might well be assumed that the effect of a drug at a given time will be related to 
the effect at a previous time. However. for the probability of a calculated F to be 
compared dependably to tabled values of F. there should be equal correlations among 
all pairs of groups of data. So. for the experiment in Example 12.4. the correlation 
between the data in groups 1 and 2 is assumed to be the same as the correlation 
between the data in groups 1 and 3, and the same as that between data in groups 
2 and 3. This characteristic, referred to as compound symmetry, is related to what 
statisticians call sphericity (e.g., Huynh and Feldt, 1970). or circularity (e.g., Rouanet 
and Lepine, 1970), and it -along with the usual ANOV A assumptions (Section 
12.1g)-is an underlying assumption of randomized-block and repeated-measures 
analyses of variance. Violation of this assumption is. unfortunately, common but 
difficult to test for, and the investigator should be aware that the Type I error in such 
tests may be greater than the specified a. An alternative procedure for analyzing data 
from repeated-measures experiments. one that does not depend upon the sphericity 
assumption, is multivariate analysis of variance (see Chapter 16), which has gained 
in popularity with the increased availability of computer packages to handle the 
relatively complex computations. This assumption and this alternative are discussed 
in major works on analysis of variance and multivariate analysis (e.g .• Girden. 1992; 
Kirk. 1995; Maxwell and Delaney, 2004~ O'Brien and Kaiser. 1985~ and Stevens, 2002). 

If there are missing data. the considerations of Section 12.2b apply. If the exper­
imental design has only one datum for each combination of the factors, and one of 
the data is missing, then the estimation of Equation 12.26 becomes 

II h 

aAi + bBj - :L :LXij 
A i=lj=1 
Xij = ------------~---­

(a - 1)(b - 1) 
( 12.38) 

If more than one datum is missing in a block, the entire block can be deleted from 
the analysis. 

(e) More Than One Fixed·Eft"ects Factor. There are many possible experimental 
designs when the effects of more than one factor are being assessed. One other 
situation would be where the experiment of Example 12.4 employed blocks as a 
random-effects factor along with two fixed-effects factors. perhaps the drug and the 
animal's sex. The needed computations of sums of squares, degrees of freedom, and 
mean squares would likely be performed by computer. and Appendix D (Section 
D.3b for this hypothetical example) would assist in testing the several hypotheses. 

12.5 MULTIPLE COMPARISONS AND CONFIDENCE INTERVALS IN TWO-FACTOR ANALYSIS 
OF VARIANCE 

If a two-factor analysis of variance reveals a significant effect among levels of a 
fixed-effects factor having more than two levels, then we can determine between 
which levels the significant difference(s) occur(s). If the desire is to compare all pairs 
of means for levels in a factor, this may be done using the Tukey test (Section 11.1). 
The appropriate SE is calculated by Equation 11.2. substituting for n the number of 
data in each level (i.e .• there are bn data in each level of factor A and an data in levels 
of factor B); s2 is the within-cells MS and II is the within-cells degrees of freedom. If 
there is no replication in the experiment, then we are obliged to use the remainder 
MS in place of the within-cells MS and to use the remainder DF as II. 
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The calculation of confidence limits for the population mean estimated by each 
significantly different level mean can be performed by the procedures of Section 11.2, 
as can the computation of confidence limits for differences between members of pairs 
of significantly different level means. 

If it is desired to compare a control mean to each of the other level means, 
Dunnett's test, described in Section 11.3, may be used; and that section also shows 
how to calculate confidence limits for the differences between such means. Scheffe's 
procedure for multiple contrasts (Section 11.4) may also be applied to the levels of a 
factor, where the critical value in Equation 11.18 employs either a or b in place of k 
(depending, respectively, on whether the levels of factor A or B are being examined), 
and the within-cells DF is used in place of N - k. In all references to Chapter 11, n 
in the standard-error computation is to be replaced by the number of data per level, 
and s2 and v are the within-cells MS and DF, respectively. 

Multiple-comparison testing and confidence-interval determination are appro­
priate for levels of a fixed-effects factor but are not used with random-effects 
factors. 

(a) If Interaction Is Significant. On concluding that there is a significant interaction 
between factors A and B, it is generally not meaningful to test for differences among 
levels of either of the factors. However, it may be desired to perform multiple 
comparison testing to seek significant differences among cell means. This can be done 
with any of the above-mentioned procedures, where n (the number of data per cell) is 
appropriate instead of the number of data per level. For the Scheffe test critical value 
(Equation 11.18), k is the number of cells (Le., k = ab) and N - k is the within­
cells OF. 

(b) Randomized Blocks and Repeated Measures. In randomized-block and repea­
ted-measures experimental designs, the sphericity problem mentioned in Section 
12.4d is reason to recommend that multiple-comparison testing not use a pooled 
variance but, instead, employ the Games and Howell procedure presented in Section 
11.1b (Howell, 1997: 471). In doing so, the two sample sizes (n8 and nA) for calculating 
SE (in Equation 11.5) will each be b. 

An analogous recommendation when the Dunnett test (Section 11.3) is performed 
would be to use Equation 11.11a in favor of Equation 11.11. And for multiple 
contrasts, the procedures of Section II.4a would be followed. 

A similar recommendation for confidence limits for each mean is to use the 
variance associated with that mean instead of a pooled variance. Confidence limits 
for the difference between two means would employ Equation 11.7. 

12.6 SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER IN TWO-FACTOR ANALYSIS 
OF VARIANCE 

The concepts and procedures of estimating power, sample size, and mInImum 
detectable difference for a single-factor ANOV A are discussed in Section 10.3, 
and the same considerations can be applied to fixed-effects factors in a two-factor 
analysis of variance. (The handling of the fixed factor in a mixed-model ANOV A will 
be explained in Section 12.6e.) 

We can consider either factor A or factor B (or both, but one at a time). Let us 
say k' is the number of levels of the factor being examined. (That is, k' = a for 
factor A: k' = b for factor B.) Let us define n' as the number of data in each level. 
(That is, n' = bn for factor A; n' = an for factor B.) We shall also have s2 refer 
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to the within-cells MS. The mean of the population from which level In came is 
denoted as /J.m. 

(a) Power of the Test. We can now generalize equation 10.32 as 

k' 

n' L (/J.m - /J.)2 

c/>= 
k'S2 

m=1 (12.39) 

Equation 10.33 as 
k' 

L /J.III 
m=1 /J. = '--'---'---

k' 
(12.40) 

and Equation 10.34 as 

c/>= (12.41) 

in order to estimate the power of the analysis of variance in detecting differences 
among the population means of the levels of the factor under consideration. 

After any of the computations of c/> have taken place. either as above or as below, 
then we proceed to employ Appendix Figure B.l just as we did in Section 10.3. witb 
VI being the factor DF (i.e .. k' - 1). and V2 referring to the within-cells (i.e .. error) 
DF. 

Later in this book there are examples of ANOV As where the appropriate denom­
inator for F is some mean square other than the within-cells MS. In such a case, jl 
and V2 will refer to the relevant MS and DF. 

(b) Sample Size Required. By using Equation 12.41 with a specified significance 
level. and detectable difference between means. we can determine the necessary 
minimum number of data per level. 11', needed to perform the experiment with a 
desired power. This is done iteratively, as it was in Example 10.6. 

(c) Minimum Detectable Difference. In Example 10.7 we estimated the smallest 
detectable difference between population means. given the significance level. sample 
size. and power of a one-way ANOV A. We can pose the same question in the 
two-factor experiment. gencralizing Equation 10.35 as 

5= ( 12.42) 

(d) Maximum Number of Levels Testable. The considerations of Example 10.8 can 
be applied to the two-factor case by using Equation 12.41 instead of Equation 10.34. 

(e) Mixed-Model ANOV A. All the preceding considerations of this section can 
be applied to the fixed factor in a mixcd-model (Model III) two-factor analysis of 
variance with the following modifications. 

For factor A fixed. with replication within cells. substitute the interaction MS for 
the within-cells MS. and use the interaction DF for V2. 
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For factor A fixed, with no replication (i.e., a randomized block experimental 
design), substitute the remainder MS for the within-cells MS, and use the remainder 
DF for "2. If there is no replication. then n = 1, and n' = b. (Recall that if there is no 
replication. we do not test for interaction effect.) 

~7 NONPARAMETRIC RANDOMIZED-BLOCK OR REPEATED-MEASURES ANALYSIS OF VARIANCE 

Friedman 's* test (1937, 1940) is a nonparametric analysis that may be performed 
on a randomized-block experimental design, and it is especially useful with data 
that do not meet the parametric analysis of variance assumptions of normality and 
homoscedasticity, namely that the k samples (i.e., the k levels of the fixed-effect 
factor) come from populations that are each normally distributed and have the same 
variance. Kepner and Robinson (1988) showed that the Friedman test compares 
favorably with other nonparametric procedures. If the assumptions of the parametric 
AN OVA are met. the Friedman test will be 3kj[1T(k + 1)] as powerful as the 
parametric method (van Elteren and Noether, 1959). (For example, the power of the 
non parametric test ranges from 64 % of the power of the parametric test when k = 2. 
to 72% when k = 3. to 87% when k = to. to 95% when k approaches 00.) If the 
assumptions of the parametric test are seriously violated. it should not be used and 
the Friedman test is typically advisable. Where k = 2, the Fricdman test is equivalent 
to the sign test (Section 24.6). 

-

In Example 12.5. Friedman's test is applied to the data of Example 12.4. The data 
within each of the b blocks are assigned ranks. The ranks are then summed for 
each of the a groups. each rank sum being denoted as Ri. The test statistic, X;, is 
calculated as t 

12 a 
X; = "LRJ - 3b(a + I). 

ba(a + 1) i= 1 
(12.44 ) 

Critical values of X;, for many values of a and b. are given in Appendix 
Table B.14. 

When a = 2, the Wilcoxon paired-sample test (Section 9.5) should be used: if 
b = 2, then the Spearman rank correlation (Section 19.9) should be employed. 
Appendix Table B.14 should be used when the a and b of an experimental design 
are contained therein. For a and b beyond this table, the distribution of r, may be 
considered to be approximated by the X2 distribution (Appendix Table B.l). with 
a-I degrees of freedom. Fahoome (2002) advised that the chi-square approximation 
is acceptable when b is at least 13 when testing at the 0.05 level of significance and 
at least 23 when ex = 0.01 is specified. However, Iman and Davenport (1980) showed 
that this commonly used approximation tends to be conservative (i.e., it may have a 

*Milton Friedman (1912-2006), American economist and winner of the 1976 Nobel Memorial 
Prize in Economic Science. He is often credited with popularizing the statement, "There's no such 
thing as a free lunch." and in 1975 he published a book with that title: F. Shapiro reported that 
Friedman's statement had been in use by others more than 2() years before (Hafner. 2(01). 

t An equivalent formula is 
a 

12L (Ri - R)2 

X; = ----,--i =---'1---­
ha(a + 1) 

( 12.43) 

(Pearson and Hartley, 1976: 52). showing that we are assessing the difference bctween the rank 
sums (Ri) and the mcan of the rank sums (R). 
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EXAMPLE 12.5 Friedman's Analysis of Variance by Ranks Applied to the 
Randomized Block Data of Example 12.4 

Ho: The time for effectiveness is the same for all three anesthetics. 
H A: The time for effectiveness is not the same for al1 three anesthetics. 

a = 0.05 

The data from Example 12.4, for the three treatments and five blocks, are shown 
here, with ranks (1, 2, and 3) within each block shown in parentheses. 

Treatment (i) 

Block (j) 1 2 3 

1 8.25 11.25 10.75 

(1 ) (3) (2) 

2 11.00 12.50 11.75 

(1 ) (3) (2) 

3 10.25 12.00 11.25 

(1) (3) (2) 

4 9.50 9.75 9.00 

(2) (3) (1) 

5 8.75 11.00 10.00 

(1) (3) (2) 

Rank sum (R;) 6 15 9 
Mean rank (Ri) 1.2 3.0 1.8 

a = 3, b=5 

X2 = 12 ~R? - 2b(a + 1) 
, ba(a + 1) ~ I 

= 12 (62 + 152 + 92) _ 3(5)(3 + 1) 
(5)(3)(3 + 1) 

= 0.200( 342) - 60 = 8.400 

( 2) = 6400 X, 0.05,3.5 . 

Reject Ho. 

P < 0.01 [P = 0.0085] 

FF = (b - 1)x; = (5 - 1 )(8.4) _ 8.4 = 33.6 = 21.0 
b(a-l)-x~ 5(3-1) 1.6 

FO.05( 1 ).2.4 = 6.94 

Reject Ho. 

0.005 < P < 0.01 [P = 0.0076] 
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high likelihood of a Type II error-and, therefore, low power) and that 

FF = (b - l)x; 
b(a - 1) - X~ 

(12.45) 

is generally superior. To test, Ho, FF is compared to F (Appendix Table B.4) with 
degrees of freedom of a-I and (a - 1)( b - 1 ).* 

Because this non parametric test employs ranks, it could have been used even if the 
measurements (in minutes) were not known for the times for the anesthetics to take 
effect. All that would be needed would be the ranks in each block. In Example 12.4, 
this would be the knowledge that, for litter 1 (i.e., block 1) drug 1 was effective in a 
shorter time than was drug 3; and drug 3 acted faster than drug 2; and so on for all b 
blocks. 

Another approach to testing of this experimental design is that of rank trans­
formation, by which one ranks all ab data and performs the analysis of variance 
of Section 12.4 on those ranks (Conover 1974b; Iman and Iman, 1976, 1981; and 
Iman, Hora, and Conover, 1984). Quade (1979) presented a test that is an extension 
of the Wilcoxon paired-sample test that may be preferable in some circumstances 
(lman, Hora, and Conover, 1984). The rank-transformation procedure, however, 
often gives results better than those from the Friedman or Quade tests. But its 
proponents do not recommend that it be routinely employed as an alternative to 
the parametric ANOY A when it is suspected that the underlying assumptions of the 
latter do not apply. Instead, they propose that it be employed along with the usual 
ANOY A and, if both yield the same conclusion, one can feel comfortable with that 
conclusion. 

If tied ranks are present, they may be taken into consideration by computing 

(12.46) 

(Marascuilo and McSweeney, 1967),t (Kendall, 1962: Chapter 6), where 

C = 1 _ ~t 
b(a3 - a) 

(12.48) 

and L ( are as defined in Equation 10.42. 
The Kendall coefficient of concordance (W) is another form of Friedman's X;: 

2 
W = Xr 

b(a - 1) 
( 12.49) 

*Iman and Davenport (1980) also show that comparing the mean of X; and FF to the mean of 
the critical values of .r and F provides an improved approximation when Appendix Table B.14 
cannot be used. 

t Equivalently. 

(± Ri)2 ± RT _ -'.:i_=..:...I---<._ 

( 2) i= 1 (/ 
Xr ,. = ba(a + 1) _ ~ ( 12.41) 
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(Kendall and Bahington Smith. 1939). It is used as a measure of the agreement of 
rankings within hlocks and is considered further in Section 20.16. 

(a) Multiple Observations per Cell. In the experiment of Example 12.5. there is 
one datum for each comhination of treatment and hlock. Although this is the typical 
situation. one might also encounter an experimental design in which there are 
multiple observations recorded for each comhination of hlock and treatment group. 
As in Section 12.1. each comhination of level of factor A (group) and level of factor 
B is called a cell: for" replicate data per cel\. 

x2 = 12 f RT - 3b( 110 + I) 
r ba,,2 (Ila + I) i = 1 

( 12.50) 

(Marascuilo and McSweeney. 1977: 376-377). with a critical value of x~.(/ I. Note 
that if 11 = 1. Equation 12.50 reduces to Equation 12.44. Benard and van Eltem 
(1953) and Skillings and Mack (1981) present procedures applicable when there are 
unequal numbers of data per cell. 

(b) Multiple Comparisons. A multiple-comparison analysis applicahle to ranked 
data in a randomized hlock is similar to the Tukey procedure for ranked data in a 
one-way ANOV A design (Section 11.5). In this case. Equation 11.3 is used with the 
difference hetween rank sums: that is. RIl - RII in the numerator and 

SE = I ba( a + 1) 
\j 12 

(12.51) 

in the denominator. * (Nemenyi. 1963: Wilcoxon and Wilcox. 1964): and this is used 
in conjunction with the critical value of l/a.)0.k. 

If the various groups are to be compared one at a time with a control group. then 

SE = 
ba(o + I) 

6 
( 12.53) 

may be used in Dunnett's procedure. in a fashion similar to that explained in 
Section 11.5b. 

The preceding multiple comparisons are applicable to the levels of the fixed-effect 
factor. not to the blocks (\evels of the random-effect factor). 

*If desired. mean ranks (RII Rill hand Ru = Rul (/) can he used in the numerator of 
Equation 11.3. in which case the denominator will he 

SE = /o( (/ + I) 
\ ."/, ( 12.52) 
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Multiple contrasts, as introduced in Sections 11.4 and 11.6, may be performed using 
rank sums. We employ Equation 11.29, with* 

SE = ba(a + 
12 

unless there arc tied ranks, in which case t 

SE = ( 
a(a + I) ~/) ( ) 

b 12 b2( a-I ) ~ cJ 

( 12.55) 

( 12.57) 

(Marascuilo and McSweeney, 1967). The critical value for the multiple contrasts is 
~(x~ )a.a./J, using Appendix Tahle B.14 to ohtain (X~ )H.II./J. If the needed critical value 

is not on that table, then J x~.(/ _I may be used as an approximation to it. 

If there is replication per cell (as in Equation 12.50), the standard errors of this 
section are modil1ed by replacing a with an and b with bn wherever they appear. 
(See Marascuilo and McSweeney, 1977: 37ft) Norwood et al. (1989) and Skillings 
and Mack (1981) present multiple-comparison methods applicable when there are 
unequal numbers of data per cell. 

12.8 DICHOTOMOUS NOMINAL-SCALE DATA IN RANDOMIZED BLOCKS OR FROM REPEATED 
MEASURES 

The data for a randomized-block or repeated-measures experimental design may be 
for a dichotomous variablc (i.e., a variable with two possible values: e.g., "present" or 
"absent." "dead" or "alive," "true" or "false," "left" or "right." "male" or "female," 
etc.), in which case Cochran's Q test* (Cochran, 1950) may be applied. For such an 
analysis, one value of the attribute is recorded with a "I." and the other with a "0." In 
Example 12.8, the data are the occurrence or absence of mosquito attacks on humans 
wearing one of several types of clothing. The null hypothesis is that the proportion of 
people attacked is the same for each type of clothing worn. 

"If me.," ranks Clre used, 

SE = t/( t/ + I) (2: c~). 
12b i I 

( 12.54) 

tIr mean ranks are used. 

( 12.56) 

*William Gemmell Cochran (1l)(Jl)-19XO). born in Scotland and influential in the United States 
artersome early important work in EnglClnd (Dempster. 19X3: Watson. 19X2). 
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EXAMPLE 12.6 Cochran's Q Test 

Ho: The proportion of humans attacked by mosquitoes is the same for all 
five clothing types. 

HA: The proportion of humans attacked by mosquitoes is not the same for 
all five clothing types. 

a = 0.05 
A person attacked is scored as a "1"; a person not attacked is scored as a "0." 

Clothing Type 
Person Light. Light, Dark. Dark, 
(block) loose tight long short 

0 0 0 1 
2* 1 1 1 1 
3 0 0 0 1 
4 1 1 0 1 
5 0 1 1 1 
6 0 1 0 0 
7 0 0 1 1 
8 0 0 1 1 

Totals* (G;) 1 3 3 6 

a = 5: b = 7* 

a 
(a - 1) LGr -

(i Ci)' 
/: I 

j: I a 

Q = ----=------,---------=-
h 

b 

~Bj 
j=1 

~BJ 
j=1 

a 

None Totals (Bj) 

0 1 
1 * 
1 2 
0 3 
1 4 
1 2 
1 3 
0 2 

a h 
4 L G; = L Bj = 17 

;: I j""l 

(5 - 1) [1 + 9 + 9 + 36 + 16 - 172] 
5 52.8 

-17-------=-( 1,...=-+-4-:--+----=-9 -+-----=-16-:--+-4-:--+----=-9 -+------:-4-?-) = 7.6 = 6.947 

v=a-1=4 

X6.05.4 = 9.488 

Therefore. do not reject Ho. 

5 

0.10 < P < 0.25 [P = 0.14] 

*Thc data for block 2 are delctcd from the analysis. because l's occur for all clothing. (See 
test discussion in Section 12.8.) 
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For a groups and b blocks, where Gi is the sum of the I's in group i and Bj is the 
sum of the l's in block j, 

/I 

(a - 1) L GT 
i= I 

(~ Gi)2 
,= I 

a 

Q = ----=-------~ 
b 

(12.58) 

LBJ 
b j= I LBj - --

j=1 a 

Note. as shown in Example 12.8, that "E B = L G, which is the total number of I's 
in the set of data. This test statistic, Q, is distributed approximately as chi-square 
with a-I degree of freedom. Tate and Brown (1970) explain that the value of Q is 
unaffected by having blocks containing either all O's or all l's. Thus, any such block 
may be disregarded in the calculations. They further point out that the approximation 
of Q to X2 is a satisfactory one only if the number of data is large. These authors 
suggest as a rule of thumb that a should be at least 4 and ba should be at least 24, where 
b is the number of blocks remaining after all those containing either all O's or aliI's are 
disregarded. For sets of data smaller than these suggestions allow, the analysis may 
proceed but with caution exercised if Q is near a borderline of significance. In these 
cases it would be better to use the tables of Tate and Brown (1964) or Patil (1975). 

If a = 2, then Cochran's test is identical to McNemar's test (Section 24.17), except 
that the latter employs a correction for continuity. 

/2.9 MULTIPLE COMPARISONS WITH DICHOTOMOUS RANDOMIZED-BLOCK 
OR REPEATED-MEASURES DATA 

Marascuilo and McSweeney (1967) present a multiple-comparison procedure that 
may be used for multiple contrasts as well as for pairwise comparisons for data 
subjected to the Cochran Q test of Section 12.8. It may be performed using group 
means, Ri = Gil h. 

For pairwise comparisons, the test statistic is 

(12.59) 

(which parallels Equation 11.13), where 

SE = ~B7). 
1 ) 

(12.60) 

For multiple contrasts. the test statistic is that of Equation 11.16. where Ri replaces 
Xi and 

SE _ (a ~b::U -_ ~)Bl) ~q (12.61) 

The critical value for such multiple comparisons is Sa = J~X-~Jl---I' 
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12.10 INTRODUCTION TO ANALYSIS OF COVARIANCE 

Each of the two factors in a two-way ANOV A generally consists of levels that are 
nominal-scale categories. In Example 10.1. for instance. the varia hIe of interest was 
the hody weight of pigs. and the one factor tested was diet. In a two-factor ANOV A. 
we might ask about the effect of diet and also introduce the sex of the animal (or 
the tneed) as a second factor. with the levels of sex (or hreed) heing on a nominal 
scale. 

In the experiment of Example 10.1. we would attempt to employ animals of the 
same age (and weight). so differences in the measured variable could he attrihuted 
to the effect of the diets. However. if the heginning ages (or weights) were markedly 
not alike. then we might wish to introduce age (or weight) as a second factor. 
The relationship hetween ending weight and age (or ending weight and heginning 
weight) may be thought of as a regression (see Chapter 17). while the relationship 
hetween ending weight and diet is a one-way analysis of variance (Chapter 10). 
The concepts of these two kinds of analyses. and their statistical assumptions. are 
comnined in what is known as analysis ofcovarillllce (ahbreviated ANCQV A)." and 
the factor that acts as an independent variable in regression is called a col/comillllll 
variable. This is a large area of statistical methodology heyond the scope of this 
book hut found in many rderences. including several dealing with experimental 
design. 

EXERCISES 

12.1. A study is madc of amino acids in the hcmolymph 
of millipedes. For a sample of four males and 
four females of each of three species. the fol­
lowing concentrations of the amino acid alanine 
(in mgllOO ml) arc determined: 

(b) Test the hypothesis that there is no differ­
ence between males and fcmalcs in mean 
hemolymph alanine concentration. 

(c) Test the hypothesis that there is no inter­
action bctwcen sex and species in the mean 
concentration of alaninc in hemolymph. 

Spedt'.\' I Species 2 5i)ecies 3 

Male 215 14.5 16.0 
19.6 17.4 20.3 
20.9 15.0 IRS 
22.8 17.8 IlJ3 

Female 14.8 12.1 14.4 
15.6 11,4 14.7 
135 12.7 13.8 
16,4 14.5 12.0 

(8) Test the hypothesis that there is no difference 
in mean hemolymph alanine concentration 
among the three species. 

(d) Preparc a graph of the row. column. and cell 
means. as done in Figure 12.1. and interpret it 
in terms of the results of the ahove hypothesis 
tests. 

(e) If the null hypothesis of part a. above. is 
rejected. then perform a Tukey test to assess 
the mean differences among the species. 

12.2. Six greenhouse henches were set up as blocks. 
Within each hlock. one of each of four varieties 
of house plants was planted. The plant heights (in 
centimeters) attained are tahulated as follows. Test 
the hypothesis that all four varieties of plants reach 
the same maximum height. 

'The first usc (and the name) of this statisticallt::chnique is attributed to R. A. Fisher prior to 
1930 (e.g .. Fisher. 1932: 249-262: Yntcs. 19(4). 
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Block Variety 1 Variety 2 Variety 3 Variety 4 Textbook Textbook Textbook Textbook 
Professor 1 2 3 4 

1 19.8 21.9 16.4 14.7 
2 16.7 19.8 15.4 13.5 1 1 1 0 0 
3 17.7 21.0 14.8 12.8 2 1 1 0 1 
4 18.2 21.4 15.6 13.7 3 1 0 0 0 
5 20.3 22.1 16.4 14.6 4 1 1 1 1 
6 15.5 20.8 14.6 12.9 5 1 1 0 1 

6 0 1 0 0 
W. Consider the data of Exercise 12.2. Nonparamet- 7 0 1 1 0 

rically test the hypothesis that all four varieties of 8 1 1 1 0 
plants reach the same maximum height. 9 0 0 t 0 

ll.4. A textbook distributor wishes to assess potential 10 1 0 1 0 
acceptance of four general biology textbooks. He 11 0 0 0 0 
asks 15 biology professors to examine the books 12 I 1 0 1 
and to respond as to which ones they would seri- 13 1 0 0 1 
ously consider for their courses. In the table, a 14 0 1 1 0 
positive response is recorded as 1 and a negative 15 1 1 0 0 
response as a O. Test the hypothesis that there is 
no difference in potential acceptance among the 
four textbooks. 
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Data Transformations 
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13.2 THE SQUARE-ROOT TRANSFORMATION 
13.3 THE ARCSINE TRANSFORMATION 
13.4 OTHER TRANSFORMATIONS 
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Previous chapters have discussed underlying assumptions of several statistical 
procedures. such as I-testing (Sections 7.la. Rid. Rle. 9.1). analysis of vari· 
ance (Sections to.lg. to.li. 12.lg. 12.4d). and parametric multiple comparisons 
(Chapter II introduction). Three assumptions were noted in those chapters: (I) 
Each sample of data was obtained randomly from the sampled population. (2) 
each sampled population was normally distributed. and (3) all of the sampled 
populations had the same variance. These three assumptions will also apply to 
several statistical procedures discussed in later chapters. If the assumptions are 
not well satisfied. then the prohahilities associated with the test statistics may 
be incorrect. and conclusions whether to reject the null hypothesis may not be 
warranted. 

If an analysis of variance is to he performed for the effects of two or more factors 
(i.e .. a factorial ANOVA). then it is important to consider the effects of interactions 
among the factors. For example. in a two-factor analysis of variance (as explained in 
Chapter 12). the effect of factor A on the variable. X. can he assessed. as can the 
effect of factor H on that variable. It is also important to examine the interaction 
effect of the two factors. If the effect of one of the factors on X is the same at all 
levels of the other factor. then there is no interaction effect. and the effects of the two 
variables are said to be addilive.* 

It was shown in Section 12.1 that if there is replication within cells in a factorial 
ANOV A. then the hypothesis of no interaction can be tested. as well as a hypothesis 
ahout each of the factors. If. however. there is no replication (Section 12.3). then 
hypothesis testing is problematic and limited. especially in Model I ANOV A (see 
Tahle 12.5). Thus. in the absence of replication. a fourth assumption-that of no 
interaction (i.e .. of additivity)-can be added to the three assumptions mentioned 
previously. 

There are data sets that violate one or more of underlying premises 2. 3. and 
4 for which a lra/l.~t()rnlllli()n of the data from their original values (X) to values 
(call them X') that constitute a data set more closely satisfying the assumptions. 
Also. a reduction in the interaction effect can enhance the power of hypothesis 
testing for factor effects. For some kinds of data it is known, on theoretical grounds. 
that a transformation will result in data more amenahle to the intended statistical 
analysis. 

"The term lItltlitil·jty in this context was intrmluccu hy C. Eisenhart in 1947 (Daviu. 1995). 
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Data transformation will not compensate for the absence of random sampling 
(violation of assumption 1). As with untransformed data. analysis of transformed 
data can be adversely affected by the presence of outliers (Section 2.5). 

Many authors provided early recommendations on the use of data transformations 
that have become commonly used (e.g .• Bartlett, 1947: Box and Cox. 1964: Kendall 
and Stuart. 1966: 87 -96; Thoni. 1967). This chapter will concentrate on three of those 
transformations: The logarithmic transformation (Section 13.1) is applicable when 
there is heterogeneity of variances among groups and the group standard deviations 
are directly proportional to the means, and in cases where two or more factors 
have a multiplicative (instead of an additive) effect. The square-root transformation 
(Section 13.2) applies to heteroscedastic data where the group variances are directly 
proportional to the means, a situation often displayed when the data come from a 
population of randomly distributed counts. The arcsine transformation (Section 13.3) 
is germane when the data come from binomial distributions, such as when the data 
consist of percentages within the limits of 0 and 100% (or, equivalently, proportions 
within the range of 0 to I). The transformation of data in regression analysis will be 
discussed in Section 17.10. 

13.1 THE LOGARITHMIC TRANSFORMATION 

If the factor effects in an analysis of variance are, in fact, multiplicative instead of 
additive. then the data will not exhibit additivity. but logarithms of the data will. This 
is demonstrated in Example 13.1: Example 13.1 a shows data for which, for each level 
of factor B, each datum in factor-A level 2 differs from the corresponding datum in 
factor-A level! by the addition by the same weight (namely. 20 g - 10 g = 10 g and 
30 g - 20 g = 10 g). and each datum in level 3 differs from its corresponding level-2 
datum by the same amount (i.e .. 25 g - 20 g = 5 g and 35 g - 30 g = 5 g). And for 
factor B, there is a constant difference (20 g - 10 g = 30 g - 20 g = 35 g - 25 g = 
10 g) between the two levels, at all three levels of factor A. Thus, in Example 13. la, no 
data transformation is needed to achieve additivity. However, in the data of Example 
13.1 b, the effect of each factor is multiplicative instead of additive. For each level of 
factor B, the datum in level 2 differs from its corresponding datum in level 1 by a 
factor of 3 (i.e., 30 g = 3 x 10 g and 60 g = 3 x 20 g); each X in level 3 differs from 
its level-2 neighbor by a factor of 2 (60 g = 2 X 30 g and 120 g = 2 x 60 g); and there 
is a multiplicative difference of 2 between the data, at each level of factor A (20 g = 
2 x 10 g; 60 g = 2 x 30 g: 120 g = 2 x 60 g) for each of the two levels of factor B. 
In such a situation, the logarithms of the data will exhibit additivity. This is shown 
by the logarithmically transformed data of Example 13.lc. [n Example 13.1, the six 
quantities may be data in a 3 x 2 ANOV A without replication or they may represent 
the six cell means if there is replication. 

Figure 13.1 graphs the data in Example 13.1, in the format introduced in Figures 
12.1 and 12.2. Figure 13.1a shows the values of X in Example 13.1a. For the two 
levels of factor B (B1 and B2), the line segments are parallel between factor-A levels 
1 and 2 (AI and A2) and between levels 2 and 3 (A2 and A3). indicating the additive 
effect of the two factors (i.e .. no interaction between the two factors). Figure 13.1b 
graphs the values of X found in Example 13.1 b. [n comparing the plots for the 
two levels of factor B (BI and 82), it is seen that the line segments between the 
first two levels of factor A (A I and A2) are not parallel, nor are the line segments 
between the second and third levels of that factor (A2 and A3). indicating that the 
effects of the two factors are not additive (i.e., that there is an interactive effect 
between factors A and B). Figure 13.1c shows the graph for the data transformed 
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into their logarithms (Example 13.tc). Here it is seen that the two line segments 
representing the two levels of factor B are parallel for the comparison of levels 
1 and 2 of factor A and for the comparison of levels 2 and 3. Thus. Example 
13.1 c achieved additivity by using the logarithmic transformation of the data in 
Example 13.1 b. 

EXAMPLE 13.1 Additive and Multiplicative Effects 

(a) A hypothetical two-way analysis-of-variance design, where the effects of the 
factors are additive. (Data are in grams.) 

Factor A 
Factor B Level I Level 2 Level 3 

Levell to 20 25 
Level 2 20 30 35 

(b) A hypothetical two-way analysis-of-variance design, where the effects of the 
factors are multiplicative. (Data are in grams.) 

Factor B 

Levell 
Level 2 

Factor A 

Level I Level 2 Level 3 

10 30 60 
20 60 120 

(c) The two-way analysis-of-variance design of Example 13.1 b, showing the 
logarithms (rounded to two decimal places) of the data. 

Factor A 

Factor B Level I Level2 Level 3 

Levell 
Level 2 

1.00 
1.30 

1.48 
1.78 

1.78 
2.08 

The logarithmic transformation is also applicable when there is heteroscedasticity 
and the groups' standard deviations are directly proportional to their means (i.e., 
there is a constant coefficient of variation among the groups). Such a situation is 
shown in Example 13.2. This transformation may also convert a positively skewed 
distribution into a symmetrical one. 

Instead of the transformation X' = 10g(X), however, 

X' = 10g(X + t) (13.1) 

is preferred as the logarithmic transformation on theoretical grounds and is especially 
preferable when some of the data are small numbers (particularly zero) (Bartlett, 
1947). Logarithms in base 10 are generally utilized. but any logarithmic base may be 
employed. Equation 13.1 is what is used in Example 13.2. 
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FIGURE 13.1: The effects of the two factors in a 3 x 2 analysis of variance. (a) The data of Example B.1a, 
where the parallel line segments reflect lack of interaction between the two factors (Le., additivity). (b) 
The data of Example 13.1 b, where the nonparallel line segments indicate interaction (i.e., nonadditivity) 
of the two factors. (c) The data of Example 13.1 b transformed to their logarithms and shown as Example 
13.1 c; the parallelism of these line segments shows that the transformation has resulted in the absence 
of interaction (i.e., the result is factor additivity). 

EXAMPLE 13.2 The Logarithmic Transformation for Data in Which There 
Is Heterogeneity of Variance and the Standard Deviations Are Directly 
Proportional to the Means (i.e., the Coefficients of Variation Are the Same) 

A prime symbol on a statistic denotes a quantity obtained using the transformed 
data (e.g., X', s', L'). 

The original data (leaf lengths. in centimeters): 

Group J Group 2 

3.1 7.6 
2.9 6.4 
3.3 7.5 
3.6 6.9 
3.5 6.3 
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XI = 3.28cm X2 = 6.94cm 
s2 

I = 0.0820cm2 s2 
2 = 0.3630 cm2 

SI = 0.29cm S2 = O.60cm 
VI = 0.09 V2 = 0.09 

The logarithmically transformed data, using Equation (13.1): 

Group 1 Group 2 

0.61278 0.93450 
0.59106 0.86923 
0.63347 0.92942 
0.66276 0.89763 
0.65321 0.86332 

X; = 0.63066 X; = 0.89882 
(sT )' = 0.0008586657 (s~)' = 0.0010866641 

s' I = 0.02930 s' 2 = 0.03296 
V' I == 0.04646 V' 2 = 0.03667 
s~ = 0.01310 

, = 0.01474 x, SX2 

Calculating confidence limits for the mean. using the transformed data from 
Group 1: 

95 % confidence interval for ILl = X; ± (to.05( 2).4 ) (0.01310) 
= 0.63066 ± (2.776)(0.01310) 

= 0.63066 ± 0.03637 

LI = 0.59429 and L2 = 0.66703 
95% confidence limits for ILl. in the original units: 

LI = antilog 0.59429 - 1 = 3.93 
L2 = antilog 0.66703 - 1 = 4.65 

1 = 2.93 cm 
1 = 3.65 cm 

The 95% confidence intervals for p!.z and for IL2 may be calculated in the same 
manner. 

After data transformation. hypothesis testing and expression of confidence inter­
vals may be done on the transformed data. Subtracting 1 from the antilogarithm 
of the mean of the logarithmically transformed data expresses the sample mean in 
the units of the original data,* and subtracting 1 from the antilogarithm of each 
confidence limit for the mean of the transformed data gives the confidence lim­
its for the mean in terms of the non transformed data. This is demonstrated in 
Example 13.2. Note that. when performing these calculations on the transformed 
data. the confidence interval is not symmetrical around the mean in the original 
units. 

*Thoni (1967: 16) has shown that an unbiased estimate of IL would be obtained by adding 
(1 - 1/ n )ll to the X derived by un transforming X'. where s2 is the variance of the transformed 
data. Bias is less for large samples. The antilogarithm of the mean of the transformed data (i.e .• the 
antilogarithm of (X') is the geometric mean of the untransformed data (Section 3.4a). 
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If the distribution of X' is normal, the distribution of X is said to be lognormal.* 

13.2 THE SQUARE-ROOT TRANSFORMATION 

The square-root transformation is applicable when the group variances are directly 
proportional to the means; that is, when the variances increase as the means increase. 
This most often occurs in biological data when samples are taken from a Poisson 
distribution (i.e., when the data consist of counts of randomly occurring objects or 
events; see Chapter 25 for discussion of the Poisson distribution). Transforming such 
data by utilizing their square roots results in a sample whose underlying distribution 
is normal. However, Bartlett (1936) proposed that 

X' = Jx + 0.5 (13.2) 

is preferable to X' = ./X, especially when there are very small data and/or when 
some of the observations are zero (see Example 13.3). Actually. 

X' =)X + ~ (13.3) 

has even better variance-stabilizing qualities than Equation 13.2 (Kihlberg. Herson, 
and Schutz. 1972), and Freeman and Tukey (1950) show 

X' = .JX + J X + 1 (13.4) 

to yield similar results but to be preferable for X :S 2. 
Equation 13.2 is most commonly employed. Statistical computation may then be 

performed on the transformed data. The mean of those data can be expressed in terms 
of the original data by squaring it and then subtracting 0.5. although the resultant 
statistic is slightly biased. t Budescu and Appelbaum (1981) examined ANOYA for 
Poisson data and concluded that data transformation is not desirable unless the largest 
variances are found in the largest samples and the largest sample is more than five 
times the size of the smallest. 

13.3 THE ARCSINE TRANSFORMATION 

It is known from statistical theory that percentages from 0 to 100% or propor­
tions from 0 to 1 form a binomial, rather than a normal. distribution, the deviation 
from normality being great for small or large percentages (0 to 30% and 70 to 
100%).* If the square root of each proportion. p. in a binomial distribution is 
transformed to its arcsine (i.e., the angle whose sine is .jp). then the resultant 
data will have an underlying distribution that is nearly normal. This transforma­
tion. 

p' = arcsin ./p. (13.5) 

*The term lognormal was introduced by J. H. Gaddam in 1945 (David. 1995). 
t Also. an antilogarithmic transformation to obtain X in terms of the original units is known to 

result in a somewhat biased estimator of J.I.. the estimator being less biased for larger variances of 
X'values. 

*The symbol for percent, "%." appeared around 1650 (Cajori. 1928/1929. Vol. I: 312). 
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EXAMPLE 13.3 The Square Root Transformation for Poisson Data 

Original data (number of parasites in the lungs of 20 frogs allocated to four 
experimental groups): 

Group J Group 2 Group 3 Group 4 

2 6 9 2 

0 4 5 4 

2 8 6 1 

3 2 5 0 

0 4 11 2 

XI 1.4 4.8 7.2 1.8 

s? 
I 

1.8 5.2 7.2 2.2 

Transformed data; by Equation 13.2: 

Group J Group 2 Group 3 Group 4 

1.581 2.550 3.082 1.581 

0.707 2.121 2.345 2.121 

1.581 2.915 2.550 1.225 

1.871 1.581 2.345 0.707 

0.707 2.121 3.391 1.581 

X~ 
I 1.289 2.258 2.743 1.443 

(Sf )' 0.297 0.253 0.222 0.272 

s~ 
Xi 

0.244 0.225 0.211 0.233 

(Lj )i 0.612 1.633 2.157 0.796 

(L2 )i 1.966 2.883 3.329 2.090 

On transforming back to original units [e.g., X = (X')2 - 0.5]: 

Group J Group 2 Group 3 Group 4 

Xi 1.2 4.6 7.0 1.6 

(Ldi -0.1 2.2 4.2 0.1 

(L2 )i 3.4 7.8 10.6 3.9 

is performed easily with the aid of Appendix Table B.24. For proportions of 0 to 1.00 
(Le., percentages of 0 to 100%), the transformed values will range between 0 and 

prakash
Rectangle
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90 degrees (although some authors' tables present the transformation in terms of 
radians*).t 

The arcsine transformation ("arcsine" is abbreviated "arcsin") frequently is 
referred to as the "angular transformation," and "inverse sine" or "sin -1" is 
sometimes written to denote "arcsine. ":1: 

Example 13.4 demonstrates calculations using data submitted to the arcsine 
transformation. Transformed values (such as means or confidence limits) may be 
transformed back to proportions. as 

p = (sinp' )2~ (13.6) 

and Appendix Table B.25 is useful for this purpose. § As shown in Section 24.8, 
confidence limits for proportions will not generally be symmetrical around the mean. 
This transformation is not as good at the extreme ends of the range of possible values 
(i.e .• near 0 and 100%) as it is elsewhere. If. instead of simply having data consisting 
of percentages, the researcher knows the count (X) and sample size (n) composing 
each percentage (p = X In). then the arcsine transformation is improved by replacing 
Oln with 1/4n and nln with 1 - 1/4n (Bartlett, 1937a). Anscombe (1948) proposed 
an even better transformation: 

R+~ 
p' = arcsin : . 

n + -
4 

(13.7) 

And a slight modification of the Freeman and Tukey (1950) transformation. namely. 

I 1 [ . g . !-!+f+ 1] p ::0 - arCSIn --- + arCSIn • 
2 n+1 n+1 

(13.8) 

yields very similar results, except for small and large proportions where it appears to 
be preferable. Determination of transformed proportions. p'. by either Equation 13.7 
or 13.8 is facilitated by using Appendix Table B.24. 

• A radian is IRO'" /1T = 57.2957795130R232 ... degrees. Expressing angles in radians. instead of 
degrees. would have Equation 13.5 yield arcsines (P') of 0 to 1.5708 for proportions (P) of 0 to I: 
sometimes the use of radians is associated with substituting 

p' = 2 arcsin ..;p (l3.5a) 

for Equation 13.5. resulting in values of p' that can range from 0 to 3.1416 (that is. a range of zero to 
pi). The choice between degrees and radians will not affect the conclusions of statistical procedures 
employing the arcsine transformation. 

tThe arcsine transformation is applicable only if the data came from a distribution of data that 
can lie between Oand 100% (e.g .. not if data are percent increases, which can be greater than 100%). 

tThe arcsine of a number is the angle whose sine is that number. (See Section 26.3 for a 
description of the sine and other trigonometric functions.) The term was initiated in the latter part 
of the eighteenth century; and the abbreviation "sin -I .. was introduced in lRl3 by the English 
astronomer SirJohn Frederick William Herschel (1792-IR71 )(Cajori, I 92R11 929. Vol. II: 175-176). 

*The mean, p. that is obtained from p' by consulting Appendix Table 8.25 is, however, 
slightly biased. Quenouil1e (1950) suggests correcting for the bias by adding to p the quantity 

0.5 cos(2p')( I - e- 2,2). where s2 is the variance of the p' values. 
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EXAMPLE 13.4 The Arcsine Transformation for Percentage Data 

Original data (P. the percentage of insects ki1led in each of seven groups of insects 
subjected to one of two insecticides): 

Insecticide I (%) Insecticide 2 (%) 

84.2 92.3 
88.9 95.1 
89.2 90.3 
83.4 88.6 
80.1 92.6 
81.3 96.0 
85.8 93.7 

P2 = 84.7% P2 = 92.7% 

s~ = 12.29( %)2 s~ = 6.73( %)2 
sl = 3.5% S2 = 2.6% 

Transformed data (by using Equation 13.5 or Appendix Table B.24) (P'): 

Insecticide I (0 ) Insecticide 2 (0 ) 

66.58 73.89 
70.54 77.21 
70.81 71.85 
65.96 70.27 
63.51 74.21 
64.38 78.46 
67.86 75.46 

PI = 67.09 P2 = 74.48 

(s~ )' = 8.0052 (~)' = 8.2193 
s' I = 2.83 s' 2 = 2.87 

s~ 
XI 

= 1.07 s~ 
X2 

= 1.08 

Calculating confidence limits: 
95% confidence interval for ILl : pi ± (to.05(2).6)( 1.07) = 67.09 ± 2.62 

LI = 64.47° and L2 = 69.71 0 

By using Appendix Table B.25 to transform backward from LI• L2• and PI: 
95% confidence limits for ILl : LI = 81.5% and L2 = 88.0%. 

PI = 84.9% 
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3A OTHER TRANSFORMATIONS 

The logarithmic, arcsine, and square-root transformations are those most com­
monly required to handle non normal, hcteroscedastic, or nonadditive data. Other 
transformations arc only rarely called for. 

If the standard deviations of groups of data are proportional to the square of the 
means of the groups, then the reciprocaltralls/ormatioll, 

X' = ~ 
X' 

( 13.9) 

may be employed. (If counts are being transformed, then 

X' = --- (13.10) 
x + 1 

may be used to allow for observations of zero.) See Thoni (1967: 32) for further 
discussion of the use of this transformation. 

If the standard deviations decrease as the group means increase, and/or if the 
distribution is skewed to the left, then 

X' = X2 (13.11) 

might prove useful. 
If the data come from a population with what is termed a "negative binomial dis­

tribution," then the use of inverse hyperbolic sines may be called for (see Anscombe. 
1948; Bartlett. 1947; Beall, 1940, 1942; Thoni, 1967: 20-24). 

Thoni (1967) mentions other. infrequently employed, transformations. 

EXERCISES 
I. 
I 

lL Perform the logarithmic transformation on the fol-
:' lowing data (using Equation 13.1) and calculate 

the 95% confidence interval for J.L. Express the 
~ confidence limits in terms of the original units (i.e., 
~ ml). The data are 3.67, 4.01. 3.85. 3.92. 3.71. 3.8R, 
: 3.74, and 3.82 ml. r' Transform the following proportions by the arc­

sine transformation (using Appendix Table B.24) 
and calculate the 95% confidence interval for J.L. 

Express the confidence limits in terms of propor­
tions (using Appendix Table B.25). 

0.733.0.804.0.746,0.781.0.772, and 0.793 

13.3. Apply the square-root transformation to the fol­
lowing data (using Equation 13.2) and calculate 
the 95% confidence interval for J.L. Transform the 
confidence limits back to the units of the original 
data. The data are 4, 6, 3, 8, 10, 3. 
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Multiway Factorial Analysis of Variance 

14.1 THREE-FACTOR ANALYSIS OF VARIANCE 
14.2 THE LATIN-SQUARE EXPERIMENTAL DESIGN 
14.3 HIGHER-ORDER FACTORIAL ANALYSIS OF VARIANCE 
14.4 MULTIWAY ANALYSIS OF VARIANCE WITH BLOCKS OR REPEATED MEASURES 
14.5 FACTORIAL ANALYSIS OF VARIANCE WITH UNEQUAL REPUCA TION 
14.6 MULTIPLE COMPARISONS AND CONFIDENCE INTERVALS IN MULTIWAY ANALYSIS 

OF VARIANCE 
14.7 POWER, DETECTABLE DIFFERENCE, AND SAMPLE SIZE 

Chapter 12 discussed the analysis of the effects on a variable of two factors acting 
simultaneously. In such a procedure-a two-way. or two-factor. analysis of vari­
ance-we can conclude whether either of the factors has a signilkant effect on the 
magnitude of the variable and also whether the interaction of the two factors signifi­
cantly affects the variable. By expanding the considerations of the two-way analysis 
of variance, we can assess the effects on a variable of the simultaneous application 
of three or more factors. this being done by what is referred to as multiway factorial 
analysis of variance.* 

It is not unreasonable for a researcher to perform a one-way or two-way analysis 
of variance by hand (i.e., using a calculator), although computer programs are 
routinely employed. especially when the experiment consists of a large number of 
data. However. it has become rare for analyses of variance with more than two 
factors to he analyzed other than via statistical software. for considerations of time, 
case, and accuracy. Therefore. this chapter will presume that established computer 
programs will be used to perform the necessary calculations, but it will consider the 
subseq uent examination and interpretation of the numerical results of the computer's 
labor. 

14.1 THREE-FACTOR ANALYSIS OF VARIANCE 

296 

For a particular variahle, we may wish to assess the effects of three factors: let us 
refer to them as factors A, B. and C. For example. we might desire to determine what 
effect the following three factors have on the rate of oxygen consumption of crabs: 
species, temperature. and sex. Example 14.1 a shows experimental data collected for 
crabs of both sexes. representing three species. and measured at three temperatures. 
For each cell (i.e .. each combination of species. temperature. and sex) there was an 
oxygen consumption datum for each of four crabs (Le .. there were four replicates); 
therefore. 72 animals were used in the experiment (N = 2 x 3 x 3 x 4 = 72). 

'The concept of the fClctorial analysis of variClncc was introJuced hy the Jevclopcr of ANOYA. 
R. A. Fisher (Bartlett. IY05). and Fisher's lirs! usc of the term lite/or;,,/ was in 19-'5 (David. 
11J1J5 ). 
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EXAMPLE 14.1a A Three-Factor Analysis of Variance (Model I), Where 
the Variable Is Respiratory Rate of Crabs (in ml 02/hr) 

1 rl): 
HA : 

2 { HI) 
HA : 

{ HI) 
3 H' A· 

Ho: 

4 

HA: 

Ho: 

5 

HA: 

Ho: 

6 

HA: 

Ho: 

7 
HA: 

Mean respiratory rate is the same in all three crah species (i.e .. 
IJ.] = IJ.2 = IJ.3)· 
Mean respiratory rate is not the same in all three crab species. 

Mean respiratory rate is the same at all three experimental tem­
peratures (i.e .• IJ.)ow = IJ.mcd = IJ.high)· 
Mean respiratory rate is not the 'same at all three experimental 
temperatures. 

Mean respiratory rate is the same for males and females (i.e .. 
IJ.O' = IJ.1f) 
Mean respiratory rate is not the same for males and females (i.e .. 
IJ.O' #: IJ. If ) 

Differences in mean respiratory rate among the three species arc 
independent of (i.e .. the population means are the same at) the 
three experimental temperatures: or. differences in mean respira­
tory rate among the three temperatures arc independent of (i.e .. 
arc the same in) the three species. (Testing for A x B interaction.) 
Differences in mean respiratory rate among the species are not 
independent of the experimental temperatures. 

Differences in mean respiratory rate among the three species arc 
independent of sex (i.e .. the population means are the same for 
both sexes): or. differences in mean respiratory rate between males 
and females are independent of (i.e .. arc the same in) the three 
species. (Testing for A x C interaction.) 
Differences in mean respiratory rate among the species are not 
independent of sex. 

Differences in mean respiratory rate among the three experimental 
temperatures are independent of (i.e .. the population means arc 
the same in) the two sexes: or. differences in mean respiration rate 
between the sexes are independent of (i.e., arc the same at) the 
three temperatures. (Testing for B x C interaction.) 
Differences in mean respiratory rate among the three temperatures 
arc not independent of sex. 

Differences in mean respiratory rate among the species (or temper­
atures, or sexes) arc independent of the other two factors. (Testing 
for A x B x C interaction.) 
Differences in mean respiratory rate among the species (or tem­
perature. or sexes) arc not independent of the other two factors. 
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Species I 
Low temp. Med. temp. High temp. 

d' ~ d' ~ d' !? 

1.9 1.8 2.3 2.4 2.9 3.0 
1.8 1.7 2.1 2.7 2.8 3.1 
1.6 1.4 2.0 2.4 3.4 3.0 
1.4 1.5 2.6 2.6 3.2 2.7 

Species 2 
Low temp. Med. temp. High temp. 

d' !j? d' ~ d' <j1 

2.1 2.3 2.4 2.0 3.6 3.1 
2.0 2.0 2.6 2.3 3.1 3.0 
1.8 1.9 2.7 2.1 3.4 2.8 
2.2 1.7 2.3 2.4 3.2 3.2 

Species 3 
Low temp. Med. temp. High temp. 

d' !F d' ~ d' !? 

1.1 1.4 2.0 2.4 2.9 3.2 
1.2 1.0 2.1 2.6 2.8 2.9 
1.0 1.3 1.9 2.3 3.0 2.8 
1.4 1.2 2.2 2.2 3.1 2.9 

Tablc 14.1 presents the computer output for the analysis of these experimental 
results, such output typically giving the sums of squares, degrees of freedom. and mean 
squares pertaining to the hypotheses to be tested. Some computer programs also give 
the F values calculatcd, assuming that the experiment calls for a Model I analysis, 
which is the case with most biological data. and some present the probability of each 
F. The major work that the computer software has performed for us is the calculation 
of the sums of squares. We could easily have arrived at the degrees of freedom for 

TABLE 14.1: Computer Output from a Three-Factor Analysis 
of Variance of the Data Presented in Example 14.1 

Source of variation Sum of squares DF Mean square 

Factor A 1.81750 2 0.90875 
Factor B 24.65583 2 12.32791 
Factor C 0.00889 1 0.(XlSS9 
AxB 1.10167 4 0.27542 
AXC 0.37028 2 0.18514 
BxC 0.17528 2 0.08764 
AxBxC 0.22056 4 0.05514 
Error 2.00500 54 0.03713 
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each factor as the number of levels - ] (so, for factor A, DF = 3 - ] = 2; for factor 
B, DF = 3 - 1 = 2; and for factor C, DF = 2 - 1 = 1). The degrees of freedom for 
each interaction are A x B DF = factor A DF x factor B DF = 2 x 2 = 4; A X C 
DF = factor A OF x factor C OF = 2 x 1 = 2; B x C DF = factor B DF x factor 
C OF = 2 x 1 = 2; and A x B x C OF = factor A OF x factor B DF x factor C 
OF = 2 x 2 x 1 = 4. The error DF is, then, the total OF (i.e., N - 1) minus all 
other degrees of freedom. Each needed mean square is then obtained by dividing the 
appropriate sum of squares by its associated DF. As we are dealing with a Model I 
(fixed-effects model) ANOVA, the computation of each F value consists of dividing 
a factor or interaction mean square by the error MS. 

Example 14.1b demonstrates testing of the hypotheses stated in Example 14.1a. 
To test whether oxygen consumption is the same among all three species, the species 
F (i.e., 24.45) is compared to the critical value, FO.05( I ).2.54 :::::: 3.17; because the 
former exceeds the later, the null hypothesis is rejected.* In a similar fashion, we 
test the hypothesis concerning each of the other two factors, as well as each of the 
four hypotheses regarding the interactions of factors, by comparing the calculated F 
values with the critical values from Appendix Table B.4. 

Recall from Chapter 12 that the test for a two-way interaction asks whether 
differences in the variable among levels of one factor arc the same at all levels of the 
second factor. A test for a three-factor interaction may be thought of as asking if the 
interaction between any two of the factors is the same at all levels of the third factor. 
As shown at the conclusion of Example 14.1 b, statistical differences among levels of 
a factor must be expressed with caution if that factor has a significant interaction with 
another factor. 

It is only for a factorial ANOV A with all factors fixed that we compute all F values 
utilizing the error MS. If any of the factors are random effects, then the analysis 
becomes more complicated. The proper F calculations for such situations appear in 
Appendix D. 

If there are not equal numbers of replicates in each cell of a factorial analysis of 
variance design, then the usual ANOV A computations are not valid (see Section 14.5). 

A factorial ANOVA experimental design may also include nesting (see Chapter 15 
for a discussion of nesting). For example, in Example 14.1 we might have performed 
two or more respiratory-rate determinations on each of the four animals per cell. 
Some of the available computer programs for factorial analysis of variance also 
provide for nested (also called hierarchical) experimental designs. 

If one or two of the three factors are measured on an interval or ratio scale, this 
is an analysis of covariance situation, as described in Section 12.9, and computer 
programs are available for such analyses. In Example 12.1, for instance, the variable 
is plasma calcium concentration and two factors are hormone treatment and sex. A 
thiNt factor might be age, or weight, or hemoglobin concentration, or temperature. 

1.2 THE LATIN-SQUARE EXPERIMENTAL DESIGN 

A special case of a three-factor analysis of variance is an extension of the randomized­
complete-block ANOV A of Section 12.4a or of the repeated-measures ANOV A of 
Section 12.4c. The two-factor experimental design discussed in Section 12.4a is 

*There are no critical values in Appendix Table B.4 for "2 = 54, so the values for the next lower 
degrees of freedom (112 = 50) were utilized. The symbol"",," indicates "approximately equal to." 
Alternatively. harmonic interpolation (see introduction to Appendix B) could have been employed: 
for this example, the interpolation would calculate critical values different from those above by 
only o.m. Also. some computer routines can produce critical values. 
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EXAMPLE 14.1b The Analysis of Variance Summary for the Experiment 
in Example 14.1a 

The following results are obtained for the information in Table 14.1: 

For Factor A: F = 0.90875 = 24.45 For A x B interaction: F = 0.27542 = 7.42 
0.03713 0.03713 

For Factor B: F = 12.32791 = 332.02 For A x Cinteraction: F = 0.18514 = 4.99 
0.03713 0.03713 

For Factor C: F = 
0.00889 = 0.24 For B x C interaction: F = 

0.08764 = 2.36 
0.03713 0.03713 

For A x B x C interaction: F = 
0.05514 

= 1.49 
0.03713 

Effect in Calculated F Critical F Conclusion P 
hypothesis (see footnote -I) (see footnote 2) 

1. Species 24.45 Fn.n5( I ).2.54 ::::: 3.17 Reject Hn P«O.OOOOI 
(Factor A) 

2. Temperature 332.02 FO.05( 1).2.54 ::::: 3.17 Reject Ho P«O.OOOOI 
(Factor B) 

3. Sex 0.24 FO.05( I ).1.54 ::::: 4.03 Do not P = 0.63 
(Factor C) reject Ho 

4.A x B 7.42 Fo.os( 1).4.54 ::::: 2.56 Reject Ho P = 0.000077 

5.A xC 4.99 Fo.os( 1).2.54 ::::: 3.17 Reject Ho P = 0.010 

6.B x C 2.36 Fn.o5( I ).2.54 ::::: 3.17 Do not P = 0.10 
reject Ho 

7.A x B xC 1.49 Fo.os( I ).4.54 ::::: 2.56 Do not P = 0.22 
reject Ho 

'There are no critical values in Appendix Table B.4 for "2 = 54. so the values for the next 
lower OF ("2 = 50) were used. 
2Thel;e probabilitiel; were obtained from a computer program. 
Thus. the hypothesis of equal effects of species and the hypothesis of equal 
effects of the temperatures are both rejected. However. there is also concluded 
to be significant interaction bctween species and temperature. and significant 
interaction between species and sex. Therefore, it must be realized that, although 
mean respiratory rates in the sampled populations are concluded to be different 
for the threc species and different at the three temperatures. the differences 
among species are dependent on both temperature and sex. 

composed of a fixed-effects factor (factor A) about which there is a null hypothesi! 
of interest. and a random-effects factor (factor B) whose levels are termed "blocks," 
and blocking is intended to reduce the unexplained variability among the data. Th{ 
Latin-square· experimental design typically consists of a fixed-effects factor of interesl 

*The term LlIIill.~CJlIare derives from an ancient game of arranging Latin Ie Hers in cells within I 
square. Latin squares were first studied by Swiss mathematician Leonhard Euler (1707-1783) lall 
his very productive life (Norton. 1939). long before they were employed in analysis of variance. HI 
used the French term CJlwm? Itllill. and A. Cayley may have been the lirst to usc the English term 
in IX!}() (David. 1995): in English it is sometimes written without capitalization. 
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in hypothesis testing (let us call it factor A) and two blocking factors (sometimes 
referred to as "nuisance factors"). which we shall call factor B and factor C. Having 
two blocking factors may reduce the remainder MS even further. thus increasing the 
power of the test for difference among levels of factor A. However, a disadvantage may 
be that the remainder degrees of freedom are so small that the power of the test is low. 

The data in a Latin-square experiment may be displayed conveniently in a tabula­
tion that has the levels of one blocking factor (factor B) as rows and the levels of the 
other blocking factor (factor C) shown as columns. For example, for three levels of 
factors A, of factor B, and of factor C, we have the following table: 

Factor C 

Factor B Levell Level 2 Level 3 

Levell X X X 
Level 2 X X X 
Level 3 X X X 

This table has 3 X 3 = 9 cells. and each cell contains one datum: "X." The data to 
which each of the three levels of factor A are applied can be denoted as A I ,A2, and 
AJ; and a Latin square must always contain the same number of levels of each of the 
three factors. There are 12 possible arrangements for a 3 x 3 Latin square.* one of 
which is this: 

A2 AI A3 
A3 A2 AI 
AI A3 A2 

Example 12.4 represented an experiment designed to test the null hypothesis 
that the mean time to take effect is the same for three different anesthetics. In a 
Latin-square arrangement for testing this Ho, one blocking factor could be the source 
of the animals (factor B, a random-effects factor). and the other could be the source 
of the drugs (factor C. also a random-effects factor). One of the advantages of a 
Latin-square design is that it requires fewer data than if a crossed-factor ANOV A 
were used. For example. for three factors, each consisting of three levels, the Latin 
square employs nine data; but for a crossed three-factor ANOV A with three levels 
per factor (see Section 14. t), there would be 27 (i.e., 33 = 27) cells, and 27 data would 
be required if there were one datum per cell. Therefore, the Latin-square procedure 
demands far less experimental resources than does a crossed-factor analysis. 

In other situations, a block could represent repeated measures on a subject. So the 
experiment of Example 12.4, which consisted of measurements of effect time for three 
drugs (factor A, a fixed-effects factor) using animals from three sources (factor B. 
a random-effects factor), could have been expanded into a Latin-square experiment 
for each animal tested on three different days (factor C, a repeated-measure factor, 
for which the experimenter need.§. to be cautious about avoiding carryover effects. as 
described in Section 12.4c). 

The Latin-square arrangement of treatments (levels of factor A) should be selected 
at random from all possible arrangements. The experimenter can arrange the rows 
randomly and the columns randomly. and then assign each level of factor A randomly 
within each row with the stipulation that each level of factor A appears only once in 

*There are 12 configurations possible for a 3 x 3 Latin square. 576 possible for a 4 x 4 square, 
161.280 for a 5 x 5 square. 812,851,299 for a 6 x 6 square. and 61,479,419.904.0(M) for a 7 x 7 square. 
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each column and only once in each row. Several sets of such configurations are listed 
by Cochran and Cox (1957: 145-146) and Fisher and Yates (1963: 86-89) to facilita~ 
setting up Latin squares. Or. the designation of one of the possible Latin-square 
configurations may be done by an appropriate computer routine. 

A level of factor A is to be assigned to each cell randomly. with the stipulation thai 
each level must appear in each row only once and in each column only once. Also, ~ 
must be assumed that there is no interaction between any of the factors (i.e., there 
must be additivity), and there must be a reasonable expectation that this is so, fOJ 
there is no good test for interaction in this experimental design. 

The only hypothesis generally of interest in a Latin-square analysis is that 01 
equality among the levels of the fixed-effects factor. The total factor-A, factor-B, and 
factor-C sums of squares are obtained as in other three-factor analyses of variance 
without replication: because there is only one datum per cell, there are no interactions 
to be examined. Using a to denote the number of levels in factor A (which is the same 
as the number of levels in factor B and in factor C), the degrees of freedom for the 
Latin-square ANOV A are as follows: 

total OF = a2 - 1: 

factor A OF = a-I: 
factor B OF = a-I: 
factor C OF = a-I: 

remainder OF = a2 - 1 - (a - 1) - (a - 1) - (a - 1) 

(14.1) 

(14.2) 

(14.3) 

(14.4) 

= (a - I)(a - 2). (14.5) 

The Ho of no difference among the population means for the a levels of factor A is 
tested by 

F = factor A MS 
remainder MS' 

(14.6) 

with factor A and remainder OF. Because of the small number of data typically in 
a Latin-square analysis, it is generally not advisable to proceed if there are missing 
data. However. a missing datum can be estimated as in Myers and Well (2003: 465) 
or by some computer software. 

The Latin-square design, including situations with data replication, is discussed 
elsewhere (e.g., Maxwell and Delaney. 2004: 557-561, 611-615: Montgomery. 2005: 
136-145: Myers and Well. 2003: 469-477: Snedecor and Cochran. 1989: Section 14.10; 
Steel, Torrie. and Dickey, 1997: 227-237: and Winer. Brown, and Michels. 1991: 
Chapter 9). 

(a) Crossover Design. Section 12.4c discussed the two-factor ANOV A experimental 
~esign where one of the factors is subjects (B. a random-effects factor) upon which 
repeated measurements are taken. one measurement for each level of the fixed-effects 
factor (A). It was noted there that enough time should be allowed between successive 
measurements so there is no carryover effect on X from one measurement to the next 
on the same subject. As a precaution ag'tinst there being carryover effects of levels 
of the fixed-effects factor, the time (the day in the example in Section 12.4c) at which 
measurements are made on a subject may be considered a third ANOV A factor. 
Considering subjects and times to be random-effects factors, with no interaction 
among the three factors. the so-called crossover experimental design takes the form 
of a Latin square. The crossover design is discussed. for example. in Kirk (1995: 349ff) 
and Montgomery (2005: 14 Iff). ~ 
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(b) Greco-Latin-Square Design. The Latin-square experimental design comprises a 
fixed-effects factor of interest and two random-effects blocking factors. This concept 
can be expanded to a design having a fixed-effects factor and three blocking factors 
("nuisance factors"). This design is rarely encountered. Its reduction of the remainder 
mean square by using three blocking factors can result in increased power: but the 
remainder degrees of freedom, (a - 1)( a - 3). are so small that power is decreased. 
Also. as with Latin squares. this design assumes that there is no interaction among the 
factors (in this case. among four factors). an assumption that may not be warranted. 
Greco-Latin-square experiments are described by Cochran and Cox (1957: 132-133); 
Montgomery (2005: 142-145); Myers and Well (2003: 476-477); and Winer, Brown. 
and Michels (1991: 680-681, 699-702, 733-734). 

HIGHER-ORDER FACTORIAL ANALYSIS OF VARIANCE 

More than three factors may be analyzed simultaneously, but the number of possible 
interactions to be dealt with will soon become unwieldy as larger analyses are 
considered (see Table 14.2). For more than three or four factors, prohibitively large 
amounts of data are needed and interpretations of factor and interaction effects 
become very difficult. 

The major effort in performing an ANOV A is the calculation of the several 
factor and interaction sums of squares. The factor and interaction degrees of 
freedom may be obtained as indicated in Section 14.1, and each needed mean 
square is the relevant sum of squares divided by the respective degrees of free­
dom. Available computer software provides the needed sums of squares, degrees 
of freedom. and mean squares. If all factors to be examined are for fixed effects, 
the F required to test each null hypothesis is obtained by dividing the appropriate 
factor or interaction mean square by the error MS. If. however, any of the factors 
represents random effects, then the analysis is more complex and, in some cases. 
impossible. Appendix D presents the procedures applicable to hypothesis testing 
in several such cases. See Section 14.5 for consideration of analyses with unequal 
replication. 

If any (but not all) of the factors in a multiway ANOV A are measured on an interval 
or ratio scale, then we have an analysis of covariance situation (see Section 12.9). If all 

TABLE 14.2: Number of Hypotheses Potentially 
Testable in Factorial Analyses of Variance 

Number of factors , 
2 3 4 

Main factor 2 3 4 
2-way interactions 1 3 6 
3-way interactions 1 4 
4-way interactions 1 
5-way interactions 

5 

5 
10 
10 
5 
I 

Note: The number of mth-order interactions in a k­
factor ANOV A is the number of ways k factors can be 
comhined m at a time (see Section 5.3): 



304 Chapter 14 Multiway Factorial Analysis of Variance 

of the factors are on an interval or ratio scale. then a multiple regression (Chapter 20) 
may be called for. 

14.4 MULTIWAY ANALYSIS OF VARIANCE WITH BLOCKS OR REPEATED MEASURES 

Experimental designs can be devised having three or more factors where one or more 
factors are blocks (see Section 12.4a) or are subjects upon which repeated measures 
are taken (see Section 12.4c). In such a situation, the analysis may proceed as a 
factorial ANOVA with the blocking factor or the subjects considered as a random­
effects factor. After the sums of squares. degrees of freedom, and mean squares are 
calculated, an appropriate computer program. or Appendix D. can assist in deriving 
the appropriate F's to test the hypotheses of interest. 

There are also designs in which the same block is applied to some-bllt not all-of 
the combinations of other factors, and such cases are known as split-plot experimental 
designs. If the same subject is exposed to some-but not all-combinations of the 
other factors, this is one of many kinds of repeated-measures designs. Discussions 
of these topics are found in texts on experimental design such as those of MaxweU 
and Delaney (2004: Chapters 12-15); Mickey, Dunn. and Clark (2004: Chapter 11); 
Montgomery (2005: Section 14.5); Myers and Well (2003: Chapter 14); Quinn and 
Keough (2002: Chapter 11); Snedecor and Cochran (1989, Sections 16.15 and 16.16); 
Steel, Torrie. and Dickey (1997: Chapter 16); and Winer. Brown, and Michels (1991: 
Section 5.15, Chapters 7 and 8). 

14.5 FACTORIAL ANALYSIS OF VARIANCE WITH UNEQUAL REPLICATION 

Although equal replication is always desirable for optimum power and ease of 
computation in analysis of variance, it is not essential for the performance of the 
computations in a single-factor ANOV A (Section 10.1). However, all the techniques 
thus far discussed for ANOV A designs consisting of two or more factors require equal 
numbers of data per cell (with the exception of the case of proportional replication 
described in Section 12.2a). For example, the data in Example 14.1 are composed of 
four replicates in each combination of species, temperature, and sex. If there were five 
or more replicates in a very small number of cells, then it is not highly criticizable to 
discard (at random within a cell) those few data necessary to arrive at equal numbersof 
replicate data. However, a more general approach is available, a procedure by which 
data suffering from replication inequality can be analyzed and interpreted by analysis­
of-variance considerations. The mathematical manipulations involved arc sufficiently 
complex as to be attempted reasonably only by <1, computer, but it is worthwhile to be 
aware of the fact that programs for such an analysis are available. (These procedures 
may employ a type of multiple linear regression-see Section 20.1 I-and may be 
referred to as "general linear models.") An introduction to regression methods for 
AN OVA experimental designs is given by Glantz and Slinker (2001 ).* 

If inequality is due to one or a few cells containing one fewer datum than the others, 
then a factorial analysis of variance may be performed after inserting an estimate of 
each missing datum. If one datum is missing, an estimate of its value may be found as 
follows (Shearer, 1973): 

A aAi + hBj + eel + '" - (k - 1) ~ X X= ~ , 
N+k-l-a-b-c-··· 

(14.7) 

*R. A. Fisher described the relationship between regression and analysis of variance in 1921 
(Peters, 1987: 136). 
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where X is the estimated value for a missing datum in level; of factor A. level j of 
factor B, levell of factor C. and so on; a, b, c. and so on are the numbers of levels in 
factors A, B, C, and so on. respectively: A is the sum of all the other data in level; of 
factor A, B is the sum of the other data in levelj of factor B, and so on: the summation 
of aA; + bBj + eCI + ... is over all factors; k is the number of factors; L X is 
the sum of all the other data in all levels of all factors; and N is the total number 
of data (including the missing one) in the experimental design. This estimated value 
may then be inserted with the other data in the analysis-of-variance computations. 

An alternative method of handling experimental designs with one or a few cells 
containing one fewer datum than the other is much simpler than, but not as desirable 
as, the aforementioned procedure. For each small cell the mean of the cell's observed 
data can be inserted as an additional datum. The analysis of variance is then performed 
as usual, but with the total OF and within-cells OF calculated without including the 
number of such additional data. (That is, the total and within-cells OF are those 
appropriate to the set of original observations.) A better estimation procedure for 
missing data is to use the cell means as starting values for employing Equation 14.7 
iteratively, just as with Equation 12.26. 

MULTIPLE COMPARISONS AND CONFIDENCE INTERVALS IN MULTIWAY ANALYSIS 
OF VARIANCE 

As we have seen, for each factor a hypothesis may be tested concerning the equality 
of the population means of levels of that factor. If the null hypothesis of equality is 
rejected for a fixed-effects factor. then it may be desirable to ascertain between which 
levels the difference(s) lie(s). This can be done by the multiple-comparison procedures 
prescribed for two-way analyses of variance in Section 12.5. Also mentioned in that 
section is the calculation of confidence intervals with respect to level means in a 
two-factor analysis of variance; those considerations also apply to an ANOV A with 
more than two fact0;1:s. It should be remembered that the sample size, n, referred to in 
Chapters 11 and 12 is replaced in the present context by the total number of data per 
level (Le., the number of data used to calculate the level mean); k is replaced by the 
number of levels of the factor being tested; s2 will be replaced by the MS appropriate 
in the denominator of the F ratio used to test for significance of the factor being 
examined; the degrees of freedom, v (in q, q', and t) is the OF associated with this 
MS; and Fin Scheffe's test is the same as in the ANOV A. 

.7 POWER, DETECTABLE DIFFERENCE, AND SAMPLE SIZE IN MULTIWAY ANALYSIS OF VARIANCE 

The principles and procedures of Section 12.6 (for two-way ANOVA) may be readily 
expanded to multifactor analysis of variance. In Section 12.6, k' is the number of 
levels of the factor under consideration, 11' is the total number of data in each level of 
that factor, s2 is the appropriate MS in the denominator of the F used for the desired 
hypothesis test, Vz is the OF associated with that MS, and VI = k' - 1. Then, the 
power of the ANOV A in detecting differences among level means may be estimated 
using Equations 12.40-12.42. 

Equation 12.42, in place of Equation 10.34. may be used in the fashion shown 
in Example 10.6, to estimate the minimum number of data per level that would 
be needed to achieve a specified power. given the significance level and detectable 
difference desired among means. 

Equation 12.43 enables us to estimate the smallest difference among level means 
detectable with the AN OVA. As indicated in Section 12.6d, we can also use Equa­
tion 12.42 to estimate the maximum number of levels testable. 



306 Chapter 14 Multiway Factorial Analysis of Variance 

(a) The Mixed-Model ANOV A. The aforementioned procedures are applicable 
when all the factors are fixed effects (i.e .• we have a Model I ANOVA). They may 
also be applied to any fixed-effects factor in a mixed-model ANOV A. hut in such 
cases we must modify our melhod as follows. 

Consider the appropriate denominator for the F calculated to test for the signifi­
cance of the factor in question. (See Appendix 0.) Then. substitute this denominator 
for the within-cells MS (s2)~ and substitute this denominator OF for V2. 

EXERCISES 

14.1. Use an appropriate computer program to test for 
all factor and interaction effects in the following 
4 x 3 x 2 Model I analysis of variance. where OJ is 
a level of factor A. hi is a level of factor B. and Cj is 
a level of factor C. 

{II -
1>1 h2 hJ hi h~ h.' hi h2 bJ hi "2 hJ 
4.1 4.63.7 4.9 5.2 4.7 5.06.1 5.5 3.94.43.7 

('I 4.3 4.9 3.9 4.6 5.6 4.7 5.4 6.2 5.9 3.3 4.3 3.9 
4.5 4.2 4.1 5.3 5.8 5.1l 5.76.5 5.6 3.44.74.0 
3.84.5 4.5 5.0 5.4 4.5 5.3 5.7 5.0 3.7 4.1 4.4 

4.85.65.0 4.9 5.9 5.0 6.06.06.1 4.1 4.94.3 
C"2 4.5 5.8 5.2 5.5 5.3 5.4 5.7 6.3 5.3 3.94.74.1 

5.0 5.4 4.6 5.5 5.5 4.7 5.5 5.7 5.5 4.3 4.9 3.8 
4.6 6.1 4.9 5.3 5.7 5.1 5.7 5.9 5.X 4.0 5.3 4.7 

14.2. Use an appropriate computer program to test for 
the effects of all factors and intera$;.tions in the fol­
lowing 2 X 2 X 2 x 3 Modell analysis of variance 
design. where {Ii is a level of factor A. hi is a level of 
factor B. Ci is a level of factor C. and d; is a factor 
of level D. 

til {/2 

hi h1 hi h2 
('I ("2 ci c2 ("I c2 CI C2 

12.2 13.4 12.2 13.1 10.9 12.1 10.1 11.2 
cit 12.6 13.1 12.4 13.0 11.3 12.0 10.2 10.8 

12.5 13.5 12.3 13.4 11.2 11.7 9.8 10.7 

11.9 12.8 1 U! 12.7 10.6 11.3 10.0 10.9 
d2 11.8 12.6 11.9 12.5 10.4 11.1 9.8 10.6 

12.1 12.4 11.6 12.3 10.3 11.2 9.R 10.7 

12.6 13.0 12.5 13.0 11.1 11.9 10.0 10.9 
tl3 12.8 12.9 12.7 12.7 11.1 II.X 10.4 10.5 

12.9 D.I 12.4 13.2 11.4 11.7 10.1 10.8 

14.3. Using an appropriate computer program. test for 
all factor and interaction effects in the following 
Model I 3 X 2 analysis of variance with unequal 
replication. 

1>1 h2 hi h2 hi b2 
34.1 35.6 38.6 40.3 41.0 42.1 
36.9 36.3 39.1 41.3 41.4 42.7 
33.2 34.7 41.3 42.7 43.0 43.1 
35.1 35.8 41.4 41.9 43.4 44.8 

40.8 44.5 

14.4. A Latin-square experimental design was used to 
test for the effect of four hormone treatments 
(A I. A2. AJ. and A4) on the blood calcium lev­
els (measured in mg ea per 10() ml of blood) of 
adult farm-raised male ostriches. The two hlocking 
factors are farms (factor B) and analytical meth­
ods (factor C). Test the null hypothesis HI): The 
mean blood-calcium level is the same with all four 
hormone treatments. 

Analytical methods 

Farms C. C2 C3 C4 

A3 A4 Az AI 
BI 12.5 9.7 12.0 9.4 

Az A:; AI A4 
B2 10.3 13.1 9.5 13.0 

AI A2 A4 A3 
B.l 8.8 11.7 12.4 14.3 

A4 AI A., A2 
B4 10.6 7.1 12.0 10.1 



CHAPTER 15 

Nested (Hierarchical) Analysis of Variance 

15.1 NESTING WITHIN ONE FAaOR 
15.2 NESTING IN FAaORIAL EXPERIMENTAL DESIGNS 
15.3 MULTIPLE COMPARISONS AND CONFIDENCE INTERVALS 
15.4 POWER, DETEaABLE DIFFERENCE, AND SAMPLE SIZE IN NESTED ANALYSIS OF VARIANCE 

Chapters 12 and 14 dealt with analysis-of-variance experimental designs that the 
statistician refers to as crossed. A crossed experiment is one where all possihlc 
comhinations of levels of the factors exist: the cells of data are formed hy each 
level of one factor heing in comhination with each level of every other factor. Thus. 
Example 12.1 is a two-factor crossed experimental design. for each sex is found in 
comhination with each hormone treatment. (n Example 14.1. each of the three factors 
is found in comhination with each of the other factors. 

In some experimental designs, however. we may have some levels of one factor 
occurring in comhination with the levels of one or more other factors. and other 
distinctly different levels occurring in comhination with others. In Example 15.la. 
where hlood-cholesterol concentration is the variable. there are two factors: drug 
type and drug source. Each drug was ohtained from two sources. hut the two 
sources arc not the same for all the drugs. Thus, the experimental design is not 
crossed; rather. we say it is neSTed (or hierarchical). One factor (drug source) 
is nested within another factor (drug type). A nested factor. as in the present 
example. is typically a random-effects factor. and the experiment may be viewed 
as a modified one-way ANOYA where the levels of this factor (drug source) 
are samples and the cholesterol measurements within a drug source are called a 
"subsamplc ... 

Sometimes experiments are designed with nesting in order to test a hypothesis 
about difference among the samples. More typical. however. is the inclusion of a 
random-effects nested factor in order to account for some within-groups variability 
and thus make the hypothesis testing for the other factor (usually a fixed-effects 
factor) more powerful. 

15.1 NESTING WITHIN ONE FACTOR 

(n the experimental design such as in Example 15.1 a. the primary concern is to 
detect population differences among Icvels of the lixed-effects factor (drug type). We 
can often employ a more powerful test hy nesting a random-effects factor that can 
account for some of the variability within the groups of interest. The partitioning of 
the variahility in a nested ANOY A may he ohserved in this example. 

(a) Calculations for the Nested AN OVA. Testing the hypotheses in Example 
IS.1 a involves calculating relevant sums of squares and mean squares. This is often 
done by computer: it can also he accomplished with a calculator as follows 
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EXAMPLE 1S.1a A Nested (Hierarchical) Analysis of Variance 

The variable is blood cholesterol concentration in women (in mgll 00 ml of plasma). 
This variable was measured after the administration of one of three different drugs 
to each of 12 women, and each administered drug was obtained from one of two 
sources. 

Drug 1 
Source A Source Q 

102 103 
104 104 

lIij 2 2 
lIij 

~ Xijl 206 207 
1= 1 

Xi 103 \03.5 

"i 4 

" I/ij 

~ ~ Xijl 413 
j=I/=1 

Xi 103.25 

Drug 2 
Source D Source B 

108 109 
110 108 

2 2" 

218 217 

109 108.5 

4 

435 

108.75 

Drug 3 
SOl/rce L Source S 

104 105 
106 107 

2 2 

210 212 

105 106 

4 

422 

105.5 

N = 12 

X = 105.8333 

N = 12 

(/ " lIij 

~ ~ ~ Xijl 
i=lj=I/=1 

= 1270 

(see Example 15.1 b). In the hierarchical design described. we can uniquely desig­
nate each datum by using a triple-subscript notation. where Xijl indicates the Ith 
datum in subgroup j of group i. Thus. in Example 15.1a. X222 = 108 mgj 100 ml, 
X311 = 104 mgjl00 mi. and so on. For the general case, there are a groups, 
numbered 1 through a, and b is the number of subgroups in each group. For 
Example 15.1a, there are three levels of factor A (drug type), and b (the num­
ber of levels of factor B. i.e .• sources for each drug) is 2. The number of data in 
subgroup j of group i may be denoted by nij (2 in this experiment), and the total 
number of data in group i is ni (in this example, 4). The total number of obser­
vations in the entire experiment is N = L7= 1 ni (which could also be computed 
as N = L~'=l L7=1 nij). The sum of the data in subgroup j of group i is calculated 

"C'''ij X . h f h d' ., '<i;;'b '<i;;'''ij X· d h f as "-1= I ijl. t e sum 0 t e ala m group I IS "-j= I ~/= I ill, an t e mean 0 

group i is 
b "ij 

L LXijl 
- j=l/= I 
Xi = '-----

nj 

The grand mean of all the data is 

a b /lij 

L L ~Xijl 
X =i _ =_I_i=_I_'_"'_1 _ 

11.1 

(15.1 ) 

( 15.2) 

prakash
Rectangle
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EXAMPLE 15.1b Computations for the Nested ANOVA of Example 15.1 a 

Drug I Drug 2 Drug 3 
SOli reI! A SOli rCI! Q SOli ret' D SOli ret' B SOI/ rce L So 1/ rce S 

( ~ Xij/) ~ 
1= I 

2121 RO 21424.5 23762.0 23544.5 22050.0 

II h (~Xiil)2 
22472.0 L L ---'----1=_1_-'--

i=I;=1 IIi; 
= 134471.0 

( ± ~ X;j1)~ 
j= 1/= 1 

42642.25 47306.25 44521.(K) 

( ± ~ Xi;/)2 
II j= 1/= I L -'----'--

;= I IIi II; 

= 1J4469.5() 

II h II,; 

L L L XJI = I 344XO.(K) 
;=lj=I/=1 

( 
II ""i/ ) 2 

i~ J~I/~I Xi;1 
C = -'----'---:..,-----'--

N 

( 1270)2 
"'----''- = 13440X.33 

12 

II " IIi; 

total SS = L L L X&I - C = 1344XO.(K) - 13440K33 = 71.67 
;= I j= 1/= I 

II h (~Xi;1 ) 2 
I-I 

among all subgroups SS = L L - - C = 134471.(K) - 13440K33 = 62.67 
i=lj=1 IIi; 

error SS = total SS - among all suhgroups SS = 71.67 - 62.67 = 9.00 

(
hili/ ) 2 
L L Xijl 

II j= 11= I 
groups SS = L -'------'---

i= I II; 
- C = 134469.50 - 134408.33 = 61.17 

suhgroups SS = among all subgroups SS - groups SS = 62.67 - 6 \.17 = 150 

Source of variation SS DF MS 

Total 71.67 11 
Among all suhgroups (Sources) 62.67 5 

Groups (Drugs) 61.17 2 30.58 
Suhgroups 1.50 3 0.50 

Error 9.00 6 1.50 

Ho: There is no difference among the drug sources in affecting mean hlood 
cholesterol concentration. 

HA : There is difference among the drug sources in affecting mean hlood 
cholesterol concentration. 
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F = ~:~~ = 0.33. FiJ.05( 1 ).3.6 = 4.76. Do not reject Ho. 

P > 0.50 [P = 0.80] 

Ho: There is no difference in mean cholesterol concentrations owing to the 
three drugs (Le., J.LI = J.L2 = J.L3). 

H A: There is diffet'ence in mean cholesterol concentrations owing to the 
three drugs; 

30.58 
F = 0.50 = 61.16. FO.05(1),2.3 = 9.55. RejectHo· 

0.0025 < P < 0.005 [P = 0.0037] 

The total sum of squares for this ANOV A design considers the deviations of aU 
the X;jl from X and may be calculated as 

Q b IIi; 2 

total SS = ~ ~ ~ (X;j/ - X) 
;=lj=I/=1 

or by this "machine formula": 

where 

For the total variability, 

a b IIi; 

total SS = ~ ~ ~ X31 - C, 
;=lj=I/=1 

( )

2 
Q b ni; 

~ j; ~X;jl 
c= 

N 

total OF = N - 1. 

( 15.3) 

( 15.3a) 

( 15.4) 

( 15.5) 

The variability among groups (Le., the deviations X; - X) is expressed as the "among 
groups SS" or, simply, 

~ (_ _)2 
groups SS = ~ n; X; - X 

,= 1 
( 15.6) 

or 

(± ~ X;jl) 
2 

groups SS = ± j=I/=1 - C; 
;=1 n; 

( 15.6a) 

and 
groups OF = a - 1. ( 15.7) 

There is a total of ab subgroups in the design, and, considering them as if they 
were groups in a one-way ANOV A, we can calculate a measure of the deviations 
X;j - X as 

CI b 2 
among all subgroups SS = ~ ~ n;j (X;j - X) 

;=1 ;=1 

( 15.8) 
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or 

( 
"ij )2 
LXijl 

Cl b I_I 
among all subgroups SS = L L - - C; 

i=lj=1 nij 
( 15.8a) 

and 
among all subgroups OF = ab - 1. ( 15.9) 

The variability due to the subgrouping within groups is evidenced by the deviations 
of subgroup means from their group means, Xij - Xi, and the appropriate sum of 
squares is the "among subgroups within groups" SS, which will be referred to as 

subgroups SS = among all subgroups SS - groups SS: ( 15.10) 

and 

subgroups OF = among all subgroups OF - groups OF = a( b - 1). (15.11 ) 

The within-subgroups, or "error," variability expresses the deviations Xijl - Xij. 
namely the deviations of data from their subgroup means; it is essentially the within­
cells variability encountered in Chapters 12 and 14. The appropriate sum of squares 
is obtained by difference: 

error SS = total SS - among all subgroups SS. (15.12) 

with 

error OF = total OF - among all subgroups OF = N - abo ( 15.13) 

The summary of this hierarchical analysis of variance is presented in Table 15.1. 
Recall that MS = SS/OF. Some similarities may be noted between Tables 12.1 and 
15.1, but in the nested ANOYA of Table 15.1 we cannot speak of interaction between 
the two factors. Calculations for the data and hypotheses of Example 15.1 a are shown 
in Example 15.1 b. 

(b) Hypothesis Testing in the Nested ANOVA. For the data in Example l5.1a. we 
can test the null hypothesis that no difference in cholesterol occurs among subgroups 
(i.e., the source of the drugs has no effect on the mean concentration of blood 
cholesterol). We do this by examining 

F = subgroups MS. 
error MS 

(15.14) 

For Example 15.lb, this is F = 0.50/1.50 = 0.33; since FO.05(1).3.6 = 4.76, Ho is not 
rejected. (The exact probability of an F at least this large if Ho is true is 0.80.) 

The null hypothesis that there is no difference in cholesterol with the administration 
of the three different drugs can be tested by 

F = groups MS , (15.15) 
subgroups MS 

which in the present example is F = 30.58/0.50 = 61.16. As FO.05(1).2.3 = 9.55, 
Ho is rejected. (The exact probability is 0.0037.) In an experimental design having 
subgroups nested within groups, as shown here, the groups most often represent a 
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TABLE 15.1: Summary of Hierarchical (Nested) Single-Factor Analysis of Variance Calculatio 

Source of variation 

Total [Xijl - X] 

Among all subgroups 
[Xij - X] 

Groups (i.e .• Among groups) 
[Xi - X] 

Subgroups (i.e .• Among 
subgroups within groups) 
[Xij - Xi] 

Error (i.e .• Within subgroups) 
[Xijl - Xij) 

(/ hili; 

SS OF 

N-I 

ab-l 

a-I 

among all subgroups SS- groups SS a(b-I) 

total SS - among all subgroups SS N-ab 

( )
2 

L L L Xu 
i=lj=I/=1 1 

NOle: C = : a = number of groups: b = number of subgroups within each 
N 

group: ni = number of data in group i: nij = number of data in subgroup j for group i: N = total 
number of data in entire experiment. 

fixed-effects factor. But the hypotheses testing is the same if. instead, the groups are 
a random-effects factor. 

If we do not reject the null hypothesis of no difference among subgroups within 
groups. then the subgroups MS might be considered to estimate the same population 
variance as does the error MS. Thus. some statisticians suggest that in such cases a 
pooled mean square can be calculated by pooling the sums of squares and pooling 
the degrees of freedom for the subgroups variability and the error variability, for this 
will theoretically provide the ability to perform a more powerful test for differences 
among groups. (Pooling was previously discussed in Section 12.1h.) However. there 
is not widespread agreement on this matter, so the suggested procedure is to be 
conservative and not engage in pooling. at least not without consulting a statistician. 

If there are unequal numbers of subgroups in each group. then the analysis becomes 
more complex. and the preceding calculations are not applicable. This situation is 
generally submitted to analysis by computer, perhaps by a procedure referred to in 
Glantz and Slinker (2001). 

A hierarchical experimental design might have two (or more) layers of nesting 
with each subgroup composed of sub-subgroups. thus involving an additional step in 
the hierarchy. For instance, for the data of Example 15.1a. the different drugs define 
the groups. the different sources define the subgroups. and if different technicians 
or different instruments were used to perform the cholesterol analyses within each 
subgroup. then these technicians or instruments would define the sub-subgroups, 
Sokal and Rohlf (1995: 288-292) describe the calculations for a design with sub­
subgroups. although one generally resorts to computer calculation for hierarchical 
designs with more than the two steps in the hierarchy discussed in the precedin~ 
paragraphs. See Appendix D.4b for assistance in hypothesis testing for one sucb 
nested design. 
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Brits and Lemmer (1990) discuss nonparametric ANOVA with nesting within a 
single factor. 

J NESTING IN FACTORIAL EXPERIMENTAL DESIGNS 

Experimental designs are encountered where there are two or more crossed factors 
as well as one or more nested factors. For example, in Example 12.1 the two crossed 
factors are sex and hormone treatment, and five birds of each sex were given each 
hormone treatment. In addition, the experimenter might have obtained three syringes 
of blood (that is. three subsamples) from each bird. so that individual birds would be 
samples and the triplicate blood collections would be subsamples. The birds represent 
a nested, rather than a crossed. factor because the same animal is not found at every 
combination of the other two factors. The analysis-of-variance table would then look 
like that in Example ] 5.2. The computation of sums of squares could be obtained by 
computer. and the appropriate hypothesis testing will be that indicated in Appendix 
O.4c. Some available computer programs can operate with data where there is not 
equal replication. As shown in Appendix Table O.4c. in a factorial ANOV A with 
nesting, the determination of F's for hypothesis testing depends upon whether the 
crossed factors are fixed effects or random effects. 

The concept of hierarchical experimental designs could be extended further in this 
example by considering that each subsample (i.e .. each syringe of blood) in Example 
15.2 was subjected to two or more (i.e., replicate) chemical analyses. Then chemical 
analysis would be a factor nested within the syringe factor. syringe nested within 
animal, and animal nested within the two crossed factors. 

EXAMPLE 15.2 An Analysis of Variance with a Random-effects Factor 
(Animal) Nested within the Two-factor Crossed Experimental Design of 
Example 12.1 

For each of the four combinations of two sexes and two hormone treatments 
(a = 2 and b = 2), there are five animals (e = 5), from each of which three blood 
collections are taken (n = 3). Therefore. the total number of data collected is 
N = aben = 60. 

Source of variation SS OF MS 

Total N - 1=59 
Cells ab - 1 = 3 

Hormone treatment (Factor A) * a-I = 1 t 
Sex (Factor B) * b - 1 = 1 t 
AxB * (a -l)(b - 1)=1 t 

Among all animals abc - 1 = 19 
Cells ab - I = 3 
Animals (Within cells) (Factor C) * ab(e - 1) = 16 t 

Error (Within animals) * lIbe( n - I) = 40 t 

* These sums of squares can be ohtained from appropriate computer software: the other 
sums of squares in the table might not be given hy such a program. or MS might he 
given but not SS. 

t The mean squares can be obtained from an appropriate computer program. Or. they 
may be ohtained from the sums of squares and degrees of freedom (as MS = SS/DF). 
The degrees of freedom might appear in the computer output. or they may have to be 
determined hy hand. The appropriate F statistics are those indicated in Appendix D.4c. 
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Ho: There is no difference in mean blood calcium concentration between 
males and females. 

HA: There is a difference in mean blood calcium concentration between 
males and females. 

F = factor A MS 
factor C MS 

Fo.os( I ).1.16 = 4.49 

Ho: The mean blood calcium concentration is the same in birds receiving 
and not receiving the hormone treatment. 

H A: The mean blood calcium concentration is not the same in birds receiving 
and not receiving the hormone treatment. 

F = factor B MS 
factor eMS 

Fo.os( I ).1.10 = 4.49 

Ho: There is no interactive effect of sex and hormone treatment on mean 
blood calcium concentration. 

H A: There is interaction between sex and hormone treatment in affecting 
mean blood calcium concentration. 

F = A x B MS 
factor C MS 

Fo.os( I ).1.16 = 4.49 

Ho: There is no difference in blood calcium concentration among animals 
within combinations of sex and hormone treatment. 

HA: There is difference in blood calcium concentration among animals 
within combinations of sex and hormone treatment. 

F = factor C MS 
error MS 

Fo.os( I ).16.40 = 1.90 

15.3 MULTIPLE COMPARISONS AND CONFIDENCE INTERVALS 

Whenever a fixed-effects factor is concluded by an ANOV A to have a significanl 
effect on the variable. we may turn to the question of which of the factor's leveb 
are different from which others. If there are only two levels of the factor. then oj 

course we have concluded that their population means are different by the ANOVA 
But if there are more than two levels, then a multiple-comparison test must be 
employed. 

The multiple-comparison procedures usable in nested experimental designs aR 

discussed in Chapter 11. with slight modifications such as those we saw in SectioDll 
12.5 and 14.6. Simply keep the following in mind when employing the tests of SectioDll 
11.1, 11.3. and 11.4: 

I. k refers to the number of levels being compared. (In Example 15.1a. k = a, the 
number of levels in factor A. In Example 15.2. k = a when comparing levelsol 
factor A. and k = b when testing levels of factor B.) 

2. The sample size. n. refers to the total number of data from which a level meanu 
calculated. (In Example 15.1a. the sample size bn = 4 would be used in place 01 
n. In Example 15.2. we would use ben = 30 to compare level means for facl~ 
A and aen = 30 forfactor B.) 
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3. The mean square . .'(2. refers to the MS in the denominator of the F ratio 
appropriate to testing the effect in question in the ANOV A. (In Example 15.1 a. 
the suhgroups [sources I MS would he used. In Example 15.2. the factor eMS 
would he used.) 

4. The degrees or freedom. v. for the critical value of q or q' are the degrees of 
freedom associated with the mean square indicated in item 3. (In Examples 
15.1a and 15.2. these would be 3 and 16. respectively.) 

5. The critical value of F in the Schcffc test has the same degrees of freedom as 
it does in the ANOVA for the factor under consideration. (In Example 15.1a. 
these arc 2 and 3. In Example 15.2. they arc 1 and 16.) 

Once a multiple-comparison test has determined where differences lie among level 
means. we can express a confidence interval for each different mean. as was done in 
Sections 11.2. 12.5. and 14.6. keeping in mind the sample sizes. mean squares. and 
degrees of freedom delined in the preceding list. 

ISA POWER, DETECTABLE DIFFERENCE, AND SAMPLE SIZE IN NESTED ANALYSIS OF VARIANCE 

In Sections 12.6 and 14.7. power and sample size for factorial analyses of variance 
were discussed. The same types of procedures may he employed for a fixed-effects 
factor within which nesting occurs. As previously used. k' is the numher of levels 
of the factor. 11' is the total numher of data in each level. and II = k' - I. The 
appropriate mean square • .'(2. is that appearing in the denominator of the F ratio used 
to test that factor in the ANOV A. and V2 is the degrees of freedom associated with .\.2. 

Referring to Section 12.6. the power of a nested ANOVA to detect differences 
among level means may he estimated using Equations 12.40-12.42 (as in Section 
12.6a). Equation 12.41 may he used to estimate the minimum numher of data per 
level that would he needed to achieve a specified power (see Section 12.6h). and 
Equation 12.42 allows estimation of the smallest de tecta hie difference among level 
means (see Section 12.6c). Section 12.6d descrihes how to estimate the maximum 
numher of level means that can he tested. 

EXERCISES 

I5.L Using the data and conclusions or Example 15.1. 
perform the rollowing: 
(8) Use the Tukey test to conclude which or the 

three drug means are statistically different 
from which. 

(b) Determine the 95 Cy'. confidence interval for 
each significantly different drug mean. 

15.1 Three water samples were taken from each of three 
locations. Two Jclerminations or l1uoride content 
were performed on each of the nine samples. The 
data are as follows. in milligrams of Iluoride per 
liter of water: 

Locations 2 J 

Samples 2 .3 2 .3 2 .3 

1.1 1.3 1.2 1.3 1.3 1.4 I.X 2.1 2.2 
1.2 1.1 1.0 1.4 1.5 1.2 2.0 2.0 I.lJ 

(a) Test the hypothesis that there is no difference 
in mean l1uoride content among the samples 
within locations. 

(h) Test the hypothesis that there is no difference 
in mean Huoride content among the locations. 

(c) If the null hypothesis in part (h) is rejected. 
usc the Tukey test to conclude whieh of the 
three populations means dirfer from which. 

(d) If the null hypothesis in part (h) is rejecteJ. 
determine the 95% confidence inlerval for 
each different population mean. 
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Multivariate Analysis of Variance 

16.1 THE MULTIVARIATE NORMAL DISTRIBUTION 
16.2 MULTIVARIATE ANALYSIS OF VARIANCE HYPOTHESIS TESTING 
16.3 FURTHER ANALYSIS 
16.4 OTHER EXPERIMENTAL DESIGNS 

Chapters 10. 12. 14. and 15 discussed various experimental designs categorized as 
analysis of variance (ANOYA). wherein a variable is measured in each of several 
categories. or levels. of one or more factors. The hypothesis testing asked whether 
the population mean of the variable differed among the levels of each factor. These 
are examples of what may he termed unil'ariate analyses of I'arilll/ce. because they 
examine the effect of the factor(s) on only one variable. 

An expansion of this concept is an experimental design where more than one 
variable is measured on each experimental subject. In Example 10.1. 19 animals 
were allocated at random to four experimental groups. and each group was fed a 
different diet. Thus. diet was the experimental factor. and there were four levels of 
the factor. In that example. only one variable was measured on each animal: the 
body weight. But other measurements might have been made on each animal. such as 
blood cholesterol. blood pressure. or body fat. If two or more variables are measured 
on each subject in an ANOY A design. we have a multivariate analysis of variallce 
(abbreviated MANOYA).* 

There are several uses to which multivariate analysis of variance may he put (e.g .. 
Hair et al.. 2006: 399-402). This chapter presents a brief introduction to this type 
of analysis. a multifaceted topic often warranting consultation with knowledgeable 
practitioners. More extensive coverage is found in many texts on the subject (e.g., 
Bray and Maxwell. 19R5; Hair et al.. 2006: Chapter 6: Hand and Taylor. 1987: Chapter 
4: Johnson and Wichern. 2002: Chapter 6: Marcoulides and Hershberger. 1997: 
Chapters 3-4: Sharma. 1996: Chapters 11-12: Srivastava. 2002: Chapter 6: Stevens. 
2002: Chapters 4-6: and Tabachnik and Fidell. 2001: Chapter 9). Other multivariate 
statistical methods are discussed in Chapter 20. 

The multivariate analysis-o[-variance experimental design discussed here deals 
with a single factor. There arc also MANOY A procedures for blocked. repeated­
measures. and factorial experimental designs. as presented in the references just 
cited. 

16.1 THE MULTIVARIATE NORMAL DISTRIBUTION 

316 

Recall that univariate analysis of variance assumes that the sample of data for each 
group of data came from a popUlation of data that were normally distrihuted. and 
univariate normal distributions may be shown graphically as in Figures 6.1 and 6.2. In 

·Sometimes the variahles arc referred to as ti('Pl'l/til'''' l'ariaMes and the factors as il/tiepel/t/I'llf 
1·/lriIlMe.~ or aileriol/ !'(/rii/hles. 
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y 

FIGURE 16.1: A bivariate normal distribution, where X, and X2 have identical standard deviations. 

such two-dimensional figures, the height of the curve. Y, representing the frequency 
of observations at a given magnitude of the variable X, is plotted against that value 
of X; and the highest point of the normal curve is at the mean of X. 

The simplest multivariate case is where there are two variables (call them XI 
and X2) and they can be plotted on a graph with three axes representing Y. XI, 
and X2. The two-variable extension of the single-variable normal curve is a surface 
representing a bivariate normal distribution, such as that shown in Figure 16.1.* The 
three-dimensional normal surface rises like a hill above a flat floor (where the floor 
is the plane formed by the two variables. XI and X2), and the highest point of the 
curved surface is at the means of XI and X2. A plot of more than three dimensions 
would be required to depict multivariate distributions with more than two measured 
variables. 

Multivariate normality requires, among other characteristics (e.g., Stevens. 2002: 
262), that for each Xi (in this example, Xi and X2) there is a normal distribution 
of Y values. As shown in Figure 6.2a, univariate normal distributions with smaller 
standard deviations form narrower curves than those with larger standard deviations. 
Similarly. the hill-shaped bivariate graph of Figure 16.1 will be narrow when the 
standard deviations of XI and X2 are small and broad when they are large. 

Rather than drawing bivariate normal graphs such as Figure 16.1, we may prefer 
to depict these three-dimensional plots using two dimensions, just as mapmakers 
represent an elevated or depressed landscape using contour lines. Figure 16.2a shows 
the distribution of Figure 16.1 with a small plane passing through it parallel to 
the XI and X2 plane at the base of the graph. A circle is delineated where the 
small plane intersects the normal-distribution surface. Figure 16.2b shows two planes 
passing through the normal surface of Figure 16.1 parallel to its base, and their 
intersections form two concentric circles. If Figures 16.2a and 16.2b are viewed 
from above the surface, looking straight down toward the plane of XI and X2, 
those circles would appear as in Figures 16.3a and J 6.3b, respectively. Three such 
intersecting planes would result in three circles, and so on. If the standard deviations 

*This three-dimensional surface is what gave rise to the term hell clIrve. named by E. Jeuffret in 
1872 (Stigler. 1999: 404). 
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FIGURE 16.2: The bivariate normal distribution of Figure 16.1, with (a) an intersecting plane parallel to 
the X1-X2 plane, and (b) two intersectio., planes parallel to the X1-X2 plane. 
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FIGURE 16.3: Representations of Figures 16.2a and 16.2b, showing the circles defined by the intersecting 
planes. 

of XI and X2 are not the same, then parallel planes will intersect the bivariate­
normal surface to form ellipses instead of circles. This is shown. for three planes, 
in Figure 16.4. In such plots, the largest ellipses (or circles. if XI and X2 have 
equal standard deviations) will be formed nearest the tails of the distribution. 
Only ellipses (and not circles) will be discussed hereafter, for it is unlikely that 
the two variables will have exactly the same variances (that is. the same standard 
deviations). 

If an increase in magnitude of one of the two variables is not associated with 
a change in magnitude of the other, it is said that there is no correlation between 
XI and X2. If an increase in magnitude of one of the variables is associated with 
either an increase or a decrease in the other. then the two variables are said to be 
correlated. (Chapter 19 provides a discussion of correlation.) If XI and X2 are not 
correlated. graphs such as Figure 16.4 will show the long axis of all the ellipses parallel 
to either the XI or X2 axis of the graph (Figures 16.4a and 16.4b. respectively). If, 
however. XI and X2 are positively correlated. the ellipses appear as running from 
the lower left to the upper right of the graph (Figure 16.4c); and if the two variables 
are negatively correlated, the ellipses run from the lower right to the upper left 
(Figure 16.4d). 
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FIGURE 16.4: Representations of bivariate normal distributions where the standard deviations of Xl and 
X2 are not the same. (a) Xl and X2 are not correlated. (b) Xl and X2 are not correlated. (c) Xl and X2 
are positively correlated. (d) Xl and X2 are negatively correlated. 

MULTIVARIATE ANALYSIS OF VARIANCE HYPOTHESIS TESTING 

At the beginning of the discussion of univariate analysis of variance (Chapter 10). it 
was explained that. when comparing a variable's mean among more than two groups. 
to employ multiple (-tests would cause a substantial inflation of a, the probability of a 
Type I error. In multivariate situations. we desire to compare two or more variables' 
means among two or more groups, and to do so with multiple ANOV As would also 
result in an inflated chance of a Type I error*. Multivariate analysis of variance is 
a method of comparing the population means for each of the multiple variahles of 
interest at the same time while maintaining the chosen magnitude of Type I error. 

A second desirable trait of MANOV A is that it considers the correlation among 
multiple variables. which separate ANOV As cannot do. Indeed. if the variables 

* For m variables. the probability of a Type I error will range from 0'. if all of the variables are 
perfectly correlated. to 1 - (1 - 0')"'. if there is no correlation among them. So. for example. 
if testing with two variables at the 5% significance level. P(Type I error) = 0.10 (Hair et al.. 2006: 
4(0). which can be seen from Table 10J by substituting m for C. 
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XI 

FIGURE 16.5: Two bivariate normal groups of positively correlated data differing in both dimensions. 

are correlated. MANOV A may provide more powerful testing than performing a 
series of separate ANOV As. (However. if the variables are not correlated. separate 
ANOVAs rnay be more powerful than MANOV A.) For exarnple. there are two 
bivariate distributions depicted in Figure 16.5. with the distribution of variable XI 
being very sirnilar in the two groups and the distribution of X2 also being very similar 
in the two groups. Therefore. a univariate ANOVA (or a two-sarnple I-test) will be 
unlikely to conclude a difference between the rneans of the groups for variable XI 
or for variable X2. but MANOV A may very well conclude the means of the two 
bivariate distributions to be different. 

Third. sometirnes group differences for each of several variables are too small to 
be detected with a series of ANOV As. but a MANOV A will conclude the groups 
different by considering the variables jointly. Stevens (2002: 245) cautions to include 
in the analysis only variables for which there is good rationale. because very small 
differences between rneans for rnost of them may obscure substantial differences for 
some of them. 

In univariate ANOV A with k groups, a typical null hypothesis is 

HI): ILl = J.L2 = ... = ILk. 

which says that all k population rneans are the sarne. And the corresponding alternate 
hypothesis is 

HA: The k population means are not all equal. 

Recall that HA does not say that all rneans are different. only that at least one is 
different frorn the others. 

Thus. for example. Example 10.1 presented an experirnent to ask whether the 
mean body weight of pigs is the same when the animals are raised on four different 
feeds. And 

Ho: ILl = IL2 = IL3 = IL4 

HA : All four population means are not equal. 

In a MANOVA with two variables (XI and X2) and k groups. the null hypothesis 
rnay be stated as 

Ho: ILII = ILI2 = ... = ILlk and IL21 = IL22 = ... = IL2k. 



Section 16.2 Multivariate Analysis of Variance Hypothesis Testing 321 

where JJ-jj denotes the population mean of variable i in group j. This Ho says that the 
means of variable 1 are the same for all k groups and the means of variable 2 are the 
same for all k groups. The corresponding MANOV A alternate hypothesis is 

HA: The k populations do not have the same group means for variable 1 and 
the same group means for variable 2. 

Thus. Ho is rejected if any of the JJ-I/S are concluded to differ from each other or if 
any of the JJ-2j'S are concluded to differ from each other. 

Example 16.1 is similar to Example 10.1. except it comprises two variables (XI and 
X2): the weight of each animal's body fat and the dry weight of each animal without 
its body fat. The null hypothesis is that mean weight of body fat is the same on all 
four diets and the mean fat-free dry body weight is the same on all of these diets. (It 
is not being hypothesized that mean body-fat weight is the same as mean fat-free dry 
body weight!) In this example. 

Ho: JJ-ll = JJ-12 = JJ-13 = JJ-14 and JJ-21 = JJ-22 = JJ-23 = JJ-24 

and 
HA : The four feeds do not result in the same mean weight of body fat and the 

same mean fat-free dry body weight. 

If. in the sampled popUlations, one or more of the six equals signs in Ho is untrue. 
then Ho should be rejected. 

There are several methods for comparing means to test MANOV A hypotheses. 
This chapter will refer to four test statistics employed for this purpose and encoun­
tered in MAN OVA computer programs. None of these four is considered "best" in 
all situations. Each captures different characteristics of the differences among means; 
thus. the four have somewhat different abilities to detect differences in various circum­
stances. The computations of these test statistics are far from simple and-especially 
for more than two variables-cannot readily be expressed in algebraic equations. 
(They are represented with much less effort as matrix calculations. which are beyond 
the scope of this book.) Therefore. we shall depend upon computer programs to 
calculate these statistics and shall not attempt to demonstrate the numerical manip­
ulations. It can be noted. however. that the necessary calculations involve total. 
groups. and error sums of squares (SS. introduced in Section 10.1) and sums of cross 
products (to be introduced in Section 17.2). And, just as mean squares are derived 
from sums of squares, quantities known as "covariances" are derived from sums of 
crossprod ucts. 

The four common MANOVA test statistics are the following.* They are all given 
by most MANOV A computer software; they often result in the same or very similar 
conclusions regarding Ho and operate with similar power (especially with large 
samples); and they yield identical results when only one variable is being analyzed (a 
univariate ANOVA) or when k = 2 . 

• Wilks' lambda. Wilks' A (capital Greek lambda), also called Wilks' likelihood 
ratio (or Wilks' U).t is the oldest and most commonly encountered multi­
variate analysis-of-variance statistic, dating from the original formulation of the 

*Each of the four MANOV A statistics is a function of what are called eigenvailles, or rools. of 
matrices. Matrix algebra is explained in many tests on multivariate statistics. and an introduction to 
it is given in Section 20.1. 

tNamed for American statistician Samuel Stanley Wilks (1906-1964). who made numerous 
contributions to theoretical and applied statistics. including to MANOV A (David and Morrison. 
2006). 
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is 

EXAM PLE 16.1 A Bivariate Analysis of Variance 

Several members of a species of sparrow were collected at the same location at 
four different times of the year. Two variables were measured for eaeh bird: the 
fat content (in grams) and the fat-free dry weight (in grams). For the statement of 
the null hypothesis, JLij denotes the population mean for variable i (where i is 1 
or 2) and month j (i.e .. j is 1,2,3. or 4). 

Hn: JLll = JLI2 = JLl3 = JLI4 and JL21 = JL22 = JL23 = JL24 

H A: Sparrows do not have the same weight of fat and the same weight 
of fat-free dry body tissue at these four times of the year. 

a = 0.05 

December January February March 

Fat Lean dry Fat Lean dry Fat Lean dry Fat Lean dry 
weight weight weight weight weight weight weight weight 

2.41 4.57 4.35 5.30 3.98 5.05 1.98 4.19 
2.52 4.11 4.41 5.61 3.48 5.09 2.05 3.81 
2.61 4.79 4.38 5.83 3.36 4.95 2.17 4.33 
2.42 4.35 4.51 5.75 3.52 4.90 2.00 3.70 
2.51 4.36 3.41 5.38 2.02 4.06 

X: 2.49 4.44 4.41 5.62 3.55 5.07 2.04 4.02 

Computer computation yields the following output: 

Wilks' A = 0.0178, F = 30.3, OF = 6,28, P«O.OOOL 

Reject Ho. 

Pillai's trace = 1.0223. F = 5.23, DF = 6, 30, P = (LOOO9. 

Reject Ho. 

Lawley-Hotelling trace = 52.9847, F = 115, DF = 6,26, P« 
0.0001. 

Reject Ho. 

Roy's maximum root = 52.9421, F = 265, DF = 3, 15, P« 
0.0001. 

Reject Ho. 

MANOV A procedure (Wilks. 1932). Wilks' A is a quantity ranging from 0 to 
1: that is, a measure of the amount of variability among the data that is not 
explained by the effect of the levels of the factor.· So, unlike typical test statistics 

*Thus. a measure of the proportion of the variability that is explained by the levels of the factor 

.,,2 == I-A. (16.1) 

and TJ2 has a meaning like that of R2 in another kind of multivariate analysis. thaI of mulliple 
regression or multiple correlation (Section 20.3). 
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(e.g., F or lor X2), Ho is rejected for small, instead of large, values of A. Tables 
of critical values have been published (e.g., Rencher, 2002: 161, 566-573), but 
computer programs may present A transformed into a value of F or X2 (tables of 
which are far more available) with the associated probability (P); as elsewhere, 
large values of F or X2 yield small P's. [n Example 16.1, A is an expression of 
the amount of variability among fat weights and among lean dry body weights 
that is not accounted for by the effect of the four times of year. 

• Pilla;'s trace. This statistic, based on Pillai (1955), is also called the Pillai-Bartlett 
trace (or V).* Many authors recommend this statistic as the best test for general 
use (see Section 16.2a). Large values of V result in rejection of Ho. There are 
tables of critical values of this statistic (e.g., Rencher, 2002: 166-167,578-581), 
but it is often transformed to a value of F. 

• Lawley-Hotelling trace. This statistic (sometimes symbolized by U) was devel­
oped by Lawley (1938) and modified by Hotelling (1951). Tables of critical 
values exist for this (e.g., Rencher, 2002: 167, 582-686), but it is commonly 
transformed into values of F. 

• Roy's maximum root. This is also known by similar names, such as Roy's largest, 
or greatest, root and sometimes denoted by () (lowercase Greek theta). This 
statistic (Roy, 1945) may be compared to critical values (e.g., Rencher, 2002: 
165,574-577), or it may be converted to an F. 

Wilks' A is a very widely used test statistic for MANOY A, but Olson (1974, 
1976, 1979) concluded that PiIlai's trace is usually more powerful (see Section 
16.2b), and others have found that the Pillai statistic appears to be the most robust 
and most desirable for general use. If the four MANOY A test statistics do not 
result in the same conclusion about Ho, further scrutiny of the data may include 
examination of scatter plots (see Section 17.1), with axes as in Figures 16.5 and 16.6, 
for correlation among variables. Correlation will suggest favoring the conclusion 
reached by PiIlai's trace, and noncorrelation will suggest relying on Roy's statistic 
for superior power. In Example 16.1, all four test statistics conclude that Ho is to be 
rejected. 

(a) Assumptions. As in univariate ANOY A (Section 10.1), the underlying mathe­
matical foundations of MANOY A depend upon certain assumptions. Although it is 
unlikely that all of the assumptions will be exactly met for a given set of data, it is 
important to be cognizant of them and of whether the statistical procedures employed 
are robust to departures from them. 

A very important underlying assumption in MANOY A is that the data repre­
sent random samples from the popUlations of interest and that the observations 
on each subject are independent. [n Example 16.1, the body-fat weights of spar­
rows in each month are assumed to have come at random from the population 
of body-fat weights of all sparrows from that month from that location, and the 
lean dry weights at each month are assumed to have come randomly from a 
population of such weights. Also, the body-fat weight of each subject (i.e .• each 
sparrow) must be independent of the body-fat weight of each other subject. and 
the lean dry body weights of all the subjects must be independent of each other. 
MANOY A is invalidated by departure from the assumption of random and indepen­
dent data. 

• A trace is the result of a specific mathematical operation on a matrix. See Section 20.1 for more 
information on matrices. 
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There are statistical tests for this assumption, such as that which is analogous to the 
Bartlett test of the homogeneity of variances in the univariate ANOV A (Section 10.6) 
(Box, 1949, 1950) but which is seriously affected by nonnormality (e.g., Olson. 1974; 
Stevens, 2002: 271) and thus is not generally recommended. Data transformations 
(Chapter 13) may be useful to reduce nonnormality or to reduce heterogeneity of 
variances and covariances. Although MANOV A is typically robust to departures 
from the variability and variance-correlations assumptions, the Pillai trace (according 
to Olson, 1974, 1976) is generally the most robust of the four methods. 

(b) Power. The power of a MANOV A depends upon a complex set of character­
istics, including the extent to which the underlying assumptions (see Section 16.2a) 
are met. In general. increased sample size is associated with increased power, but 
power decreases with increase in the number of variables. Thus, if it is desired to 
employ an experimental design with several variables, larger samples will be needed 
than would be the case if there were only two variables. Also. as with ANOV A. the 
power of MANOV A is greater when the population differences between means are 
larger and when the variability within groups is small. The magnitude of correlations 
between variables can cause MANOV A to be either more or less powerful than sepa­
rate ANOVAs. Some MANOVA computer programs calculate power, and Rencher 
(2002: Section 4.4) and Stevens (2002: 192-202) discuss the estimation of power 
and of the sample size required in MANOV A. Many computer programs provide a 
calculation of power, but recall (e.g., Section 10.3) that power estimated from a set of 
data should be considered as applying to future data sets. 

Differences in power among the four test statistics are often not great. but there 
can be differences. If the group means differ in only one direction (i.e., they are 
uncorrelated, as in Figure 16.6), a relatively uncommon situation, Roy's statistic is the 
most powerful of the four, followed-in order of power-by the Lawley-Hotelling 
trace, Wilks' A. and PiIlai's trace. However, in the more common situation where the 
group means differ among more than one dimension (i.e., the variables are correlated. 
as in Figure 16.5), then the relative powers of these statistics are in the reverse order: 
The Pillai trace is the most powerful, followed by Wilks' A, the Lawley-Hotelling 
trace, and then Roy's statistic. In intermediate situations, the four statistics tend more 
toward the latter ordering than the former. 

(c) Two-Sample Hypotheses. The preceding four procedures may be used in the case 
of only two groups, for when k = 2 all four will yield the same results. But another 
test encountered for two-group multivariate analysis is Hotelling's T2 (Hotelling, 
1931). This is analogous to the univariate two-group situation, where either ANOV A 
(Section 10.1) or Student's I (Section 8.1) may be employed. 

T2 is related to the MANOV A statistics of Section 16.2 as follows (Rencher. 2002: 
130)*: 

(16.3) 

(16.4) 

* T2 is also related to the multiple-regression coefficient of determination. R2 (Equation 20.19). 
as 

T2 = ("\ + "2 - 2) ( R2 2 ) . 
I - R 

( 16.2) 
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T2 = (n I + 112 - 2) U. 

T2 = (Ill + n2 - 2) (_8_). 
1 - 8 

where m is the number of variables. 

( 16.5) 

(16.6) 

Upon calculation of T2 (usually by computer). tables of critical values of T2 (e.g., 
Rencher, 2002: 558-561) may be consulted, or 

F = 11) + 112 - Ill-I T2 

(11) + n2 - 2)m 
( 16.7) 

may be used, with m and III + 112 - m - 1 degrees of freedom or. equivalently, 

F = III + n2 - m T2 
(Ill + 112 - l)m 

with III and 11) + 112 degrees of freedom. 

( 16.7a) 

Nonparametric testing is also available for two-sample multivariate tests (Le., as 
analogs to the univariate Mann-Whitney test, Section 8.11) and for paired-sample 
tests (analogous to the univariate Wilcoxon or sign tests. Sections 9.5 and 24.6). 

16.3 FURTHER ANALYSIS 

When a MANOY A rejects Ho, there are procedures that might be employed to 
expand the analysis of difference among groups (e.g., Bray and Maxwell. 1985: 
40-45; Hand and Taylor, 1987: Chapter 5; Hair et aI., 2006: 422-426); Hummel and 
Sligo. 1971; Stevens. 2002: 217-225; Weinfurt, 1995). One approach is to perform 
a univariate ANOY A on each of the variables (Rencher, 2002: 162-164. followed 
perhaps by multiple comparisons; see Chapter 11) to test the difference among means 
for each variable separately. However, this procedure will ignore relationships among 
the variables, and other criticisms have been raised (e.g., Weinfurt, 1995). Multiple· 
comparison tests are described in some of the references cited in this discussion. 

In univariate ANOY A. one can reject Ho and have none of the J.L'S declared 
different by further analysis (Chapter 11). Similarly, a MANOYA may reject Ho with 
subsequent ANOYAs detecting no differences (either because of lack of power or 
because the interrelations among variables are important in rejection of the multi· 
variate Ho). Some computer programs perform ANOY As along with a MANOY A. 

If k = 2 and Ho is rejected by MANOY A or Hotelling's T2 test, then two-sample 
t tests and univariate ANOY As will yield identical results. 

16.4 OTHER EXPERIMENTAL DESIGNS 

The data of Example 16.1 are subjected to a multivariate analysis of variance 
composed of one factor (time of year) and two variables (weight of fat and fat-free 
dry body weight). This is the same experimental design as the ANOYA of Example 
10.1 except that two variables, instead of one. are measured on each animal. A 
MANOY A may also involve more than two variables. For example, the blood· 
cholesterol concentration might have been a third variable measured for each of the 
animals, and the null hypothesis regarding the four factor levels (months) would be 

Ho: J.L1) = J.L)2 = J.L13 = J.L14 and J.L21 = J.L22 = J.L23 = J.L24 

and J.L31 = J.L32 = J.L33 = J.L34· 
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Other sets of data may be the result of consideration of more than one variable 
and more than one factor. For example, measurements of two or more variables, 
such as those in Example 16.1, might have been collected for sparrows collected 
at more than one time of year and at more than one geographic location. This 
would be a multivariate factorial experimental design (which could include an 
examination of factor interactions), and multivariate versions of repeated-measures 
and hierarchical analyses of variance are also possible, as is multivariate analysis of 
covariance (MANCOV A). These are multivariate extensions of the considerations of 
Chapters 12,14, and 15 and are discussed in some of the references cited immediately 
preceding Section 16.1. 

Multivariate one-sample testing (analogous to the univariate testing in Section 
7.1) and paired-sample testing (analogous to Section 9.1) are possible (e.g., Rencher, 
2002: Sections 5.3.2 and 5.7.1). 

Analysis of covariance (ANCOV A), introduced in Section 12.9, also may be 
extended to experimental designs with multiple dependent variables. This is done via 
MANCOV A, for which computer routines are available. 

EXERCISES 

JJ. Using multivariate analysis of variance. analyze 
the following data for the concentration of three 
amino acids in centipede hemolymph (mgllOO ml), 
asking whether the mean concentration of these 

16.2. The following data for deer are for two factors 
(species and sex). where for each combination of 
factors there is a measurement of two variables 
(rate of oxygen consumption. in ml 02/g1hr. and 
rate of evaporative water loss, in mglmin). Per­
form a multivariate analysis of variance to test for 
equality of the population means of these two vari­
ables for each of the two factors and the factor 
interaction. 

, amino acids is the same in males and females: 

Male Female 
Aspartic Aspartic 

Uanine Acid Tyrosine Alanine Add Tyrosine 

7.0 17.0 19.7 7.3 17.4 22.5 
: 73 17.2 20.3 7.7 19.8 24.9 

Species 1 Species 2 

( 8.0 19.3 22.6 8.2 20.2 26.1 Female Male Female Male 

I 8.1 19.8 23.7 8.3 22.6 27.5 0.165 76 0.145 80 0.391 71 0.320 65 
~ 7.9 18.4 22.0 6.4 23.4 28.1 0.184 71 0.110 72 0.262 70 0.238 69 
r,6.4 15.1 18.1 7.1 21.3 25.8 0.127 64 0.108 77 0.213 63 0.288 67 
,6.6 15.9 18.7 6.4 22.1 26.9 
I' 

18.2 21.5 8.6 18.8 25.5 ~ 8.0 
0.140 66 0.143 69 0.358 59 0.250 56 
0.128 69 0.100 74 0.402 60 0.293 52 

t 
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17.1 REGRESSION VERSUS CORRELATION 
17.2 THE SIMPLE LINEAR REGRESSION EQUATION 
17.3 TESTING THE SIGNIFICANCE OF A REGRESSION 
17.4 INTERPRETATIONS OF REGRESSION FUNCTIONS 
17.5 CONFIDENCE INTERVALS IN REGRESSION 
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17.7 REGRESSION WITH REPLICATION AND TESTING FOR LINEARITY 
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17.10 DATA TRANSFORMATIONS IN REGRESSION 
17.11 THE EFFECT OF CODING DATA 

Techniques that consider relationships between two variables are described in this 
and the following two chapters. Chapter 20 presents the expansion of such techniques 
to analyze situations where more than two variables may be related to each other. 

17.1 REGRESSION VERSUS CORRELATION· 

328 

The relationship between two variables may be one of functional dependence of one 
on the other. ThClt is. the magnitude of one of the variables (the depemlenl variable) is 
assumed to be determined by-that is. is a function of-the magnitude of the second 
vClriClble (the illliepelldeni variahle). whereas the reverse is not true. For example, 
in the relationship between blood pressure and age in humans. blood pressure may 
be considered the dependent variable and age the independent variable: we may 
reasonably assume that although the magnitude of a person's blood pressure might 
be a function of age, age is not determined by blood pressure. This is not to say 
that age is the only biological determinant of blood pressure. but we do consider 
it to be one determining factor. t The term dependenl docs not necessarily in.ply a 
cause-and-effect relationship between the two variables. (See Section 17.4.) 

Such a dependence relationship is called a regression. The term simple regression 
refers to the simplest kind of regression. one in which only two variables are 
considered. * 

*The historical developments of regression and correlation are strongly related. owing their 
discovery-the latter following the former-to Sir Francis GlIl\on. who first developed these 
procedures during I X75-IXX5 (Walker. IlJ2lJ: \03-104. IX7): see also the first footnote in Section 
IlJ.I. He lirst used the term r('w('.uillli in I XXS (Desmond. 2(KKI). 

tSome authors refer to the independent v'lrillh1c as the predictor. regressor. explanatory. or 
exogenous variahle and the dependent vllri<thle as the response. criterion. or endogenous variable. 

:::In the case of simple regression. the adjective lil/('llr may he used to refer to the relationship 
hetween the two varillh1cs heing a straight line. hut to a statistician it descrihes the relationship or 
the parameters discussed in Section 17.2. 

-

prakash
Rectangle
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Data amenable to simple regression analysis consist of pairs of data measured 
on a ratio or interval scale. These data are composed of measurements of a depen­
dent variable (Y) that is a random effect and an independent variable (X) that is 
either a fixed effect or a random effect.* (See Section lO.lf for a review of these 
concepts.) 

It is convenient and informative to graph simple regression data using the ordinate 
(Y axis) for the dependent variable and the abscissa (X axis) for the independent 
variable. Such a graph is shown in Figure 17.1 for the 11 = 13 data of Example 17.1. 
where the data appear as a scatter of 13 points, each point representing a pair of X 
and Y values. t One pair of X and Y data may be designated as (XI, Yd, another 
as (X2, Y2), another as (X3, Y3), and so on, resulting in what is called a scatter plot 
of all n of the (Xi, Yi) data. (The line passing through the data in this figure will be 
explained in Section 17.2.) 

EXAMPLE 17.1 Wing Lengths of 13 Sparrows of Various Ages. The Data 
Are Plotted in Figure 11.1. 

Age (days) 
(X) 

3.0 
4.0 
5.0 
6.0 
8.0 
9.0 

10.0 
11.0 
12.0 
14.0 
15.0 
16.0 
17.0 

Wing length (cm) 
( Y) 

11 = 13 

1.4 
1.5 
2.2 
2.4 
3.1 
3.2 
3.2 
3.9 
4.1 
4.7 
4.5 
5.2 
5.0 

*On rare occasions, we want to descrihe a regression relationship where the dependent variable 
(Y) is recorded on a nominal scale. This requires logistic regression. a procedure discussed in Section 
24.18. 

t Royston (1956) ohserved that .. the basic idea of using co-ordinates to determine the location of 
a point in space dates back to the Greeks at least. although it was not until the time of Descartes that 
mathematicians systematically developed the idea." The familiar system of specifying the location 
of a point by its distance from each of two perpendicular axes (now commonly called the X and Y 
axes) is referred to as Cartesian coordinates. after the French mathematician and philosopher Rene 
Descartes (1596-1650). who wrote under the Latinized version of his name. Renatus Cartesius. His 
other enduring mathematical introductions included (in 1637) the use of numerals as exponents. 
the square root sign with a vinculum (i.e .. with a horizontal line: r). and the use of letters at the 
end ofthe alphabet (e.g .. X. Y.7.) to denote variables and those near the beginning (e.g .• a.h.c) to 
represent constants (Asimov. 1982: 117: Cajori. 1928: 205. 20S. 375). 
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FIGURE 17.1: Sparrow wing length as a function of age. The data are from Example 17.1. 

In many kinds of biological data. however, the relationship between two variables 
is not one of dependence. In such cases, the magnitude of one of the variables changes 
as the magnitude of the second variable changes. but it is not reasonable to consider 
there to be an independent and a dependent variable. In such situations. correlation, 
rather than regression. analyses are called for. and both variables are theoretically to 
be random-effects factors. An example of data suitable for correlation analysis would 
be measurements of human arm and leg lengths. It might be found that an individual 
with long arms will in general possess long legs. so a relationship may be describable; 
but there is no justilication in stating that the length of one limb is depcndent upon the 
length of the other. Correlation techniques involving two variables will be discussed 
in Chapler 19. If more than two variables arc being considered. for either correlation 
or regression. then the appropriate procedures are those found in Chapter 20. 

17.2 THE SIMPLE LINEAR REGRESSION EQUATION 

The simplest functional relationship of one variable to another in a population is the 
simple linear regression 

(17.1) 

Here. a and {3 are population parameters (and, therefore. constants). and this 
expression will be recognized as the general equation for a straight linc.* However, 
in a population the data are unlikely to be exactly on a straight line. so Y may be said 
to be related to X by 

Yj = a + {3Xj + Ej. (17.1a) 

where Ej (lowercase Greek epsilon) is referred to as an "error." or "residual." which 
is a departure of an actual Yj from what Equation 17.1 predicts Yj to be; and the sum 
of the Ej'S is zero. 

*a and f3 are commonly used for these population parameters. and as such should not be 
confused with the standard use of the same Greek letters 10 denote the probabilities of a Type I and 
Type II error. respectively (see Section 6.3b). Sometimes a and f3 in regression are designated as 
f3() and f31' respectively. The additive (linear) relationship of the two parameters in Equation 17.1 
leads to the term IiI/ear reKr(!.~ ... i()n eqllllt;on. Some examples of nonlinear regression are given in 
Section 20.14. 
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Consider the data in Example 17.1, where wing length is the dependent variable 
and age is the independent variable. From a scatter plot of these data (Figure 17.1), 
it appears that our sample of measurements from 13 birds represents a population of 
data in which wing length is linearly related to age. Thus, we would like to estimate 
the values of ex and {3 that would uniquely describe the functional relationship existing 
in the population. 

If all the data in a scatter diagram such as Figure 17.1 occurred in a straight 
line, it would be an unusual situation. Generally, as is shown in this figure, there is 
considerable variability of data around any straight line we might draw through them. 
What we seek to define is what is commonly termed the "best-fit" line through the 
data. The criterion for "best fit" that is generally employed utilizes the concept of 
least squares.* Figure 17.2 is an enlarged portion of Figure 17.1. Each value of X will 
have a corresponding value of Y lying on the line thatAwe might draw through the 
scatter of data points. This value of Y is represented as Y to distinguish it from the Y 
value actually observed in our sample. t Thus, as Figure 17.2 illustrates, a,! observed 
data point is denoted as (Xi, Vi). and a point on the regression line is (Xi. Vi). 
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FIGURE 17.2: An enlarged portion of Figure 17.1, showing the partitioning of Y deviations. 

The criterion of least squares considers the ~crtical deviation of each point from 
the line (i.e., the deviation describable as Yi - Vi) ana defines the best-fit line as that 
which results in the smallest value for the sum of the squares of these deviations for 
all values of Yi and Yi. That is. "i.'l= 1 (Yi - Yi)2 is to be a minimum, where n is the 
number of dattrpoints composing the sample. The sum of squares of these deviations 

*The French mathematician Adrien Marie Legendre (1752-1833) published the method now 
known as least squares (also called ordinary least squares or OLS) in 1805. but the brilliant German 
mathematician and physicist Karl Friedrich Gauss (1777 -1855) claimed-probably truthfully-that 
he had used it at least 10 years prior to that. (See also Eisenhart. 1978: Seal, 1967.) David (1995) 
asserts that the term least squares (published in French as moindres quarres) is properly attributed 
to Legendre's 1805 publication. 

tStatisticians refer to Y as"Y hat." 
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is called the residual sum of squares (or. sometimes. the error slim of squares) and 
will be discussed in Section 17.3.* 

The only way to determine the population parameters a and f3 would be to possess 
all the data for the entire population. Since this is nearly always impossible. we have 
to estimate these parameters from a sample of n data. where n is the number of pairs 
of X and Y values. The calculations required to arrive at such estimates. as well as to 
execute the testing of a variety of important hypotheses, involve the computation of 
sums of squared deviations from the mean, just as has been encountered in Chapter 10. 
Recall that the "sum of squares" of Xi values is defined as ~(Xi - xf. which is 
more easily obtained on a calculator as ~ xl - (~Xi )2jn. It will be convenient to 
define Xi = Xi - X. so that this sum of squares can be abbreviated as ~xT. or. more 
simply, as ~ x2. 

Another quantity needed for regression analysis is referred to as the sum of the 
cross products of deviations from the mean: 

~xy = ~(Xi - X)( Yi - Y). (17.2) 

where y denotes a deviation of a Y value from the mean of all Y's just as x denotes 
a deviation of an X value from the mean of all X·s. The sum of the cross products, 
analogously to the sum of squares. has a simple-to-use "machine formula": 

~ xy = ~ Xi Yi _ (~Xi)(~ Yi) • 
n 

( 17.3) 

and it is recommended that the latter formula be employed if the calculation is not 
being performed by computer. 

(a) The Regression Coefficient. The parameter f3 is termed the regression coefficient, 
or the slope of the best-fit regression line. The best sample estimate of f3 is 

(~Xi) (~ Yi) 
b = ~ xy = ~(Xi - X)( Yi - Y) = _~_X_i_~_i _-__ -'-n~_ 

~ x2 ~(Xi - X)2 (~X)2 
~ ~ ~xl _ ~ i 

n 

(17.4) 

Although the denominator in this calculation is always positive. the numerator may 
be positive. negative. or zero, and the value of b theoretically can range from -00 to 
+00. including zero (see Figure 17.3). 

• Another method of regression was proposed in 1757 by Roger Joseph Boscovich (1711-1787. 
born in what is now Croatia and known also by the Italian name Ruggiero Giuseppe Boscovich). 
This defined the "best-fit" line as that which minimizes the sum of the absolute values of deviations 
(that is. ~::=IIYi - Yil) instead of the sum of squared deviations (Heyde and Seneta. 2001: 
82-85). This j,. referred to as least absolute deviations (or LAD). It is rarely seen and employs 
different (and computationally more difficult) statistical procedures than least-squares regression 
but may be preferable if there are major outliers or substantial departures from some least-squares 
assumptions (Section 17.2). A regression method differing from that ofleast-squares regression and 
least-absolute-deviations regression is M-regre.~si(}n (employing what statisticians call "maximum­
likelihood estimation"). described by Birkes and Dodge (1993: Chapter 5). Draper and Smith 
(1998: Section 25.2). and Huber (2004: Section 7.8) and based upon the concept of Huber (1964). 
There also exist nonparametric regression methods (Birkes and Dodge. 1993: Chapter 6). These 
procedures are more robust than least-squares regression and may be preferable when there are 
prominent outliers or other serious departures from least-squares assumptions. 
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FIGURE 17.3: The slope of a linear regression line may be (a) positive, (b) negative, or (c) zero. 

Example 17.2 demonstrates the calculation of b for the data of Example 17.l. 
Note that the units of b are the units of Y divided by the units of X. The regression 
coefficient expresses what change in Y is associated, on the average, with a unit 
change in X. In the present example, b = 0.270 cm/day indicates that, for this sample, 
there is a mean wing growth of 0.270 cm per day for ages 3.0 to 17.0 days. Section 17.5 
discusses how to express the precision of b. 

EXAMPLE 17.2 The Simple Linear Regression Equation Calculated 
(Using the "Machine Formula") by the Method of Least Squares, for the 
Data from the 13 Birds of Example 17.1 

It = 13 

LX = 3.0 + 4.0 + ... + 17.0 

= 130.0 

X = 130.0/13 = 10.0 

LX2 = 3.02 + ... + 17.02 

= 1562.00 

Lx2 = 1562.00 _ (130.0)2 
13 

= 1562.00 - 1300.00 = 262.00 

L Y = 1.4 + 1.5 + ... + 5.0 

= 44.4 

Y = 44.4/13 = 3.415 

L XY = (3.0)( 1.4) + ... 

+ (17.0)(5.0) = 514.80 

LXY = 514.80 _ (130.0)(44.4) 
13 

= 514.80 - 444.00 = 70.80 

2,XY 70.80 
b = 7..- = -- = 0.270 cm/day 

~x2 262.00 

a = Y - bX = 3.415 cm - (0.270 cm/day)( 10.0 days) 

= 3.415 cm - 2.700 cm = 0.715 cm 
A 

So the simple linear regression equation is Y = 0.715 + 0.270X. 

(b) The Y Intercept. An infinite number of lines possess any stated slope, all of 
them parallel (see Figure 17.4). However. each such line can be defined uniquely by 
statinAg, in addition to {3, anyone point on the line-that is. any pair of coordinates, 
(Xi, Yi). The point conventionally chosen is the point on the line where X = O. The 
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FIGURE 17.4: For any given slope, there exists an infinite number of possible regression lines, each with 
a different Y intercept. Three of this infinite number are shown here. 

value of Y in the population at this point is the parameter a. which is called the 
Y intercept. 

It can be shown mathematically that the point (X, Y) always lies on the best-fit 
regression line. Thus. substituting X and Y in Equation (17.1). we find that 

Y = a + {3X 

and 

a = Y - {3X. 

The best estimate of the population parameter a is the sample statistic 

a = Y - bX. 

(17.5) 

(17.6) 

(17.7) 

The calculation of a is shown in Example 17.2. Note that the Y intercept has the 
same units as any other Y value. (The precision of the statistic a is considered 
in Section 17.5.) The sample regression equation (which estimates the population 
relationship between Y and X stated in Equation 17.1) may be written as 

Yi = a + bXi, ( 17.8) 

although some authors write 

Yi = Y + b(Xi X), (17.9) 

which is equivalent. 
Figures 17.4 and 17.5 demonstrate that the knowledge of either a or b allows only 

an incomplete description of a regression function. But by specifying both a and b, a 
line is uniquely defined. Also, because a and b were calculated using the criterion of 
least squares, the residual sum of squares from this line is smaller than the residual 
sum of squares that would result from any other line (i.e., a line with any other a or 
b) that could be drawn through the data points. This regression line (Le., the line with 
this a and b) is not the same line that would result if Y were the independent variable 
and X the dependent variable. 
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FIGURE 17.5: For any given Y intercept, there exist an infinite number of possible regression lines, each 
with a different slope. Three of this infinite number are shown here. 

(c) Predicting Values of Y. Knowing the parameter estimates a and b for the linear 
regression equation. we can predict the value of the dependent variable expected in 
the population at a stated value of Xi. For the regression in Example 17.2. the wing 
length of a sparrow at 13.0 days of age would be predicted to be 

Y = a + bXi 

= O.715cm + (0.270cmjday)(13.0day) = 4.225cm. 

~he wing length in the population at 7.0 days of age would be estimated to be 
Y = 0.715 cm + (0.270 cmjday)(7.0 day) = 2.605 cm, and so on. 

To plot a linear regression line graphically, we need to know only two points that 
lie on the line. We already know two points. namely (X. Y) and (0. a); however, for 
ease and accuracy in drawing the line by hand. two points that lie near extreme ends 
of the obs:rved range of X arc most useful. For drawing the line in Figure 17.1, the 
valuAes of Yi for Xi = 3.0 days and Xi = 17.0 days were used. These were found to 
be Y = 1.525 and 5.305 cm. respectively. A regression line should always be drawn 
using predicted points. and never drawn "by eye." A 

A word of calltion is in order concerning predicting Yi values from a regression 
equation. Generally. it is an ynsafe procedure to extrapolate from a regression 
equation-that is, to predict Yi values for Xi values outside the observed range of 
Xi. It would. for example. be unjustifiable to attempt to predict the wing length of a 
20-day-old sparrow. or a I-day-old sparrow. using the regression calculated for birds 
ranging from 3.0 to 17.0 days in age. Indeed. applying the equation of Example 17.2 to 
a one-year-old sparrow would predict a wing nearly one meter long! What the linear 
regression describes is Y as a function of X within the range of observed values of X. 
Thus, a regression equation is often used to interpolate; that is. to estimate a value of 
Y for an X lying between X's in the sample. But for values of X above or below this 
range. the function may not be the same (i.e., ex and/or (3 may be different); indeed. the 
relationship may not even be linear in such ranges, even though it is linear within the 
observed range. If there is good reason to believe that the described function holds 
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for X values outside the range of those observed. then we may cautiously extrapolate. 
Otherwise. beware. A classic example of nonsensical extrapolation was provided in 
1874 by Mark Twain (1950: 156): 

In the space of one hundred and seventy-six years the Lower Mississippi has shortened 
itself two hundred and forty-two miles. That is an average of a trifle over one mile and 
a third per year [i.e .. a slope of -1.375 mi/yrJ. Therefore. any calm person. who is not 
blind or idiotic. can see that in the Old Oolitic Silurian period. just a million years ago 
next November. the Lower Mississippi River was upward of one million three hundred 
thousand miles long. and stuck out over the Gulf of Mexico like a fishing rod. And by 
the same token any person can see that seven hundred and forty-two years from now, 
the lower Mississippi will be only a mile and three-quarters long. and Cairo [Illinois] 
and New Orleans I Louisiana] will have joined their streets together. and be plodding 
comfortably along under a single mayor and a mutual board of aldermen! 

The Y intercept. a. is a statistic that helps specify a regression equation (Equation 
17.8). It is. by definition. a predicted value of Y (namely, the Y at X = 0), but 
because of the caution against extrapolation, it should not necessarily be considered 
to represent the magnitude of Y in the population at an X of zero if X = 0 is outside 
the range of X's in the sample. Thus. in Examples 17.1 and 17.2 it should not be 
proposed that a newly hatched bird in the population (i.e .. one 0 days old) has a mean 
wing length of 0.715 cm. 

Section 17.4 discus~es the estimation of the error and confidence intervals associ· 
ated with predicting Yi values. 

(d) Assumptions of Regression Analysis. Certain basic assumptions must be met to 
validly test hypotheses about regressions or to set confidence intervals for regression 
parameters. although these assumptions are not necessary to compute the regression 
coefficient. h. the Y intercept. a. and the coefficient of determination. ?-: 

1. For each value of X. the values of Yare to have come at random from the 
sampled population and are to be independent of one another. That is. obtaining 
a particular Y from the population is in no way dependent upon the obtaining 
of any other Y. 

2. For any value of X in the population there exists a normal distribution of Y 
values. (This also means that for each value of X there exists in the population 
a normal distribution of E·S.) 

3. There is homogeneity of variances in the population; that is, the variances of the 
distributions of Y values must all be equal to each other. (Indeed. the residual 
mean square-to be described in Section 17.3-estimates the common variance 
assumed in the analysis of variance in previous chapters.) 

4. In the popUlation, the mean of the V's at a given X lies on a straight line with the 
mean of all other V's at all other X·s. That is. the actual relationship between Y 
and X is linear. 

5. The measurements of X were obtained without error. This. of course. is typically 
impossible: so what we do in practice is assume that the errors in measuring X 
are negligible. or at least small. compared with errors in measuring Y. If that 

.. Author Twain concludes by noting that "There is something fascinating about science. One 
gets such a wholesale return of conjecture out of a trifling investment of fact." It can also be noted 
that the Silurian period is now considered to have occurred well over 400 million years ago. Even 
at the time Mark Twain wrote this. scientific opinion placed it at least 20 million years ago. 



Section 17.3 Testing the Significance of a Regression 337 

assumption is not reasonable. other. more complex methods may be considered 
(Montgomery. Peck, and Vining, 2001: 5(2). 

Violations of assumptions 2. 3, or 4 can sometimes be countered by transformation 
of data (presented in Section 17.1 O). Data in violation of assumption 3 will underes­
timate the residual mean squarc (Section 17.3) and result in an inflation of the test 
statistic (F or I). thus increasing the probability of a Type J error (Caudill. 1988). 
Heteroscedastic data may sometimes be analyzed advantageously by a procedure 
known as weighted regression, which will not be discussed herc. 

Regression statistics are known to be robust with respect to at least some of these 
underlying assumptions (e.g., Jacques and Norusis. 1973). so violations of them are 
not usually of concern unless they arc severe. One kind of datum that causes violation 
of the assumption of normality and homogeneity of variance is the oUllier. introduced 
in Section 2.5. which in regression is a recorded measurement that lies very much 
apart from the trend in the bulk of the data. (For example, in Figure 17.1 a data 
point at X = 4 days and Y = 4 cm would have been an outlier.) Procedures known 
as non parametric (or distribution-free) regression analyses make no assumptions 
about underlying statistical distributions. Several versions exist (including regression 
using ranks) and are discussed by several authors, including Birkes and Dodge 
(1993: Chapter 6): Cleveland, Mallows, and McRae (1993): Daniel (1990: Chapter 
to); Hardie (1990): Hollander and Wolfe (1999: Chapter 9): Montgomery, Peck. and 
Vining, 2001: Section 7.3); Neave and Worthington (1988: Chapter 10): and Wang 
and Scott (1994). 

(e) Two Kinds of Independent Variables. In regression, measurements of the 
dependent variable. Y. are considered to be data that have come at random from a 
population of such data. However. the independent variable. X, may be one of two 
types. 

Section W.lf spoke of two kinds of factors in analysis of variance: A fixed-effect 
factor has its levels specifically selected by the experimenter. whereas the levels of 
a random-effect factor are obtained at random from all possible levels of the factor. 
Analogously. the values of X in regression may be fixed or random. In Example 17.1. 
X is a variable with fixed values if the X's were selected by the experimenter (i.e .. 13 
specific ages of birds were obtained at which to measure wing length). Alternatively. 
the values of X may have come at random from the sampled population (meaning 
that the ages were recorded for 13 birds that were selected at random). 

Whether the independent variable is random or fixed has no effect on the cal­
culations and hypothesis testing for regression analysis, so the distinction is seldom 
noted. 

7.3 TESTING THE SIGNIFICANCE OF A REGRESSION 

The slope, b, of the regression line computed from the sample data expresses 
quantitatively the straight-line dependence of Y on X in the sample. But what 
is really desired is information about the functional relationship (if any) in the 
population from which the sample came. Indeed, the finding of a dependence of Y 
on X in the sample (i.e., b ¢ 0) does not necessarily mean that there is a dependence 
in the population (i.e .. p :f: 0). Consider Figure 17.6. a scatter plot representing a 
population of data points with no dependence of Yon X: the best-fit regression line 
for this population would be parallel to the X axis (i.e., the slope. f3. would be zero). 
However. it is possible. by random sampling, to obtain a sample of data points having 
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FIGURE 17.6: A hypothetical population of data points, having a regression coefficient, {3, of zero. The 
circled points are a possible sample of five. 

the five values circled in the figure. By calculating b for this sample of five, we would 
estimate that {3 was positive, even though it is, in fact, zero. 

We are not likely to obtain five such points out of this population. but we desire to 
assess just how likely it is; therefore, we can set up a null hypothesis, Ho: {3 = 0, and 
the alternate hypothesis, HA : {3 :F 0, appropriate to that assessment. If we conclude 
that there is a reasonable probability (i.e., a probability greater than the chosen level 
of significance-say, 5%) that the calculated b could have come from sampling a 
population with a {3 = 0, the Ho is not rejected. If the probability of obtaining the 
calculated b is small (say. 5% or less). then Ho is rejected, and HA is assumed to be 
true. 

(a) Analysis-or-Variance Testing. The preceding Ho may be tested by an analysis· 
of·variance (ANOV A) procedure. First, the overall variability of the dependent 
variable is calculated by computing the sum of squares of deviations of Yi values from 
Y. a quantity termed the 10101 sum of squares: 

total SS = ~(Yi - y)2 = ~y2 = ~ yl (17.10) 
n 

Then we determine the amount of variability among the Yi values that is attributable 
to there being a linear regression; this is termed the linear regression .'111m of squares: 

regression SS = ~ ( Yi (17.11) 

because b = ~xy/ ~x2 (Equation 17.4). this can also be calculated as 

regression SS = b ~ xy. (17.12) 

The value of the regression SS will be equal to that of the total SS only if each data 
point falls exactly on the regression line. a very unlikely situation. The scatter of data 
points around the regression line has been alluded to, and the residual. or error. sum 
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of squares is obtained as 

residual SS = L( Yj - Yj)2 = total SS - regression SS. (17.13) 

Table 17.1 presents the analysis-of-variance summary for testing the hypothesis 
Ho: f3 = 0 against HA: f3 #- O. Example 17.3 performs such an analysis for the data 
from Examples 17.1 and 17.2. The degrees of freedom associated with the total 
variability of Yj values are n - 1. The degrees of freedom associated with the 
variability among Y;'s due to regression are always 1 in a simple linear regression. 
The residual degrees of freedom are calculable as residual DF = total OF - regression 
OF = n - 2. Once the regression and residual mean squares are calculated (MS = 
SS/OF, as usual), Ho may be tested by determining 

F = regression MS 
residual MS ' 

(17.14) 

TABLE 17.1: Summary of the Calculations for Testing Ho: {3 = 0 against HA: {3 #- 0 by an 
Analysis of Variance 

Source of variation Sum of squares (SS) OF Mean square (MS) 

Total [Y; Yj ~i n -

Linear regression [V; - Yj 
(~xy)2 regression SS 

~x2 regression OF 

Residual [Y; - Yj] total SS - regression SS n - 2 residual SS 
residual OF 

Note: To test the null hypothesis, we compute F = regression MS/residual MS. The critical value 
for the test is Fa( 1 ).1.(11-2)' 

EXAMPLE 17.3 Analysis of Variance Testing of Ho: P = 0 Against HA: 
P =1= O. Using the Data of Examples 17.1 and 17.2 

n = 13 LXY = 70.80 (from Example 17.2) 

L Y = 44.4 L~ = 262.00 (from Example 17.2) 

L y2 = 171.30 

total SS = Ly2 = 171.30 

= 171.30 - 151.6431 

= 19.656923 

total OF = n - 1 = 12 

Source of variation 

Total 
Linear regression 
Residual 

regression SS = (L xy)2 
Lx2 

5012.64 

SS DF 

19.656923 12 
19.132214 1 
0.524709 11 

= 
262.00 

= 19.132214 

MS 

19.132214 
0.047701 

(70.80)2 

262.00 
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F = 19.132214 = 401.1 
0.047701 

Fo.1l5( 1 ).1.11 = 4.84 

Therefore, reject Ho. 

P « 0.0005 [P = 0.00000000053] 

,z = 19.132214 = 0.97 
19.656923 

sy·x = JO.047701 = 0.218 cm 

which is then compared to the critical value, Fa( 1 ).1'1.1'2' where VI = regression OF = 
1 and V2 = residual OF = n - 2. 

The residual mean square is often written as st.x, a representation denoting 
that it is the variance of Y after taking into account the dependence of Y on X. 
The square root of this quantity (i.e., sy·x) is called the standard error of estimate 
(occasionally termed the "standard error of the regression"). In Example 17.3, 
Sy·x = JO.047701 cm2 = 0.218 cm. The standard error of estimate is an overall 
indication of the accuracy with which the fitted regression function predicts the 
dependence of Y on X. The magnitude of Sy·x is proportional to the magnitude of 
the dependent variable, Y, making examination of ~Yx a poor method for comparing 
regressions. Thus, Oapson (1980) recommends using sy·x/Y (a unitless measure) to 
examine similarities among two or more regression fits. 

The proportion (or percentage) of the total variation in Y that is explained or 
accounted for by the fitted regression is termed the coefficient of determination, ,2, 
which is often used as a measure of the strength of the straight-line relationship:* 

,z = regression SS ; 
total SS 

(17.15) 

,z is sometimes referred to as expressing the goodness of fit of the line to the data or 
as the precision of the regression. 

For Example 17.3,,z = 0.97, or 97%. That portion the total variation not explained 
by the regression is, of course, 1 - ,z, or residual SSltotal SS, and this is called the 
coefficient of nondetermination, a quantity seldom referred to.t In Example 17.3, 
1 - ,z = 1.00 - 0.97 = 0.03, or 3%. (The quantity r is the correlation coefficient, 
to be introduced in Chapter 19.)* 

*However, Ranney and Thigpen (1981) and others caution against declaring ,2 to be a measure 
of strength ofthe relationship in cases where X is a fixed-effect variable (see Section 17.2e). 

tThe standard error of estimate is directly related to the coefficient of nondetermination and to 
the variability of Y as 

sy.x = SyJ(1 - ,z)(n - I)/(n - 2). 

*Sulton (1990) showed that 

,2 = -----'F_ 
F + 112 

(17.16) 

(17.l7) 
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Another good way to express the accuracy of a regression, or to compare accuracies 
of several regressions, is to compute confidence intervals for predicted values of Y, 
as described in Section 17.5. 

(b) t Testing. The preceding null hypothesis concerning {3 can also be tested by 
using Student's I statistic. Indeed, the more general two-tailed hypotheses, Ho: {3 = {3o 
and HA: {3 #: {3o, can be tested in this fashion.* Most frequently, {3o is zero in these 
hypotheses, in which case either the analysis of variance or the t test may be employed 
and the conclusion will be the same. But if any other value of {3o is hypothesized, 
then the following procedure is applicable, whereas the analysis of variance is not. 
Also, the I-testing procedure allows for the testing of one-tailed hypotheses: either 
Ho: {3 :s; {3/1 and HA: {3 > {3o. or Ho: {3 2! {3o and HA: {3 < {3o. 

Since the t statistic is in general calculated as 

t = (parameter estimate) - (parameter value hypothesized) 
standard error of parameter estimate . 

(17.18) 

we need to compute s/" the standard error of the regression coefficient. 
The variance of b is calculated as 

(17.19) 

Therefore, 

(17.20) 

and 

l=b-{3o. (17.21) 
Sh 

To test H/I: {3 = 0 against HA : {3 #: 0 in Example 17.4. s" 0.0135 cm/day and 
I = 20.000. The degrees of freedom for this testing procedure are n - 2; thus, the 
critical value in this example, at the 5% significance level, is to.OS( 1 ).11 = 2.201, and Ho 
is rejected. For this two-tailed hypothesis, Ho: (3 = O. either I or F may be employed, 
with the same result; and F = t2 and Fa.1.(n-2) = ~(2).(1I-2)' Section 7.2 presents the 
relevant concepts and procedures involved in one-tailed hypothesis testing. 

17.4 INTERPRETATIONS OF REGRESSION FUNCTIONS 

Potential misinterpretation of regression relationships has been alluded to earlier in 
this chapter and warrants further discussion. If we calculate the two constants, a and 
b, that define a linear regression question, then we have quantitatively described the 
average rate of change of Y with a change in X. However, although a mathemati­
cal dependence between Y and X has been determined. it must not automatically 
be assumed that there is a biological cause-and-effect relationship. Causation should 
be suggested only with insight into the phenomenon being investigated and should 
not be declared by statistical testing alone. Indeed. it is often necessary to determine 
the interrelationships among variables beyond the two variables under study, for an 
observed dependence may, in fact, be due to the influence of one or more variables not 

*Thc use of t for testing regression coefficients emanates from Fisher (1922a). 
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EXAMPLE 17.4 Use of Student's t to Test Ho: fJ = 0 Against HA: fJ :I: 0, 
Employing the Data of Examples 17.1 and 17.2 

n = 13 

b = 0.270 cm/ day 

Sh ~ ) ~.:i = 0.047701 = JO.00018206 = 0.0135 cm/ day 
~' 262.00 

t = b - 0 = 0.270 = 20.000 
s" 0.0135 

to.1l5(2).11 = 2.201 

Therefore. reject Ho. 

P« 0.01 [P = 0.00000000027] 

yet analyzed. (The methods of Chapter 20 are often used to attempt to identify such 
other variables.) 

We must also remember that a linear regression function is mathematically nothing 
more than a straight line forced to fit through a set of data points. and it may not at aU 
describe a natural phenomenon. The biologist may be chagrined when attempting to 
explain why the observed relationship is well described by a linear function or what 
biological insights are to be unfolded by the consideration of a particular slope or a 
particular magnitude of a Y intercept. That is, although a derived regression function 
often provides a satisfactory and satisfying description of a natural phenomenon, 
sometimes ~t does not. Chapters 20 and 21 discuss the fitting of regression models 
other than Yj = a + I3Xj. 

Even if a regression function does not help us to explain the functional anatomy 
of a natural system, it may still be useful in its ability to predict Y. given X. 
In the sciences. equations may inaccurately represent natural processes yet may 
be employed advantageously to predict the magnitude ~ of one varia~le given the 
magnitude of an associated variable. Thus. predicting Y values (or X values: see 
Section 17.6) and their standard errors is frequently a useful end in itself. Bu~, 
as stressed in Section 17.2. great caution should be exercised in predicting a Y 
for an X outside the range of the X's used to obtain the regression equation. In 
addition. while a (the Y intercept) has utility in expressing a regression relationship, 
expressing II as the predicted value of Y when X = 0 may not have biological 
significance-and may even be meaningless if X = 0 lies outside of the range of the 
observed X·s. 

I f the relationship between two variables is not that of an independent variable and 
a dependent variable, then correlation analysis (Chapter 19). instead of regression 
analysis. should be considered. 

17.5 CONFIDENCE INTERVALS IN REGRESSION 

In many (though not all) cases. knowing the standard error of a statistic allows us to 
calculate a confidence interval for the parameter being estimated. as 

confidence interval = statistic ± (t )(SE of statistic). (17.22) 
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This was first demonstrated in Section 7.3 for the confidence interval for a mean. and 
it has been used repeatedly in succeeding chapters. In addition. the second significant 
figure of the standard error of a statistic may be used as an indicator of the precision 
to which that statistic should be reported (as done with the mean in Section 7.4). The 
standard error of b has been given by Equation 17.20. For the data in Example 17.4. 
the second significant figure of Sh = 0.0135 cm/day enables us to express b to the third 
decimal place (i.e .. b = 0.270 cm/day). 

(a) Confidence Interval for the Regression Coefficient. For the (1 - a) confidence 
limits of {3. 

b ± lu(2).(tI-2)Sh. (17.23) 

Therefore. 

(17.24) 

and 

(17.25) 

For Example 17.2. the 95% confidence interval for {3 would be b ± lo.05(2).IISb = 
0.270 ± (2.201 )(0.0135) = 0.20 ± 0.030 cm/day. Thus. the 95% confidence limits are 
LI = 0.270 - 0.030 == 0.240 cm/day and L2 = 0.270 + 0.030 = 0.300 cm/day; and 
we can state. with 95% confidence (i.e .. we state that there is no greater than a 5% 
chance that we are wrong). that 0.240 cm/day and 0.300 cm/day form an interval that 
includes the population regression coefficient. {3. Figure 17.7 shows, by the broken 
lines. these confidence limits for the slope of the regression line. Within these limits. 
the various possible b values rotate the line about the point (X. Y). 

(b) Confidence Interval for an Estimated Y. As shown 1n Section 17.1. a regression 
equation allows the estimate of the value of Y (namely. Y) existing in the population 

E 
u 
.: 4 

o 
Age. X. in days 

FIGURE 17.7: The regression line from Figure 17.1, showing, by broken lines, the lines with slopes equal 
to the upper and lower 95% confidence limits for /3. 
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at a given value of X. The standard error of such a population estimate is 

s. = s2 [1 + (Xi - X)2] 
Y; y·x ;; L~' 

(17.26) 

Example 17.5a shows how Sy; can be used in Equation 17.22 to calculate confidence 
intervals. It is apparent from Equation 17.26 that the standard error is a minimum for 
Xi = X. and that it increases as estimates are made at values of X; farther from the 
mean. If confidence limits were calculated for all points on the regression line, the 
result would be the curved confidence bands shown in Figure 17.8. 

EXAMPLE 11.5 Standard Errors of Predicted Values of Y 

The regression equation derived in Example 17.2 is used for the following con· 
siderations. For this regression. a = 0.72 cm. b = 0.270 cm/day, X = 10.0 days. 
LX2 = 262.00days2.n = 13,s}.x = 0.047701 cm2,and/o.o5(2).1l = 2.201. 

a. Equation 17.26 is used when we wish to predict the mean value of Y;, given 
Xi. in the entire population. For example. we could ask, "What is the mean 
wing length of all 13.0-day-old birds in the popUlation under study?" 

" Y; = a + bXi 

= 0.715 + (0.270)( 13.0) 

= 0.715 + 3.510 

= 4.225 cm 

'Y, ~ s'YX [~ + (Xii})'] 

= 0.047701 [..!.. + (13.0 - 10.0)2] 
13 262.00 

= ~(0.047701 )(0.111274) 

= 0.073 cm 

95% confidence interval = Yi ± to.05(2).IISy; 

= 4.225 ± (2.201)(0.073) 

= 4.225 ± 0.161 cm 

L) = 4.064cm 

L2 = 4.386 cm 
b. Equation 17.28 is used when we propose taking an additional sample of m 

individuals from the population and wish to predict the mean Y value, at a 
given X, for these m new data. For example. we might ask, "If ten 13.0-day· 
old birds were taken from the population, what would be their mean wing 
length?" 
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~ 

Yj = 0.715 + (0.270)(13.0) = 4.225 cm 

(Sy)JO = 0.047701 [-.L + -.L + (13.0 - 10.0)2] 
10 13 262.00 

= ~(0.047701 )(0.211274) 

= O.l00cm 

A 

95% prediction interval = Yj ± to.05(2).1I (Sy) \0 

= 4.225 ± (2.201 )(0.100) 

= 4.225 ± 0.220 cm 
L\ = 4.005 cm 

L2 = 4.445 cm 

c. Equation 17.29 is used when we wish to predict the Y value of a single 
observation taken from the population as a specified X. For example, we 
could ask, "If one 13.O-day-old bird were taken from the population, what 
would be its wing length?" 

A 

Yj = 0.715 + (0.270)( 13.0) = 4.225 cm 

(Sy)l = 0.047701 [1 + -.L + (13.0 - 10.0)2] 
13 262.00 

= ~( 0.047701)( 1.111274) 

= 0.230cm 

95% prediction interval = Yj ± to.05(2).\\ (Sy;)\ 

= 4.225 ± (2.201 )(0.230) 
= 4.225 ± 0.506 cm 

L\ = 3.719 cm 
L2 = 4.731 cm 

Note from these three examples that the accuracy of prediction increases as does 
the number of data upon which the prediction is based. For example. predictions 
about a mean for the entire population will be more accurate than a prediction 
about a mean from 10 members of the population, which is more accurate than a 
prediction about a single member of the population. 

A 

If Xi = 0, then Y = a (the Y intercept). Therefore, 

Sa = (17.27) 
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FIGURE 17.8: The 95% confidence bands (broken lines) for the regression line from Figure 17.1 (the 
regression of Example 17.2). 

~ 

(c) Prediction Interval for an Estimated Y. If we predict a value of Y that is the 
mean of m additional measurements at a given X (Example 17.5b), its standard error 
would be 

(17.28) 2 [1 + .!. + (Xi - X)2] Sy·x ~ J • 
m n £.iX-

A special case of Equation 17.28, shown as Example 17.5c.., exists when it is desired 
to know the standard error associated with estimating Yi for a single additional 
measurement at Yi: 

( 17.29) 52 [1 + .!. + (Xi - X )2] 
. Y·x ~ 2 . 

n £.iX 

Equation 17.26 is equal to Equation 17.28 when m approaches infinity. Examples 
17.5b and 17.5c demonstrate the use of these standard errors of prediction. 

(d) Testing Hypotheses about Estimated Y Values. Once we have computed the 
standard error of a predicted y, we can test hypotheses about that prediction. 
For example, we might ask whether the mean population wing length of 13.0-day­
old sparrows. call it J.L y' ,is equal to some specified value (two-tailed test) or is 

nil 
greater than (or less than) some specified value (one-tailed test). We simply refer to 
Equation 17.18, as Example 17.6 demonstrates. 

(e) Confidence Interval and Hypothesis Testing for the Residual Mean Square. The 
sample residual mean square, st.x, is an estimate of the residual mean square in the 
popUlation, olx. Confidence limits may be calculated for iTt.x as they are for the 
population variance, 0'2, in Section 7.12. Simply use v = n - 2, instead ofv = n - 1, 
and replace 0'2 with O't.x and SS with residual SS in Equation 7.18 or 7.19. Also, 
a confidence interval for the population standard error of estimate, O'y·x, may be 
obtained by analogy to Equation 7.20. Hypothesis testing for O't.x or O'y·x may be 
performed by procedures analogous to those of Section 7.11. 
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EXAMPLE 17.6 Hypothesis Testing with an Estimated Y Value 

Ho: The mean population wing length of 13.0-day-old birds is not greater than 
4 cm (i.e., Ho: JL y' :;;; 4 cm). 

U.II 

HA: The mean population wing kngth of l3.0-day-old birds is greater than 4 cm 
(i.e.,H;1:JL y• > 4cm). 

I~.n 

From Example 17.5b, Y13.n = 4.225 cm and SYl.l.f) = 0.073 cm. 

t = 4.225 - 4 = 0.225 = 3.082 
0.073 0.073 

to.OS( 1 ).1 1 = I. 796 

Therefore. reject Ho. 

17.6 INVERSE PREDICTION 

0.005 < P < 0.01 [P = 0.0052] 

Situations exist where we desire to predict the value of the independent variable 
(X;) that is to be expected in the population at a specified value of the depen­
dent variable (Y;), a procedure known as inverse prediction. In Example 17.1. for 
instance, we might ask, "How old is a bird that has a wing 4.5 cm long'?" By simple 
algebraic rearrangement of the linear regression relationship of Equation 17.8, we 
obtain 

XA. _ Y; - tl 
I - • 

b 
(17.30) 

From Fi~ure 17.8, it is clear that, although conpdence limits calculated around the 
predicted Y; ar: symmetrical above and below Y;, confidence limits aAssociated with 
the predicted Xi are not symmetrical to the left and to the right of X;. The I - a 
confidence limits for the X predicted at a given Y may be calculated as follows, which 
is demonstrated in Example 17.7: 

(17.31) 

where* K = b2 - t2s~. This computation is a special case of the prediction of the X 
associated with multiple values of Y at that X. For the study of Example 17.1, age 
can be predicted of In birds to be taken from the population and having a mean body 
weight of Yi: 

" Yj - a X; = ---'---
b 

(17.32) 

*Rccall that Fu{ 1 ).I.v = (~(2).v' Therefore. we could compute K = ,,2 - Fs~. where F = 
(~(2).(1/-2) = Fa(I).I.(II-2)· Snedccor and Cochran (1989: 171) presented an alternative. yet 
equivalent. computation of these confidence limits. 
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EXAMPLE 17.7 Inverse Prediction 

We wish to estimate, with 95% confidence. the age of a bird with a wing length of 
4.5cm. 

Predicted age: x = Yj - a 
b 

4.5 - 0.715 
= 

0.270 
= 14.019 days 

To compute 95% confidence interval: 

1 = 10.05(2).11 = 2.201 

K = b2 - t2s~ 

= 0.2702 - (2.201 )2(0.0135)2 

= 0.0720 
95% confidence interval: 

x + b(Yj - Y) ±.!..- 2 [(Yj - y)2 + K (1 + -n1)] 
K K\ Sy·x ~~ 

= 10.0 + 0.270(4.5 - 3.415) 
0.0720 

± 2.201 0.047701 [(4.5 - 3.415)2 + 0.0720 (1 + 113)] 
0.0720 \ 262.00 

= 10.0 + 4.069 ± 30.569 JO.003913 

= 14.069 ± 1.912 days 

LI = 12.157 days 

L2 = 15.981 days 

where Yj is the mean of the m values of Yj; and the confidence limits would be 
calculated as 

x + b(Yj - V) ±.!..- (st )' [(Vj - V)2 + K (1.. + .!)] (17.33) 
K K y·x ~~ m n' 

where* 1 = la(2).(n+m-3).K = b2 - 12(~)', 

(st)' = (s1-.x)' 
h ~~. 

• Alternatively, we may compute K = b2 - F{sr, ).. where F 

Fa( 1 ).1.(11+111+3)· 

(17.34) 

(2 _ 
a(2).(II+m-3) -
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and 
m 

(s~.x)'=residuaISS + ~(Yij - Yi)2/(11 + m - 3) 
j= I 

(Ostle and Malone, 1988: 241; Seber and Lee, 2003: 147-148). 

7.7 REGRESSION WITH REPLICATION AND TESTING FOR LINEARITY 

(17.35) 

If, in Example 17.1, we had wing measurements for more than one bird for at least 
some of the recorded ages, then we could test the null hypothesis that the population 
regression is linear.* (Note that true replication requires that there are mUltiple 
birds at a given age, not that there are multiple wing measurements on the same 
bird.) Figure 17.9 presents the data of Example 17.8a. A least-squares, best-fit, linear 
regression equation can be calculated for any set of at least two data, but neither the 
equation itself nor the testing for a significant slope (which requires at least three 
data) indicates whether Y is, in fact, a straight-line function of X in the population 
sampled. 

EXAMPLE 17.8a Regression Data Where There Are Multiple Values of Y 
for Each Value of X 

Age (yr) Systolic blood pressure (mm Hg) 

Xi Yij l1i Yi 

1 30 108, 110, 106 3 108.0 
2 40 125,120, 118, 119 4 120.5 
3 50 132, 137, 134 3 134.3 
4 60 148, 151, 146, 147. 144 5 147.2 
5 70 162, 156, 164, 158, 159 5 159.8 

k = 5; i = 1 to 5; j = 1 to l1i: N = 20 

~~Xij = 1050 ~~ Yij = 2744 

~ ~ XB = 59,100 ~ ~ yB = 383,346 ~ ~ Xij Yij = 149,240 

~x2 = 3975.00 ~l = 6869.20 ~xy = 5180.00 

X = 52.5 Y = 137.2 

>.xyv 5180.00 
b = ~ = = 1.303 mm Hg/yr 

~x 3975.00 

a = Y - bX = 137.2 - (1.303)(52.5) = 68.79mm Hg 

Therefore, the least-squares regression line is Yij = 68.79 + 1.303Xij. 

We occasionally encounter the suggestion that for data such as those in Figure 17.9 
the mean Y at each X be utilized for a regression analysis. However, to do so would 
be to discard information, and such a procedure is not recommended (Freund, 1971). 

*Thornby (1972) presents a procedure to test the hypothesis of linearity even whcn there are 
not multiple observations of Y. But the computation is rather tedious. 
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FIGURE 17.9: A regression where there are multiple values of Y for each value of X. 

EXAMPLE 17.8b 
17.8a 

Statistical Analysis of the Regression Data of Example 

HI): The population regression is linear. 

HA: The population regression is not linear. 

total SS = ~l = 6869.20 total OF = N - 1 = 19 

(}: Yi j )' ( ± }: Yi,) 2 

among-groups SS = ± j= I i= I j= I 

;= 1 nj N 

= 383,228.73 - 376,476.HO = 6751.93 
among-groups OF = k 1 = 4 
within-groups SS = total SS - among-groups SS 

= 6869.20 - 6751.93 = 117.27 

within-groups OF = total OF - among-groups OF 

= 19 - 4 = 15 

deviations-from-linearity SS = among-groups SS - regression SS 

= 6751.93 - 6750.29 = 1.64 

deviations-from-linearity OF = among-groups DF - regression OF 

=4-1=3 
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Source of variation 

Total 
Among groups 

Linear regression 
Deviations from linearity 

Within groups 

F = 0.55 = 0.070 
7.82 

Since F < 1.00, do not reject Ho. 

SS 

6869.20 
6751.93 
6750.29 

1.64 
117.27 

P > 0.25 [P = 0.975] 

Ho: f3 = O. 

HA : f3:F- O. 

~
2 

£Jxy 518000 2 
regression SS = = ( .) = 6750.29 

}:x 3975.00 

DF 

19 
4 
1 
3 

15 

Source of variation SS DF MS 

Total 19 

MS 

0.55 
7.82 

Linear regression 
Residual 

6869.20 
6750.29 

118.91 
1 6750.29 

F = 6750.29 = 1021.2 
6.61 

FO.05( I ).1.18 = 4.41 

Therefore, reject Ho. 

18 6.61 

P « 0.0005 [P < 0.00000000001] 

,z = 6750.29 = 0.98 
6869.20 

Sy·x = J6.61 = 2.57 mm Hg 

Example 17.8b appropriately analyzes data consisting of multiple Y values at each 
X value, and Figure 17.9 presents the data graphically. For each of the k unique 
Xi values, we can speak of each of ni values of Y (denoted by Yij) using the 
double subscript on i exactly as in the one-way analysis of variance (Section 10.1). In 
Example 17.8a, nl = 3,n2 = 4,n3 = 3, and so on; and XII = 50 cm, Yii = 108 mm; 
XI2 = 50 cm, YI2 = 110 mm; XI3 = 50 cm, YI3 = 106 mm; and so on through 
XS5 = 70 cm, YS5 = 159 mm. Therefore, 

k IIi 

}:xy = }: }:(Xij - X)(Yij - Y) = }:}:XijYij -
i=1 j=1 

(17.36) 
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where N = 2.7= I nj the total number of pairs of data. Also, 

and 

where 

k ni 

totalSS = ~ ~(Yjj - y)2 = ~~ Y3 - c, 
j= Ij=! 

k 
and N = ~nj. 

j= I 

(17.37) 

( 17.38) 

(17.39) 

Examples 17.8a and 17.8b show the calculations of the regression coefficient, b, the 
Y intercept Q, and the regression and residual sums of squares, using Equations 17.4, 
17.7, 17.11, and 17.13, respectively. The total, regression. and residual degrees of 
freedom are N - 1.1, and N - 2. respectively. 

As shown in Section 17.3, the analysis of variance for significant slope involves the 
partitioning of the total variability of Y (i.e .• Yjj - Y) into that variability due to 

regression (Yj - Y) ~nd that variability remaining (i.e .. residual) after the regression 
line is fitted (Yjj - Yi). However, by considering the k groups of Y values, we can 
also partition the total variability exactly as we did in the one-way analysis of variance 
(Sections to.la and to.1b). by describing variability among groups (Yj - Y) and 
within groups (Yij - Yi): 

k 
among-groups SS = ~ ni (Yj 

j= I 

among-groups OF = k - 1, 

(
IIi ) 2 
~Yjj -yt = ± .....:....-i=_I---,-_ 

j=1 nj 
- C. (17.40) 

(17.41) 

within-groups SS = total SS - among-groups SS. (17.42) 

within-groups OF = total OF - among-groups OF = N - k. (17.43) 

The variability among groups (Yj - Y) can also be partitioned. Part of this variability 
(Yj - Y) results from the linear regression fit to the data. and the rest (Yj - "yj) 
is due to the deviation of each group of data from the regression line, as shown in 
Figure 17.10. Therefore, 

deviations-from-linearity SS = among-groups SS - regression SS (17.44) 

and 

deviations-from-linearity OF = among-groups OF - regression OF 
= k - 2. (17.45) 

Table 17.2 summarizes this partitioning of sums of squares. 
Alternatively. and with identical results. we may consider the residual variability 

(Yij - Yi) to be divisible into two components: within-groups variability (Yij - Yi) 
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FIGURE 17.10: An enlarged portion of Figure 17.9, showing the partitioning of Y deviations. The mean 
Y at X = 50 yr is 134.3 mm Hg, shown by the symbol "0"; the mean of all Y's is V, shown by a dashed 
line; Yij is the jth Y at the ith X; and V; is the mean of the n; Y's at X;. 

TABLE 17.2: Summary of the Analyses of Variance Calculations for Testing Ho: the 
Population Regression Is Linear, and for Testing Ho: f3 = 0 

Source of variation 

Total [Yij - VJ 

Linear regression 

[Vi - V] 
Residual 

[Y;j - V;] 

Among groups 
[Vi - Y] 

Linear regression 

[Vi - V] 
Deviations from 

linearity 

[Vi - V;J 
Within groups 

[Yij - Vi] 

Sum of squares 
(SS) 

~l 

(~;t 
total SS - regression SS 

(fY'i)' ( )' k IIi 

~j~ Yij k j=1 
~ -
i= I n; N 

(~XYl 
~x 

among-groups SS - regression SS 

total SS - among-groups SS 

Mean Square 
OF (MS) 

N - 1 

regression SS 
regression DF 

N - 2 residual SS 
residual DF 

k - 1 

k - 2 deviations SS 
deviations OF 

N-k within-grou~s SS 
within-groups OF 

Note: To test Ho: the population regression is linear, we use F = deviations MS/within-groups 
MS, with a critical value of Fa(I).(k-2).(N-k)' If the null hypothesis of linearity is rejected, 
then HO: f3 = 0 is tested using F = regression MS/within-groups MS, with a critical value of 
Fa( I ),I.(N-k)· 
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TABLE 17.3: Summary of Analysis of Variance 
Partitioning of Sources of Variation for Testing 
Linearity, as an Alternative to That in Table 17.2 

Source of variation 

Total [Vii - Y] 
Among groups [Vi - YI 
Within groups [Vii - Vi] 

Linear regression [Yi - VJ 
Residual [Vii - Yi] 

Within groups (Yi; - Vi] 
Deviations from linearity [Yi - Yi ] 

OF 

N - 1 
k - 1 
N-k 

N - 2 
N-k 
k - 2 

Note: Sums of squares and mean squares are as in 
Table 17.2. 

and deviations-from-Iinearity (Yi Vi). This partitioning of sums of squares and 
degrees of freedom is summarized in Table 17.3.* 

If the population relationship between Y and X is a straight line (i.e., "Ho: 
The population regression is linear" is a true statement), then the deviations-from­
linearity MS and the within-groups MS will be estimates of the same variance; if 
the relationship is not a straight line (Ho is false), then the deviations-from-linearity 
MS will be significantly greater than the within-groups MS. Thus, as demonstrated in 
Example 17.8b, 

F = deviations-from-linearity MS 
within-groups MS 

(17.46) 

provides a one-tailed test of the null hypothesis of linearity. (If all ni's are equal, then 
performing a regression using the k V's will result in the same b and a as will the 
calculations using all N Yi'S but the significance test for fJ will be much less powerful 
and the preceding test for linearity will not be possible.) The power for the test for 
linearity will be greater for larger numbers of replicate V's at each X. 

If the null hypothesis of linearity is not rejected, then the deviations-from-linearity 
MS and the within-groups MS may be considered to be estimates of the same 
popUlation variance. The latter will be the better estimate, as it is based on more 
degrees of freedom; but an even better estimate is the residual MS, which is s~,x' for 
it constitutes a pooling of the deviations MS and the within-groups MS. Therefore, 
if a regression is assumed to be linear, s~.x is the appropriate variance to use in the 
computation of standard errors (e.g., by Equations 17.20, 17.26-17.29) and confidence 
intervals resulting from them, and this residual mean square (sky) is also appropriate 
in testing the hypothesis Ho: fJ = 0 (either by Equation 17.14 or by Equations 17.20 
and 17.21), as demonstrated in Example 17.8b. 

If the population regression is concluded not to be linear, then the investigator can 
consider the procedures of Section 17.10 or 20.14 or of Chapter 21. If, however, it is 
desired to test Ho: fJ = 0, then the within-groups MS should be substituted for the 
residual MS (s~.x); but it would not be advisable to engage in predictions with the 
linear-regression equation. 

*Some authors refer to deviations from linearity as "lack of fit" and to within-groups variability 
as "error" or "pure error." 
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(a) Regression versus Analysis of Variance. Data consisting of replicate values of 
Y at each of several values of X (such as in Example 17.X) could also he suhmilledto 
a single-factor analysis of variance (Chapter 10). This would be done hy considering 
the X's as levels of the factor and the V's as the data whose means arc to he compared 
(i.e .. Y here is the same as X in Chapter 10). This would test Ho: ILl = IL~ = ... = ILk 
instead of Ho: f3 = O. where k is the numher of different values of X (e.g .. k = 5 
in Example 17.X). When there arc only two levels of the ANOYA factor (i.e .. 
two different X's in regression). the power or testing these two hypotheses is the 
same. Otherwise. the regression analysis will he more powerful than the ANOV A 
(Cottingham. Lennon. and Brown. 2(05). 

7.8 POWER AND SAMPLE SIZE IN REGRESSION 

Although there are hasic differences hetween regression and correlation (see 
Section 17. I). a set of data for which there is a statistically significant regression 
coefficient (i.e .. HII: f3 = 0 is rejected. as explained in Section 17.3) would also yield 
a statistically significant correlation coefficient (i.e .. we would reject HII : P = O. to he 
discussed in Section 19.2). In addition. conclusions ahout the power of a significance 
test for a regression coefficient can he ohtained hy estimating power associated with 
the significance test for the correlation coefficient that would have heen ohtained 
from the same set of data. 

After performing a regression analysis for a set of data. we may ohtain the sample 
correlation coefficient. r. dther from Equation 19.1. or. more simply. as 

r­
r = I> -'-.,. &., 

LY ( 17.47) 

or we may take the square root of the coefficient of determination ,2 (Equation 17.15). 
assigning to it the sign of 1>. Then. with r in hand. the procedures of Section 19.4 may 
he employed (Cohen. I 98X: 76-77) to estimate power and minimum required sample 
size for the hypothesis test for the regression coefficient. HII: f3 = o. 

17.9 REGRESSION THROUGH THE ORIGIN 

Although not of common hiological importance. a special type of regression procedure 
is called for when we are faced with sets of data for which we know. a priori. that 
in the population Y will he zero when X is zero (i.e .. the population Y intercept is 
known to he zero). Since the point on the graph with coordinates (0. 0) is termed 
the origill of the graph. this regression situation is known as regression through the 
origin. In this type of regression analysis. hoth variahles must he measured on a ratio 
scale. for only such a scale has a true zero (see Section 1.1). 

For regression through the origin. the linear regression equation is 

Yi = I>Xi. 

and some of the calculations pertinent to such a regression arc as follows: 

_ LXiYi 
1>- L ., X-

I 

total SS = L Yr. with total DF = 11. 

(l7.4X) 

(17.49) 

( 17.50) 
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(~XiYi)2 
regression SS = ~~....."....:-

~Xf 
with regression DF = 1, 

residual SS = total SS - regression SS, with residual DF = n - 1, 

s2 2 _ Y·X 
sb - LX?, 

( 17.51) 

(17.52) 

( 17.53) 

where s~.x is residual mean square (residual SS/residual OF). Tests of hypotheses 
about the slope of the line are performed, as explained earlier in this chapter, with 
the exception that the preceding values are used; n - 1 is used as degrees of freedom 
whenever n - 2 is used for regressions not assumed to pass through the origin. 
Some statisticians (e.g., K valseth, 1985) caution against expressing a coefficient 
of determination, ,2, for this kind of regression. Bissell (1992) discusses potential 
difficulties with, and alternatives to, this regression model. A regression line forced 
through the origin does not necessarily pass through point (X, Y). 

(a) Confidence Intervals. For regressions passing through the origin, confidence 
intervals may be obtained in ways analogous to the procedures in Section 17.5. That 
is, a confidence interval for the population regression coefficient, f3, is calculated using 
Equation 17.53 for si and An - 1 degree of freedom in place of n - 2. A confidence 

interval for an estimated Y is 

s. = 2 (Xl) 
y Sy·x ~X2 ' (17.54) 

using the s~.x as in Equation 17.53; a confidence interval for Vi predicted as the mean 
of m additional measurements at Xi is 

(Sy)", = 2 (1 Xf ). Sy·x - + ~ ? ' 
m ~X-

( 17.55) 

A 

and a confidence interval for the Yi predicted for one additional measurement of Xi is 

2 ( Xf ) (Sy)\ = sx·y 1 + LX2 (17.56) 

(Seber and Lee, 2003: 149). 

(b) Inverse Prediction. For inverse prediction (see Section 17.6) with a regression 
passing through the origin. 

A y. 
x=-1. 

I b ' ( 17.57) 

and the confidence interval for the Xi predicted at a given Y is 

X + b Yj ±.!.... 2 (-.!L + K) 
K K Sy·x LX? . (17.58) 

where / = la(2).(n-1) and* K = b2 - /2si (Seber and Lee, 2003: 149). 

* Alternatively. K = b2 - Fs·t. where F = '~(2).("-1) =: Fa( 1 ).1.(11-1)' 
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If X is to be predicted for multi pic values of Y at that X, then 

A y. 
X,' = --1. 

b ' 
(17.59) 

where Y; is the me.m of m values of Y; and the confidence limits would be calculated 
as 

X + bY; ± !.- I(~ )' ( Y7 + K) 
K K V Y·x ~ X2 m' 

where t = ta(2).(n+III-2) and* K = b2 - F(S~)': 

and 

( 2)' _ (s~.x)'. 
Sh - ~X2' 

III 
~ - 2 residual SS + ~ (Y;j - Y;) 

., }=I 
(Sy·x)' = ---------'-----­

n+m-2 
(Seber and Lee. 2003: 149). 

'.10 DATA TRANSFORMATIONS IN REGRESSION 

(17.60) 

(17.61) 

(17.62) 

As noted in Section 17.2d, the testing of regression hypotheses and the computation 
of confidence intervals-though not the calculation of a and b-depend upon the 
assumptions of normality and homoscedasticity, with regard to the values of Y. the 
dependent variable. Chapter 13 discussed the logarithmic. square-root, and arcsine 
transformations of data to achieve closer approximations to these assumptions. 
Consciously striving to satisfy the assumptions often (but without guaranty) appeases 
the others. The same considerations are applicable to regression data. 

Transformation of the indepcndent variable will not affect the distribution of Y. 
so transformations of X generally may be made with impunity. and sometimes they 
conveniently convert a curved line into a straight line. However. transformations 
of Y do affect least-squares considerations and will therefore be discussed. Acton 
(1966: Chapter 8); Glantz and Slinker (2001: 150-154); Montgomery, Peck, and 
Vining (2001: 173-193); and Weisberg (2005: Chapter 7) present further discussions 
of transformations in regression. 

If the values of Yare from a Poisson distribution (i.e., the data are counts, especially 
small counts), then the square-root transformation is usually desirable: 

Y' = Jy + 0.5, (17.63) 

where the values of the variable after transformation (Y') are then submitted to 
regression analysis. (Also refer to Section 13.2.) 

If the Y values are from a binomial distribution (e.g .• they are proportions or 
percentages), then the arcsine transformation is appropriate: 

y' = arcsin ../Y. (17.64) 

(See also Section 13.3.) Appendix Table 8.24 allows for ready use of this transforma­
tion. 

* Alternatively. K = h2 - F(.~~ )'. where F = 1~(2).(II+III-2) = Fa( 1 ).I.(n+m-2). 
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The most commonly used transformation in regression is the logarithmic trans­
formation (see also Section 13.l). although it is sometimes employed for the wrong 
reasons. This transformation. 

y' = log y, ( 17.65) 

or 
Y' = log( Y + 1), ( 17.66) 

is appropriate when there is heteroscedasticity owing to the standard deviation of 
Y at any X increasing in proportion to the value of X. When this situation exists, 
it implies that values of Y can be measured more accurately at low than at high 
values of X. Figure 17.11 shows such data (from Example 17.9) before and after the 
transformation. 

EXAMPLE 17.9 
mation of Y 

Regression Data Before and After Logarithmic Transfor-

Original data (as plotted in Figure 17.11a), indicating the variance of Y (namely, 
st) at each X: 

X Y \.2 • Y 

5 10.72, 11.22, 11.75. 12.31 0.4685 
10 14.13,14.79,15.49,16.22 0.8101 
15 18.61. 19.50,20.40,21.37 1.4051 
20 24.55,25.70,26.92,28.18 2.4452 
25 32.36,33.88,35.48.37.15 4.2526 

Transformed data (as plotted in Figure 17.11 b). indicating the variance of log Y 
(namely. sfog y) at each X: 

X log Y 2 
Slog Y 

5 1.03019, 1.04999, 1.07004, 1.09026 0.000668 
10 1.15014,1.16997,1.19005.1.21005 0.000665 
15 1.26975. 1.29003, 1.30963, 1.32980 0.000665 
20 1.39005, 1.40993. 1.43008. 1.44994 0.000665 
25 1.51001. 1.52994. 1.54998, 1.56996 0.000666 

Many scatter plots of data imply a curved. rather than a straight-line, dependence of 
Yon X (e.g., Figure 17.lla). Often, logarithmic or other transformations of the values 
of Y and/or X will result in a straight-line relationship (as Figure 17.11 b) amenable to 
linear regression techniques. However. if original, nontransformed values of Yagree 
with our assumptions of normality and homoscedasticity, then the data resulting from 
any of the preceding transformations will not abide by these assumptions. This is 
often not considered, and many biologists employing transformations do so simply 
to straighten out a curved line and neglect to consider whether the transformed 
data might indeed be analyzed legitimately by least-squares regression methods. If 
a transformation may not be used validly to straighten out a curvilinear regression. 
then Section 20.15 (or perhaps Chapter 21) may be applicable. 
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FIGURE 17.11: Regression data (of Example 17.9) exhibiting an increasing variability of Y with increasing 
magnitude of X. (a) The Clriginal data. (b) The data after logarithmic transformation of Y. 

Section 13.4 mentions some other, less commonly employed, data transformations. 
Iman and Conover (1979) discuss rank transformation (i.e., performing a regression 
of the ranks of Y on the ranks of X). 

(a) Examination of Residuals. Since the logarithmic transformation is frequently 
proposed and employed to try to achieve homoscedasticity, we should consider 
how a justification for such a transformation might be obtained. If a regressi?n 
is fitted by least squares, then the sample residuals (i.e., the values of Yi - Yi) 
may be plotted against their corresponding X's, as in Figure 17.12 (see Draper 
and Smith, 1998: 62-64). If homoscedasticity exists, then the residuals should be 
distributed evenly above and below zero (i.e .• within the shaded area in Figure 17.12a). 
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FIGURE 17.12: The plotting of residuals. (a) Data exhibiting homoscedasticity. (b) Data with heteroscedas­
ticity of the sort in Example 17.9. (c) Data for which there was likely an error in the regression calculations, 
or an additional variable is needed in the regression model. (d) Data for which a linear regression does 
not accurately describe the relationship between Y and X, and a curvilinear relationship should be 
considered. 

If there is heteroscedasticity due to increasing variability in Y with increasing 
values of X. then the residuals will form a pattern such as in Figure 17.12b, and 
a logarithmic transformation might be warranted. If the residuals form a pattern 
such as in Figure 17.12c. we should suspect that a calculation error has occured 
or. that an additional important variable should be added to the regression model 
(see Chapter 20). The pattern in Figure 17.12d indicates that a Iillt'tlr regression is 
an improper model to describe the data: for example, a quadratic regression (see 
Section 21.2) might be employed. 

Glejser (1969) suggests fitting the simple linear regression 

Ej = a + hXj. (17.67) 
A 

where Ej = I Yj - Yjl. A statistically significant b greater than zero indicates 
Figure 17.12b to be the case. and the logarithmic transformation may be attempted. 
Then. after the application of the transformation. a plot of the new residu-
als (i.e .• log Yj - ~) should be examined and Equation 17.67 fitted. where 

Ej = Ilog Yj - IoiYi I. If this regression has a b not significantly different from zero, 

then we may assume that the transformation was justified. An outlier (see Section 
17.2d) will appear on plots such as Figure 17.12 as a point very far outside the pattern 
indicated by the shaded area. 

Tests for normality in the distribution A of residuals may be made by using the 
methods of Section 6.6 (employing Yj - Yj in place of Xj in that section): graphical 
examination of normality (as in Figure 6.11) is often convenient. 
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'.11 THE EFFECT OF CODING DATA 

Either X or Y data. or both, may he coded prior to the application of regression 
analysis. and coding may facilitate computations, especially when the data are very 
large or very small in magnitude. As shown in Sections 3.5 and 4.8. coding may consist 
of adding a constant to (or subtracting it from) X. or multiplying (or dividing) X 
by a constant; or both addition (or subtraction) and multiplication (or division) may 
be applied simultaneously. Values of Y may be coded in the same fashion: this may 
even be done simultaneously with the coding of X values. using either the same or 
different coding constants. If we let M x and My represent constants by which X 
and Y. respectively. are to be multiplied. and let Ax and Ay be constants then to be 
added to MxX and MyY. respectively. then the transformed variables. rX] and rY]. 
arc 

[XI = MxX + Ax (l7.oH) 

and 
[YI = MyY + Ay. (17.69) 

As shown in Appendix C. the slope. b. will not be changed hy adding constants to X 
and/or Y. for such transformations have the effect of simply sliding the scale of one 
or both axes. But if multiplication factors are used in coding. then the resultant slope. 
[b]. will be equal to (b )(Myj Mx). Note that coding in no way alters the value of f2 
or the t or F statistics calculated for hypothesis testing. 

A common situation involving multiplicative coding factors is one where the 
variables were recorded using certain units of measurement. and we want to determine 
what regression statistics would have resulted if other units of measurement had been 
used. 

For the data in Examples 17.1. 17.2. and 17.3, a = 0.715 cm. and h = 0.270 cm/day. 
and Sy·x = O.218cm. If the wing length data were measured in inches. instead of 
in centimeters. there would have to he a coding hy multiplying by 0.3937 in./cm 
(for there are 0.3937 inches in one centimeter). By consulting Appendix C. with 
My = 0.3937 in./cm. Ay = O.Mx = 1. and Ax = O. we can calculate that if a 
regression analysis were run on these data. where X was recorded in inches. the 
slope would be [b] = (0.270 cm/day ) (0.3937 in./cm) = 0.106 in./day: the Y intercept 
would be laJ = (0.715 cm)(0.3937 in./cm) = 0.2HI in.: and the standard error of 
estimate would be .\Yx = (0.3937 in./cm)( 0.21 H cm) = O.OH6. 

A situation employing coding by both adding a constant and multiplying a constant 
is when we have temperature measurements in degrees Celsius (or Fahrenheit) and 
wish to determine the regression equation that would have resulted had the data been 
recorded in degrees Fahrenheit (or Celsius). The appropriate coding constants for use 
in Appendix C are determined hy knowing that Celsius and Fahrenheit temperatures 
are related as follows: 

degrees Celsius = (~) (degrees Fahrenheit) - (~) (32) 

degrees Fahrenheit = (~) (degrees Celsius) + 32. 

This is summarized elsewhere (Zar. 1968). as are the effects of multiplicative coding 
on logarithmically transformed data (Zar. 1(67). 
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EXERCISES 

17.1. The following data arc the ratl!s of oxygen con­
sumption of birds. measured at different environ­
mental temperatun!s: 

Temperatllre 
(C) 

-lit 
-15. 
-10. 
- 5. 

O. 
S. 

10. 
19. 

Oxygell 
consllmption 

(mllglhr) 

5.2 
4.7 
45 
3.6 
3.4 
3.1 
2.7 
l.X 

(a) Calculate a and b for the regression of oxygen 
consumption rate on temperature. 

(b) Test. by analysis of variance. the hypothesis 
N,,: 13 = o. 

(c) Test. by the t test. the hypothesis H,,: 13 = O. 
(d) Calculate the standard error of estimate ofthe 

regression. 
(e) Calculate the coefficient of determination of 

the regression. 
<0 Calculate the 95% contidence limits for 13. 

17.2. Utilize the regression equation computed for the 
data of Exercise 17.1. 
(a) What is the mean rate of oxygen consumption 

in the population for birds at 15 C? 

(b) What is the 95% confidence interval for this 
mean rate? 

(c) If we randomly chose one additional bird at 
IS' C from the popUlation. what would its rate 
of oxygen consumption be estimated to he? 

(d) We can be 95% confident of this value lying 
between what limits'? 

17.3. The frequency of electrical impulses emitted from 
electric fish is measured from three fish at each 
of several temperatures. The resultant data are as 
follows: 

Temperatllre 
(C) 

20 
22 
23 
25 
27 
28 
30 

Impllise /reC/I/('Ilcy 
(number/sec) 

225.230.239 
251. 259. 265 
266. 273.2XO 
2X7. 295. 302 
301. 310. 317 
307.313.325 
324. 330. 33X 

(a) Compute a and h for the linear regression 
equation relating impulse frequency to tern· 
perature. 

(b) Test. by analysis of variance II,,: 13 = o. 
(c) Calculate the standard error of estimate of the 

regression. 
(d) Calculate the coefficient of determination of 

the regression. 
(e) Test JI,,: The population regression is linear. 



C HAP T E R 18 

Comparing Simple Linear Regression 
Equations 

18.1 COMPARING TWO SLOPES 
181 COMPARING TWO ELEVATIONS 
18.3 COMPARING POINTS ON TWO REGRESSION LINES 
18.4 COMPARING MORE THAN TWO SLOPES 
18.5 COMPARING MORE THAN TWO ELEVATIONS 
18.6 MULTIPLE COMPARISONS AMONG SLOPES 
18.7 MULTIPLE COMPARISONS AMONG ELEVATIONS 
18.8 MULTIPLE COMPARISONS OF POINTS AMONG REGRESSION LINES 
18.9 AN OVERALL TEST FOR COINCIDENTAL REGRESSIONS 

A regression equation may he calculated for each uf two or more samples of data tu 
cumpare the regression relationships in the populations from which the samples came. 
We may ask whether the slopes of the regression lines are significantly different (as 
opposed to whether they may he estimating the same population slope. f3). Then, if it 
is concluded that the slopes of the lines are not significantly different. we may want to 
lest whether the several sets of data arc from populations in which the population Y 
intercepts. as well as the slopes. arc the same. In this chapter. procedures for testing 
differences among regression lines will he presented. as summarized in Figure 18.1. 

18.1 COMPARING TWO SLOPES 

The comparison of the slopes of two regression lines is demonstrated in Example I K I. 
The regression relationship to he studied is the amount of water lost by salamanders 
maintained at various environmental temperatures. Using the methods of Section 
17.2 or 17.7. a regression line is determined using data from each of two species of 
salamanders. The regression line for 26 animals of species I is 10.57 + 2.97X. and 
that for 30 animals of species 2 is 24.91 + 2.17 X: these two regression lines are shown 
in Figure 18.2. Temperature. the independent variahle (X). is measured in degrees 
Celsius. and the dependent varia hIe (Y) is measured in microliters (JLI) of water per 
gram of body weight per hour. Example 18. I shows the calculations of the slope of 
each of the two regression lines. In this example. the slope of the line expresses water 
loss. in JLllg/hr. for each temperature increase of I C. The raw data (the 26 X and Y 
data for species I and the 30 pairs of data for species 2) are not shown. hut the sums 
of squares (LX2 and Ii) and sum of crossproducts (Ixy) for each line are given in 
this example. (The calculation of the Y intercepts is not shown.) 

As shown is Example I R.I. a simple method for testing hypotheses ahout equality of 
two popUlation regression coefficients involves the use of Student's I in a fashion anal­
ogous to that of testing for differences hetween two population means (Section 8.1). 
The test statistic is 

t = b l - b2 
Shl -/)2 

(18.1 ) 
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Test H,,: /31 = /32 
(Section Uti) 

How many lines? 

Test H,,: /31 = /32 = ... = /3. 

H"not reje~ejected 
(Section 111.4) 

II" not rejc~ejected 
I. Compute common slope 

(Equation IH.9) 
2. Test II,,: Both population 

elevations are equal 
(Section HI.2) 

11,,00' "j'~<j<'''d 
I. Compute common STOP 

regression equation 
(Equation IH.24) 

2. STOP 

STOP I. Compute common I. Multiple comparison 
slope (Equation I H.30) testing of slopes 

2. Test H,,: All k (Section 111.6) 
population elevations 2. STOP 
are equal 
(Section 18.5) 

H"not reje~CjCcted 

1. Compute common 1. Multiple comparison 
regression equation testing of elevations 
(Equation 18.24) (Section 18.7) 

2. STOP 2. STOP 

FIGURE 18.1: Flow chart for the comparison of regression lines. 

EXAMPLE 18.1 Testing for Difference Between Two Population Regres-
sion Coefficients 

For each of two species of salamanders, the data are for water loss (Y, measured 
as p,1/g/hr) and environmental temperature (X. in 0C). 

Ho: f31 = f32 

HA: f31 #: f32 

For Species 1: 

n =26 

~x2 = 1470.8712 

~xy = 4363.1627 

~i = 13299.5296 

b = 4363.1627 = 2.97 
1470.8712 

residual SS = 13299.5296 

( 4363.1627 )2 

1470.8712 

= 356.7317 

residual DF = 26 - 2 = 24 

(s2 ) = 356.7317 + 273.9142 = 12.1278 
Y·x p 24 + 28 

Sbl-b2 = 12.1278 + 12.1278 = 0.1165 
1470.8712 2272.4750 

For Species 2: 

n =30 

~ Xl = 2272.4750 

~xy = 4928.8100 

~ y2 = 10964.0947 

b = 4928.8100 = 2.17 
2272.4750 

residual SS = 10964.0947 

( 4928.8100)2 

2272.4750 

= 273.9142 

residual DF = 30 - 2 = 28 
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t = 2.97 - 2.17 = 6.867 
0.1165 

v = 24 + 28 = 52 

Reject Ho if It I ;;;, ta(2 ).v 

10.05(2).52 = 2.007; Reject Ho. 

P < 0.001 [P = 0.0000000081] 

Calculation not shown: 

al = 10.57 a2 = 24.91 

where the standard error of the difference between regression coefficients is 

and the pooled residual mean square is calculated as 

(;. ) = (residual SS) I + (residual SSh 
y·x P (residual OF») + (residual OFh' 

(IR.2) 

(18.3 ) 

the subscripts 1 and 2 referring to the two regression lines being compared. The 
critical value of t for this test has (Ill - 2) + (n2 - 2) degrees of freedom (i.e., the 
sum of the two residual degrees of freedom), namely 

(18.4) 

Just as the t test for difference between means assumes that ur = u~, the preceding 
1 test assumes that (ut.x ) I = (ut.x h. The presence of the latter condition can be 
tested by the variance ratio test, F = (st.x »)argcr/ (st.x )smaller; but this is usually not 
done due to the limitations of that test (see Section 8.5). 

The 1 - (){ confidence interval for the difference between two slopes. f31 and f32, is 

(b l - b2) ± ta(2),vShl-h2' 

where v is as in Equation 18.4. Thus, for Example 18.1, 

(18.5) 

95% confidence interval for f31 - f32 = (2.97 - 1..17) ± (/0.05(2).52)(0.1165) 

= 0.80 ± (2.007)(0.1165) 

= 0.80 pJ/g/hrrC ± 0.23 pJ/g/hrre; 

and the upper and lower 95% confidence limits for f31 - f32 are Ll = 0.57 pJ/glhr/oC 
and L2 = 1.03 MUg/hr/o C. 

If Ho: f31 = f32 is rejected (as in Example 18.1), we may wish to calculate the point 
where the two lines intersect. The intersection is at 

(18.6) 
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A 

at which the value of Y may be computed either as 

or 

The point of intersection of the two lines in Example 18.1 is at 

x - _24_.9_1 __ 10_.5_7 = 17.920 C 
I - 2.97 2.17 

and 
A 

Y, = 1.057 + (2.97)(17.92) = 63.79 pJ/g/hr;oC. 

Figure 18.2 illustrates this intersection. 

12() 

IO() 
... 

.t:: ...... 
~ !!II -a. 
.5 
;:...: 
.,; 60 

~ 
..l ... 40 '" Cii 
~ 

20 

() 

Temperature. X. in °c 

FIGURE 18.2: The two regression lines of Example 18.1. The two slopes are concluded to be significa 
different and the two lines are found to intersect at X, = 17.92"( and Y, = 63.79,.d/g/hr. 

If Ho: /31 = /32 is not rejected (as will be shown in Example 18.2), then an estimat4 
of the population regression coefficient, /3, underlying both bl and b2 is called tm 
common (or weighted) regression coefficient: 

be = (LXY)) + (LXY)z 
(Lx2)1 + (Lx2)2 

or, equivalently (but with more chance of rounding error), 

(18.9 

(18.10 
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Equation 18.1 is a special case of 

t == Ihl - h21 - f30 

.'ibl-b2 
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(18.1 1) 

namely when f30 = O. By using Equation 18.11. we may test the hypothesis that the 
difference between two population regression coefficients is a specified magnitude: 
that is, 11.0: f31 - f32 = f30 may be tested against HA: f3, - f32 =I' f3o. 

One-tailed testing is also possible, asking whether one population regression 
coefficient is greater than the other. If we test Ho: f31 ;?: f32 and HA: f31 < f32, or 
Ho: f31 - f32 ;?: f30 versus H A: f31 - f32 < f3(), then Ho is rejected if t :s;; - ta( I ).v; if we 
test Ho: f31 :s;; f32 and HA: f31 > f32, or Ho: f31 - f32 :s;; f30 versus HA: f31 - f32 > f3o. 
then we reject Ho if t ;?: ta( I }.v. In either case, I is computed by Equation 18.1. or by 
Equation 18.11 if f30 =I' O. 

An alternative method of testing Ho: f31 = f32 is by the analysis of covariance 
procedure of Section 18.4. However, if a computer program is not used, the preceding 
t test generally involves less computational effort. 

(a) Power and Sample Size in Comparing Regressions. In Section 17.8 it was 
explained that the procedure for consideration of power in correlation analysis 
(Section 19.4) could be used to estimate power and sample size in a regression 
analysis. Section 19.6 presents power and sample-size estimation when testing for 
difference between two correlation coefficients. Unfortunately. utilization of that 
procedure for comparing two regression coefficients is not valid-unless one has the 

rare case Of(~x2)1 = (Lx2)2 and (~i), = (Li)2 (Cohen, 1988: 1 to). 

COMPARING TWO ELEVATIONS 

If Ho: f31 = f32 is rejected. we conclude that two different populations of data have 
been sampled. However, if two population regression lines are not concluded to have 
different slopes (i.e., Ho: f31 = f32 is not rejected), then the two lines are assumed to 
be parallel. In the latter case, we often wish to determine whether the two population 
regressions have the same elevation (i.e., the same vertical position on a graph) and 
thus coincide. 

To test the null hypothesis that the elevations of the two population regression 
lines are the same, the following quantities may be used in a t test, as shown in 
Example 18.2: 

sum of squares of X for common regression 

(18.12) 

sum of crossproducts for common regression 

(18.13) 

sum of squares of Y for common regression 

(18.14) 

residual SS for common regression 

(18.15) 
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residual OF for common regression = DFc = nl + n2 - 3, (18.16) 

and 

residual MS for common regression = (s~.x)c = SSe 
DFc 

(18.17) 

Then, the appropriate test statistic is 

t = r==(,=Y::::I=-=Y::::2=) =-=bc=(=X::::1 =-=X::::2=) = 
(s~.x )c[~ + ~ + (XI - X2 )2] 

(18.18) 

nl n2 Ac 

and the relevant critical value of t is that for v = OFe• Example 18.2 and Figure 183 
consider the regression of human systolic blood pressure on age for men over 40 
years old. A regression equation was fitted for data for men in each of two different 
occupations. The two-tailed null hypothesis is that in the two sampled populations 
the regression elevations are the same. This also says that blood pressure is the same 
in both groups, after accounting for the effect of age. In the example, the Ho of equal 
elevations is rejected, so we conclude that men in these two occupations do not have 
the same blood pressure. As an alternative to this t-testing procedure, the analysis 
of covariance of Section 18.4 may be used to test this hypothesis, but it generally 
requires more computational effort unless a computer package is used. 

EXAMPLE 18.2 Testing for Difference Between Two Population Regres-
sion Coefficients and Elevations 

The data are for systolic blood pressure (the dependent variable, Y, in millimeters 
of mercury [i.e .. mm Hg]) and age (the independent variable, X, in years) for men 
over 40 years of age; the two samples are from different occupations. 

For Sample 1: For Sample 2: 

n = 13 n = 15 

X = 54.65 yr X = 56.93 yr 

Y = 170.23 mm Hg Y = 162.93 mm Hg 

Lx2 = 1012.1923 L x2 = 1659.4333 

LXY = 1585.3385 ~ xy = 2475.4333 

~i = 2618.3077 ~ y2 = 3848.9333 

b = 1.57 mm Hglyr b = 1.49 mm Hglyr 

a = 84.6mm Hg 0= 78.0mm Hg 

residual SS = 135.2833 residual SS = 156.2449 

residual DF = II residual DF = 13 

HI): /31 = /32 
HA : /31 "* /32 

....... 



Section 18.2 Comparing Two Elevations 369 

(2 ) _ 135.2833 + 156.2449 = 12.1470 
Sy·x p - 11 + 13 

II = 11 + 13 = 24 

.\·h\ -/J2 = 0.1392 

I = 1.57 -1.49 = 0.575 
O.I.W2 

to.05(2).24 = 2.064: do not reject Ho. 

P > 0.50 [P = 0.57] 

Ho: The two population regression lines have the same elevation. 
H A: The two population regression lines do not have the same elevation. 

Ac = tOI2.1923 + 1659.4333 = 2671.6256 

Be = 1585.3385 + 2475.4333 = 4060.7718 

Ce = 2618.3077 + 3848.9333 = 6467.2410 

b. = 4060.7718 = 1.520 mm H / r 
{ 2671.6256 g Y 

SS ~ = 6467.24tO - (406O.7718f = 295.0185 
( 2671.6256 

DFc = 13 + 15 - 3 = 25 

(s} x)e = 295.0185 = 11.8007 
. 25 

I = (170.23 - 162.93) - 1.520( 54.65 - 56.93) = to.77 = 8.218 

[ ( )71 1.3t05 11.8007 .l + -.l. + 54.65 - 56.93 -
13 15 2671.6256 

to.05( 2 ).25 = 2.060: reject Ho. 

P < 0.001 [P = 0.0000000072] 

If it is concluded that two population regressions do not have different slopes but 
do have different elevations, then the slopes computed from the two samples are both 
estimates of the common population regression coefficient. and the Y intercepts of 
the two samples are 

(18.19) 

and 

( 18.19a) 

and the two regression equations may be written as 

(18.20) 

and 
A 

Y; = Q2 + heX; (18.20a) 
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AGURE 18.3: The two regression lines of Example 18.2. 

(though this can be misleading if X = 0 is far from the range of X's in the sample). 
For the two lines in Example 18.2 and Figure 18.3. 

" Y; = 84.6 + 1.S2X; 

and 
" 
Y; = 78.0 + l.S2X;. 

If it is concluded that two population regressions have neither different slopes 
nor different elevations, then both sample regressions estimate the same popula­
tion regression, and this estimate may be expressed using the common regression 
coefficient, be. as well as a common Y intercept: 

Qe = Yp - beXp, 

where the pooled sample means of the two variables may be obtained as 

and 

X - IlIXI + 1l2X2 
p-

ilI + III 

Y _ IlIYI + 1l2Y2 
p-

ilI + 112 

(18.21) 

(18.22) 

(18.23) 

Thus. when two samples have been concluded to estimate the same population 
regression, a single regression equation representing the regression in the sampled 
population would be 

Y; = Qe + heX;. (18.24) 

We may also use t to test one-tailed hypotheses about elevations. For data such as 
those in Example 18.2 and Figure 18.3, it might have been the case that one occupation 
was considered to be more stressful, and we may want to determine whether men in 
that occupation had higher blood pressure than men in the other occupation. 
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This t test of elevations is preferable to testing for difference between the two 
population Y intercepts. Difference between Y intercepts would be tested with the 
null hypothesis Ho : a( = a2. using the sample statistics Q( and Q2. and could proceed 
with 

where 

t = Q( - a2 • 

S"I- 02 

(18.25) 

(18.26) 

(the latter two equations are a special case of Equations 18.27 and 18.28). However. 
a test for difference between Y intercepts is generally not as advisable as a test for 
difference between elevations because it uses a point on each line that may lie far from 
the observed range of X·s. There are many regressions for which the Y intercept has 
no importance beyond helping to define the line and in fact may be a sample statistic 
prone to misleading interpretation. In Figure 18.3. for example. discussion of the Y 
intercepts (and testing hypotheses about them) would require a risky extrapolation 
of the regression lines far below the range of X for which data were obtained. This 
would assume that the linear relationship that was determined for ages above 40 
years also holds between X = 0 and X = 40 years. a seriously incorrect assumption 
in the present case dealing with blood pressures. Also. because the Y intercepts are 
so far from the mean values of X. their standard errors would be very large. and a 
test of Ho: a( = a2 would lack statistical power. 

COMPARING POINTS ON TWO REGRESSION LINES 

If the slopes of two regression lines and the elevations of the two lines have not been 
concluded to be different. then the two lines are estimates of the same population 
regression line. If the slopes of two lines are not concluded to be different. but their ele­
vations are declared different. the~ the population lines are assumed to be parallel. and 
for a given Xj. the corresponding Yj on one line is different from that on the other line. 

If the slopes of two population regression lines are concluded different. then the 
lin~s are intersecting rather than para!leJ. In such cases we may wish to test whether 
a Y on one line is the same as the Y on the second line at a particular X. For a 
two-tailed test. we can state the null hypothesis as Ho: J.L y = J.L Y2 and the alternate 

as HA : J.L Y1 * J.L y2 • The test statistic is 1 

A A 

t = Y, - Y2 (18.27) 
s' . . Y1-Y! 

where 

and the degrees of freedom are the pooled degrees of freedom of Equation 18.4. Such 
a test is demonstrated in Example 18.3. 
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EXAMPLE 18.3 Testing for Difference Between Points on the Two Non­
parallel Regression Lines of Example 18.1 and Figure 18.2. We Are Testing 
Whether the Volumes (Y) Are Different in the Two Groups at X = 12"( 

Ho: J.L)'I = J.L Y2 
HA : J.L y' #- J.L y' 

I 2 

Beyond the statistics given in Example 18.1. we need to know the following: 

XI = 22.93 r ,C and X2 = 18.95<'C. 

We then compute: 

YI = 10.57 + (2.97)(12) = 46.21 J.LI/glhr 
A 

Y2 = 24.91 + (2.17)(12) = 50.95 J.Ll/g/hr 

.'I' • = 12.1278[1. + 1. + (12 - 22.93)2 + (12 - 18.95)2] 
YI- Y2 \ 26 30 1470.8712 2272.4750 

= J2.1135 = 1.45 J.LI/glhr 

t = 46.21 - 50.95 = -3.269 
1.45 

v = 26 + 30 - 4 = 52 

to.05(2).52 = 2.007 

As III > to.05(2).52' reject Ho· 

0.001 < P < 0.002 [P = 0.0019) 

One-tailed testing is also possible. Ho~ever, it should be applied with caution. as it 
assumes that each of the two predicted Y's has associated with it the same variance. 
Therefore. the test works best when the two lines have the same X, the same LX2, 
and the same n. 

18.4 COMPARING MORE THAN TWO SLOPES 

If the slopes of more than two regression equations are to be compared, the null 
hypothesis Ho: {31 = {32 = ... = 13k may be tested. where k is the number of 
regressions. The alternate hypothesis would be that. in the k sampled populations. all 
k slopes are not the same. These hypotheses are analogous to those used in testing 
whether the means are the same in k samples (Chapter 10). The hypothesis about 
equality of regression slopes may be tested by a procedure known as analysis of 
covariance (which was introduced in Section 12.10). 

Analysis of covariance (ANCOVA) encompasses a large body of statistical 
methods. and various kinds of ANCOV A arc presented in many comprehensive 
texts. including some of the books cited in the introduction of Chapter 16. The follow­
ing version of analysis of covariance suffices to test for the equality (sometimes called 
homogeneity) of regression coefficients (i.e .• slopes). Just as an analysis of variance 
for Ho: J.LI = J.L2 = ... = J.Lk assumes that all k population variances are equal 
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(i.e., uT = u~ = ... = uZ), the testing of ~1 = ~2 = ... = ~k assumes that the resid­
ual mean squares in the k populations are all the same (i.e., (u~.x ) I = (u~.x h = 
... = (u~.x )k). Heterogeneity of the k residual mean squares can be tested by 
Bartlett's test (Section 1O.6a), but this generally is not done for the same reasons that 
the test is not often employed as a prelude to analysis-of-variance procedures. 

The basic calculations necessary to compare k regression lines require quantities 
already computed: ~x2. ~xy, ~y2 (i.e .• total SS). and the residual SS and OF for 
each computed line (Table 18.1). The values of the k residual sums of squares may 
then be summed, yielding what we shall call the pooled residual sum of squares, SSp; 
and the sum of the k residual degrees of freedom is the pooled residual degrees of 
freedom, OFJ1' The values of ~ x2• ~ xy. and ~ i for the k regressions may each be 
summed. and from these sums a residual sum of squares may be calculated. The latter 
quantity will be termed the common residual sum of squares. SSe. 

TABLE 18.1: Calculations for Testing for Significant Differences Among Slopes and 
Elevations of k Simple Linear Regression Lines 

Regression I 

Regression 2 

Regression k 

Pooled 
regression 

Common 
regression 

Total 
regression-

~x2 

AI 

Az 

k 

A,. = LA; 
;=1 

A, 

~xy 

BI 

B2 

k 

B,.= LB; 
;= I 

B, 

* See Section 18.5 for explanation. 

~y2 

CI 

C2 

k 

C,. = LC; 
;-1 

C, 

Residual SS 

B2 
SSI = CI - ---1 

AI 
B2 

SS2 = Cz - -.1. 
Az 

SSk = Ck _ BZ 
Ak 

k 

SS,> = LSS; 
;-1 

B2 
SS" = C,. - ~ 

A,. 

B2 
SS, = C, - -1... 

A, 

To test Ho: ~1 = ~2 = ... = ~k. we may calculate 

( SSe - SSp) 

F = ....>..-....;.k.:..,...,.----"-l ---<... 

SSp 

DFp 

Residual OF 

OFI =111 - 2 

OF2 = "2 - 2 

k 

OFp = L(II; - 2) 
;= I 

k 

= L" - 2k 
;= I 

k 

OF,. = L II; - k -
;= I 

k 

OF, = L"; - 2 
;-1 

(18.29) 

a statistic with numerator and denominator degrees of freedom of k - 1 and OFp , 

respectively.· Example 18.4 demonstrates this testing procedure for three regression 
lines calculated from three sets of data (Le .• k = 3). 

*The quantity SSe - SSp is an expression of variability among the k regression coefficients; 
hence. it is associated with k - 1 degrees of freedom. 
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If Ho: /31 = /32 = ... = /3k is rejected, then we may wish to employ a multiple 
comparison test to determine which of the k population slopes differ from which 
others. This is analogous to the multiple-comparison testing employed after rejecting 
Ho: 11-1 = 11-2 = ... = I1-k (Chapter 11), and it is presented in Section 18.6. 

If Ho: /31 = /32 = ... = /3k is not rejected, then the common regression coefficient, 
be, may be used as an estimate of the /3 underlying all k samples: 

k 

~ (~xY)i 
b - :.....i=~I __ _ 

e - k 

~(~x2)i 
(18.30) 

For Example 18.4, this is be = 2057.66/1381.10 = 1.49. 

EXAMPLE 18.4 Testing for Difference Among Three Regression Functions· 

Residual Residual 

~~ ~xY ~l n b SS OF 

Regression 1 430.14 648.97 1065.34 24 1.51 86.21 22 

Regression 2 448.65 694.36 1184.12 29 1.55 109.48 27 

Regression 3 502.31 714.33 1186.52 30 1.42 170.68 28 

Pooled 366.37 77 
regression 

Common 1381.10 2057.66 3435.98 1.49 370.33 79 
regression 

Total 2144.06 3196.78 5193.48 83 427.10 81 
regression 

* The italicized values are those computed from the raw data; all other values are derived 
from them. 

To test for differences among slopes: Ho, /31 = /32 = /33; HA : All three /3's are 
not equal. 

370.33 - 366.37 
3 - 1 F = -----==-36~6O-::.3=-=7-- = 0.42 

77 

As FO.05( I ).2.77 == 3.13, do not reject Ho· 

P > 0.25 [P = 0.66] 

b = 2057.66 = 1.49 
e 1381.10 

To test for differences among elevations. 

Ho: The three population regression lines have the same elevation. 
HA: The three lines do not have the same elevation. 
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427.10 - 370.33 
3 - 1 

F = -----;:,37=0:-":::.3:-:-3-- = 6.06 

79 

As FO.l)s( I ).2.79 == 3.13. reject Ho. 

0.0025 < P < 0.005 [P = 0.0036] 

5 COMPARING MORE THAN TWO ELEVATIONS 

Consider the case where it has been concluded that all k population slopes underlying 
our k samples of data are equal (i.e., HI): {31 = (32 = ... = 13k is not rejected). In 
this situation, it is reasonable to ask whether all k population regressions are, in fact. 
identical; that is. whether they have equal elevations as well as slopes, and thus the 
lines all coincide. 

The null hypothesis of equality of elevations may be tested by a continuation of 
the analysis of covariance considerations outlined in Section 18.4. We can combine 
the data from all k samples and from the summed data compute ~x2. ~xy. ~y2. a 
residual sum of squares, and residual degrees of freedom; the latter will be called the 
total residual sum of squares (SSt) and total residual degrees offreedom (OFt). (See 
Table 18.1.) The null hypothesis of equal elevations is tested with 

SSt - SSe 

F = k - 1 (18.31) 
SSe 
DFc 

with k - 1 and DF(> degrees of freedom. An example of this procedure is offered in 
Example 18.4. 

If the null hypothesis is rejected. we can then employ mUltiple comparisons to 
determine the location of significant differences among the elevations. as described 
in Section 18.6. If it is not rejected. then all k sample regressions are estimates of 
the same population regression. and the best estimate of that underlying population 
regression is given by Equation 18.24 using Equations 18.9 and 18.21. 

.6 MULTIPLE COMPARISONS AMONG SLOPES 

If an analysis of covariance concludes that k population slopes are not all equal. we 
may employ a multiple-comparison procedure (Chapter 11) to determine which {3's 
are different from which-others. For example. the Tukey test (Section 11.1) may be 
employed to test for differences between each pair of {3 values. by Ho: {38 = {3A and 
HA: {38 "* {3A. where A and B represent two of the k regression lines. 

The test statistic is 

_ b8 - bA 
q - SE (18.32) 

If~x2 is the same for lines A and B. use the standard error 

SE = (l8.33) 
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If L x2 is different for lines A and B. then use 

SE = (18.34) 

The degrees of freedom for determining the critical value of q are the pooled residual 
OF (i.e., DFp in Table 18.1). Although it is not mandatory to have first performed the 
analysis of covariance before applying the multiple-comparison test. such a procedure 
is commonly followed. 

The confidence interval for the difference between the slopes of population 
regressions A and B is 

(bB - bA) ± (ta.v.k )(SE), (18.35) 

where qa.v.k is from Appendix Table B.5 and II is the pooled residual OF (i.e., DFp in 
Table 18.1). 

If one of several regression lines is considered to be a control to which each of the 
other lines is to be compared. then the procedures of Dunnett's test (introduced in 
Section 11.3) are appropriate. Here, 

SE = 
2(s~.x )p 

Lx2 
(18.36) 

if L x2 is the same for the control line and the line that is compared to the control line 
(line A), and 

SE = (2)[ 1 + 1 1 Sy·x P 2 2 
(LX )A (LX )control 

( 18.37) 

if it is not. Either two-tailed or one-tailed hypotheses may be thus tested. 
The 1 - a confidence interval for the difference between the slopes of the control 

line and the line that is compared to it (line A) is 

( 18.38) 

where q~(2).v.k is from Appendix Table B.6. 
To apply Scheffe's procedure (Section 11.4), calculate SE as Equation 18.36 or 

18.37, depending on whether L x2 is the same for both lines. 

18.7 MULTIPLE COMPARISONS AMONG ELEVATIONS 

If the null hypothesis Ho : 131 = 132 = ... = 13k has not been rejected and the null 
hypothesis of all k elevations being equal has been rejected, then multiple-comparison 
procedures may be applied (see Chapter 11) to conclude between which elevations 
there are differences in the populations sampled. The test statistic for the Tukey test 
(Section 11.1) is 

(18.39) 

with OF c degrees of freedom (see Table 18.1), where the subscripts A and B refer to 
the two lines the elevations of which are being compared, be is from Equation 18.30, 
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and 

SE = (18.40) 

If Dunnett's test (Section 11.3) is used to compare the elevation of a regression 
line (call it line A) and another line considered to be for a control set of data. 

SE = (18.41 ) 

Equation 18.41 would also be employed if Scheffe's test (Section 11.4) were being 
performed on elevations. 

:18.8 MULTIPLE COMPARISONS OF POINTS AMONG REGRESSION LINES 

If it is concluded that there is no significant difference among the slopes of three or 
more regression lines (i.e., H,,: 131 = 132 = .. , = 13k is not rejected; see Section 18.4), 
then it would be appropriate to test for differences among elevations (see Sections 
18.5 and 18.7). Occasionally, when the above null hypothesis is rejected it is desired 
to ask whether points on the several regression lines differ at a specific value of X. 
This can be done. as a multisample extensi0!1 of Section 18.3. by modifying Equations 
18.27 and 18.28. For each line the value of Y is computed at the specified X. as 

A 

Yi = ai + beX (18.42) 

and a Tukey test is performed for Ho: J.L Yn = J.LYA as 

A A 

YB - YA q = -=--:..:. 
SE 

(18.43) 

where 

SE = 

with DFp degrees of freedom. An analogous Dunnett or Scheffe test would employ 

SE = (18.45) 

A special case of this testing is -.yhere we wish to test for differences among the 
Y intercepts (Le., the values of Y when X = 0), although such a test is rarely 
appropriate. Equations 18.43 and 18.44 for the Tukey test would become 

_ aB - aA 
q - SE . (18.46) 
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and 

SE = + (18.47) 
IlB IlA 

respectively. The analogous Dunnett or Scheffe test for Y intercepts would employ 

SE = ( 2 ) [1 1 (X B )2 + (X A )2]. 
Sy·x P - + - + 

n8 nA (Lx2)B C~::x2)A 
(18.48) 

18.9 AN OVERALL TEST FOR COINCIDENTAL REGRESSIONS 

It is also possible to perform a single test for the null hypothesis that all k regression 
lines are coincident; that is, that the !3's are all the same and that all of the a's are 
identical. This test would employ 

F= 

SSt - SSp 

2(k - 1) 
SSp 

DFp 

(18.49) 

with 2( k - 1) and DFp degrees of freedom. If this F is not significant. then all k 
sample regressions are concluded to estimate the same population regression, and 
the best estimate of that population regression is that given by Equation 18.24. 

Some statistical workers prefer this test to those of the preceding sections in this 
chapter. However, if the null hypothesis is rejected, it is still necessary to employ the 
procedures of the previous sections if we wish to determine whether the differences 
among the regressions are due to differences among slopes or among elevations. 

EXERCISES 

IS.I. Given: 
For Sample 1: 11 = 28. L x2 = 142.35. L xy = 
69.47. Ly2 = 108.77. X = 14.7. Y = 32.0. 
For Sample 2: n = 30. Lx2 = 181.32. LXY = 
97.40. Ly2 :;: 153.59. X = 15.8. Y = 27.4. 

(a) Test H,,: {31 = {32 vs. HA: {31 * {3l· 
(b) If Ho in part (a) is not rejected. test H,,: The 

elevations of the two population regressions 
are the same. versus H A: The two elevations 
are not the same. 

IS.2. Given: 
For Sample 1: 11 = 33. L xl = 744.32. L xy = 
2341.37. Li = 7498.91. 

For Sample 2: n = 34, LX2 = 973.14. LXY = 
3147.68, Ly2 == 10366.97. 
For Sample 3: 1/ = 29. LX2 = 664.42. LXY :;: 
2047.73. Ly2 = 6503.32. 
For the total of all 3 samples: 11 = 96. Lx2 = 
3146.72. LXY = 7938.25. Li = 20599.33. 

(a) Test H,,: {31 = {32 = {33. vs. H A: All three p's 
are not equal. 

(b) If H,,: in part (a) is not rejected. test H,,: The 
three population regression lines have the 
same t!ievation. versus HA : The lines do not 
have the same elevation. 
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19.13 CONCORDANCE CORRELATION 
19.14 THE EFFECT OF CODING 

Chapter 17 introduced simple linear regression. the linear dependence of one 
variable (termed the dependent varia hie. Y) on a second variable (called the 
independent variable. X). In simple linear correlation. we also consider the lin­
ear relationship between two variables. but neither is assumed to be functionally 
dependent upon the other. An example of a correlation situation is the rela­
tionship between the wing length and tail length of a particular species of bird. 
Section 17.1 discussed the difference between regression and correlation. Recall 
that the adjective simple refers to there being only two varia hies considered 
simultaneously. Chapter 20 discusses correlation involving more than two vari­
ables. Coefficients of correlation are sometimes referred to as coefficients of 
as.mciatiof1 . 

19.1 THE CORRELATION COEFFICIENT 

Some authors refer to the two variables in a simple correlation analysis as XI 
and X2. Here we employ the more common designation of X and Y. which docs 
not. however. imply dependence of Y on X as it does in regression: nor does it 
imply a cause-and-effect relationship between the two variahles. Indeed. correla­
lion analysis yields the same results regardless of which variable is laheled X and 
which is Y. 

The correlalion coer/iciem (sometimes called the simple correlation coefficient."' 
indicating that the relationship of only two variables is heing examined) is 

"It is also called the Pearson product-moment correlation coefficient oecause of the algeoraic 
expression of the coeflicient. and the pioneering work on it. oy Karl Pearson (1857 -193(,). who in 
1 Xl)(, was the fir~t to rder to this measure as a correlation coeffkient (David. 1995: Seal. 1%7). This 
followed the major elucidation of the concept of correlation by Sir Francis G'llton (IX22-J9Jl. 
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calculated as· 

(19.1) 

(see Section 17.2a for the definition of the abbreviated symbols Lx2. Li. and LXY~ 
Among other methods (e.g .. Symonds. 1926). Equation 19.1 may be computed by this 
"machine formula": 

(19.2) 

Although the denominator of Equations 19.1 and 19.2 is always positive. the numer­
ator may be positive, zero. or negative. thus enabling r to be either positive. zero, 
or negative. respectively. A positive correlation implies that for an increase in the 
value of one of the variables. the other variable also increases in value; a negative 
correlation indicates that an increase in value of one of the variables is accompa­
nied by a decrease in value of the other variable. t If LXY = 0, then r = 0, and 
there is zero correlation, denoting that there is no linear association between the 
magnitudes of the two variables: that is. a change in magnitude of one does not 
imply a change in magnitude of the other. Figure 19.1 presents these considerations 
graphically.* 

Also important is the fact that the absolute value of the numerator of Equation 19.1 
can never be larger than the denominator. Thus. r can never be greater than 1.0 nor 

cousin of Charles Darwin and proponent of human eugenics) in 1888 (who published it first with 
the terms co-reilltion and reversion). The symbol r can be traced to Galton's 1877-1RH8 discussion 
of regression in heredity studies (he later used r to indicate the slope of a regression line). and 
Galton developed correlation from regression. Indeed. in the early history of correlation. correlation 
coefficients were called Galton functions. The basic concepts of correlation. however, predated 
Galton's and Pearson's work by several decades (Pearson, 1920; Rodgers and Nicewander. 1988; 
Stigler, 1989; Walker, 1929: 92- \02, \06, 109-110. 187). The term coeffidelll of correlation was used 
as early as 1892 by Francis Ysidro Edgeworth (1845-1926: Irish statistician and economist. whose 
uncle and grand-uncle [sic] was Sir Francis Beaufort. 1774-1857: Beaufort conceived the Beaufort 
Wind Scale) (Desmond. 2000; Pearson. 1920). 

*The computation depicted in Equation 19.2 was first published by Harris (19\0). The correlation 
coefficient may also be calculated as r = ~.fy/[(n - I )SXsy] (Walker, 1929: 1 II). It is also the 
case that I r 1= Jbyb x. where by is the regression coefficient if Y is treated as the dependent 
variable (Section 17.2a) and b X is the regression coefficient if X is treated as the dependent 
variable; that is, r is the geometric mean (Section 3.4a) of by and bX; also. following from 
Equation 17.15, Irl = J(Regression SS)/(Total SS); see also Rodgers and Nicewander (1988). In 
literature appearing within a couple of decades of Pearson's work. it was sometimes suggested that 
a correlation coefficient be computed using deviations from the median instead of from the mean 
(Eells. 1926: Pearson. 1920). which would result in a quantity not only different from r but without 
the latter's theoretical and practical advantages. 

tThe first explanation of negative correlation was in an 1892 paper (on shrimp anatomy) by 
English marine biologist Walter Frank Raphael Weldon (1860-1906) (Pearson. 1920). 

+Galton published the first two-varia hie scatter plot of data in 1885 (Rodgers and Nicewander, 
1988). 
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calculated as* 

r= (19.1) 

(see Section 17.2a for the definition of the abbreviated symbols ~ x2. ~ y2. and ~xy). 
Among other methods (e.g., Symonds, 1926), Equation 19.1 may be computed by this 
"machine formula": 

(19.2) 

Although the denominator of Equations 19.1 and 19.2 is always positive. the numer­
ator may be positive, zero, or negative, thus enabling r to be either positive, zero, 
or negative. respectively. A positive correlation implies that for an increase in the 
value of one of the variables. the other variable also increases in value; a negative 
correlation indicates that an increase in value of one of the variables is accompa­
nied by a decrease in value of the other variable. t If LXY = 0, then r = 0, and 
there is zero correlation, denoting that there is no linear association between the 
magnitudes of the two variables; that is, a change in magnitude of one does not 
imply a change in magnitude of the other. Figure 19.1 presents these considerations 
graphically. * 

Also important is the fact that the absolute value of the numerator of Equation 19.1 
can never be larger than the denominator. Thus, r can never be greater than 1.0 nor 

cousin of Charles Darwin and proponent of human eugenics) in 1888 (who published it first with 
the terms co-relation and reversion). The symbol r can be traced to Galton's 1877-1888 discussion 
of regression in heredity studies (he later used r to indicate the slope of a rcgression line). and 
Galton developed correlation from regression. Indeed. in the early history of correlation. correlation 
coefficients were called Galton functions. The basic concepts of correlation. however. predated 
Galton's and Pearson's work by several decades (Pearson. 1920; Rodgers and Nicewander. 1988; 
Stigler. 1989; Walker. 1929: 92-102.106.109-110.187). The term coefficient of correlation was used 
as early as 1892 by Francis Ysidro Edgeworth (1845-1926; Irish statistician and economist, whose 
uncle and grand-uncle [sic} was Sir Francis Beaufort. 1774-1857; Beaufort conceived the Beaufort 
Wind Scale) (Desmond, 2000; Pearson. 1920). 

*The computation depicted in Equation 19.2 was first published by Harris (1910). The correlation 
coefficient may also be calculated as r = ~.t'Y/r<n - 1 )Sxsy] (Walker. 1929: 111). It is also the 
case that I r 1= ~byb X. where by is the regression coefficient if Y is treated as the dependent 
variable (Section 17.2a) and bx is the regression coefficient if X is treated as the dependent 
variable; that is. r is the geometric mean (Section 3.4a) of by and bx; also. following from 
Equation 17.15. Irl = J(Regression SS)/(Total SS); see also Rodgers and Nicewander (1988). In 
literature appearing within a couple of decades of Pearson's work. it was sometimes suggested that 
a correlation coefficient be computed using deviations from the median instead of from the mean 
(Eells. 1926; Pearson. 1920). which would result in a quantity not only different from r but without 
the latter's theoretical and practical advantages. 

tThe first explanation of negative correlation was in an 1892 paper (on shrimp anatomy) by 
English marine biologist Walter Frank Raphael Weldon (1860-1906) (Pearson. 1920). 

*Galton published the first two-variable scatter plot of data in 1885 (Rodgers and Nicewander, 
1988). 
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FIGURE 19.1: Simple linear correlation. (a) Positive correlation. (b) Negative correlation. (c) No correla­
tion. (d) No correlation. 

less than -1.0. Inspection of this equation further will reveal also that r has no units 
of measurement, for the units of both X and Y appear in both the numerator and 
denominator and thus cancel out arithmetically. A regression coefficient, b, may lie in 
the range of -00 :5 b :5 00, and it expresses the magnitude of a change in Yassociated 
with a unit change in X. But a correlation coefficient is unitless and -1 :5 r :5 1. 
The correlation coefficient is not a measure of quantitative change of one variable 
with respect to the other, but it is a measure of strength of association between the 
two variables. That is, a large value of I r I indicates a strong association between X 
and Y. 

The coefficient of determination, ,:z., was introduced in Section 17.3 as a measure 
of how much of the total variability in Y is accounted for by regressing Y on X. In a 
correlation analysis,,:z. (occasionally called the correlation index) may be calculated 
simply by squaring the correlation coefficient, r. It may be described as the amount 
of variability in one of the variables (either Y or X) accounted for by correlating that 
variable with the second variable.· As in regression analysis, ,2 may be considered 
to be a measure of the strength of the straight-line relationship.t The calculation of 
rand ,2 is demonstrated in Example 19.1a. Either r or ,:z. can be used to express the 
strength of the relationship between the two variables. 

* As in Section 17.3a. I - ,1 may be referred to as the coefficient of llondeterm;IIot;Oll. A term 
found in older literature is coefficiem of olienllt;oll: ~. given by Galton in 1889 and named 
by T. L. Kelley in 1919 (Walker. 1929: 175). 

t Ozer (1985) argued that there are circumstances where Irl is a better coefficient of determination 
than ,1. 
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where the standard error of r is calculated hy Equation 19.3. and the degrees of 
freedom are /' = 11 - 2. (Fisher. 1921. 1925h: 157).'" The null hypothesis is rejected i( 
If I ~ t,,(:.' 1.'" 

Alternativc1y. this two-tailed hypothesis may he tested using 

F = I + Irl 
I - Irl 

( 19.5) 

(Cacoullos. 19(5). where the critical value is f~rm.,'., .. (Sec Example 19.1 h.) Or. critical 
values of Irl (namely. ru (:.').,,) may he read directly rrom Appendix Tahle B.17.-:-

One-tailed hypotheses ahout the population correlation coefficient may also be 
tesled hy the aforementioned procedures, For Ihe hypotheses Ho: p:5 0 and H,,: p > n, 
compute either t or F (Equations 19.4 or 19.5. respectively) and reject Ho ir r is positive 
and either t ~ lu{ I )., .. or F ~ 1-:,( I ).,_., .. or r ~ ru ( I ).," To test Ho: p ~ () vs. H,,: P < O. 

reject 110 if r is negative and either It! 2= In( I )., .. or F 2= I'~r( I )., .. or Irl ~ rll ( I )., .. 

If we wish to test Ho: P = PO for any Po other than zero. however. Equations 19.4 
and 19.5 and Appendix Tahle B.17 are not applicahle. Only for po = 0 can r be 
considered to have come from a distrihution approximated hy the normal. and if 
the distrihution of r is not normal. thcn the I and F statistics may not he validly 
cmployed. Fisher (1921. I 925h: 1(2) dealt with this prohlem when he proposed a 
transformation enahling r to he converted to a value. called z. which estimatcs a 
popUlation parameter. {; (lowercase Greek zeta). that is normally distrihuted. The 
transformation::: is 

:. = 0.5 In (~). 
I - ,. 

( IlJ.9) 

For values of,. hetween () and I. the corresponding values of Fisher's z will lie hetween 
() and +()(;: and for ,.·s from {J to - I. the corresponding z's will fall hetween () and -.X'. 

, As an ao;ide. I may also he computed as rollows (Martin Andres. Herranl. Tejedor. and Siha 
Mato. Il)l):'i): Consider all N data (where N = 1/1 + 1/2) to he .. sampk' of me'ISllrements. lind 
associatc with each datum eilhl'r O. if th~ datum is II value of X. or I. if it is a value of Y: consiJcr 
this set or N I.crm and ones to he a second sample of data. Then calculate I for the two sample~. as 
woulll he done in a two-sample I-test (Section 1'1.1). This concept will he ust!d in Section 19.11 h. 

: Critical \alues of r Illay also hc caleulated as 

r"." ':.. ( II).h) 
/1../_ 

,~." + I' 

where Cf may he either onc tailed or two tailed. and" = 1/ - 2. If a regression analysis is performed. 
rather thml a correlation an;llysis. the prohahility of rejection of /10 : f3 = () is idenlical to the 
prohahility of rejeeting./lo: f! = o. Also. /' is related to h as 

r = S'\:h. 
.~ )., 

wherl' .\x anll ~r arc the standarll ueyiat ions of X and Y. respectively. 

( 19.7) 

::::: is also equal to r + r~/3 + r~/5 ... and is a 4ualllit~, thai mathem;lticians rel·og.nil.e a~ 
the inverse hyperholic tangent of r. namely:: = I<llth I r, The transformation of :: to r. g.iwn in 
Appendix Tahle B.1l). is 

,­
(-- -

r =- l<lnh:: or r = ~.: ( I\},H) 
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For convenience. we may utilize Appendix Table B.18 to avoid having to perform the 
computation of Equation 19.8 to transform r to z.* 

For the hypothesis Ho: P = PO, then we calculate a normal deviate, as 

(19.10) 

where z is the transform of r; (0 is the transform of the hypothesized coefficient, Po: 
and the standard error of z is approximated by 

(T. = ) 1 
~ n - 3 

(19.11) 

(Fisher, 1925b: 162). an approximation that improves as 11 increases. 
In Example 19.1 a. r = 0.870 was calculated. If we had desired to test Ho: P = 0.750. 

we would have proceeded as shown in Example 19.2. Recall that the critical value 
of a normal deviate may be obtained readily from the bottom line of the t table 
(Appendix Table 8.3). because Za(2) = ta(2).oo' 

EXAMPLE 19.2 

r = 0.870 

n = 12 

Testing Ho: P = Po. Where Po '* 0 

Ho: P = 0.750; HA : P i:' 0.750. 

z = 0.5 In (! + 0.870) = 1.3331 
- 0.870 

(0 = 0.9730 

Z = z - (0 = 1.3331 - 0.9730 = 0.3601 = 1.0803 
) I fI 0.3333 

n - 3 v"9 
ZO.05(2) = 10.05(2).00 = 1.960 

Therefore. do not reject Ho. 

0.20 < P < 0.50 [P = 0.28] 

One-tailed hypotheses may also be tested. using Za( I) (or tar I ).00) as the critical 
value. For Ho: P :5 PO and HA : P > PO. Ho is rejected if Z ::::: Za( 1). and for Ho: P ::::: PO 
versus H A: P < PO. Ho is rejected if Z s - Za( I ). 

If the variables in correlation analysis have come from a bivariate normal distribu­
tion, as often may be assumed. then we may employ the aforementioned procedures. 
as well as those that follow. Sometimes only one of the two variables may be assumed 
to have been obtained randomly from a normal population. It may be possible to 
employ a data transformation (see Section 17.10) to remedy this situation. If that can­
not be done, then the hypothesis Ho: P = 0 (or its associated one-tailed hypotheses) 
may be tested, but none of the other testing procedures of this chapter (except for the 

* As noted at the end of Section 19.7. there is a slight and correctable bias in z. Unless n is very 
small. however. this correction will be insignificant and may be ignored. 
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methods of Section 19.9) are valid. If neither variable came from a normal population 
and data transformations do not improve this condition, then we may turn to the 
procedures of Section 19.9. 

19.3 CONFIDENCE INTERVALS FOR THE POPULATION CORRELATION COEFFICIENT 

Confidence limits on P may be determined by a procedure related to Equation 19.5; 
the lower and upper confidence limits are 

and 

L - (1 + Fa)r + (1 - Fa) 
1 - (1 + Fa) + (1 - Fa)r 

L - (1 + Fa)r - (1 - Fa) 
2 - (1 + Fa) - (1 - Fa)r' 

(19.l2) 

(19.13) 

respectively, where Fa = Fa(2)."." and v = n - 2 (Muddapur, 1988).* This is shown 
in Example 19.3. 

Fisher's transformation may be used to approximate these confidence limits, 
although the confidence interval will generally be larger than that from the foregoing 
procedure, and the confidence coefficient may occasionally (and undesirably) be 
less than 1 - a (Jeyaratnam, 1992). By this procedure, we convert r to Z (using 
Equation 9.8 or Appendix Table B.18); then the 1 a confidence limits may be 
computed for (: 

(19.16) 

or, equivalently, 
Z ± la(2),ocCT;:. (19.17) 

The lower and upper confidence limits, LI and L2, are both z values and may be 
transformed to r values, using Appendix Table B.19 or Equation 19.9. Example 19.3 
demonstrates this procedure. Note that although the confidence limits for' are 
symmetrical. the confidence limits for p are not. 

19.4 POWER AND SAMPLE SIZE IN CORRELATION 

(a) Power in Correlation. If we test Ho: p = 0 at the a significance level, with a 
sample size of n, then we may estimate the probability of correctly rejecting Ho 
when PO is in fact a specified value other than zero. This is done by using the Fisher 
z transformation for the critical value of r and for the sample r (from Appendix 
Table 8.18 or Equation 19.8); let us call these two transformed values Za and z, 
respectively. Then, the power of the test for Ho: p = 0 is 1 - (3( 1 ), where (3( 1 ) is the 
one-tailed probability of the normal deviate 

ZP{ I) = (z - Za) In - 3. 

• Jeyaratnam (1992) asserts that the same confidence limits are obtained by 

, - w 
LI = -- and 

I - rw 

L - , + w 
2---· 

I + rw 

where w is 'a." from Equation 19.6 using the two-tailed ta(2).". 

(19.18) 

(19.14) 

(19.15) 
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EXAMPLE 19.3 Setting Confidence Limits for a Correlation Coefficient. 
This Example Uses the Data of Example 19.1a 

r = 0.870, n = 12, v = 10, a = 0.05 

For the 95% confidence interval for p: 

Fa = FO.OS (2).IO.JO = 3.72; so 

LI = (1 + Fa}r + (1 - Fa) = 4.11 - 2.72 = 0.592 
(1 + Fa) + (1 - Fa}r 4.72 - 2.37 

L2 = (1 + Fa}r - (1 - Fa) = 4.11 + 2.72 = 0.963. 
(1 + Fa) - (1 -- Fa}r 4.72 + 2.37 

For the Fisher approximation: 

r = 0.870; therefore, Z = 1.3331 (from Appendix Table B.18). 

IT'l. = ~ 1 = 0.3333 
n - 3 

95% confidence interval for { = z ± ZO.OS(2)lTz 

= z ± to.OS(2).ooCTz: 

LI = 0.680; L2 = 1.986 

= 1.3331 ± (1.9600)( 0.3333 } 
= 1.3331 ± 0.6533 

These confidence limits are in terms of z. For the 95% confidence limits for P, 
transform LI and L2 from z to r (using Appendix Table B.19): LI = 0.592, L2 = 
0.963. 
Instead of using the Appendix table, this confidence-limit transformation from z 
to r may be done using Equation 19.9: 

e2(O.680) - 1 = 2.8962 = 0.592 
LI = e2(O.680) + 1 4.8962 

L2 = e2(1.986) - 1 = 52.0906 = 0.963. 
e2( 1.986} + 1 54.0906 

(Cohen, 1988: 546), as demonstrated in Example 19.4. This procedure may be used 
for one-tailed as well as two-tailed hypotheses, so a may be either a( I} or a( 2}. 
respectively. 

(b) Sample Size for Correlation Hypothesis Testing. If the desired power is stated, 
then we can ask how large a sample is required to reject Ho: P = 0 if it is truly false 
with a specified PO * O. This can be estimated (Cohen. 1988: 546) by calculating 

n = (Z{3(I) + Zo)2 + 3, (19.19) 
{o 

where {o is the Fisher transformation of the PO specified, and the significance level, a, 
can be either one-tailed or two-tailed. This procedure is shown in Example 19.5a. 
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EXAMPLE 19.4 
Example 19.1b 

Determination of Power of the Test of Ho: p = 0 in 

n = 12; v = 10 

r = 0.870. so Z = 1.3331 
'0.05(2).111 = 0.576, so ZO.1I5 = 0.6565 

ZP( 1) = (1.3331 - 0.6565) J12 - 3 
= 2.03 

From Appendix Table B.2. P( Z ~ 2.03) = 0.0212 = (3. Therefore. the power of 
the test is 1 - (3 = 0.98. 

EXAMPLE 19.5a 
Ho: p = 0 

Determination of Required Sample Size in Testing 

We desire to reject Ho: p = 0 99% of the time when Ipi ~ 0.5 and the hypothesis 
is tested at the 0.05 level of significance. Therefore. (3( 1) = 0.01 and (from the last 
line of Appendix Table B.3) and ZP( 1) = 2.3263; a(2) = 0.05 and Zcr(2) = 1.9600; 
and. for r = 0.5. Z = 0.5493. 

Then 

Il = (2.3263 + 1.96(0)2 + 3 = 63.9. 
0.5493 

so a sample of size at least 64 should be used. 

(c) Hypothesizing p Other Than O. For the two-tailed hypothesis Ho: P = Po, where 
PO * 0, the power of the test is determined from 

Z~(l) = Iz - zol - Za(2)Jn - 3 (19.20) 

instead of from Equation 19.18: here. Zo is the Fisher transformation of PO. One-tailed 
hypotheses may be addressed using a( 1) in place of a(2) in Equation 19.20. 

(d) Sample Size for Confidence Limits. After we calculate a sample correlation 
coefficient, r, as an estimate of a population correlation coefficient, p, we can estimate 
how large a sample would be needed from this population to determine a confidence 
interval for p that is no greater than a specified size. 

The confidence limits in Example 19.5b, determined from a sample of n = 12, 
define a confidence interval having a width of 0.963 - 0.592 = 0.371. We could ask 
how large a sample from this population would be needed to state a confidence inter­
val no wider than 0.30. As shown in Example 19.5b. this sample size may be estimated 
by the iterative process (introduced in Section 7.7a) of applying Equations 19.12 and 
19.13. Because the desired size of the confidence interval (0.30) is smaller than the 
confidence-interval width obtained from the sample of size 12 in Example 19.3 (0.371), 
we know that a sample larger than 12 would be needed. Example 19.5b shows the 
confidence interval calculated for n = 15 (0.31). which is a Iitt!e larger than desired; a 
confidence interval is calculated for Il = 16, which is found to be the size desired (0.30). 
If the same process is used for determining the sample size needed to obtain a con­
fidence interval no larger than 0.20, it is estimated that n would have to be at least 30. 
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EXAMPLE 19.5b Determination of Required Sample Size in Expressing 
Confidence Limits for a Correlation Coefficient 

If a calculated, is 0.870 (as in Example 19.1a). and a 95% confidence interval no 
wider than 0.30 is desired for estimating p, the following iterative process may be 
employed: 

If n = 15 were used, then" = 13, and FO.05(2).13.13 = 3.12, so 

LI = (1 + Fa)' + (I - Fa) = (4.12)(0.870) - 2.12 = 3.584 - 2.12 
(1 + Fa) + (1 - Fa)' 4.12 - (2.12)(0.870) 4.12 - 1.844 

= 1.464 = 0.643 
2.276 

L2 = (1 + Fa)' - (I - Fa) = (4.12)(0.870) + 2.12 = 3.584 + 2.12 
(I + Fa) - (1 - Fa)' 4.12 + (2.12)(0.870) 4.12 + 1.844 

= 5.704 = 0.956 
5.964 

and the width of the confidence interval is L2 - LI = 0.956 - 0.643 = 0.31. 
which is a little larger than desired. so larger n is needed. 

If n = 20 were used. then" = 18. and f().O~(2).I!Ul! = 2.60. so 

LI = (1 + Fa)' + (I - Fa) = (3.60)(0.870) - 1.60 = 3.132 - 1.60 
(1 + Fa) + (I - Fer)' 3.60 - (1.60)( 0.870) 3.60 - 1.392 

= 1.532 = 0.694 
2.208 

L2 = (I + Fa)' - (I - Fa) = 3.132 + 1.60 = 4.732 = 0.948 
(I + Fer) - (1 - Fer)' 3.60 + 1.392 4.992 

and the width of the confidence interval is L2 - LI = 0.948 - 0.694 = 0.25, 
which is smaller than that desired, so a smaller n may be used. 

If n = 16 were used. then" = 14. and Fn.o5(2).14.14 = 2.98, so 

LI = (I + Fa)' + (1 - Fa) = (3.98)(0.870) - 1.98 = 3.463 - 1.98 
(I + Fa) + (I - Fa)' 3.98 - (1.98)(0.870) 3.98 - 1.723 

= 1.483 = 0.657 
2.257 

L, = (1 + Fa)' - (I - Fa) = 3.463 + 1.98 = 5.443 = 0.954 
- (1 + Fa) - (1 - Fa)' 3.98 + 1.723 5.703 

and the width of the confidence interval is L2 - LI = 0.954 - 0.657 = 0.30. so 
it is estimated that a sample size of at least 16 should be used to obtain the desired 
confidence interval. 

To calculate the desired confidence interval using the Fisher transformation, 
, = 0.870; z = 1.3331 (e.g., from Appendix Table B.18); ZO.05(2) = 1.9600. 

If n = 15 were used. then (T- = r--r- = 0.2887. 
~ '-/15=3 

The 95% confidence intervalfor' is 1.3331 ± (1.9600)(0.2887) = 1.3331 ± 0.5658. 
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The confidence limits are 
L) = 0.7672: L2 = 1.8990 

For the 95% confidence interval for p, transform this L) and L2 for z to L) and L2 
for r (e.g., using Appendix Table B.19): 

L) = 0.645: L2 = 0.956 

and the width of the confidence interval is estimated to be 0.956 - 0.645 = 0.31, 
which is a little larger than that desired, so a larger n should be used. 

If n = 16 were used, then (1', = r--t = 0.2774. 
~ \j~ 

For the 95% conlidence interval for, = 1.3331 ± (1.9600)(0.2774) 
= 1.3331 ± 0.5437 

and LI = 0.7894: L2 = 1.8768 

For the 95% confidence interval for p, transform the z'a to r: 
The conlidence limits are 

LI = 0.658: L2 = 0.954 

and the width of the confidence interval is estimated to be 0.954 - 0.658 = 0.30, 
so it is estimated that a sample size of at least 16 should be used. 

19.5 COMPARING TWO CORRELATION COEFFICIENTS 

Hypotheses (either one-tailed or two-tailed) about two correlation coefficients may 
be tested by the use of 

Z = ZI - z:!, (19.21) 

where 

(1';:1-;:2= I 1 + Y 11) - 3 112 - 3 
( 19.22) 

If 11) = 112, then Equation 19.22 reduces to 

(1';:1-<2 = JIl = 3' (19.23) 

where 11 is the size of each sample. The use of the Fisher z transformation both 
normalizes the underlying distribution of each of the correlation coefficients, ') 
and r:!. and stabilizes the variances of these distributions (Winterbottom. 1979). 
The multisample hypothesis test recommended by Paul (1988), and presented in 
Section 19.7. may be used for the two-tailed two-sample hypothesis mentioned 
previously. It tends to result in a probability of Type I error that is closer to 
the specified a; but. as it also tends to be larger than a, I do not recommend 
it for the two-sample casco The preferred procedure for testing the two-tailed 
hypotheses. Ho: p) = P2 versus HA: p) = P2. is to employ Equation 19.21. as shown 
in Example 19.6.* One-tailed hypotheses may be tested using one-tailed critical 
values. namely Ztr()). 

* A null hypothesis such as lin: P) - P2 = Pu, where Po '" 0, might be tested by substituting 
IZI - '::21 - (0 for the numerator in EqUlltion 19.21. but no utility for such a test is apparent. 
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EXAMPLE 19.6 Testing the Hypothesis Ho: P1 = P2 

For a sample of 98 bird wing and tail lengths. a correlation coefficient of 0.78 was 
calculated. A sample of 95 such measurements from a second bird species yielded 
a correlation coefficient of 0.84. Let us test for the equality of the two population 
correlation coefficients. 

Ho: PI = P2: HA: PI :¢; P2 

'1 = 0.78 '2 = 0.84 

ZI = 1.0454 Z2 = 1.2212 

nl = 98 n2 = 95 

Z = 1.0454 - 1.2212 

~ n, ~ 3 + n, ~ 3 

ZO.05(2) = to.05(2).:x.; = 1.960 

Therefore. do not reject Ho. 

= -0.1758 = _ 1.202 
0.1463 

0.20 < P < 0.50 [P = 0.231 

The common correlation coefficient may then be computed as 

Z w = -'-( n....:..1 _-_3~) Z....:...I _+--,-( n--=2'---_3-"-) Z--=.2 = (95)( 1.(454) + ( 92)( 1.2212) = 1.1319 
(nl - 3) + (n2 - 3) 95 + 92 

'IV = 0.81. 

Occasionally we want to test for equality of two correlation coefficients that are 
not independent. For example. if Sample 1 in Example 19.6 were data from a group 
of 98 young birds. and Sample 2 were from 95 of these birds when they were older 
(three of the original birds having died or escaped). the two sets of data should 
not be considered to be independent. Procedures for computing '1 and '2. taking 
dependence into account. are reviewed by Steiger (1980). 

(a) Common Correlation Coefficient. As in Example 19.6. a conclusion that PI = P2 
would lead us to say that both of our samples came from the same population of data. 
or from two populations with identical correlation coefficients. In such a case. we 
may combine the information from the two samples to calculate a better estimate of 
a single underlying p. Let us call this estimate the common. or weighted. correlatioll 
coefficient. We obtain it by converting 

Zit' = (n\ - 3)zl + (112 - 3)Z2 

(Ill - 3) + (112 3) 
(19.24) 

to its corresponding' value. 'K" as shown in Example 19.6. If both samples are of 
equal size (i.e .• n\ = n2). then the previous equation reduces to 

(19.25) 
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Appendix Table B.19 gives the conversion of Zw to the common correlation 
coefficient,'w (which estimates the common population coefficient, p). Paul (1988) has 
shown that if P is less than about 0.5, then a better estimate of that parameter utilizes 

(nl - l)zj + (n2 - l)z2 
Zw = -------'"------'--= 

( n I - 1) + ( 172 - 1) . 
(19.26) 

where 
, 3zj + 'j z· = Z; -
I 4(17j - 1) 

(19.27) 

and Zj is the z in Equation 19.8 (HotelJing. 1953). 
We may test hypotheses about the common correlation coefficient (Ho: P = 0 

versus HA: P i' 0, or Ho: P = Po versus HA: P i' Po, or similar one-tailed tests) by 
Equation 19.33 or 19.34. 

19.6 POWER AND SAMPLE SIZE IN COMPARING TWO CORRELATION COEFFICIENTS 

The power of the preceding test for difference between two correlation coefficients 
is estimated as 1 - 13, where 13 is the one-tailed probability of the normal deviate 
calculated as 

Zp(l) = IZI - z21 - Za (19.28) 
O"ZI -Z2 

(Cohen, 1988: 546-547), where a may be either one-tailed or two-tailed and where 
Za( I) or Za(2) is most easily read from the last line of Appendix Table B.3. Exam­
ple 19.7 demonstrates this calculation for the data of Example 19.6. 

EXAMPLE 19.7 Determination of the Power of the Test of Ho: PI = P2 in 
Example 19.6 

ZI = 1.0454 Z2 = 1.2212 

O"ZI-Z2 = 0.1463 

Za = ZO.05(2) = 1.960 
Z - 11.0454 - 1.22121 _ 1.960 

P( I) - 0.1463 
= 1.202 - 1.960 
= -0.76 

From Appendix Table B.2. 

13 = P(Z ;::= -0.76) = 1 - P(Z $ -0.76) = 1 - 0.2236 == 0.78. 

Therefore, 
power = 1 - 13 = 1 - 0.78 = 0.22. 

If we state a desired power to detect a specified difference between transformed 
correlation coefficients. then the sample size required to reject Ho when testing at the 
a level of significance is 

n = 2(Za + ZP(1»)2 + 3 
Z\ - Z2 

(Cohen. 1988: 547). This is shown in Example 19.8. 

(19.29) 
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The test for difference between correlation coefficients is most powerful for 
nl = n2, and the proceding estimation is for a sample size of n in both samples. 
Sometimes the size of one sample is fixed and cannot be manipulated. and we then 
ask how large the second sample must be to achieve the desired power. If nl is fixed 
and n is determined by Equation 19.29. then (by considering n to be the harmonic 
mean of nl and n2). 

(Cohen. t 988: 137). * 

EXAMPLE 19.8 
Ho: P1 = P2 

(19.30) 

Estimating the Sample Size Necessary for the Test of 

Let us say we wish to be 90% confident of detecting a difference. ZI - Z2, 
as small as 0.5000 when testing Ho: PI = P2 at the 5% significance level Then 
13(1) = 0.10,a(2) = 0.05, and 

n = 2 (1.9600 + 1.2816)2 + 3 
0.5000 

= 87.1. 

So sample sizes of at least 88 should be used. 

19.7 COMPARING MORE THAN TWO CORRELATION COEFFICIENTS 

If k samples have been obtained and an r has been calculated for each, we often 
want to conclude whether or not all samples came from populations having identical 
p's. If H(): PI = P2 = ... = Pk is not rejected. then all samples might be combined 
and one value of r calculated to estimate the single population p. As Example 19.9 
shows, the testing of this hypothesis involves transforming each r to a Z value. We 
may then calculate 

k 

X2 = ~(lli - 3)zJ 
;= I 

[±(n; - 3)Zi]2 
1=1 

k 
(19.31) 

~(ni - 3) 
i=1 

which may be considered to be a chi-square value with k - 1 degrees of freedom.t 

(a) Common Correlation Coefficient. If Ho is not rejected, then all k sample 
correlation coefficients are concluded to estimate a common population p. A common 
r (also known as a weighted mean of r) may be obtained from transforming the 

*If the denominator in Equation 19.30 is :5 0, then we must either increase nl or change the 
desired power, significance level, or detectable difference in order to solve for n2. 

tEquation 19.31 is a computational convenience for 

(19.31a) 

where z", is a weighted mean of z shown in Equation 19.32. 
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EXAMPLE 19.9 Testing a Three-Sample Hypothesis Concerning Correla-
tion Coefficients 

Given the following: 

nl = 24 n2 = 29 
'. = 0.52 '2 = 0.56 

To test: 

Ho: PI = P2 = P?>· 

n3 = 32 
'3 = 0.87 

HA: All three population correlation coefficients are not equal. 

i 'i 

1 0.52 
2 0.56 
3 0.87 

Sums: 

Zi z? 
I nj nj - 3 (ni - 3)Zi 

0.5763 0.3321 24 21 12.1023 
0.6328 0.4004 29 26 16.4528 
1.3331 1.7772 32 29 38.6599 

76 67.2150 

x2 = ~(ni _ 3)z; _ [~(n; - 3)Z;]2 
~(lZi - 3) 

= 68.9233 _ (67.2150)2 

= 9.478 
v=k-l=2 

76 

X6.0S.2 = 5.991 
Therefore, reject Ho. 

0.005 < P < 0.01 [P = 0.0087] 

(n; - 3)Z7 

6.9741 
10.4104 
51.5388 

68.9233 

If Ho had not been rejected, it would have been appropriate to calculate the 
common correlation coefficient: 

Zw = ~(ni - 3)Zi = 67.2150 = 0.884 
~(ni - 3) 76 

'IV = 0.71. 

weighted mean Z value, 
k 
~(n; - 3)z; 
i= I 

Z ... = k 

~(ni - 3) 
i=1 

(19.32) 

to its corresponding r value (let's call it 'w), as shown in Example 19.9. This trans· 
formation is that of Equation 19.8 and is given in Appendix Table B.19. If Ho is not 
rejected, we may test Ho: P = 0 versus H A: P * 0 by the method attributed to Neyman 
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(1959) by Paul (1988): 
k 

L Iljr; 
Z=~ 

./N' 
(19.33) 

where N = 2.7= I Ilj. and rejecting Ho if IZI 2: Za(2)' For one-tailed testing, Ho: P S 0 
versus HA: P > 0 is rejected if Z 2: Za1l): and Ho: P 2: 0 versus HA: P < 0 is rejected 
if Z S -Za(I)' 

For the hypotheses Ho: P = Po versus H A: P # PC), the transformation of Equa­
tion 19.8 is applied to convert PO to (0. Then (from Paul, 1988), 

11 

Z = (Zw - (0) L(n; - 3) (19.34) 
j= 1 

is computed and Ho is rejected if IZI 2: Za(2)' For one-tailed testing, Ho: P S Po is 
rejected if Z 2: Za( 1 ) or Ho: P 2: PO is rejected if Z s - Za( 1 ). 

If correlations are not independent, then they may be compared as described by 
Steiger (1980). 

(b) Overcoming Bias. Fisher (1958: 205) and Hotelling (1953) have pointed out 
that the z transformation is slightly biased, in that each z will be a little inflated. 
This minor systematic error is likely to have only negligible effects on our previous 
considerations, but it is inclined to have adverse effects on the testing of multisample 
hypotheses, for in the latter situations several values of Zj, and therefore several small 
errors, are being summed. Such a hypothesis test and the estimation of a common 
correlation coefficient are most improved by correcting for bias when sample sizes 
are small or there are many samples in the analysis. 

Several corrections for bias are available. Fisher recommended subtracting 

r 

2( n - 1) 

from z, whereas Hotelling determined that better corrections to z are available. such 
as subtracting 

3z + r 
4( Il - 1) 

However, Paul (1988) recommends a test that performs better than one employing 
such corrections for bias. It uses 

2 _ ~ nj(rj - rw)2 
Xp - ~ 

;=1 (1 - rjrw )2 

with k - 1 degrees of freedom. Example 19.10 demonstrates this test. 

(19.35) 

If the multisample null hypothesis is not rejected, then P, the underlying population 
correlation coefficient, may be estimated by calculating z .... via Equation 19.32 and 
converting it to r ..... As an improvement. Paul (1988) determined that nj - I should 
be used in place of nj - 3 in the latter equation if P is less than about 0.5. Similarly, 
to compare P to a specified value, Po. nj - 1 would be used instead of n; - 3 in 
Equation 19.34 if P is less than about 0.5. 
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EXAMPLE 19.10 The Hypothesis Testing of Example 19.9, Employing 
Correction for Bias 

2 _ ~ I1j( 'j - '1\' )2 
Xp - £.J 

j = 1 (I - 'j't\')2 

_ 24(0.52 - 0.71 )2 + 29(0.56 - 0.71 )2 + 
[I - (0.52)(0.71)]2 11 - (0.56)(0.71)]2 

= 2.1774 + 1.7981 + 5.6051 

= 9.5806 
, 

XO.05.2 = 5.991 

Therefore. reject Ho. 

0.005 < P < 0.01 [P = 0.0083] 

32( 0.87 - 0.71 )2 

[1 - (0.87)(0.71)]2 

19.8 MULTIPLE COMPARISONS AMONG CORRELATION COEFFICIENTS 

If the null hypothesis of the previous section (Ho: PI = P2 = ... = pd is rejected, it is 
typically of interest to determine which of the k correlation coefficients are different 
from which others. This can be done. again using Fisher's z transformation (Levy, 
1976). 

In the fashion of Section 11.1 (where multiple comparisons were made among 
means), we can test each pair of correlation coefficients, 'B and 'A, by a Tukey-type 
test, if 118 = I1A: 

where 

q = Z8 - ZA. 

SE 

SE = 1_1_ 
'V,,-3 

(19.36) 

( 19.37) 

and n is the size of each sample. If the sizes of the two samples. A and B. are not 
equal. then we can use 

( 19.38) 

The appropriate critical value for this test is qa"Y.J.k (from Appendix Table 8.5). This 
test is demonstrated in Example 19.11. 

It is typically unnecessary in multiple comparison testing to employ the correction 
for bias described at the end of Section 19.7. 

(a) Comparing a Control Correlation Coefficient to Each Other Correlation Coeffi­
cient. The foregoing methods enable us to compare each correlation coefficient with 
each other coefficient. If. instead. we desire only to compare each coefficient to one 
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EXAMPLE 19.11 Tukey-Type Multiple Comparison Testing Among the 
Three Correlation Coefficients in Example 19.9 

Samples ranked by correlation coefficient (i): 1 2 3 
Ranked correlation coefficients (ri): 0.52 0.56 0.87 

Ranked transformed coefficients (Zi): 0.5763 0.6328 1.3331 
Sample size (ni): 24 29 32 

Com-
parison Difference 
Bvs.A ZB - ZA SE q qO.05.oo.3 Conclusion 

3 vs. 1 1.3331 - 0.5763 = 0.7568 0.203 3.728 3.314 Reject Ho: P3 = PI 
3 vs. 2 1.3331 - 0.6328 = 0.7003 0.191 3.667 3.314 Reject Ho: P3 = P2 
2 vs. 1 0.6328 - 0.5763 = 0.0565 0.207 0.273 3.314 Do not reject Ho: 

P2 = PI 

Overall conclusion: PI = P2 * P3 

particular coefficient (call it the correlation coefficient of the "control" set of data), 
then a procedure analogous to the Dunnett test of Section 11.3 may be employed 
(Huitema.1974). 

Let us designate the control set of data as B. and each other group of data, in tum. 
as A. Then we compute 

_ ZB - ZA 
q - SE . (19.39) 

for each A, in the same sequence as described in Section 11.3. The appropriate 
standard error is 

SE = J 2 
n - 3 

(19.40) 

if samples A and B are of the same size, or 

SE - I 1 + - V nB - 3 nA - 3 
(19.41) 

if nA * nfl· The critical value is q~( 1 ).00.[1 (from Appendix Table B.6) or q~(2).oo.p 
(from Appendix Table B.7) for the one-tailed or two-tailed test, respectively. 

(b) Multiple Contrasts Among Correlation Coefficients. Section 11.4 introduced 
the concepts and procedures of multiple contrasts among means: these are multiple 
comparisons involving groups of means. In a similar fashion. multiple contrasts may 
be examined among correlation coefficients (Marascuilo, 1971: 454-455). We again 
employ the Z transformation and calculate, for each contrast, the test statistic 

LCiZi 
i S=-=----.....:. 
SE 

(19.42) 
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where 

SE = LcTot (19.43) 
j 

and Cj is a contrast coefficient. as described in Section 11.4. (For example. if we wished 
totestthehypothesisHo: (PI + P2)/2 - P3 = O.thenCI = ~,C2 = ~,andc.3 = -1.) 
The critical value for this test is 

Sa = J X~.(k-I)· (19.44)· 

19.9 RANK CORRELATION 

If we have data obtained from a bivariate population that is far from normal. then the 
correlation procedures discussed thus far are generally inapplicable. Instead. we may 
operate with the ranks of the measurements for each variable. Two different rank 
correlation methods are commonly encountered. that proposed by Spearman (1904) 
and that of Kendall t (1938). And. these procedures are also applicable if the data are 
ordinal. 

Example 19.12 demonstrates Spearman's rank correlation procedure. After each 
measurement of a variable is ranked. as done in previously described non parametric 
testing procedures, Equation 19.1 can be applied to the ranks to obtain the Spearman 
rank correlation coefficient, rs. However. a computation that is often simpler is 

/I 

6L dr 
rs = 1 -

j= 1 

n3 - n 
(19.46)* 

*Because x~." = "Fa ( 1 ).1'.00' it is equivalent to write 

Sa = J(k - l)Fa(I).(k-l).oo· (19.45) 

but Equation 19.44 is preferable because it engenders less rounding error in the calculations. 
t Charles Edward Spearman (1863-1945). English ;>sychologist and statistician. an important 

researcher on intelligence and on the statistical field known as factor analysis (Cattell, 1978). Sir Mau­
rice George Kendall (1907-1983), English statistician contributing to many fields (Bartholomew, 
1983; David and Fuller, 2007: Ord, 1984: Stuart. 1984). Kruskal (1958) noted that the early devel­
opment of the method promoted by Kendall began 41 years prior to the 1938 paper. Karl Pearson 
observed that Sir Francis Galton considered the correlation of ranks even before developing 
correlation of variables (Walker, 1929: 128). 

+ As the sum of n ranks is lIe II + 1 )/2. Equation 19.1 may be rewritten for rank correlation as 

II 

:L (rankofXj)(rankofYj) 
II( n + 1 )2 

4 ;=1 
rs = r============================ 

( 
II n(1I + 1)2)( II ~l (rank of Xj)2 - 4 ~I (rank of Yj)2 

lIe II + 
4 

(19.47) 

Instead of using differences between ranks of pairs of X and Y. we may use the sums of the ranks 
for each pair, where S; = rank of X; + rank of Y; (Meddis, 1984: 227: Thomas, 1989): 

6:L S? 7n + 5 
rs = --' - -- (19.48) 

n3 -n II-I 
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EXAMPLE 19.12 Spearman Rank Correlation for the Relationship 
Between the Scores of Ten Students on a Mathematics Aptitude Exami­
nation and a Biology Aptitude Examination 

Mathematics Biology 
Student examination examination 

(i) score (Xi) Rank of Xi score (Y;) Rank of Y; 

1 57 3 83 
2 45 1 37 
3 72 7 41 
4 78 8 84 
5 53 2 56 
6 63 5 85 
7 86 9 77 
8 98 10 87 
9 59 4 70 

10 71 6 59 

n = 10 '.\' = 1 
6LdJ 
n3 - n 

LdJ = 72 = 1 
6(72) 

1()3 -

= 1 0.436 

= 0.564 

To test Ho: Ps = 0; HA: P.~ ¢ O. 
('s )O.05(2).1Il = 0.648 (from Appendix Table 8.20) 
Therefore, do not reject Ho. 

P = 0.10 

7 
1 
2 
8 
3 
9 
6 

10 
5 
4 

10 

di d? 
I 

-4 16 
0 0 
5 25 
0 0 

-I 1 
-4 16 

3 9 
0 () 

-1 1 
2 4 

where d; is a difference between X and Y ranks: di = rank of Xi - rank of Yi.* The 
value of 's. as an estimate of the population rank correlation coefficient, Ps. may range 
from -1 to + 1. and it has no units: however, its value is not to be expected to be the 
same as the value of' that might have been calculated for the original data instead of 
their ranks. 

Appendix Table B.20 may be used to assess the significance of 's. A comment 
following that table refers to approximating the exact probability of 's. If n is greater 
than that provided for in that table. then 's may be used in place of, in the hypothesis 

*Spearman (1904) also presented a rank-correlation method, later (Spearman, 1906) called the 
"footrule" coefficient. Instead of using the squares of the d;·s. as,s does, this coefficient employs 
the absolute values of the d; 's: 

( 19.48a) 

However"f typically does not range from -1 to 1: its lower limit is -0.5 if /I is odd and. if II is even. 
it is - 1 when II = 2 and rapidly approaches - 0.5 as II increases (Kendall. 1970: 32-33). 
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testing procedures of Section 19.2.* If either the Spearman or the parametric correla­
tion analysis (Section 19.2) is applicable, the former is 9/7;2 = 0.91 times as powerful 
as the latter (Daniel. 1990: 362: Hotelling and Pabst, 1936: Kruskal. 1958).t 

(a) Correction for Tied Data. If there are tied data. then they are assigned average 
ranks as described before (e.g., Section 8.11) and rs is better calculated either by 
Equation 19.1 applied to the ranks (lman and Conover, 1978) or as 

(n3 - n)/6 - Ld? - Llx - Lly 
(rde = I (19.50) 

. J[(n3 - n}/6 - 2~lx][(n3 - n}/6 - 2~IY] 

(Kendall. 1962: 38: Kendall and Gibbons. 1990: 44: Thomas, 1989). Here. 

"'" «(;1 _ I il 
"'" I - =~::..;"",:.I_--,-
~ X - 12 ' (19.51) 

where Ii is the number of tied values of X in a group of ties. and 

L L(ti - til 
Iy = =----'----

12 • 
( 19.52) 

where Ii is the number of tied Y's in a group of ties; this is demonstrated in 
Example 19.13. If L tx and :L ty are zero, then Equation 19.50 is identical to Equa­
tion 19.46. Indeed. the two equations differ appreciably only if there are numerous 
tied data. 

Computationally. it is simpler to apply Equation 19.1 to the ranks to obtain (rs)c 
when ties are present. 

(b) Other Hypotheses, Confidence Limits, Sample Size, and Power. If n ~ 10 and 
Ps :5 0.9, then the Fisher z transformation may be used for Spearman coefficients, 
just as it was in Sections 19.2 through 19.6. for testing several additional kinds of 
hypotheses (including multiple comparisons). estimating power and sample size. 
and setting confidence limits around p,\'. But in doing so it is recommended that 
1.060/ (n - 3) be used instead of 1/ (n - 3) in the variance of z (Fieller. Hartley, 
and Pearson. 1957. 1961). That is, 

(uz)s = J ~.~603 ( 19.53) 

should be used for the standard error of z (instead of Equation 19.11). 

(c) The Kendall Rank Correlation Coefficient. In addition to some rarely 
encountered rank-correlation procedures (e.g., see Kruskal. 1958). the Kendall 

*In this discussion. f.\ will be referred to as an unbiased estimate of a population correlation 
coefficient, p •• although that is not strictly true (Daniel. 1990: 365; Gibbons and Chakrahorti. 2003: 
432: Kruskall. 1958). 

tZimmerman (1994b) presented a rank-correlation procedure that he asserted is slightly more 
powerful than the Spearman f.s method. Martin Andres. Herranz Tejedor. and Silva MalO (1995) 
showed a relationship between the Spearman rank correlation and the Wilcoxon-Mann-Whitney 
test of Section 8011. The Spearman statistic is related to the coefficient of concordance~ W 
(Section 19.13). for two groups of ranks: 

w = (rs + I )/2. ( 19.49) 
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EXAMPLE 19.13 The Spearman Rank Correlation Coefficient, Computed 
for the Data of Example 19.1 

X Rank of X Y RankofY d; d? 
I 

10.4 4 7.4 5 -1 1 
10.8 8.5 7.6 7 1.5 2.25 
11.1 10 7.9 11 -1 1 
10.2 1.5 7.2 2.5 -1 1 

10.3 3 7.4 5 -2 4 
10.2 1.5 7.1 1 0.5 0.25 
10.7 7 7.4 5 2 4 
10.5 5 7.2 2.5 2.5 6.25 

10.8 8.5 7.8 9.5 -1 1 
11.2 11 7.7 8 3 9 
10.6 6 7.8 9.5 -3.5 12.25 
11.4 12 8.3 12 0 0 

n = 12 r,v = 1 -
6~dT 
n3 - 11 

Ldr = 42.00 = 1 -
6(42.00) 

1716 
= 1 - 0.147 
= 0.853 

To test Ho: Ps = 0; HA : Ps :;:. 0, 

(rs )0.05(2).12 = 0.587 (from Appendix Table B.20) 

Therefore, reject Ho. 
P < 0.001 

To employ the correction for ties (see Equation 19.50): 

among the X's there are two measurements of 10.2 em and two of 10.8 cm, so 

~tx= (23 - 2) + (23 - 2) =1' 
12 ' 

among the Y's there are two measurements tied at 7.2 cm, three at 7.4 em, 
and two at 7.8 em, so 

(23 - 2) + (33 - 3) + (23 - 2) 
~ty = = 3: 

12 

therefore, 

(rs)c = (123 - 12)/6 - 42.00 - 1 - 3 = 242 = 0.852; 
~[(123 - 12)/6 - 2(1)][(123 - 12)/6 - 2(3)] 284.0 

and the hypothesis test proceeds exactly as above. 
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rank-correlation method is often used· (see, e.g., Daniel, 1990: 365-381: KendaIJ 
and Gibbons. 1938, 1990: 3-8; Siegel and Castellan. 1988: 245-254). The sample 
Kendall correlation coefficient is commonly designated as 7' (lowercase Greek tau, IlL 

exceptional use of a Greek letter to denote a sample statistic).t 
The correlation statistic 7' for a set of paired X and Y data is a measure of the extent 

to which the order of the X's differs from the order of the y·s. Its calculation will nol 
be shown here, but this coefficient may be determined-with identical results-eithel 
from the data or from the ranks of the data. 

For example, these six ranks of X's and six ranks of V's are in exactly the same 
order: 

X: 1 
Y: 1 

2 3 4 5 6 
2 3 4 5 6 

and 7' would be calculated to be 1, just as rof would be I, for there is perfect agreement 
of the orders of the ranks of X's and V's. However. the following Y ranks are in the 
reverse sequence of the X ranks: 

X: 1 2 3 4 5 6 
Y: 6 5 4 3 2 1 

and 7' would be - 1, just as rI would be. for there is an exact reversal of the relationship 
between the X's and Y·s. And. just as with rs , 7' will be closer to zero the further the 
X and Y ranks are from either perfect agreement or an exact reversal of agreement; 
but the values of 7' and r.~ will not be the same except when 7' = - 1 or 1. 

The performances of the Spearman and Kendall coefficients for hypothesis testing 
are very similar, but the former may be a little better, especially when n is large 
(Chow, Miller, and Dickinson. 1974). and for a large n the Spearman measure is 
also easier to calculate than the Kendall. Jolliffe (1981) describes the use of the 
runs-up-and-down test of Section 25.8 to perform nonparametric correlation testing 
in situations where r.~ and 7' are ineffective. 

19.10 WEIGHTED RANK CORRELATION 

The rank correlation of Section 19.9 gives equal emphasis to each pair of data. 
There are instances, however, when our interest is predominantly in whether there is 
correlation among the largest (or smallest) ranks in the two populations. In such cases 
we should prefer a procedure that will give stronger weight to intersample agreement 
on which items have the smallest (or largest) ranks, and Quade and Salama (1992) 
refer to such a method as weighted rank correlation (a concept they introduced in 
Salama and Quade, 1982). 

In Example 19.14, a study has determined the relative importance of eight eco­
logical factors (e.g., aspects of temperature and humidity, diversity of ground cover, 
abundance of each of several food sources) in the success of a particular species of 
bird in a particular habitat. A similar study ranked the same ecological factors for a 
second species in that habitat, and the desire is to ask whether the same ecological 
factors arc most important for both species. We want to ask whether there is a positive 
correlation between the factors most important to one species and the factors most 
important to the other species. Therefore, a one-tailed weighted correlation analysis 
is called for. 

*The idea of this correlation measure was presented as early as 1899 in a posthumous puhlication 
of the German philosopher. physicist. and psychologist Guslllv Thcodor Fechner (1801-1887) 
(Kruskal. 1958). 

t It is much less frequently designated as T.t. 'k. or T. 
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EXAMPLE 19.14 A Top-Down Correlation Analysis, Where for Each of 
Two Bird Species, Eight Ecological Factors Are Weighted in Terms of Their 
Importance to the Success of the Birds in a Given Habitat 

Ho: The same ecological factors are most important to both species. 
HA: The same ecological factors are not most important to both species. 

Rank Savage number (5;) 

Factor (i) Species J Species 2 Species J Species 2 (S;)1 (S; h 
A 1 1 2.718 2.718 7.388 
B 2 2 1.718 1.718 2.952 
C 3 3 1.218 1.218 1.484 
D 4 7 0.885 0.268 0.237 

E 5 8 0.635 0.125 0.079 
F 6 6 0.435 0.435 0.189 
G 7 5 0.268 0.635 0.170 
H 8 4 0.125 0.885 0.1 11 

Sum 8.002 8.002 12.610 

" 
L(S;)1 (S;h - n 

n = 20 
;= I 

rT = 
(n - Sd 

" 12.610 - 8 L (S;)1 (S; h = 12.610 = = 0.873 
;=1 8 - 2.718 

0.005 < P < 0.01 

A correlation analysis performed on the pairs of ranks would result in a Spearman 
rank correlation coefficient of rs = 0.548, which is not significantly different from 
zero. (The one-tailed probability is 0.05 < P < 0.10.) Iman (1987) and Iman and 
Conover (1987) propose weighting the ranks by replacing them with the sums of 
reciprocals known as Savage scores (Savage, 1956). For a given sample size. n. the ith 
Savage score is 

n 1 
S; = L -:. 

j=; I 
(19.54) 

Thus, for example, if n = 4, then SI = 1/1 + 1/2 + 1/3 + 1/4 = 2.083,S2 = 
1/2 + 1/3 + 1/4 = 1.083,S3 = 1/3 + 1/4 = 0.583, and S4 = 1/4 = 0.250. A 
check on arithmetic is that "'£7= I S; = n; for this example, n = 4 and 2.083 + 1.083 + 
0.583 + 0.250 = 3.999. Table 19.1 gives Savage scores for n of 3 through 20. Scores 
for larger n are readily computed; but, as rounding errors will be compounded 
in the summation, it is wise to employ extra decimal places in such calculations. 
If there are tied ranks. then we may use the mean of the Savage scores for the 
positions of the tied data. For example. if n = 4 and ranks 2 and 3 are tied. then use 
(1.083 + 0.583 )/2 = 0.833 for both S2 and S3. 
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TABLE 19.1: Savage Scores, Sj, for Various Sample Sizes, n 

n 1= 2 3 4 5 6 7 8 9 10 

3 1.833 0.833 0.333 
4 2J)83 1.083 0.583 0.250 
5 2.283 1.283 0.783 0.450 0.200 
6 2.450 1.450 0.950 0.617 0.367 0.167 
7 2.593 1.593 1.093 0.756 0.510 0.310 0.143 
8 2.718 1.718 1.218 0.885 0.635 0.435 0.268 0.125 
9 2.829 1.829 1.329 0.996 0.746 0.546 0.379 0.236 0.111 

10 2.929 1.929 1.429 1.0% 0.846 0.646 0.479 0.336 0.211 0.100 
II 3.020 2.020 1.520 1.187 0.937 0.737 0.570 0.427 0.302 0.191 
12 3.103 2.103 1.603 1.270 1.020 0.820 0.653 0.510 0.385 0.274 
13 3.180 2.180 1.680 1.347 1.097 0.897 0.730 0.587 0.462 0.351 
14 3.252 2.251 1.752 1.418 1.168 0.968 0.802 0.659 0.534 0.423 
15 3.318 2.318 1.818 1.485 1.235 1.035 0.868 0.725 0.600 0.489 
16 3.381 2.381 1.881 1.547 1.297 1.097 0.931 0.788 0.663 0.552 
17 3.440 2.440 1.940 1.606 1.356 1.156 0.990 0.847 0.722 0.611 
18 3.495 2.495 1.995 1.662 1.412 1.212 IJ145 0.902 0.777 0.666 
19 3.548 2.548 2J148 1.714 1.464 1.264 1.098 0.955 0.830 0.719 
20 3.598 2.598 2J)98 1.764 1.514 1.314 1.148 I JX)5 0.880 0.769 

n 1= II 12 I3 14 15 16 17 18 19 20 

II 0.091 
12 0.174 0.083 
13 0.251 0.160 0.077 
14 0.323 0.232 0.148 0.071 
15 0.389 0.298 0.215 0.138 0.067 
16 0.452 0.361 0.278 0.201 0.129 OJ162 
17 0.510 0.420 0.336 0.259 0.188 0.121 0.059 
18 0.566 0.475 0.392 0.315 0.244 0.177 0.114 0.056 
19 0.619 0.528 0.445 0.368 0.296 0.230 0.167 0.108 0.053 
20 0.669 0.578 0.495 0.418 0.346 0.280 0.217 0.158 0.103 0.050 

The Pearson correlation coeflicient of Equation 19. I may then he calculated using 
the Savage scores. a procedure that Iman and Conover (19R5. 1987) call "top-down 
correlation ": we shall refer to the top-down correlation coefficient as '1'. Alternatively, 
if there are no tics among the ranks of either of the two samples. then 

1/ 

~(Sj)I(Sjh - 11 
j= I '1'= -------

(11 - SJ) 
(19.55) 

where (Sj) I and (Sj h are the ith Savage scores in Samples 1 and 2. respectively: 
this is demonstrated in Example 19.14. where it is concluded that there is significant 
agreement between the two rankings for the most important ecological factors. (As 
indicated previously. if all factors were to receive equal weight in the analysis of this 
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set of data, a nonsignillcant Spearman rank correlation coefficient would have heen 
calculated. )* 

Significance testing of 'r refers to testing Ho: PT =:;; 0 against HA: PT > 0 and 
may he effected hy consulting Appendix Tahle 8.21. which gives critical values for 
'T. For sample sizes greater than those appearing in this table, a one-tailed normal 
approximation may he employed (lman and Conover. 19R5, 19R7): 

z = 'T 
Ji"1=I' 

(19.56) 

The top-down correlation coefficient, 'T, is 1.0 when there is perfect agreement 
among the ranks of the two sets of data. If the ranks are completely opposite in the 
two samples. then 'r = -1.0 only if n = 2; it approaches -0.645 as 11 increases. 
If we wished to perform a test that was especially sensitive to agreement at the 
bottom, instead of the top, of the list of ranks, then the foregoing procedure would 
he performed by assigning the larger Savage scores to the larger ranks. 

If there are more than two groups of ranks. thcn see the procedure at the end of 
Section 20.16. 

CORRELATION WITH NOMINAL-SCALE DATA 

(a) Both Variables Are Dichotomous. Dichotomous normal-scale data are data 
recorded in two nominal categories (e.g., observations might he recorded as male 
or female, dead or alive, with or without thorns), and Chapters 23 and 24 contain 
discussions of several aspects of the analysis of such data. Data collected for a 
dichotomous variable may be presented in the form of a tahle with two rows and two 
columns (a "2 x 2 contingency table "; see Section 23.3). The data of Example 19.15, 
for instance, may he cast into a 2 x 2 tahle, as shown. We shan set up such tahles by 
havingIl1 and/22 be the frequencies of agreement hetween the two variables (whcre 
.Iii is the frequency in row i and column j). 

Many measures of association of two dichotomous variahles have heen suggested 
(e.g .. Conover, 1999: Section 4.4; Everitt. 1992: Section 3.6: Gibhons and Chakrahorti, 
2003: Section 14.3). So-caned contingency coefficients,":' such as 

and 

x2 

n 
2 ' 

1+ L 
11 

(19.57) 

( 19.57a) 

* Procedures other than the use or Savage scores may he used to assign differential weights to 
the ranks to he analyzed: some give more emphasis to the lower ranks and some give less (Quade 
llnd Salama. 1l)l)2). Savage scores arc recommended as an intermediate strlltegy. 

'f A term coined by Karl Pearson (Walker, 195R). 
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EXAMPLE 19.15 Correlation for Dichotomous Nominal-Scale Data. Data 
Are Collected to Determine the Degree of Association, or Correlation, 
Between the Presence of a Plant Disease and the Presence of a Certain 
Species of Insect 

Case 
Presence 01 

plant disease 
Presence 01 

insect 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

+ 
+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 

+ 

+ 
+ 

The data may be tabulated in the following 2 x 2 contingency table: 

Plant Disease 

Insect Present Absent Total 

Present 6 4 10 
Absent 0 4 4 

Total 6 8 14 

c/J - 111122 - 112121 
I - "-"';-'-=;~C==I C;;:2:::;;R:=1 R;;:2==-

_ (6)(4) - (4)(0) 
- ~(6)(8)(10)(4) 

= 0.55 

Q = Illh2 - 112121 = (6)(4) - (4)(0) = 1.00 
111122 + fr2hl (6)(4) + (4)(0) 

rn = (fll + 122) - (/12 - hd = (6 + 4) - (4 + 0) = 10 - 4 = 0.43 
(f1\ + 122) + (/12 + hd (6 + 4) + (4 + 0) 10 + 4 
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employ the r statistic of Section 23.3. However, they have drawbacks, among them 
the lack of the desirable property of ranging between 0 and 1. [They are indeed zero 
when r = 0 (i.e., when there is no association between the two variables), but the 
coefficients can never reach 1. even if there is complete agreement between the two 
variables. ] 

The Cramer. or phi. coefficient* (Cramer. 1946: 44), 

~~J?, (19.58) 

does range from 0 to 1 (as does qi, which may also be used as a measure of 
association).t It is based upon X2 (uncorrected for continuity). as obtained from 
Equation 23.1. or, more readily. from Equation 23.6. Therefore, we can write 

<P I = f::...!ol ~lh~2 ;;;;-~tl:;;:2!2~1 
JCI C2RIR2 ' 

( 19.59) 

where R; is the sum of the frequencies in row i and Cj is the sum of column j. This 
measure is preferable to Equation 19.58 because it can range from -1 to + 1, thus 
expressing not only the strength of an association between variables but also the 
direction of the association (as does r). If <P = 1. all the data in the contingency 
table lie in the upper left and lower right cells (i.e., tl2 = 121 = 0). In Example 19.15 
this would mean there was complete agreement between the presence of both the 
disease and the insect; either both were always present or both were always absent. If 
til = 122 = O. all the data lie in the upper right and lower left cells of the contingency 
table, and cJ> = -1. The measure cJ> may also be considered as a correlation coefficient, 
for it is equivalent to the r that would be calculated by assigning a numerical value to 
members of one category of each variable and another numerical value to members 
of the second category. For example. if we replace each" +" with 0, and each" -" 
with 1. in Example 19.15, we would obtain (by Equation 19.1) r = U.55.* 

*Harald Cramer (1893-1985) was a distinguished Swedish mathematician (Leadbetter. 1988). 
This measure is commonly symbolized by the lowercase Greek phi 4>-pronounced "Cy" as in 
"simplify"-and is a sample statistic. not a population parameter as a Greek letter typically 
designates. (It should. of course. not be confused with the quantity used in estimating the power 
oC a statistical test. which is discussed elsewhere in this book.) This measure is what Karl Pearson 
called "mean square contingency" (Walker. 1929: 133). 

t cP may be used as a measure of association between rows and columns in contingency tables 
larger than 2 x 2. as 

4>= ~ 
\j~' 

(19.58a) 

where k is the number of rows or the number of columns. whichever is smaller (Cramer. 1946: 443): 
4>2 is also known as the mean square cOIll;lIgency (Cramer 1946: 282). 

+If the two rows and two columns of data arc arranged so C2 2: R2 (as is the case in EX<lmple 
19.15). the maximum possible 4> is 

(19.59a) 

4> = 0.55 is. in fact. cPnltlf for margirJal totals of 10.4,6, and 8. but if the data in Example 19.15 had 
been III = 5'[12 = 5.h! = 1. and 122 = 3.4> would have been 0.23. resulting in cPl4>mux = 1l.42. 
Some researchers have used cPl4>mclf as an index of association. but Davenport and EI-Sanhurry 
(1991) identified a disadvantage of doing so. 

prakash
Rectangle
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The statistic 4J is also preferred over the previous coefficients of this section becaUSl 
it is amenable to hypothesis testing. The significance of 4J (i.e., whether it indicate 
that an association exists in the sampled population) can be assessed by considerlnj 
the significance of the contingency table. If the frequencies are sufficiently large (set 
Section 23.6), the significance of X~ (chi-square with the correction for continuity, 
may be determined. The variance of 4J is given by Kendall and Stuart (1979: 572). 

The Yule coefficient of association (Yule 1900, 1912),* 

Q = l11h2 - Ilzf21, 

IIIh2 + II zf2 I 
(19.60: 

ranges from -1 (if either III or h2 is zero) to + 1 (if either 112 or hI is zero). Th~ 
variance of Q is given by Kendall and Stuart (1979: 571). 

A better measure is that of lves and Gibbons (1967). It may be expressed as 8 

correlation coefficient, 

rn= (III +h2) - (f12 +hd. 
(fll + h2) + (f12 + hd 

(19.61) 

The interpretation of positive and negative values of rn (which can range from -1 to 
+ 1) is just as for 4J. 

The expression of significance of rll involves statistical testing which will be 
described in Chapter 24. The binomial test (Section 24.5) may be utilized, with a null 
hypothesis of Hn: P = 0.5, using cases of perfect agreement and cases of disagreement 
as the two categories. Alternatively, the sign test (Section 24.6), the Fisher exact test 
(Section 24.16), or the chi-square contingency test (Section 23.3) could be applied to 
the data. 

Tetrachoic correlation is a situation where each of two nominal-scale variables has 
two categories because of an artificial dichotomy (G lass and Hopkins, 1996: 136-137; 
Howell, 2007: 284-285; Sheskin, 2004: 997- 1000).t For example, data might be 
collected to ask whether there is a correlation between the height of children, recorded 
as "tall" or "short," and their performance on an intelligence test, recorded as "high" 
or "low." Underlying each of these two dichotomous variables is a spectrum of 
measurements, and observations are placed in the categories by an arbitrary definition 
of tall, short, higJz, and low. (If there are more than two categories of one or both 
variables, the term polychoric correlation may be used.) Therefore, the categories of X 
and the categories of Y may be considered to represent ordinal scales of measurement 

The tetrachoic correlation coefficient, r" is an estimate of what the correlation 
coefficient, r, of Section 9.1 would be if the continuous data (ratio-scale or interval­
scale) were known for the underlying distributions; it ranges from -1 to 1. It is 
rarely encountered, largely because it is a very poor estimate (it has a large standard 
error and is adversely affected by nonnormality). The calculation of r" and its use in 
hypothesis testing, is discussed by Sheskin (2004: 998-10(0). 

(b) One Variable Is Dichotomous. POilll-biserial correlation is the term used for a 
correlation between y, a variable measured on a continuous scale (i.e., a ratio or 

*Q is one of several measures of association discussed by British statistician George Udny 
Yule (1871-1951). He called it Q in honor of Lambert Adolphe Jacques Quetelet (1796-1874), 
a pioneering Belgian statistician and astronomer who was a member of more than 100 learned 
societies, including the American Statistical Association (of which he was the first foreign member 
elected after its formation in 1839); Quetelet worked on measures of association as early as 1832 
(Walker. 1929: IJO-131). 

tThis coefficient was developed by Karl Pearson (1901). 
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interval scale, not an ordinal scale), and X, a variable recorded in two nominal-scale 
categories.· Although this type of correlation analysis has been employed largely in 
the behavioral sciences (e.g .• Glass and Hopkins. 1996: 364-365. 368-369; Howell. 
1997: 279-283, 2007: 277-281; Sheskin, 2004: 990-993), it can also have application 
with biological data. If it is Y, instead of X, that has two nominal-scale categories. 
then logistic regression (Section 24.18) may be considered. 

Example 19.16 utilizes point-biserial correlation to express the degree to which 
the blood-clotting time in humans is related to the type of drug that has been 
administered. [n this example. the data of Example 8.1 are tabulated denoting the 
use of one drug (drug B) by an X of 0 and the use of the other drug (drug G) by an X 
of 1. The dichotomy may be recorded by any two numbers. with identical results. but 
employing 0 and 1 provides the simplest computation. 

Then a point-biserial correlation coefficient. 'ph, is calculated by applying Equa­
tion 19.1 or, equivalently, Equation 19.2 to the pairs of X and Y data. The sign of 
rph depends upon which category of X is designated as 0; in Example 19.16, rpb is 
positive, but it would have been negative if drug B had been recorded as 1 and drug 
Gas O. The coefficient rpb can range from -1 to 1. and it is zero when the means of 
the two groups of Y's are the same (i.e., Y I = Yo; see the next paragraph). 

A computation with equivalent results is 

_ YI - Yo~ ninO 
rph - • 

Sy N(N - 1) 
(19.62) 

where Yo is the mean of all no of the Y data associated with X = O. Y 1 is the mean of 
the nl Y data associated with X = 1. N = no + nl, and sy is the standard deviation 
of all N values of y.t 

By substituting rpb for rand N for n, Equations 19.3 and 19.4 may be used for 
a point-biserial correlation coefficient, and hypothesis testing may proceed as in 
Section 19.2. 

Hypothesis testing involving the population point-biserial correlation coefficient. 
pph. yields the same results as testing for the difference between two population 
means (Section 8.1). If an analysis of this kind of data has been done by a t test on 
sample means, as in Example 8.1, then determina tion of the point-biserial correlation 
coefficient may be accomplished by 

rpl) = / 2 t2 
. Vt +N-2 

(19.63) 

[f variable X consists of more than two nominal-scale categories and Y is a 
continuous variable, then the expression of association between Y and X may be 
called a point-polyserial correlation (Olsson, Drasgow, and Dorans, 1982), a rarely 
encountered analytical situation not discussed here. 

Biserial correlation involves a variable (Y) measured on a continuous scale and 
differs from point-biserial correlation in the nature of nominal-scale variable X (Glass 
and Hopkins, 1996: 134-136; Howell. 1997: 286-288. 2007: 284-285; Sheskin, 2004: 
995-997). [n this type of correlation, the nominal-scale categories are artificial. For 

·This procedure was presented and named by Karl Pearson in 1901 (Glass and Hopkins. 1996: 
133). 

t Although this is a correlation. not a regression. situation. it can be noted that a regression line 
(calculated via Section 17.1) would run from Yo to Y 1 • and it would have a slope of Y I - Yo and 
a Y intercept of Yo. 

prakash
Rectangle
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EXAMPLE 19.16 Point-Biserial Correlation, Using Data of Example 8.1 

H,,: There is no correlation between blood-clotting time and drug. (Ho: Pp/) = 0) 
HA: There is correlation between blood-clotting time and drug. (HA: Ppb 'i= 0) 
For variable X. drug B is represented by X = 0 and drug G by X = 1: Y is the 
time (in minutes) for blood to clot. 

X 

o 
o 
o 
o 
o 
o 
1 

I 

1 

Y 

8.8 
8.4 

7.9 

8.7 

9.1 

9.6 

9.9 

9.0 
11.1 
9.6 
8.7 
10.4 
9.5 

no = 6 

~X=7 
~X2 = 7 

~x2 = 3.2308 

~XY = 68.2 

~xy = 3.2077 

n1 = 7 

~ Y = 120.70 

~ y2 = 1129.55 

~l = 8.8969 

3.2077 ') 
'ph = J(3.2308)(8.8969) = 0.5983, 'Ph = 0.3580 

I = 0.5983 = 0.5983 = 2.476 
/1 - 0.3580 0.2416 

V 13 - 2 

I = 2.201 ".US( 2 ).11 

Therefore. reject Ho. 

0.02 < P < 0.05 [P = 0.031] 

N=13 

This is the same result as obtained comparing the mean clotting times of the 
two drug groups (Example 8.1). 

example, mice in a diet experiment might be recorded as heavy or light in weight by 
declaring a particular weight as being the dividing point between "heavy" and "light" 
(and X behaves like an ordinal-scale variable). 

This correlation coefficient, 'h, may be obtained by Equation 9.1 or 9.2. as is 'pb, 

and will be larger than 'pb except that when 'ph is zero, 'b is also zero. Because X 
represents an ordered measurement scale. X = 0 should be used for the smaller 
measurement (e.g .• "light" in the previous example) and X = 1 for the larger 
measurement (e.g .• "heavy"). If there are more than two ranked categories of 
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X, the term polyserial correlation may be applied (Olsson, Drasgow. and Dorans, 
1982). 

However, the calculated biserial correlation coefficient is adversely affected if the 
distribution underlying variable X is not normal; indeed, with nonnormality. Irbl can 
be much greater than 1. The correlation rb is an estimate of the correlation coefficient 
of Section 9.1 that would have been obtained if X were the measurements from the 
underlying normal distribution. The calculation of, and hypothesis testing with. this 
coefficient is discussed by Sheskin (2004: 995-996). 

INTRACLASS CORRELATION 

In some correlation situations it is not possible to designate one variable as X and 
one as Y. Consider the data in Example 19.17, where the intent is to determine 
whether there is a relationship between the weights of identical twins. Although the 
weight data clearly exist in pairs, the placement of a member in each pair in the 
first or in the second column is arbitrary. in contrast to the paired-sample testing 
of Section 9.1, where all the data in the first column have something in common 
and all the data in the second column have something in common. When pairs of 
data occur as in Example 19.17, we may employ intrac/ass correlation. a concept 
generally approached by analysis-of-variance considerations (specifically, Model 11 
single-factor ANOV A (Section 10.1 f). Aside from assuming random sampling from 
a bivariate normal distribution, this procedure also assumes that the population 
variances are equal. 

If we consider each of the pairs in our example as groups in an ANOVA (i.e., 
k = 7). with each group containing two observations (i.e., n = 2), then we may 
calculate mean squares to express variability both between and within the k groups 
(see Section 10.1). Then the i1Urac/ass correlation coefficient is defined as 

rl = groups MS - error MS 
groups MS + error MS' 

(19.64) 

this statistic being an estimate of thc population intraclass correlation coefficient. PI. 
To test Ho: PI = 0 versus Ho: PI :F- O. we may utilize 

F = groups MS 
error MS ' 

(19.65) 

a statistic associated with groups DF and error DF for the numerator and denominator, 
respectively.* If the measurements are equal within each group, then error MS = 0, 
and T[ = I (a perfect positive correlation). If there is more variability within groups 
than there is bctween groups, then rl will be negative. The smallest it may be, 
however, is -1/(n - 1); therefore, only if It = 2 (as in Example 19.17) can rl be as 
small as - 1. 

We are nol limited to pairs of data (i.e., situations where n = 2) to speak 
of intraclass correlation. Consider, for instance. expanding the considerations of 
Example 19.17 into a study of weight correspondence among triplets instead of twins. 
Indeed, II need not even be equal for all groups. We might, for example, ask whether 
there is a relationship among adult weights of brothers; here, some families might 

"'If desired. F may be calculated first. followed by computing 

'1 = (F - I)/(F + 1). (19.66) 
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Also. if n > 2. then 

U Z/ = ~-2(-Il--1-~(-k---2-) (19.74) 

(Fisher. 1958: 219). and 

n + n 

(19.75) 

(Zerbe and Goldgar. 1980). Nonparametric measures of intrac1ass correlation have 
been proposed (e.g., Rothery. 1979). 

19.13 CONCORDANCE CORRELATION 

If the intent of collecting pairs of data is to assess reproducibility or agreement of 
data sets, an effective technique is that which Lin (1989, 1992. 2000) refers to as 
concordance correlation. For example. the staff of an analytical laboratory might wish 
to know whether measurements of a particular substance are the same using two 
different instruments. or when performed by two different technicians. 

In Example 19.18, the concentration of lead was measured in eleven specimens of 
brain tissue. where each specimen was analyzed by two different atomic-absorption 
spectrophotometers. These data are presented in Figure 19.2. If the scales of the two 
axes are the same, then perfect reproducibility of assay would be manifested by the 
data falling on a 45° line intersecting the origin of the graph (the line as shown in 
Figure 19.2). and concordance correlation assesses how well the data follow that 45° 
line. 

The concordance correlation coefficient, re. is 

_ 2~xy 
re - ~x2 + ~y2 + n(X _ y)2' 

(19.76) 

This coefficient can range from -1 to + 1. and its absolute value cannot be greater 
than the Pearson correlation coefficient, r; so it can be stated that -1 ~ - I r I S 

rc ~ I r I ~ 1: and rc = 0 only if r = O. 
Hypothesis testing is not recommended with rc (Lin. 1992). but a confidence 

interval may be obtained for the population parameter Pc of which rc is an estimate. 
To do so, the Fisher transformation (Equation 19.8) is applied to rc to obtain a 
transformed value we shall call Zc: and the standard error of Zc is obtained as 

Uz, = 

where 

(1 - ,z)~ + 2~(I - rc)U 
(1 - rnr2 r( 1 - r~)2 

n - 2 

U = In(X - V')2 

JLx2Li 
This computation is shown in Example 19.18. 

(19.77) 

(19.78) 

Furthermore. we might ask whether two concordance correlations are significantly 
different. For example. consider that the between-instrument reproducibility !lnalyzed 
in Example 19.18 was reported for very experienced technicians. and a set of data 
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EXAMPLE 19.18 Reproducibility of Analyses of Lead Concentrations in 
Brain Tissue (in Micrograms of Lead per Gram of Tissue), Using Two Different 
Atomic-Absorption Spectrophotometers 

Tissue Lead (p,g/g) 
Tissue sample Spectrophotometer A Spectrophotometer B 

(i) (~) (~) 

1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 

n = 11 

~X = 4.24 

~X2 = 1.7418 

~x2 = 0.10747 

X = 0.385 

0.22 
0.26 
0.30 
0.33 

0.36 
0.39 
0.41 
0.44 

0.47 
0.51 
0.55 

~ Y = 3.67 

~ y2 = 1.2949 

~l = 0.07045 

y = 0.334 

_ 2~xy 
rc - =--;:-----==-~--=----=,-----=--;;-

~x2 + ~l + n(X _ y)2 

0.21 
0.23 
0.27 
0.27 

0.31 
0.33 
0.37 
0.38 

0.40 
0.43 
0.47 

~XY = 1.5011 

~ xy = 0.08648 

2(0.08648) 0.17296 
----------~--~--------~= 

0.10747 + 0.07045 + 11 (0.385 - 0.334)2 0.20653 

= 0.8375; ~ = 0.7014 

r = ~xy = 0.9939: ,2 = 0.9878 

J~2~l 

For rc = 0.8375, Zc = 1.213 (from Appendix Table 8.18. by interpolation) 

U = ,Jfi(X - y)2 = (3.31662)(0.051 )2 = 0.09914 

J~2 ~l ~(O.l0747)(0.07045) 
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= 

(1 - ,.z )~ 
(1 ,nr2 

n - 2 

(1 - 0.9878)(0.7014) + 2(0.8375)3(1 - 0.8375)(0.09914) 

(1 - 0.7014)(0.9878) (0.9939)(1 - 0.7014) 
(0.8375)4 (0.09914 )2 

2(0.9878)( 1 - 0.7014) 

11 - 2 

= )0.0291 + 0.06~77 - 0.002447 = 0.0245 

95% confidence interval for lc: 

Zc ± ZO.05(2)Uz( = 1.213 ± (1.960)(0.0610) = 1.213 ± 0.120 

LI = 1.093: L2 = 1.333. 

For tre 95% confidence limits for Pc, the foregoing confidence limits for lc are 
transformed (as with Appendix Table B.19) to 

LJ = 0.794: L2 = 0.870. 

was also collected for novice analysts. In order to ask whether the measure of 
reproducibility (namely, 'c) is different for the highly experienced and the less 
experienced workers, we can employ the hypothesis testing of Section 19.5. For 
this, we obtain 'c for the data from the experienced technicians (call it '1) and 
another 'c (call it '2) for the data from the novices. Then each 'c is transformed 

11.50 
$:' 

E 
~ 0.4(1 

E 
'" ..: 
~ (1.30 
'iii 
~ 

j 0.211 

E 
~ 
c 
8 (Ull 
~ 

'" ~ 

• 
• 

• 

o 0.10 0.20 0.30 0.40 (1.50 (1.60 
Lead Content (pglg) Using Instrument A(X) 

AGURE 19.2: Lead concentrations in brain tissue CJ.tglg), determined by two different analytical instru­
ments. The data are from Example 19.18 and are shown with a 45 0 line through the origin. 
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to its corresponding Zc (namely. ZI and Z2) and the standard error to be used in 
Equation 19.21 is 

(19.79) 

where each O"~ is obtained as the square of the O"z, in Equation 19.77. 
Lin (1989) has shown that this method of assessing reproducibility is superior to 

comparison of coefficients of variation (Section 8.8). to the paired-t test (Section 9.1). 
to regression (Section 17.2). to Pearson correlation (Section 19.1), and to intraclass 
correlation (Section 19.12). And he has shown the foregoing hypothesis test to be 
robust with Il as small as 10: however (Lin and Chinchilli. 1996). the two coefficients 
to be compared should have come from populations with similar ranges of data. 
Lin (1992) also discusses the sample-size requirement for this coefficient: and Barn­
hart, Haber. and Song (2002) expand concordance correlation to more than two sets 
of data. 

14 THE EFFECT OF CODING 

Except for the procedures in Sections 19.11 and 19.12, coding of the raw data will 
have no effect on the correlation coefficients presented in this chapter, on their z 
transformations, or on any statistical procedures regarding those coefficients and 
transformations. See Appendix C for information about the use of coding in Sections 
19.11 and 19.12. 

EXERCISES 

1. Measurements of serum cholesterol (mg/too ml) 
and arterial calcium deposition (mg/loo g dry 
weight of tissue) were made on 12 animals. The 
data are as follows: 

Calcium Cholesterol 
(X) ( Y) 

59 298 
52 303 
42 233 
59 287 
24 236 
24 245 
40 265 
32 233 
63 286 
57 290 
36 264 
24 239 

(.) Calculate the correlation coefficient. 
(b) Calculate the coefficient of determination. 
(c) Test Ho: P = 0 versus HA: P :#; O. 
(d) Set 95% confidence limits on the correlation 

coefficient. 
Z. Using the data from Exercise 19.1: 

(.) Test Ho: p :5 0 versus HA: P > O. 
(b) Test Ho: P = 0.50 versus HA : P i' 0.50. 

19.3. Given: rl = -O.44.nl = 24.r2 = -0.40,112 = 30. 
(.) Test Ho: PI = P2 versus HA: PI :#; P2· 
(b) If Ho in part (a) is not rejected. compute the 

common correlation coefficient. 
19.4. Given: rl = 0.45,nl = 18,r2 = 0.56,n2 = 16. Test 

Ho: PI ~ P2 versus HA: PI < P2. 
19.5. Given: r) = 0.85.n) = 24"2 = 0.78.112 = 32.r3 = 

0.86, n3 = 31. 
(a) Test Ho: PI = P2 = P3. stating the appropriate 

alternate hypothesis. 
(b) If Ho in part (a) is not rejected, compute the 

common correlation coefficient. 
19.6. (.) Calculate the Spearman rank correlation coef­

ficient for the data of Exercise 19.1. 
(b) Test Ho: Ps = 0 versus HA: Ps :#; O. 

19.7. Two different laboratories evaluated the efficacy 
of each of seven pharmaceuticals in treating hyper­
tension in women, ranking them as shown below. 

Lab I Lab 2 
Drug rank rank 

L I 1 
P 2 3 
Pr 3 2 
D 4 4 
E 5 7 
A 6 6 
H 7 5 
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Multiple Regression and Correlation 

20.1 INTERMEDIATE COMPUTATIONAL STEPS 
20.2 THE MULTIPLE-REGRESSION EQUATION 
20.3 ANALYSIS OF VARIANCE OF MULTIPLE REGRESSION OR CORRELATION 
20.4 HYPOTHESES CONCERNING PARTIAL REGRESSION COEFFICIENTS 
20.5 STANDARDIZED PARTIAL REGRESSION COEFFICIENTS 
20.6 SELECTING INDEPENDENT VARIABLES 
20.7 PARTIAL CORRELATION 
20.8 PREDICTING Y VALUES 
20.9 TESTING DIFFERENCE BETWEEN TWO PARTIAL REGRESSION COEFFICIENTS 
20.10 "DUMMY" VARIABLES 
20.11 INTERACTION OF INDEPENDENT VARIABLES 
20.12 COMPARING MULTIPLE REGRESSION EQUATIONS 
20.13 MULTIPLE REGRESSION THROUGH THE ORIGIN 
20.14 NONLINEAR REGRESSION 
20.15 DESCRIPTIVE VERSUS PREDICTIVE MODELS 
20.16 CONCORDANCE: RANK CORRELATION AMONG SEVERAL VARIABLES 

The previous three chapters discussed the analyses of regression and correlation rela­
tionships hetween two variahles (silllf>le regression anti correlation). This chapter will 
t:xtend thost: kinds of analyses to regressions and correlations examining the interre­
lationships among thret: or more variahles (mllitiple regrt:ssion and correlation). 

In IIlllltif>le regressio/l, one of the variahles is considert:d to be functionally depen­
dent upon at least one of the otht:rs. Mllltiple correlation is a situation when none of 
thl.' variahles is dt:emed to he dependent on another.* 

The computations required for multiple-regression and multiple-correlation analy­
ses would he very arduous. and in many cases prohihitive, without the computer capa­
hility that is widely available for this task. Therefore, the mathematical operations used 
to obtain regression and correlation coefficients. and to perform re levant hypothesis 
tests. will not he emphasized here. Section 20.1 summarizes the kinds of calculations 
that a computer program will typically perform and present. hut that information is 
not necessary for understanding the statistical procedures discussed in the remainder 
of this chapter, including the interpretation of the results of the computer's work. 

Though uncommon, there arc cases where the dependent variahle is recorded 
on a nominal scale (not on a ratio or interval scale), most often a scale with two 
nominal categories (e.g .. male anti female. infected and not infected, successful and 
unsuccessful). The analyses of this chapter arc not applicable for such data. Instead, 
a procedure known as logistic regressiol1 (Section 24.1 H) may be considered. 

"Much uevdopment in Illulliplc correlation Iheory he!!,an in the lalt: ninel\.·enlh cenlury hy 
o;evcral pioneas. incluuin!! Karl Pearson (I H:'i7 -1936) and his colleague. George lJuny Yule 
( I X71-1 951 ) (Pearson 19ft 7). (Pearson lirst calleu parliill regression coeflicienls "douhle regression 
eodlici.:nts." anu Yui.: later calleu them "l1el regression eodfieienls.") Pearson was the tirst to use 
the terms 1Illlilipie ('/In/'lllliol/. in 1l)(IK ano 1Illlilipie mrrl'llllillll ("/J(~rfi(kllf. in 1 Y J 4 (Dilvio. 1<)<)5). 
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Multiple regression is a major topic in theoretical and applied statistics; only 
an introduction is given here, and consultation with a statistical expert is often 
advisable.* 

20.1 INTERMEDIATE COMPUTATIONAL STEPS 

There are certain quantities that a computer program for multiple regression and/or 
correlation must calculate. Although we shall not concern ourselves with the mechan­
ics of computation, intermediate steps in the calculating procedures are indicated 
here so the user will not be a complete stranger to them if they appear in the 
computer output. Among the many different programs available for multiple regres­
sion and correlation. some do not print all the folIowing intermediate results, 
or they may do so only if the user specifically asks for them to appear in the 
output. 

Consider n observations of M variables (the variables being referred to as Xl 
through XM: (see Example 20.1a». If one of the M variables is considered to be 
dependent upon the others, then we may eventually designate that variable as y, but 
the program will perform most of its computations simply considering all M variables 
as X's numbered 1 through M. 

The sum of the observations of each of the M variables is calculated as 
/I n n 
~ Xlj ~ X2j ... ~ XMj. (20.1) 
j= 1 j= 1 j= 1 

For simplicity. let us refrain from indexing the ~'s and assume that summations are 
always performed over all n sets of data. Thus, the sums of the variables could be 
denoted as 

(20.2) 

Sums of squares and sums of cross products are calculated just as for simple regression, 
or correlation. for each of the M variables. The following sums. often referred to as 
raw sums of squares and raw sums of cross products. may be presented in computer 
output in the form of a matrix, or two-dimensional array: 

~Xr ~XIX2 ~XIX3 

~ X2X I ~ xi ~ X2 X3 

~ X3XI ~ X3X2 ~ X! 

~XIXM 

~X2XM 

~X3XM 
(20.3) 

As ~ X;Xk = ~ XkXi, this matrix is said to be symmetrical about the diagonal 
running from upper left to lower right.t Therefore, this array, and those that follow, 

*Greater discussion of multiple regression and correlation. often with explanation of the 
underlying mathematical procedures and alternate methods. can be found in many texts. such as 
Birkes and Dodge (1993): Challerjee and Hadi (2006); Draper and Smith (199R); Glantz and Slinker 
(2001): Hair et al. (2006: Chapter 4); Howell (2007: Chapter IS); Kutner. Nachtsheim. and Neter 
(2004): Mickey. Dunn. and Clark (2004): Montgomery. Peck, and Vining (2006): Pedhazur (1997): 
Seber and Lee (2003); Tabachnik and Fidell (2001: Chapter 5): and Weisberg (2005). 

';'We shall refer to the values of a pair of variables as X; and Xk' 
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EXAMPLE 20.1a The n x M Data Matrix for a Hypothetical Multiple 
Regression or Correlation (n = 33; M = 5) 

Variable (i) 

j I (' C) 2 (cm) 3 (mm) 4 (min) 5 (ml) 

I 6 9.9 5.7 1.6 2.12 
2 I 9.3 6.4 3.0 3.39 
3 -2 9.4 5.7 3.4 3.61 
4 II 9.1 6.1 3.4 1.72 
5 -I 6.9 6.0 3.0 I.RO 
6 2 9.3 5.7 4.4 3.21 
7 5 7.9 5.9 2.2 2.59 
8 I 7.4 6.2 2.2 3.25 
9 I 7.3 5.5 1.9 2.R6 

lO 3 KX 5.2 0.2 2.32 
II II 9.X 5.7 4.2 1.57 
12 9 10.5 6.1 2.4 1.50 
13 5 9.1 6.4 3.4 2.69 
14 -3 10.1 5.5 3.0 4.06 
15 I 7.2 5.5 0.2 1.98 
16 X 11.7 6.0 3.9 2.29 
17 -2 K7 5.5 2.2 3.55 
18 3 7.6 6.2 4.4 3.31 
19 6 K6 5.9 0.2 I.X3 
20 lO 10.9 5.6 2.4 1.69 
21 4 7.6 5.X 2.4 2.42 
22 5 7.3 5.X 4.4 2.98 
23 5 9.2 5.2 1.6 1.84 
24 3 7.0 6.0 1.9 2.4X 
25 8 7.2 5.5 1.6 2.83 
26 8 7.0 6.4 4.1 2.41 
27 6 8.8 6.2 1.9 1.7X 
28 6 10.1 5.4 2.2 2.22 
29 3 12.1 5.4 4.1 2.72 
30 5 7.7 6.2 1.6 2.36 
31 I 7.X 6.X 2.4 2.RI 
32 8 11.5 6.2 1.9 1.64 
33 10 10.4 6.4 2.2 I.R2 

are sometimes presented as a half-matrix. such as 

~Xf 
~X2XI ~xi 
~X3Xl ~X3X2 ~xj 

(20.4) 
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If a raw sum of squares. 'i. Xl, is reduced by ('i. Xi)2 / n. we have a sum of 
squares that has previously (Section 17.2) been symbolized as ~>2. referring to 
~ ~(Xij - Xd 2. Similarly. a raw sum of cross products. ~ XiXk, if diminished 

by ~ Xi ~ Xk/n, yields ~XiXk. which represents ~(Xij - Xi )(Xkj - X k)' These 
quantities are known as corrected sums of squares and corrected sums of crossproducts, 
respectively. and they may be presented as the following matrix: 

~xT ~XIX2 ~XIXJ ~XIXM 
~X2XI ~x~ ~X2X3 ~X2XM 

L X3XI L·t3X2 LX~ L X3XM 
(20.5) 

From Matrix 20.5. it is simple to calculate a matrix of simple correlation coefficients, 

for rik (representing the correlation between variables i and k) = 'i. XiXk / J'i. xT ~ xi 
(Equation 19.1): 

rll rl2 rl3 riM 

r21 r22 r2J r2M 

rJI r32 r33 r3M 
(20.6) 

rMI rM2 rM3 rMM· 

Each clement in the diagonal of this matrix (i.e., rii) is equal to 1.0, for there will always 
be a perfect positive correlation between a variable and itself (see Example 20.1 b). 

EXAMPLE 20.1b A Matrix of Simple Correlation Coefficients, as It Might 
Appear as Computer Output (from the Data of Example 20.1a) 

2 3 

I 1.00000 0.32872 0.16767 
2 0.32872 1.00000 -0.14550 
3 0.16767 -0.14550 1.00000 
4 0.05191 0.18033 0.24134 
5 -0.73081 -0.21204 -0.05541 

4 5 

0.05191 -0.73081 
0.18033 -0.21204 
0.24134 - 0.05541 
1.00000 0.31267 
0.31267 1.00000 

The final major manipulation necessary before the important regression or cor­
relation statistics of the following sections can be obtained is the computation of 
the inverse of a matrix. The process of inverting a matrix will not be explained 
here: it is to two-dimensional algehra what taking the reciprocal is to ordinary, one­
dimensional algehra.* While inverting a matrix of moderate size is too cumbersome 
to he performed easily hy hand. it may be readily accomplished by computer. A 

*The plural of matrix is matrices. As a shorthand notation, statisticians may refer to an entire 
matrix by a boldface letter, and the inverse of the matrix by that letter's reciprocal. So, Matrices 
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multiple-regression or correlation program may invert the corrected sum of squares 
and crossproducts matrix, Matrix 20.5, resulting in a symmetrical matrix symbolized 

CII CI2 CD CIM 

C21 C22 C23 C2M 

(20.7) 

CMI CM2 CM3 CMM· 

Or the correlation matrix, Matrix 20.6, may be inverted, yielding a different array of 
values, which we may designate 

dll dl2 dD diM 

d21 d22 d23 d2M 

d:H d32 d33 d3M 
(20.g) 

dMI dM2 dM3 dMM. 

Computer routines might compute either Matrix 20.7 or 20.8; the choice is unim­
portant because the two are interconvertible: 

d'k 
Cik = I , 

J'2: x; '2: xr 
(20.9) 

or, equivalently, 

(20.10) 

From manipulations of these types of arrays, a computer program can derive the 
sample statistics and components of analysis of variance described in the following 
sections. I f partial correlation coefficients are desired (Section 20.7), the matrix inver­
sion takes place as shown. If partial regression analysis is desired (Sections 20.2-20.4), 
then inversion is performed only on the M - 1 rows and M - 1 columns corresponding 
to the independent variables in either Matrix 20.5 or 20.6. 

THE MULTIPLE-REGRESSION EQUATION 

Recall, from Section 17.2, that a simple linear regression for a population of paired 
variables is the relationship 

Yi = (){ + f3Xi. (17.1) 

In this relationship, Y and X represent the dependent and independent variables. 
respectively; f3 is the regression coefficient in the sampled population; and (){ (the Y 
intercept) is the predicted value of Y in the population when X is zero. And the 
subscript i in this equation indicates the ith pair of X and Y data in the sample. 

In some situations, however, Y may be considered dependent upon more than one 
variable. Thus, 

(20.11) 

20.3,20.5, and 20.6 mighl be referred 10 by the symbols X,x, and r, respectively; and Matrices 20.7 
and 20.8 could be written, respectively. as c = x-I and d = r-I. David (2006) gives A, Co Aitken 
primary credit for introducing matrix algebra into statistics in 1931. 
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may be proposed. implying that one variable (Y) is lint:arly dept:ndent upon a second 
variable (X,) and that Y is also linearly dependent upon <lthird variable (X:!). Here.; 
denotes the ith inuependent \ari'lble. anu X'i specilks tht: jth observation ofvariahlei. 
In this particular multiple rt:grt:ssion mout:1. wt: have ont: dept:nuelll variahle and two 
independent variahles.* The two population parameters f3, and 13'2 arc termed partial 
regressiol1 m(~flicieills: f3, expresses how much Y would change for a unit change in Xl. 
if X'2 were held constant. It is sometimes said that 13, is a measure of the relationship 
of Y to X, after "controlling for" X2: that is. it is a mt:asure of the extent to which 
Y is rclated to Xl after removing the effect of X2. Similarly. 13'2 uescrihes thc rate or 
change of Y as X'2 changes. with X, heing held constant. f3, and f32 arc called partial 
regression cocflkients. then. hecause each expresses only part of the uependcnce 
relationship. The Y intercept. H. is the value of Y when hOlh X, and X2 arc zero. 
Whcrt:as Eljuation 17.1 mathematically represents a line (which may he presented on 
a two-uimensional graph). Eljuation 20.11 defines a plane (which may he plolled on 
a three-dimensional graph). i\ regn.:ssion with 11/ indL'peIH.lcnt variahles defines an /11-

dimensional surface. sometimes referred to as a "response surface" or "hyperplane." 
The population data whose relationship is uescrihed hy Equation 20.11 will prob­

ahly not all lie exactly on a plane. so this equation may he expressed as 

(20.12) 

fi. the "residual." or "error:' is tht: amount hy which Yi differs from what is predicted 
by cr + f3IXli + f32X2/. where the sum of all f'S is zt:ro. tht: f'S arc assumed to he 
normally distrihuted. and each partial regression cocflicient. 13i. cstimates the change 
of Y in the population when there is a chan!?,c of one unit (e.g .. a change of 1 
centimeter. I minute. or I milliliter) in Xi and no chml!?,e in the other X·s. 

lfwe sample the population containing the three variahles (Y. X,. and X2) in Equa­
tion 20.11. we can compute sample statistics to estimatc thc popUlation parameters in 
the moue!. The multiple-rt:gression runt:tion derivcd from a sample or data would he 

. 
ri = tI + hi XI/ + I>:!)(~i' (20.13) 

The samplc statistics tI. I> I. and I>~ arc estimates of the popUlation parameters cr. 
131. and rho respectively. where eat:h parti<ll regression coeflicit:nt bi is the expected 
change in Y in the popUlation for a change of one unit in Xi if all of the other //I - I 
independent variahlcs arc held constant. anu {/ is tht: cxpeclt:d population value of Y 
whcn each Xi is zero. (Often. the sampk Y intt:rcepl. (/. is rt:presented hy ')0 and the 
popUlation Y intercept is represented as 130 instead of cr.) 

Theoretically. in mulliple-rt:gression analyst:s thcrt: is no limitlo Ill. lht: numht:r of 
indepcndent variahles (Xi) that can be proposed as inlluencing Ihe dependent vari,lhle 
(Y). as long as 11 ;? III + 2. (Tht:rt: will ht: complItationallimitations. however.) The 
gt:neral popUlation model. of which Equation 2(J.12 is the special t:ase for 11/ = 2. is" 

(20.14) 

"[)('/)(,/U/cIlC(, in a regression ~onh:xt rdl:rs to mathcmatical. not neccssarily hilllogi~al. Jcpell­
Jence. Sometimcs thc independenl vilriables an: called "pl\:diclor" or "n;!!re~sor" or "cxplanalory" 
or "exogenous" varia hies. ami the tkpcllJellt variahle may hI: rdcrrcJ 10 as lhc "responsc" or 
"critcrion" or "cnJogellous" variable.:. 

':'Thi~ e4uation rcnect~ that multiple regression is a special case ol"what nmthematical stal istician~ 
~all the KI'II('rtlllilll'ctr 11111111'1. Multiple correlation. simple regressi()n anJ currdalion. amllysis of 
variance. and .. nalysis Ilf cO\,ilriance arc also spl:cial cases Ilf that mlldel. 
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or, more succinctly, 
m 

Yj = ex + L {3jXij + Ej, (20.15) 
i= I 

where m is the number of independent variables. This model is said to be one of 
multiple linear regression because of the linear (i.e., additive) arrangement of the 
parameters (ex and (3i) in the model. The sample regression equation, containing the 
statistics used to estimate the population parameters when there are m independent 
variables. would be 

or 

A 

Yj = a + b l Xlj + b2X2j + b3X3j + ... + bmXmj. 

A m 
Yj = a + L biXij. 

i=1 

(20.16) 

(20.17) 

At least m + 2 data points are required to perform a multiple regression analysis, 
where m is the number of independent variables determining each data point. 

The criterion for defining the "best fit" multiple regression equation is most 
commonly that of least squares,* which-as described in Section 17.2 for simple 
regression-represents the regression equation with the minimum residual sum of 

n A 

squares t (i.e., the minimum value of L (Yj - Yj )2). The idea of the least-squares fit 
j=1 

of a plane (or hyperplane) through data is an extension of the least-squares concept 
discussed in Section 17.2 regarding the fit of a line through data. 

From the analysis shown in Example 20.1c,* we arrive at a regression function hav­
ing partial regression coefficients of bl = -0.129 mWe. b2 = -0.019 ml/cm. b3 = 
-0.05 ml/mm, b4 = 0.209 ml/~in, and a Y intercept of a = 2.96 ml.§ Thus we can 
write the regression function as Y = 2.96 - 0.129X, - 0.019X2 - 0.05X3 + 0.209X4. 

*The statistics in Equation 20.16, derived by the method of least squares, are known to 
statisticians as best linear ""biased eSlimates (BLUE) because they are unbiased estimates of the 
population parameters of interest (see Section 2.4). the equation is a linear combination of terms, 
and the statistics are "best" in the sense of having the smallest variance of any linear unbiased 
estimates. 

t Another criterion that could be used-with different associated statistical procedures-is 
that of leasl ab.wlute devialion.v, which would involve minimizing "Lj'= I I Yj - ~'jl (see Birkes and 
Dodge. 1993; Chapter 2; Bloomfield and Steiger, 1983). As indicated in a Section 17.2 footnote, this 
procedure may be beneficial when there are outlier data. and-as indicated in that footnote-an 
intermediate regression method is what is known as M-regression. 

*It should be noted that a computer program's output may display results with symbols different 
from those commonly found in publications such as this book. For example, n might be represented 
by N, I by T, and r by R; and XI. X2. and so on might be written as X( I ), X(2). and so on or by 
Xl. X2, X3. and so on. Numbers. especially very large or very small numbers. might be shown in 
"scientific notation"; for example. 0.0001234 might be displayed as 1.234 x 10-4 or 1.234 x 10 - 4 
or O.1234E -3. Users of computer programs should also be aware that some programs. particularly 
older ones, employ a small enough number of significant figures to cause sizable round-off errors to 
accumulate through the series of calculations noted in Section 20.!. Such errors may be especially 
severe if the variables have greatly different magnitudes or if there is considerable multicollinearity 
(described on Section 20.4). 

§By examining the magnitude of the standard errors of the four partial regression coefficients 
(namely. 0.021287. 0.056278. 0.20727. and 0,(167034), we observe that their second significant figures 
are at the third. third, second. and third decimal places, respectively. making it appropriate to state 
the four coefficients to those precisions. (See the beginning of Section 17.5.) 
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EXAMPLE 20.1c A Computer Fit of a Multiple-Regression Equation to the 
Data of Example 20.1a. Where Variable 5 Is the Dependent Variable 

Regression model: 

Y = a + f31 XI + f32X2 + f33X3 + f34X4 

For each i (where i = 1. 2. 3. 4). 

Ho: f3i = 0 

HA: f3i =1:- 0 

Variahle 

XI 
X2 
X-, 
X4 

hi 

-0.12932 
-0.018785 
-0.046215 

0.20876 

Y intercept: a = 2.9583 

Sh; 

0.021287 
0.056278 
0.20727 
0.067034 

v b~ 
I 

-6.075 28 -0.73176 
-0.334 28 -0.41108 
-0.223 28 -0.26664 

3.114 28 0.36451 

Therefore. b l is an estimate of the relationship between Y and XI after removing 
the effects on Y of X2. X3. and X4 (i.e .• holding those three independent variables 
constant). So, in this example. an increase of 10 Celsius in variable I is predicted to be 
associated with a 0.129-ml decrease in volume in variahle 5 (which is variahle Y in this 
example) if there is no change in variahles X2, X3, and X4. Similarly. b2 estimates the 
relationship between Y and X2 after removing the effects of XI, X3. and X4: and soon. 

Section 20.4a will explain that, if independent variables are highly correlated 
with each other. then the interpretation of partial regression coefficients becomes 
questionable, as docs the testing of hypotheses about the coefficients. 

20.3 ANALYSIS OF VARIANCE OF MULTIPLE REGRESSION OR CORRELATION 

A computer program for multiple regression analysis will typically include an analysis 
of variance (ANOVA). as shown in Example 20.ld. to test the null hypothesis that 
all partial regression coefficients (f3i) are zero against the alternate hypothesis that at 
least one of the f3i'S is not zero. This analysis of variance is analogous to that in the 
case of simple regression (Section 17.3a). in that the total sum of squares and degrees 
of freedom arc separated into two components: (1) the sum of squares and degrees of 
freedom due to multiple regression. and (2) the residual sum of squares and degrees 
of freedom: the multiple-regression mean square and the residual mean square are 
obtained from those quantities. The total sum of squares is an expression of the 
total amount of variability among the Y values (namely, Yj - Y). the regression 
sum of squares expresses the variability among the Y values that is attributable to 
the regression heing fit (that is, Yi - V). and the residual sum of squares tells us 
about thAe amount of variability among the Y's that remains after filting the regression 
(Yj - Yj). The needed sums of squares. degrees of freedom. and means squares are 
summarized in Table 20.1. The expressions given in that table for sums of squares are 
the defining equations: the actual computations of these quantities may involve the 
use of formulas more suitable to the calculating machine. 
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EXAMPLE 20.1d A Computer Analysis of Variance for the Multiple 
Regression Data of Example 20.1 a 

Ho: f31 = f32 = f33 = f34 = 0 

HA: f31 and/or f32 and/or f33 and/or {34 :I- 0 

Source of Variation SS DF MS 

Total 32 
Multiple regression 
Residual 

14.747 
9.7174 
5.0299 

4 2.4294 
28 0.17964 

F = 13.5. with DF of 4 and 28 

FO.05( I ).4.28 = 2.71, so reject Ho. 

P« 0.0005 [P = 2.99 x 10-°] 

Coefficient of determination: R2 = 0.65893 

Adjusted coefficient of determination: R~ = 0.61021 

Multiple correlation coefficient: R = 0.8ll75 

Standard error of estimate: SY'I.2.3.4 = 0.42384 

TABLE 20.1: Definitions of the Appropriate Sums of Squares, Degrees 
of Freedom, and Mean Squares Used in Multiple Regression or 
Multiple Correlation Analysis of Variance 

Sum of squares Mean square 
Source of variation (SS) DF· (MS) 

Total L(Yj - y)2 n -

Regression L( Yj - Yj)2 m 
regression SS 
regression DF 

Residual L(Yj - Yj )2 residual SS n - m -
residual DF 

*1/ = total number of data points (i.e .. total number of Y values): m = 
number of independent variables in the regression model. 

Note that a multiple-regression ANOV A (Table 20.1) becomes a simple-regression 
ANOV A (Table 17.1) when m, the number of independent variables. is 1. 

IC we assume Y to be functionally dependent on each of the X's. then we are 
dealing with multiple regression. If no such dependence is implied. then any of the 
M = m + 1 variables could be designated as Y for the purposes of utilizing the 
computer program: this is a case of multiple correlation. In either situation, we can 
test the hypothesis that there is no interrelationship among the variables, as 

F = regression MS. 
residual MS 

(20.18) 
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The numerator and denominator degrees of freedom for this variance ratio are the 
regression DF and the residual DF, respectively. For multiple regression, this F tests 

which may be written as 

against 

The ratio, 

or, equivalently, 

Ho: 13) = 132 = ... = 13M = 0, 

Ho: 13i = 0 for all i's. 

H A: 13i *" 0 for one or more i's. 

R2 = regression SS 
total SS 

R2 = 1 _ residual SS 
total SS 

(20.19) 

(20.20) 

is the coefficient of determination for a multiple regression or correlation, or the 
coefficient of multiple determination.· In a regression situation, it is an expression of 
the proportion of the total variability in Y that is attributable to the dependence of 
Y on all the Xi'S, as defined by the regression model fit to the data. In the case of 
correlation, R2 may be considered to be amount of variability in anyone of the M 
variables that is accounted for by correlating it with all of the other M - 1 variables; 
the quantity 1 - R2 is called the coefficient of nondetermination, the portion of the 
variability in one of the variables that is not accounted for by its correlation with the 
other variables. 

Healy (1984) and others caution against using R2 as a measure of "goodness 
of fit" of a given regression model; and one should not attempt to employ R2 to 
compare regressions with different m's and different amounts of replication. An 
acceptable measure of goodness of fit is what is referred to as the adjusted coefficient 
of determination t . 

R2 = 1 _ residual MS 
{/ total MS ' 

* R2 may also be calculatcd as (Sutton. 1990) 

R2 = _---=--F __ 
F + 112/11) 

(20.22) 

(20.21) 

Expressing R2 may not be appropriate for regression models with no Y intercept. and various 
authors-and some computer programs-have used the symbol R2 to denote somewhat different 
quantities (Kvlilseth. 1985). 

t Huberty and Mourad (1980) note that several adjustments to R2 have been proposed and credit 
the first appearance of R~. a very good one. to Ezekiel (1930: 225-226). who termed it an "index 
of determination" to distinguish it from the coefficient of determination. They also distinguish 
between a coefficient of determination when the purpose is multiple correlation (R~). on the one 
hand. and one (which they attribute to G. E. Nicholson. in 1948. and F. M. Lord. in 1950) that they 
recommend where the objective is prediction via multiple regression, on the other hand: 

R~L = 1 _ (n + m + 1)(~)(1 _ R2). 
Il-m-l n 

(20.21 a) 

The difference between R~ and R~L increases as m increases and decreases as If increases. 
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n-l (1-R2 ). 
n - m - 1 

(20.23) 

R~ increases only if an added Xi results in an improved fit of the regression to the 
data, whereas R2 always increases with the addition of an Xi (or it is unchanged if 
the bi associated with the Xi is zero). Therefore, R2 tends to be an overestimate of the 
population coefficient of determination (p2), with the magnitude of the overestimate 
greater with smaller n or larger m, and R; is a better estimate of p2. Because R'!, 
is smaller than R2, it is sometimes called the "shrunken R2." If p2 is near zero, the 
calculated R; may be negative (in which case it should be expressed as zero). R~ is 
useful for comparing regression equations that have different numbers of independent 
variables. 

'T.br. J,(Ulat:t" .r.ru\t ~f .tru=- .!tR.'lffi,'li..'ln· Ul4'\.1l'l~l1mirdl1i11l IS relerreo' ro as tlie muiUpie 
correlation coefficient:* 

R == fii2. (20.24) 

R is also equal to the Pearson correlation coefficient, r. for the correlation of the 
observed values of Yj with the respective predicted values, Yj. For multiple correlation 
the F of Equation 20.18 allows us to draw inference about the population multiple 
correlation coefficient, p, by testing Ho: p = 0 against H A: p #: O. 

In a multiple-correlation analysis, Equation 20.]8 provides the test for whether 
the multiple-correlation coefficient is zero in the sampled population. In the case 
of a multiple regression analysis, Equation 20.18 tests the null hypothesis of no 
dependence of Y on any of the independent variables, Xi; that is, Ho: 131 = 132 = 
.,. ::: 13m = 0 (vs. HA: All m population partial regression coefficients are not equal 
to zero). Once R2 has been calculated, the following computation of F may be used 
as an alternative to Equation 20.18: 

F = ( R2 )( residual DF ) 
1 - R2 regression DF ' 

and F (from either Equation 20.18 or 20.25 provides a test of HI): p2 () versus 
HA:p2 :;:. O. 

The square root of the residual mean square is the standard error of estimate for 
the multiple regression: 

Sy.\.2, .... m = Jresidual MS. (20.26) 

As the residual MS is often called the error MS. SY·\,2, .... m is sometimes termed .the 
root mean square error. The subscript (Y . 1,2, ... , m) refers to the mathematIcal 
dependence of variable Yon the independen~ variables .1 through m. , 

The addition of a variable, Xi, to a regressIon model Increases the regressIOn sum 
of squares and decreases the residual sum of squares (u~l~ss the associated b; is zero, 
in which case these sums of squares are unchanged). It IS Important to ask, however, 
whether an increase in regression sum of squares is important (i.e., whether the added 
variable contributes useful information to our analysis). The regression degrees of 

*G. U. Yule, in 1897, was the first to use R to denote the multiple correlation coefficient (Walker, 
1929: 112). R. A. Fisher described the distribution of this statistic in 1928 (Lehmann. 1999). R can 
never be less than the coefficient of correlation between Y and any of the X;'s (Darlington, 1990: 

53). 
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n - 1 (1 _ R2). 
n-m-I 

(20.23) 

R~ increases only if an added Xi results in an improved fit of the regression to the 
data, whereas R2 always increases with the addition of an Xi (or it is unchanged if 
the hi associated with the Xi is zero). Therefore, R2 tends to be an overestimate of the 
population coefficient of determination (p2), with the magnitude of the overestimate 
greater with smaller n or larger m, and R~ is a better estimate of p2. Because R~ 
is smaller than R2, it is sometimes called the "shrunken R2." If p2 is near zero, the 
calculated R;; may be negative (in which case it should be expressed as zero). R~ is 
useful for comparing regression equations that have different numbers of independent 
variables. 

The square root of the coefficient of determination is referred to as the multiple 
correlation coefficiem:* 

R = fRi. (20.24) 

R is also equal to the Pearson correlation coefficient, r, for the correlation of the 
observed values of Yj with the respective predicted values, Vi' For multiple correlation 
the F of Equation 20.18 allows us to draw inference about the popUlation multiple 
correlation coefficient, p, by testing Ho: p = 0 against HA: p :I: O. 

In a multiple-correlation analysis, Equation 20.18 provides the test for whether 
the multiple-correlation coefficient is zero in the sampled population. In the case 
of a multiple regression analysis, Equation 20.18 tests the null hypothesis of no 
dependence of Y on any of the independent variables, Xi: that is, Ho: 131 = 132 = 
... = 13m = 0 (vs. HA: All m population partial regression coefficients are not equal 
to zero). Once R2 has been calculated, the following computation of F may be used 
as an alternative to Equation 20.18: 

F = ( R2 )( residual DF ) 
I - R2 regression OF ' 

(20.25) 

and F (from either Equation 20.18 or 20.25 provides a test of Ho: p2 = 0 versus 
HA: p2 "# O. 

The square root of the residual mean square is the standard error of estimate for 
the multiple regression: 

SY·1.2 .... JII = Jresidual MS. (20.26) 

As the residual MS is often called the error MS, SY.I.2 .... JII is sometimes termed the 
root mean square error. The subscript (Y . 1,2, ... , m) refers to the mathematical 
dependence of variable Yon the independent variables 1 through m. 

The addition of a variable, Xi, to a regression model increases the regression sum 
of squares and decreases the residual sum of squares (unless the associated bi is zero, 
in which case these sums of squares are unchanged). It is important to ask, however. 
whether an increase in regression sum of squares is important (i.e., whether the added 
variable contributes useful information to our analysis). The regression degrees of 

·G. U. Yule. in 1897, was the first to use R to denote the multiple correlation coefficient (Walker. 
1929: 112). R. A. Fisher described the distribution of Ihis statistic in 1928 (Lehmann, 1999). R can 
never be less than the coefficient of correlation between Y and any of the X;'s (Darlington, 1990: 
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freedom also increase and the residual degrees of freedom also decrease with the 
addition of a variable and therefore the regression mean square might decrease 
and/or the residual mean square might increase, and F might be reduced. This issue 
is addressed in Sections 20.4 and 20.6. 

(a) Assumptions of Multiple Regression Analysis. The underlying assumptions of 
multiple regression are analogous to those of simple regression (Section t 7.2d): 

1. The values of Y have come at random from the sampled population and are 
independent of one another. 

2. For any combination of values of the Xi'S in the population, there is a normal 
distribution of Y values. (Thus. for each of the combinations of Xi 's, there is in 
the population a normal distribution of E·S.) 

3. There is homogeneity of variances: that is, the variances of the population 
distributions of Y values for all combinations of Xi'S are all equal to each other. 
(The residual mean square. s}.1.2 ..... m is the estimate of this common variance.) 

4. The independent variables. Xi'S, are fixed-effects factors (Section t 7 .2e). the 
measurements of which were obtained with no error or with errors negligible 
compared to the magnitude of errors in measuring Y. 

These assumptions do not impact the calculation of regression statistics (a, bi, 
R2), but they do underlie the performance of hypothesis testing and the expression 
of confidence intervals. Fortunately, regression analysis is robust to some deviation 
from these assumptions, especially if n is large. 

Chatterjee and Hadi (2006: Chapter 4) discuss graphical examination of data for 
purposes including assessment of departures from assumpt~ons, and some computer 
programs will provide analysis of residuals (I.e., Yi - Yi vs. Xi) as introduced 
in Section 17.lOa. Data transformations for variables in multiple regression may 
assist in meeting the regression assumptions, as in the case of simple regression 
(Section 17.10) (e.g., Chatterjee and Hadi, 2006: Chapter 6; Cohen et aI., 2003: 
Section 6.4). 

There are regression methods, not commonly encountered, to which the foregoing 
assumptions do not apply. As mentioned in Section 17.2, these include nonpara­
metric regression, least-absolute-deviations regression, and M-regression (Birkes and 
Dodge, 1993: Chapters 5 and 6; Cleveland, Mallows. and McRae, 1993; Draper and 
Smith, 1998: Chapter 25; Hollander and Wolfe, 1999: Chapter 9: Huber, 2004: Chapter 
7: Kutner, Nachtsheim, and Neter, 2004: 449-558: Montgomery, Peck. and Vining. 
2006: Section 7.3; Wang and Scott, 1994). 

20.4 HYPOTHESES CONCERNING PARTIAL REGRESSION COEFFICIENTS 

In employing simple regression (Section 17.3), it is generally desired to test Ho: 13 = 
130, a two-tailed null hypothesis where 130 is most often zero. If. in multiple regression, 
Equation 20.18 yields a significant F (Le .. H(): 131 = 132 = ... = 13m = 0 is rejected). 
then we have concluded that at least one 13i is different from zero and its associated 
Xi contributes to explaining Y. In that case. each of the partial regression coefficients 
in a multiple-regression equation may be submitted to an analogous hypothesis. 
Ho: 13i = /30, where. again. the test is usually two-tailed and the constant is most 
frequently zero. For Ho: 13i = 0, Student's t may be computed as 

(20.27) 
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and considerations of Section 17.3b indicate how one-tailed tests and cases where 
f30 -:1= 0 would be handled. * 

We may obtain both hi and Shi from the computer output shown in Example 20.1c. 
In the particular computer program employed for this example, the ( value is also 
calculated for each bi. If it had not been, then Equation 20.27 would have been 
applied. (Some computer programs present the square of this ( value and call it a 
"partial F value.") The residual degrees of freedom are used for this test. 

If the standard errors are not given by the computer program being utilized. then 
they may be calculated as 

Sh = Js2Y.I ') ,II,Ci;. I ._~ ••• 
(20.28) 

where s~.1,2 .... Jll is the square of the standard error of estimate, which is simply the 
residual mean square. and Cij is defined in Section 20.1. Knowing Sbi' we can obtain a 
1 - a confidence interval for a partial regression coefficient, f3i' as 

(20.29) 

where IJ is the residual degrees of freedom. 
In general, a significant F value in testing for dependence of Y on all Xi'S 

(by Equation 20.18) will be associated with significance of some of the f3i'S being 
concluded by I-testing; but it is possible to have a significant F without any significant 
('s. or, in rarer cases. significant t's without a significant F (Cohen et al. 2003: 90; 
Cramer, 1972; Draper and Smith. 1998: 146-147; Geary and Leser. 1968). These 
situations can occur when there is a high degree of multicollinearity (see Section 
20.4a), and, in general, Ho: f3i = 0 should not be tested if there is not a significant F 
for the multiple-regression model. 

Section 20.6 discusses methods for concluding which of the m independent variables 
should be kept in the multiple-regression model and which should be deleted because 
they do not contribute significantly to the magnitude of Y. Those procedures may be 
considered if any of the partial regression coefficients are found to be nonsignificant 
(i.e .. at least one Hu: f3i = 0 is not rejected). 

Cohen and colleagues (2003: 94-95) discuss power analysis for partial regression 
coefficients and provide a special table for this purpose. Various rules of thumb have 
been presented for sample sizes desirable for testing multiple-regression hypotheses; 
Green (1991) critiqued several such "rules." These tend to be very general. For 
example. Hair et al. (2006: 194-197) provide the following recommendations for 
testing partial regression coefficients at the 0.05 significance level with a power of 
at least 0.80: a minimum II of 50, preferably 100, and a minimum n-to-i ratio of 
5 : 1. preferably 15 : 1 to 20 : I-or up to 50 : 1 if the procedure of Section 20.6e is 
used. (As with other stalistical methods, specifying a smaller significance level. or a 
greater power. requires larger samples.) If a reasonable set of independent variables 
is concluded to contribute to the determination of Y, then power may not be a 
concern; if not, it might be wise to repeat the experiment with these recommended 
sample sizes. Conferring with a statistical consultant may help determine how to 
proceed. 

(a) Multicollinearity. If independent variables, say XI and X2, are highly correlated. 
then the partial regression coefficients associated with them (b l and b2) may not be 
assumed to reflect the dependence of Y on XI or Yon X2 that exists in the population. 

·The distribution of partial regression coefficients (and panial correlation coefficients, Section 
20.7) was described by R. A. Fisher at the urging of W. S. Gosset ("StUdent") (Lehmann. 1999). 
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Statisticians call correlation between independent variables multicollinearity (and 
sometimes, if it is between only two Xi'S, it is termed collinearity). It is also known as 
illtercorrelatioll or Ilonorthogollality or iIIconditioning between variables. In practice, 
multicollinearity is of little consequence if it is not great. But if the multicollinearity 
is substantial, then standard errors of the partial regression coefficients of the 
correlated X;'s will be large (and confidence intervals of the bi'S will be wide), 
significance testing will possess low power, and the interpretation of the effects of 
those X;'s on Y (and conclusions about the associated bi'S and t's) may be spurious 
or ambiguous. 

Consequential multicollinearity may be suspected 

• if a regression coefficient appears unreasonable (such as being unreasonable in 
sign or magnitude or having an insignificant t even though its X is expected to 
have a considerable effect on Y): 

• if the F for the overall regression is significant with a much lower than the stated 
significance level but none of the {3's are concluded to be different from zero; 

• if there arc significant t's without a significant F: 
• if some correlation coefficients for pairs of Xi'S are very high (some researchers 

would say >0.80 or. especially. >0.90), as observed in Matrix 20.6: 
In 

• if R2 is much greater than L r~i' where ~i represents the simple correlation of 
i= I 

the dependent variable (Y) on an independent variable (Xi): 
• if there is a great change in the bi'S associated with the other variables when a 

variable is added to or deleted from the regression model: 
• if there is a large difference in regression coefficients upon the addition or 

deletion of data. 

Multicollinearity is more likely with a large number of independent variables. and 
the adverse effect of multicollinearity may be especially pronounced if the range of 
any of the Xi'S is narrow.* Texts such as Glantz and Slinker (2001: Chapter 5) and 
Hair et at. (2006: 206-207) discuss both the assessment of multicollinearity by analysis 
such as what is called tolerance (or its inverse. the variance inflation factor, VIF), 
and the reduction of multicollinearity (e.g .. by deletion of one or more correlated 
variables from the equation). 

Singularity is extreme multicol\inearity, when there is a perfect correlation (i.e., 
r = 1.0 or r = -1.0) between two (or more) variables. In this situation, a multiple­
regression analysis cannot be performed until one (or more) of the perfectly correlated 
variables is removed from consideration. 

When multicollinearity is present, standard errors of partial regression coefficients 
(Sb;'S) may be large. meaning that the bi'S are imprecise estimates of the relation­
ships in the population. As a consequence, a bi may not be declared statistically 
significant from zero (as by the above t test), even when Y and Xi are related in 
the population. With highly correlated X;'s the overall F for the regression model 
can be significant even when the t tests for the individual Xi'S are not (Berry and 
Feldman. 1985: 42-43; Bertrand and Holder, 1988; Hamilton, 1987: Kendall and Stu­
art. 1979: 367: Routledge. 1990). An additional deleterious effect of multicollinearity 
is that it may lead to increased roundoff error in the computation of regression 
statistics. 

* I f the intercorrelation is great. we may be unable to calculate the partial regression coefficients 
at all. for it may not be possible to perform the matrix inversion described in Section 20.1. 
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STANDARDIZED PARTIAL REGRESSION COEFFICIENTS 

Users of multiple-regression analysis may encounter standardized partial regression 
coefficients.* The common definition of such a coefficient employs the standard 
deviation of Y (namely Sy) and of Xi (namely Sx): 

b/~ = bl.(SSXyi), . I I b' b J ~>i or, equJva ent y. i = i ~l' (20.30) 

A standardized partial regression coefficient, bi. is the partial regression coefficient 
that would result from using Y / Sy in place of Y and, for that i. using X / s x in place 
of X: or. equivalently from using (Y - Y)/Sy in place of Y and, for that i. using 
(X - X)/ S x in place of X. These coefficients are sometimes reported as indicators 
of the relative importance of the independent variables (Xi 's) in determining the 
value of the dependent variable Y (if the Xi'S are uncorrelated). 

These coefficients are unitless, so they are especially useful indicators when Xi'S 
are on different measurement scales; a bi I with a large absolute value is indicative of 
its associated Xi having a high degree of influence on Y. Many multiple-regression 
computer programs include standardized regression coefficients, and some also 
include their standard errors. A test of Ho: f3 i = 0 is typically not performed, however, 
for it would tell the user no more than a test performed for Ho: f3 i = 0; that is. the 
probability associated with the former null hypothesis is equal to the probability 
associated with the latter. Standardized partial regression coefficients suffer from 
the same problems with multicollinearity as do partial regression coefficients (see 
Section 20.4a). 

SELECTING INDEPENDENT VARIABLES 

Example 20.1c shows the statistics for the least-squares best-fit equation for the 
data of Example 20.1a. However. although the data consisted of four independent 
variables, it should not be assumed that each of the four has a consequential effect on 
the magnitude of the dependent variable. 

Challenges facing the user of multiple regression analysis include concluding which 
of the independent variables have a significant effect on Y in the population sampled. 
It is desired to employ a regression equation with as many of the independent 
variables as required to provide a good determination of which of these variables 
effect a significant change of Y in the population and to enable accurate prediction of 
Y. However, the resultant regression equation should comprise as few variables as are 
necessary for this purpose so as to minimize the time, energy, and expense expended in 
collecting further data or performing further calculations with the selt;.cted regression 
equation, to optimize statistical estimates (the variances of bi and Yj may increase 
unacceptably if nonsignificant variables are included), and, we hope, to simplify the 
interpretations of the resultant regression equation; a smaller number of variables 
will also tend to increase the precision of predicted V's (Draper and Smith, 1998: 327). 

The following statistical procedures are important if the intent of the analysis is 
to predict Y from a group of significantly influential Xi'S. However. if the goal is 
to describe, and help understand, biological relationships underlying the magnitude 
of Y. then some analysts have argued that biological considerations, in addition to 

*These are sometimes called beta coefficients «(3;) but should not be confused with the population 
parameters «(3;) estimated by bi' 
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automated statistical rules, should he employed when deciding which variables to add 
to or delete from the regression model. 

A number of procedures have heen proposed to conclude which is. in some 
ohjective way. the "hest" (or at least a very good) regression model. The various 
methods do not necessarily arrive at the same conclusions on this question, and there is 
not universal agreement among statisticians as to which is most advantageous. Indeed, 
because of drawhacks such as those noted later, some data analysts recommend 
against using any of them. However, inasmuch as they are commonly found in 
research pUblications and computer output. they arc summarized herc for the reader's 
henefit. 

This section will discuss common methods that have heen used for concluding which 
of the 111 independent variables should be included in the model. but consultation with 
a professional statistician may be beneficial in many cases. Deciding, by statistical 
processes, which of m independent variables should remain in a multiple-regression 
model is discussed in the references cited in the footnote at the end of the introduction 
to this chapter. such as in Chatterjee. Hadi. and Price (2000: Chapter 11): Draper and 
Smith (1998: Chapter 15): Glantz and Slinker (2001: Chapter 6): Hair et al. (2006: 
209-214): Kutner, Nachtsheim. and Neter (2004: Chapter I): and Seber and Lee 
(2003: Chapter 12). 

Each of the methods in Sections 20.6b, 20.6c, and 20.6e involves more than one 
null hypothesis about partial regression coefficients. However, the several hypothesis 
tests performed on a set of data are not independent. so the probability of Type I 
errors may be substantially different from a, especially if the ratio of n to m is small. 
(Sec Section 20.4 for recommended sample sizes.) There is no consensus regarding 
how to correct for this, hut many suggest that the same nominal significance level (a) 
should be used for testing eaeh of the H,,'s (though the method described later as 
"stepwise" might proceed otherwise, as indicated in Section 20.6e). 

(a) Fitting All Possible Equations. One procedure would start by fitting a regression 
equation that contains all the independent variables. In the present example this 
would involve fitling an equation using all four Xi'S. Then a regression fit would 
be calculated for each of the four different equations containing three of the four 
independent variables, a regression would be fit for each of the six possible equations 
comprising two of the Xi'S, and a simple regression (that is, with one Xi) would 
be done using each of the four independent variables. After fitting all 15 of these 
regression equations, we could choose the one resulting in the lowest residual mean 
square, or, equivalently, the largest R~ (which is preferable to using R2) or smallest 
standard error of estimate. 

This is often referred to as "all subsets regression." There are drawbacks to such 
a procedure, however. First, many regression equations must be ca1culated,* the 
number being 2111 - 1. Thus. if m = 5, there would he a total of 31 regressions 
to he fit: if m = 8. then 255 regressions would be called for: if m = 10, the goal 
would be to choose among 1023 regression equations; and so on. A second difficulty 
with considering the very large number of all possible regressions is that of declaring 
an objective method for determining which among these many equations is to be 
considered to be the "best." Thirdly. if one regression equation is determined to be 
the "best" (perhaps by examining R2, R~, or s~.1.V ..... I1/' or by a method referred 
to in Section 20.6f). there is the challenge of concluding whether that equation is 

*This calculation is, by Equation 5.10 or 24.2, the number of ways that 11 items can be combined, 
one a time, two at a time, and so on. 
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significantly better than the one deemed "second best." Also. this procedure may 
result in a regression with substantial multicollinearity. 

(b) Backward Elimination of Variables. If a multiple regression equation is fitted 
using all m independent variables in a set of data (as done in Example 20.1c). then 
we might ask whether any of those variables have insignificant influence on Y in the 
sampled population and thus may be eliminated from the equation. The hypothesis 
Ho: f3i = 0 may be examined for each of the m partial regression coefficients. If all 
111 of these hypothesis tests are rejected. it may be concluded that all of the X's have 
a significant effect on Y and none of them should be deleted from the regression 
model. However, if any It I values are less than the critical value, (01(2),1" where II is the 
residual degrees of freedom (n - m - 1. in the model being considered at this step 
of the process).* then the independent variable associated with the I with the lowest 
absolute value is deleted from the model and a new multiple-regression equation 
may be fitted using the remaining m - 1 independent variables. The null hypothesis 
Ho: f3i = 0 is then tested for each partial regression coefficient in this new model, 
and if any of the III values are less than the critical value, then one more variable is 
deleted and a new multiple-regression analysis performed. 

As demonstrated in Example 20.1e, this procedure is repeated in what is termed a 
stepwise fashion, until all hi'S in the equation are concluded to estimate f3;'s that are 
different from zero. Each lime a variable is thus deleted from the regression model, 
the regression MS decreases slightly and the residual MS increases slightly and R2 
decreases (unless that variable's partial regression coefficient is zero, in which case 
there is no change). 

(c) Forward Addition of Variables. Another stepwise procedure (often called 
forward selection) is to begin with the smallest possible regression model (i.e., 
one with only one independent variable; in other words, a simple regression) and 
gradually work up to the multiple-regression model incorporating the largest number 
of significantly important variables. It is first determined which is the "best" simple­
regression model for the data. such as by fitting all m simple regressions and selecting 
the one for which bi has the largest value of Itl. If none of the bi'S is significant, then 
it is concluded that no population relationship has been detected between Y and the 
Xi'S and the procedure proceeds no further. If at least one bi is significant, then a fit 
would be effected for each of the regressions possessing the X already selected and 
one of the other X's, and the equation with the largest III associated with one of the 
other X's would be chosen. In a similar fashion. the "best" regression equation can 
be determined with one X in addition to the two already chosen. and so on. At each 
step, I t I is compared to the critical value la(2).I" where" is the residual degrees of 
freedom (n - m - 1) at that step. t 

Because the relationships among variables change as each one is added, it is not 
warranted to declare the importance of each variable to be indicated by the sequence 
in which it is added to the regression model. 

(d) Backward Elimination versus Forward Addition. Mantel (1970) described how a 
"step-up" forward-selection process (Section 20.6c) can involve more computational 

·Some computer programs express the critical value as Fa( I ).1.1" which is equal to ';(2 ).1' and. 
in the context of backward elimination, might be referred to as the" F to remove." 

tlf F (a "partial F." which is (2) is used as the test statistic. some computer routines call the 
critical value (Fa( 1 ).1.1') the "F to enter." 
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EXAMPLE 20.1e Backward Elimination of Variables in Multiple-Regression 
Analysis. Using the Data from Example 20.1a 

As shown in Example 20.lc. the multiple regression analysis for the model Y = 
a + {3,X, + {32X2 + {3="X=" + {3~X~ yields the following statistics: 

Variable hi "'"hi v 

X, -0.12932 0.0212R7 -6.075 28 
X2 -0.018785 0.05627H -0.334 2R 
X=" -0.046215 0.20727 -0.223 28 
X4 0.20876 0.067034 3.114 28 

a = 2.95H3 

The critical value for testing Ho: f3; = () against H A: f3j *- 0 is 10.05(2).2X = 2.048. 
Therefore. Ho would he rejected for f3, and {34, hut not for f32 or f3=". Of the t tests 
for the latter two. the I for testing the significance of {3=" has t~e smaller absolute 
value. Therefore. {3="X=" is deleted from the model. leaving Y = a + {3,X, + 
{32X2 + f34X4. The data are then suhjected to a multiple-regression analysis 
using this model with three independent variahles. and the following statistics are 
ohtained: 

Variable bi .'ihi v 

X, -0.13047 OJl20312 -6.423 29 
X2 -0.015424 0.053325 -0.2R9 29 
X4 0.20450 0.063203 3.236 29 

" = 2.6725 

The critical value for testing the significance of these partial regression coefficients 
is 111.05(2).29 = 2.045. Therefore. /-10: {3j = 0 would he rejected for {3, and for {34. 
~ut not for f32. Therefore. {32X2 is deleted from the regression model. leaving 
Y = a + {3, X, + {3~X4. The analysis of the data using this model. with two 
independent variables, yields the following statistics: 

Variable v 

X, -0. 1323R O.01H913 -6.999 30 
X4 0.20134 0.061291 3.285 30 

a = 2.5520 

The critical value for testing Ho: f3; = 0 against HII: {3j *- 0 is (11.11:)( 2 }.311 = 2.?42. 

Therefore. hoth {3, and {34 are concluded to he different from zero. and Y = 
2.552 - 0.132X, + 0.2OI X4 is the final model. 
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effort, and is fraught with more theoretical deficiencies, than is the "step-down" 
backward-elimination method (Section 20.6b). The step-up procedure might require 
as many as m+ I C2 regressions to be fit (see. e.g .• Equation 5.10 or 24.2)*; so if In = 5. 
there would be as many as 15 regression equations to examine. if In = 8. there would 
be as many as 36, and so on. However. the step-down method will never involve the 
fitting of more than In regressions. Also, forward selection will not identify situations 
where the addition of a significant X fails to recognize that a previously added X is no 
longer deemed to significant, it may fail to identify significant independent variables 
when multicollinearity is present (Hamilton. 1987; Mantel, 1970). and it may yield 
erroneous conclusions when dealing with dummy variables (described in Section 
20.10) with more than two categories (Cohen, 1991). The backward-elimination 
method is generally preferred to the forward-addition process. 

(e) Stepwise Regression. The procedures of Sections 20.6b and 20.6c are stepwise in 
their execution. but the process very commonly named stepwise is one that employs 
both the addition and the elimination of independent variables in order to conclude 
which of the variables should be in the multiple-regression model. The process begins 
as does the step-up method; but whenever an X is added. the b associated with each 
of the X's thus far in the model is examined to see whether it has a nonsignificant t. 
If any of them do, then the term with the smallest I t I is eliminated at that step. No 
more than one X is added or removed at each step. as is the case in the step-down 
and step-up procedures. 

Many statisticians consider this method of variable selection to be preferable to 
the step-up (Section 20.6c) or step-down (Section 20.6b) method, though others have 
serious reservations about all three of these procedures (Henderson and Denison. 
1989). Some computer software for stepwise regression will allow the user to employ 
t (or F) with the a for adding a variable to the regression equation different from the 
a used to remove a variable from the model (so, for example, one might use a = 0.05 
for adding a variable and a = 0.10 for eliminating a variable); but the a for adding 
should not be greater than the a for removing. 

Some computer programs contain routines for performing the addition and/or 
elimination of variables automatically by one or more of the three stepwise procedures 
just described. But if a computer program does not do this, the user can determine 
which variable should be added or deleted at each step, and after each addition or 
deletion. resubmit the data for computer analysis. 

(f) Other Methods. Some computer software presents other methods and criteria 
to select the "best" set of independent variables for a given set of data. Two such 
procedures employ statistics known as Mallows CI" which is closely related to R;, 
(Kennard, 1971),t and PRESS (predicted error sum of squares). These are described 
in references such as those cited in the footnote at the end of the introduction to this 
chapter. 

*The number obtained as /1/+ I Cz is called a trial/glll'IT I/umber. It is the sum of the consecutive 
integers from I to m and gets its name from the arrangement of objects in rows: one object in the 
first row. two in the second row. and so on through the mth row. 

t C. L. Mallows introduced Cp in 1964; it was published by Gorman and Toman (1966). Mallows 
(1973) credited its conception to discussions with Cuthbert Daniel late in 1963. and he used the 
symhol C to honor the laller colleague. The symhol p is used by many authors to denote the number 
of independent variables (as III is used in this book). 
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20.7 PARTIAL CORRELATION 

When the interest is in the relationship among all M variables. with none of them 
considered depcndent upon the others, then the multiple-correlation coefficient. R, 
reflects the overall relationship of all M variables. But we may desire to examine 
the variables two at a time. We could calculate a simple correlation coefficient, " for 
each pair of variables (i.e., what Example 20.1 b presents to us). But the problem with 
considering simplc correlations of all variables, two at a time, is that such correlations 
will fail to take into account the interactions of any of the other variables on the two 
in question. Partial correlation addresses this problem by considering the correlation 
between each pair of variables while holding constant the effect of each of the other 
variables.* Symbolically, a partial correlation coefficient for a situation considering 
three variables (sometimes called a first-order partial correlation coefficient) would 
be 'ik-l. which refers to the correlation between variables i and k. considering that 
variable I does not change its value (i.e .. we have eliminated any effect of the 
interaction of variable I on the relationship between variables i and k). For four 
variables, a partial correlation coefficient, 'ik'/p (sometimes called a second-order 
partial correlation coefficient). expresses the correlation between variables i and k, 
assuming that variables I and p were held at constant values. In general. a partial 
correlation coefficient might be referred to as 'ik"" meaning the correlation between 
variables i and k. holding all other variables constant (i.e., removing, or "partialling 
out" the effects of the other variables). 

Another way to visualize partial correlation with three variables Ji.e .• M = 3) is as 
follows. In a regression of variable Xi on XI. a set of residuals (Xi - Xl) will result; and 
the regression of Xk on X/ will yield another set of residuals (Xk - Xk). The correla­
tion between these two sets of residuals will be the partial correlation coefficient, 'ik./. 

For three variables. partial correlation coefficients may be calculated from simple 
correlation coefficients as 

_ 'ik - 'j/'kl 

'ik·/ - J (1 - tit)( 1 - 'it)' 
(20.31) 

For more than three variables, the calculations become quite burdensome, and 
computer assistance is routinely employed. If a partial regression coefficient, hi. has 
been obtained for the regression of Y on Xi, the partial correlation coefficient 'Yi··· 
can be determined from the / obtained for that hi as 

r;f2 
'Yi'" = 2 ' where v = n - M 

t + v 
(20.32) 

(Algina and Seaman, 1984). So, for example (see Examples 20.1b and 20.1c). 

(3.114 )2 = 0.5072. 
(3.114)2 + 28 

*The first (in 1892) to extend the concept of correlation to more than two variables was Francis 
Ysidro Edgeworth (lX45-1926), a statistician and economist who was born in Ireland and spent 
most of his career at Oxford University (Desmond. 2000: Stigler, 1978). Karl Pearson was the first 
to express what we now call multiple and partial correlation coefficients; in 1897 he proposed the 
term partial correlation. in contrast to IOwl correlation (i.e., what we now call simple correlation). 
and in preference to what G. U. Yule termed nell (a British variant of the word net) and gross 
correlation. respectively (Snedecor. 1954: Walker, 1929: 109, Ill, 185). 
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A computer program providing partial correlation coefficients will generally do so 
in the form of a matrix, such as in Example 20.2: 

1.00 '12··· '13··· '1M·" 

'21··· 1.00 '23··· '2M··· 

'31··· '32··· 1.00 '3M'" 

'MI··· 'M2 .. · 'M3 .. · 1.0n. 

To test Ho: Pik ... = 0, we may employ 

where 

_ 'ik .. · t- -, 
S'ik· . 

(20.33) 

(20.34) 

(20.35) 

and M is the total number of variables in the multiple correlation.'" The statistical 
significance of a partial correlation coefficient (i.e., the test of Ho: Pik ... = 0) may also 
be determined by employing Appendix Table B.17 for n - M degrees of freedom. 
One-tailed hypotheses may be performed as for simple correlation coefficients 
(Section 19.2). If a multiple-regression and a multiple-correlation analysis were 
performed on the same data, the test conclusion for Ho: {3i = 0 would be identical 
to the test conclusion for Ho: Pik ... = 0 (by either t testing or "partial F" testing), 
where variable k is the dependent variable. Hypotheses such as Ho: Pik··· = PO, or 
similar one-tailed hypotheses, where PI) #: O. may be testing using the z transformation 
(Section 19.2). 

EXAMPLE 20.2 A Matrix of Partial Correlation Coefficients, as It Might 
Appear as Computer Output (from the Data of Example 20.1 a) 

2 3 4 5 

1 1.00000 0.19426 0.12716 0.33929 -0.75406 
2 0.19426 1.00000 -0.26977 0.23500 -0.06296 
3 0.12716 -0.26977 1.00000 0.26630 -0.04210 
4 0.33929 0.23500 0.26630 1.00000 0.50720 
5 -0.75406 -0.06296 -0.04210 0.50720 1.00000 

Cohen et a!. (2003: 94-95) present power estimation, with a needed table. for 
partial correlation. Serlin and Harwell (1993) assess several nonparametric methods 
for three-variable partial correlation without the assumption of normality. 

·This test statistic may also be calculated as 

t = I (n - M)!r7k"'> 
• 1 _ .... 

(20.36) 
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(a) SemipartiaJ Correlation. Another correlation concept, not as commonly encoun· 
tered as partial correlation, is that of semipa,tial correlation (Cohen et aI., 2003: 72-73, 
84-85; Howell, 2007: Section 15.7; Pedhazur, 1997: 174-180), sometimes called pan 
correlation. This is the correlation between two of M variables (where M > 2) where 
the effects of all other variables are removed from only one of the two. For example, 
if M = 3, the first-order coefficient of the semipartial correlation between variables 
XI and X2, with the influence of variable X3 removed (Hpartialled out") from X2 but 
not from XI , is 

, _ '12 - '13'23 
1(2.3) - Jl ' - '2., 

(20.36a) 

and the second-order semipartial correlation coefficient for the relationship between 
XI and X2, with the influence of X3 and X4 removed could be designated as '1(2.34)' 
A generalized notation for a semiparlial correlation is 'i(k ... ), meaning the correlation 
between Xi and Xk, removing the effect on Xk of all the other variables. A simple 
method of calculating a semipartial correlation coefficient was given by Algina and 
Seaman (1984) as 

'i(k ... ) = if error MS . 
total SS 

(20.36b) 

The absolute value ofthe coefficient of semipartial correlation between two variables 
is always less than the absolute value of the coefficient of partial correlation between 
those two variables, except that the two coefficients are equal if there is zero 
correlation between Xi and any variable other than Xk (Darlington, 1990: 56). 

A hypothesis test for a population semipartial correlation coefficient being different 
from zero would exhibit the same probability as a test for the partial correlation coeffi· 
cient (or the partial regression coefficient, or the standardized partial regression coef­
ficient) being different from zero for the same two variables (Cohen et aI., 2003: 89). 

20.8 PREDICTING Y VALUES 

Having fitted a multiple-regression equation to a set of data. we may desire to 
calculate the Y value to be expected at a particular combination of Xi values. 
C:onsider the a and bi values determined in Example 20.2 for an equation of the form 
Y = a + blXI + b4X4,: Then the predicted value at XI = 7"C and X4 = 2.0 min, 
for example, would be Y = 2.552 - (0.132)(7) + (0.201 )(2.0) = 2.03 mt. Such 
predictions may be done routinely if there is a significant regression (i.e., the F from 
Equation 20.18 is significant), although, as with simple linear regression (Section 17.2), 
it is unwise to predict Y for Xi'S outside the ranges of the Xi's used to obtain the 
regression statistics. 

In the consideration of the standard error of such a predicted Y. the reader may 
refer to Section 17.5b (Equation 17.26) for the calculations appropriate when m = 1. 
The following is the standard error of a mean Y predicted from a multiple regression 
equation: 

s· = y S~'1.2 ..... m - + L L CikXiXk . [ 1 m m 1 
n i=lk=l 

(20.37) 

In this equation, Xi = Xi - Xi, where Xi is the value of independent variable; at 
which Y is to be predicted, Xi is the mean of the observed values of variable i that 
were used to calculate the regression equation, and Cik is from Matrix 20.7. 

Thus, for the value of Y just predicted, we can solve Equation 20.37 as shown in 
Example 20.3. 



Section 20.8 Predicting Y Values 441 

EXAMPLE 20.3 The Standard Error of a Predicted Y 

For the equation Y = 2.552 - 0.132XI + 0.201 X2. derived from the data of 
Example 20.1a, where XI is the variable in column 1 of the data matrix, X2 is the 
variable in column 4. and Y is the variable in column 5, we obtain the following 
quantities needed to solve Equation 20.37: 

st.1.2 = 0.16844. n = 33, X = 4.4546, 

X2 = 2.5424, :Lxf = 472.18. :Lx~ = 44.961. 

dll = 1.0027, dl2 = -0.052051. d21 = -0.052051, d22 = 1.0027. 

By employing Equation 20.9, each dik is converted to a Cik. resulting in 

CII = 0.0021236. CI2 = -0.00035724, CzI = -0.00035724. Cz2 = 0.022302. 

What is the mean population value of Yat XI = 7° C and X4 = 2.0 mill? 
~ 

Y = 2.552 - (0.132)( 7) + (0.201)( 2.0) = 2.030 ml 

What is the standard error of the mean population value of Y al Xl = 7° C and 
X4 = 2.0 min? [Equation 20.37 is used.] 

st ~ o. 1 6844 [ ;3 + (0.0021236)(7 - 4.4546)2 

+ (-0.00035724 )( 7 - 4.4546)( 2.0 - 2.5424) 

+ (-0.00035724)(2.0 - 2.5424)(7 - 4.4546) 

+ (0.022302) (2.0 - 2.5424 )2] 

= 0.16844 (;3 + 0.0213066) 

= 0.008693 ml2 

s y = ~0.008693 ml2 = 0.093 ml 

As to.05(2).30 = 2.042, the 95% prediction interval for the predicted Y is 2.030 ± 
(2.042)( 0.093) mt = 2.030 ± 0.190 ml. 

What is the predicted value of one additional Y value taken from Ihe population at 
XI = rc and X4 = 2.0 min? 

Y = 2.552 - (0.132)(7) + (0.201 )(2.0) = 2.030 ml 

What is the standard error of the predicted value of one additional Y value taken 
from the population at XI = 7° C and X4 = 2.0 min? [Equation 20.39 is used.] 

Sy ~ ~O.16844 [I 

= 0.421 ml 

+ J.- + 0.0213066] 
33 
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~ 

As to.05(2PO = 2.042, the 95% prediction interval for the preceding predicted Y is 
2.03 ± (2.042)(0.421) ml = 2.03 ± 0.86 mt. 
What is the predicted value of the mean of 10 additional values of Y taken from the 
population at XI = 7° C and X4 = 2.0 min? 

Y = 2.552 - (0.132)(7) + (0.201 )(2.0) = 2.030 ml 

What is the standard error of the predicted value (~f the mean of J 0 additional values 
of Y taken from the population at XI = 7° C and X4 = 2.0 min? [Equation 20.40 is 
used.] 

s· = y 0.16844 [~ + ~ + 0.0213066] 
10 33 

= 0.16ml 

As to.05(2PO = 2.042, the 95% prediction interval for the predicted Y is 2.03 ± 
(2.042)(0.16) ml = 2.03 ± 0.33 mt. 

A special case of Equation 20.37 is where each Xi = O. The Y in question is then 
the Y intercept, a, and 

[ 1 m //I 1 
Su = S}.1.2 ..... m - + ~ ~ CikXjX k • 

n i=lk=1 

(20.38) 

To predict the value of Y that would be expected if one additional set of Xi were 
obtained, we may use Equation 20.16, and the standard error of this prediction is 

[ 1 III m 1 (Sy)1 = S}.1.2 ..... 111 I + n- + ~ ~ CjkXiXk , 
i= 1 k=- I 

(20.39) 

as Example 20.3 shows. This situation is a special case of predicting the mean Y to 
be expected from obtaining p additional sets of Xi, where the XI'S in all sets are 
equal, the X2 's in all sets are equal, and so on. Such a calculation is performed in 
Example 20.3, using 

(S y)p ~ sj,.,J_ .. ,. [! + ; + ~ ~, CI'XIX']. (20.40) 

Adding an independent variable, Xi, to a regression model increases each of the 
standard errors, Sy' in this section. Therefore:. it is desirable to be assured that all 

variables included are important in predicting Y (see Section 20.6). 

20.9 TESTING DIFFERENCE BETWEEN TWO PARTIAL REGRESSION COEFFICIENTS 

If two partial regression coefficients, bi and bk, have the same units of measurement, 
it may occasionally be of interest to test Ho: f3i - 13k = 130. This can be done by using 

t = Ibi - bkl - 130 
Shj-bk 

(20.41) 
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When /3" = 0 is hypothesized, this may be written as 

I = bi - bk 

50; - bk 
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(20.42) 

and the null hypothesis can be written as Ho: 13i = 13k. The standard error of the 
difference between two partial regression coefficients is· 

(20.43) 

and the degrees of freedom for this test are n - m - l. 
Testing other hypotheses about partial regression coefficients is discussed by 

Chatterjee, Hadi, and Price (2006: Section 3.9). 

"DUMMY" VARIABLES 

It is sometimes useful to introduce into a multiple regression model one or more 
additional variables in order to account for the effects of one or more nominal-scale 
variables o~ the dependent variable, Y. For example, we might be considering fitting 
the model Yj = a + blXlj + b2X2j, where Y is diastolic blood pressure in a species 
of bear, XI is age, and X2 is body weight. In addition, we might be interested in 
determining the effect (if any) of theAanimars sex on blood pressure. Our regression 
model could then be expanded to Yj = a + blXlj + b2X2j + b.~X3j. where XJ 
is a "dummy variable," or "indicator variable." with one of two possible values: 
for example. set XJ = () if the data are for a male and X3 = I if the data are for 
a female. By using this dummy variable, we can test whether sex is a significant 
determinant of blood pressure (by the considerations of Section 20.4 for testing 
Ho: 133 = 0). If it is, then the use of the model with all three independent variables will 
yield significantly more accurate Y values than the preceding model with only two 
independent variables, if the regression equation is used for predicting blood pressure. 

If there are three levels of the nominal-scale variable, then two dummies would 
be needed in the regression model. For example. if we were considering the blood 
pressure of A both sexes and of three subspecies of this bear species, then we might fit 
the model Yj == a + blXlj + b2X2j + b3X3j + b4X4j + bsXSj,where XI. X2. and X3 
are as before and X4 and Xs specify the subspecies. For example, subspecies 1 could be 
denoted by X4 = 0 and Xs = 0, subspecies 2 by X4 = 0 and Xs = 1. and subspecies 3 
by X4 = 1 and Xs = O. When L levels (i.e., nominal scale categories) of a variable are 
to be represented by dummy variables, L - 1 dummy variables are required. So, in 
the preceding examples, when L == 2 sexes, I dummy variable is needed; when L = 3 
SUbspecies, 2 dummy variables must be used. Each dummy variable is set to either 0 or 
1 for each Y (e.g., 0 or 1 for sex; and 0&0, 0& 1. or 1 &0 for subspecies), and, for a given 
Y, the sum of the O's and l's may not exceed 1 (so, for example, a dummy two-variable 
combination of 0&0. 0& I. or 1 &0 is acceptable, but 1& 1 is not). Further considerations 
of dummy variables are found in Chatterjee and Hadi (2006: Chapter 5), Draper and 
Smith (1998: Chapter 14), Hardy (1993), and Pedhazur (1997: 343-360). 

When L > 2, it is inadvisable to employ stepwise regression by the forward­
selection process of Section 20.6c (Cohen, 1991). If the dependent variable. Y. is the 

*This could also be written as 

(20.43a) 
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dummy variable, appropriate procedures are more complicated and may involve the 
use of what is known as logistic regression (Section 24.18). 

20.11 INTERACTION OF INDEPENDENT VARIABLES 

It may be proposed that two or more independent variables interact in affecting the 
dependent variable, Y, a concept encountered in Chapters 12 and 14 when discussing 
factorial analysis of variance. For example, we may propose this regression model: 

(20.44) 

The regression analysis would proceed by treating XIX2 as a third independent 
variable (i.e., as if it were X3); and rejecting Ho: 133 = 0 would indicate a significant 
interaction between XI and X2, meaning that the magnitude of the effect of XI on 
Y is dependent upon X2 and the magnitude of the effect of X2 on Y is dependent 
upon XI. By using linear-regression equations that include interaction terms, a great 
variety of analysis-of-variance experimental designs can be analyzed (even those with 
unequal replication per cell). and this is a technique employed by some computer 
programs. Many ramifications of interactions in multiple regression are covered by 
Aiken and West (1991) and in many of the texts cited in the footnote at the end of 
the introduction to this chapter. Interaction, the joint effect on Y of two or more X·s. 
should not be confused with correlation among X's (Hmulticollinearity," discussed in 
Section 20.4a). 

20.12 COMPARING MULTIPLE REGRESSION EQUATIONS 

Often we want to determine whether the multiple regressions from two or more 
sets of data. all containing the same variables. are estimating the same population 
regression function. We may test the null hypothesis that all the sample regression 
equations estimate the same population regression model by an extension of the 
considerations of Section 18.9. For a total of k regressions, the pooled residual sum 
of squares, SSp. is the sum of all k residual sums of squares; and the pooled residual 
degrees of freedom. DFp. is the sum of all k residual degrees of freedom. We then 
can combine the data from all k regressions and calculate a regression for this totality 
of data. The resulting total residual sum of squares and total degrees of freedom will 
be referred to as SS, and DF" respectively. 

The test of the null hypothesis (that there is a single set of population parameters 
underlying all k sample regressions) is 

SS, - SSp 

(m + l)(k 1) 
SSp 

F= (20.45) 

DFp 

a statistic with (m + 1)( k - 1) and OF" degrees of freedom. Example 20.4 demon­
strates this procedure. 

We may also employ the concept of parallelism in multiple regression as we did 
in simple regression. A simple linear regression may be represented as a line on 
a two-dimensional graph. and two such lines are said to be parallel if the vertical 
distance between them is constant for all values of the independent variable. meaning 
that the regression coefficients (i.e .• slopes) of the two Jines are the same. A multiple 
regression with two independent variables may be visualized as a plane in three­
dimensional space. Two planes are parallel if the vertical distance between them is 
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the same for all combinations of the independent variables, in which case each of 
the partial regression coefficients for one regression is equal to the corresponding 
coefficient of the second regression, with only the Y intercepts possibly differing. 

EXAMPLE 20.4 Comparing Multiple Regressions 

Let us consider three multiple regressions. each fitted to a different sample of data. 
and each containing the same dependent variable and the same four independent 
variables. (Therefore, m = 4 and k = 3.) The residual sums of squares from each 
of the regressions are 437.8824, 449.2417. and 411.3548, respectively. 

If the residual degrees of freedom for each of the regressions are 41. 32. and 
38, respectively (that is, the three sample sizes were 46. 37. and 43. respectively). 
then the pooled residual sum of squares. SSp. is 1298.4789. and the pooled residual 
degrees of freedom. DFp. is 111. 

Then. we combine the 126 data from all three samples and fit to these data a 
multiple regression having the same variables as the three individual regressions 
fitted previously. From this multiple regression let us say we have a total residual 
sum of squares. SSt, of 1577.3106. The total residual degrees of freedom. DF,. 
is 121. 

Then we test Ho: All three sample regression functions estimate the same 
population regression. against HA: All three sample regression functions do not 
estimate the same population regression: 

SS( - SSp 

F= (m + l)(k 1) 
SSp 

DFp 

1577.3106 - 1298.4789 

= __ --:-:(~5=-'")(='2 )=-__ 
1298.4789 

111 
= 2.38. 

The degrees of freedom associated with Fare 10 and 111. 
Since FO.05( 1).10.111 == 1.93. reject Ho. 

0.01 < P < 0.025 [P = 0.013] 

In general. two or more multiple regressions are said to be parallel if they all have 
the same f31. f32, f33. and so on. This may be tested by a straightforward extension of 
the procedure in Section 18.4. The residual sums of squares for all k regressions are 
summed to give the pooled residual sum of squares. SSp; the pooled residual degrees 
of freedom are 

k 
DFp = ~ni - k(m + I). 

i= I 

(20.46) 

Additionally, we calculate a residual sum of squares for the "combined" regression in 
the following manner. Each element in a corrected sum-of-squares and sum-of-cross­
products matrix (Matrix 20.5) is formed by summing all those elements from the k 
regressions. For example, element ~ x~ for the combined regression is formed as 
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(LXT)I + (LxTh + (L x1h + ... + (LXT)k. and element LXIX2 is formed as 
(LXIX2)1 + (LXIX2h + ... + (LXIX2)k.Theresidualsumofsquaresobtained 
from the multiple regression analysis using the resulting matrix is the "common" 
residual sum of squares. SSe: the degrees of freedom associated with it are 

k 

OFc = L ni - k - m. 
i-I 

Then the null hypothesis of all k regressions being parallel is tested by 

SSe - SSp 

F = _--,-,k,-=-~l _ 
SSp 

OFp 

with k - 1 and OFp degrees of freedom. 

(20.47) 

(20.48) 

If the null hypothesis is not rejected, we conclude that the independent variables 
affect the dependent variable in the same manner in all k regressions: we also conclude 
that all k regressions are parallel. Now we may ask whether the elevations of the 
k regressions are all the same. Here we proceed by an extension of the method 
in Section 18.5. The data for all k regressions are pooled together and one overall 
regression is fitted. The residual sum of squares of this regression is the total residual 
sum of squares. SSt. which is associated with degrees of freedom of 

k 

OFt = L nt - m - 1. 
i= I 

(The latter degrees of freedom do not enter the calculation of F.) 
Then the hypothesis of no difference among the k elevations is tested by 

SSt - SSe 

F= _=k=-,.------=-l_ 
SSe 

with k - 1 and OFt" degrees of freedom. 

(20.49) 

(20.50) 

20.13 MULTIPLE REGRESSION THROUGH THE ORIGIN 

As an expansion of the simple linear regression model presented in Section 17.9, we 
might propose a multiple regression model where a = 0: that is. when all Xi = 0, 
then Y = 0: 

A 

Yj = {3IXlj + {32X2j + ... + {3mXmj. (20.51) 

This will be encountered only rarely in biological work. but it is worth noting that 
some multiple-regression computer programs are capable of handling this model.' 
Striking differences in the computer output will be that total OF = n. regression 
DF= m (the number of parameters in the model). and residual DF = n - m. Also, 
an inverse pselldocorreialion matrix may appear in the computer output in place of an 
inverse correlation or inverse sum-of-squares and sum-of-cross-products matrix. This 

*Hawkins (1980) explains how a regression can be fitted through the origin using the output 
from a computer program for fitting a regression not assumed to pass through the origin. 
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regression model is legitimate only if each variable (i.e .. Y and each Xj) is measured 
on a ratio scale (as defined in Section 1.1). 

NONLINEAR REGRESSION 

Regression models such as 

Yj = a + PXj, 

Yj = a + PI Xlj + P2X2j + ... + PmXmj. 

or 
Yj = a + PI Xj + f32Xl + ... + PmXi" 

arc more completely symbolized as 

Yj = a + PXj + €j. 

Yj = a + PIXlj + P2X2j + ... + PIIIXlllj + fj. 

or 
Yj = a + PI Xj + P2xl + ... + PIIIXi" + €j. 

(17.1) 

(20.14) 

(21.2) 

(20.52) 
(20.53) 

(20.54) 

respectively, where € is the residual (or "error"). the difference between the value of 
Y predicted from the equation and the true value of Y in the population. All three of 
the preceding regression models are termed linear models because their parameters 
(i.e., a, p. and €) appear in an additive fashion. However, cases do arise where the 
investigator wishes to fit to the data a model that is nonlinear with regard to its 
parameters. Such models might be those such as "exponential growth," 

(20.55) 

or 
Y = aeYx; + €j: (20.56) 

"exponential decay." 
Yj = ap-Xi + €j (20.57) 

or 
Yj = ae-Yx; + €i: (20.58) 

"asymptotic regression." 
Yj = a - pox; + fj (20.59) 

or 
(20.60) 

or "logistic growth." 
a Yj = + €j: 

I + pox; (20.61 ) 

where the various Greek letters are parameters in the model. (See Snedecor and 
Cochran, 1989: 399, for graphs of such functions.) Other nonlinear models would 
be those in which the residuals were not additive. but, for example, might be 
multiplicative: 

Yj = PXifj. (20.62) 
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Sometimes a nonlinear model may he transformed into a linear one. For example. 
we may transform 

(20.63) 

hy taking the logarithm of each side of the equation. acquiring a model that is linear 
in its parameters: 

log Yi = log 0" + ,B log Xi + log t'i. (20.64) 

Transformations must he cmployed with careful consideration. however. so that the 
assumption of homogeneity of variance is not violated. 

Biologists at times wish to fit nonlinear equations. some much more complex 
than the examplcs given. and computer programs are availahle for many of them. 
Such programs fall into two general groups. First are programs written to fit a 
particular model or a family of models. and the use or the program is little if 
any more complicated than the use of a multiple-linear-regression program. Second 
are general programs that can handle any of a wide variety of models. To use 
the lalter type of program. however. requires the user to suhmit a good deal of 
information, perhaps the partial derivatives of the regression function with respect 
to each parameter in the model (thUS, consulting with a statistician would he in 
order). 

Nonlinear regression programs typically involve some sort of an iterative pro­
cedure. iteratiol/ heing the utilization of a set of parameter estimates to arrive at 
a set of somewhat hetter parameter estimates. using the new estimates to derive 
better estimates. and so on. Thus. many of these programs requirc the user to submit 
initial estimates of (i.e .. to guess the values of) the parameters in the model heing 
fitted. 

The program output for a nonlinear regression analysis is hasically similar to much 
of the output from multiple-linear-regression analyses. Most importantly. the pro­
gram should provide estimates of the parametcrs in the model (i.e .. the statistics in the 
regression equation). the standard error of each of these statistics. and an analysis­
of-variance summary including at least the regression and residual SS and DF. If 
regression and residual MS are not prescnted in the output. they may he calculated by 
dividing the appropriate SS hy its associated DF. An F test of significance of the entire 
regression (or correlation) and the coefficient of determination may he ohtained by 
means of Equations 20.18 and 20.19. respectively. Testing whether a parameter in the 
model is equal 10 a hypothesized value may be effected by a t test similar to those pre­
viously used for simple and partial regression coefficients (e.g .. Section 2004). K valseth 
(1985) and others warn that the computation of R2 may he inappropriate in nonlinear 
regression. 

Further discussions or nonlinear regression are found in Bates and Watts (1988), 
Berry and Feldman (1985: 51-64). Seher and Wild (1989). Snedecor and Cochran 
(1989: Chapter 19). and some of the books cited in the footnote al the end of the 
introduction to this chapler. 

20.15 DESCRIPTIVE VERSUS PREDICTIVE MODELS 

Often. it is hoped that a regression model implies a hiological dependence (i.e .. a cause 
and effect) in nature. and that this dependence is supported by the mathematical 
relationship described by the regression equation. However. regression equations 
are at times useful primarily as a means of predicting the value of a variable. if the 
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values of a number of associated variables are known. For example, we may desire 
to predict the weight (call it variable Y) of a mammal. given the length of the femur 
(variable X). Perhaps a polynomial regression such as 

(20.65) 

might be found to fit the data rather well. (See Chapter 21 for details of polynomial 
regression.) Or perhaps we wish to predict a man's blood pressure (call it variable 
Y) as accurately as we can by using measurements of his weight (variable W), his 
age (variable A), and his height (variable H). By deriving additional regression terms 
composed of combinations and powers of the three measured independent variables, 
we might conclude the statistical significance of each term in an equation such as 

Yi = a + bl Wi + b2Ai + b3Hi + b4 wl + bsHl + b6 wi (20.66) 

+ b7 WiAi + b8HiAi + b9 wi Ai. 

Equations such as 20.65 and 20.66 might have statistically significant partial regression 
coefficients. They might also have associated with them small standard errors of 
estimate, meaning that the standard error of predicted Yi'S (and. therefore. the 
prediction intervals) would be small. Thus, these would be good regression equations 
for purposes of prediction; but this does not imply that the fourth power of femur 
length has any natural significance in determining mammal weights, or that terms such 
as HiAi or WtAi have any biological significance relative to human blood pressure. 

To realize a regression function that describes underlying biological phenomena, 
the investigator must possess a good deal of knowledge about the interrelationships in 
nature among the variables in the model. Is it indeed reasonable to assume underlying 
relationships to be linear, or is there a logical basis for seeking to define a particular 
nonlinear relationship? (For example, forcing a linear model to fit a set of data in 
no way "proves" that the underlying biological relationships are, in fact, linear.) Are 
the variables included in the model meaningful choices? (For example, we might 
find a significant regression of variable A on variable B, whereas a third variable, 
C, is actually causing the changes in both A and B.) Statistical analysis is only a 
tool; it cannot be depended upon when applied to incomplete or fallacious biological 
information. 

CONCORDANCE: RANK CORRELATION AMONG SEVERAL VARIABLES 

The concept of nonparametric analysis of the correlation between two variables 
(Section 19.9) can be expanded to consider association among more than two. Such 
multivariate association is measurable nonparametrically by a statistic known as 
Kendall's coefficient of concordance* (Kendall and Gibbons, 1990: Chapter 6; Kendall 
and Babbington Smith, 1939.)t To demonstrate, let us expand the considerations of 
Examples 19.1a and 19.13 to examine whether there is concordance (i.e., association) 
among the magnitudes of wing, tail, and bill lengths in birds of a particular species. 
Example 20.5 shows such data, for which we determine the ranks for each of the three 
variables Gust as we did for each of the two variables in Example 19.13). 

* Maurice George Kendall (1907 -1983). English statistician. 
tWallis (1939) introduced this statistic independently. calling it the "correlation ratio." and 

designating it by TJ~ (where TJ is the lowercase Greek eta). 
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EXAMPLE 20.5 Kendall's Coefficient of Concordance 

Ho: In the sampled population, there is no association among the three 
variables (wing, tail, and bill lengths). 

Ho: In the sampled population, there is a relationship among wing, tail, and 
bill lengths. 

Wing Length (em) Tail Length (em) Bill Length (mm) Sums of 
Birds ranks 

(i) Data Ranks Data Ranks Data Ranks (R;) 

1 10.4 4 7.4 5 17 5.5 14.5 
2 10.8 8.5 7.6 7 17 5.5 21 
3 11.1 10 7.9 11 20 9.5 30.5 
4 10.2 1.5 7.2 2.5 14.5 2 6 
5 10.3 3 7.4 5 15.5 3 11 
6 10.2 1.5 7.1 1 13 1 3.5 
7 10.7 7 7.4 5 19.5 8 20 
8 10.5 5 7.2 2.5 16 4 11.5 
9 10.8 8.5 7.8 9.5 21 11 29 

10 11.2 11 7.7 8 20 9.5 28.5 
11 10.6 6 7.8 9.5 18 7 22.5 
12 11.4 12 8.3 12 22 12 36 

M = 3 
n = 12 

Without correction for ties: 

LR~ -
(L R;)2 

n W= 
M2(n3 - n) 

12 

(14.52 + 212 + 30.52 + ... + 362) _ (14.5 + 21 + 30.5 + ... + 36)2 
= ____________________ ~~~----------~1~2--------~ 

5738.5 _ (234)2 
= __ -----,;-;;-;--,--,----""'-'12=_____ 

15444 
12 

= 1175.5 = 0.913 
1287 

; = M(11 - I)W 

= (3)(12 - 1)(0.913) 

= 30.129 

32(123 - 12) 

12 
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From Appendix Table B.14, (X;)O.05.3.12 = 6.167. 

Reject Ho: P« 0.001. 

Incorporating the correction for ties: 

In group I (wing length): there are 2 data tied at 10.2 em 

(i.e., II = 2); there are 2 data tied at 10.8 em (i.e., 12 = 2). 

In group 2 (tail length): there are 2 data tied at 7.2 cm 

(i.e., 13 = 2): there are 3 data tied at 7.4 em (i.e .. f~ = 3); there are 2 data 
tied at 7.8 cm (Le., 15 = 2). 

In group 3 (bill length): there are 2 data tied at 17 mm (Le., 10 = 2): there are 
2 data lied at 20 mm (i.e .. 17 = 2). 

Considering all seven groups of ties, 

7 

and 

Lf = L(t~ - Ii) 
i= I 

= (23 - 2) + (23 - 2) + (23 - 2) + (33 - 3) 

+(23 - 2) + (23 - 2) + (23 - 2) = 60 

We = 1175.5 = 1175.5 = 0.924. 
15444 - 3( 60) 1272 

12 

Then, to test the significance of We: 

( X;)e = M (n - 1) We 
= (3)( 12 - 1)( 0.924) = 30.492. 

For these data, the same conclusion is reached with We as with W, namely: Reject 
Ho: and P « 0.001 . 

Several computational formulas for the coefficient of concordance arc found in 
various texts. Two that are easy to usc arc 

L(Ri - 8.)2 
W = ==----=----

M2(n3 - 11) 
(20.67) 

12 

and. equivalently, 

(20.68) 
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where M is the number of variables being correlated, and n is the number of data per 
variable. The numerators of Equations 20.67 and 20.68 are simply the sum of squares 
of the 11 rank sums. Ri. using Equations 4.12 and 4.16. respectively! 

The value of W may range from 0 (when there is no association and, consequently, 
the R;'s are equal and the sum of squares of Ri is zero) to 1 (when there is complete 
agreement among the rankings of all n groups and there is the maximum possible sum 
of squares for M variables). In Example 20.5 there is a very high level of concordance 
(W = 0.913), indicating that a bird with a large measurement for one of the variables 
is likely to have a large measurement for each of the other two variables. 

We can ask whether a calculated sample W is significant: that is, whether it 
represents an association different from zero in the population of data that was 
sampled (Kendall and Gibbons, 1990: 224-227). The latter authors give tables of 
probabilities of W. but a simple way to assess the significance of W without such 
tables is to use the relationship between this coefficient and the friedman X; (Section 
12.7). Using the notation from the present section (Kendall and Babbington Smith, 
1939), 

X~ = M(n - l)W. (20.69) 

Thus, we can convert a calculated W to its equivalent X~ and then employ our table 
of critical values of X; (Appendix Tahle B.14). This is demonstrated in Example 20.5. 
If either n or M is larger than that found in this table. then x~ may be assumed to be 
approximated by X2 with 11 - 1 degrees of freedom, and Appendix Table B.1 is used. 

(a) The Coefficient of Concordance with Tied Ranks. If there are tied ranks within 
any of the M groups. then mean ranks are assigned as in previous discussions (e.g., 
Section 8.11. Example 8.14). Then W is computed with a correction for ties. 

~RJ _ (~Ri)2 
We = n (20.70) 

M2(n3 - 11) - M~t' 

12 
where 

11/ 

~t = L(t;' - ti). (20.71) 
i= I 

ti is the number of ties in the ith group of ties, and m is the number of groups of tied 
ranks.t This computation of We is demonstrated in Example 20.5. We will not differ 
appreciably from W unless the numbers of tied data are great. 

(b) The Coefficient of Concordance for Assessing Agreement. A common use of 
Kendall's coefficient of concordance is to express the intensity of agreement among 
several ran kings. In Example 20.6, each of the three ten-year-old girls has been asked 
to rank the palatability of six flavors of ice cream. We wish to ask whether ten-year-old 
girls, in the population from which this sample came, agree upon the rankings. 

·Kendall and Gibbons (1990: 123) present W with this correlation for continuity. noting that 
it does not appreciably alter the resultant W: Subtract 1 from the numerator and add 2 to the 
denominator of Equation 20.67 or 20.6R. 

t As in Equation 20.70. when ties are present. the denominator in Equations 20.6R and 20.69 
would incorporate the subtraction of M ~ I priorto dividing by 12. 
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EXAMPLE 20.6 Kendall's Coefficient of Concordance Used to Assess 
Agreement 

Each of three girls ranked her taste preference for each of six flavors of ice cream 
(chocolate-chip. chocolate. spumoni. vanilla. butter-pecan. Neapolitan.) 

Ho: There is no agreement in flavor preference. 
HA : There is agreement in flavor preference. 

Flavors (i) 

Girl CC C S V BP N 

I 5 I 3 2 4 6 
2 6 2 3 1 5 4 
3 6 3 2 I 4 5 

Rank sum (Ri) 17 6 8 4 13 15 ~ Ri = 63 

M = 3 
n=6 

~RT _ (~Ri)2 
W= 11 

M2(11'~ - 11) 

12 
6.32 

172 + 62 + 82 + 42 + 132 + 152 -
_____ ---;;----;;-_____ --......:6~ = 137.50 = 0.873 

32(6.1 - 6) 157.50 

12 
x; = M(n - I)W = (3)(6 - 1)(0.873) = 13.095 

Using Appendix Table B.14. (X~)O.05 . .1.() = 7.000. Therefore. reject Ho. The con­
clusion is that there is agreement in flavor preferences. 

P < 0.001 

(c) The Relationship Between Wand rs. Not only Kendall's W related to Friedman·s 
X,2 (Equation 20.69), but it is related to the mean value of all possible Spearman rank 
correlation coefficients that would be ohtained from all possihle pairs of varia hies. 
These correlation coefficients may he listed in a matrix array: 

(r.,)11 (rJ )12 (r.,)D (rs)IM 
(r., hi (r.\ h2 (r,)2.1 (r., h-w 
( r, hi ( r.\ ).,2 ( rs h, ( rJ ."..1 

(20.72) 
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a form similar to that of Matrix 20.6. As in Matrix 20.6, each element of the diagonal, 
(rs )ii, is equal to 1.0, and each element below the diagonal is duplicated above the 
diagonal, as (rs )ik = (rs )ki. There are M!/[2( M - 2 )!] different rs's possible for M 
variables.* 

In Example 20.5, we are speaking of three rs ·s: (rs) 12, the r.~ for wing length and 
tail length; (rs) 13. the rs for wing and bill lengths; and (rs h3, the r.~ for tail and bill 
lengths. The Spearman rank correlation coefficient matrix. using correction for ties 
(Equation 19.50), would be 

1.000 
0.852 1.000 
0.917 0.890 1.000. 

For Example 20.6, the rs matrix would be 

1.000 
0.771 1.000 
0.771 0.886 1.000. 

Denoting the mean of rs as fs, the relationship with W (if there are no tied ranks) is 

therefore, 

W = (M - l)fs + 1 

rs = 

M 

MW - 1 
M - 1 

(20.73) 

(20.74) 

If there are ties. then the preceding two equations relate We and (rs)c in the same 
fashion as Wand fs are related. While the possible range of W is 0 to 1. fs may range 
from -1/(M - 1) to 1. For Example 20.5, (fs)c = (0.852 + 0.917 + 0.890)/3 = 
0.886, and Equation 20.73 yields W = 0.924. And for Example 20.6, rs = 0.809, and 
Equation 20.73 gives W = 0.873. 

If M = 2 (i.e .. there are only two variables, or rankings. being correlated. as in 
Examples 19.12 or 19.13), then either r.~ or W might be computed; and 

W = rs + t (20.75) 
2 

and 
(20.76) 

When M = 2, the use of rs is preferable, for there are more thorough tables of critical 
values available. 

If significant concordance is concluded for each of two groups of data, we may 
wish to ask if the agreement within each group is the same for both groups. For 
example, the data in Example 20.6 are for ice cream flavor preference as assessed by 
girls, and we might have a similar set of data for the preference exhibited by boys 
of the same age for these same flavors; and if there were significant concordance 
among girls as well as significant agreement among boys, we might wish to ask 
whether the consensus among girls is the same as that among boys. A test fOI 
this purpose was presented by Schucany and Frawley (1973), with elaboration by 
Li and Schucany (1975). However, the hypothesis test is not always conclusive 

*That is, M things taken two at a lime. (See Equation 5.10.) 
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with regard to concordance between two groups and it has received criticism by 
Hollander and Sethuraman (1978), who proposed a different procedure. Serlin and 
Marascuilo (1983) reexamined both approaches as well as multiple comparison 
testing. 

(d) Top-Down Concordance. Section 19.10 discussed a weighted-correlation proce­
dure caIJed "top-down correlation," a two-sample test allowing us to give emphasis 
to those items ranked high (or low). An analogous situation can occur when there 
are more than two groups of ranks. For example, for the data of Example 20.6 we 
might have desired to know whether the girls in the sampled population agree on the 
most favored ice-cream flavors, with our having relatively little interest in whether 
they agree on the least appealing flavors. As with the correlation situation, we may 
employ the Savage scores, Si, of Equation 19.54 (and Table 19.1), and a concordance 
test statistic is 

(20.77) 

the significance of which may be assessed by 

xt = M(n - l)CT, (20.78) 

by comparing it to the chi-square distribution (Appendix Table B.1) with 11 - 1 
degrees of freedom (lman and Conover, 1987). Here, 11 and M are as in the preceding 
concordance computations: Each of M groups has fl ranks. Ri is the sum of the 
Savage scores, across the M groups, at rank position i; and SI is Savage score 1 (see 
Section 19.10). This is demonstrated in Example 20.7. In this example, it is concluded 
that there is agreement among the girls regarding the most tasty ice cream flavors. 
We could instead have asked whether there was agreement as to the least tasty 
flavors. This would have been done by assigning Savage scores in reverse order (i.e., 
SI = 2.450 assigned to rank 6, S2 to rank 5, and so on). If this were done we would 
have found that CT = 0.8222 and X} = 12.333, which would have resulted in a 
rejection of the null hypothesis of no agreement regarding the least liked flavors 
(0.025 < P < 0.05; P = 0.030). 

EXAMPLE 20.7 Top-down Concordance. Using the Data of Example 20.6 
to Ask Whether There Was Significant Agreement Among Children Regard­
ing the Most Desirable Ice Cream Flavors. The Table of Data Shows the 
Savage Scores in Place of the Ranks of Example 20.6. 

Ho: There is no agreement regarding the most preferred flavors. 
HA : There is agreement regarding the most preferred flavors. 

Flavors (i) 

Girl CC C S V BP N 

1 0.367 2.450 0.950 1.450 0.617 0.167 
2 0.167 1.450 0.950 2.450 0.367 0.617 
3 0.167 0.950 1.450 2.450 0.617 0.367 

R; 0.701 4.850 3.350 6.350 1.601 1.151 
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CT = LR? - M2n 1 (n ) 
M2(n - S\) ;=\ I 

= 2 1 rO.701 2 + 4.8502 + 3.3502 + 6.3502 
3 (6 - 2.450) L 

+ 1.6012 + 1.1512 - (32)(6)] 

= 0.03130(79.4469 - 54] = 0.03130(25.4469) = 0.7965 

X} = 3(6 - l)CT 

= (15)(0.7965) = 11.948 

v=n-1=5 

ro.OS.S = 11.070 

Reject Ho. 
0.025 < P < 0.05 [P = 0.036] 

EXERCISES 

20.1. Given the following data: (d) Calculate the standard error of estimate and 
the coefficient of determination. 

Y(g) XI (m) X2 (cm) X3 (m2) X4 (cm) 

51.4 0.2 17.8 24.6 18.9 
72.0 1.9 29.4 20.7 8.0 
53.2 0.2 17.0 18.5 22.6 
83.2 10.7 30.2 10.6 7.1 
57.4 6.8 15.3 8.9 27.3 

66.5 lO.6 17.6 11.1 20.8 
98.3 9.6 35.6 10.6 5.6 
74.8 6.3 28.2 8.8 13.1 
92.2 lO.8 34.7 11.9 5.9 
97.9 9.6 35.8 10.8 5.5 

88.1 lO.5 29.6 11.7 7.8 
94.8 20.5 26.3 6.7 10.0 
62.8 0.4 22.3 26.5 14.3 
81.6 2.3 37.9 20.0 0.5 

(a) Fit the multiple regression model Y = a + 
f31 XI + f3zX2 + f33X3 + f34X4 to the data, 
computing the sample partial regression coef­
ficients and Y intercept. 

(b) By analysis of variance, test the hypothesis 
that there is no significant multiple regression 
relationship. 

(c) If Ho is rejected in part (b), compute the 
standard error of each partial regression coef­
ficient and test each Ho: f3i = O. 

(e) What is the predicted mean popUlation value 
of Y at XI ::: 5.2 m, X2 = 21.3 cm, X3 = 
19.7 m2, and X4 = 12.2 cm? . 

(f) What are the 95% confidence limits for the Y 
ofpart(e)? 

(g) Test the hypothesis that the mean population 
value of Y at the Xi'S stated in part (e) is 
greater than 50.0 g. 

20.2. Subject the data of Exercise 20.1 to a stepwise 
regression analysis. 

20.3. Analyze the five variables in Exercise 20.1 as a 
mUltiple correlation. 
<a) Compute the multiple-correlation coefficient 
(b) Test the null hypothesis that the population 

multiple-correlation coefficient is zero. 
(c) Compute the partial correlation coefficient for 

each pair of variables. 
(d) Determine which of the calculated partial 

correlation coefficients estimate population 
partial correlation coefficients that are dif­
ferent from zero. 

20.4. The following values were obtained for three mul­
tiple regressions of the form Y = a + b.Xl + 
b2XZ + b3X3. Test the null hypothesis that each 



of the three sample regressions estimates the same 
population regression function. 

Residllal Residllal 
sum of degrees of 

Regression squares freedom 

1 44.1253 24 
2 56.7851 27 
3 54.4288 21 

All data combined 171.1372 

Each of five research papers was read by each 
of four reviewers. Each reviewer then ranked the 
quality of the five papers. as follows: 
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Papers 

2 3 4 5 

Reviewer 1 5 4 3 1 2 
Reviewer 2 4 5 3 2 I 
Reviewer 3 5 4 1 2 3 
Reviewer 4 5 3 2 4 1 

(a) Calculate the Kendall coefficient of concor­
dance. 

(b) Test whether the rankings by the four review­
ers are in agreement. 
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Polynomial Regression 

21.1 POLYNOMIAL CURVE FITTING 
21.2 QUADRATIC REGRESSION 

A specific type of multiple regression is that concerning a polynomial expression: 

Y; = a + {3IXj + {32Xr + {3Jxl' + ... + {3/11Xj" + f;. (21.1) 

a model with parameters estimated in the expression 

Y; = 1I + b I X; + b2Xr + bJX? + .,. + h//lX;". 

for which a more concise symbolism is 

A Ill. 

Yi = 1I + L bjXf· 
j=1 

(21.2) 

(21.3) 

If m = I. then the polynomial regression reduces to a simple linear regression (with 
Equations 21.1 and 21.2 becoming Equations 17.la and 17.R. respectively). 

As shown in Example 21.1. a polynomial equation such as Equation 21.2 deals 
with only two variables: the dependent variable. Y. and the independent variable. 
X. Additional terms in the polynomial-equation consist of powers of X as if they 
a~re additional independent variables. That is. Ec:}l--'ation 21.2 may be expressed as 
Y; = a + bl XI; + b2X2; + bJXJ; + ... + h//lX//Ij. where. corresponding to the 
terms in Equation 21.2. XI; is Xj. X2; is Xl. XJi is Xl. and so on. and X//Ii is xt 

The highest power in a polynomial equation. m. is known as the degree or order 
of the equation. There may be an underlying biological relationship warranting 
description by a polynomial model. but this is unlikely to involve an equation with an 
exponent larger than 2 or 3. The more common objective of polynomial regression. 
especially when m > 2. is to obtain an equation with which to predict the popUlation 
value of Y at a specified X. 

Polynomial regression is discussed in greater detail in Cohen et al. (20tH: Section 
6.2). von Eye and Schuster (199R: Chapter 7). and some of the books noted in the 
introduction to Chapter/20 (e.g .. Draper and Smith. 1998: Chapter 12: Glantz and 
Slinker. 2001: 91-96: Kutner. Nachtsheim. and Neter. 2004: Section 8.1). 

21.1 POLYNOMIAL CURVE FITTING 

A polynomial equation may be analyzed by submitting values of Y. X. X2. X:'. and 
so on to multiple regression computer programs! There are also computer programs 

*Serious rounding errors can rem.lily "rise when dealing with powers of X;. ,lnd these prohlems 
C,In often he reduced hy coding. (sec Appendix 0. A commonly recommended coding is to suhtract 
X (i.e .. to use Xi - X in place of Xi): this is known as ("('lIferillg the data (e.g .. Cohen et al.. 21KlJ: 
Section 6.23: Ryan. 1997: Sections 3.2.4lmd 4.2.1). Coding. such as descrihed in Appendix C. should 
he attempted with rounding-error in polynomial regression. 
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EXAMPLE 21.1 Stepwise Polynomial Regression 

The following shows the results of a polynomial-regression analysis, by forward 
addition of terms, of data collected from a river, where X is the distance from the 
mouth of the river (in kilometers) and Y is the concentration of iron in the water 
(in micrograms per liter). 

X (km) Y (p,glL) 

1.22 40.9 
1.34 41.8 
1.51 42.4 
1.66 43.0 
1.72 43.4 

1.93 43.9 
2.14 44.3 
2.39 44.7 
2.51 45.0 
2.78 45.1 

2.97 45.4 
3.17 46.2 
3.32 47.0 
3.50 48.6 
3.53 49.0 

3.85 49.7 
3.95 50.0 
4.11 50.8 
4.18 51.1 

n = 19 
First. a ~near regressi~n is fit to the data ~l = 1). result~. g in 

a - 37.389, b - 3.1269. and Sb - 0.15099. 

To test Ho: /3 = 0 against H A: /3 #:- 0, t = !!.. = 20.7 9, with II = 17. 
Sh 

As 10.05(2).17 = 2.110,Ho is rejected. 

Then. a quadratic <rcond-power) regression is fit to the data (m = 2), 
resulting in / 

a = 40.302, bl = 0.66658, Sbl = 0.91352 

b2 = 0.45397, Sb2 = 0.16688. 

To test Ho: /32 = 0 against IJA: /32 #:- 0, t = 2.720, with II = 16. 
As 10.05(2).16 = 2.120, Ho is rejected. 

/' Then, a cubic (third-power) regression is fit to the data (m = 3), resulting in 

a = 32.767, bl = 10.411, 

b2 = -3.3868. 

b3 = 0.47011, 

Sb l = 3.9030 

Sb2 = 1.5136 

Sb;l = 0.18442. 
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To test Ho: {33 = 0 against H A: {33 * 0.1 = 2.549. with v = 15. 
As 10.05(2).15 = 2.131. Ho is rejected. 

Then. a quartic (fourth-power) regression is fit to the data (m = 4). resulting in 

a = 6.9265. bl = 55.835. 
b2 = -31.487. 
b3 = 7.7625. 
b4 = -0.67507. 

Sb) = 12.495 
Sh2 = 7.6054 
Sb, = 1.9573 
Sb~ = 0.18076. 

To test Ho: {34 = 0 against H A: {34 * 0,1 = 3.735. with v = 14. 
As 10.05(2).14 = 2.145, Ho is rejected. 

Then. a quintic (fifth-power) regression is fit to the data (m = 5). resulting in 

a = 36.239, bl = -9.1615. Sb) = 49.564 
b2 = 23.387. Sh2 = 41.238 
b3 = -14.346, Sh, = 16.456 
b4 = 3.5936. Sb~ = 3.1609 
bs = -0.31740. Sh~ = 0.23467. 

To test Ho: {3s = 0 against H A : {35 * 0,1 = 1.353, with v = 13. 
As 10.OS(2).13 = 2.160, do not reject Ho. 

Therefore. it appears that a quartic polynomial is an appropriate regression 
function for the data. But to be more confident, we add one more term beyond the 
quintic to the model (i.e., a sextic. or sixth-power. polynomial regression is fit to 
the data; m = 6). resulting in 

a = 157.88, b l = -330.98, 
b2 = 364.04. 
b3 = -199.36. 
b4 = 58.113. 
bs = - 8.6070, 
b6 = 0:50964. 

Sb) = 192.28 
Sh, = 201.29 
Sh~ = 108.40 
Sb~ = 31.759 
Sb~ = 4.8130 
Sh~ = 0.29560. 

To test Ho: {36 = 0 against HA: {36 * 0.1 = 1.724. with v = 12. 
As 10.05(2).12 = 2.179, do not reject Ho. 

In concluding that the quartic regression is a desirable fit to the data. we have 
Y = 6.9265 + 55.835X - 31.487X2 + 7.7625X3 - 0.67507X4. See Figure 21.1 
for graphical presentation of the preceding polynomial equations. 

i 

that will perform polynomial regression with the input of only Y and X data (with! 
the program calculating the powers of X instead of the user having to submit them asl 
computer input). I 

The power. m. for fitting a polynomial to the data may be no greater than n - 1*;! 
but m's larger than 4 or 5 are very seldom warranted. I 

The appropriate maximum m may be determined in one of two ways. One is thel 
backward-elimination multiple-regression procedure of Section 20.6b. This would I 
involve beginning with the highest-order term (the term with the largest m) in which: 

*If m = 11 - 1. the curve will fit perfectly to the data (i.e .• R2 = 1). For example. it can bel 
observed that for two data (n = 2). a linear regression line (m = I) will pass perfectly through the! 
two data points: for II = 3. the quadratic curve from a second-order polynomial regression (m = 2)' 
will fit perfectly through the three data points: and so on. . 
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we have any interest. But, except for occasional second- or third-order equations, this 
m is difficult to specify meaningfully before the analysis. 

The other procedure, which is more commonly used, is that of f~rward-selection 
multiple regression (Section 20.6c). A simple linear regression (Yj = a + bXj) 
is fit to the data as in Figure 21.1a. Then a second-degree polynomial (known as 
a quadratic equation, Yj = a + b\Xi + b2Xl) is fit, as shown in Figure 21.1b. 
The next step would be to fit a third-degree polynomial (called a cubic equation, 
Yi = a + b\Xj + b2Xr + b3Xt). and the stepwise process of adding terms 
could continue beyond that. But at each step we ask whether adding the last term 
significantly improved the polynomial-regression equation. This "improvement" may 
be assessed by the I test for Ho: f3j = 0 (Section 20.4), where bj, the sample estimate 
of f3j, is the partial-regression coefficient in the last term added.· 

At each step of adding a term, rejection of Ho: /3 = 0 for the last term added 
indicates that the term significantly improves the model; and it is recommended 
practice that, at each step, each previous (i.e., lower-order) term is retained even if 
its b is no longer significant. If the Ho is not rejected, then the final model might be 
expressed without the last term, as the equation assumed to appropriately describe 
the mathematical relationship between Y and X. But, as done in Example 21.1, some 
would advise carrying the analysis one or two terms beyond the point where the 
preceding Ho is not rejected, to reduce the possibility that significant terms are being 
neglected inadvertently. For example, it is possible to not reject Ho: /33 = O. but by 
testing further to reject Ho: 134 = O. A polynomial regression may be fit through the 
origin using the considerations of Section 20.13. 

After arriving at a final equation in a polynomial regression analysis. it may be 
desired to predict values of Y at a given value of X. This can

A 
be done by the 

procedures of Section 20.8, by which the precision of a predicted Y (expressed by a 
standard error or confidence interval) may also be computed. Indeed, prediction is 
often the primary goal of a polynomial regression (see Section 20.15) and biological 
interpretation is generally difficult, especially for m > 2. 

It is very dangerous to extrapolate by predicting V's beyond the range of the 
observed X's, and this is even more unwise than in the case of simple regression or 
other multiple regression. It should also be notcd that use of polynomial rcgression 
can be problematic, especially for m larger than 2, because Xi is correlated with 
powers of Xi (i.e., with Xl, Xt, and so on), so the analysis may be very adversely 
affected by multicollinearity (Section 20.4a). 

The concept of polynomial regression may be extended to the study of relationships 
of Y to more than one independent variable. For example, equations such as these 
may be analyzed by considering them to be multiple regressions: 

Y = a + b\X\ + b2X? + b3X2 + b4X\X2 
A 

Y = a + b\X\ + b2X? + b3X2 + b4X~ + bSX\X2. 

*This hypothesis may also be tested hy 

F = (Regression SS for model of degree m) - (Regression SS for model of degree m - I) 
Residual MS for the model of degree m 

(21.4) 
with a numerator OF of 1 and a denominator OF that is the residual OF for the m-degree model, 
and this gives results the same as from the I test. 
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FIGURE 21.1: Fitting polynomial regression models. Each of the following regressions is fit to the 
19 data points of Example 21.1. (a) Linear: Y = 37.389 + 3. 1269X. (b) Quadratic: Y = 

40.302 + 0.66658X + 0.45397X2. (c) Cubic: Y = 32.767 + 10.411X - 3.386SX2 + 0.47011X3. (d) Quartic 
Y = 6.9265 + 55.835X - 31.487X2 + 7.7625X3 - 0.67507X4. (e) Quintic Y = 36.239 - 9.1615X + 
23.387X2 - 14.346X3 + 3.5936X4 - 0.31740X5. The stepwise analysis of Example 21.1 concludes that 
the quartic equation provides the appropriate fit; that is, the quintic expression does not provide a 
significant improvement in fit over the quartic. 
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In these examples. the term X, X2 represents interaction between the two independent 
variables. Because there is more than one independent variable. there is no clear 
sequence of adding one term at a time in a forward-selection procedure. and some 
other method (such as in Section 20.6e) would have to be employed to strive for the 
best set of terms to compose the multiple-regression model. 

QUADRATIC REGRESSION 

The most common polynomial regression is the second-order. or quadratic, regression: 

(21.5) 

with three population parameters, a. f3" and f32, to be estimated by three regression 
statistics. a, b,. and b2. respectively. in the quadratic equation 

(21.6) 

The geometric shape of the curve represented by Equation 21.6 is a parabola. An 
example of a quadratic regression line is shown in Figure 21.2. If b2 is negative as 
shown in Figure 21.2. the parabola will be concave downward. If b2 is positive (as 
shown in Figure 21.1b). the curve will be concave upward. Therefore. one-tailed 
hypotheses may be desired: Rejection of H(): /32 ~ 0 would conclude a parabolic 
relationship in the population that is concave downward (/32 < 0). and rejecting 
Ho: /32 ~ 0 would indicate the curve is concave upward in the population (/32 > 0). 

(a) Maximum and Minimum Values of Yjo A common interest in polynomial 
regression analysis, especially where m = 2 (quadratic), is the determination of a 
maximum or minimum value of Yj (Bliss 1970: Section 14.4; Studier. Dapson. and 
Bigelow. 1975). A maximum value of Yj is defined as one that is greater than those 
Yj's that are close to it: and a minimum Yj is one that is less than the nearby Yj 's. 
If, in a quadratic regression (Equation 21.6). the coefficient b2 is negative, then there 
will be a maximum. as shown in Figure 21.2. If b2 is positive, there will be a minimum 
(as is implied in Figure 21.1 b). It may be desired to determine what the maximum or 
minimum value of Y; is and what the corresponding value of Xi is. 

The maximum or minimum of a quadratic equation is at the following value of the 
independent variable: 

A 

A -b, 
XII = --. 

2b2 

Placing XII in the quadratic equation (Equation 21.6). we find that 

A 

Yo = a 

Thus, in Figure 21.2. the maximum is at 

at which 

x = -17.769 = 1.15 hr. 
o 2( -7.74286) 

Yo = 1.39 - ( 17.769 )2 = I 1.58 mg/1(X) ml. 
4( -7.74286) 

(21.7) 

(21.8) 
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FIGURE 21.2: Quadratic fit to eight data points resulting in the equation Y; = 1.39 + 17.769X; -
7.74286Xr 

,. 
A confidence interval for a maximum or minimum Yo may be computed by the 
procedures of Section 20.8. 

EXERCISES 

21.1. The following measurements are the concentra­
tions of leaf stomata (in numbers of stomata per 
square millimeter) and the heights of leaves above 
the ground (in centimeters). Subject the data to a 
polynomial regression analysis by stepwise addi­
tion of terms. 

Y X 

(number/mm2) (cm) 

4.5 21.4 
4.4 21.7 
4.6 22.3 
4.7 22.9 
4.5 23.2 
4.4 23.8 
4.5 24.8 
4.2 25.4 
4.4 25.9 
4.2 27.2 
3.8 27.4 

3.4 28.0 
3.1 28.9 
3.2 29.2 
3.0 29.8 

21.2. Consider the following data, where X is tempera­
ture (in degrees Celsius) and Yis the concentration 
of a mineral in insect hemolymph (in millimoles 
per liter). 

X Y 

(0C) (mmole/L) 

3.0 2.8 
5.0 4.9 
8.0 6.7 

14.0 7.6 
21.0 7.2 
25.0 6.1 
28.0 4.7 



(_) Fit a quadratic equation to these data. 
(b) Test for significance of the quadratic teIll!.. 
(c) Estimate the mean population value of Yi at 

Xi = lO.Ooe and compute the 95% confi­
dence interval for the estimate. 
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(d) Determine the values of X and Y at which the 
quadratic function is maximum. 
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Testing for Goodness of Fit 

22.1 CHI-SQUARE GOODNESS OF FIT FOR TWO CATEGORIES 
22.2 CHI-SQUARE CORRECTION FOR CONTINUITY 
22.3 CHI-SQUARE GOODNESS OF FIT FOR MORE THAN TWO CATEGORIES 
22.4 SUBDIVIDING CHI-SQUARE GOODNESS OF FIT 
22.5 CHI-SQUARE GOODNESS OF FIT WITH SMALL FREQUENCIES 
22.6 HETEROGENEITY CHI-SQUARE TESTING FOR GOODNESS OF FIT 
22.7 THE LOG-LIKELIHOOD RATIO FOR GOODNESS OF FIT 
22.8 KOLMOGOROV-SMIRNOV GOODNESS OF FIT 

This chapter and the next concentrate on some statistical methods designed for use 
with nominal-scale data. As nominal data arc counts of items or events in each of 
several categories, procedures for their analysis arc sometimes referred to as enu­
meratiol/ statistical methot/s. This chapter deals with methods that address how well 
a sample of ohservations from a population of data conforms to the population's 
distrihution of ohservations expressed hya null hypothesis. These procedures, which 
compare frequencies in a sample to frequencies hypothesized in the sampled pop­
ulation. arc called goodness-oFfit tests. In testing such hypotheses. the widely used 
chi-square statistic* (X2) will be discussed. as will the more recently developed log­
likelihood ratio introduced in Section 22.7. Goodness of fit for ordered categories (as 
contrasted with nominal-scale categories) is addressed by the Kolmogorov-Smirnov 
test of Section 22.8 or by the Watson test of Section 27.5. 

'The symhol for chi-s4U<He is x:? where the Greek lowercase letter chi (xl is pronounced as 
the "ky" in "sky" (sec Appendix A). Some authors usc the notation X:! instead of x2. which 
avoids employing a Greek letter for something other than a population parameter: hut this invites 
confusion with the designation of X2 as the square or an ohservation: X: so the symhol X2 will he 
used in this hook. Karl Pearson (ll)OO) pioneered the use of this statistic for goodness-of-fit analysis. 
and David (llJlJ5) credits him with the first use of the terms chi-sq/lared and goot/I/('.\'.\ off;t at that 
time. Pearson and R. A Fisher suhsequently expanded the theory and application of chi-square 
(Lancaster. IlJOlJ: Chapter I ). CI,i-sqlwret! is the term commonly preferred to chi-square by British 
writers. 

Karl Pearson (IX57-llJ30) was a remarkahle British mathematician. Walker (195X) notes that 
Pearson has heen referred to as "the founder of the science of statistics": she called Pearson's 
development of statistical thinking and practice "an achievement of fantastic proportions" and 
said of his influencc on others: "Few men in all the history of seienC'e have stimulated so many 
other people to cultivate and enlarge the lidds they had plantell." Karl Pearson. Walter Fnll1k. and 
Francis Galton founded the British journal Bioll/etrika, whieh was !irst issued in October IlJO I and 
which still innucnces statistics in many arcas. Pearson edited this journal for 35 years. succecdell for 
30 years by his son. Egon Sharpe Pearson. himself a powerful contrihutor to statistical theory and 
applielllion (see Bartlell. IlJXI). 
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CHI-SQUARE GOODNESS OF FIT FOR TWO CATEGORIES 

It is often desired to obtain a sample of nominal scale data and to infer whethl.!r 
the population from which it came conforms to a specified distribution. For exam­
ple. a plant geneticist might raise IOU progeny from a cross that is hypothesized 
to result in a .3: I phenotypic ratio of yellow-l1owered to green-tlowered plants. 
Perhaps this sample of lOll is composed of X4 yellow-tlowered plants und 16 green­
flowered plants. although the hypothesis indicates an expectation of 75 ycllow­
and 25 grccn-tlowered plants. The sampled population is the l10wer colors of all 
possible offspring from parent plants of the kind used in the experiment. The 
question of interest. then. is whether the observed frequencies (X4 and 16) devi­
ate significantly from the frequencies (75 and 25) expected from sampling this 
population. 

The following chi-square statistic may he used as a measure of how much an 
ohserved sample distrihution of nominal-scale data differs from a hypothesized 
distrihution: 

k (t· j)~ 
X2 = 2: _~i~. 

i- I Ii 
(22.1 )* 

~ 

Here. ii is the frequency (that is. the numher of counts) ohserved in category i.fj is 
the frequency expected in category i if the null hypothesis is true.-;- and the summation 
is performed over all k categories of datil. For the aforementioned !lower-color data. 
which are in two categories. Exampl~ 22.1 s~()ws the two ohserved frequencies U·, and 

h). the two expected frequencies (f, and)~). and the null and alternate hypotheses 

(/-10 and HI'). The expected frequency. f;. for each category may be calculated hy 
multiplying the total numher of observations. II. hy the proportion of the Iota I that 
the null hypolhesis specifics for each category. Therefore. for the two /lower colors in 

this example..f, = (100)( ~) = 75 and'/i = (100)( 1) = 25. 
Examining Equation 22.1 shows lhat larger disagreement hetween observed and 

expected frequencies (i.e .. larger!; - .i; values) will result in a larger X2 value. Thus. 
this lype of calculation is referred to as a measure of goot/ness offil (although it 
might heller have heen named a measure of "poorness of lit"). A calculated X2 

value can he as s~all as zero. in the case of ,1 perfect lit (i.e .. each li value equals 

its corresponding Ji). or very large if the lit is very bad: it can never he a negative 
value. 

It is fundamentally important to appreciate that the chi-square statistic is calculated 
using the actmll frequencies ohserved. It is not valid to convert the data to percentages 

"Equation 22.1 can he rewrillen as 

k (2 
,\'2 = ~ .-t 

i=1 Ii 
1/. (22.2) 

when: 1/ is the sum of all the li·s. nllllll:ly the total number of ohscrvation)o in the sample. Althou!!h 
Ihis formula renders Ihe calculation of _,,2 a linle easier. il has the disadvantage of 1101 enahlil1!! us 

to examine each cOl1lrihutiol1 10 y2 (i.e .. eilch Ui - .li)2! i; J. ;lI1d. as shown in Seclion 22.4. such 
lin t!xamination is an aid in determining huw we might suhdi\'ide an overall chi·square analysis 
into component chi-square analyscs for additional datll collection. Thus. F.quation 22.2 is )'cldolll 
encountered. 

-f The symool.f is pronounced .. r hat:· 
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EXAMPL~2.1 Calculation of Chi-Square Goodness of Fit, of Data Con­
sisting of th.e Colors of 100 Flowers, to a Hypothesized Color Ratio of 
3: 1 

Ho: The sample data came from a population having a 3 : 1 ratio of yellow 
to green ftowers. 

H A: The sample data came from a population not having a 3 : 1 ratio of 
yellow to green ftowers. 

The data recorded are the 100 observed frequencies. f;, in each of the two fto~er­
color categories, with the frequencies expected under the null hypothesis, f;, in 
parentheses. 

Ij 
(f; ) 

Category (flower color) 

Yellow 

84 

(75) 

Green n 

16 100 
(25) 

Degrees of freedom = v = k - 1 = 2 - 1 = 1 

X2 = L (f; -:: fif = (84 - 75)2 + 
f; 75 

xl.os.1 = 3.Ml 
Therefore, reject Ho. 

92 92 
+-

75 25 
= 1.080 + 3.240 

= 4.320 

(16 - 25)2 

25 

0.025 < P < 0.05 [P = 0.038} 

An improved procedure is presented in Section 22.2 (Example 22.2). 

and attempt to submit the percentages to Equation 22.1. An additional consideration 
in calculating chi-square is described in Section 22.2. 

Critical values of X2 are given in Appendix Table B.l. For chi-square goodness­
of-fit testing, the degrees of freedom, v, are k - 1, so in the present example 
v = 2 - 1 = 1. and the first line of Appendix Table B.l is consulted to decide 
whether the null hypothesis, Ho, should be rejected. As in most hypothesis testing, a 
calculated X2 greater than or equal to the critical value causes rejection of Ho. 

In Example 22.1, X2 is calculated to be 4.320 and the critical value is X6.os.! = 3.841. 
This means that the probability of obtaining a sample of data diverging at least this 
far from the hypothesized distribution, if the null hypothesis is true. is less than 0.05. 
Therefore, if testing is being performed at the 5% significance level, Ho is rejected 
and declared not to be a true statement about the distribution of ftower colors in 
the sampled population. Indeed. examination of the first line of Appendix Table B.1 
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indjc.ates that this probability lies between 0.025 and 0.05 (which we can express as 
0.025 < P < 0.05).* 

The numbers of items in the two categories may be expressed as proportions (or 
percentages): In Example 22.1. yellow-flowered plants compose 0.84 (i.e .. 84%) of 
the sample. and 0.16 (i.e .. 16%) are green flowered. Confidence intervals for such 
proportions are discussed in Section 24X 

CHI-SQUARE CORRECTION FOR CONTINUITY 

Chi-square values obtained from actual data. using Equation 22.1. belong to a 
discrete. or discontinuous, distribution, in that they can take on only certain values. 
For instance:. in Example ~2.1 we calculated a chi-square value of 4.320 for II = 
84.[2 = 16.[1 = 75. and h = 25. If we had observed II = 83 and fz = 17, the 
calculated chi-square value would have been (83 - 75)2/75 + (17 - 25)2/25 = 
0.8533 + 2.5600 = 3.413: for II = 82 and fz = 18. X2 = 2.613: and so on. These 
chi-square values obviously form a discrete distribution, for results betw~en 4.320 
and 3.413 or between 3.413 and 2.613 arc not possible with the given f; values. 
However, the theoretical X2 distribution, from which Appendix Table 8.1 is derived, 
is a continuous distribution: that is. for example, all values of X2 between 2.613 and 
4.320 are possible. Thus, our need to determine the probability of a calculated X2 can 
be met only approximately by consulting Appendix Table 8.1, and our conclusions 
are not taking place exactly at the level of a which we set. This situation would be 
unfortunate were it not for the fact that the approximation is a very good one. except 
when" = 1 (and in the instances described in Section 22.5). In the case of" = I. it is 
usually recommended to use the Yates correctio!, lor cOlltilluity (Yates, 1934). t where 

the absolute value of each deviation of f; from if is reduced by 0.5. That is, 

2 _ ~ (lfi - II - 0.5)2 
XI" - £.J ~ , 

i= I f; 
(22.3) 

where Xz. denotes the chi-square value calculated with the correction for continuity. 
This correction is demonstrated in Example 22.2, which presents the determination 

of Xz. for the data of Example 22.1. For this example, the use of Xz. yields the same 
conclusion as is arrived at without the correction for continuity. but this will not 
always be the case. Without the continuity correction, the calculated X2 may be 
inflated enough to cause us to reject HIl, whereas the corrected Xz. value might not. [n 
other words. not correcting for continuity may cause us to commit the Type I error 
with a probability greater than the stated a. The Yates correction should routinely 
be used when" = I: it is not applicable for" > 1. For very large II. the effect of 
discontinuity is small. even for" = I. and in such cases the Yates correction will 

*Somc calculators and computer programs havc thc capahility of determining the cxact proha­
hility of a given X2• For the present example, we would therehy lind that P( X2 2: 4.320) = 1I.03K 

t Although English statistician Frank Yates (1902-1 (4) deserves the credit for suggesting this 
correction for chi-square testing. it had previously heen employed in other stlltistical contexts 
(Pearson. 1947). R. A. Fisher associated it with Yates's name in 193tl (David. 1995). This was one 
of many important contrihutions Yates made over a distinguished 5lJ-yeilr publishing career. and 
he was also one or the c<trliest users of electronic computers to summarize and analyze data (Dyke. 
1l)l)5). The correction should not he applied in the very r<tre situ~tions where the numerator or x2 

is increas('d. instead of decrcllsed. hy its usc (that is. when I.fi - Ii I < 0.25). 
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change the calculated chi-square very little. Its use remains appropriate with v = 1, 
however, regardless of n. 

EXAMPLE 22.2 
for Continuity 

Chi-Square Goodness of Fit, Using the Yates Correction 

For the hypothesis and data of Example 22.1 : 

Category (flower color) 

Yellow 

Ji 
(Ji ) 

v=k-l=2-1=J 

84 

(75) 

Green 

16 

(25) 

n 

100 

i = ± Uti - j;~ - 0.5)2 = (184 - 751 - 0.5)2 + (116 - 251 - 0.5)2 

;=1 Ji 75 25 

X~.05.1 = 3.841. 
Therefore, reject Ho. 

= 0.9633 + 2.8900 = 3.853 

0.025 < P < 0.05 [P = 0.0497] 

For k = 2, if Ho involves a J : 1 ratio, 

may be used in place of Equation 22.1, and 

2 (If I - hi - 1)2 
Xc = 

n 

(22.4) 

(22.5) 

A A 

may be used instead of Equation 22.3. In these two shortcut equations, II and h need 
not be calculated, thus avoiding the concomitant rounding errors. 

If, when v = 1, the chi-square calculation is performed by a computer, the user 
should be aware whether the continuity correction is employed. 

22.3 CHI-SQUARE GOODNESS OF FIT FOR MORE THAN TWO CATEGORIES 

Example 22.1 demonstrated chi-square goodness-of-fit testing when there are two 
categories of data (i.e., k = 2). This kind of analysis may be extended readily to sets 
of data with larger numbers of categories. as Example 22.3 exemplifies. Here. 250 
plants were examined (n = 250), and their seeds were classified into four categories 
(k = 4). The calculated X2, using Equation 22.1, is 8.972. (This book will routinely 
express a calculated chi-square to at least three decimal places, for that is the accuracy 
of the table of critical values, Appendix Table B.1. Th~refore. to help avoid rounding 
errors, intermediate calculations, including those of Ji, will be performed to four or 
more decimal places.) .-
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EXAMPLE 22.3 Chi-square Goodness of Fit for k = 4 

Ho: The sample comes from a population having a 9 : 3 : 3 : 1 ratio of 
yellow-smooth to yellow-wrinkled to green-smooth to green-wrinkled 
seeds. 

HA : The sample comes from a population not having a 9 : 3: 3: 1 ratio of 
the above four seed phenotypes. 

The sample data are recorded as o~served frequencies, /;. with the frequencies 
expected under the null hypothesis, 1;, in parentheses. 

Yellow 
smooth 

Yellow 
wrinkled 

Green 
smooth 

Green 
wrinkled n 

I; 152 39 

(46.8750) 

53 

(46.8750) 

6 250 
A 

(I;) (140.6250) (15.6250) 

v=k-l=3 
2 _ 11.37502 + 7.87502 + 6.12502 + 9.62502 

X - 140.6250 46.8750 46.8750 15.6250 
= 0.9201 + 1.3230 + 0.8003 + 5.9290 
= 8.972 

X~.05.3 = 7.815 
Therefore, reject HI). 

0.025 < P < 0.05 [P = 0.030] 

It has already been pointed out that larger X2 values will result from larger 
differences between I; and j;, but large calculated X2 values may also simply be 
the result of a large number of classes of data, because the calculation involves the 
summing over all classes. Thus, in considering the significance of a calculated X2, 
the value of k must be taken into account. What is done is to consider the degrees 
of freedom* (v). For the chi-square goodness-of-fit testing discussed in this chapter, 
v = k - 1. Thus, in Example 22.3 v = 4 - 1 = 3, while the calculated X2 is 8.972. 
Entering Appendix Table B.1 in the row for v = 3, it is seen that P(x2 ~ 7.815) = 0.05 
and P(X2 ~ 9.348) = 0.025. Therefore, 0.025 < P(x2 ~ 8.972) < 0.05; and, if testing 
at the 5% significance level, we would reject the null hypothesis that the sample came 
from a popUlation having a 9 : 3 : 3 : 1 ratio of yellow-smooth to yellow-wrinkled to 
green-smooth to green-wrinkled seeds. The tabled critical values may be denoted as 
X~.v: thus, for example, we can write X~.05.3 = 7.815 and X5.025.3 = 0.348. 

When we say the degrees of freedom are k - 1, we are stating that, given the 
frequencies in any k - 1 of the categories, we can determine the frequency in the 
remaining category. This is so because n is known, and the sum of the frequencies in 
all k categories equals n. In other words, there is "freedom" to assign frequencies to 
only k - 1 categories. It may also be noted that the degrees of freedom are k minus 

*This term was introduced by R. A. Fisher. in 1922. while discussing contingency tables (see 
Chapter 23) (David, 1995). 
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the number of sample constants used to calculate the expected frequencies. In the 
present examples, only one constant fl, was so used, so v = k - I. 

22.4 SUBDIVIDING CHI-SQUARE GOODNESS OF FIT 

In Example 22.3, the chi-square analysis detected a difference he tween the observed 
and expected frequencies too great to be attrihuted to chance, and the null hypothesis 
was rejected. This conclusion may he satisfactory in some instances. hut in many cases 
the investigator will wish to perform further analysis. 

For the example under consideration, the null hypothesis is that the sample came 
from a population having a 9 : 3 : 3 : 1 phenotypic ratio. If the chi-square analysis 
had not led to a rejection of the hypothesis, we would proceed no further. But since 
Ho was rejected. we may wish to ask whether the significant disagreement between 
observed and expected frequencies was concentrated in certain of the categories. or 
whether the difference was due to the effects of the data in all of the classes. The 
four individual contributions to the chi-square value are 0.9201. 1.3230. 0.8003. and 
5.9290; and the contribution resulting from the last class (the green-wrinkled seeds) 
contributes a relatively large amount to the size of the calculated X2. Thus we see that 
the nonconformity of the sample frequencies to those expected from a population 
with Aa 9 : 3 : 3 : 1 ratio is due largely to the magnitude of the discrepancy hetweenf4 
andj4. 

This line of thought can be examined as shown in Example 22.4. First. we test 
Ho: fl.h. andh came from a population having a 9:3:3 ratios with H A: The frequencies 
in the first three categories came from a population having a phenotypic ratio other 
than 9 : 3 : 3. This null hypothesis is not rejected, indicating that the frequencies in the 
first three categories conform acceptahly well to those predicted hy Ho. Then we can 
test the frequency of green-wrinkled seeds against the comhined frequencies for the 
other three phenotypes. under the null hypothesis of a I : 15 ratio. The calculated i 
value causes us to reject this hypothesis. however. and we draw the conclusion that 
the nonconformity of the data in Example 22.3 to the hypothesized frequencies is due 
primarily to the observed frequency of green-wrinkled seeds. In the latter hypothesis 
test, X~ is employed instead of X2 hecause v = 1. 

EXAMPLE 22.4 Chi-Square Goodness of Fit, Subdividing the Chi-Square 
Analysis of Example 22.3 

Hll : The sample came from a population with a 9 : 3 : 3 ratio of the first 
three phenotypes in Example 22.2. 

HA: The sample came from a population not having a 9: 3 : 3 ratio of the 
first three phenotypes in Example 22.2. 

Seed Characteristics 
Yellow Yellow Green 
smooth wrinkled smooth 11 

.~ 152 39 53 244 
(Ii ) (146.4000) (48.8000) (48.800()) 

v=k-l=2 
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X2 = 5.60002 + -9.80002 + 4.20002 

146.4000 48.8000 48.8000 
= 0.2142 + 1.9680 + 0.3615 

= 2.544 

X5.05.2 = 5.991 
Therefore, do not reject Ho. 

0.25 < P < 0.50 [P = 0.28] 

Ho: The sample came from a population with a 1 : 15 ratio of green-wrinkled 
to other seed phenotypes. 

HA : The sample came from a population not having the 1 : 15 ratio stated 
in Ho. 

Seed Chara(.1eristics 

Green 
wrinkled Others 11 

Ji 6 244 250 

(Ji ) ( 15.6250) (234.3750) 

lI=k-l=1 

2 ~, 2 2 
2 _ ~ (if; - Jil - 0.5 )- = (9.6250 - 0.5) + (9.6250 - 0.5) 

Xc - ~ ~ 
i= I Ji 15.6250 234.3750 

= 5.3290 + 0.3553 = 5.684 

X~.U5.1 = 3.841 
Therefore, reject Ho. 

0.01 < P < 0.025 [P = O.ot7] 

Note: It is not proper to test statistical hypotheses that were stated after examining 
the data to be tested. Therefore, the analyses described in this section should be 
considered only a guide to developing hypotheses that subdivide a goodness-of-fit 
analysis. And the newly proposed hypotheses should then be stated in advance of 
their being tested with a new set of data. 

CHI-SQUARE GOODNESS OF FIT WITH SMALL FREQUENCIES 

In order for us to assign a probability to the results of a chi-square goodness-of-fit test. 
and thereby assess the statistical significance of the test, the calculated X2 must be a 
close approximation to the theoretical distribution that is summarized in Appendix 
Table B.I. This approximation is quite acceptable as long as the expected frequencies 
are not too small. If}; values are very small, however, the calculated X2 is biased 
in that it is larger than the theoretical X2 it is supposed to estimate. and there is 
a tendency to reject the null hypothesis with a probability greater than a. This is 
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undesirable. and ~tatisticians have attempted to define in a convenient manner what 
would constitute fi's that are "too small." 

For decades a commonly applied general rule was that no expected frequency 
should be less }han 5.0.* even though it has long been known that it is tolerable 

to have a few f;'s considerably smaller than that (e.g .• Cochran. 1952. 1954). By a 
review of previous recommendations and an extensive empirical analysis, Roscoe 
and Byars (1971) reached conclusions that provide less restrictive guidelines for chi· 
square goodness-or-fit testing. They and others have found that the test is remarkably 
robust when testing ror a uniform distribution-that is, for lin: In the population. the 

~ .. 
frequencies in all k categories arc equal-in which case f; :-: nl k. In this situation, it 
appears that it is acceptable to have expected frequencies as small as 1.0 for testing 
at a as small as n.os. or as small as 2.0 for a as small as 0.01. The chi-square test 
works nearly as well when there is moderate departure from a uniform distribution 
in H(). and the average expected frequencies may be as small as those indicated for 
a uniform distribution. And even with great departure from uniform. it appears that 
the average expected frequency (i.e., III k) may be as small as 2.0 for testing at a 
as low as n.05 and as small as 4.0 for a as small as 0.01. Koehler and Larntz (1980) 
suggested that the chi-square test is applicable for situations where k 2: 3, n 2: 10, and 
n2 I k 2': 10. Users of goodness-of-fit testing can be comfortable if their data fit both the 
Roscoe and Byars and the Koehler and Larntz guidelines. These recommendations 
are for situat~ons where there are more than two categories. If k = 2. then it is 

wise to have fi's of at least 5.0. or to use the binomial test as indicated in the next 
paragraph. 

The chi-square calculation can be employed if the data for the classes with 
offensively low 1i values are simply eliminated from H() and the subsequent analysis. 
~r. certain of the classes of data might be meaningfully combined so as to result in all 

1i values being large enough to proceed with the analysis. Such modified procedures 
are not to he recommended as routine practice. however. Rather. the experimenter 
should strive to obtain a sufficiently large fl for the analysis to he performed. When 
k = 2 and each f; is small, the use of the binomial test (Section 24.5) is preferable 
to chi-square analysis. [Similarly. usc of the multinomial. rather than the binomial, 
distribution is appropriate when k > 2 and the 1i's are small; however, this is a tedious 
procedure and will not be demonstrated here (Radlow and AIf, (975).] 

22.6 HETEROGENEITY CHI-SQUARE TESTING FOR GOODNESS OF FIT 

It is sometimes the case that a number of sets of data are being tested against the 
same null hypothesis. and we wish to decide whether we may combine all of the sets 
in order to perform one overall chi-square analysis. As an example, let us examine 
some of the classic data of Gregor Mendel t (186S). In one series of 10 experiments. 

*Some statisticians have suggested lower limits as small as 1.0 and others recommend limjts 

as large as 20.0 (as summarized by ~'ressie and Read. 19X9: Tllte and Hyer. 1973). with lower./i"s 

acceptable in some cases where the.li·s arc all e'lual. 
tBornJohann Mendel (IX22-IXX4). he wasan Augustinian monk (taking the name Gn'goTwhen 

entering the monastery). an Austrian schoolteacher, nnd II pioneer in biological experimentation 
and its '1uantitative analysis-ahhoogh his data have been called into '1ucstion by statisticians 
(Edwards. 19Xfl: Fisher. 193fl). His research was unappreciated until sixteen yeurs after his dellth. 
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Mendel obtained pea plants with either yellow or green seeds, with the frequency 
of yellow-seed plants and green-seed plants shown in Example 22.5.* The data from 
each of the 10 samples are tested against the null hypothesis that there is a 3-to-l 
ratio of plants with yellow seeds to plants with green seeds in the population from 
which the sample came. Ho is not rejected in any of the 10 experiments, so it is 
reasonable to test a null hypothesis examining heterogeneity. that all 10 samples 
could have come from the same population (or from more than one population 
having the same ratios). This new hypothesis may be tested by the procedure called 
heterogeneity chi-square analysis (sometimes referred to as "interaction" chi-square 
analysis or even "homogeneity analysis"). In addition to performing the 10 separate 
chi-squares tests, we total all 10 Ii values and total all 10 Ii values and perform a 
chi-square test on these totals. But in totaling these values. commonly called pooling 
them. we must assume that all ten samples came from the same population (or from 
populations having identical seed-color ratios). If this assumption is true, we say 
that the samples are homogeneous. If this assumption is false, the samples are said 
to be heterogeneous. and the chi-square analysis on the pooled data would not be 
justified. So we are faced with the desirability of testing for heterogeneity. using the 
null hypothesis that the samples could have come from the same population (Le., Ho: 
The samples are homogeneous). 

Testing for heterogeneity among replicated goodness-of-fit tests is based on the 
fact that the sum of chi-square values is itself a chi-square value. If the samples are 
indeed homogeneous. then the total of the individual chi-square values should be 
close to the chi-square for the total frequencies. In Example 22.5. the total chi-square 
is 7.1899. with a total of 10 degrees of freedom; and the chi-square of the totals is 
0.1367. with 1 degree of freedom. The absolute value of the difference between these 
two chi-squares is itself a chi-square (called the heterogeneity chi-square), 7.053, with 
" = 10 - 1 = 9. 

Consulting Appendix Table B.l, we see that for the heterogeneity chi-square. 
X5.05.9 = 16.9. so Ho is not rejected. Thus we conclude that the 10 samples could have 
come from the same population and that their frequencies might justifiably be pooled. 
The Yates correction for continuity may not be applied in a heterogeneity chi-square 
analysis (Cochran, 1942; Lancaster, 1949). But if we conclude that the sample data 
may be pooled. we should then analyze these pooled data using the correction for 

EXAMPLE 22.5 Hetero~eity Chi-Square Analysis 

The data are the number <?f p~lants with yellow seeds and the number with 
green seeds, in each of 10 plant-breeding experiments. 

The null hypothesis for each experiment is that the population sampled has a 
3 : 1 ratio of plants with yellow seeds to plants with green seeds. 

The null hypothesis for the heterogeneity chi-square test is that all 10 samples of 
data came from the same population (or from populations with the same ratios). 

Fo,!" each experiment. the observed frequencies. /;. are given. with the frequen-
cies./;. predicted by the null hypothesis within parentheses. 

*These ten data sets come from what Mendel (1865) collectively called "Experiment 2." in 
which, he reports, "258 plants yielded 8023 seeds, 6022 yellow and 2001 green; their ratio, therefore. 
is 3.01 : I." (He was expressing that 6022/2001 = 3.01.) 
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Plants with Plants with Total Uncorrected 
Experiment yellow seeds green seeds plants (n) chi-squore* v 

25 11 36 0.5926 
(27.0000) (9.0000) 

2 32 7 39 1.0342 
(29.2500) (9.7500) 

3 14 5 19 0.0175 
(14.2500) (4.7500) 

4 70 27 97 0.4158 1 
(72.7500) (24.2500) 

5 24 13 37 2.0270 
(27.7500) (9.2500) 

6 20 6 26 0.0513 
(19.5000) (6.5000) 

7 32 13 45 0.3630 
(33.7500) (11.2500) 

8 44 9 53 1.8176 
(39.7500) (13.2500) 

9 50 14 64 0.3333 
(48'()000) ( 16.00(0) 

10 44 18 62 0.5376 
(46.500() ) (15.5000) 

Total of chi-squares 7.1899 10 
Chi-square of totals 

(i.e., pooled 355 123 478 0.1367 
chi-square) (358.50()O) (119.5000) 

Heterogeneity chi-square 7.0532 9 
Xij.05.9 = 16.919. 
Do not reject the homogeneity null hypothesis. 0.50 < P < 0.75 
[P = 0.63] 

* In heterogeneity analysis, chi-square is computed without correction for 
continuity. 

Pooled chi-square with continuity correction: X~ = 0.1004 and X~.()5.1 = 3.841. 
Do not reject Ho of 3: 1 ratio. 0.50 < P < 0.75 [P = 0.75] 

continuity. Thus, for Example 22.5, X~ = 0.128, rather than X2 = 0.137, should be 
used, once it has been determined that the samples are homogeneous and the data 
may be pooled. Heterogeneity testiny may also be done using the log-likelihood 
statistic. G (Section 22.7), instead of X . 

Example 22.6 demonstrates how we can be misled by pooling heterogeneous 
samples without testing for acceptable homogeneity. If the six samples shown were 
pooled and a chi-square computed (x2 = 0.2336), we would not reject the null 
hypothesis. But such a procedure would have ignored the strong indication obtainable 
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EXAMPLE 22.6 Hypothetical Data for Heterogeneity Chi-Square Analy­
sis. Demonstrating Misleading Results from the Pooling of Heterogeneous 
Samples 

Ho: The sample population has a 1 : 1 ratio of right- to left-handed men. 
HA: The sampled population does not have a I : 1 ratio of right- to 

left-handed men. 

Sam~le frequencies observed. f;. are listed, with the frequencies predicted by 
Ho (fi) in parentheses. 

Uncorrected 
Sample Right-handed Left-handed 11 chi-square v 

3 11 14 4.5714 1 
(7.0000) (7.00()O) 

2 4 12 16 4.0000 
(8.0000) (8.0000) 

3 5 15 20 5.0000 
( I O,()OOO ) (10.0000) 

4 14 4 18 5.5556 
(9.0000) (9.0000) 

5 13 4 17 4.7647 
(8.5000) (8.5000) 

6 17 5 22 6.5455 
(I UJOOO) ( 1I.0()00) 

Total of chi-squares 30.4372 6 
Chi-square of totals 56 51 107 0.2336 1 

(i.e., pooled (53.5000) (53.5000) 
chi-sq uare) 

Heterogeneity chi-square 30.2036 5 

X~ 05 5 = 11.070. 

Reject Ho for homogeneity. P < 0.001 lP = 0.000(13) 

Therefore, we are not justified in performing a goodness-of-fit analysis on the 
pooled data. 

from the heterogeneity analysis (P < O'()()I) that the samples eame from more than 
one population. The appearance of the data in this example suggests that Samples 
1. 2. and 3 came from one population. and Samples 4, 5. and 6 came from another. 
possibilities that can be reexamined with new data. 

It is also important to realize that the pooling of homogeneous data can, in same 
cases. result in a more powerful analysis. Example 22.7 presents hypothetical data for 
four replicate chi-square analyses. None of the individual chi-square tests detects a 
significant deviation from the null hypothesis: but on pooling them. the chi-square 
test performed on the larger number of data does reject Ho. The nonsignificant 
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EXAMPLE 22.7 Hypothetical Data for Heterogeneity Chi-Square Analy­
sis, Demonstrating How Nonsignificant Sample Frequencies Can Result in 
Significant Pooled Frequencies 

For each sample, and for the pooled sample: 

Ho: The sampled population has equal frequencies of right- and left-handed 
men. 

HA: The sampled population does not have equal frequencies of right- and 
left-handed men. 

For heterogeneity testing: 

Ho: All the samples came from the same population. 
HA: The samples came from at least two different populations. 

For each sample, the observed frequencies,f;. are given, together with the expected 
frequencies, Ji, in parentheses. 

Uncorrected 
Sample Right-handed Left-handed n chi-square " 

15 7 22 2.9091 1 
(11.0000) (11.0000) 

2 16 8 24 2.6667 
(/2.0000) (/2.0000) 

3 12 5 17 2.8824 1 
(8.5000) (8.5000) 

4 13 5 18 3.5556 1 
(9.0000) (9.0000) 

Total of chi-squares 12.0138 4 
Chi-square of totals 56 25 81 11.8642 1 

(pooled chi-square) (40.5000) (40.5000) 
Heterogeneity 0.1496 3 
chi-square 

Xfi.OS.3 = 7.815. 
The homogeneity Ho is not rejected. 0.975 < P < 0.99 [P = 0.985] 

Therefore. we are justified in pooling the four 
X~ = 11.111, DF = 1, P = 0.00086, Ho is rejected. 

sets of data. On doing so, 

heterogeneity chi-square shows that we are justified in pooling the replicates in order 
to analyze a single set of data with a large n. 

22.7 THE LOG-LIKELIHOOD RATIO FOR GOODNESS OF FIT 

The log-likelihood ratio is applicable to goodness-of-fit analysis in circumstances 
having data for which chi-square may be employed. The log-likelihood ratio: 

*Proposed by Wilks (1935). based upon concepts of Neyman and Pearson (1928a. I 928b). 
This procedure, often referred to simply as the likelihootl ratio (abbreviated LR), considers 
the ratio between two likelihoods (i.e .• probabilities). Referring to Example 22.3, one likelihood 
is the likelihood oflhe population containing the same proportions that the sample has of the data 
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2Ji In (/;/]; ), may also be written as L/; In/; - L/; Inj. Twice this quantity, a 
value called G, approximates the X2 distribution.* Thust 

or, equivalently, 

G = 2 L/; In ~ or 
/; 

G = 4.60517L/;log~, 
/; 

(22.6) 

G = 2[L/; In/; - Lf; In];] or G = 4.60517[Lf; log/; - L/; log];] (22.7) 

is applicable as a test for goodness of fit, utilizing Appendix Table B.1 with the 
same degrees of freedom as would be used for chi-square testing. Example 22.8 
demonstrates the G test for the data of Example 22.3. In this case, the same conclusion 
is reached using G and X2, but this will not always be so. 

EXAMPLE 22.8 Calculation of the G Statistic for the Log-Likelihood 
Ratio Goodness-of-Fit Test. The Data and the Hypotheses Are Those of 
Example 22.3 

Yellow 
smooth 

} 152 
(f;) (140.6250) 

JI=k - 1=3 

Yellow Green 
wrinkled smooch 

39 
(46.8750) 

53 
(46.8750) 

G = 4.60517[L/; log/; - L/; log];] 

Green 
wrinkled n 

6 250 
(/5.6250) 

= 4.60517[(152)(2.18184) + (39)(1.59106) + (53)(1.72428) 
+ (6)(0.77815) - (152)(2.14806) - (39)(1.67094) 
- (53)( 1.67094) - (6)( 1.19382)] 

= 4.60517[331.63968 + 62.05134 + 91.38684 + 4.66890 
-326.50512 - 65.16666 - 88.55982 - 7.16292] 

= 4.60517[2.35224] 
= 10.832t 

X5.05.3 = 7.815 
Therefore, reject Ho. 

0.01 < P < 0.025 [P = 0.013] 

fUsing natural logarithms (sce Equations 22.6 or 22.7) yiclds the same value of G. 

in the four categories. And the other is the likelihood of the population containing the proportions. 
in the four categories. that are stated in the null hypothesis. The ratio of the first likelihood to 
the second will be larger for greater departures of population proportions from the proportions 
observed in the sample. 

*G also appears in the literature written as G2 and occasionally as likelihood ratio ,\,2: it is 
sometimes referred to as a measure of deviance. 

t As noted in the Section 8.7 footnote. "In" refers to natural logarithm (in base e) and "log" to 
common logarithm (in base 10). Many modern calculators can employ either. 
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Wi~iamsA (1976) recommended G be used in preference to X2 whenever any 

If; - fil ::: fi· The two methods often yield the same conclusions, especial11' when n is 
large; when they do not, some statisticians prefer G; others recommend X ,for while 
G may result in a more powerful test in some cases, x2 tends to provide a test that 
operates much closer to the stated level of a (e.g., Chapman, 1976; Cressie and Read, 
1989; Hutchinson, 1979; Lamtz, 1978; LawaI, 1984; Moore, 1986; Rudas, 1986). with 
the probability of a Type I error often far above a when employing G. 

When v = 1, the Yates correction for continuity is applied in a fashion analogous 
to ~hat in chi-square analysis in Section 22.2. The procedure is to make each fi closer 
to Ii by 0.5 and to apply Equation 22.7 (or Equation 22.6) using these modified f;'s. 
This is demonstrated in Example 22.9. 

EXAMPLE 22.9 The G Test for Goodness of Fit for Two Categories, for 
the Hypotheses and Data of Example 22.1 

(a) Without the Yates correction for continuity: 

Category (flower color) 

Yellow Green n 

f; 84 16 100 

(f;) (75) (25) 

v=k-1=2-1=1 

G = 4.60517[(84)(1.92428) + (16)(1.20412) - (84)(1.87506) 

- (16)( 1.39794)] 

= 4.60517[1.03336] = 4.759 

X5.05.l = 3.841 
Therefore. reject Ho. 

0.025 < P < 0.05 [P = 0.029] 

(b) With the Yates correction for continuity: 

Category (flower color) 

Yellow 

fi 84 
A 

(fi) (75) 
Modified f; 83.5 

v=k-1=2-1=1 

Green 

16 

(25) 
16.5 

n 

100 

Gc = 4.60517[(83.5)(1.92169) + (16.5)(1.21748) - (83.5)(1.87506) 

- (16.5) ( 1.39794 )] 

= 4.60517[0.916015] ~,4.218 
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X6.05.1 = 3.841 
Therefore, reject Ho. 

0.025 < P < 0.05 [P = 0.040] 

KOLMOGOROV-SMIRNOV GOODNESS OF FIT 

This chapter has thus far dealt with goodness-of-fit tests applicable to nominal-scale 
data. This section will present goodness-of-fit testing for data measured on a ratio, 
interval, or ordinal scale. 

Example 22.10 presents data that are measurements of the height above the 
ground at which each of 15 moths was found on the trunk of a 25-meter-tall tree. 
For each height, Xi, the observed frequency is f;, which is the number of moths 
found at that height. The Kolmogorov-Smirnov goodness-of-fit test (Kolmogorov, 
1933; Smirnov, 1939a, 1939b), also called the Kolmogorov-Smirnov one-sample test. 
examines how well an observed cumulative frequency distribution conforms to an 

EXAMPLE 22.10 Two-Tailed Kolmogorov-Smirnov Goodness of Fit for 
Continuous Ratio-Scale Data, Vertical Distribution of Moths on a Tree Trunk 

Ho: Moths are distributed uniformly from ground level to height of 25 m. 
HA : Moths arc not distributed uniformly from ground level to height of 

25m. 

Each Xi is a height (in meters) at which a moth was observed on the tree trunk. 

i Xi f; F; rei F; rei F; Di D~ 
I 

1 1.4 1 1 0.0667 0.0560 0.0107 0.0560 
2 2.6 1 2 0.1333 0.1040 0.0293 0.0373 
3 3.3 1 3 0.2000 0.1320 0.0680 0.0013 
4 4.2 1 4 0.2667 0.1680 0.0987 0.0320 
5 4.7 1 5 0.3333 0.1880 0.1453 0.0787 

6 5.6 2 7 0.4667 0.2240 0.2427 0.1093 
7 6.4 I 8 0.5333 0.2560 0.2773 0.2107 
8 7.7 1 9 0.6000 0.3080 0.2920 0.2253 
9 9.3 1 10 0.6667 0.3720 0.2947 0.2280 

10 10.6 1 I I 0.7333 0.4240 0.3093 0.2427 

11 11.5 1 12 0.8000 0.4600 0.3400 0.2733 
12 12.4 1 13 0.8667 0.4960 0.3707 0.3040 
13 18.6 1 14 0.9333 0.7440 0.1893 0.1227 
14 22.3 1 15 1.0000 0.8920 0.1080 0.0413 

n = 15 
max D; = DI2 = 10.8667 - 0.49601 = 10.37071 = 0.3707 

max D; = D'12 = 10.8000 - 0.49601 = 10.30401 = 0.3040 
D = 0.3707 
D O.05(2).15 = 0.33760 
Therefore, reject Ho. 

0.02 < P < 0.05 
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expected frequency distribution.* (Section 1.4 introduced the concept of a cumulative 
frequency distribution.) The test considers how likely it is to obtain the observed data 
distribution at random from a population having the distribution specified in the null 
hypotheses. 

For the test applicable to continuous data (i.e., ratio-scale or interval-scale data), 
the observed frequencies are arranged in ascending order and each cumulative 
observed frequency, Fi, is obtained as the sum of the observed frequencies fromft 
up to and including f;. (For example. FlO is the sum of ft through flO.) And from 
these cumulative frequencies the cumulative relative observed frequencies are deter­
mined as 

F· rei Fi = -1., 
n 

(22.8) 

where n, which is ~J;. is the number of data in the sample. Thus, rei Fi is simply the 
proportion of the data that are measurements ~Xi. For the data being discussed, n is 
15, so, for example, reI FlO = 11/15 = 0.7333. 

A 

Then, for each Xi, the cumulative relative expected frequency, Fi, is calculated as 
follows (where expected refers to the distribution specitied in the null hypothesis). In 
Example 22.10, Hi) proposes a uniform distrib~tion of moths over the heights 0 to 
25 meters, so rei F; = Xi/25 m (for example, F)() = 10.6 ml25 m = 0.4240). If, in a 
similar study. the null hyp~thesis were a uniform distribution over heights 1 to 25 m 
from the ground. then reI F; would be (Xi - 1 )/24 m. 

The test statistic, D. for the Kolmogorov-Smirnov goodness-of-tit is obtained by 
tirst calculating both 

A 

Di = Irel Fi - rei Fil (22.9) 

and 
Dj = Irel Fi-I - reI hi (22.10) 

for each i. For the data under consideration. for example, DJO = 10.7333 0.42401 
= 0.3093 and DIO = I 0.6667 - 0.4240 I = 0.24

A
27. In using Equation 22.10 it is 

important to know that Fo = 0, so DI = reI F\ (and in Example 22.10, D. = 
10 - 0.05601 = 0.0560). Then the test statistic is 

D = max[(max Di), (max DD), (22.11) 

which means "D is the largest value of D; or the largest value of Dj, whichever is 
larger." Critical values for this test statistic are referred to as Da,l, in Appendix Table 
B.9. If D ~ Da•1h then Ho is rejected at the a level of significance. 

Figure 22.1 demonstrates why it is necessary to examine both Di and Dj in 
comparing an observed to a hypothesized cumulative frequency distribution for 
continuous data. (See also D'Agostino and Noether, 1973; Fisz, 1963: Section 12.5A; 

*The name of the test honors the two Russian mathematicians who developed its underlying 
concepts and procedures: Andrei Nikolaevich Kolmogorov (1903-1987) and Nikolai Vasil"evich 
Smirnov (1900-1906). Korner (1996: 190) reported that "Kolmogorov worked in such a large 
number of mathematical fields that eleven experts were required to describe his work for his 
London Mathematical Society obituary." Kolmogorov originated the test for the one-sample 
situation discussed here. and Smirnov described a two-sample test to assess how well two observed 
cumulative frequency distributions represent population distributions that coincide. (See. e.g .• 
Daniel. 1990: Section 8.3: Hollander and Wolfe, 1999: Section 5.4: Siegel and Castellan, 1988: 
144-151. 166; and Sprent and Smeeton. 2001: 185-187. for discussion of the Kolmogorov-Smirnov 
two-sample test.) 
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FIGURE 22.1: Graphical representation of Example 22.10, Kolmogorov-Smirnov goodness·of·fit testing 
for continuous data. The solid line plots the observed frequencies, and the dashed line shows the 
expected frequencies. 

Gibbons and Chakraborti, 2003: Section 4.3.) What is sought is the maximum deviation 
between the observed distribution, f (which looks like a st~ircase when graphed), 
and the hypothesized distribution, F. (The distribution of F appears as a straight 
line if Ho proposes a uniform distribution; b~t other distributions, such as a normal 
distribution, '!lay be hypothesized.) For each Fj, we must consider the vertical distance 
D; = I Fj - Fil,; which occurs at the left end of a step, as well as the vertical distance 
Dj = iFi-l - Fil, which is at the right end of a step. 

A lesser-known, but quite good, alternative for the Kolmogorov-Smirnov test for 
goodness of fit of continuous data is the Watson goodness-of-fit test. It is discussed in 
Section 27.5 as being especially suited for data on a circular scale, but it is applicable 
as well to data on a linear scale such as in the present section. Other alternatives have 
been proposed, including those that have special emphasis on the differences in the 
tails of the distributions (Calitz, 1987). 

(a) Correction for Increased Power. For small sample sizes (say, n :s 25), the power 
of Kolmogorov-Smirnov testing can be increased impressively by employing the 
correction expounded by Harter, Khamis, and Lamb (1984) and Khamis (1990,1993). 
For each i, Equation 22.8 is modified to 

Fr 
rei <j' ; = --'-

n + 1 
(22.12) 
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and 
F; - I 

reI ~l'i = -',=-------
n - 1 

(22.13) 

Then, differences analogous to D; and Dj of Equations 22.9 and 22.10, respectively, 
are obtained as 

Do.; = Irel ~j - reI Fil 

DI.i = I rei ~j - reI Fil· 

(22.14) 

(22.15) 

For these two statistics, the subscripts 0 and 1 are denoted as 5 (lowercase Greek 
delta), so the developers of this procedure call it the 5-corrected Kolmogorov-Smirnov 
goodness-of-fit test. 

The test statistic is either max Do.; or max Dl,i, whichever leads to the higher level 
of significance (Le., the smaller probability). Appendix Table B.1 0 gives critical values 
for DIiJl for various levels of a. This test is demonstrated in Example 22.11. Although in 
this example the conclusion is the same as with the uncorrected Kolmogorov-Smirnov 
test (Example 22.10), this is not always so. However, Khamis (1990) reported that 
if n > 20, the results of this corrected Kolmogorov-Smirnov method are practically 
indistinguishable from those from the uncorrected procedure, and in such cases either 
the uncorrected or corrected test may be used. 

EXAMPLE 22.11 fi-corrected Kolmogorov-Smirnov Goodness of Fit 

The hypotheses and data are those of Example 22.10. 

A 

Xi Fi reI F; rel9Fi Do.; rei ~j D1•i 

1 1.4 1 0.0560 0.0625 0.0065 0.0000 0.0560 
2 2.6 2 0.1040 0.1250 0.0210 0.0714 0.0326 
3 3.3 3 0.1320 0.1875 0.0555 0.1429 0.0109 
4 4.2 4 0.1680 0.2500 0.0820 0.2143 0.0463 
5 4.7 5 0.1880 0.3125 0.1245 0.2857 0.0977 

6 5.6 7 0.2240 0.4375 0.2135 0.4286 0.2046 
7 6.4 8 0.2560 0.5000 0.2440 0.5000 0.2440 
8 7.7 9 0.3080 0.5625 0.2545 0.5714 0.2634 
9 9.3 10 0.3720 0.6250 0.2530 0.6429 0.2709 

10 10.6 11 0.4240 0.6875 0.2635 0.7143 0.2903 

11 11.5 12 0.4600 0.7500 0.2900 0.7857 0.3257 
12 12.4 13 0.4960 0.8125 0.3165 0.8571 0.3611 
13 18.6 14 0.7440 0.8750 0.1310 0.9286 0.1846 
14 22.3 15 0.8920 0.9375 (W455 1.0000 0.1080 

n = 15 
max Do.; = DO.12 = 0.3165, which has a probability of 0.05 < P < 0.10 
max Du = DI.I2 = 0.3611, which has a probability of 0.02 < P < 0.05 
Therefore, reject Ho: 0.02 < P < 0.05. 
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The o-corrected procedure can result in a test with a Type I error slightly greater 
than a: Khamis (2000) presented an adjustment to remedy this. Feltz (1998) discussed 
similar corrections that have more power in some circumstances. 

(b) Sample Size Required. When it is planned to apply a Kolmogorov-Smirnov 
test to continuous data, it may be asked how large a sample is needed to be able 
to detect a significant difference of a given magnitude between an observed and a 
hypothesized cumulative frequency distribution. All that need be done is to seek the 
desired minimum detectable difference in the body of the table of critical values of 
D (Appendix Table B.9), for the selected significance level, a. For example. to be 
able to detect a difference as small as 0.30 between an observed and a hypothesized 
cumulative relative frequency distribution, at a significance level of 0.05, a sample of 
of at least 20 would be needed, for Do.os.llJ = 0.30143, which is larger than 0.30. and 
DO.05.20 = 0.29408, which is smaller than 0.30. If the desired difference is not in the 
table, then the nearest smaller one is used. Thus. for a study such as that in Example 
22.10. it is estimated that at least 20 moths would have to be observed to be able to 
detect, at the 5% significance level, a difference between the cumulative frequency 
distributions-a difference of either D or D' -as small as 0.30. 

If the desired detectable difference is beyond the DaJI values in Appendix Table B.9 
(i.e., the difference is <D«.loo), then we know that the required sample size is greater 
than 160. This sample size may be estimated by employing the values of da at the 
end of Appendix Table B.9.* If we wish to detect a difference as small as U. then the 
sample size should be at leas'" 

(22.17) 

For example. if the collector of data in Example 22.11 had desired to be able to detect 
a difference. Di or D;. as small as 0.10, a sample size of at least 185 moth observations 
should have been obtained. for 

n= 
( \.358\0)2 

(0.10)2 
184.4. 

(c) Discrete or Grouped Data. Ordinal data, such as in Example 22.12, are not 
measurements on a continuous scale and should not be analyzed by the Kolmogorov­
Smirnov procedures discussed previously. But the following method is applicable. 

Example 22.12 shows the results of an experiment in which cats were given a 
choice of nve foods. identical in all respects except moisture content. A total of 40 
observations were recorded. The experiment was performed in a fashion that ensured 
that all 40 wen.: independent: this was done by using 40 cats. each given a choice 
among the five foods (not. for example. by using eight cats with each cat being given 
five opportunities to choose among the food types). and the cats were subjected to 
the experiment one at a time, so no individual's actions would influence another·s. 

*Thcsc values al Ihe end of Appcndix Tahle B.l) are 

I-Ina 
ti" = V -2-' 

.;. ~ is the capilal Greek letter della. 

(22.1 n) 
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\ 

Testing for Goodness of Fit 

EXAMPLE 22.12 
Ordered Data 

Kolmogorov-Smirnov Goodness-of-Fit Test for Discrete 

Ho: Cats have no preference along a food-moisture gradient. 
HA : Cats do have preference along a food-moisture gradient. 

Food 
Moisture 

~ ~ 

(i) Ii Ii F; F; d; 

1 (driest) 5 8 5 8 3 
2 6 8 11 16 5 
3 7 8 18 24 6 
4 10 8 28 32 4 
5 (moistest) 12 8 40 40 0 

11 = 40; k = 5 
dmax = d3 = 6 
(d) - 8 max 0.05.5.40 -
Therefore, do not reject Ho. 

[0.10 < P < 0.20] 

The food moisture is expressed on an ordinal scale. for although we can say that 
food 1 is drier than food 2 and food 2 is drier than food 3, we cannot say that the 
difference in moisture between foods 1 and 2 is quantitatively equal to the difference 
between foods 2 and 3. That is, we can speak only of relative magnitudes, and not 
quantitative measurements. of the foods' moisture contents. 

The null hypothesis of equal preference for the five food types could be tested 
by chi-square goodness of fit (Section 22.3). and this would be appropriate if the 
five foods were nominal-scale categories (for example, different brands or different 
recipes). But the present data are in categories that have a rational order. and the null 
hypothesis is that there is no p.,-eference along the gradient of food moisture (that is, 
no preference among the five nioisture categories arranged in ascending order). 

The data are observed frequencies. Ii, namely the ,!lumbers of animals choosing 
each of the five food types. The expected frequencies, Ii, are the numbers expected if 
the null hypothesis is true. In the present example, hypothesizing no preferred food 
type. a uniform distribution (i.e., a frequency of eight in each of the five categories) 
would be expected. 

For the Kolmogorov-Smirnov goodness-of-fit t~st, cumulative observed frequen­
cies (Fi) and cumulative expected frequencies (F;) are calculated for categories 1 
through k. (In Example 22.12, k = 5.) The cumulative frequency for category i is the 
sum of all frequencies from categories 1 through i (in Example 22.12, the frequencies 
for food as moist as, or moister than, i). 

For each category, i, the absolute value of difference between the two cumulative 
frequency distributions is determined: 

~ 

d; = I Fj - F; I . (22.18) 

The largest dj is the test statistic; let us call it dmax• 
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Critical values of dmax are found in Appendix Table B.8 (which requires that in the 
experiment n, the total number of data, is a multiple of k. the number of categories).* 
~Iso. the tabled critical values are for situations where a!1 of the expected frequencies. 
/;, are equal. but the table also works well for unequal /; if the inequality is not great 
(Pettitt and Stephens. 1977). 

The dmax procedure is also appropriate when data are recorded on a continuous 
scale but are grouped into broad categories on that scale so f; > 1 for several f; ·s. For 
such data. or for ordinal data. the test appropriate for ungrouped continuous data 
(using D) is conservative (e.g., Noether. 1963; Pettitt and Stephens, 1977), meaning 
that the testing is occurring at an a smaller-perhaps much smaller-than that 
stated, and the probability of a Type II error is inflated; that is, the power of the 
test is reduced. Therefore. use of dmax is preferred to using D for grouped or ordinal 
data. t . 

Example 22.13 shows how the data of Example 22.10 would look had the investiga­
tor recorded them in 5-meter ranges of trunk heights. Note that power is lost (and Ho 
is not rejected) by grouping the data, and grouping should be avoided or minimized 
whenever possible. 

When applicable (that is. when the categories are ordered), the Kolmogorov: 
Smirnov test is more powerful than the chi-square test when n is small or when /; 

EXAMPLE 22.13 Kolmogorov-Smirnov Goodness-of-Fit Test for Continu-
ous, But Grouped, Data 

The hypotheses are as in Example 22.10. with that example's data recorded in 
5-meter segments of tree height (where, for example. 5-10 m denotes a height of 
at least 5 m but less than 10 m). 

Trunk 
height 

'" (Xi) f; f; Fi Fj di 

-' 
/ 1 0-5m 5 3 5 3 2 

2 5-1Om 5 3 10 6 4 
3 10-15 m 5 3 13 9 4 
4 15-20 m 1 3 14 12 2 
5 20-25 m 1 3 15 15 0 

n = 15; k = 5 
dmax = 4 
(dmax )0.055.15 = 5 
Therefore, do not reject Ho. 

[0.10 < P < 0.20] 

*If n is not evenly divisible by k, then, conservatively. the critical value for the nearest larger n 
in the table may be used. (However. that critical value might not exist in the table.) 

tThe first footnote of this section refers to the Kolmogorov-Smirnov two-sample test. which 
also yields conservative results if applied to discrete data (Noether, 1963). 
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values are small. and often in other cases.* Another advantage of the Kolmogorov­
Smirnov test over chi-square is that it is not adversely affected by small expected 
frequencies (see Section 22.5). 

EXERCISES 

22.1. Consult Ap~ix Table B.I 
(.) What is the probability of computing a X2 at 

least as large as 3.452 if DF = 2 and the null 
hypothesis is true? 

(b) What is P(x2 ~ 8.668) if v = 5? 

(c) What is X5.05.4? 

(d) What is X5.01.8? 

22.2. Each of 126 individuals of ~ertain mammal 
species was placed in an enclosure containing equal 
amounts of each of six different foods. The fre­
quency with which the animals chose each of the 
foods was: 

Food item (i) f; 

N 13 
A 26 
W 31 
G 14 
M 28 
C 14 

(.) Test the hypothesis that there is no preference 
among the food items. 

(b) If the null hypothesis is rejected, ascertain 
which of the foods are preferred by this 
species. 

22.3. A sample of hibernating bats consisted of 44 males 
and 54 females. Test the hypothesis that the hiber- / 
nating population consists of equal numbers of' 
males and females. 

22.4. In attempting to determine whether there is a 
1 : 1 sex ratio among hibernating bats. samples 
were taken from four different locations in a cave: 

Location Males Females 

V 
D 
E 
M 

44 
31 
12 
15 

54 
40 
18 
16 

By performing a heterogeneity chi-square anal­
ysis, determine whether the four samples may 
justifiably be pooled. If they may, pool them and 
retest the null hypothesis of equal sex frequen­
cies. 

22.5. Test the hypothesis and data of Exercise 22.2 using 
the log-likelihood G. 

22.6. A straight line is drawn on the ground perpen­
dicular to the shore of a body of water. Then the 
locations of ground arthropods of a certain species 
are measured along a I-meter-wide band on either 
side of "the line. Use the Kolmogorov-Smirnov 
procedure on the following data to test the null 
hypothesis of uniform distribution of this species 
from the water's edge to a distance of 10 meters 
inland. 

/ 

Distance 
from 

water(m) 

0.3 
0.6 
1.0 
1.1 
1.2 

1.4 
1.6 
1.9 
2.1 
2.2 
2.4 
2.6 
2.8 
3.0 
3.1 

Number 
observed 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

DistCInce 
from 

from (m) 

3.4 
4.1 
4.6 
4.7 
4.8 

4.9 
4.9 
5.3 
5.8 
6.4 

6.8 
7.5 
7.7 
8.8 
9.4 

Number 
observed 

I 
1 
1 
1 
J 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

22.7. For a two-tailed Kolmogorov-Smirnov goodness­
of-fit test with continuous data at the 5% level 
of significance, how large a sample is necessary 
to detect a difference as small as 0.25 between 
cumulative relative frequency distributions? 

* A chi-square goodness-of-fit test performed on the data of Example 22.12. for Ho: There is no 
preference among the five food categories, would disregard the order of the categories and would 
yield X2 = 4.250; and the log-likelihood goodness of fit would result in G = 4.173. Each of those 
statistics would be associated with a probability between 0.25 and 0.50. 



Ul. A bird feeder is placed at each of six different 
heights. It is recorded which feeder was selected 
by each of 18 cardinals. Using the Kolmogorov­
Smirnov procedure for discrete data, test the null 
hypothesis that each feeder height is equally desir­
able to cardinals. 

-\ 

\ 
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Feeder height Number observed 

1 (lowest) 2 
2 3 
3 3 
4 4 
5 4 
6 (highest) 2 
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j 
Enumeration data may he collected simultaneously for two nominal-scale variables. 
These data may be displayed in what is known as a contingency table, where the r 
rows of the table represent the r categories of one variable and the c columns indicate 
the c categories of the other variahle: thus. there are rc "cells" in the tahle. (This 
presentation of data is also known as a cross lahulation or cross classification.) 

Example 23.1 a is of a contingency tahle of two rows and four columns. and may be 
referred to as a 2 x 4 ("two by four") tahle having (2) (4) = X cells. A sample of 300 
people has been obtained from a specified population (let's say members of an actors' 
professional association), and the variahles tahulated are each person's sex and each 
person's hair color. In this 2 x 4 tahle. the numher of people in the sample with each 
of the eight combinations of sex and hair color is recorded in one of the eight cells of 
the table. These eight data could also he recorded in a 4 x 2 contingency tahle, with 
the four hair colors appearing as rows and the two sexes as columns, and that would 
not change the statistical hypothesis tests or the conclusions that result from them. As 
with previous statistical tests, the total numher of data in the sample is designated asn. 

EXAMPLE 23.1 A 2 x 4 Contingency Table for Testing the Independence 
of Hair Color and Sex in Humans 

(a) Ho: Human hair color is independent of sex in the population sampled. 
HA : Human hair color is not independent ofscx in thc popUlation sampled. 

a = 0.05 

Hair color 

Sex Black Brown Blond Red Total 

Male 32 43 16 9 100 (= Rj) 
Female 55 65 64 16 200 (= R2) 

Total 87 lOS 80 25 300 (= n) 
(= C) (= C2) (= C3) (= C4) 
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(b) The observed fre<iuency,fij, in each cell is shown, with the frequency expected 

if Ho is true (i.e., fij) in parentheses. 

Sex Black 

Male 32 
(29.0000) 

Female 55 
(58.0000) 

Total 87 
(= Cl) 

~ ? 

X2 = L L (fij -= fij )­
fij 

Hair color 

Brown Blond 

43 16 
(36.0000) (26.6667) 

65 64 
(72.0000) (53.3333) 

108 80 
(= C2) (= C3) 

Red Total 

9 100 (= Rd 
(8.3333) 

16 200 (= R2) 
(16.6667) 

25 300 (= n) 
(= C4) 

= (32 - 29.0000)2 + (43 - 36.0000)2 + (16 - 26.6667)2 

29.0000 36.0000 26.6667 

+ (9 - 8.3333 )2 + (55 - 58.0000 )2 + (65 - 72.0000 f 
8.3333 58.0000 72.0000 

+ (64 - 53.3333 )2 + (16 - 16.6667)2 

53.3333 16.6667 

= 0.3103 + 1.3611 + 4.2667 + 0.0533 + 0.1552 + 0.6806 + 2.1333 

+ 0.0267 = 8.987 

v=(r-l)(c-l)=(2-1)(4-1)=3 

X5.05.3 = 7.815 

Therefore, reject Ho. 

0.025 < P < 0.05 [P = 0.029] 

The hypotheses to be tested in this example may be stated in any of these three 
ways: 

Ho: In the sampled population, a person's hair color is independent of that per­
son's sex (that is, a person's hair color is not associated with the person's 
sex), and 

HA : In the sampled population, a person's hair color is not independent of that 
person's sex (that is, a person's hair color is associated with the person's 
sex), or 

Ho: In the sampled population, the ratio of males to females is the same for people 
having each of the four hair colors, and 

H A: In the sampled population, the ratio of males to females is not the same for 
people having each of the four hair colors; or 
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Hu: In the sampled population, the proportions of people with the four hair colors 
is the same for both sexes, and 

H;t: In the sampled population, the proportions of people with the four hair colors 
is not the same for both sexes. 

In order to test the stated hypotheses, the sample of data in this example could 
have been collected in a variety of ways: 

• It could have been stipulated, in advance of collecting the data, that a specified 
number of males would be taken at random from all the males in the population 
and a specified number of females would be taken at random from all the 
females in the population. Then the hair color of the people in the sample would 
be recorded for each sex. That is what was done for Example 23.1 a, where it 
was decided, before the data were collected, that the sample would consist of 
100 males and 200 females. 

• It could have been stipulated, in advance of collecting the data, that a specified 
number of people with each hair color would be taken at random from all 
persons in the population with that hair color. Then the sex of the people in the 
sample would be recorded for each hair color. 

• It could have been stipulated, in advance of collecting, that a sample of n people 
would be taken at random from the population, without specifying how many 
of each sex would be in the sample or how many of each hair color would be in 
the sample. Then the sex and hair color of each person would be recorded. 

For most contingency-table situations, the same statistical testing procedure applies 
to anyone of these three methods of obtaining the sample of n people, and 
the same result is obtained. However, when dealing with the smallest possible 
contingency table, namely one with only two rows and two columns (Section 23.3), an 
additional sampling strategy may be encountered that calls for a different statistical 
procedure. 

Section 23.8 will introduce procedures for analyzing contingency tables of more 
than two dimensions, where frequencies are tabulated simultaneously for more than 
two variables. 

23.1 CHI-SQUARE ANALYSIS OF CONTINGENCY TABLES 

The most common procedure for analyzing contingency table data uses the chi-square 
statistic.* Recall that for the computation of chi-square one utilizes observed and 
expected frequencies (and never proportions or percentages). For the goodness-of-fit 
analysis introduced in Section 22.1, f; denoted the frequency observed in category i 
of the variable under study. In a contingency table, we have two variables under 
consideration, and we denote an observed frequency as f;j- Using the double subscript, 
f;j refers to the frequency observed in row i and columnj of the contingency table. In 
Example 23.1, the value in row 1 column 1 is denoted as III, that in row 2 column 3 
as 123, and so on. Thus, III = 32./12 = 43./13 = 16, ... ./23 = 64, and 124 = 16. 

The total frequency in row i of the table is denoted as Ri and is obtained as 
Ri = L}= I f;j. Thus, Rt = III + fl2 + 113 + 114 = 100, which is the total number 
of males in the sample, and R2 = 121 + 122 + 123 + 124 = 200, which is the total 
number of females in the sample. The column totals, Cj, are obtained by analogous 

*The early development of chi-square analysis of contingency tables is credited to Karl Pearson 
(1904) and R. A. Fisher (1922). In 1904, Pear!lOn was the first to use the term "contingency table" 
(David. 1995). 
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A 

and it is in this way that the Iii values in Example 23.1 b were obtained. Note that 
we can check fo! arithmetic errors in our cal~ulations hy observing that Ri = 
Lj"~ I Jii = Lj"~ I Iii and Ci :; L;= I lij :; L;= I lij· That is, the row totals of the 
expected frequencies equal the row totals of the ohserved frequencies. and the 
column totals of the expected frequencies equal the column totals of the observed 
frequencies. 

Once X2 has heen calculated. its significance can be ascertained from Appendix 
Table B.1. but to do so we must determine the degrees of freedom of the contingency 
table. 

The degrees of freedom for a chi-square calculated from contingency-table data 
are* 

v = (r - I)(e - 1). (23.5) 

I n Example 23.1. which is a 2 x 4 table. v = (2 1 ) ( 4 I) = 3. The calculated 
statistic is 9.987 and the critical value is X~.()5.3 = 7.815. so the null hypothesis is 
rejected. 

It is good to calculate expected frequencies and other intermediate results to at 
least four decimal places and to round to three decimal places after arriving at the 
value of X2. Barnett and Lewis (1994: 431-440) and Simonoff (2003: 228-234) discuss 
outliers in contingency-table data. 

(a) Comparing Proportions. Hypotheses for data in a contingency table with only 
two rows (or only two columns) often refer to ratios or proportions. In Example 
23.1. the null hypothesis could have been stated as. "In the sampled population, 
the sex ratio is the same for each hair color" or as "In the sampled population, 
the proportion of males is the same for each hair color." The comparison of two 
proportions is discussed in Sections 23.3b and 24.10: and the comparison of more than 
two proportions is further discussed in Sections 24.13-24.15. 

23.2 VISUALIZING CONTINGENCY-TABLE DATA 

Among the ways to present contingency-table data in graphical form is a method 
known as a mosaic display.'" 

In Chapter I, nominal-scale data were presented in a bar graph in Figure 1.2. The 
categories of the nominal-scale variable appear on one axis of the graph (typically 
the horizontal axis. as in Figure 1.2). and the number of observations is on the other 

*In the early days of contingency-tahle analysis. K. Pearson and R. A. Fisher disagreed 
vehemently over the appropriate degrees of freedom to employ: Fisher's (1922) view has prevailed 
(Agresti. 2002: 622: Savage. 1976). as has his use of the term dl!grl!('s offrl!C'dolll. 

tThe current use of mosaic displays is atlributed to Hartigan and Kleiner (19H 1 ). In an historical 
review of rectangular presentations of data. Friendly (2002) credits the English astronomer Edmond 
(a.k.a. Edmund) Halley (1656-1742). famous for his 1/)X2 observation of the comet that bears his 
name. with the first use of rectangulclr areas in the data rcpresentation for two independent variables 
(which. however, were not variables for a contingency tahle). Further developments in the visual 
use of rectangular areas took place in France and Germany in the carly 17XOs: a forerunner of 
mosaic graphs was introduced in IX« hy French civil engineer Charles Joseph Minard (1791-IX70). 
and what resembled the modern mosaic presentation was first used in I X77 hy German statistician 
Georg von Mayr (1X41-1925). In 1977. French cartographer Jacques Bertin (19IX- ) used graphs 
very similar to the mosaics of Hartigan and Kleiner. 
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Male I 

~========================~ Fem,le I 
~------------------------------------~ 

(a) 

Male I II IDO 

F'm'''[]~~D 
Black Brown 

Hair color 

(h) 

Blond Red 

FIGURE 23.1: A mosaic display for the contingency-table data of Example 23.1. (a) The first step displays 
two horizontal bars of equal width with the height of one of them representing the number of males 
and the height of the other representing the number of females in the sample. (b) The second step 
divides each of the two horizontal bars into four tiles, with the width of each tile depicting the frequency 
in the sample of a hair color among the individuals of one of the sexes. 

axis. The lengths of the bars in the graph are representations of the frequencies of 
occurrence of observations in the data categories; and, when bars are of equal width, 
the areas of the bars also depict those frequencies. 

Figure 23.1 demonstrates visualizing the data in Example 23.1 and shows the 
two-step process of preparing a mosaic display. The first step is to prepare Figure 
23.la, which is a graph reflecting the numbers of males and females in the sample 
of data described in Example 23.1. Of the 300 data, 100 are males and 200 are 
females, so the bar for females is two times as high as the bar for males. (The bars 
are graphed horizontally to reflect the rows in the Example 23.1 contingency table, 
but they could have been drawn vertically instead.) The bars are drawn with equal 
widths, so their areas also express visually the proportion of the 300 data in each sex 
category, with the lower (female) bar having two times the area of the upper (male) 
bar. 

The second step, shown in Figure 23.1 b, is to divide each sex's horizontal bar into 
four segments representing the relative frequencies of the four hair colors within that 
sex. For example, black hair among males was exhibited by 32/100 = 0.32 of the 
males in the sample, so black is depicted by a bar segment that is 32% of the width of 
the male bar; and 16/200 = 0.08 of the sample's females had red hair, so the red-hair 
segment for females is 8% of the width of the female bar. These bar segments are 
often referred to as liles, and there will be a tile for each of the r X c cells in the 
contingency table. Mosaic displays are usually, but not necessarily, drawn with small 
gaps between adjacent tiles. 

If the boundaries of the tiles for the two bars were perfectly aligned vertically, 
that would indicate that the r x c frequencies were in perfect agreement with the 
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Female 

Black 

Black 

Brown 
Hair color 

(a) 

Brown 
Hair color 

(b) 

r--

'---
Blond Red 

r:::::=: 

Blond ""="-Red 

FIGURE 23.2: A mosaic display for the contingency-table data of Example 23.1. (a) The first step displays 
four vertical bars of equal height. one for each of the hair colors in the sample, with the width of the 
bars expressing the relative frequencies of the hair colors. (b) The second step divides each of the four 
vertical bars into two tiles, with the length of each tile depicting the frequency of a members of a sex 
among the individuals of one of the hair colors. 

null hypothesis. The more out of alignment the tiles are, the less likely it is that the 
sampled population conforms to that specified in Ho. 

In Figure 23.1, the data of Example 23.1 were displayed graphically by showing 
the frequency of each hair color within each sex. Alternatively, the data could be 
presented as the frequency of each sex for each hair color. This is shown in Figure 23.2. 
In Figure 23.2a, the widths of the four vertical bars represent the relative frequencies 
of the four hair colors in the sample, and Figure 23.2b divides each of those four bars 
into two segments (tiles) with sizes reflecting the proportions of males and females 
with each hair color. 

Either graphical depiction (Figure 23.1b or 23.2b) is legitimate, with the choice 
depending upon the visual emphasis the researcher wants to give to each of the 
variables. 

Mosaic displays may also be presented for contingency tables having more than 
two rows and more than two columns (such as Exercise 23.4 at the end of this chapter). 
Friendly (1994,1995, 1999,2(02) described how the interpretation of mosaic graphs 
can be enhanced by shading or coloring the tiles to emphasize the degree to which 
observed frequencies differ from expected frequencies in the cells of the contingency 
table; and mosaic presentations are also used for contingency tables with more than 
two dimensions (which are introduced in Section 23.8). 
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2 x 2 CONTINGENCY TABLES 

The smallest possible contingency table is that consisting of two rows and two 
columns. It is referred to as a 2 x 2 ("two by two") table or a fourfold table, and it is 
often encountered in biological research. By Eq uation 23.5, the degrees of freedom 
for 2 x 2 tables is (2 - 1)( 2 - 1) = 1. 

The information in a 2 x 2 contingency table may be displayed as 

til tl2 RI 
121 122 R2 

CI C2 n 

where /;j denotes the frequency observed in row i and column j, Ri is the sum of the 
two frequencies in row i, Cj is the sum of the two frequencies in column j, and n is 
the total number of data in the sample. (The sample size, n, is the sum of all four of 
the /;/s, is the sum of the two row totals, and is the sum of the two column totals.) 
The row totals, RI and R2, are said to occupy one margin of the table, and the column 
totals, CI and C2, are said to occupy an adjacent margin of the table. 

There are different experimental designs that result in data that can be arranged 
in contingency tables, depending upon the nature of the populations from which the 
samples come. As described by Barnard (1947) and others, these can be categorized 
on the basis of whether the marginal totals are set by the experimenter before the 
data are collected. 

(a) No Margin Fixed. There are situations where only the size of the sample (n) 
is declared in advance of data collection, and neither the row totals nor the column 
totals are prescribed. * In Example 23.2a, the experimenter decided that the total 
number of data in the sample would be n = 70, but there was no specification prior to 
the data collection of what the total number of boys, of girls, of right-handed children, 
or of left-handed children would be. A sample of 70 was taken at random from a 
population of children (perhaps of a particular age of interest), and then the numbers 
of right-handed boys, right-handed girls, left-handed boys, and left-handed girls were 
recorded as shown in this example. The statistical analysis shown in Example 23.2b 
will be discussed in Section 23.3d. 

EXAMPLE 23.2 A 2 x 2 Contingency Table with No Fixed Margins 

(a) Ho: In the sampled population, handedness is independent of sex. 
H A: In the sampled population, handedness is not independent of sex. 

a = 0.05 

Boys Girls Total 

Left-handed 6 
Right-handed 28 

Total 34 

12 
24 

36 

18 
52 

70 

*This kind of experimental design is sometimes referred to as a double dichotomy or as 
representing a multinomial sampling distribution. and the resulting test as a test of association or 
test of independence. 
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(b) Using Equation 23.6 (Equation 23.1 could also be used, with the same result), 

X2 = n(/II/22 - II2I21? 
R1 R2CI C2 

= 70[(6)(24) - (12)(28)]2 

(18)(52)(34)(36) 
= 2.2524. 

II = 1: X5.05.1 = 3.841 

Therefore, do not reject Ho. 

0.10 < P < 0.25 [P = 0.22] 

(b) One Margin Fixed. Some experimental designs not only specify the sample size, 
n, but also indicate-prior to collecting data-how many data in the sample will 
be in each row (or how many will be in each column).* Thus, in Example 23.28, 
it could have been declared, before counting how many children were in each of 
the four categories, how many boys would be taken at random from all the boys 
in the population and how many girls would be taken at random from the girls 
in the population. Or the column totals might have been fixed, stating how many 
right-handed children and how many left-handed children would be selected from 
their respective populations. 

Another example of a contingency table with one pair of marginal totals fixed is 
shown in Example 23.3a. In this study, it was decided to collect, at random, 24 mice 
of species 1 and 25 of species 2, and the researcher recorded the number of mice of 
each species that were infected with a parasite of interest. 

EXAMPLE 23.3 A 2 X 2 Contingency Table with One Fixed Margin 

(a) Ho: The proportion of the population infected with an intestinal parasite is 
the same in two species of mouse. 

H A: The proportion of the population infected with an intestinal parasite is 
not the same in two species of mouse. 

a = 0.05 

Species 1 Species 2 Total 

With parasite 18 10 28 
Without parasite 6 15 21 

Total 24 25 49 

*This experimental design is often called a comparative trial. the resulting test a test of 
homogeneity. and the underlying distributions binomial distributions (which will be discussed 
further in Chapter 24). 
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summations: Cj = L;= I /;j. For example, the total number of blonds in the sample data 
is C3 = "'2:.f= dr3 = 113 + 123 = 80, the total number of redheads is C4 = "'2:.f= I /;4 = 25. 
and so on. The total number of observations in all cells of the table is called the grand 
total and is L;= I ~j'= I /;j = 111 + 112 + 113 + ... + hl + 124 = 300, which is 11, 

the size of our sample. The computation of the grand total may be written in several 
other notations: L; Lj/;j or ~;j/;j, or simply L ~/;j. When no indices are given on 
the summation signs, we assume that the summation of all values in the sample is 
desired. 

The most common calculation of chi-square analysis of contingency tables is 

(23.1) 

A 

In this formula, similar to Equation 22.1 for chi-square goodness of fit, /;j refers 
to the frequency expected in a row i column j if the null hypothesis is true.* 
If, in Example 23.1a, hair color is in fact independent of sex, then !~ = ~ of 

all black-haired people would be expected to be males and ~: = ~ would be 

expected to be females. That is, ill = ~: (87) = 29 (the expected number of black­

haired males), i21 = :(87) = 58 (the expected number of black-haired females), 

il2 = ~: (l08) = 36 (the expected number of brown-haired males), and so on. 
This may also be explained by the probability rule introduced in Section 5.7: 

The probability of two independent events occurring at once is the product of the 
probabilities of the two events. Thus. if having black hair is independent of being male. 
then the probability of a person being both black-haired and male is the probability 
of a person being black-haired multiplied by the probability of a person being male. 
namely (~) X G:). which is 0.0966667. This means that the expected number of 
black-haired males in a sample of 300 is (0.0966667)(300) = 29.0000. In general. the 
frequency expected in a cell of a contingency table is 

(23.3) 

which reduces to the commonly encountered formula, 

(23.4) 

* Just as Equation 22.2 is equivalent to Equation 22.1 for chi-square goodness of fit, the following 
are mathematically equivalent to Equation 23.1 for contingency tables: 

2 _ ~~ /;~ 
X - ~~" - n 

/;j 
(23.2) 

and 

~ = n (~~ /;] - 1). 
R;Cj 

(23.2a) 

These formulas are computationally simpler than Equation 23.1. the latter not even requiring 
the calculation of expected frequencies; however, they do not allow for the examination of the 
contributions to the computed chi-square. the utility of which will be seen in Section 23.6. 
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(b) Using Equation 23.6 (Equation 23.1 could also be used, with the same result). 

X2 = n(/llfzz - II2Izl f 
RIRzCICz 

= 49[(18)(15) - (10)(6)]2 

(28)(21)(24)(25) 

= 6.1250. 

0.01 < P < 0.025 [P = 0.013] 

If one margin is fixed, hypotheses might be expressed in terms of proportions. For 
Example 23.3a, the null hypothesis could be stated as Ho: In the sampled population. 
the proportion of infected mice is the same in species 1 and species 2. The statistical 
analysis shown in Example 23.3b will be discussed in Section 23.3d. Additional 
statistical procedures for dealing with proportions are discussed in Chapter 24. 

(c) Both Margins Fixed. In some cases (which are very uncommon), both margins 
in the contingency table are fixed.* That is, RJ, R2, CI, C2, and n are all set before the 
collection of data. 

Data for such a 2 X 2 table are shown in Example 23.4a, where an ecologist wanted 
to compare the ability of two species of snails to tolerate the current of a stream and 
adhere to the stream's substrate. The researcher labeled 30 snails that were clinging to 
the bottom of the stream, 19 of them selected at random from a population of snails of 
one species and 11 selected at random from a population of snails of a second species. 
These 30 individuals were then observed as the current washed over them, and it was 
decided before the experiment began that data collection would end when more than 
half of the 30 (that is, 16) yielded to the current and were swept downstream. 

EXAMPLE 23.4 A 2 X 2 Contingency Table with Two Fixed Margins 

(a) Ho: The ability of snails to resist the current is no different between the 
two species. 

HA: The abiJity of snails to resist the current is different between the two 
species. 

a = 0.05 
The four marginal totals are set before performing the experiment, and the 
four cell frequencies are collected from the experiment. 

Species 1 

Species 2 

Resisted Yielded 

12 

2 

14 

7 

9 

16 

19 

11 

30 

*The sampling in this experimental design comes from what is known as a hypergeometric 
distribution, about which more will be said in Sections 24.2 and 24.16. and the experimental design 
is sometimes called an independence trial. 



500 Chapter 23 Contingency Tables 

(b) Using Equation 23.7 (Equation 23.1 could also be used, with the same result, 
A A 

if f;j - f;j is replaced by I f;j - f;j I - 0.5), the chi-square with the Yates 
correction for continuity is 

,0 ~ n (lfll'" - ''''"I -~)' 
R.R2C•C2 

v = 1 

X5.05 •• = 3.841. 

Therefore. reject Ho. 

[ 320]2 = 30 I( 12)(9) - (7)(2)1 -

(19)(11)(14)(16) 
= 3.999. 

0.025 < P < 0.05 [P = 0.046] 

(c) Using Equation 23.7b. the chi-square with the Cochran-Haber correction for; 
continuity is calculated as follows: . 

mt = R2 = 11. m2 = Ct = 14 
A 

/ = m.m2/n = (11)(14)/30 = 5.13 
A 

/ = hi = 2; d = If - /1 = 12 - 5.131 = 3.13 
A 

2/ = 2( 5.13) = 10.26; 
A 

As/ < 2/.D = 3.0 
.2 _ n3D2 
XH -

Rt R2C•C2 

= (30)\3.0)2 
(19)(11)(14)(16) 

= 5.191. 

As X5.05.1 = 3.841, reject Ho. 

0.01 < P < 0.025 [P = 0.023] 

Thus. prior to collecting the data, the number of snails of each species was decided 
upon (as 19 and 11), and the total numbers of snails dislodged by the current 
(16 and 14) were specified. Other illustrations of 2 x 2 tables with both margins 
fixed are provided in Examples 24.20 and 24.21 and Exercises 24.20 and 24.21. The 
statistical analysis demonstrated in Example 23.4b will be discussed in Section 23.3d 

(d) Analysis or 2 x 2 Contingency Tables. Contingency-table hypotheses may be 
examined by chi-square. as sho!n in Section 23.1, calculating ~ with Equation 23.1 
with the expected frequencies (f;j) obtained via Equation 23.4. However, for a 2 X 2 
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table, the following is a simpler computation,* for it does not require that the expected 
~requencies ~e determined, and it avoids rounding error associated with calculating 
f;j and f;j - f;j: 

;- = n(fll/z2 - fl2l21 )2. 
RI R2CI C2 

(23.6) 

As with goodness of fit (Section 22.1), chi-square values that are calculated come 
from a discrete distribution, but they are to be compared (such as by Appendix Table 
B.l) to chi-square values from a continuous distribution. Thus, statisticians may 
recommend that a correction for continuity be applied when v = 1 (which is the case 
when dealing with a 2 x 2 contingency table). More than 20 continuity corrections 
have been proposed; the most commonly considered is the Yates (1934) correctiont 

(as was used in Section 22.2,..for goodness of fit);. which is the modification of Equation 
23.1 by substituting If;j - f;j I - 0.5 for f;j - f;j or, equivalently, using the following 
instead of Equation 23.6: 

(23.7) 

This is the calculation employed in Example 23.4b. and its use approximates the 
two-tailed Fisher exact test discussed in Section 24.16b. 

Haber (1980) showed that there are other correction methods that often perform 
better than that of Yates, which tends to be conservative (in that it has a probability 
less than a of a Type I error and has lower power than a nonconservative test). He 
proposed using a procedure based on a principle expounded by Cochran (1942, 1952). 
In the Cochran-Haber method (demonstrated in Example 23.4c), the smallest of the 
four expected frequencies is determined; using Equation 23.4, this frequency is 

j = mlm2, 
n 

(23.7a) 

where ml is the smallest of the four marginal totals and m2 is the smaller of the 
two totals in the other margin. In Example 23.4, the smallest marginal total, ml, is 
11, which is a row total; and m2 is, therefore, the smaller of the two colu"!n totals, 
namely 14. Then the absolute difference between thls expected frequency (f) and its 
corresponding observed frequency (f) is d = If - fl; and 

,.. 
• Iff :s 2f, then define D = the largest multiple of 0.5 that is <d; and 

,.. 
• Iff > 2f, then define D = d - 0.5. 

The chi-square with the Cochran-Haber correction is 

2 n3D2 
XH = 

RI R2CI C2 
(23.7b) 

*Richardson (1994) attributed Equation 23.6 to Fisher (1922). Upton (1982) reported a "slight'· 
improvement if n - I is employed in place of n. 

tpearson (1947) points out that Yates's use of this correction for chi-square analysis was 
employed as early as 1921 for other statistical purposes. The continuity correction for 2 x 2 tables 
should not be used in the very rare instances that its inclusion increases. instead of decreases, the 
numerator (that is. when If I I - 1221 < nI2). 
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If f > 2j. then the Cochran-Haber-corrected chi-square (X~) is the same as the 
chi-square with the Yates correction (X~). Also. if either CI = C2 or R(/ = R2.then ., ., 
XII = XC' 

A great deal has been written about 2 x 2 contingency-table testing.* For example. 
it has been reported that the power of chi-square testing increases with larger n 
or with more similarity between the two totals in a margin. and that the difference 
between results using chi-square and a continuity-corrected chi-square is less for large 
n. 

In addition, many authors have reported that. for 2 X 2 tables having no fixed 
margin or only one fixed margin, Xz. provides a test that is very, very conserva­
tive (that is, the probability of a Type I error is far less than that indicated by 
referring to the theoretical chi-square distribution-such as in Appendix Table 
B.1), with relatively low power: and they recommend that it should not be used 
for such sets of data. The use of X2 instead of Xz. will occasionally result in a 
test that is somewhat liberal (i.e .. the probability of a Type I error is a little 
greater than that indicated by the chi-square distribution. though it will typically 
be closer to the latter distribution than Xz. will be): this liberalism is more pro­
nounced when the two row totals are very different or the two column totals are very 
different. 

For many decades there has been debate and disagreement over the appropriate 
statistical procedure for each of the aforementioned three sampling models for data 
in a 2 x 2 contingency table. with arguments presented on both theoretical and 
empirical grounds. There is still no consensus, and some believe there never will be,t 
but there is significant agreement on the following: 

• If the 2 x 2 table has no margin fixed or only one margin fixed, then use ;. 
This is demonstrated in Examples 23.2b and 23.3b . 

• If the 2 x 2 table has both margins fixed. then usc Xz. or X~, as demonstrated 
in Example 23.4, or use the Fisher exact test of Section 24.16. As noted after 
Equation 23.7b, there are situations in which Xz. and X~ arc equal: otherwise, 
XlI is routinely a better approximation of the Fisher exact test and is preferred ., 
to Xc' 

Computer software may present X2 or a continuity-corrected X~, or both, and the user 
must decide which one of these two test statistics to use (such as by the guidelines 
just given). 

"This paragraph and the next are a summary of the findings in many publications. such as those 
cited in the rootnote that follows this one. 

tThose promoting the analysis of any of Ihe three models by using chi-square with the Yates 
correction for continuity (Xz. ). or the Fisher exact test or Section 24.1 fl. include Camilli ( I 99(), COl( 
(IIJH4), Fisher (I1J35). Kendall and Stuan ( 1979). Manin Andres (1991 ), Mehta and Hilton ( 19IJ3), 

Upton (11J\)2). and Yates (19X4). Among those concluding Ihat X;' should not he employed for 
all three models are Barnard (1947. 11J7Y): Berkson ( I Y7H): Camilli and Hopkins (llJ7H): Conover 
(1974): D'Agostino. Chase. and Belanger (19XX): Garside and Mack (I Y76): Grizzle (1%7): Haber 
(l9RO, 19H2. IIJR7, 19YO): Haviland (19IJO): Kempthornc (1971J): Kroll (19R9): Liddell (1976): Parshall 
and Kromrcy (199fl): Pearson (1947): Plackell (1964): Richardson (1990. IlJ94): Starmer, Grizzle, 
and Sen (1974): Storer and Kim (1990): and Upton ( 19H2). Other procedures for testing 2 x 2 tahles 
have been proposed (e.g .. see Martin Andres and Silva MaiO (1994): Martin Andres and Tapia 
Garcia (2(XI4): and Overall. Rhoades. and Starbuck (I YX7». 
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(e) One-Tailed Testing. The preceding hypotheses are two-tailed, which is the 
typical situation. However, one-tailed hypotheses (where a one-tailed hypothesis is 
specified before data are collected) are possible for data in 2 x 2 tables. In Example 
23.2, the hypotheses could have been stated as follows: 

Ho: In the sampled popUlation, the proportion of left-handed children is the 
same or greater for boys compared to girls. 

HA : In the sampled population. the proportion of left-handed children is less 
for boys than for girls. 

If the direction of the difference in the sample is that indicated in the null hypothesis 
(Le., if fll/ CI ~ f12/ C2).then Ho cannot be rejected and the one-tailed analysis 
proceeds no further. However, if the direction of the difference in the sample is not 
in the direction of the null hypothesis (as in Example 23.2. where 6/34 < 12/36), 
then it can be asked whether that difference is likely to indicate a difference in that 
direction in the population. In this example, one-tailed hypotheses could also have 
been stated as follows: 

Ho: In the sampled population. the proportion of boys is the same or less for 
left-handed compared to right-handed children. 

H A: In the sampled population. the proportion of boys is greater for left-handed 
than for right-handed children. 

This would ask whether the sample proportion fl J/ RI (namely, 6/18) resulted from a 
population proportion less than or equal to the population proportion estimated by 
121/ R2 (Le .. 28/52). 

Consistent with the preceding recommendations for two-tailed hypothesis testing. 
the following can be advised for one-tailed testing: For 2 X 2 tables in which 
no margin or only one margin is fixed, test by using one-half of the chi-square 
probability (for example. employing the critical value X~.III.1 for testing at a = 0.05), 
by dividing the resultant P by 2. or by using one-tailed values for Z in the normal 
approximation of Section 24.10. For tables with two fixed margins, the Fisher exact 
test of Section 24.16 is the preferred method of analysis, though if RI = R2 or 
CI = C2. we may calculate X~ or. preferably. X~. and proceed as indicated previously 
for situations with one fixed margin. If neither RI = R2 nor CI = C2, using X~ or 
xz. yields a very poor approximation to the one-tailed Fisher exact test and is not 
recommended. 

CONTINGENCY TABLES WITH SMALL FREQUENCIES 

Section 22.5 discussed bias in chi-square goodness-oC-fit testing when expected 
frequencies are "too small." As with goodness-of-fit testing, for a long time many 
statisticians (e.g., Fisher. 1925b) advised that chi-square analysis of contingency tables 
be employed only if each of the expected frequencies was at least 5.0-even after 
there was evidence that such analyses worked well with smaller frequencies (e.g., 
Cochran. 1952, 1954). The review and empirical analysis of Roscoe and Byars (1971) 
offer more useful guidelines. Although smaller sample sizes are likely to work well, a 
secure practice is to have the mean expected frequency be at least 6.0 when testing 
with a as small as 0.05. and at least 10.0 for a = 0.01. Requiring an average e~pected 
frequency of at least 6 is typically less restrictive than stipulating that each {;j be at 
least 5. Since the mean expected frequency is n/ rc, the minimum sample size for 
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testing at the 0.05 significance level should he at least n = 6rc = 6( 2)( 4) = 48 for 
a 2 x 4 contingency table (such as in Example 23.1) and at least 6( 2)( 2) = 24 for a 
2 x 2 tahle (as in Exercises 23.2. 23.3. 23.4. and 23.5). 

If any of the expected frequencies are smaller thap recommended. then one or 
more rows or columns containing an offensiv:ly low Jij might be discarded. or rows 

or columns might be comhined to result in Ji/s of sufficient magnitude. However, 
such practices are not routinely advised. for they disregard information that can 
he important to the hypothesis testing. When possible. it is better to repeat the 
experiment with a sufliciently large 11 to ensure large enough expected frequencies. 
Some propose employing the log-likelihood ratio of Section 23.7 as a test less affected 
than chi-square hy low frequencies. hut this is not universally suggested. If both 
margins arc fixed in a 2 x 2 contingency table. then the Fisher exact test of Section 
24.16 is highly recommended when frequencies are small. 

23.5 HETEROGENEITY TESTING OF 2 x 2 TABLES 

Testing for heterogeneity of replicate samples in goodness-of-fit analysis was discussed 
in Section 22.6. An analogous procedure may be used with contingency-tahle data. as 
demonstrated in Example 23.5. Here. data set I is the data from Example 23.2. and 
each of the three other sets of data is a sample obtained by the same data-collection 
procedure for the purpose of testing the same hypothesis. Heterogeneity testing asks 
whether all four of the data sets are likely to have come from the same population of 
data. In this example, a calculation of X2 was done. as in Section 23.3a, for each of the 
four contingency tahles: and 110 was not rejected for any of the data sets. This failure 
to reject Ho might reflect low power of the test due to small sample sizes. so it would 
he helpful to use the heterogeneity test to conclude whether it would he reasonable 
to comhine the four sets of data and perform a more powerful test of Ho with the 
pooled numher of data. 

EXAMPLE 23.5 A Heterogeneity Chi-Square Analysis of Four 2 x 2 Con-
tingency Tables, Where Data Set 1 Is That of Example 23.2 

(a) Ho: In the sampled popUlation, handedness is independent of sex. 

H A: In the sampled population. handedness is not independent of sex. 

a = 0.05 

Data Set t 

From the data of Example 23.2. X2 = 2.2523, OF = 1. 0.10 < P < 0.25. 

Data Set 2 

Boys Girls Total 

Left-handed 4 
Right-hallded 25 

Total 29 

7 
13 

20 

11 
38 

49 X2 = 3.0578. OF = 1. 0.05 < P < 0.10 
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Data Set 3 

Boys Girls Total 

Left-handed 7 10 17 
Right-handed 27 18 45 

Total 34 28 62 X2 = 1.7653. DF = 1. 0.10 < P < 0.25 

Data Set 4 

Boys Girls Towl 

Left-handed 4 7 11 
Right-handed 22 14 36 

Total 26 21 47 X2 = 2.0877. DF= 1, n.1O < P < 0.25 

(b) Hn: The four samples are homogeneous. 
H A: The four samples arc heterogeneous. 

Data Sets 1-4 Pooled 

Boys Girls Total 

Left-handed 21 36 57 X2 = 8.9505 
Right-handed 102 69 171 DF = 1 

Total 123 105 228 

X2 for Data Set 1: 2.2523 DF = 1 
X2 for Data Set 2: 3.0578 DF = 1 
X2 for Data Set 3: 1.7653 DF = 1 
X2 for Data Set 4: 2.0877 DF = 1 

Total chi-square: 9.1631 DF = 4 
Chi-square of pooIed data: 8.9505 DF = 1 

Heterogeneity chi-square 0.2126 DF = 3 

For heterogeneity testing (using X2 = 0.2126): 

X~.05.3 = 7.815. 
Therefore, do not reject H". 

0.975 < P < 0.99 lP = 0.981 

(c) H,,: In the sampled population. handedness is independent of sex. 
HA : In the sampled population. handedness is not independent of sex. 

ex = 0.05 
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Data Sets 1-4 Pooled 

Boys Girls Total 

Left-handed 21 36 57 
Right-handed 102 69 171 

Total 123 105 228 

') 

xii.o:).! = 3.H41 

X2 = 8.9505: therefore. reject Ho. 

0.001 < P < 0.005 [P = 0.002HI 

In the test for heterogeneity. chi-square is calculated for each of the samples; 
these four separate X2 values are shown in Example 23.5a. along with the X2 for the 
contingency table formed by the four sets of data combined. The X2 values for the 
four separate contingency tables are them summed (to obtain what may be called a 
total chi-square. which is 9.1631). and the degrees of freedom for the four tables are 
also summed (to obtain a total OF. which is 4), as shown in Example 23.5b. The test 
for heterogeneity employs a chi-square value that is the absolute difference between 
the total chi-square and the chi-square from the table of combined data, with degrees 
of freedom that are the difference between the total degrees of freedom and the 
degrees of freedom from the table of combined data. In the present example. the 
heterogeneity X2 is 0.2126. with 3 degrees of freedom. That chi-square is associated 
with a probability much greater than 0.05. so Ho is not rejected and it is concluded 
that the data of the four samples may be combined. 

Example 23.5c considers the contingency table formed by combining the data of 
all four of the original tables and tests the same hypothesis of independence that was 
tested for each of the original tables. When the heterogeneity test fails to reject Ho, 
pooling of the data is generally desirable because it allows contingency-table analysis 
with a larger n. 

Heterogeneity testing with 2 x 2 tables is performed without the chi-square 
correction for continuity. except when both margins are fixed. in which case rc 
is used for thl.! combined data while X2 is used for all other steps in the analysis 
(Cochran. 1942; Lancaster. 1949). The heterogeneity test may also be performed for 
contingency tables with more than two rows or columns. To test for heterogeneity, 
the log-likelihood ratio. G (Section 23.7). may be used instead of X2. 

23.6 SUBDIVIDING CONTINGENCY TABLES 

In Example 23.1. the analysis of a 2 x 4 contingency table. it was concluded that 
there was a significant difference in human hair-color frequencies between males and 
females. Expressing the percent males and percent females in each column. as in 
Example 23.6a. and examining Figures 23.1 and 23.2 shows that the proportion of 
males in the blond column is prominently less than in the other columns. (Examining 
the data in this fashion can be helpful. although frequencies. not proportions. are 
used for the hypothesis test.) 
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EXAMPLE 23.6a The Data of Example 23.1, Where for Each Hair Color 
the Percent Males and Percent Females Are Indicated 

Hair color 

Sex Black Brown Blond Red Total 

Male 32 43 16 l) 100 
(37%) (40%) (20%) (36%) 

Female 55 65 64 16 200 
(63%) (60%) (XO%) (64%) 

Total 87 lOX 80 25 300 

In Example 23.1. the null hypothesis that the four hair colors are independent 
of sex was rejected. 

Thus. it might be suspected that the significant X2 calculated in Example 23.1 was 
due largely to the frequencies in column 3 of the table. To pursue that supposition. 
the data in column 3 may be momentarily ignored and the remaining 2 X 3 table 
considered: this is done in Example 23.6b. The nonsignificant X2 for this table 
supports the null hypothesis that these three hair colors are independent of sex in 
the population from which the sample came. Then, in Example 23.6c, a 2 x 2 table is 
formed by considering blond versus all other hair colors combined. For this table, the 
null hypothesis of independence is rejected. 

EXAMPLE 23.6b The 2 X 3 Conting-:ncy Table Formed from Columns 1, 
2, and 4 of the Original 2 X 4 Table. f ij Values for the Cells of the 2 X 3 
Table Are Shown in Parentheses 

Ho: The occurrence of black. brown, and red hair is independent of sex. 
HA: The occurrence of black, brown. and red hair is not independent of 

sex. 

ex = 0.05 

Hair color 

Sex Black Brown Red Total 

Male 32 43 l) 84 
(33.2182) (41.2364) (9.5455) 

Female 55 65 16 136 
(53.7818) (66.7636) (15.4545) 

Total 87 108 25 220 
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X2 = 0.245 with OF = 2 

X5.052 = 5.991 

Therefore. do not reject Ho. 

0.75 < P < 0.90 [P = 0.88] 

EXAMPLE 23.6c The 2 x 2 Contingency Table Formed by Combining 
Columns 1, 2, and 4 of the Original Table 

Ho: Occurrence of blond and non blond hair color is independent of sex. 
HA : Occurrence of blond and nonblond hair color is not independent of 

sex. 

a = 0.05 

Hair color 

Sex Blond NOllblond Total 

X2 = 8.727 

DF = 1 

Male 
Female 

Total 

X5.05.1 = 3.841 

Therefore, reject Ho. 

16 
64 

80 

84 
136 

220 

100 
200 

300 

0.001 < P < 0.005 [P = 0.0036] 

By the described series of subdivisions and column combinations of the original 
contingency table, we see evidence suggesting that, among the four hair colors in 
the population. blond occurs between the sexes with relative frequencies different 
from those of the other colors. However, it is not strictly proper to test statistical 
hypotheses developed after examining the data to be tested. Therefore. the analysis 
of a subdivided contingency table should be considered only as a guide to developing 
hypotheses. Hypotheses suggested by this analysis then can be tested by obtaining 
a new set of data from the population of interest and stating those hypotheses in 
advance of the testing. 

23.7 THE LOG-LIKELIHOOD RATIO FOR CONTINGENCY TABLES 

The log-likelihood ratio was introduced in Section 22.7, where the G statistic (some­
times called G2) was presented as an alternative to chi-square for goodness-of-fit 
testing. The G test may also be applied to contingency tables (Neyman and Pearson, . 
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1928a. 1928b; Wilks. 1935). where 

G = 2 [~~J;j In (.~~ ) ]. 
I J [" 

(23.8) 

which. without the necessity of calculating expected frequencies. may readily be 
computed as 

G = 2 ~ ~J;j InJ;j - ~ Ri In Ri - ~ Cj In (j + n In n]. (23.9) 
I , I J 

If common logarithms (denoted by "log") are used instead of natural logarithms 
(indicatcd as "In "). then use 4.60517 instcad of 2 prior to the left bracket. Because Gis 
approximately distributed as X2• Appendix Table B.I may be used with (r - 1)( c - 1) 
degrees of freedom. In Example 23.7, the contingency table of Example 23.1 is 
analyzed using the G statistic, with very similar results. 

EXAMPLE 23.7 
pie 23.1 

The G Test for the Contingency Table Data of Exam-

Ho: Hair color is independent of sex. 
H A: Hair color is not independent of sex. 

ex = 0.05 

Hair color 

Sex Black Brown Blond Red Total 

Male 32 
Female 55 

Total 87 

43 
65 

108 

16 
64 

80 

9 100 
16 200 

25 300 

G = 4.60517 [LLJ;jlog[,j - LR;logR; - LCjlogCj + nlogn] 

= 4.60517[(32)(1.50515) + (43)(1.63347) + (16)(1.20412) + (9)(0.95424) 

+(55)(1.74036) + (65)(1.81291) + (64)(1.80618) + (16)(1.20412) 

- (100)(2.00000) - (200)(2.30103) - (87)(1.93952) 

- (108)( 2.03342) - (80)( 1.9(309) - (25)( 1.39794) + (300) (2.477 I 2 )] 

= 4.60517(2.06518) 

= 9.510 with DF = 3 

X~.05.3 = 7.815 

Therefore, reject Ho. 

n.ol < P < 0.025 [P = 0.023] 
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In the case of a 2 x 2 table, the Yates correction for Acontinuity (see Sections 23.31 
and 23.3d) is applied by making each /;j 0.5 closer to /;j. This may be accomplishee 
(without calculating expected frequencies) as follows: If 111122 - IIU21 is negative 
add 0.5 to III and 122 and subtract 0.5 from 112 and 121; if 111h2 - 11U21 is positive 
subtract 0.5 from III and 122 and add 0.5 to 112 and 121; then Equation 23.8 or 23.9 i 
applied using these modified values of 111,/12, 121, and 122. 

Williams (1976) recommended that G be used in preference to X2 wheneveJ 
A A I 

I/;j - /;j I ~ /;j for any cell. Both X2 and G commonly result in the same conclusion fOl 
the hypothesis test, especially when n is large. When they do not, some statistici~ 
favor employing G, and its use is found in some research reports and computd 
software. However, many others (e.g .• Agresti, 2002: 24, 396; Agresti and Yang, 1987j 
Berry and Mielke, 1988; Hosmane, 1986; Hutchinson, 1979; Koehler, 1986; Lam~ 
1978; Margolin and Light. 1974; Stelzl, 2000; Upton, 1982) have concluded that the r 
procedure is preferable to G; and generally it more closely refers to the probability 
of a Type I error. 

23.8 MULTIDIMENSIONAL CONTINGENCY TABLES 

Thus far, this chapter has considered two-dimensional contingency tables (tables 
with rows and columns as the two dimensions), where each of the two dimen­
sions represents a nominal-scale variable. However. categorical data may also 
be collected and tabulated with respect to three or more nominal-scale vari­
ables, resulting in what are called multidimensional contingency tables-that is, 
tables with three or more dimensions (e.g., see Christensen, 1990; Everitt, 1992: 
Chapter 4; Fienberg, 1970, 1980; Goodman, 1970; Simonoff, 2003: Chapter 8). 
An example would be data from a study similar to that in Example 23.1, but 
where eye color is a third variable-in addition to the variables hair color 
and sex. 

As the number of dimensions increases, so does the complexity of the analysis, 
and various interactions of variables are potentially of interest. Multidimensional 
contingency tables may be analyzed by extensions of the X2 and G testing dis­
cussed earlier in this chapter, as will be indicated in this section. Computer-program 
libraries often include provision for the analysis of such tables, including by 
utilizing what are known as log-linear models,* a large body of statistical pro­
cedures (e.g., see Everitt, 1992: Chapter 5; Fienberg, 1970. 1980; Howell. 2001: 
Chapter 17; Kennedy, 1992; Knoke and Burke, 1980; Tabachnik and Fidell, 2001: 
Chapter 7). 

Figure 23.3 shows a three-dimensional contingency table. The three "rows" are 
species, the four "columns" are geographic locations, and the two "tiers" (or "layers") 
are presence and absence of a disease. If a sample is obtained containing individuals 
of these species. from these locations, and with and without the disease in question, 
then observed frequencies can be recorded in the 24 cells of this 3 x 4 x 2 contingency 
table. W6 shall refer to the observed frequency in row i, column j, and tier I as fiji. 
We shall refer to the number of rows. columns, and tiers as r, C, and t, respectively. 
The sum of the frequencies in row i will be designated Ri, the sum in column j as Cb 
and the sum in tier I as T,. Friendly (1994, 1999), Hartigan and Kleiner (1981, 1984), 

"'Log-linear models are mathematical representations that also underlie analysis of variance 
(Chapters 10, 12. 14. 15. and 16) and multiple regression (Chapter 20). The term log-linear model 
was introduced in 1969 by Y. M. M. Bishop and S. E. Fienberg (David. 1995). 
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FIGURE 23.3: A three-dimensional contingency table, where the three rows are species, the four columns 
are locations, and the two tiers are occurrence of a disease. An observed frequency, fiji, will be recorded 
in each combination of row, column, and tier. 

and Simonoff (2003: 329) discuss mosaic displays for contingency tables with more 
than two dimensions, and such graphical presentations can make multidimensional 
contingency table data easier to visualize and interpret than if they are presented 
only in tabular format. 

Example 23.8 presents a 2 x 2 x 2 contingency table where data (fiji) arc collected 
as described previously. but only for two species and two locations. Note that 
throughout the following discussions the sum of the expected frequencies for a given 
row, column. or tier equals the sum of the observed frequencies for that row. column. 
or tier. 

EXAMPLE 23.8 
gencyTable 

Test for Mutual Independence in a 2 x 2 x 2 Contin-

Hn: Disease occurrence. species. and location are all mutually independent in the 
population samplcd. 

HA : Disease occurrence. species, and location are not all mutually independent in 
the population sampled. 

The observed frcqucncies (/;jI): 

Species I 
Species 2 

Disease 
totals (t = 2): 
Location 
totals: (c = 2): 

Disease present 

Location I Location 2 

44 
28 

12 
22 

Disease absent Species totals 

Location I Location 2 (r = 2) 

3X 
20 

T2 = 86 

10 
18 

Gralld total: 

11 = 192 
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The expected frequencies (!;jl): 

Disease present Disease absent 

Location 1 Location 2 Location I Location 2 Species totals 

Species 1 38.8759 
Species 2 32.8950 

18.5408 
15.6884 

31.5408 
26.6884 

15.0425 
12.7283 

Disease 
totals: Grand total: 
Location 
totals: n = 192 

2 _ (44 - 38.8759 )2 + (12 - 18.5408 )2 
X - 38.8759 18.5408 

+ (38 - 31.5408f 
31.5408 

+ (10 - 15.0425)2 + (28 - 32.8950f (22 - 15.6884)2 
+ 

15.0425 32.8950 15.6884 

(20 - 26.6884)2 (18 - 12.7283)2 
+ + 

26.6884 12.7283 

= 0.6754 + 2.3075 + 1.3228 + 1.6903 + 0.7284 + 2.5392 

+ 1.6762 + 2.1834 

= 13.123 

v = rct - r - c - t + 2 = (2)( 2)( 2 ) - 2 - 2 - 2 + 2 = 4 

~.05.4 = 9.488 

Reject Ho. 
0.01 < P < 0.025 [P = 0.011] 

(a) Mutual Independence. We can test more than one null hypothesis using mul­
tidimensiona' contingency-table data. An overall kind of hypothesis is that which 
states mutual independence among all the variables. Another way of expressing this 
Ho is that there are no interactions (either three-way or two-way) among any of the 
variables. For this hypothesis, the expected frequency in row i, column j, and tier 
I is 

(23.10) 

where n is the total of all the frequencies in the entire contingency table. 



Section 23.8 Multidimensional Contingency Tables 513 

null hypothesis is tested by computing 

~ = ± ± ± ({;jl -: Ajt}2, 
i=lj=I/=1 /;jl 

(23.11) 

which is a simple extension of the chi-square calculation for a two-dimensional table 
(by Equation 23.1). The degrees of freedom for this test are the sums of the degrees 
of freedom for all interactions: 

II = (r - l)(c -1)(t - 1) + (r - l)(c - 1) + (r - l)(e - I) + (c - 1)(t -1), 
(23.12) 

which is equivalent to 
II = ret - r - e - t + 2. (23.13) 

(b) Partial Independence. If the preceding null hypothesis is not rejected, then we 
conclude that all three variables are mutually independent and the analysis proceeds 
no further. If, however. Ho is rejected, then we may test further to conclude between 
which variables dependencies and independencies exist. For example, we may test 
whether one of the three variables is independent of the other two, a situation known 
as partial independence. * 

For the hypothesis of rows being independent of columns and tiers, we need total 
frequencies for rows and total frequencies for combinations of columns and tiers. 
Designating the total frequency in columnj and tier I as (CT)jl. expected frequencies 
are calculated as 

A Ri( CT)jl 
/;jl = , 

n 
(23.14) 

and Equation 23.11 is used with degrees of freedom 

II=(r-l)(e-l)(t t) + (r - I)(c - 1) + (r - l)(t - 1), (23.15) 

which is equivalent to 
II = ret - et - r + 1. (23.16) 

For the null hypothesis of columns being independent of rows and tiers, we com­
pute expected frequencies using column totals. Cj, and the totals for row and tier 
combinations, (RT)i/: 

A Cj(RT)if 
{;jl = , 

n 
(23.17) 

and 
II = ret - rt - e + 1. (23.18) 

And, for the null hypothesis of tiers being independent of rows and columns, we use 
tier totals, TI, and the totals for row and column combinations, (RC)ij: 

A TI(RC);-
{;jl = 1; 

n 
(23.19) 

II = ret - re - t + 1. (23.20) 

* A different hypothesis is that of conditional independence. where two of the variables are said 
to be independent in each level of the third (but each may have dependence on the third). This is 
discussed in the references cited at the beginning of this section. 
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In Example 23.9, all three pairs of hypotheses for partial independence are tested. In 
one of the three (the last). Ho is not rejected: thus we conclude that presence of disease 
is independent of species and location. However, the hypothesis test of Example 23.8 
concluded that all three variables arc not independent of each other. Therefore, we 
suspect that species and location are not independent. The independence of these 
two variables may be tested using a two-dimensional contingency table. as described 
earlier. in Section 23.3. and demonstrated in Example 23.10. In the present case. the 
species-location interaction is tested by way of a 2 x 2 contingency table, and we 
conclude that these two factors are not independent (i.e., species occurrence depends 
on geographic location). 

In general, hypotheses to he tested should be stated before the data are collected. 
But the hypotheses proposed in Example 23.10 were suggested after the data were 
examined. Therefore, instead of accepting the present conclusion of the analysis in 
Example 23.10. such a conclusion should he reached by testing this pair of hypotheses 
upon obtaining a new set of data from the population of interest and stating the 
hypotheses in advance of the testing. 

EXAMPLE 23.9 Test for Partial Independence in a 2 x 2 x 2 Contingency 
Table. As the Ho of Overall Independence Was Rejected in Example 23.8, We 
May Test the Following Three Pairs of Hypotheses 

Ho: Species is independent of location and disease. 
HA: Species is not independent of location and disease. 

~ 

The expected frequencies (/;j1): 

Disease present Disease absent 

Location I Location 2 Location I Location 2 Species totals 

Species I 39.0000 18.4167 31.4167 15.1667 RI = 104 
Species 2 33.0000 15.5833 26.5833 12.8333 R2 = 88 

Location and Grand total: 
disease totals: ( CT)II ( CT)12 (CThl (CTh2 n = 192 

=72 = 34 = 58 = 28 

, _ (44 - 39.00(0)2 + (12 - 18.4167)2 + (38 - 31.4167)2 
X- - 39.0000 18.4167 31.4167 

+ ... + (18 - 12.8333)2 
12.8333 

= \0.6410 + 2.2357 + 1.3795 

\ + 1.6303 + 2.0801 

+ 1.7601 + 0.7576 + 2.6422 

= 13.126 

" = ret - ct - r + 1 = (2)(2)(2) - (2)(2) - 2 + 1 = 3 
X5.0S_1 = 7.815 
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Reject Ho. Species is not independent of location and presence of disease. 

0.005 < P < 0.001 [P = 0.0044] 

H(): Location is independent of species and disease. 

HA: Location is not independent of species and disease. 
A 

The expected frequencies (!;jI): 

Disease present Disease absent 

Species I Species 2 Species I Species 2 

Location I 37.91677 33.8542 32.5000 25.7292 
Location 2 18.0833 16.1458 15.5000 12.2708 

Species and 
disease totals: (RT)II (RT)12 (RThl (RTh2 

= 56 = 50 = 48 = 38 

Location totals 

C I = 130 
C2 = 62 

Grand total: 
n = 192 

¥ = (44 - 37.9167)2 + (28 - 33.8542)2 + ... + (18 - 12.2708)2 
37.9167 33.8542 12.2708 

= 0.9760 + 1.0123 + 0.9308 + 1.2757 + 2.0464 + 2.1226 

+ 1.9516 + 2.6749 

= 12.990 • 

v = ret - rt - c + 1 = (2)( 2 )( 2) - (2)( 2) - 2 + 1 = 3 

X~.05.3 = 7.815 

Reject Ho. Location is not independent of species and presence of disease. 

0.001 < P < 0.005 [P = 0.0047] 

Ho: Presence of disease is independent of species and location. 

HA : Presence of disease is not independent of species and location. 
A 

The expected frequencies (!;jl): 

Species 1 Species 2 

Lo;;ation 1 Location 2 Location I Location 2 Disease totals 

Disease present 745.2708 12.1458 
Disease absent 36.7292 9.8542 

Species and 
location totals: ( RC) II 

= 82 
(RC)12 

= 22 

26.5000 
21.5000 

(RChl 

= 48 

22.0833 Tl = 106 
17.9167 T2 = 86 

Grand total: 
(RCh2 n = 192 

=40 
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2 _ (44 - 45.2708)2 + (12 - 12.145S)Z + ... + (IS - 17.9167)2 
X - 45.2708 12.1458 17.9167 

= 0.0357 + O.OOIS + 0.OS49 + 0.0003 + 0.0440 + 0.0022 

+ 0.1047 + 0.0004 

= 0.274 

v = ret - re - t + 1 = (2)( 2 )( 2) - (2)( 2) - 2 + 1 = 3 

X~.05.3 = 7.815 
Do not reject Ho. 

0.95 < P < 0.975 [P = 0.96] 

EXAMPLE 23.10 Test for Independence of Two Variables. Following Tests 
for Partial Dependence 

The hypothesis test of Example 23.8 concluded that all three variables are not 
mutually independent. while the last test in Example 23.9 concluded that presence 
of disease is independent of species and location. Therefore. it is desirable (and 
permissible) to test the following two-dimensional contingency table: 

Ho: Species occurrence is independent of location. 

H A: Species occurrence is not indcpendcnt of location. 

Location J Location 2 Total 

X2 = 12.874 

Species I 
Species 2 

Total 

82 
48 

130 

22 
40 

62 

v = (r - l)(e - 1) = 1 

X5.05.1 = 3.841 

Reject Ho. 
P < 0.001 [P = 0.000331 

/ 

104 
88 

192 

(c) The Log-Likelihood Ratio. The log-likelihood ratio of Section 23.7 can be 
expanded to contingency tables with more than two dimensions. While some authors 
have chosen this procedure over chi-square testing and it is found in some statistical 
computer packages. others (e.g .• Haber. 1984; Hosmane. 1987; Koehler. 1986; Larntz, 
1978; Rudas. 1986; and Stelz!. 2000) have concluded that X2 is preferable. With X2 in 
contrast to G. the probability of a Type 1 error is generally closer to a. 
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EXERCISES 

3.1. Consider the following data for the abundance of 
a certain species of bird. 
(a) Using chi-square. test the null hypothesis that 

the ratio of numbers of males to females was 
the same in all four seasons. 

(b) Apply the G test to that hypothesis. 

Sex Spring Summer Fall Winter 

Males 
Females 

163 
86 

135 
77 

71 
40 

43 
38 

U. The following data are frequencies of skunks found 
with and without rabies in two different geographic 
areas. 
(a) Using chi-square, test the null hypothesis that 

the incidence of rabies in skunks is the same 
in both areas. 

(b) Apply the G test to that hypothesis. 

Area With rabies Without rabies 

E 
W 

14 
12 

29 
38 

i.3. Data were collected as in Exercise 23.2, but 
with the additional tabulation of the sex of 
each skunk recorded, as follows. Test for mutual 

independence; and. if H" is rejected, test for partial 
independence. 

With rabies 

Area Male Female 

E 
W 

42 
84 

33 
51 

Without rabies 

Male Female 

55 
34 

63 
48 

23.4. A sample of 150 was obtained of men with each of 
three types of cancer. and the following data are 
the frequencies of blood types for the men. 
(a) Using chi-square. test the null hypothesis that. 

in the sampled population. the frequency dis­
tribution of the three kinds of cancer is the 
same fo~en with each of the four blood 
types (wh' h is the same as testing the Ho that 
the freq ncy distribution of the four blood 
types is the same in men with each of the three 
kinds of cancer). 

(b) Apply the G test to the same hypothesis. 

Blood type 

Cancer type 0 A B AB Total 

Colon 61 65 18 6 RJ = 150 
Lung 69 57 15 9 R2 = 150 
Prostate 73 60 12 5 R3 = 150 
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This chapter will concentrate on nominal-scale data that come from a population with 
only two categories. As examples. members of a mammal litter might be classified as 
male or female. victims of a disease as dead or alive. trees in an area as "deciduous" or 
"evergreen." or progeny as color-blind or not color-blind. A nominal-scale variable 
having two categories is said to be ciic:/lOtomolis. Such variables have already been 
discussed in the context of goodness of fit (Chapter 22) and contingency tables 
(Chapter 23). 

The proportion of the population belonging to one of the two categories is denoted 
as p (here departing from the convention of using Grcck Icttcrs for population 
parameters). Therefore. the proportion of the population belonging to the second 
class is I - p. and the notation q = 1 - P is commonly employed. For example. if 
0.5 (i.e .. 50%) of a population were male, then we would know that 0.5 (Le., 1 - 0.5) 
of the population were female. and we could write p = 0.5 and q = 0.5; if 0.4 (Le .• 
40%) of a popUlation were male. then 0.6 (i.e .• 60%) of the population were female, 
and we could write p = 0.4 and q = 0.6. 

If we took a random sample of ten from a population where p = q = 0.5, then we 
might expect that the sample would consist of five ma1cs and five females. However, 
we should not be too surprised to find such a sample consisting of six ma1cs and four 
females. or four males and six fcma1cs, although neither of these combinations would 
be expected with as great a frequency as samples possessing the population sex ratio 
of 5 : 5. It would. in fact. be possible to obtain a sample of ten with nine males and 
one female. or even one consisting of all males. but the probabilities of such samples 
being encountered by random chance are relatively low. 
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If we were to obtain a large number of samples from the population under 
consideration, the frequency of samples consisting of no males, one male, two males, 
and so on would be described by the binomial distribwion (sometimes referred to as 
the "Bernoulli distribution"*). Let us now examine binomial probabilities. 

BINOMIAL PROBABILITIES 

Consider a population consisting of two categories, where p is the proportion of 
individuals in one of the categories and q = 1 - p is the proportion in the other. 
Then the probability of selecting at random from this population a member of the 
first category is p, and the probability of selecting a member of the second category 
is q.t 

For example, let us say we have a population of female and male animals, in 
proportions of p = 0.4 and q = 0.6, respectively, and we take a random sample of 
two individuals from the population. The probability of the first being a female is p 
(i.e .• 0.4) and the probability of the second being a female is also p. As the probability 
of two independent (i.e .• mutually exclusive) events both occurring is the product of 
the probabilities of the two separate events (Section 5.7), the probability of having 
two females in a sample of two is (p)(p) = p2 = 0.16; the probability of the sample 
of two consisting of two males is (q)( q) = q2 = 0.36. 

What is the probability of the sample of two consisting of one male and one 
female? This could occur by the first individual being a female and the second 
a male (with a probability of pq) or by the first being a male and the second a 
female (which would occur with a probability of qp). The probability of either of 
two mutually exclusive outcomes is the sum of the probabilities of each outcome 
(Section 5.6), so the probability of one female and one male in the sample is 
pq + qp = 2pq = 2( 0.4 ) (0.6) = 0.48. Note that 0.16 + 0.36 + 0.48 = 1.00. 

Now consider another sample from this population. one where n = 3. The prob­
ability of all three individuals being female is ppp = p3 = (0.4)3 = 0.064. The 
probability of two females and one male is ppq (for a sequence of C? ~ 0") + pqp 
(for C? 0" C?) + qpp (for 0" ~ C?), or 3p2q = 3(0.4)2(0.6) = 0.288. The probability 
of one female and two males is pqq (for ~ 0" 0") + qpq (for 0" ~ 0") + qqp (for 
0" o"~ ). or 3pq2 = 3( 0.4)( 0.6)2 = 0.432. And. finally. the probability of all three being 
males is qqq = q3 = (0.6)3 = 0.216. Note that p3 + 3p2q + 3pq2 + q3 = 0.064 
+ 0.288 + 0.432 + 0.216 = 1.000 (meaning thatthere is a 100% probability-that is, 
it is certain-that the three animals will be in one of these three combinations of sexes). 

If we performed the same exercise with n = 4. we would find that the probability of 
four females is p4 = (0.4)4 = 0.0256. the probability of three females (and one male) 
is 4p3q = 4(0.4)3(0.6) = 0.1536, the probability of two females is 6p2q2 = 0.3456, 

*The binomial formula in the following section was first described. in 1676. by English scientist­
mathematician Sir Isaac Newton (1642-1727), more than 10 years after he discovered it (Gullherg, 
1997: 776). Its first proof. for positive integer exponents. was given hy the Swiss mathematician 
Jacques (also known as Jacoh. Jakob. or James) Bernoulli (1654-1705). in a 1713 posthumous 
publication; thus. each observed event from a binomial distribution is sometimes called a Bernoulli 
trial. Jacques Bernoulli's nephew. Nicholas Bernoulli (1687 -1759). is given credit for editing that 
publication and writing a preface for it, hut Hald (1984) explains that in 1713 Nicholas also presented 
an improvement to his uncle's binomial theorem. David (1995) attributes the first use of the term 
binomial distributioll to G. U. Yule, in 1911. 

tThis assumes "sampling with replacement." That is, each individual in the sample is taken 
at random from the population and then is returned to the population before the next member 
of the sample is selected at random. Sampling without replacement is discussed in Section 24.2. If 
the population is very large compared to the size of the sample. then sampling with and without 
replacement are indistinguishable in practice. 
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the probability of one female is 4pq3 = 0.3456, and the probability of no females 
(i.e., all four are male) is q4 = 0.1296. (The sum of these five terms is 1.0000, a good 
arithmetic check.) 

If a random sample of size n is taken from a binomial population, then the 
probability of X individuals being in one category (and, therefore, n - X individuals 
in the second category) is 

(24.1) 

In this equation, pX q"-X refers to the probability of sample consisting of X items, 
each having a probability of p, and n - X items, each with probability q. The binomial 
coefficient. 

( n) n! 
X = X!(n - X)!' 

(24.2) 

is the number of ways X items of one kind can be arranged with n X items of a 
second kind. or. in other words, it is "ex, the number of possible combinations of n 
items divided into one group of X items and a second group of n - X items. (See 
Section 5.3 for a discussion of combinations and Equation 5.3 explaining the factorial 
notation, "!".) Therefore, Equation 24.1 can be written as 

P( X) = __ n_! __ px q"-x. 
X!(n - X)! 

(24.3) 

Thus, G)pX q"-X is the Xth term in the expansion of (p + q)". and Table 24.1 
shows this expansion for powers up through 6. Note that for any power, n, the sum 
of the two exponents in any term is n. Furthermore, the first term will always be pn, 
the second will always contain p,,-I q, the third will always contain p"-2q2, and so on, 
with the last term always being q". The sum of all the terms in a binomial expansion 
will always be 1.0, for p + q = 1. and (p + q)" = 1" = 1. 

As for the coefficients of these terms in the binomial expansion, the Xth term 
of the nth power expansion can be calculated by Equation 24.3. Furthermore, the 
examination of these coefficients as shown in Table 24.2 has been deemed interesting 
for centuries. This arrangement is known as Pascal's triangle! We can see from this 

TABLE 24.1: Expansion of the Binomial, (p + q)n 

n 

1 P + q 
2 p2+2pq+q2 
3 p3 + 3p2q + 3pq2 + q3 
4 p4 + 4p3q + 6p2q2 + 4pq3 + q4 
5 p:' + 5p4q + lOp3q2 + IOp2q'~ + 5pq4 + q5 
6 p6 + 6p5q + 15p4q2 + 20p3q3 + 15p2q4 + 6pqs _ q6 

*Blaise Pascal (1623-1662). French mathematician and physicist and one of the founders of 
probability theory (in 1654. immediately before abandoning mathematics to become a religious 
recluse). He had his triangular binomial coefficient derivation published in 1665. although knowledge 
of the triangular properties appears in Chinese writings as early as 1303 (Cajori. 1954; David. 1962; 
Gullberg 1997: 141: Struik. 1967: 79). Pascal also invented (at age 19) a mechanical adding and 
subtracting machine which, though patented in 1649. proved too expensive to be practical to 
construct (Asimov. 1982: 130-131). His significant contributions to the study of fluid pressures have 
been honored by naming the international unit of pressure the pascal, which is a pressure of one 
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TABLE 24.2: Binomial Coefficient, nCx 

n x=o 2 3 4 5 6 7 8 9 10 Sum of coefficients 

1 1 I 2 = 21 
2 1 2 1 4 = 22 
3 1 3 3 1 8 = 23 

4 1 4 6 4 I 16 = 24 
5 5 10 10 5 I 32 = 25 

6 6 15 20 15 6 I 64 = 26 

7 1 7 21 35 35 21 7 1 128 = 2' 
8 1 8 28 56 70 56 28 8 1 256 = 28 

9 1 9 36 84 126 126 84 36 9 1 512 = 29 

10 I 10 45 120 210 252 210 120 45 10 1024 = 210 

triangular array that any binomial coefficient is the sum of two coefficients on the line 
above it, namely, 

(;) = (; ~ ~) + (n X 1)- (24.4) 

This can be more readily observed if we display the triangular array as follows: 

1 

1 1 

2 1 

1 3 3 

1 4 6 4 1 

1 5 10 10 5 1 

Also note that the sum of all coefficients for the nth power binomial expansion is 
2". Appendix Table 8.26a presents binomial coefficients for much larger n's and X's, 
and they will be found useful later in this chapter. 

Thus, we can calculate probabilities of category frequencies occurring in random 
samples from a binomial population. If, for example, a sample of five (i.e., n = 5) 
is taken from a population composed of 50% males and 50% females (i.e., p = 0.5 
and q = 0.5) then Example 24.1 shows how Equation 24.3 is used to determine 
the probability of the sample containing 0 males, 1 male, 2 males, 3 males, 4 males, 
and 5 males. These probabilities are found to be 0.03125, 0.15625, 0.31250, 0.31250. 
0.15625, and 0.03125, respectively. This enables us to state that if we took 100 random 
samples of five animals each from the population, about three of the samples [i.e., 
(0.03125)( 100) = 3.125 of them] would be expected to contain all females, about 
16 [i.e., (0.15625)(100) = 15.625] to contain one male and four females, 31 [i.e., 
(0.31250)(100)] to consist of two males and three females, and so on. If we took 
1400 random samples of five, then (0.03125)( 1400) = 43.75 [i.e., about 44] of them 
would be expected to contain all females, and so on. Figure 24.1a shows graphically 

newton per square metcr (where a newton-named for Sir Isaac Newton-is the unit of force 
representing a one-kilogram mass accelerating at the rate of onc meter per second per second). 
Pascal is also the name of a computer programming language developed in 1970 by Niklaus Wirth. 
The relationship of Pascal's triangle to "ex was first published in 1685 by the English mathematician 
John Wallis (1616-1703)(David, 1962: 123-124). 
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EXAMPLE 24.1 Computing Binomial Probabilities, P(X), Where n = 5, 
P = 0.5, and q = 0.5 (Following Equation 24.3) 

0.4 

0.3 

P(X) 0.2 

0.1 

0 

x P(X) 

o ~ (0.50 )( 0.55 ) = (1)( 1.0)( 0.03125) = 0.03125 
0!5! 

1 ~ (0.51 )( 0.54 ) = (5)( 0.5)( 0.0625) = 0.15625 
1!4! 

2 2!....(O.52)(O.53 ) = (10){0.25)(0.125) = 0.31250 
2!3! 

3 2!.... (0.53 )( 0.52 ) = (10)( 0.125)( 0.25) = 0.31250 
3!2! 

4 2!.... (0.54 )( 0.51) = (5)( 0.0625)( 0.5) = 0.15625 
4!1! 

5 ~(0.55)(0.50) = (1)(0.03125)(1.0) = 0.03125 
5!0! 

p = 0.5 
q = 0.5 

X 
(a) 

0.6 

0.5 

0.4 

P(X) 0.3 

11.2 

11.1 

0 
() 

0.4 

0.3 

P(X) 0.2 

0.1 

0 

p = 0.1 
q = 0.9 

2 3 4 

X 
(c) 

5 

X 
(b) 

p =0.3 
q = 0.7 

5 

FIGURE 24.1: The binomial distribution, for n = 5. (a) p = q = 0.5. (b) p = 0.3, q = 0.7. (c) p = 0.1 
q = 0.9. These graphs were drawn utilizing the proportions given by Equation 24.1. 
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the binomial distribution for p = q = 0.5. for n = 5. Note. from Figure 24.1 a 
and Example 24.1. that when p = q = 0.5 the distribution is symmetrical [i.e .. 
P(O) = P(n), P( 1) = P(n - 1). etc.]' and Equation 24.3 becomes 

P( X) = n! 0.5". (24.5) 
X!(n - X)! 

Appendix Table B.26b gives binomial probahilities for n = 2 to n = 20. for 
P = 0.5. 

Example 24.2 presents the calculation of binomial probabilities for the case 
where n = 5.p = 0.3. and q = 1 - 0.3 = 0.7. Thus. if we were sampling 
a population consisting of 30% males and 70% females, 0.16807 (Le., 16.807%) 
of the samples would be expected to contain no males, 0.36015 to contain one 
male and four females, and so on. Figure 24.1 h presents this binomial distribu­
tion graphically. whereas Figure 24.lc shows the distribution where p = 0.1 and 
q = 0.9. 

EXAMPLE 24.2 Computing Binomial Probabilities, P(X), Where n = 5, 
P = 0.4, and q = 0.7 (Following Equation 24.3) 

X P(X) 

o ~(0.30)(0.75) = (1)(1.0)(0.16807) = 0.16807 
0!5! 

1 ~(0.31 )(0.74 ) = (5)(0.3)(0.2401) = 0.36015 
1 !4! 

2 ~(0.32)(0.73) = (10)(0.09)(0.343) = 0.30870 
2!3! 

3 ~ (0.33) (0.72) = (10)( 0.(27)( 0.49) = 0.13230 
3!2! 

4 ~(0.34)(0.71) = (5)(0.0081 )(0.7) = 0.02835 
4!t! 

5 ~(0.35)(0.7o) = (1 )(0.00243)( 1.0) = 0.00243 
5!0! 

For calculating binomial probabilities for large n. it is often convenient to employ 
logarithms. For this reason. Appendix Table B.40, a table of logarithms of factorials. 
is provided. Alternatively, it is useful to note that the denominator of Equation 24.3 
cancels out much of the numerator. so that it is possible to simplify the computation 
of P( X), especially in the tails of the distribution (i.e., for low X and for high X), 
as shown in Example 24.3. If p is very small, then the use of the Poisson distribution 
(Section 25.1), should he considered.· 

The mean of a binomial distribution of counts X is 

/LX = np, (24.6) 

*Raff (1956) and Molenaar (1969a, 1969b) discuss. several approximations to the binomial 
distribution, including the normal and Poisson distributions. 
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EXAMPLE 24.3 Computing Binomial Probabilities, P(X), with n = 400, 
p = 0.02, and q = 0.98 

(Many calculators can operate with large powers of numbers; otherwise, logarithms 
may be used.) 

x P(X) 

o n! pOql/-O = ql/ = 0.98400 = 0.00031 
0!(/1 - O)! 

2 

3 

__ /1_! __ plqn-1 = npqll-I = (400)(0.02)(0.98399 ) = 0.00253 
1!(/1 - 1)! 

n! 2 11-2 _ n(n - 1) 2 1/-2 
2!(n - 2)!P q - 2! P q 

= (400)(399) (0.022 )(0.98398 ) = 0.01028 
2 

n! 3 1/-3 _ n(n - l)(n - 2) 3 1/-3 
3!(n - 3)!P q - 3! P q 

( 400) (399)( 398) (0.023)( 0.98397 ) = 0.02784 
(3)(2) 

and so on. 

the variance* of X is 
u~ = npq. 

and the standard deviation of X is 

ux = Jnpq. 

(24.8) 

(24.9) 

Thus. if we have a binomially distributed population where p (e.g .• the proportion of 
males) = 0.5 and q (e.g .• the proportion of females) = 0.5 and we take 10 samples 
from that population, the mean of the 10 X's (Le., the mean number of males per 
sample) would be expected to be np = (10) (0.05) = 5 and the standard deviation of 
the 10 X's would be expected to be Jnpq = J(10)(0.5)(0.5) = 1.58. Our concern 
typically is with the distribution of the expected probabilities rather than the expected 
X's. as will be explained in Section 24.3. 

24.2 THE HYPERGEOMETRIC DISTRIBUTION 

Binomial probabilities (Section 24.1) may result from what is known as "sampling 
with replacement." This means that after an item is randomly removed from the 

* A measure of symmetry (see Section f).Sa) for a binomial distribution is 

'Y1=q-P, 
Jiiiiii 

(24.7) 

so it can be seen that ')'1 = 0 only when p = q = 0.05. ')'1 > 0 implies a distribution skewed to the 
right (as in Figures 24.1b and 24.1c) and ')'1 < 0 indicates a distribution skewed to the left. 
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population to be part of the sample it is returned to the population before randomly 
selecting another item for inclusion in the sample. (This assumes that after the item 
is returned to the population it has the same chance of being selected again as 
does any other member of the population; in many biological situations-such as 
catching a mammal in a trap-this is not so.) Sampling with replacement ensures 
that the probability of selecting an item belonging to a specific one of the binomial 
categories remains constant. If sampling from an actual population is performed 
without replacement. then selecting an item from the first category reduces p and 
increases q (and. if the selected item were from the second category, then q would 
decrease and p would increase). Binomial probabilities may also arise from sampling 
"hypothetical" populations (introduced in Section 2.2), such as proportions of heads 
and tails from all possible coin tosses or of males and females in all possible fraternal 
twins. 

Probabilities associated with sampling without replacement follow the hyper­
geometric distribution instead of the binomial distribution. The probability of 
obtaining a sample of 11 items from a hypergeometric distribution. where the sam­
ple consists of X items in one category and 11 - X items in a second category, 
IS 

P(X) = (24.10) 

= NJ !Nz!n!(NT - Il)! 
X!(NJ - X)!(n - X)!(N2 - n + X)!NT! 

(24.11 ) 

Here. NT is the total number of items in the population, NJ in category 1 and N2 in 
category 2. For example. we could ask what the probability is of forming a sample 
consisting of three women and two men by taking five people at random from a group 
of eight women and six men. As NJ = 8.Nz = 6.NT = 14,n = 5, and X = 3. the 
probability is 

P(X) = 

8!6!5!X9! 
= 

3! 5! 2! 4! 14! 

= (8·7·6·5·4·3·2)(6·5·4·3·2)(5· 4'3·2)(9·8·7·6·5·4·3·2) 
(3 . 2)( 5 . 4 . 3 . 2)(2)( 4 . 3 . 2)( 14 . 13 . 12 . 11 . 10 . 9 . 8 . 7 ·6 . 5 . 4 . 3 . 2) 

= 0.4196. 

If the population is very large compared to the size of the sample. then the result 
of sampling with replacement is indistinguishable from that of sampling without 
replacement, and the hypcrgeometric distribution approaches-and is approximated 
by-the binomial distribution. Table 24.3 compares the binomial distribution with 
p = 0.01 and n = 100 to three hypergeometric distributions with the same p and n but 
with different population sizes. It can be seen that for larger NT the hypergeometric 
is closer to the binomial distribution. 
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TABLE 24.3: The Hypergeometric Distribution Where N1, the Number of Items of One 
Category, Is 1 % of the Population Size, NT; and the Binomial Distribution with p = 0.01; 
the Sample Size, n, Is 100 in Each Case 

P(X) P(X) P(X) P(X) 
for hypergeomctric: for hypergcometric: for hypergeometric: for binomial: 

X NT = 1000. N) = 10 NT = 2000.N) = 20 NT = 5000. N) = 50 P = 0.01 

0 0.34693 0.35669 0.36235 0.36603 
1 0.38937 0.37926 0.37347 0.36973 
2 0.19447 0.18953 0.18670 0.18486 
3 0.05691 0.05918 0.06032 0.06100 
4 0.01081 0.01295 0.01416 0.01494 
5 0.00139 0.00211 0.00258 0.00290 
6 0.00012 0.00027 O.()(X)3X OJlOO46 

>6 OJXXX)() OJXlOOI 0.00004 O.O<X)()8 

Total 1.O<lOOO 1.00000 I.()(XX)O 1.00000 

24.3 SAMPLING A BINOMIAL POPULATION 

Let us consider a population of N individuals: Y individuals in one category and 
N - Y in the second category. Then the proportion of individuals in the first 
category is 

and the proportion in the second is 

q = 1 - p 

Y p=-
N 

N-Y 
or q = ---

N 

(24.12) 

(24.13) 

If a sample of n observations is taken from this population. with replacement. and 
X observations are in one category and n - X are in the other. then the population 
parameter p is estimated by the sample statistic 

A X 
P =-. 

n 
(24.14) 

which is the proportion of the sample that is in the first category. * The estimate of q is 

A A n - X 
q = 1 - P or q = . (24.15) 

n 

which is the proportion of the sample occurring in the second category. In Exam­
ple 24.4 we have X = 4 and n = 20, so P = 4/20 = 0.20 and q = 1 - p = 0.80. 

If our sample of 20 were returned to the population (or if the popUlation were 
extremely large), and we took another sample of 20. and repeated this multiple 
sampling procedure many times, we could obtain many calculations of p. each 
estimating the population parameter p. If. in the population. p = O. then obviously 
any sample from that population would have p = 0; and if p = 1.0, then each and 

*Placing the symbol "." above a letter is statistical convention for denoting an estimate of the 
quantity which that letter denotes. Thus. p refers to an estimate of p. and the statistic l; is a sample 
estimate of the population parameter q. Routinely, p is called "p hat" and q is called "q hat." 
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EXAMPLE 24.4 Sampling a Binomial Population 

From a population of male and female spiders, a sample of 20 is taken, which 
contains 4 males and 16 females. 

n = 20 

X = 4 

By Equation 24.14, 
A X 4 
P = - = - = 0.20. 

n 20 

Therefore, we estimate that 20% of the population are males and, by Equa­
tion 24.15. 

q = 1 - P = 1 - 0.20 = 0.80 

or 
q = n - X = 20 - 4 = 16 = 0.80 

n 20 20 ' 

so we estimate that 80% of the population are females. 
The variance of the estimate p (or of q) is. by Equation 24.17. 

s~ = pq = (0.20)(0.80) = 0.008421. 
P n - 1 20 - 1 

If we consider that the sample consists of four l's and sixteen O's, then ~ X = 4, 
~ X2 = 4. and the variance of the twenty l's and O's is, by Equation 4.17, 
S = (4 - 42/20)/(20 - 1) = 0.168421, and the variance of the mean, by 
Equation 6.7, is lx = 0.168421/20 = 0.008421. 

The standard error (or standard deviation) of p (or of q) is, by Equation 24.21, 
sp = JO.OO8421 = 0.092. 

every p would be 1.0. However, if p is neither 0 nor 1.0, then all the many samples 
from the population would not have the same values of p. The variance of all possible 
p's is 

CT~ = pq 
p • 

n 
(24.16) 

which can be estimated from our sample as 

~ =-E!L. 
P n - 1 

(24.17) 

This variance is essentially a variance of means, so Equation 24.16 is analogous 
to Equation 6.4, and Equation 24.17 to Equation 6.7. In Example 24.4 it is shown 
that the latter is true. The variance of q is the same as the variance of p; that 
is 

u~ = CT~ 
q p (24.18) 

and 
? =?. q p 

(24.19) 
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The standard error of p (or of q), also called the standard deviation, is 

a A = f!q p , 
n 

(24.20) 

which is estimated from a sample as* 

sp ~~/! 1 (24.21) 

The possible values of a~, a!, ap, and ail range from a minimum of zero when 

either p or q is zero, to a maximum when p = q = 0.5: and s~, s~, sP' and sci can range 

from a minimum of zero when either p or q is zero, to a maximum when p = q = 0.5. 

(a) Sampling Finite Populations t • If n is a substantial portion of the entire population 
of size N, and sampling is without replacement, then a finite population correction is 
called for Gust like that found in Section 7.7) in estimating a~ or ap: 

s~ = pq (1 - Nn) 
P n - 1 

(24.23) 

and 

(24.24) 

when nl N is called the sampling fraction, and 1 - nl N is the finite population correc­
tion, the latter also being written as (N - n)1 N. As N becomes very large compared to 
n, Equation 24.23 approaches Equation 24.17 and Equation 24.24 approaches 24.21. 

We can estimate Y, the total number of occurrences in the population in the first 
category, as 

Y =pN; 

and the variance and standard error of this estimate are 

2 _ N(N - Il)pq 
SA - ---O __ ---'-~ 

Y n - 1 

and 

s' ~ ~ N(N - nlpii 
Y n - 1 

respectively. 

*We often see 

(24.25) 

(24.26) 

(24.27) 

(24.22) 

used to estimate up' Although it is an underestimate. when" is large the difference between 
Equations 24.21 and 24.22 is slight. 

tTbese procedures are from Cochran (1977: 52). When sampling from finite populations. the 
data follow the hypergeometric (Section 24.2), rather than the binomial. distribution. 
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GOODNESS OF FIT FOR THE BINOMIAL DISTRIBUTION 

(a) When p Is Hypothesized to Be Known. In some biological situations the 
population proportions, p and q. might be postulated. as from theory. For examplc, 
theory might tell us that 50% of mammalian sperm contain an X chromosome. 
whereas 50% contain a Y chromosome. and we can expect a 1 : 1 sex ratio among the 
offspring. We may wish to test the hypothesis that our sample came from a binomially 
distributed population with equal sex frequencies. We may do this as follows. by the 
goodness-of-fit testing introduced in Chapter 22. 

Let us suppose that we have tabulated the sexes of the offspring from 54 litters 
of five animals each (Example 24.5). Setting p = q = 0.5. the proportion of each 
possible litter composition can be computed by the procedures of Example 24.1. using 
Equation 24.3. or they can be read directly from Appendix Table B.26b. From these 
proportions, we can tabulate expected frequencies, and then can subject observed 
and expected frequencies of each type of litter to a chi-square goodness-of-fit analysis 
(see Section 22.1). with k - 1 degrees of freedom (k being the number of classes of 
X). In Example 24.5. we do not reject the null hypothesis, and therefore we conclude 
that the sampled population is binomial with p = 0.5. 

EXAMPLE 24.5 
Postulated 

Goodness of Fit of a Binomial Distribution, When p Is 

The data consist of observed frequencies of females in 54 litters of five offspring 
per litter. X = 0 denotes a litter having no females, X ~ 1 a litter having one 
female. and so on:! is the observed number of litters. and! is the nun,:tber oflitters 
expected if the null hypothesis is true. Computation of the values of f requires the 
values of P{X). as obtained in Example 24.1. 

Ho: The sexes of the offspring reflect a binomial distribution with p = q = 
0.5. 

HA: The sexes of the offspring do not reflect a binomial distribution with 
p = q = 0.5. 

A 

Xi f; f; 

0 3 (0.03125)( 54) = 1.6875 
1 10 (0.15625)( 54) = 8.4375 
2 14 (0.31250)(54) = 16.8750 
3 17 (0.31250)( 54) = 16.8750 
4 9 (0.15625 )( 54) = 8.4375 
5 1 (0.03125)( 54) = 1.6875 

2 = (3 - 1.6875)2 + (10 - 8.4375)2 + (14 - 16.8750)2 

X 1.6875 8.4375 16.8750 

+ (17 - 16.8750)2 + (9 - 8.4375f + (1 - 1.6875)2 

16.8750 8.4375 1.6875 

= 1.0208 + 0.2894 + 0.4898 + 0.0009 + 0.0375 + 0.2801 = 2.1185 
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v=k-1=6-1=5 

X~.05,5 = 11.070 

Therefore, do not reject Ho. 

0.75 < P < 0.90 [P = 0.83] 

To avoid bias in this chi-square computation, no expected frequency should be 
less than 1.0 (Cochran, 1954). If such small frequencies occur, then frequencies ~ 
the appropriate extreme classes of X may be pooled to arrive at~ sufficiently large Ii 
values. Such pooling was not necessary in Example 24.5, as no f; was less than 1.0. 
But it will be shown in Example 24.6. 

EXAMPLE 24.6 Goodness of Fit of a Binomial Distribution, When p Is 
Estimated from the Sample Data 

The data consist of observed frequencies of left-handed persons in 75 samples of 
eight persons each. X = 0 denotes a sample with no left-handed persons. X = 1 
a sample with~ one left-handed person, and so on; f is the observed number of 
sampl:s, and f is the number of samples expected if the null hypothesis is true. 
Each f is computed by multiplying 75 by P(X), where P(X) is obtained from 
Equation 24.3 by substitutingp and q for p and q, respectively. 

Ho: The frequencies of left- and right-handed persons in the population 
follow a binomial distribution. 

H A: The frequencies of left-and right-handed persons in the population do 
not follow a binomial distribution. 

X = 2: f; Xi = 96 = 1.2800 
2Ji 75 

P = X = 1.2800 = 0.16 = probability of a person being left-handed 
n 8 

q = I - P = 0.84 = probability of a person being right-handed 

A 

X; f; f;X; f; 

0 21 0 ~(0.16o)(0.848)(75) = (0.24788)(75) = 18.59 
0!8! 

1 26 26 (0.37772)(75) = 28.33 
2 19 38 (0.25181 )(75) = 18.89 
3 6 18 (0.09593)(75) = 7.19 
4 

H3 
8 (0.02284)(75) = 1.71 I 

5 0 (0.00348)(75) = 0.26 
6 6 (0.00033)( 75) = 0.02 1.99 
7 0 (0.00002)(75) = 0.00 
8 ~ (0.00000)(75) = 0.00 

75 96 
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A 

Note: The extremely small! values of 0.00, O.q<l, 0.02, and 0.26 are each l~ss than 
1.00. So they are combined with the adjacent! of 1.71. This results in an! of 1.99 
for a corresponding! of 3. 

~/; = 75 

~/;Xi = 96 

2 _ (21 - 18.59)2 
X - 18.59 

+ (26 - 28.33)2 + (19 - 18.89)2 + (6 - 7.19f 

+ (3 - 1.99)2 

1.99 
= 1.214 

v=k - 2=5 - 2=3 

X5.05.3 = 7.815 
Therefore, do not reject Ho. 

28.33 18.89 7.19 

0.50 < P < 0.75 [P = 0.7496] 

The G statistic (Section 22.7) may be calculated in lieu of chi-square, with the 
summation being executed over all classes except those where not only /; = 0 but also 
all more extreme /;'s are zero. The Kolmogorov-Smirnov statistic of Section 22.8 could 
also be used to determine the goodness of fit. Heterogeneity testing (Section 22.6) 
may be performed for several sets of data hypothesized to have come from a binomial 
distribution. 

If the preceding null hypothesis had been rejected, we might have looked in several 
directions for a biological explanation. The rejection of H() might have indicated that 
the population p was. in fact. not 0.5. Or, it might have indicated that the underlying 
distribution was not binomial. The latter possibility may occur when membership of an 
individual in one of the two possible categories is dependent upon another individual 
in the sample. In Example 24.5, for instance, identical twins (or other multiple 
identical births) might have been a common occurrence in the species in question. In 
that case, if one member of a Jitter was found to be female, then there would be a 
greater-than-expected chance of a second member of the litter being female. 

(b) When p Is Not Assumed to Be Known. Commonly. we do not postulate the 
value of p in the population but estimate it from a sample of data. As shown in 
Example 24.7, we may do this by calculating 

(24.28) 
n 

It then follows that q = 1 - p. 
The values of p and q may be substituted in Equation 24.3 in place of p and 

q, respectively. Thus, expected frequencies may be calculated for each X, and a 
chi-square goodness-of-fit analysis may be performed as it was in Example 24.5. In 
such a procedure. however, v is k - 2 rather than k - 1. because two constants 
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(n and p) must be obtained from the sample, and" is, in general, determined as k minus 
the number of such constants. The G statistic (Section 22.7) may be employed when 
p is not known, but the Kolmogorov-Smirnov test (Section 22.8) is very conservative 
in such cases and should be avoided. 

The null hypothesis for such a test would be that the sampled population was 
distributed binomially, with the members of the population ()Ccuring independently 
of one another. 

24.5 THE BINOMIAL TEST AND ONE-SAMPLE TEST OF A PROPORTION 

I 

With the ability to determine binomial probabilities, a simple procedure may be 
employed for goodness-of-fit testing of nominal data distributed between two cate­
gories. This method is especially welcome as an alternative to chi-square goodness 
of fit where the expected frequencies are small (see Section 22.5). If p is very small, 
then the Poisson distribution (Section 25.1) may be used; and it is simpler to employ 
when n is very large. Because the binomial distribution is discrete. this procedure is 
conservative in that the probability of a Type I error is ~ cx. 

(a) One-Tailed Testing. Animals might be introduced one at a time into a passage­
way at the end of which each has a choice of turning either to the right or to the left. 
A substance, perhaps food, is placed out of sight to the left or right; the direction is 
randomly determined (as by the toss of a coin). We might state a null hypothesis, 
that there is no tendency for animals to turn in the direction of the food, against the 
alternative, that the animals prefer to turn toward the food. If we consider p to be 
the probability of turning toward the food, then the hypothesis (one-tailed) would be 
stated as Ho: P ~ 0.5 and H A: p > 0.5, and such an experiment might be utilized. 
for example, to determine the ability of the animals to smell the food. We may test 
Ho as shown in Example 24.7. In this procedure, we determine the probability of 
obtaining, at random, a distribution of data deviating as much as. or more than, the 
observed data. In Example 24.7, the most likely distribution of data in a sample of 
twelve from a population where p. in fact, was 0.5, would be six left and six right. 
The samples deviating from a 6 : 6 ratio even more than our observed sample (having 
a 10 : 2 ratio) would be those possessing eleven left, one right, and twelve left, zero 
right. 

EXAMPLE 24.7 A One-Tailed Binomial Test 

Twelve animals were introduced, one at a time, into a passageway at the end of 
which they could turn to the left (where food was placed out of sight) or to the 
right. We wish to determine if these animals came from a population in which 
animals would choose the left more often than the right (perhaps because they 
were able to smell the food). 

Thus, n = 12, the number of animals: X is the number of animals turning left; 
and p is the probability of animals in the sampled popUlation that would turn left. 

Ho: p ~ 0.5 and HA: P > 5 

In this example, P(X) is obtained either from Appendix Table B.26b or by 
Equation 24.3. 
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The test using binomial probabilities 

X P(X) 

0 0.00024 
I 0.00293 
2 0.01611 
3 0.05371 
4 0.12085 
5 0.19336 
6 0.22559 
7 0.19336 
8 0.12085 
9 0.05371 

10 0.01611 
II 0.00293 
12 0.00024 

On performing the experiment, ten of the twelve animals turned to the left 
and two turned to the righl.lf Ho is true. P(X ~ 10) = 0.01611 + 0.00293 + 
0.00024 = 0.01928. As this probability is less than 0.05, reject Ho. 

(b) The test using a confidence limit 
This test could also be performed by using the upper confidence limit of P as 
a critical value. For example, by Equation 24.35, with a one-tailed F, 

x = pn = (0.5)( 12) = 6. 

vi = 2( 6 + I) = 14, 

vi = 2( 12 - 6) = 12, 

FO.05( 1 ).14.12 = 2.64. and 

L2 = (6 + 1)(2.64) = 0.755. 
12 - 6 + (6 + 1)( 2.64 ) 

Because the observed ij (namely X / n = 10/12 = 0.833) exceeds the critical 
value (0.755), we reject Ho. 

(c) A simpler alternative 
Appendix Table B.27 can he consulted for n - 12 and a( 1) = 0.05 and to 
find an upper critical value of n - Co.O:'i( 1 )./1 = 12 - 2 = 10. As an X of 
10 falls within the range of p ~ 11 - Co.O:'i( 1 ).12,/1, 110 is rejected; and (by 
examining the column headings) 0.01 < P( X ~ 10) < 0.25). 

The general one-tailed hypotheses are Ho: p ~ po and H",: p > Po, or Ho: p ~ Po 
and H",: p < Po. where po need not be 0.5. The determination of the probability of p 
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as extreme as, or more extreme than. that observed is shown in Example 24.8. where 
the expected frequencies. P(X). are obtained either from Appendix Table 8.26b 
or by Equation 24.3. If the resultant probability is less than or eqU<ll to a. then Ho 
is rejected. A simple procedure for computing this P when pn = 0.5 is shown in 
Section 24.6. 

Alternatively, a critical value for the one-tailed binomial test may be found 
using the confidence-limit determinations of Section 24.8. This is demonstrated 
in Example 24.7b. using a one-tailed F for the confidence interval presented in 
Section 24.8a. If HA: P > 0.5 (as in Example 24.7), then Equation 24.35 is used to 
obtain the upper critical value as the critical value for the test. If the alternative 
hypothesis had been HA: P > 0.5. then Equation 24.29 would have been appropriate, 
calculating the lower confidence limit to be considered the critical value. Or the 
needed upper or lower confidence limit could be obtained using a one-tailed Z for 
the procedure of Section 24.8c. Employing the confidence limits of Section 24.8b is 
not recommended. 

A simpler alternative, demonstrated as Example 24.8c, is to consult Appendix 
Table 8.27 to obtain the lower confidence limit. Cat I ).,1' for one-tailed probabilities, 
a( 1 ).If HA: P < 0.5, then Ho is rejected if X:5 C(x( I )JI' where X = np. If HA : P > 0.5 
(as in Example 24.7). then Hu is rejected if X > n - Ca(, )./1' 

(b) Two-Tailed Testing. The preceding experiment might have been performed 
without expressing an interest specifically in whether the animals were attracted 
toward the introduced substance. Thus. there would be no reason for considering a 
preference for only one of the two possible directions, and we would be dealing with 
two-tailed hypotheses. Ho: P = 0.5 and H A: P :1= 0.5. The testing procedure would be 
identical to that in Example 24.7, except that we desire to know P(X :5 2 or X ~ 10). 
This is the probability of a set of data deviating in either direction from the expected 
as much as or more than those data observed. This is shown in Example 24.8. The 
general two-tailed hypotheses are Ho: P = Po and H A: P ::F Po. If pn = 0.5. a simplified 
computation of P is shown in Equation 24.5. 

Instead of enumerating the several values of P(X) required. we could determine 
critical values for the two-tailed binomial test as the two-tailed confidence limits 
described in Section 24.8. If the observed p lies outside the interval formed by L I and 
L2, then Ho is rejected. This is demonstrated in Example 24.8b. using the confidence 
limits of Section 24.8a. If the hypothesized p is 0.5, then "1 and "2 are the same for 
L\ and L2; therefore, the required critical value of F is the same for both confidence 
limits. This is shown in Example 24.8a. where"l = "1'. V2 = vI. and f{1.05(2).14.12 is 
used for both LI and L2. The confidence-limit calculation of Section 24.8c can also 
be used, but employing Section 24.8b is not recommended. 
A simpler two-tailed binomial test is possible using Appendix Table B.27, as demon­
strated in Example 24.8c. If the observed count. X = pn. is either :5 C,r(2).v or 
~ n - Ca (2)JI' then Ho is rejected. 

(c) Normal and Chi-Square Approximations. Some researchers have used the 
normal approximation to the binomial distribution to perform the two-tailed test 
(for Ho: p = Po versus HA: p ::F Po) or the one-tailed test (either Ho: p :5 po versus 
HA : p > Po. or Ho: p ~ po versus HA: p < po). The test statistic is 

Z = X - IIPO, 

Jnpoqll 
(24.29) 
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EXAMPLE 24.S A Two-Tailed Binomial Test 

The experiment is as described in Example 24.7, except that we have no a 
priori interest in the animals' turning either toward or away from the introduced 
substance. 

Ho: P = 0.5 
HA: p :#: 0.5 

n = 12 

(a) The probabilities of X. for X = 0 through X = 12. are given in Example 24.7. 

P(X ~ to or X ::;; 2) = 0.01611 + 0.00293 + 0.00024 + 0.01611 

+ 0.00293 + 0.00024 

= 0.03856 

As this probability is less than 0.05, reject Ho. 
(b) Alternatively, this test could be performed by using the confidence limits as 

critical values. By Equations 24.34 and 24.35, we have 

X = pn = (0.5)(12) = 6. 

and for LI we have 

VI = 2( 12 - 6 + 1) = 14 

III = 2(6) = 12 

FO.OS(l).14.12 = 3.21 

LI = 6 = 0.211 
6 + (12 - 6 + 1)(3.21) • 

and for L2 we have 

v.=2(6+1)=14 

vi =2(12 - 6) = 12 

FO.OS(2).14.12 = 3.21 

L = (6 + 1)(3.21) =0.789. 
2 12 - 6 + (6 + 1)(3.21) 

As the observed p (namely X / n = 10/12 = 0.833) lies outside the range of 
0.211 to 0.789. we reject Ho. 

(c) A simpler procedure uses Appendix Table B.27 to obtain critical values of 
CO.05(2).6 = 2 and n - CO.OS(2).6 = 12 - 2 = to. As X = 10, Ho is rejected: 
and 0.02 < P(X :5 2 or X > to) < 0.05. 

where X = np, the number of observations in one of the two categories, and npo is 
the number of observations expected in that category if Ho is true. Equivalently. this 
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may be expressed as 
Z= P - Po 

~poqoln . 
(24.30) 

The two-tailed null hypothesis, Ho : P = Po (tested in Example 24.9), is rejected if 
I Z I >Z(\'(2); the one-tailed Ho : P s; Po is rejected if I ZI >Za(l), and Ho : P ;;:: Po is 
rejected if I Z I <Z(\'( J ). 

EXAMPLE 24.9 The Normal Approximation to the Binomial Test 

For the normal approximation to the binomial test of Example 24.8, using the data 
of Example 24.7, Ho: P = 0.5; HA : P *" 0.5; Po = 0.5; n = 12; X = 10; P = 
10/12 = 0.8333. 

Using Equation 24.29, 

Z = X - npo = 10 - 6 = _4 _ = 2.3098 
JnpMo ~(12)(0.5)(0.5) 1.7321 

ZO.OS(2) = 1.9600 

Therefore, reject Ho. 

0.02 < P < 0.05 [0.021] 

Zc = IX - npo 1-0.5 = 110 - 61 -0.5 = ~ = 2.0207 
Jnpoqo ~(12)(0.5)(0.5) 1.7321 

0.02 < P < 0.05 [0.043] 

Using Equation 24.30, 

Z = P - po = 0.8333 - 0.5000 = 0.3333 = 2.3093 
~poqo/n ~(0.5)(0.5/12) 0.0208 

0.02 < P < 0.05 [0.021] 

Zc = I p - Po I -0.5In = 10.8333 - 0.5000 I -0.5/12 

~poqolll ~(0.5)(0.5/12) 

= 0.3333 - 0.0417 = 2.0208 
0.0208 

0.02 < P < 0.05 [0.043] 

The test may also be performed with a correction for continuity, by bringing npo 
closer by 0.5 to X in Equation 24.29 or by bringing Po nearer by 0.51 n to p in Equation 
24.30. This is shown in Example 24.9, where the probability using Zc is seen to be 
closer than P( Z) to the probability determined by the binomial test. 

The two-tailed (but not the one-tailed) test can be effected as a chi-square 
goodness of fit in accordance with Section 22.1 (with the continuity correction shown 
in Section 22.2). For two-tailed hypotheses, Z testing is equivalent to chi-square 
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testing. for Z2 = X2 (and. if Z~ = X~). However, Ramsey and Ramsey (1988) 
concluded that the approximation is not as powerful as the binomial test. 

The normal approximation to the binomial test and the chi-square goodn~ss-of-~t 
test does not work well when n is small. Section 22.5 recommends that II and fz 
be at least 5 for the chi-square procedure; the equivalent statement for the normal 
approximation to the binomial test is that PO" and qon should be at least 5. 

THE SIGN TEST 

For two samples where interval- or ratio scale data occur in pairs. hypotheses of no 
difference between the means of the two samples may be tested by the t test shown 
in Section 9.1. If paired data are measured on an ordinal scale, the nonparametric 
sign test* can be useful; it may be employed whenever the Wilcoxon paired-sample 
test (Section 9.5) is appropriate. although it is not as powerful as the latter. The sign 
test may also be used with interval- or ratio-scale data, but in those circumstances it 
is not as powerful as the paired t test and it does not express hypotheses in terms of 
population means. 

The actual differences between members of a pair are not utilized in the sign test; 
only the direction (or sign) of each difference is tabulated. In Example 24.10, all that 
need be recorded is whether each hindleg length is greater than. equal to, or less than 
its corresponding foreleg length; we do this by recording +, 0, or -, respectively. 
We then ask what the probability is of the observed distribution, or a more extreme 
distribution. of + and - signs if the null hypothesis is true. (A difference of zero is 
deleted from the analysis, so n is here defined as the number of differences having 
a sign.t) The analysis proceeds as a binomial test with Ho: P = 0.5. and the null 
hypothesis tested is. essentially. that in the population the median difference is zero 
(i.e., the population frequencies of positive differences and negative differences are 
the same), but it differs from the median test of Section 8.12 in that the data in the 
two samples are paired. 

In performing a binomial test with PI) = qO = 0.5, which is always the case with 
the sign test. the exact probability. P, may be obtained by the following simple 
considerations. As introduced in Equation 24.5. for a given n the probability of a 
specified X is 0.5" times the binomial coefficient. And binomial coefficients are 
defined in Equation 24.2 and presented in Table 24.2 and Appendix Table B.26a. In 
performing the binomial or sign test, we sum binomial terms in one or both tails of the 
distribution, and if Po = qo = 0.5. then this is the same as multiplying 0.5" by the sum 
of the binomial coefficients in the one or two tails. Examining Example 24.10, what is 
needed is the sum of the probabilities in the two tails defined by X :5 2 and X ~ 8. 
Thus. we may sum the coefficients, IOCX. for X :5 2 and X ~ 8, and multiply that 
sum by 0.510 or, equivalently. divide the sum by 210. For this example, the binomial 
coefficients are 1, 10,45,45.10, and 1. so the probability of HI) being a true statement 
about the sampled population is 

1 + 10 + 45 + 45 + 10 + 1 = 112 = 0.1094. 
210 1024 

*The sign test was first employed by Scottish physician and mathematician John Arbuthnott 
(1667-1735), and his 1710 publication is perhaps the earliest report of something resembling a 
statistical hypothesis (Noethcr. 1984). 

t Methods have been described specifically for situations where there are many differences of 
zero (Coakley and Heise. 1996; Fong et al.. 2003: Wittkowski. 1998). 
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EXAMPLE 24.10 The Sign Test for the Paired-Sample Data of Exam-
ples 9.1 and 9.4. 

Deer Hindleg length (cm) Foreleg length (cm) Difference 

1 142 138 + 
2 140 136 + 
3 144 147 
4 144 139 + 
5 142 143 
6 146 141 + 
7 149 143 + 
8 150 145 + 
9 142 136 + 

10 148 146 + 

Ho: There is no difference between hindleg and foreleg length in deer. 
(p = 0) 

HA : There is a difference between hindleg and foreleg length in deer. 
(p -:f- 0) 

n = 10, and there are 8 positive differences and 2 negative differences. 

Using Appendix Table B.26b for 11 = 10 and p = 0.50, 

P( X ~ 2 or X ~ 8) 

= 0.04395 + 0.00977 + 0.00098 + 0.04395 + 0.00977 + 0.00098 
= 0.1094. 

As the probability is greater than 0.05, do not reject Ho. 
Using binomial coefficients, 

1 + 10 + 45 + 45 + 10 + 1 = ~ = 0.1094. 
210 1024 

Using Appendix Table B.27 for n = 10, the critical values are CO.05(2).IO = 1 and 
Il - CO.05(2).1O = 10 - 1 = 9. As neither X = 2 nor X = 8 is as small as 1 or 
as large as 9, Ho is not rejected; and by consulting Appendix Table 8.27, we state 
0.10 < P < 0.20. 

This calculation can be more accurate than summing the six individual binomial 
probabilities, as shown in Example 24.10, for it avoids rounding error. 

An extension of the sign test to nonparametric testing for blocked data from more 
than two groups is found in the form of the Friedman test (Section 12.7). 

Immediately prior to Section 9.5a, it is noted that the Wilcoxon paired-sample test 
can be applied to hypotheses expressing differences of specified magnitude. The sign 
test can be used in a similar fashion. For instance, it can be asked whether the hindlegs 
in the population sampled in Example 24.10 are 3 cm longer than the lengths of the 
forelegs. This can be done by applying the sign test after subtracting 3 cm from each 
hindleg length in the sample (or adding 3 cm to each foreleg length). 
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24.7 POWER, DETECTABLE DIFFERENCE, AND SAMPLE SIZE FOR THE BINOMIAL AND SIGN TESTS 

The power of, and required sample size for, the binomial test may be determined 
by examining the cumulative binomial distribution. As the sign test is essentially a 
binomial test with P hypothesized to be 0.5 (see Section 24.6), its power and sample 
size may be assessed in the same manner as for the binomial test. 

(a) Power of the Test. If a binomial test is performed at significance level a and 
with sample size n, we can estimate the power of the test (Le., the probability of 
correctly rejecting Ho) as follows. First we determine the critical value(s) of X for 
the test. For a one-tailed test of Ho: P $; Po versus HA: P > Po, the critical value is 
the smallest value of X for which the probability of that X or a larger X is $; a. (In 
Example 24.7a this is found to be X = 10.) For a one-tailed test of Hu: P $; po versus 
HA: P > Po, the critical value is the largest X for which the probability of that X or 
of a smaller X is $;a. Then we examine the binomial distribution for the observed 
proportion, p, from our sample. The power of the test is ~ the probability of an X at 
least as extreme as the critical value referred to previously. * This is demonstrated in 
Example 24.11. 

EXAMPLE 24.11 Determination of the Power of the One-Tailed Binomial 
Test of Example 24.7a 

In Example 24.7, Ho: P $; 0.5 andp = X/n = 10/12 = 0.833. And X = 10 is the 
critical value, because P( X ~ 10) < 0.05. but P( X ~ 11) > 0.05. 

Using Equation 24.3, P(X) for X's of 10 through 12 is calculated for the 
binomial distribution havingp = 0.833 and n = 12: 

x P(X) 

10 0.296 
11 0.269 
12 0.112 

Thus, the power when performing this test on a future set of such data is estimated 
to be ~0.296 + 0.269 + 0.112 = 0.68. 

For a two-tailed test of Ho: P = Po versus H A: P '* Po, there are two critical values 
of X, one that cuts off a/2 of the binomial distribution in each tail. Knowing these 
two X's, we examine the binomial distribution for p, and the power of the test is the 
probability in the latter distribution that X is at least as extreme as the critical values. 
This is demonstrated in Example 24.12. 

Cohen (1988: Section 5.4) presents tables to estimate sample size requirements in 
the sign test. 

(b) Normal Approximation for Power. Having performed a binomial test or a 
sign test, it may be estimated what the power would be if the same test were 

·If the critical X delineates a probability of exactly ex in the tail of the distribution. then the 
power is equal to that computed: if the critical value defines a tail of less than ex. then the power is 
greater than that calculated. 
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EXAMPLE 24.12 Determination of the Power of the Two-Tailed Sign 1est\' 
of Example 24.10 

I 
In Example 24.10. Ho: P = 0.50. the critical values are 1 and 9, and p = X/n = 
8/10 = 0.800. I 

Using Equation 24.3, P(X) is calculated for all X's equal to or more extreme 
than the critical values, for the binomial distribution havingp = 0.800 and n = 10: 

x P(X) 

o 0.000 
1 0.000 
9 0.269 

to 0.112 

Therefore, the power of performing this test on a future set of data is ~ 0.000 + 
0.000 + 0.269 + 0.112 = 0.38. 

performed on a future set of data taken from the same population. As noted 
earlier (e.g .• Sections 7.7 and 8.7), this is not an estimate of the power of the 
test already performed; it is an estimate of the power of this test performed 
on a new set of data obtained from the same population. It has been noted 
in the preceding discussions of the binomial distribution that normal approxi­
mations to that distribution are generally poor and inadvisable. However, rough 
estimates of power are often sufficient in planning data collection. If 11 is not 
small and the best estimate of the population proportion. p. is not near 0 or 
1, then an approximation of the power of a binomial or sign test can be cal­
culated as 

power ~ p Z '" PO.jif - Z.(2)~P;:O + P Z" PO.jif + Za{2)~~ 

(24.31) 

(Marascuilo and McSweeney. 1977: 62). Here Po is the population proportion in the 
hypothesis to be tested. qo = 1 - po,p is the true population proportion (or our best 
estimate of it), q = 1 - p. Za(2) = la(2).00. and the probabilities of Z are found in 
Appendix Table B.2, using the considerations of Section 6.1. This is demonstrated in 
Example 24.13. 

For the one-tailed test, Ho: p :::; Po versus H A: p > po, the estimated power is 

Power = P Z ~ Po - P + Z ) Poqo !!q a{l) 
- pq 
n 

(24.31a) 
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EXAMPLE 24.13 Estimation of Power in a Two-Tailed Binomial Test, 
Using the Normal Approximation 

To test Ho: P = 0.5 versus HA: P ¢ 0.5, using ()( = 0.05 (so ZO.OS(2) = 1.9600) and 
a sample size of 50, when P in the population is actually 0.5: 
Employing Equation 24.31, 

power = P Z :s Po - P - Za(2)~POqO 
~ pq 

+ P Z ~ Po - P + Z ~ Poqo 
- pq ~q a(2) 

n 

= P Z:s 0.5 - 0.4 Z 
1(0.4)(0.6) - a(2) 

\j 50 

+ P Z ~ 0.5 - 0.4 + Z 
1 (0.4)( 0.6) a(2) 

\j 50 

= P[Z :s 1.4434 - (1.9600)(1.0206)] 

(0.5 )(0.5) 

(0.4 )(0.6) 

(0.5)(0.5) 

(0.4 )(0.6) 

+ P[ Z ~ 1.4434 + (1.9600)( 1.0206)] 

= P[Z :s 1.4434 - 2.0004] + P[Z :s 1.4434 + 2.0004] 

= P[Z :s -0.56] + P[Z ~ 3.44] = P[Z ~ 0.56] + P[Z ~ 3.44] 

= 0.29 + 0.00 = 0.29. 

and for the one-tailed hypotheses, Ho: P ~ Po versus H A: P < Po, 

power = P Z '" PJif - Z.( I I) PM. . 
pq pq 
n 

(24.31b) 

(c) Sample Size Required and Minimum Detectable Difference. Prior to designing 
an experiment, an estimate of the needed sample size may be obtained by specifying 
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a and the minimum difference between Po and P that is desired to be detected with a 
given power. 

If P is not very near 0 or 1. this may be done with a normal approximation, 
with the understanding that this will result only in a rough estimate. Depending 
upon the hypothesis to be tested, Equation 24.31, 24.31a, or 24.31b may be used 
to estimate power for any sample size (Il) that appears to be a reasonable guess. 
If the calculated power is less than desired, then the calculation is repeated with a 
larger n; if it is greater than that desired, the calculation is repeated with a smaller 
n. This repetitive process (called iteration) is performed until the specified power is 
obtained from the equation. at which point n is the estimate of the required sample 
size. 

An estimate of the required n may be obtained without iteration, when one-tailed 
testing is to be performed. Equations 24.31 a and 24.31 b can be rearranged as follows 
(Simonoff, 2003, 59-60): 

For Ho: P ~ p() versus HA: P > Po. 

n = (Za( I).;poqii - ZP( I ),jiiq)2 
p() - I' 

and for Ho: P ~ Po versus HA: P < Po. 

n = (Za( l)..;poqo + ZP( I) .JPli)2 
po - P 

(24.32) 

(24.32a) 

Levin and Chen (1999) have shown that these two equations provide values of n that 
tend to be underestimates. and they present estimates that are often better. 

If P is not very near 0 or 1. we can specify a. power, and n, and employ iteration 
to obtain a rough estimate of the smallest difference between Po and P that can be 
detected in a future experiment. 

A reasonable guess of this minimum detectable difference, Po - p. may be inserted 
into Equation 24.31, 24.31a. or 24.31b (depending upon the hypothesis to be tested), 
and the calculated power is then examined. If the power is less than that specified. then 
the calculation is performed again, using a larger value of Po - p: if the calculated 
power is greater than the specified power, the computation is performed again, 
using a smaller p() - p. This iterative process, involving increasing or decreasing 
Po - P in the equation, is repeated until the desired power is achieved, at which 
point the po - p used to calculate that power is the minimum detectable difference 
sought. 

Or, to estimate the minimum detectable difference for one-tailed testing, either 
Equation 24.32 or 24.32a (depending upon the hypotheses) may be rearranged to give 

_ Za( 1).JiiQliO - ZP( I ) .JPli 
p() - P - .;n . (24.33) 

or 
_ Za( I).;poqo + Z{J( I) .JPli 

p() - P - ../ii . (24.33a) 

respectively. 
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1.8 CONFIDENCE LIMITS FOR A POPULATION PROPORTION 
I 

Confidence intervals for the binomial parameter, p, can be calculated by a very large 
number of methods.* Among them are the following: 

(a) Clopper-Pearson Interval. A confidence interval for p may be computed (Agresti 
and Coull, 1998; Bliss, 1967: 199-201; Brownlee, 1965: 148-149; Fleiss. Levin. and 

. Paik. 2003: 25) using a relationship between the F distribution and the binomial 
distribution (Clopper and Pearson, 1934). As demonstrated in Example 24.14a. the 
lower confidence limit for p is 

L) = __________ X ________ __ 
X + (n - X + 1 )Fa (2)"'I,"1 • 

(24.34) 

where v) = 2(n - X + 1) and V2 = 2X. And the upper confidence limit for pis 

(X + 1)Fa(2).vi.vi 
L2 = --------:........:.---

n - X + (X + 1 )Fa(2).vj."2 
(24.35) 

with ") = 2( X + 1). which is the same as V2 + 2. and lIZ = 2( n X). which is 
equal to ,,) - 2. 

The interval specified by L) and L2 is one of many referred to as an "exact" 
confidence interval. because it is based upon an exact distribution (the binomial 
distribution) and not upon an approximation of a distribution. But it is not exact in 
the sense of specifying an interval that includes p with a probability of exactly 1 - a. 
Indeed, the aforementioned interval includes p with a probability of at least I-a. 
and the probability might be much greater than 1 - a. (So a confidence interval 
calculated in this fashion using a = 0.05. such as in Example 24.14a. will contain p 
with a probability of 95% or greater.) Because this interval tends to be larger than 
necessary for 1 - a confidence. it is said to be a conservative confidence interval 
(although the conservatism is less when 11 is large). 

(b) Wald Interval. This commonly encountered approximation for the confidence 
interval. based upon the normal distribution. t is shown in Exercise 24.14b: 

A pq ~
A 

P ± Zer(2) --; . (24.36) 

But this approximation can yield unsatisfactory results, especially when p is near 0 
or 1 or when 11 is small. (Although the approximation improves somewhat as 11 or pq 
increases. it still performs less well than the method discussed in Section 24.8c.) 

One problem with this confidence interval is that it overestimates the precision 
of estimating p (and thus is said to be "liberal." That is. the interval includes pless 

*Many of these are discussed by Agresti and Coull (1998); Blyth (1986); Bohning (1994); Brown. 
Cai. and DasGupta (2002); Fujino (19HO); Newcombe (199Ha); and Vollset (1993). 

tSrownlec (1965: 136) credits Abraham de Moivre as the first to demonstrate. in 1733. the 
approximation of the binomial distribution by the normal distribution. Agresti (2002: 15) refers to 
this as one of the first confidence intervals proposed for any parameter. citing Laplace (IHI2: 283). 

prakash
Rectangle
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EXAMPLE 24.14 Determination of 95% Confidence Interval for the Bino-
mial Population Parameter, p 

One hundred fifty birds were randomly collected from a popUlation, and there 
were 65 females in the sample. What proportion of the population is female? 

n = 150, X = 65 

~ X 65 ~ ~ 
P = - = - = 0.4333 q = 1 - P = 1 - 0.4333 = 0.5667 

n 150 ' 
(a) The Clopper. Pearson Confidence Interval: 

For the lower 95% confidence limit. 

"1 =2(11 - X + 1) =2(150 - 65 + 1) = 172 

"2 = 2X = 2(65) = 130 

FO.05(2).I72.130 :::::: FO.05(2).I40.120 = 1.42 

LI = X 
X + (n - X + 1 )FO.05(2).172.130 

:::::: 65 = 0.347. 
65 + (150 - 65 + 1 )(1.42) 

For the upper 95% confidence limit. 

"1 = 2( X + 1) = 2( 65 + 1) = 132 

or"l = "2 + 2 = 130 + 2 = 132 

"2 = 2(n - X) = 2(150 - 65) = 170 

or"2 ="1 - 2 = 172 - 2 = 170 

FO.05(2).132.170 :::::: FO.05(2).120.160 = 1.39 

(X + 1 )FO.05(2).132.170 
L2= ------------~~-------

n - X + (X + I )FO.05(2).132.170 

:::::: (65 + 1)(1.39) = 0.519. 
150 - 65 + (65 + 1)( 1.39) 

Therefore, we can state the 95% confidence interval as 

P(O.347 =::; p =::; 0.519) = 0.95, 

which is to say that there is 95% confidence that the interval between 0.347 and 
0.519 includes the population parameter p. 
Note: In this example, the required critical values of F have degrees of freedom 
(172 and 130 for LI, and 132 and 170 for L2) that are not in Appendix Table B.4. 
So the next lower available degrees of freedom were used. which is generally an 
acceptable procedure. Exact critical values from an appropriate computer program 
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are FO.05(2).J72.130 = 1.387 and FO.05(2).132.170 = 1.376, yielding L\ = 0.353 and 
L2 = 0.514, which are results very similar to those just given. 

(b) The Wald Confidence Interval: 

ZO.1I5( 2) = 1.9600 

A pq f!A 

P ± Za(2) -;; 

= 0.4333 ± 1. 9600~ (0.4333)( 0.5667) = 0.4333 ± 0.0793 
150 

L\ = 0.354, L2 = 0.513 

(c) The Adjusted Wald Confidence Interval: 

Z~.05(2) = 1.96002 = 3.8416; Z~.05(2/2 = 1.96002/2 = 1.9208 

adjusted X is X = X + Z5.115(2/2 = 65 + 1.9208 = 66.9208 

adjusted n is n = n + Z~.05(2) = 150 + 3.8416 = 153.8416 

adjusted pis p = X = 66.9208 = 0.4350. q = 0.5650 
Ii 153.8416 

95% confidence interval for pis p ± ZO.05(2).;e/ 

= 0.4350 ± 1.9600 /( 0.4350)( 0.5650) = 0.4350 ± 0.0783 
" 153.8416 

L\ = 0.357, L2 = 0.513 

than 1 - a of the time (e.g., less than 95% of the time when a = 0.05). Another 
objection is that the calculated confidence interval is always symmetrical around p 
(that is, it has a lower limit as far from p as the upper limit is), although a binomial 
distribution is skewed (unless p = 0.50; see Figure 24.1). This forced symmetry can 
result in a calculated L\ that is less than 0 or an L2 greater than 1, which would be 
unreasonable. Also, when p is 0 or 1, no confidence interval is calculable; the upper 
and lower confidence limits are both calculated to be p. 

Though it is commonly encountered, many authors· have noted serious disad­
vantages of Equation 24.36 (even with application of a continuity correction), have 
strongly discouraged its use. and have discussed some approximations that perform 
much better. 

(c) Adjusted Wald Interval. A very simple, and very good. modification of the Wald 
interval (called an "adjusted Wald interval" by Agresti and Caffo, 2000, and Agresti 

·See. for example: Agresti and Caffo (2000): Agresti and Coull (1998): Blyth (1986): Brown. 
Cai, and DasGupta (20Ot. 2002); Fujino (1980); Newcombe (1998a); Schader and Schmid (1990): 
and Vollset (1993). Fleiss. Levin. and Paik (2003: 28-29) present a normal approximation more 
complicated than. but apparently more accurate than, Equation 24.36. 
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and Coull, 1998) substitutes· X = X + Z~(2/2 for X and n = n + Z~(2) for n in 
Equation 24.36,t as shown in Example 24.14c; then, p = X In, and 'if = 1 - p. 

The probability of this confidence interval containing the population parameter is 
much closer to 1 - a than the intervals in Sections 28.4a and 28.4b, although that 
probability may be a little below or a little above 1 - a in individual cases. And 
neither L, nor L2 is as likely as with the nonadjusted Wald interval to appear less 
than 0 or greater than 1. 

(d) Which Interval to Use. Becausen is fairly large in Example 24.14, andp andqare 
close to 0.5, the confidence limits do not vary appreciably among the aforementioned 
procedures. However, the following general guidelines emerge from the many studies 
performed on confidence intervals for the binomial parameter, p, although there is 
not unanimity of opinion: 

• If it is desired that there is probability of at least 1 - a that the interval from 
L, to L2 includes p, even if the interval might be very conservative (i.e., the 
probability might be much greater than 1 - a), then the Clopper-Pearson 
interval (Section 24.8a) should be used. 

• If it is desired that the probability is close to 1 - a that the interval from 
L, to L2 includes p. even though it might be either a little above or a little 
below 1 - a, then the adjusted Wald interval (Section 24.8c) is preferable. 
Another approximation is that of Wilson (1927) and is sometimes called the 
"score interval" (with different, but equivalent, formulas given by Agresti and 
Coull, 2000 and Newcombe, 1998a); and it yields results similar to those of the 
adjusted Wald interval. 

• The nonadjusted Wald interval (Section 24.8b) should not be used. 
• None of these confidence-interval calculations works acceptably when X = 0 

(that is, when p = 0) or when X = 1 (that is, when p = 1). The following 
exact confidence limits (Blyth, 1986; Fleiss, Levin. and Paik. 2003: 23; Sprent 
and Smeeton, 2001: 81; Vollset, 1993) should be used in those circumstances*: 

IfX=O: L, = Oand L2 = 1 - '~a(l) (24.37) 

IfX=l: L, = '~a( 1) and L2 = 1. (24.38) 

One-tailed confidence intervals can be determined via the considerations presented 
in Sections 6.4a and 7.3a and the use of a one-tailed critical value for For Z. 

*The symbol above the X and n is called a tilde (pronounced "til-duh"); X is read as "X tilde" 
and n as "" tilde." 

tFor a 95% confidence interval, Za(2) = 1.9600, Z~.05(2) = 3.8416. and Zij.05(2/2 = 1.9208; so 
it is often recommended to simply use X + 2 in place of X and n + 4 in place of n. which yields 
very good results. For the data of Example 24.14, this would give the same confidence limits as in 
Example 24.\4c: L, = 0.357 and L2 = 0.513. 

*The notation W represents the nth root of X, which may also be written as X'/II, so 'Va( 1) 

may be seen written as [a( 1 )]'/11. It can also be noted that negative exponents represent reciprocals: 
X -0 = \ / Xu. This modern notation for fractional and negative powers was introduced by Sir Isaac 
Newton (1642-1727) in 1676, although the notion of fractional powers was conceived much earlier, 
such as by French writer Nicole Oresme (ca. 1323-1382) (Cajori. 1928-1929: Vol. I: 91.354,355). 
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There are computer programs and published tables that provide confidence limits 
for p. but users of them should be confident in the computational method employed 
to obtain the results. 

(e) Confidence Limits with Finite Populations. It is usually considered that the 
size of a sampled population (N) is very much larger than the size of the sample 
(n). as if the population size was infinite. If. however. n is large compared to N 
(Le .• the sample is a large portion of the population). it is said that the population 
is finite. As n approaches N. the estimation of p becomes more accurate, and the 
calculation of confidence limits by the adjusted Wald method (or by the WaJd method) 
improves greatly by converting the lower confidence limit. L I. to ( L 1 )c and the upper 
confidence limit. L2. to (L2 )c. as follows (Burstein. 1975): 

(Ld, ~ X ~ 0.5 _ (X ~ 0.5 - LI)~Z = ~ (24.39) 

(L,), ~ X +//'if + (L' - X +//'if)~Z = 7. (24.40) 

The more (N - n)/ (N - 1) differs from 1.0, the more the confidence limits from 
Equations 24.39 and 24.40 will be preferable to those that do not consider the sample 
population to be finite. 

(f) Sample Size Requirements. A researcher may wish to estimate. for a given 
P. how large a sample is necessary to produce a confidence interval of a specified 
width. 

Section 24.8b presents a procedure (although often a crude one) for calculating a 
confidence interval for p when p is not close to 0 or 1. That normal approximation can 
be employed. with p and ij obtained from an existing set of data, to provide a rough 
estimate of the number of data (n) that a future sample from the same population 
must contain to obtain a confidence interval where both LI and L2 are at a designated 
distance. S. from p: 

(24.41) 

(Cochran. 1977: 75-76; Hollander and Wolfe, 1999: 30), where ZO.05(2) is a two-tailed 
normal deviate. If we do not have an estimate of p. then a conservative estimate of 
the required 11 can be obtained by inserting 0.5 for p and for q in Equation 24.41. 

If the sample size, fl. is not a small portion of the population size, N. then the 
required sample size is smaller than the n determined by Equation 24.41 and can be 
estimated as n 

(24.42) m= ------------
1 + (n - 1)/N 

(Cochran, 1977: 75-76). 
For the confidence intervals of Sections 24.8a and 24.8c, a much better estimate 

of the needed sample size may be obtained by iteration. For a given p, a value of 
n may be proposed, from Equation 24.41 or otherwise. (Equation 24.41 will yield 
an underestimate of n.) Then the confidence limits are calculated. If the confidence 
interval is wider than desired. perform the calculation again with a larger n; and if it is 
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narrower than desired. try again with a smaller n. This process can be repeated unJ 
an estimate of the required n is obtained for the interval width desired. ! 

24.9 CONFIDENCE INTERVAL FOR A POPULATION MEDIAN 

The confidence limits for a population median* may be obtained by considering a 
binomial distribution with p = 0.5. The procedure thus is related to the binomial 
and sign tests in earlier sections of this chapter and may conveniently use Appendix 
Table B.27. That table gives Co.,,, and from this we can state the confidence interval 
for a median to be 

P( Xi s:; population median s:; Xi) ~ 1 - a, (24.43) 

where 

i = C,r(2).fI + 1 (24.44) 

and 

j = n - Cu (2).11 (24.45) 

(e.g., MacKinnon, 1964), if the data are arranged in order of magnitude (so that Xi is 
the smallest measurement and Xi is the largest). The confidence limits, therefore, are 
LI = Xi and L2 = Xi' Because of the discreteness of the binomial distribution, the 
confidence will typically be a little greater than the 1 - a specified. This procedure 
is demonstrated in Example 24.14a. 

EXAMPLE 24.14a A Confidence Interval for a Median 

Let us determine a 95% confidence interval for the median of the population from 
which each of the two sets of data in Example 3.3 came, where the population 
median was estimated to be 40 mo for species A and 52 mo for species B. 

For species A,n = 9, so (from Appendix Table B.27) CO.05(2).9 = 1 and 
n - CO.05(2).9 = 9 - 1 = 8. The confidence limits are, therefore. Xi and Xi, where 
i = 1 + 1 = 2 and j = 8: and we can state 

P(X2 s:; population median s:; Xll) ~ 0.95 

or 

P(36 mo s:; population median s:; 43 mo) ~ 0.95. 

For species B,n = to, and Appendix Table B.27 informs us that CO.05(2).1O = 1; 
therefore. n - CO.05(2).IO = 10 - 1 = 9. The confidence limits are Xi and Xj, 
where i = 1 + 1 = 2 and j = 9: thus, 

P(X2 s:; population median s:;X9) ~ 0.95. 

or 

P(36 mo s:; popUlation median s:; 69 mo) ~ 0.95. 

Hutson (1999) discussed calculation of confidence intervals for quantiles other 
than the median. 

*Such confidence intervals were first discussed by William R. Thompson in 1936 (Noether, 
1984). 

prakash
Rectangle
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(a) A Large-Sample Approximation. For samples larger than appearing in Appendix 
Table B.27. an excellent approximation of the lower confidence limit (based on 
Hollander and Wolfe, 1999: Section 3.6), is derived from the normal distribution as 

(24.46) 

where 
. n - ZO'(2) y'n 
1=---:"""":""-

2 
(24.47) 

rounded to the nearest integer, and ZO'(2) is the two-tailed normal deviate read from 
Appendix Table B.2. (Recall that ZO'(2) = 10'(2).00' and so may be read from the last 
line of Appendix Table B.3.) The upper confidence limit is 

(24.48) 

By this method we approximate a confidence interval for the population median with 
confidence ~ 1 - a. 

TESTING FOR DIFFERENCE BETWEEN TWO PROPORTIONS 

Two proportions may be compared by casting the underlying data in a 2 x 2 
contingency table and considering that one margin of the table is fixed (Section 23.3b). 
For example. in Example 23.3 the column totals (the total data for each species) are 
fixed and the proportion of mice afflicted with the parasite are PI = 18/24 = 0.75 
for species 1 and P2 = 10/25 = 0.40 for species 2. The null hypothesis (Ho: PI = P2) 
may be tested using the normal distribution (as shown in Example 24.15), by 
computing 

Here. 15 is the proportion of parasitized mice obtained by pooling all n data: 

or. equivalently, as 

andq = 1 - p. 

XI + X2 
nl + n2 

nlPI + n2P2 
nl + n2 

(24.49) 

(24.50) 

(24.51) 

A null hypothesis may propose a difference other than zero between two pro­
portions. With po the specified difference, Ho: I PI - P2 I = Po may be tested by 
replacing the numerator* of Equation 24.49 with IpI - P21 - PO. 

One-tailed testing is also possible (with Po = 0 or Po #; 0) and is effected in a fashion 
analogous to that used for testing difference between two means (Section 8.1a). This 
is demonstrated in Example 24.15b. where the alternate hypothesis is that the parasite 
infects a higher proportion of fish in species 1 than in species 2, and also in Example 
24.l5c. 

*If Pu is not zero in Hu and HA. in some cases a somewhat more powerful test has been 
reported if the denominator of Equation 24.49 is replaced hy Jplql/nl + hll2/n2 (Agresti. 2002: 
77: Eberhardt and Fligncr. 1977). 
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EXAMPLE 24.15 Testing for Difference Between Two Proportions 

Using the data of Example 23.3, 

PI = XI/nl = 18/24 = 0.75 

P2 = X2/n2 = 10/25 = 0.40 

15 = (18 + 10)/(24 + 25) = 28/49 = 0.5714 

q = 1 - 0.5714 = 0.4286. 

(a) The two-tailed test for Ho: PI = pz versus HA: PI ::1= pz 
A A 

Z = ----:P=I=-=P::::2== 
pq + pq 
III 112 

0.75 - 0.40 
/(0.5714)(0.4286) + (0.5714)(0.4286) 
~ 24 25 

0.35 = 2.4752 
JO.1414 

= 

For a = 0.05, ZO.05(2) = 1.9600 and Ho is rejected. 

0.01 < P < 0.02 [P = 0.013] 

(b) The one-tailed testfor Ho: PI :s;; P2 versus H A: PI > P2 

For a = 0.05, ZO.05( I) = 1.6449. Because Z > 1.6449 and the dif­
ference (0.35) is in the direction of the alternate hypothesis, Ho is 
rejected. 

0.005 < P < 0.01 [P = 0.007] 

(c) The one-tailed test for Ho: PI ~ P2 versus HA: PI < P2 

For a = 0.05, ZO.05( I) = 1.6449. Because Z > 1.6449 but the difference 
(0.35) is not in the direction of the alternate hypothesis, Ho is not 
rejected. 

Important note: Three pairs of hypotheses are tested in this example. This is 
done only for demonstration of the test, for in practice it would be proper 
to test only one of these pairs of hypotheses for a given set of data. The 
decision of which one of the three pairs of hypotheses to use should be made 
on the basis of the biological question being asked and is to be made prior to 
the collection of the data. 

If the preceding hypotheses pertain to a sample of n I proportions and a second 
sample of n2 proportions, then the t test of Section 8.1 can be used in conjunction 
with the data transformation of Section 13.3. 
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Ill1 CONFIDENCE LIMITS FOR THE DIFFERENCE BETWEEN PROPORTIONS 

When a proportion <PI) is obtained by sampling one population, and a proportion 
<P2) is from another population, confidence limits for the difference between the two 
population proportions (PI - pz) can be calculated by many methods.* The most 
common are these: 

(a) Wald Interval. A confidence interval may be expressed in a fashion analogous 
to the Wald interval for a single proportion (which is discussed in Section 24.8b): 

(24.52) 

where PI = XI/nl,pz = XZ/1l2,QI = 1 - pAl' and qAZ = 1 - P2. 
Though commonly used, this calculation of confidence limits yields poor results. 

even when sample sizes are large. These confidence limits include PI - P2 less than 
1 - a of the time (e.g .• less than 95% of the time when expressing a 95% confidence 
interval). and thus they are said to be "liberal." The confidence limits include PI - P2 
much less than 1 - a of the time when P I and P2 are near 0 or 1. Also, Eq uation 24.52 
produces confidence limits that are always symmetrical around PI - P2, whereas 
(unless PI - P2 = 0.50) the distance between the lower confidence limit (Ld and 
PI - P2 should be different than the distance between PI - PZ and the upper limit 
(Lz). This unrealistic symmetry can produce a calculated LI that is less than 0 or 
greater than 1. which would be an unreasonable result. Tn addition, when both PI 
and PZ are either 0 or 1, a confidence interval cannot be calculated by this equation. 
Therefore, this calculation (as is the case of Equation 24.36 in Section 24.8b) generally 
is not recommended. 

(b) Adjusted Wald Intenal. Agresti and Caffo (2000) have shown that it is far 
preferable to employ an "adjusted" Wald interval (analogous to that in the one­
sample situation of Section 24.8c). where Equation 24.52 is employed by substitutingt 

Xi = Xi + Z~(2)/4 for Xi and ff; = niZ~(2/2for IIi. As shown in Example 24.15a, the 

adjusted confidence interval is obtained by using Pi = Xi/Iii in place of Pi in Equation 
24.52. This adjusted Wald confidence interval avoids the undesirable severe liberalism 
obtainable with the unadjusted interval, although it can be slightly conservative (i.e., 
have a probability of a little greater than 1 - a of containing PI - pz) when PI and 
PZ are both near 0 or 1. 

Newcombe (1998b) discussed a confidence interval that is a modification of the 
one-sample interval based upon Wilson (1927) and mentioned in Section 24.8d. It is 
said to produce results similar to those of the adjusted Wald interval. 

(c) Sample Size Requirements. If the statistics PI and P2 are obtained from sampling 
two popUlations, it may be desired to estimate how many data must be collected 
from those populations to calculate a confidence interval of specified width for 
PI - P2· The following may be derived from the calculation of the Wald interval 

• A large number of them arc discussed by Agresti and Caffo (2000). Agresti and Coull (1998). 
Blyth (l986). Hauck and Anderson (1986). Newcombe (I 998b). and Upton (1982). 

tFora95%confidenceintcrvaI.Z~(2}/4 = (1.9600)2/4 = 0.9604andZ~(2)/2 = (1.96(X»2/2 = 
1.9208. so using Xi + I in place of Xi and ni + 2 in place of nj yields very good results. 
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EXAMPLE 24.1 Sa Confidence Interval for the Difference Between Two 
Population Proportions 

For the 95% adjusted Wald confidence interval using the data of Example 23.3, 

ZO.05(Z) = 1.9600, 

so (1.96oo)z/4 = 0.9604 and (1.9600)z/2 = 1.9208 

XI = 18,50 XI = 18 + 0.9604 = 18.9604 

Xz = to, so Xz = to + 0.9604 = 10.9604 

nl = 24,sonl = 24 + 1.9208 = 25.9208 

nz = 25,sonz = 25 + 1.9208 = 26.9208 

PI = 18.9604/25.9208 = 0.7315 and til = 1 - 0.7315 = 0.2685 

pz = 10.9604/26.9208 = 0.4071 and 711 = 1 - 0.4071 = 0.5929 

Plql + PZqZ 
nl nz 

95% CI for PI - pz = PI - pz ± Zo.OS(Z) 

= 0.7315 _ 0.4071 ± 1.9600 1(0.7315)(0.2685) + (0.4071 )(0.5929) 
\j 25.9208 26.9208 

= 0.3244 ± 1.96ooJO.0076 + 0.0090 = 0.3244 ± 0.2525 

LI = 0.07: Lz = 0.58. 

(Section 24.11 a) for equal sample sizes (n = n I = nz): 

n = ZZ [Plql + PZqz] 
a(Z) (~ ~)z· 

PI - pz 
(24.53) 

This is an underestimate of the number of data needed, and a better estimate 
may be obtained by iteration, using the adjusted Wald interval (Section 24.11b). For 
the given PI and pz, a speculated value of n is inserted into the computation of the 
adjusted Wald interval in place of nl and nz. If the calculated confidence interval is 
wider than desired, the adjusted Wald calculation is performed again with a larger n; 
if it is narrower than desired, the calculation is executed with a smaller n. This process 
is repeated until n is obtained for the interval width desired. 

The iteration using the adjusted Wald equation may also be performed with one of 
the future sample sizes specified, in which case the process estimates the size needed 
for the other sample. 

24.12 POWER, DETECTABLE DIFFERENCE, AND SAMPLE SIZE IN TESTING DIFFERENCE 
BETWEEN TWO PROPORTIONS 

(a) Power of the Test. If the test of Ho: PI = pz versus HA: PI #- pz is to be 
performed at the a significance level, with nl data in sample 1 and nz data in sample 
2, and if the two samples come from populations actually having proportions of PI 
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and P2, respectively. then an estimate of power is 

[ 
-Za(2)~pq/nl + pq/n2 - (PI - P2)] 

power = P Z ~ ---""":'--!..!---r=======---
~Plql/nl + P2q2/n2 

+p [Z ~ Za(2)f,iq/nt + pq/n2 - (PI 

~Plql/nt + P2q2/n2 

(Marascuilo and McSweeney. 1977: 111). where 

and 

_ nlPI + 1l2P2 p= 
nl + 112 

ql = 1 - PI. 

q2 = 1 - P2, 

q = 1 - p. 

The calculation is demonstrated in Example 24.16. 

- P'}] 
(24.54) 

(24.55) 

(24.56) 

(24.57) 

(24.58) 

For the one-tailed test of Ho: PI ~ P2 versus HA: PI < P2. the estimated power is 

P [Z -Za(I)~pq/nt + pQ/n2 - (PI - P2)] power = ~ ; 
~Plql/nl + P2Q2/n2 

and for the one-tailed hypotheses. Ho: PI ~ P2 versus HA: PI > P2. 

- P [z:> Za(l)~pQ/nl + pq/n2 - (PI - P2)] power - - . 
~Ptql/nl + P2Q2/n2 

(24.59) 

(24.60) 

These power computations are based on approximations to the Fisher exact test 
(Section 24.16) and tend to produce a conservative result. That is. the power is likely 
to be greater than that ca1culated. 

(b) Sample Size Required and Minimum Detectable Dift'erence. Estimating the 
sample size needed in a future comparison of two proportions, with a specified 
power, has been discussed by several authors.· using a normal approximation. Such 
an estimate may also be obtained by iteration analogous to that of Section 24.7c. 

·See. for example. Casagrande. Pike. and Smith (1978): Cochran and Cox (1957: 27): and 
Fleiss. Levin. and Paik (2003: 72). Also. Hornick and Overall (191«) reported that the following 
computation of Cochran and Cox (1957: 27) yields good results and appears not to have a tendency 
to be conservative: 

(24.61) 

where the arcsines are expressed in radians. 
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EXAMPLE 24.16 Estimation of Power in a Two-Tailed Test Comparing 
Two Proportions 

We propose to test HI): PI = P2 versus HA: PI * P2, with a = 0.05, nl = 50, and 
n2 = 45, where in the sampled populations PI = 0.75 and P2 = 0.50. The power 
of the test can be estimated as follows. 

We first compute (by Equation 24.55): 

Then 

p = (50)(0.75) + (45)(0.50) = 0.6316 and q = 1 - P = 0.3684. 
50 + 45 

Jiq = (0.6316)(0.3684) = 0.0047; Ji q = 0.0052; 
nz nl 50 

Plql = (0.75)(0.25) = 0.0038; 
n\ 50 

P2q2 = (0.50)(0.50) = 0.0056; 
"2 45 

ZO.05( 2) = 1.9600; 

and, using Equation 24.64. 

P [z -1.9600JO.0047 + 0.0052 - (0.75 - 0.50)] 
power = :5; -------,;;=~;:::=::=~=====:~-----'-

JO.0038 + 0.0056 

+ P [z ~ 1.9600JO.0047 + 0.0052 - (0.75 - 0.50)] 
JO.0038 + 0.0056 

== P(Z :5 -4.59) + P(Z ~ -0.57} 

= P(Z ~ -4.59} + [1 - P(Z ~ 0.57)] 

== 0.0000 + [1.0000 - 0.2843J 

== 0.72. 

The estimation procedure uses Equation 24.54, 24.59, or 24.60, depending upon 
the null hypothesis to be tested. The power is thus determined for the difference 
(PI - P2) desired to be detected between two population proportions. This is done 
using equal sample sizes (nl == nz) that are a reasonable guess of the sample size that 
is required from each of the two populations. If the power thus calculated is less than 
desired, then the calculation is repeated using a larger sample size. If the calculated 
power is greater than the desired power, the computation is performed again but 
using a smaller sample size. Such iterative calculations are repeated until the specified 
power has been obtained, and the last" used in the calculation is the estimate of the 
sample size required in each of the two samples. 

The samples from the two populations should be of the same size (n\ = "2) for the 
desired power to be calculated with the fewest total number of data (n\ + n2). Fleiss, 
Tytun, and Ury (1980). Levin and Chen (1999), and Ury and Fleiss (1980) discuss the 
estimation of III and"2 when acquiring equal sample sizes is not practical. 
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In a similar manner. n. lX. and power may be specified. and the minimum detectable 
difference (PI - P2) may be estimated. This is done by iteration. using Equation 
24.54.24.59. or 24.60. depending upon the null hypothesis to be tested. A reasonable 
guess of the minimum detectable difference can be entered into the equation and. 
if the calculated power is less than that desired. the computation is repeated with a 
larger (PI - P2); if the calculated power is greater than that desired. the computation 
is repeated by inserting a smaller PI - P2 into the equation; and when the desired 
power is obtained from the equation. the PI - P2 last used in the calculation is an 
expression of the estimated minimum detectable difference. 

Ury (1982) described a procedure for estimating one of the two population 
proportions if Il. lX, the desired power. and the other population proportion are 
specified. 

!4.13 COMPARING MORE THAN TWO PROPORTIONS 

Comparison of proportions may be done by contingency-table analysis. For example. 
the null hypothesis of Example 23.1 could be stated as, "The proportions of males 
and females are the same among individuals of each of the four hair colors." 

Alternatively, an approximation related to the normal approximation is applicable 
(if 11 is large and neither P nor q is very near I). Using this approximation, one tests 
Ho: PI = P2 = ... = Pk against the alternative hypothesis that all k proportions are 
not the same. as 

(Pazer and Swanson. 1972: 187-190). Here, 

k 

LXi 
- ;=1 
p= -k-

L Il; 
;= I 

(24.62) 

(24.63) 

is a pooled proportion, q = 1 - q, and X2 has k - 1 degrees of freedom. 
Example 24.17 demonstrates this procedure. which is equivalent to X2 testing of 
a contingency table with two rows (or two columns). 

We can instead test whether k p's are equal not only to each other but to a specified 
constant, Po (Le., H,,: PI = P2 = ... = Pk = Po). This is done by computing 

2 ~ (Xi - llipo)2 
X=£.J ' 

;= I niPo(1 - po) 
(24.64) 

which is then compared to the critical value of X2 for k (rather than k - 1) degrees of 
freedom (Kulkarni and Shah. 1995. who also discuss one-tailed testing of Ho, where 
HA is that Pi "# Po for at least one i). 

If each of the several proportions to be compared to each other is the mean of a set 
of proportions, then we can use the multisample testing procedures of Chapters 10. 
11, 12, 14, and 15. To do so, the individual data should be transformed as suggested 
in Section 13.3, preferably by Equation 13.7 or 13.8, if possible. 
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EXAMPLE 24.17 
pie 23.1 

Comparing Four Proportions, Using the Data of Exam-

A 32 A 

nl = 87, Xl = 32, PI = - = 0.368, ql = 0.632 
87 

A 43 A 

n2 = 108 X2 = 43 p, = - = 0.398 q2 = 0.602 , ,- 108 ' 

A 16 A 

n3 = 80,X3 = 16. P3 = - = 0.200, q3 = 0.800 
80 

A 9 A 

n4 = 25, X4 = 9. P4 = - = 0.360, q4 = 0.640 
25 

__ ~Xi _ 32 + 43 + 16 + 9 _ 100 _ 1 
P - ~ni - 87 + 108 + 80 + 25 - 300 - 3 
- 1 - 2 q= -P=-

3 

2 _ ~ (Xi - niP)2 
X - ~ __ 

nipq 

_ [132 - (87) mr 
- (87) (~) (~) 

[9 - (25) (Dr 
+ 

(25) (~) (~) 

+ 
[43 - (108) (Dr 

(108) (~) (~) 

= 0.4655 + 2.0417 + 6.4000 + 0.0800 

= 8.987 (which is the same X2 as in Example 23.1) 

v=k-l=4-J=3 

X5.05.3 = 7.815 
Therefore. reject Ho. 

0.025 < P < 0.05 [P = 0.029] 

[16 - (SO) mr 
+ 

(80) (~) (~) 

Note how the calculated X2 compares with that in Example 23.1; the two pro­
cedures yield the same results for contingency tables with two rows or two 
columns. 

Finally, it should be noted that comparing several p's yields the same results as . 
one compared the associated q's. 
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MULTIPLE COMPARISONS FOR PROPORTIONS 

(a) Comparisons of All Pairs of Proportions. If the null hypothesis Ho: PI = 
P2 = ... = Pk (see Section 24.13) is rejected, then we may desire to determine 
specifically which population proportions are different from which others. The 
following procedure (similar to that of Levy, 1975a) allows for testing analogous to 
the Tukey test introduced in Section 11.1. An angular transformation (Section 13.3) 
of each sample proportion is to be used. If p, but not X and n, is known, then 
Equation 13.5 may be used. If. however, X and n are known, then either Equation 13.7 
or 13.8 is preferable. (The latter two equations give similar results, except for small 
or large p. where Equation 13.8 is probably better.) 

As shown in Example 24.18, the multiple comparison procedure is similar to that 
in Chapter 11 (the Tukey test being in Section 11.1). The standard error for each 
comparison is, in degrees, * 

SE =) 820.70 
11 + 0.5 

(24.65) 

EXAMPLE 24.18 Tukey-Type Multiple Comparison Testing Among the 
Four Proportions of Example 24.17 

Samples ranked by proportion (i): 3 4 1 2 

Ranked sample proportions (Pi = Xi/ni): 16/80 9/25 32/87 43/108 
= 0.200 = 0.360 = 0.368 = 0.398 

Ranked transformed proportions 
(pi. in degrees): 26.85 37.18 37.42 39.18 

Comparison 
Bvs. A 

2 vs. 3 
2 vs. 4 

2 vs. I 
1 vs.3 

1 vs. 4 
4 vs. 3 

Difference 
P' p' B - A SE q QO.05.oo.4 

39.18 - 26.85 = 12.33 2.98 4.14 3.633 
39.18 - 37.18 = 2.00 4.46 0.45 3.633 

Do not test 
37.42 - 26.85 = 10.57 3.13 3.38 3.633 

Do not test 
Do not test 

Conclusion 

Reject Ho: P2 = P3 
Do not reject Ho: 

P2 = P4 

Do not reject Ho: 
PI = P3 

Overall conclusion: P4 = PI = P2 and P3 = P4 = PI, which is the kind of 
ambiguous result described at the end of Section 11.1. By chi-square analysis 
(Example 23.6) it was concluded that P3 * P4 = PI = P2; it is likely that the 
present method lacks power for this set of data. 

Equation 13.8 is used for the transformations. For sample 3. for example, 
X/(Il + 1) = 16/81 = 0.198 and (X + 1)/(n + 1) = 17/81 = 0.210, so 
pj = Harc~in JO.198 + arcsin JO.21O] = H26.4215 + 27.2747] = 26.848. 
If we use Appendix Table B.24 to obtain the two needed arcsines, we have 
pj = ~ [26.42 + 27.27] = 26.845. 

*The constant 820.70 square degrees results from (180" /2rr)2. which follows from the variances 
reported by Anscombe (1948) and Freeman and Tukey (1950). 



558 Chapter 24 Dichotomous Variables 

if the two samples being compared are the same size, or 

SE = 
410.35 

nA + 0.5 
+ 410.35 

nB + 0.5 

if they are not. The critical value is qa.oo.k (from Appendix Table B.5). 
Use of the normal approximation to the binomial is possible in multiple:-C()mlparlsoll. 

testing (e.g .. Marascuilo. 1971: 380-382); but the preceding procedure is preferable, 
even though it-and the methods to follow in this section-may lack desirable power. 

(b) Comparison of a Control Proportion to Each Other Proportion. A procedure 
analogous to the Dunnett test of Section 11.3 may be used as a multiple comparison 
test where instead of comparing all pairs of proportions we desire to compare one 
proportion (designated as the "control") to each of the others. Calling the control 
group B. and each other group. in turn, A, we compute the Dunnett test statistic: 

pi _ pi 
q = B A 

SE 
(24.67) 

Here, the proportions have been transformed as earlier in this section. and the 
appropriate standard error is 

SE = ) 1641.40 
n + 0.5 

if Samples A and B are the same size, or 

SE = 820.70 
tlA + 0.5 

+ 820.70 
nB + 0.5 

(24.68) 

(24.69) 

if nA * nB. The critical value is q~( I ).oo.p (from Appendix Table B.6) or q~(2),oop 
(from Appendix Table B.7) for one-tailed or two-tailed testing, respectively. 

(c) Multiple Contrasts Among Proportions. The Scheffe procedure for multiple 
contrasts among means (Section 11.4) may be adapted to proportions by using 
angular transformations as done earlier in this section. For each contrast, we calculate 

where 

~c;pi 
; 

S = "'------'-
SE 

SE = 820.70 ~ Cf 
j 11; + 0.5 

(24.70) 

(24.71) 

and Cj is a contrast coefficient as described in Section 11.4. For example. if we wished 
to testthe hypothesis Ho: (PI + P2 + P4 )/3 - P3 = 0, then CI = ~,C2 = ~. C3 = -1, 

I 
and C4 = 3' 
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TRENDS AMONG PROPORTIONS 

In a 2 x c contingency table (2 rows and c columns), the columns may have a natural 
quantitative sequence. For example, they may represent different ages. different 
lengths of time after a treatment, different sizes, different degrees of infection. or 
different intensities of a treatment. In Example 24.19, the columns represent three 
age classes of women. and the data are the frequencies with which the 104 women in 
the sample exhibit a particular skeletal condition. The chi-square contingency-table 
analysis of Section 23.1 tests the null hypothesis that the occurrence of this condition 
is independent of age class (Le., that the population proportion, p, of women with 
the condition is the same for all three age classes). It is seen, in Example 24.19a. that 
this hypothesis is rejected, so we conclude that in the sampled population there is a 
relationship between the two variables (age class and skeletal condition). 

EXAMPLE 24.19 Testing for Linear Trend in a 2 x 3 Contingency Table. 
The Data Are the Frequencies of Occurrence of a Skeletal Condition in 
Women. Tabulated by Age Class 

(a) 

Age cla.~s 

Young Medium Older Total 

Condition present 6 ]6 18 40 
Condition absent 22 28 14 64 

Total 28 44 32 ]04 .. 
0.2143 0.3636 0.5625 Pj 

Xj -1 0 1 

Comparison of proportions 

Ho: In the sampled population. the proportion of women with this condition 
is the same for all three age classes. 

HA : In the sampled population, the proportion of women with this condition 
is not the same for all three age classes. 

A A 

til = (40)(28)/104 = 10.7692, tJ2 = (40)(44)/104 = 16.9231.. .. , 
A 

/23 = (64)(28)/104 = 19.6923 

X2 = ± ± (f;j -.. hj )2 

i=lj=1 f;j 

= (6 - 10.7692)2 + 
10.7692 

(16 - 16.9231)2 (14 - 19.6923)2 + ... + 
16.9231 19.6923 

= 2.112] + 0.0504 + 2.6327 + 1.3200 + 0.0315 + 1.6454 

= 7.792] 

(b) Testfor trend 

Ho: In the sampled popUlation, there is a linear trend among these three 
age categories for the proportion of women with this condition. 
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H A : In the sampled population. there is not a linear trend among these 
three age categories for the proportion of women with this condition. 

( n~f\jXj - Rl~CjXj)2 
2 n }=\ }=\ 

X, = RIR2 • c ( c ) 2 

Total 

nj~CjxJ - ttCjXj 

{ 104[ ( 6)( - 1) + (16)( 0 ) + (18 )( 1 )] 

= 104 -40[(28)( -1) + (44)(0) + (32)(1)]}2 

( 40)( 64) • 1 04[ (28)( - 12) + (44)( 02) + (32) ( 12 )] 

- [( 28)( - 1) + (44)( 0) + (32)( 1 ) f 
= 0.04062. (1248 - 160 )2 

6240 - 16 
= (0.04062)( 190.1902) = 7.726 

Chi-square " p 

Linear trend 
Departure from 

X2 = 7.792 2 0.01 < P < 0.025 [P = 0.020J 
X~ = 7.726 1 

linear trend X~ = 0.066 0.75 < P < 0.90 [P = 0.80] 

In addition, we may ask whether the difference among the three age classes follows 
a linear trend; that is, whether there is either a greater occurrence of the condition 
of interest in women of greater age or a lesser occurrence with greater age. The 
question of linear trend in a 2 x 11 contingency table may be addressed by the method 
promoted by Armitage (1955. 1971: 363-365) and Armitage, Berry. and Matthews 
(2002: 504-509). To do so, the magnitudes of ages expressed by the age classes 
may be designated by consecutive equally spaced ordinal scores: X. For example, 
the "young," "medium." and "older" categories in the present example could be 
indicated by X's of 1, 2, and 3; or by 0, 1, and 2; or by - 1, 0, and 1; or by 0.5, I, 
and 1.5; or by 3, 5, and 7; and so on. The computation for trend is made easier if the 
scores are consecutive integers centered on zero, so scores of -1. 0, and 1 are used in 
Example 24.19. (If the number of columns, c. were 4, then X's such as - 2, -1. 1. and 
2, or 1,0,2, and 3 could be used.) 

The procedure divides the contingency-table chi-square into component parts, 
somewhat as sum-of-squares partitioning is done in analysis of variance. The chi· 
square of Equation 23.1 may be referred to as the total chi-square, a portion of which 
can be identified as being due to a linear trend: 

(njt,I1JXj - R'#,CjXj) ' 
chi-square for linear trend = X~ = _n_ (24.72) 

R\ R2 C ( (' ) 2 ' 
nLCjXJ - LCjXj 

j=\ j=l 
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and the remainder is identified as not being due to a linear trend: 

chi-square for departure from linear trend = ~ = X2 - X~. (24.73) 

Associated with these three chi-square values are degrees of freedom of c - 1 for Xl. 
1 for if and c - 2 for X~.* This testing for trend among proportions is more powerful 
than the chi-square test for difference among the c proportions, so a trend might be 
identified even if the latter chi-square test concludes no significant difference among 
the proportions. 

If, in Example 24.19, the data in the second column (16 and 28) were for older 
women and the data in the third column (18 and 14) were for medium-aged women, 
the total chi-square would have been the same, but xl would have been 0.899 
r P = 0.34], and it would have been concluded that there was no linear trend with age. 

In Example 24.19, the presence of a physical condition was analyzed in reference 
to an ordinal scale of measurement ("young," "medium," and "older"). In other situ­
ations, an interval or ratio scale may be encountered. For example, the three columns 
might have represented age classes of known quantitative intervals. If the three cate­
gories were equal intervals of "20.0-39.9 years," "40.0-59.9 years,"and "60.0-79.9 
years," then the X's could be set as equally spaced values (for example, as -1,0, and 
1) the same as in Example 24.19. However, if the intervals were unequal in size, such 
as "20.0-29.9 years." "30.0-49.9 years."and "50.0-79.9 years," then the X's should 
reflect the midpoints of the intervals, such as by 25, 40, and 65; or (with the subtraction 
of 25 years) by O. 15. and 40; or (with subtraction of 40 years) by -15. O. and 25. 

THE FISHER EXACT TEST 

In the discussion of 2 x 2 contingency tables. Section 23.3c described contingency 
tables that have two fixed margins. and Section 23.3d recommended analyzing such 
tables using a contingency-corrected chi-square (X~ or X~). or a procedure known 
as the Fisher exact test.t The test using chi-square corrected for continuity is an 
approximation of the Fisher exact test, with ~ the same as x~ or routinely a better 
approximation than x~. 

The Fisher exact test is based upon hypcrgeometric probabilities (see Section 24.2). 
The needed calculations can be tedious, but some statistical computer programs (e.g., 
Zar, 1987, and some statistical packages) can perform the test. Although this book 
recommends this test only for 2 x 2 tables having both margins fixed. some researchers 
use it for the other kinds of 2 x 2 tables (see Section 23.3d). 

* Armitage (1955) explained that this procedure may he thought of as a regression of the sample 
proportions. Pj. on the ordinal scores. Xj. where the h's are weighted by the column totals. Cj: or 
as a regression of n pairs of Y and X. where Y is 1 for each of the observations in row 1 and is () for 
each of the observations in row 2. 

tNamed for Sir Ronald Aylmer Fisher (1890-1962). a monumental statistician recognized as 
a principal founder of modern statistics. with extremely strong inHuence in statistical theory and 
methods. including many areas of biostatistics (see. for example. Rao. 1992). At about the same 
time he published this procedure (Fisher, 1934: 99-101: 1935). it was also presented by Yates 
(1934) and Irwin (1935). so it is sometimes referred to as the Fisher-Yates test or Fisher-Irwin test. 
Yates (1984) observed that Fisher was probably aware of the exact-test procedure as early as 1926. 
Although often referred to as a statistician. R. A. Fisher also had a strong reputation as a biologist 
(e.g .. Neyman. 1967). publishing-from 1912 to 1962-140 papers on genetics as well as 129 on 
statistics and 16 on other topics (Barnard. 1990). 
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The probability of a given 2 x 2 table is 

p= 

which is identical to 

p= 

From Equation 24.11. both Equations 24.74 and 24.75 reduce to 

p= R,!R2!C,!C2! 
fIt !h, !f'2!h2! n!' 

and it will be seen that there is advantage in expressing this as 

R,! R2! CIt C2! 
n! p = ---'-'-'----

fl' !f12!h, !Jz2! 

(24.74) 

(24.75) 

(24.76) 

(24.77) 

(a) One-Tailed Testing. Consider the data of Example 23.4. If species 1 is naturally 
found in more rapidly moving waters, it would be reasonable to propose that it is 
better adapted to resist current, and the test could involve one-tailed hypotheses: 
Ho: The proportion of snails of species 1 resisting the water current is no greater 
than (Le., less than or equal to) the proportion of species 2 withstanding the current, 
and H A: The proportion of snails of species 1 resisting the current is greater than 
the proportion of species 2 resisting the current. The Fisher exact test proceeds as in 
Example 24.20. 

EXAMPLE 24.20 
pie 23.4 

A One-Tailed Fisher Exact Test, Using the Data of Exam-

Ho: The proportion of snails of species 1 able to resist the experimental water 
current is no greater than the proportion of species 2 snails able to resist the 
current. 

HA : The proportion of snails of species 1 able to resist the experimental water 
current is greater than the proportion of species 2 snails able to resist the 
current. 

Resisted Yielded 

Species J 12 7 19 
Species 2 2 9 11 

~--------------+--
14 16 30 
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Expressing the proportion of each species resisting the current in the sample, 

Resisted Yielded Total 

Species J 
Species 2 

0.63 
0.18 

0.37 
0.82 

1.00 
1.00 

The sample data are in the direction of HA , in that the species 1 sample has a higher 
proportion of resistant snails than does the species 2 sample. But are the data signifi­
cantly in that direction? (If the data were not in the direction of HA. the conclusion 
would be that Ho cannot be rejected, and the analysis would proceed no further.) 
The probability of the observed table of data is 

RI! R2! el! C2! 

p = n! 
III !/12!hl !h2! 

19! III 14! 16! 

= _---"3=0"-! __ 
12!7!2!9! 

= antilog [(log 19! + 10gll! + logl4! + logl6! - log30!) 

- (logI2! + log7! + log2! + log9!)] 

= antilog [(17.08509 + 7.60116 + 10.94041 + 13.32062 

- 32.42366) - (8.68034 + 3.70243 + 0.30103 

+ 5.55976)] 

= antilog [16.52362 - 18.24356] 

= antilog [ -1.71994] 

= antilog [0.28006 - 2.00000] 

= 0.01906. 

There are two tables with data more extreme than the observed data; they are as 
follows: 

Table A: 

19! It! 14! 16! 

P = _---=:30=! __ 
13! 6! I! 1O! 

13 6 19 
1 10 11 

14 16 30 

= antilog [16.52362 - (log 13! + log6! + log 1! + log 1O!)] 

= antilog [-2.68776] 

= 0.00205 
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Table B: 

19! 11! 14! 16! 

p = _---'3::",,0'-'-! __ 
14! 5! O! 11! 

14 5 19 
o 11 11 

14 16 30 

= antilog [16.52362 - (logI4! + log5! + logO! + 10gl1!)] 

= antilog [ -4.09713] 

= 0.00008 

To summarize the probability of the original table and of the two more extreme 
tables (where to in each table is the smallest of the four frequencies in that table), 

to p 

Original table 2 0.01906 
More extreme table A 1 0.00205 
More extreme table B 0 0.00008 

Entire tail 0.02119 

Therefore, if the null hypothesis is true, the probability of the array of data in the 
observed table or in more extreme tables is 0.02119. As this probability is less than 
0.05, Ho is rejected. 

Note that if the hypotheses had been Ho: Snail species 2 has no greater ability 
to resist current than species 1 and H A: Snail species 2 has greater ability to resist 
current than species 1, then we would have observed that the sample data are 
not in the direction of HA and would not reject Ho, without even computing 
probabili ties. 

Instead of computing this exact probability of Ho, we may consult Appendix 
Table B.28, for n = 30, m) = 11. m2 = 14; and the one-tailed critical values of f, 
for a = 0.05. are 2 and 8. As the observed 1 in the cell corresponding to m) = 11 
and m2 = 14 is 2, Ho may be rejected. 

The probability of the observed contingency table occurring by chance, given the 
row and column totals, may be computed using Equation 24.76 or 24.77. Then the 
probability is calculated for each possible table having observed data more extreme 
that those of the original table. If the smallest observed frequency in the original 
table is designated as 10 (which is 2 in Example 24.20). the more extreme tables are 
those that have smaller values of 10 (which would be 1 and 0 in this example). (If the 
smallest observed frequency occurs in two cells of the table, then 10 is designated to 
be the one with the smaller frequency diagonally opposite of it.) 

The null hypothesis is tested by examining the sum of the probabilities of the 
observed table and of all the more extreme tables. This procedure yields the exact 
probability (hence the name of the test) of obtaining this set of tables by chance if the 
null hypothesis is true; and if this probability is less than or equal to the significance 
level, a. then Ho is rejected. 



Note that the quantity RI! R2! CI ! C2!/n! appears in each of the probability 
calculations using Equation 24.76 and therefore need be computed only once. It is 
only the value of III !112!f21 !f22! that needs to be computed anew for each table. To 
undertake these computations. the use of logarithms is advised for all but the smallest 
tables: and Appendix Table 8.40 provides logarithms of factorials. It is also obvious 
that. unless the four cell frequencies are small. this test calculation is tedious without 
a computer. 

An alternative to computing the exact probability in the Fisher exact test of 2 x 2 
tables is to consult Appendix Table B.28 to obtain critical values with which to test 
null hypotheses for II up to 30. We examine the four marginal frequencies. RI, R2. CI, 
and C2: and we designate the smallest of the four as nil. If nil is a row total. then 
we call the smaller of the two column totals nl2: if nil is a column total. then the 
smaller row total is nl2. In Example 24.20. nil = R2 and nl2 = CI; and the one-tailed 
critical values in Appendix Table 8.28. for ex = 0.05. are 2 and 8. The observed 
frequency in the cell corresponding to marginal totals m I and nl2 is called I: and 
if I is equal to or more extreme than 2 or 8 (i.e .. if I :5 2 or I ~ 8). then Ho is 
rejected. However, employing tables of critical values results in expressing a range 
of probabilities associated with Ho; and a noteworthy characteristic of the exact 
test-namely the exact probability-is absent. 

Bennett and Nakamura (1963) published tables for performing an exact test of 
2 x 3 tables where the three column (or row) totals are equal and n is as large as 
60. Computer programs have been developed to perform exact testing of r x c tables 
where rand/or c is greater than 2. 

Feldman and Kluger (1963) demonstrated a simpler computational procedure for 
obtaining the probabilities of tables more extreme than those of the observed table. 
It will not be presented here because the calculations shown on this section and in 
Section 24.16c are straightforward and because performance of the Fisher exact test 
is so often performed via computer programs. 

(b) Two-Tailed Testing. For data in a 2 x 2 contingency table. the Fisher exact test 
may also be used to test two-tailed hypotheses, particularly when both margins of 
the table are fixed. Example 24.21 demonstrates this for the data and hypotheses of 
Example 23.4. What is needed is the sum of the probabilities of the observed table 
and of all tables more extreme in the same direction as the observed data. This is the 
probability obtained for the one-tailed test shown in Example 24.20. If either RI = R2 
or CI = C2, then the two-tailed probability is two times the one-tailed probability. 
Otherwise. it is not. and the probability for the second tail is computed as follows.· 

Again designating 10 to be the smallest of the four observed frequencies and ml to 
be the smallest of the four marginal frequencies in the original table. a 2 x 2 table 
is formed by replacing fi) with nil - O. and this is the most extreme table in the 
second tail. This is shown as Table C;n Example 24.21. The prohability of that table 
is calculated with Equation 24.76 or 24.77; if it is greater than the probability of the 
original table. then the two-tailed probability equals the one-tailed probability and the 
computation is complete. If the probability of the newly formed table is not greater 
than that of the original table, then it contributes to the probability of the second 
tail and the calculations continue. The probability of the next less extreme table is 

·Some (e.g .. Dupont. 1986) recommend that the two-tailed prohability should he determined as 
two times the one-tailed prohahility. Others (e.g .. Lloyd. 1(98) argue against that calculation. and 
that practice is not employed here: and it can he noted that the second lail may be much smaller 
than the first and such a doubling procedure could result in a computed two-tailed prohability that 
is greater than J. 
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Note that the quantity RI! R2! CI! C2!jn! appears in each of the probability 
calculations using Equation 24.76 and therefore need be computed only once. It is 
only the value of III !/12!hl !h2! that needs to be computed anew for each table. To 
undertake these computations. the use of logarithms is advised for all but the smallest 
tables: and Appendix Table B.40 provides logarithms of factorials. It is also obvious 
that. unless the four cell frequencies are small. this test calculation is tedious without 
a computer. 

An alternative to computing the exact probability in the Fisher exact test of 2 x 2 
tables is to consult Appendix Table B.28 to obtain critical values with which to test 
null hypotheses for n up to 30. We examine the four marginal frequencies, RI. R2, CI, 
and C2; and we designate the smallest of the four as ntl. If ntl is a row total. then 
we call the smaller of the two column totals "'2: if ml is a column total, then the 
smaller row total is ntz. In Example 24.20. ntl = Rz and nt2 = CI: and the one-tailed 
critical values in Appendix Table B.28, for €X = 0.05, are 2 and 8. The observed 
frequency in the cell corresponding to marginal totals nt I and nt2 is called I; and 
if I is equal to or more extreme than 2 or 8 (i.e., if I ~ 2 or I =:: 8), then Ho is 
rejected. However, employing tables of critical values results in expressing a range 
of probabilities associated with Ho: and a noteworthy characteristic of the exact 
test-namely the exact probability-is absent. 

Bennett and Nakamura (1963) published tables for performing an exact test of 
2 x 3 tables where the three column (or row) totals are equal and n is as large as 
60. Computer programs have been developed to perform exact testing of r x c tables 
where rand/or c is greater than 2. 

Feldman and Kluger (1963) demonstrated a simpler computational procedure for 
obtaining the probabilities of tables more extreme than those of the observed table. 
It will not be presented here because the calculations shown on this section and in 
Section 24.16c are straightforward and because performance of the Fisher exact test 
is so often performed via computer programs. 

(b) Two-Tailed Testing. For data in a 2 x 2 contingency table. the Fisher exact test 
may also be used to test two-tailed hypotheses, particularly when both margins of 
the table are fixed. Example 24.21 demonstrates this for the data and hypotheses of 
Example 23.4. What is needed is the sum of the probabilities of the observed table 
and of all tables more extreme in the same direction as the observed data. This is the 
probability obtained for the one-tailed test shown in Example 24.20. If either RI = R2 
or CI = C2. then the two-tailed probability is two times the one-tailed probability. 
Otherwise, it is not, and the probability for the second tail is computed as follows. * 

Again designatingfi, to be the smallest of the four observed frequencies and m, to 
be the smallest of the four marginal frequencies in the original table, a 2 X 2 table 
is formed by replacing fi, with ml - 0, and this is the most extreme table in the 
second tail. This is shown as Table C in Example 24.21. The probability of that table 
is calculated with Equation 24.76 or 24.77: if it is greater than the probability of the 
original table. then the two-tailed probability equals the one-tailed probability and the 
computation is complete. If the probability of the newly formed table is not greater 
than that of the original table, then it contributes to the probability of the second 
tail and the calculations continue. The probability of the next less extreme table is 

*Some (e.g .• Dupont. 1986) recommend that the two-tailed probability should be determined as 
two times the one-tailed probability. Others (e.g .. Lloyd. 199M) urgue against that calculation. and 
that practice is not employed here: and it can be noted that the second tail may be much smaller 
than the first and such a douhling procedure could result in a computed two-tailed probability that 
is greater than I. 
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EXAMPLE 24.21 A Two-Tailed Fisher Exact Test. Using the Data and 
Hypotheses of Example 23.4 

The probability of the observed table was found, in Example 24.20, to be 0.01906, 
and the one-tailed probability was calculated to be 0.02119. In determining the 
one-tailed probability, the smallest cell frequency (fo) in the most extreme table 
(Table B) was 0, and the smallest marginal freq uency (m 1) was 11. So m I - fo = 
11 - 0 = 11 is inserted in place of fo to form the most extreme table in the opposite 
tail: 

Table C: I 3 16 19 
l1 0 11 

14 16 30 

the probability of which is 

19! III 14! 16! 
p = _-----=3....::.0.:...! __ 

3! 16! II! O! 

= 0.00000663. which is rounded to 0.00001. 

The less extreme tables that are in the second tail. and have probabilities less than 
the probability of the observed table. are these two: 

Table D: 4 15 19 
10 1 11 P = 0.00029 

14 16 30 cumulative P = 0.00001 + 0.00029 = 0.00030 

Table E: 5 14 19 
9 2 11 P = 0.00440 

14 16 30 cumulative P = 0.00030 + 0.00440 = 0.00470 

The next less extreme table is this: 

Table F: 6 13 19 
8 3 11 P = 0.03079 

14 16 30 cumulative P = 0.00470 + 0.03079 = 0.03549 

The Table F cumulative probability (0.03549) is larger than the probability of the 
original table (0.02119), so the Table F probability is not considered a relevant 
part of the second tail. The second tail consists of the following: 
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10 p 

Table C 3 0.00001 
Table D 4 0.00029 
Table E 5 0.00440 

Entire second tail 0.00470 

and the two-tailed P is, therefore, 0.02119 + 0.00470 = 0.02589. As this is less than 
0.05, we may reject Ho. Note that X~ in Example 23.4 has a probability close to 
that of this Fisher exact test. 

lfusingAppendixTable B.28,n = 30,ml = 11,m2 = 14,andthe/correspond­
ing to ml and m2 in the observed table is 2. As the two-tailed critical values of I, 
for a = 0.05. are 2 and 9. Ho is rejected. 

determined; that table (Table D in Example 24.21) has cell frequency 10 increased 
by 1. keeping the marginal frequencies the same. The two probabilities calculated 
for the second tail are summed and, if the sum is no greater than the probability of 
the original table, that cell frequency is again increased by 1 and a new probability 
computed. This process is continued as long as the sum of the probabilities in that tail 
is no greater than the probability of the original table. 

(c) Probabilities Using Binomial Coefficients. Ghent (l972), Leslie (1955), Leyton 
(1968), and Sakoda and Cohen (1957) have shown how the use of binomial coefficients 
can eliminate much of the laboriousness of Fisher-exact-test computations, and Ghent 
(1972) and Carr (1980) have expanded these considerations to tables with more than 
two rows and/or columns. Using Appendix Table B.26a, this computational procedure 
requires much less effort than the use of logarithms of factorials, and it is at least 
as accurate. It may be employed for moderately large sample sizes, limited by the 
number of digits on one's calculator. 

Referring back to Equation 24.75, the probability of a given 2 X 2 table is seen 
to be the product of two binomial coefficients divided by a third. The numerator 
of Equation 24.75 consists of one binomial coefficient representing the number of 
ways CI items can be combined III at a time (or 121 at a time, which is equivalent) 
and a second coefficient expressing the number of ways C2 items can be combined 
112 at a time (or, equivalently, 122 at a time). And the denominator denotes the 
number of ways Il items can be combined RI at a time (or R2 at a time). Appendix 
Table B.26a provides a large array of binomial coefficients, and the proper selection 
of those required leads to simple computation of the probability of a 2 x 2 table. (See 
Section 5.3 for discussion of combinations.) 

The procedure is demonstrated in Example 24.22, for the data in Example 24.20. 
Consider the first row of the contingency table and determine the largest III and the 
smallest 112 that are possible without exceeding the row totals and column totals. 
These are III = 14 and 112 = 5, which sum to the row total of 19. (Other frequencies, 
such as 15 and 4, also add to 19, but the frequencies in the first column are limited 
to 14.) In a table where III < 112, switch the two columns of the 2 x 2 table before 
performing these calculations. 
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EXAMPLE 24.22 The Fisher Exact Tests of Examples 24.20 and 24.21, 
Employing the Binomial-Coefficient Procedure 

The observed 2 x 2 contingency table is 

7 19 
9 11 

14 16 30 

The top-row frequencies, /11 and /12, of all contingency tables possible with the 
observed row and column totals, and their associated binomial coefficients and 
coefficient products, are as follows. The observed contingency table is indicated 
by "*". 

Binomial coefficient 
Coefficient 

/ll fl2 CI = 14 C2 = 16 product 

14 5 1. x 4,368. 4J68 } 
13 6 14. x 8,008. = 112,112 1,157,520 
12* 7* 91. x 11,440. = 1,041,040* 
11 8 364. x 12.870. = 4.684,680 
10 9 1.001. x 11.440. = 11,451,440 
9 10 2,002. x 8,008. 16,032,016 
8 11 3,003. x 4,368. = 13,117,104 
7 12 3,432. X 1,820. = 6,246,240 
6 13 3,003. X 560. = 1.681,680 
5 14 2,002. X 120. = 240,240 } 
4 15 ] ,001. X 16. = 16,016 256,620 
3 16 364. X 1. = 364 

54,627,300 

One-tailed probability: 
1,157,520 

= 0.02119 
54.627,300 

Probability associated with the opposite tail: 
256,620 

= 0.00470 
54,627,300 

Two-tailed probability: 0.02589 

We shall need to refer to the binomial coefficients for what Appendix Table B.26a 
refers to as n = 14 and n = 16, for these arc the two column totals (CI and C2) in 
the contingency table in Example 24.20. We record, from Appendix Table B.26a, the 
binomial coefficient for n = CI = 14 and X = /11 = 14 (which is 1), the coefficient 
for n = C2 = 16 and X = /12 = 5 (which is 4,368), and the product of the two 
coefficients (which is 4,368). 

Then we record the binomial coefficients of the next less extreme table; that is, the 
one with /11 = 13 and fl2 = 6 (that is. coefficients of 14 and 8,(08) and their product 
(i.e., 112,112). This process is repeated for each possible table until fll can be no 
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smaller (and 112 can be no larger): that is, III = 3 and 112 = 16. The sum of all the 
coefficient products (54,627,300 in this example) is the number of ways n things may 
be combined RI at a time (where 11 is the total of the frequencies in the 2 x 2 table): 
this is the binomial coefficient for 11 (the total frequency) and X = RI (and in the 
present example this coefficient is 30CII = 54,627,300). Determining this coefficient 
is a good arithmetic check against the sum of the products of the several coefficients 
of individual contingency tables. 

Dividing the coefficient product for a contingency table by the sum of the products 
yields the probability of that table. Thus, the table of observed data in Example 24.20 
has III = 14 and 112 = 5, and we may compute 1,041,040154,627,300 = 0.01906, 
exactly the probability obtained in Example 24.20 using logarithms of factorials. The 
probability of the one-tailed test employs the sum of those coefficient products equal 
to or smaller than the product for the observed table and in the same tail as the 
observed table. In the present example, this tail would include products 4,368, 112,112, 
and 1,041,040, the sum of which is 1.157,520, and 1,157,520/54,627,300 = 0.02119, 
which is the probability calculated in Example 24.20. To obtain the probability for 
the two-tailed test, we add to the one-tailed probability the probabilities of all tables 
in the opposite tail that have coefficient products equal to or less than that of the 
observed table. In our example these products are 240.240, 16,016, and 364, their 
sum is 256,620, and 256,620/54,627,300 = 0.00470; the probabilities of the two tails 
are 0.02119 and 0.00470, which sum to the two-tailed probability of 0.02589 (which is 
what was calculated in Example 24.21). 

PAIRED-SAMPLE TESTING OF NOMINAL-SCALE DATA 

(a) Data in a 2 x 2 Table. Nominal·scale data may come from paired samples. A 
2 x 2 table containing data that are dichotomous (i.e., the nominal-scale variable has 
two possible values) may be analyzed by the McNemar test (McNemar, 1947). 

For example, assume that we wish to test whether two skin lotions are equally 
effective in relieving a poison-ivy rash. Both of the lotions might be tested on each of 
50 patients with poison-ivy rashes on both arms, by applying one lotion to one arm 
and the other lotion to the other arm (using, for each person. a random selection of 
which arm gets which lotion). The results of the experiment can be summarized in a 
table such as in Example 24.23, where the results for each of the 50 patients consist 
of a pair of data (i.e., the outcomes of using the two lotions on each patient). As with 
other 2 x 2 tables (such as in Section 23.3), the datum in row i and column j will be 
designated as /;j. Thus, III = 12, 112 = 5, hI = 11, and h2 = 22: and the total of 
the four frequencies is It = 50. The two-tailed null hypothesis is that, in the sampled 
population of people who might be treated with these two medications, the proportion 
of them that would obtain relief from lotion A (call it PI) is the same as the proportion 
receiving relief from lotion B (call it P2): that is, Ho: PI = P2 (vs. HA : PI -:j; P2). In the 
sample, 12 patients (/11 ) experienced relief from both lotions and 22 (/22) had relief 
from neither lotion. The proportion of people in the sample who experienced relief 
from lotion A iSPI = (tIl + hd/n = (12 + 11)/50 = 0.46, and the proportion 
benefiting from lotion B is P2 = (til + 112)/ n = (12 + 5 )/50 = 0.34. The sample 
estimate of PI - P2 is 

III + 112 = fu + hI fu 
It 11 n n n II It 

(24.78) 
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That is, of the four data in the 2 x 2 table. only tl2 and hI are needed to test the 
hypotheses. The test is essentially a goodness-of-fit procedure (Section 22.1) where we 
ask whether the ratio of t12 to hI departs significantly from 1 : I. Thus. the hypotheses 
could also be stated as Ho: I/J = 1 and HA: I/J ¢ 1. where* I/J is the population ratio 
estimated by tI2/hl' 

The goodness-of-fit test for this example could proceed using Equation 22.1. but 
for this hypothesis it is readily performed via 

X2 = (t12 - hI )2. 
tl2 + hI 

which is equivalent to using the normal deviate for a two-tailed test: 

Z = lfl2 - 1211 
~t12 + 121' 

(24.79) 

(24.80) 

Because X2 and Z are continuous distributions and the data to be analyzed are 
counts (i.e., integers). some authors have employed corrections for continuity. A 
common one is the Yates correction for continuity (introduced in Section 22.2). This 
is accomplished using Equation 22.3 or. equivalently. with 

X~ = l(tl2 - 1211 - 1)2 
!l2 + 121 

which is the same as employing 

Zc = lfl2 - 1211 -
~t12 + 121 

The calculation of Xz. for this test is demonstrated in Example 24.23. 

(24.81) 

(24.82) 

A McNemar test using X2 operates with the probability of a Type I error much 
closer to a than testing with X~. although that probability will occasionally be a 
little greater than a. That is, the test can be liberal, rejecting Ho more often than 
it should at the a level of significance. Use of X~ wilJ routinely result in a test 
that is conservative. rejecting Ho less often than it should and having less power 
than employing X2• Often, as in Example 24.23, the same conclusion is reached 
using the test with and without a correction for continuity. Bennett and Underwood 
(1970) and others have advised that the continuity correction should not generally be 
used. 

Because this test employs only two of the four tabulated data ifl2 and 12\), 
the results are the same regardless of the magnitude of the other two counts 
(!I \ and 122). which are considered as tied data and ignored in the analysis. If 
tl2 and 121 are small. this test does not work well. If tl2 + 121 ~ 10. the bino­
mial test (Section 24.5) is recommended. with II = tl2 + 121 and X = tt2 (or 
hd· 

Another type of data amenable to McNemar testing results from the situation 
where experimental responses are recorded before and after some event. in which 
case the procedure may be called the "McNemar test for change." For example, we 
might record whether students saying the plan to pursue a career in microbiology, 

*The symbol'" is the lowercase Greek letter psi. (See Appendix A.) 
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EXAMPLE 24.23 McNemar's Test for Paired-Sample Nominal Scale Data 

Ho: The proportion of persons experiencing relief is the same with both 
lotions (i.e., Ho: PI = P2). 

H A: The proportion of persons experiencing relief is not the same with both 
lotions (i.e., Ho: PI * P2). 

ex = 0.05 
n = 50 

Lotion A 

Lotion B Reliet No reliet 

Relief 
No relief 

12 
11 

5 
22 

x2 = (t12 - hd2 = (5 - 11)2 = 2.250 
(t12 - hd 5 + 11 

v = 1, Xij.05.1 = 3.841. Therefore. do not reject Ho. 

0.10 < P < 0.25 [P = 0.13] 

Alternatively. and with the same result. 

Z = I tl2 - hi I = I 5 - 1 I = 1.500. 
HI2 + hi J5 + 11 

ZO.05(2) = 1.900. Therefore, do not reject Ho. 

0.10 < P < 0.20 [P = 0.13] 

With a correction for continuity, 

X~ = (I tl2 - hI I -) )2 = (15 - 11 I -1 )2 = 1.562. 
([12 - hd 5 + 11 

Do not reject Ho. 
(UO < P < 0.25 [P = 0.21] 

Alternatively, and with the same result, 

Zc = I tl2 - hI I -1 = I 5 - 1 I -1 = 1.250. 
HI2 + hI J5 + 11 

Do not reject Ho. 
0.20 < P < 0.50 rp = 0.21] 

before and after an internship experience in microbiology laboratory. The column 
headings could he "yes" and "no" before the internship, and the row designations 
then would be "yes" and "no" after the internship. 
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The McNemar test should not be confused with 2 x 2 contingency-table analysis 
(Section 23.3). Contingency-table data are analyzed using a null hypothesis of 
independence between rows and columns, whereas in the case of data subjected 
to the McNemar test, there is intentional association between the row and column 
data. 

(b) The One-Tailed McNemar Test. Using the normal deviate (Z) as the test 
statistic, one-tailed hypotheses can be tested. So, for example, the hypotheses for a 
poison ivy-treatment experiment could be Ho: The proportion of people experiencing 
relief with lotion A is not greater than (i.e., is less than or equal to) the proportion 
having relief with lotion B, versus HA : The proportion of people experiencing relief 
with lotion A is greater than the proportion obtaining relief with lotion B. And Ho 
would be rejected if Z (or Zc, if using the continuity correction) were greater than or 
equal to Za( I l and hi > 112· 

(c) Power and Sample Size for the McNemar Test. The ability of the McNemar 
test to reject a null hypothesis, when the hypothesis is false, may be estimated by 
computing 

In .jji (I/J - 1) - ZaJI/J + 1 
ZI3( I) = J( I/J + 1) - p( I/J - 1 )2 

(24.83) 

(Connett, Smith, and McHugh. 1987). Here, n is the number of pairs to be used 
(Le., n = /11 + /12 + hi + 122); p is an estimate, as from a pilot study, of the 
proportion /12/ n or 121/ n, whichever is smaller: I/J is the magnitude of difference 
desired to be detected by the hypothesis test, expressed as the ratio in the population 
of either /12 tohl, or hi to/12, whichever is larger; and Za is Za(2) or Za(1 l' depending 
upon whether the test is two-tailed or one-tailed, respectively. Then, using Appendix 
Table B.2 or the last line in Appendix Table B.3 (Le., for t with v = 00), determine 
(3( ] ); and the estimated power of the test is 1 - (3( 1). This estimation procedure is 
demonstrated in Example 24.24. 

Similarly, we can estimate the sample size necessary to perform a McNemar test 
with a specified power: 

[ZaJI/J + 1 + ZI3(I)J(I/J + 1) - p(r/J - 1)2t 
n = p( I/J _ 1 )2 (24.84) 

(Connett, Smith, and McHugh, ] 987). This is demonstrated in Example 24.25 

(d) Data in Larger Tables. The McNemar test may be extended to square tables 
larger than 2 x 2 (Bowker, 1948; Maxwell, 1970). What we test is whether the upper 
right corner of the table is symmetrical with the lower left corner. This is done by 
ignoring the data along the diagonal containingf;; (Le., row 1, column 1; row 2, column 
2; etc.). We compute 

i = ± L (f;j - /j; )2 , 
j: I j>i f;j + /ji 

(24.85) 

where, as before, f;j is the observed frequency in row i and column j, and the degrees 
of freedom are 

r(r - 1) 
JI = ~----'-

2 
(24.86) 
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EXAMPLE 24.24 Determination of Power of the McNemar Test 

Considering the data of Example 24.23 to be from a pilot study, what would be the 
probability of rejecting Ho if 200 pairs of data were used in a future study, if the 
test were performed at the 0.05 level of significance and if the population ratio of 
121 to 112 were at least 2? 

From the pilot study, using n = 51 pairs of data, 112/11 = 6/51 = 0.1176 and 
121/" = 10/51 = 0.1961; so p = 0.1176. We specify a(2) = 0.05, so ZO.05(2) = 
1.9600 (from the last line of Appendix Table B.3). And we also specify a new 
sample size of n = 200 and 1/1 = 2. Therefore . 

..rn ..jP( 1/1 - 1) - Za(2)JI/I + 
ZI3( I) = ---'r=============.==--

J(I/I + 1) - p(I/I - 1)2 

= v'2OO v'OTI76( 2 - 1) - 1.9600 J2+l 
J(2 + 1) - 0.1176(2 - 1)2 

_ (14.1421)( 0.3429)( I) - 1.9600( 1. 7321 ) 

- J3 - (0.1176) ( I ) 

= 4.8493 - 3.3949 = 1.4544 = 0.86. 
J2.8824 1.6978 

From Appendix Table B.2. if ZI3( I) = 0.86. then f3( 1) = 0.19: therefore, power 

[Le .• 1 - f3(I)]isl - 0.19 = 0.81. 
From Appendix Table B.3. if ZP( I) [Le., fp( I ).00] is 0.86, then f3( 1) lies between 

0.25 and 0.10. and the power [i.e .. 1 - f3( 1 )] lies between 0.75 and 0.90. [f3( 1) = 0.19 
and power = 0.81. ) 

and where r is the number of rows (or. equivalently, the number of columns) in the 
table of data. This is demonstrated in Example 24.26. 

Note that Equation 24.85 involves the testing of a series of 1 : 1 ratios by 
what is essentially an expansion of Equation 24.79. Each of these 1 : 1 ratios 
derives from a unique pairing of the r categories taken two at a time. Recall 
(Equation 5.10) that the number of ways that r items can be combined two at a time 
is ,C2 = r!j[2(r - 2)!]. So, in Example 24.26, where there are three categories, 
there are 3C2 = 3!/[2(3 - 2)!] = 3 pairings. resulting in three terms in the r 
summation. If there were four categories of religion. then the summation would 
involve 4C2 = 4!/[2( 4 - 2 )!] = 6 pairings, and 6 X2 terms: and so on. For data of 
this type in a 2 x 2 table, Equation 24.85 becomes Equation 24.79, and Equation 
24.86 yields II = 1. 

(e) Testing for Effect of Treatment Order. If two treatments are applied sequentially 
to a group of subjects. we might ask whether the response to each treatment depended 
on the order in which the treatments were administered. For example, suppose we 
have two medications for the treatment of poison-ivy rash, but. instead of the 
situation in Example 24.23, they are to be administered orally rather than by external 
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EXAMPLE 24.25 Determination of Sample Size for the McNemar Test 

Considering the data of Example 24.23 to be from a pilot study. how many pairs of 
data would be needed to have a 90% probability of rejecting the two-tailed Ho if a 
future test were performed at the 0.05 level of significance and the ratio of hI to 
112 in the population were at least 2? 

As in Example 24.24. p = 0.1176 and Za(2) = 1.9600. In addition. we specify 
that I/J = 2 and that the power of the test is to be 0.90 [so {3( 1) = 0.10]. Therefore, 
the required sample size is 

n = [Za(2)JI/J + 1 + Zp(I)J(I/J + 1) - p(I/J - 1)2t 

p( I/J - 1)2 

= [1.9600v'1+1 + 1.2816J(2 + 1) - (0.1176)(2 - 1)2t 

(0.1176)( 2 - 1)2 

= [1.9600(1.7321) + 1.2816(1.6978)]2 = (5.5708)2 = 263.9. 
0.1176 0.1176 

Therefore. at least 264 pairs of data should be used. 

application to the skin. Thus, in this example, both arms receive medication at the 
same time, but the oral medications must be given at different times. 

Gart (1969a) provides the following procedure to test for the difference in response 
between two sequentially applied treatments and to test whether the order of 
application had an effect on the response. The following 2 x 2 contingency table is 
used to test for a treatment effect: 

Response with first treatment 
Response with second treatment 

Total 

Order of Application 
of Treatments A and B 

A, then B B, then A Total 

n 

By redefining the rows, the following 2 x 2 table may be used to test the null 
hypothesis of no difference in response due to order of treatment application: 

Response with treatment A 
Response with treatment B 

Total 

Order of Application 
of Treatments A and B 

A, then B B, then A Total 

n 
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EXAMPLE 24.26 McNemar's Test for a 3 x 3 Table of Nominal-Scale Data 

Ho: Of men who adopt a religion different from that of their fathers, a 
change from one religion to another is as likely as a change from the 
latter religion to the former. 

HA: Of men who adopt a religion different from that of their fathers, a 
change from one religion to another is not as likely as a change from 
the latter religion to the former. 

Man's Man's Father's Religion 

Religion Protestant Catholic Jewish 

Protestant 173 20 7 
Catholic 15 51 2 
Jewish 5 3 24 

r=3 

= (/12 - hi f + ([13 - hd2 + (/23 - /32)2 
112 - hi 113 - hi h3 - h2 

= (20 - ]5)2 + (7 - 5)2 + (2 - 3f 
20 + 15 7 + 5 2 + 3 

= 0.7143 + 0.3333 + 0.2000 

= 1.248 

v=~=~=3 
2 2 

X5.05.3 = 7.815 
Do not reject Ho. 

0.50 < P < 0.75 [P = 0.74] 

These two contingency tables have one fixed margin (the column totals are 
fixed; Section 23.3b) and they may be tested by chi-square. which is shown 
in Example 24.27. One-tailed hypotheses may be tested as described in Section 
23.3e. 

EXAMPLE 24.27 Gart's Test for Effect of Treatment and Treatment Order 

Ho: The two oral medications have the same effect on relieving poison-ivy 
rash. 

HA : The two oral medications do not have the same effect on relieving 
poison-ivy rash. 
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Order of Application 
of Medications A and B 
A, then B B, then A Total 

Response with 1st medication 
Response with 2nd medication 

Total 

Using Equation 23.6. 

X2 = n(/lIh2 - 112121 )2 
R1 R2C1C2 

14 
4 

18 

= 36[(14)(12) - (6)(4)f = 7.200. 
(20)(16)(18)(18) 

X5.0S.1 = 3.841; reject Ho. 

6 
12 

18 

20 
16 

36 

That is, it is concluded that there is a difference in response to the two 
medications, regardless of the order in which they are administered. 

0.005 < P < 0.01 [P = 0.0073] 

Ho: The order of administration of the two oral medications does not affect 
their abilities to relieve poison-ivy rash. 

HA: The order of administration of the two oral medications does affect 
their abilities to relieve poison-ivy rash. 

Order of Application 
of Medications A and B 
A, then B B, then A Total 

Response with medicatioll A 
Response with medication B 

Total 

14 
4 

18 

2 = 36 [(14)(6) - (12)(4 )J2 = 0.554 
X (26)(10)(18)(18) 

x5.0S.1 = 3.841; do not reject Ro. 

12 
6 

18 

26 
10 

36 

That is, it is concluded that the effects of the two medications are not affected by 
the order in which they are administered. 

0.25 < P < 0.50 [P = 0.46] 
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LOGISTIC REGRESSION 

Previous discussions of regression (Chapters 17,20, and 21) considered data measured 
on a continuous (i.e .. ratio or interval) scale, where there are measurements of a 
dependent variable (Y) associated with measurements of one or more independent 
variables (X's). However. there are situations (commonly involving clinical, epidemi­
ological, or sociological data) where the dependent variable is measured on a nominal 
scale: that is, where the data are in two or more categories. For example, a sample 
of men could be examined for the presence of arterial plaque. and this information is 
recorded together with the age of each man. The mean age of men with plaque and 
the mean of those without plaque could be compared via a two-sample t test (Section 
8.1). But the data can be analyzed in a different fashion, deriving a quantitative 
expression of the relationship between the presence of plaque and the age of the 
subject and allowing for the prediction of the probability of plaque at a specified age. 

Regression data with Y recorded on a dichotomous scale do not meet the assump­
tions of the previously introduced regression methods, assumptions such as that the 
Y's and residuals (f'S: Section 20.2) have come from a normal distribution at each 
value of X and have the same variance at all values of X. So another statistical 
procedure must be sought. The most frequently employed analysis of such data is 
logistic regression. * 

A brief introduction to logistic regression is given here, employing terminology 
largely analogous to that in Chapters 17 and 20.t Because of the intense calculations 
required, users of this regression technique will depend upon computer programs, 
which are found in several statistical computer packages. and will typically benefit 
from consultation with a statistician familiar with the procedures. 

(a) Simple Logistic Regres.~ion. The simplest-and most common-logistic regres­
sion situation is where the categorical data (Y) are binomial, also known as 
dichotomous (i.e .. the data consist of each observation recorded as belonging in 
one of two categories). Each value of Y is routinely recorded as "1" or "0" and might. 
for example, refer to a characteristic as being "present" (1) or "absent'" (0), or to 
subjects being "with" (1) or "without" (0) a disease.* 

Logistic regression considers the probability (P) of encountering a Yof 1 at a given 
X in the population that was sampled. So, for example, p could be the probability of 

• A similar procedure, but one that is less often preferred, is known as discriminant analysis. What 
statisticians refer to as the genertll linear model underlies several statistical techniques, including 
analysis of variance, analysis of covariance. multivariate analysis of variance, linear regression, 
logistic regression. and discriminant analysis. 

tLogistic regression is a wide·ranging topic and is covered in portions of comprehensive books 
on regression (e.g .• Chatterjee and Hadi, 2006: Chapter 12; Glantz and Slinker. 2001: Chapter 12; 
Hair et aI., 2006: Chapter 5; Kutner. Nachtsheim, and Neter. 2004: Chapter 14; Meyers. Gamst. and 
Guarino, 2006: Chapter 6A and 6B: Montgomery, Peck, and Vining. 2001: Section 14.2: Pedhazur, 
1997: Chapter 17; Vittinghoff et al.. 2005: Chapter 6): in books on the analysis of categorical data 
(e.g .. Agresti. 2002: Chapters 5 and 6: Agresti, 2007: Chapters 4 and 5; Fleiss, Levin, and Paik. 2003: 
Chapter 11); and in works that concentrate specifically on logistic regression (e.g .. Garson, 2006: 
Hosmer and Lemeshow. 2000; Kleinbaum and Klein, 2(K'2; Menard. 2002: PampeJ, 20(0). 

lDesignating observations of Y as "0" or "1" is thus an example of using a "dummy variable," 
first described in Section 20.10. Any two integers could be used, but 0 and 1 are almost always 
employed, and this results in the mean of the Y's being the probability of Y :: 1. 
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encountering a member of the population that has a specified characteristic present, 
or the proportion that has a specified disease. 

The logistic regression relationship in a population is 

p= 1 + ea+{Jx' 
(24.87) 

where e is the mathematical constant introduced in Chapter 6. This equation may 
also be written. equivalently, using the abbreviation "exp" for an exponent on e: 

p = exp(ex + PX) , 
1 + exp(ex + PX) 

(24.87a) 

or, equivalently, as 
1 1 p - or p - ---------

1 + e-(cr+{JX) 1 + exp[ -(ex + PX)] 
(24.87b) 

The parameter ex is often seen written as Po. 
The sample regression equations corresponding to these expressions of population 

regression are, respectively, 

et'+hX 
(24.88) p= 

+ el,+bX ' 1 
A exp(a + bX) 

(24.88a) p= 
exp(a + bX)' 1 + 

A 1 A 1 (24.88b) p= e- (u+hX) or p = 1 + exp[ - (a hX)]' 1 + + 

and a is often written as boo 
Logistic regression employs the concept of the odds of an event (briefly mentioned 

in Section 5.5). namely the probability of the event occurring expressed relative to 
the probability of the event not occurring. Using the designations p = P( Y = 1) 
and q = 1 - P = P( Y = 0), the odds can be expressed by these four equivalent 
statements: . 

P( Y = 1) or P( Y = 1) or _P _ or e. 
1 - P(Y=l) P(Y=O) I-p q 

(24.89) 

and the fourth will be employed in the following discussion. 
A probability, p, must lie within a limited range (0 ::; p ::; 1 ).* However. odds, 

p/q, have no upper limit. For example, if p = 0.1, odds = 0.1/0.9 = 0.11; if 
p = 0.5, odds = 0.5/0.5 = 1; if p = 0.9, odds = 0.9/0.1 = 9; if p = 0.97. 
odds = 0.97/0.03 = 32.3; and so on. Expanding the odds terminology, if, for 
example, a population contains 60% females and 40% males, it is said that the odds 
are 0.60/0.40 = "6 to 4" or "1.5 to 1" in favor of randomly selecting a female from 
the population. or 1.5 to 1 againsl selecting a male. 

In order to obtain a linear model using the regression terms ex and PX. statisticians 
utilize the natural logarithm of the odds, a quantity known as a logil; this is sometimes 

* If a linear regression were performed on p versus X. predicted values of p could be less than 0 
or greater than I, an untenable outcome. This is another reason why logistic regression should be 
used when dealing with a categorical dependent variable. 
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referred to as a "Iogit transformation" of the dependent variable: 

logit ~ In( odds) ~ In( ~). (24.90) 

For 0 < odds < 1.0, the logit is a negative number (and it becomes farther from 0 
the closer the odds are to 0); for odds = 0.5, the logit is 0; and for odds > 0, the logit 
is a positive number (and it becomes farther from 0 the closer the odds are to 1). 

Using the logit transformation. the population linear regression equation and 
sample regression equations are. respectively, 

and 
logit for p = ex + {3X 

logit for p = a + bX. 

(24.91) 

(24.92) 

This linear relationship is shown in Figure 24.2b. Determining a and b for Equation 
24.92 is performed by an iterative process termed maximum likelihood estimation, 
instead of by the least-squares procedure used in the linear regressions of previous 
chapters. The term maximum likelihood refers to arriving at the a and b that are 
most likely to estimate the population parameters underlying the observed sample 
of data. 

As with the regression procedures previously discussed, the results of a logistic 
regression analysis will include a and b as estimates of the population parameters ex 
and {3, respectively. Computer output will routinely present these. with the standard 
error of b (namely, Sb), confidence limits for {3. and a lest of Ho: (3 = O. In logistic 
regression there are no measures corresponding to the coefficient of determination 
(,.z) in linear regression analysis (Section 17.3), but some authors have suggested 
statistics to express similar concepts. 

For a logistic relationship, a plot of p versus X will display an S-shaped curve rising 
from the lower left to the upper right, such as that in Figure 24.2a. In such a graph, 
p is near zero for very small values of X, it increases gradually as X increases, then 
it increases much more rapidly with further increase in X, and then it increases at 
a slow rate for larger X's, gradually approaching 1.0. Figl,lre 24.2a is a graph for a 
logistic equation with ex = - 2.0 and {3 = 1.0. The graph would shift to the left by 1 
unit of X for each increase of ex by I, and the rise in p would be steeper with a larger 
{3. If {3 were negative instead of positive, the curve would be a reverse S shape, rising 
from the lower right to the upper left of the graph. instead of from the lower left to 
the upper right.* 

For a I-unit increase in X, the odds increase by a factor of ef3. If, for example, 
{3 = 1.0, then the odds for X = 4 would be el.o (namely, 2.72) times the odds for 
X = 3. And a one-unit increase in X will result in a unit increase in the logit of p. So, 
if {3 = 1.0, then the logit for X = 4 would be 1.0 larger than the logit for X = 3. If {3 
is negative, then the odds and logit decrease instead of increase. 

Once the logistic-regression relationship is determined for a sample of data, it may 
be used to predict the probability of X for a given X. Equation 24.92 yields a logit of 
p for the specified X; then 

odds = elogil (24.93) 

* Another representation of binary Y data in an S-shaped relationship to X is that of probits. 
based upon a cumulative normal distribution. The use of logits is simpler and is preferred by many. 
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(a) (b) 
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FIGURE 24.2: Logistic regression, where a = -2.0 and f3 = 1.0. (a) The relationship of p = 1/[1 + 
e-(a+,8X») to X. (b) The relationship of the logit of p to X. 

and 
A 

p= ----
I + odds 

odds (24.94) 

If n is large. the hypothesis Ho: f3 = 0 may be tested using 

Z= !, (24.95) 
Sb 

which is analogous to the linear-regression test of that hypothesis using t (Section 
17.3b). This is known as the Wald test*; sometimes, with exactly the same result, the 
test statistic used is X2 = Z2, with 1 degree of freedom. In further analogy with linear 
regression, confidence limits for f3 are obtainable as 

(24.96) 

Assessing Ho: f3 = 0 and expressing a confidence interval for f3 may also be done using 
a computer-intensive process known as likelihood-ratio, or log-likelihood, testing. 
It has been noted (e.g., by Hauck and Donner. 1977; Menard. 2002: 43; Pampel, 
2000: 30) that when b is large, its standard error (Sb) is inflated, thereby increasing 
the probability of a Type II error in a Wald test (and thus decreasing the power of 
the test). Therefore. it is sometimes recommended that the likelihood-ratio test be 
used routinely in preference to the commonly encountered Wald test. For the same 
reason, likelihood-ratio confidence limits can be recommended over those obtained 
by Equation 24.96. The interpretation of logistic-regression coefficients is discussed 
more fuIly in the references cited in the second footnote in Section 24.18. 

In recommending an adequate number of data for logistic-regression analysis. some 
authors have suggested that n be large enough that there are at least 10 observations 
of Y = 1 and at least 10 of Y = O. 

*Named for Hungarian-born. Vienna-educated. American mathematician and econometrician 
Abraham Wald (1902-1950). 
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(b) Multiple Logistic Regression. Just as the concepts and procedures of linear 
regression with one independent variable. X (Chapter 17). can be expanded into 
those of linear regression with more than one X (Chapter 20). the basic ideas 
of logistic regression with one X (Section 24.18a) can be enlarged to those of 
logistic regression with more than one X. Expanding Equations 24.87-24.87b to 
equations for multiple logistic regression with m independent variables, a + (3X 
is replaced with a + I.i'~ If3iXi, which is a + 131 XI + /32X2 + ... + f3mXm: 
and. in Equations 24.88-24.88b, a + bX is replaced with a + I.i'~ I biXi, which is 
a + bl XI + b2X2 + ... + hmXm. Analogous to multiple linear regression. f3i 
expresses the change in In(logit) for a I-unit change in Xi, with the effects of the other 
Xi'S held constant. Further interpretation of logistic partial-regression coefficients is 
discussed in the references cited in the second footnote of Section 24.18. 

The statistical significance of the overall multiple logistic regression model is 
tested via Ho: 131 = 132 = ... = 13m. which is analogous to the analysis-of-variance 
testing in multiple linear regression (Section 20.3). The significance of each partial­
regression coefficient is tested via Ho: f3i = O. As with multiple liner regression, 
Ho: 131 = 132 = ... = 13m can be rejected while none of the significance tests of 
individual partial-regression coefficients result in rejection of Ho: f3i = 0 (especially 
when the conservative Wald test is used). 

The standardized partial-regression coefficients in mUltiple linear regression 
(Section 20.5) cannot be computed for logistic regression, but some authors have 
proposed similar coefficients. Also. there is no perfect logistic-regression analog to 
coefficients of determination (R2 and R7, in Section 20.3). Several measures have been 
suggested by various authors to express the concept of such a coefficient; sometimes 
they are referred to as "pseudo-R2" values (and some do not have 1.0 as their maxi­
mum). Just as with multiple linear-regression analysis. multiple logistic regression is 
adversely affected by multicolinearity (see Section 20.4a). Logistic analysis does not 
work well with small numbers of data, and some authors recommend that the sample 
be large enough that there are at least tom O's and at least 10m l's for the dependent 
variable. And, as is the case of multiple linear regression, multiple logistic regression 
is adversely affected by outliers. 

(c) Other Models of Logistic Regression. Though not commonly encountered, the 
dependent variable can be one that has more than two categories. This is known as 
a polytomous (or "polychotomous" or "multinomial") variable. Also, the dependent 
variable can be one that is measured on an ordinal scale but recorded in nominal­
scale categories. For example, subjects could be classified as "underweight," "normal 
weight, ,. and "overweight." 

Logistic regression may also be performed when an independent variable (X) is 
recorded on a dichotomous nominal scale. For example, the dependent variable could 
be recorded as hair loss (Y = I) or no hair loss (Y = 0) in men, with the independent 
variable (X) being exposed (X = 1) or not exposed (X = 0) to a certain drug or 
radiation treatment. Such data can be subjected to a 2 x 2 contingency-table analysis 
(Section 23.3), where the null hypothesis is that the proportion (p) of men with loss 
of hair is the same in the treated and non treated groups. Using logistic regression, 
however, the null hypothesis is that hair loss is statistically dependent upon receiving 
the treatment and the relationship between p and whether treatment was applied is 
quantified. 

In multiple logistic regression, one or more of the X's may be recorded on a dichoto­
mous scale. So. for example. Y could be recorded as hair loss or no hair loss, XI could 
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be age (measured on a continuous scale), and X2 could be sex (a dichotomous vari­
able: male or female). Indeed, using dummy variables (introduced in Section 20.10), 
X's can be recorded on a nominal scale with more than two categories. If all m of the 
independent variables are nominal and Y is dichotomous, the data could be arranged 
in a 2 x m contingency table, but different hypotheses would be tested thereby. 

It is also possible to perform stepwise multiple logistic regression (analogous to 
the procedures of Section 20.6) in order to determine which of the X's should be 
in the final regression model, logistic regression with polynomial terms (analogous 
to Chapter 21), and logistic regression with interaction of independent variables 
(analogous to Section 20.11). 

EXERCISES 

24.L If, in a binomial population. p = 0.3 and n = 6, 
what proportion of the population does X = 2 
represent? 

24.2. If, in a binomial population, p = 0.22 and n = 5, 
what is the probability of X = 4? 

24.3. Determine whether the following data, where 
n = 4. are likely to have come from a binomial 
population with p = 0.25: 

X f 

o 30 
1 51 
2 33 
3 10 
4 2 

24.4. Determine whether the following data, where 
n = 4, are likely to have come from a binomial 
population: 

X f 

o 20 
1 41 
2 33 
3 11 
4 4 

24.5. A randomly selected male mouse of a certain 
species was placed in a cage with a randomly 
selected male mouse of a second species. and it 
was recorded which animal exhibited dominance 
over the other. The experimental procedure was 
performed, with different pairs of animals, a total 
of twenty times, with individuals from species 1 
being dominant six times and those from species 
2 being dominant fourteen times. Test the null 
hypothesis that there is no difference in the ability 
of members of either species to dominate. 

24.6. A hospital treated 412 skin cancer patients over a 
period of time. Of these, 197 were female. Using 
the normal approximation to the binomial test, 
test the hypothesis that equal numbers of males 
and females seek treatment for skin cancer. 

24.7. Test the null hypothesis of Exercise 22.3, using the 
binomial test normal approximation. 

24.8. Ten students were given a mathematics aptitude 
test in a quiet room. The same students were given 
a similar test in a room with background music. 
Their performances were as follows. Using the 
sign test, test the hypothesis that the music has no 
effect on test performance. 

Score Score 
Student without music with music 

I 114 112 
2 121 122 
3 136 141 
4 102 107 
5 99 96 
6 114 109 
7 127 121 
8 150 146 
9 129 127 

10 130 128 

24.9. Estimate the power of the hypothesis test of Exer­
cise 24.5 if a = 0.05. 

24.10. Using the normal approximation, estimate the 
power of the hypothesis test of Exercise 24.6 if 
a = 0.05. 

24.11. In a random sample of 30 boys. 18 have curly 
hair. Determine the 95% confidence limits for 
the proportion of curly-haired individuals in the 
population of boys that was sampled. 



(a) Determine the Clopper-Pearson interval. 
(b) Determine the Wald interval. 
(c) Determine the adjusted Wald interval. 

~ In a random sample of 1215 animals. 62 exhibited 
a certain genetic defect. Determine the 95% confi­
dence interval for the proportion of the population 
displaying this defect. 
(a) Determine the Clopper-Pearson interval. 
(b) Determine the Wald interval. 
(c) Determine the adjusted Wald interval. 

• From this sample of 14 measurements, deter­
mine the 90% confidence limits for the population 
median running speed of monkeys: 28.3. 29.1. 29.5, 
20.1,30.2.31.4.32.2.32.8.33.1.33.2.33.6.34.5.34.7. 
and 34.8 km/hr. 

· Using the data of Exercise 23.3. test Ho: PI = P2 
versus HA : PI ~ P2· 

• Using the data of Example 23.3. determine the 
95% adjusted Wald confidence limits for PI - P2. 

• Using the data of Exercise 23.1. test the null 
hypothesis that there is the same proportion of 
males in all four seasons. 

• If the null hypothesis in Exercise 24.16 is rejected. 
perform a Tukey-type multiple-comparison test to 
conclude which population proportions are dif­
ferent from which. (Use Equation 13.7 for the 
standard error.) 

• A new type of heart valve has been developed and 
is implanted in 63 dogs that have been raised on 
various levels of exercise. The numbers of valve 
transplants that succeed are tabulated as follows. 
(a) Is the proportion of successful implants the 

same for dogs on all exercise regimens? 
(b) Is there a trend with amount of exercise in the 

proportion of successful implants? 

Amount of exercise 

Implant None Slight Moderate Vigorous Total 

Successful 8 9 17 14 48 
Unsuccess- 7 3 3 2 15 

ful 

Total 15 12 20 16 63 

· In investigating the cold tolerance of adults of a 
species of tropical butterfly. 68 of the butterflies 
(32 females and 36 males) were subjected to a cold 
temperature until half of the 68 had died. Twenty 
of the females survived. as did 14 of the males. with 
the data tabulated as follows: 
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Females Males 

Alive I 2~ 
Dead J1 

Prior to performing the experiment and collecting 
the data. it was stated that Ho: females are as likely 
as males to survive the experimental temperature. 
and HA: Females and males are not equally likely 
to survive. 
(a) Use the Fisher exact test for the one-tailed 

hypotheses. 
(b) Usc chi-square with the Yates correction for 

continuity (Sections 23.3c and 23.3d) for the 
two-tailed hypotheses. 

(c) Use chi-square with the Cochran-Haber cor­
rection for continuity (Sections 23.3c and 
23.3d) for the two-tailed hypotheses. 

(d) Use the Fisher exact test for the two-tailed 
hypotheses. 

24.20. Thirteen snakes of species Sand 17 of species E 
were placed in an enclosure containing 14 mice of 
species M and 16 of species U. Each of the 30 
snakes ate one of the 30 mice. and the following 
results were recorded: 

Snakes S Snakes E 

Mice M I 3 161 I ~146 
Mice U L..._"Tl.,..O ___ ....... _-+ . ..."..... 

1~ 17 30 
Prior to performing the experiment and collecting 
the data. it was decided whether the interest was in 
a one-tailed or two-tailed test. The one-tailed test 
hypotheses would be Ho: Under the conditions of 
this experiment. snakes of species E are not more 
likely than species S to eat mice of species M (i.e .. 
they are less likely or equally likely to do so), 
and H A: Snakes of speCies E are more likely to 
eat mice of species M. The two-tailed hypotheses 
would be Ho: Under the conditions of this experi­
ment. snakes of species S and species E are equally 
likely to eat mice of species M. and HA: Snakes of 
species S and species E are not equally likely to eat 
mice of species M. 
(a) Use the Fisher exact test for the one-tailed 

hypotheses. 
(b) Use chi-square with the Yates correction for 

continuity (Sections 23.3c and 23.3d) for the 
two-tailed hypotheses. 

(c) Use chi-square with the Cochran-Haber cor­
rection for continuity. 

(d) Use the Fisher exact test for the two-tailed 
hypotheses. 
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24.21. One hundred twenty-two pairs of brothers. one 
member of each pair overweight and the other 
of normal weight, were examined for presence 
of varicose veins. Use the McNemar test for the 
data below to test the hypothesis that there is no 
relationship between being overweight and devel­
oping varicose veins (i.e., that the same proportion 
of overweight men as normal weight men possess 

varicose veins). In the following data tabula,' 
"v.v." stands for "varicose veins." 

Normal 
Weight 

With v.v. 
Without v. v. 

Overweight 
With v. v. Withollt v. v. 

19 
12 

5 
86 ----------------------------- n=Jj 



C HAP T E R 25 

Testing for Randomness 

25.1 POISSON PROBABILITIES 
25.2 CONFIDENCE LIMITS FOR THE POISSON PARAMETER 
25.3 GOODNESS OF FIT FOR THE POISSON DISTRIBUTION 
25.4 THE POISSON DISTRIBUTION FOR THE BINOMIAL TEST 
25.5 COMPARING TWO POISSON COUNTS 
25.6 SERIAL RANDOMNESS OF NOMINAL-SCALE CATEGORIES 
25.7 SERIAL RANDOMNESS OF MEASUREMENTS: PARAMETRIC TESTING 
25.8 SERIAL RANDOMNESS OF MEASUREMENTS: NONPARAMETRIC TESTING 

A random distriblllioll of objects in space is one in which each one of equal portions 
of the space has the same probability of containing an object, and the occurrence of 
an ohject in no way influences the occurrence of any of the other ohjects. A hiological 
example in onc-dimensional space could be the linear distribution of blackbirds along 
the top of a fence. an example in two-dimensional space could be the distribution 
of cherry trees in a forest, and an example in three-dimensional space could be the 
distribution of unicellular algae in water.* A random distribution of events in time is 
one in which each period of time of given length (e.g., an hour or a day) has an equal 
chance of containing an event. and the occurrence of anyone of the events is inde­
pendent of the occurrence of any of the other events. An example of events in periods 
of time could be the numbers of heart-attack patients entering a hospital each day. 

25.1 POISSON PROBABILITIES 

The Poisson distributiol/'; is important in describing ralldom occurrences when the 
probability of an occurrence is small. The terms of the Poisson distrihution are 

or, equivalently, 

e-/J./Lx 
P(X) = X! 

x 
P(X) =~, 

e/J.X! 

(25.1 a) 

(25.lb) 

* An extensive coverage of the description <lnd a",!lysis of spatial pattern is given by Upton and 
Finglcton ( IllX5). 

t Also known <IS Poi.uo/l·.\" /111\' <lOll n<lmed for Simcon Denis Poisson (17XI-IR40). a French 
mathematician. astronomcr. and physicist (Fe ron. lll7X). He is often credited with the first report of 
this distribution in a IlG7 publication. Howcvcr. Dale ( I!)X!) reported that it appeared earlier in an 
IX30 mcmoir of an IX2!) presentation by Poisson. and Abraham de Moivre (1 no7 -1754) apparently 
described it in 171X (David. 1%2: I nX: Stigler. 19X2). It was also described independently by others, 
including "Student'· (W. S. Gosset, Ill7n-llJJ7) during IlJOo-Il)()!) (Bol<lI1d. 2000; Haight. 1%7: 
117). Poisson's name might have lirst been allached 10 this distribution, in contrast to his being 
merely cited. by H.E. Soper in III 14 (David. Illll5). 

585 
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where P( X) is the probability of X occurrences in a unit of space (or time) and J.L is 
the population mean number of occurrences in the unit of space (or time). Thus, 

P(O) == e- It , 
P( 1) == e-It J.L, 

-It 2 
P(2) = e 2J.L , 

P( 3) - _e -_It...:...J.L_3 

- (3)(2)' 

e- ItJ.L4 
P(4) - ---'---

(4)(3)(2) 

(25.2) 
(25.3) 

(25.4) 

(25.5) 

(25.6) 

and so on, where P(O) is the probability of no occurrences in the unit space, P(I) 
is the probability of exactly one occurrence in the unit space, and so on. Figure 25.1 
presents some Poisson probabilities graphically. 

In calculating a series of Poisson probabilities, as represented by the preceding five 
equations, a simple computational expedient is available: 

P(X) = P(X - 1 )J.L. 
X 

(25.7) 

Example 25.1 demonstrates these calculations for predicting how many plants will 
have no beetles, how many will have one beetle, how many will have two beetles, and 
so on, if 80 beetles are distributed randomly among 50 plants. 

0.40 

0.35 

0.30 0.30 

0.25 It = 1.0 0.25 It = 2.0 

P(X) 0.20 0.20 

(1.15 P(X) 0.15 

o. J() 0.10 

0.05 0.05 

0 
0 >4 

0 
0 2 

0.25 It = 3.0 
0.25 It = 4.0 

0.20 0.20 

P(X) 0.15 P(X) 0.15 

0.10 0.\0 

0.05 0.05 

0 
0 I 2 3 4 5 6 7 >7 

0 
0 I 2 3 4 5 

X X 

FIGURE 25.1: The Poisson distribution for various values of It. These graphs were prepared by using 
Equation 25.1. 
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EXAMPLE 25.1 Frequencies from a Poisson Distribution 

There are 50 plants in a greenhouse. If 80 leaf-eating beetles are introduced and 
they randomly land on the plants, what are the expected numbers of beetles per 
plant? 

n = 50 
HO beetles 

IL = = 1.6 beetles/plant 
50 plants 

Using Equation 25.2. P(O) = e-/J. = e-1.6 = 0.20190; thus, 20.190% of the 
plants-that is, (0.20190)(50) = 10.10 (about IO)-are expected to have no 
beetles. The probabilities of plants wi th Xi = 1, 2. 3.. .. beetles are as follows. 
using Equation 25.7 (although Equation 25.1 a or 25.1 b could be used instead): 

Number Estimated number of plants 
of beetles Poisson probability 

A 

X P(X) f = [P(X)l[nj f rollnded 

0 0.20190 (0.20190)(50) = 10.10 \0 
I (0.20190)( 1.6)/1 = 0.32304 (0.32304)(50) = 16.15 16 
2 (0.32304)( 1.6 )/2 = 0.25843 (0.25843)( 50) = 12.92 13 
3 (0.25843)( 1.6 )/3 = 0.13783 (0.13783)(50) = 6.H9 7 
4 (0.13783)( 1.6)/4 = 0.05513 (ll.O5513 )( 50) = 2.76 3 
5 (0.05513)( 1.6)/5 = 0.01764 (0.01764)(50) = 0.88 I 

s5 0.99397 49.70 50 
~6 1.00000 - 0.99397 = 0.00603 (0.00603)(50) = 0.30 0 

50.00 50 

The Poisson distribution is appropriate when there is a small probability of a 
single event. as reflected in a small IL. and this distribution is very similar to the 
binomial distribution where It is large and p is small. For example. Table 25.1 
compares the Poisson distribution where IL = I with the binomial distribution where 
It = 100 and p = (l.()J (and. therefore, J.L = lip = I). Thus. the Poisson distribution 
has importance in describing binomially distributed events having low probability. 
Another interesting property of the Poisson distribution is that (T2 = IL; that is. the 
variance and the mean are equal. 

CONFIDENCE LIMITS FOR THE POISSON PARAMETER 

Confidence limits for the Poisson distribution parameter. IL. may be obtained as 
follows. The lower 1 - a confidence limit is 

2 
X( I-crf2). v LI =----'---'------'---

2 

where v = 2X; and the upper I - a confidence limit is 
., 

X~/2." L2 = 
2 

(25.8) 

(25.9) 
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TABLE 25.1: The Poisson Distribution Where JL = 1 
Compared with the Binomial Distribution Where n = 100 
and p = 0.01 (Le., with JL = 1) and the Binomial 
Distribution Where n = 10 and p = 0.1 (Le., with JL = 1) 

P(X) P(X) P(X) 
for Poisson: for binomial: for binomial: 

X p,=1 n = 100, p = 0.01 n = 10, P = 0.1 

0 0.36788 0.36603 0.34868 
1 0.36788 0.36973 0.38742 
2 0.18394 0.18486 0.19371 
3 0.06131 0.06100 0.05740 
4 0.01533 0.01494 0.01116 
5 0.00307 0.00290 0.00149 
6 0.00050 0.00046 0.00014 
7 0.00007 0.00006 0.00001 

>7 0.00001 0.00002 0.00000 

Total 1.00000 1.00000 1.00001 

where v = 2(X + 1) (Pearson and Hartley, 1966: 81). This is demonstrated in 
Example 25.2. LI and L2 are the confidence limits for the population mean and for 
the population variance. Confidence limits for the population standard deviation, 
CT, are simply the square roots of LI and L2. The confidence limits, LI and L2 (or 
their square roots), are not symmetrical around the parameter to which they refer. 
This procedure is a fairly good approximation. If confidence limits are desired to 
be accurate to more decimal places than given by the available critical values of t. 
we may engage in the more tedious process of examining the tails of the Poisson 
distribution (e.g., see Example 25.3) to determine the value of X that cuts off a/2 
of each tail. Baker (2002) and Schwertman and Martinez (1994) discuss several 
approximations to L 1 and L2, but the best of them require more computational effort 
than do the exact limits given previously, and they are all poor estimates of those limits. 

EXAMPLE 25.2 Confidence Limits for the Poisson Parameter 

An oak leaf contains four galls. Assuming that there is a random occurrence of 
galls on oak leaves in the population, estimate with 95% confidence the mean 
number of galls per leaf in the population. 

The population mean, JL, is estimated as X = 4 gallslleaf. 

The 95% confidence limits for JL are 
2 

X(I-a/2) " 
LI = 2', where v = 2X = 2( 4) = 8 

X2 2.180 
LI = 0.975.8 = -- = 1.1 gallslleaf 

2 2 
X2 

L2 = ai2.", where v = 2(X + 1) = 2(4 + 1) = 10 

2 
L, = XO.025.10 = 20.483 = 10.2 e:alls/leaf 
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Therefore, we can state 

P( 1.1 galls/leaf !5 J.L !5 10.2 galls/leaf) ;::: 0.95 

and 
P( 1.1 galls/leaf !5 u 2 !5 10.2 galls/leaf) ;::: 0.95; 

and, using the square roots of L, and L2, 

P( 1.0 galls/leaf !5 u !5 3.2 galls/leaf) ;::: 0.95. 

GOODNESS OF FIT FOR THE POISSON DISTRIBUTION 

The goodness of fit of a set of data to the Poisson distribution is a test of the null 
hypothesis that the data are distributed randomly within the space that was sampled. 
This may be tested by chi-square (Section 22.3), as was done with the binomial 
distribution in Section ~4.4. When tabulating the observed frequencies (j;) and the 
expected freq~encies (j;), the frequencies in the tails of the distribution should be 
pooled so no f; is less than 1.0 (Cochran, 1954). The degrees of freedom are k - 2 
(where k is the number of categories of X remaining after such pooling). Example 
25.3 fits a set of data to a Poisson distribution, using the sample mean, X, as an 
estimate of J.L in Equations 25.2 and 25.7. The G statistic (Section 22.7) may be 
used for goodness-of-fit analysis instead of chi-square. It will give equivalent results 
when nj k is large; if nj k is very small, G is preferable to X2 (Rao and Chakravarti. 
1956). 

If J.L were known for the particular popUlation sampled, or if it were desired to 
assume a certain value of J.L, then the parameter would not have to be estimated 
by X, and the degrees of freedom for X2 for G goodness-of-fit testing would be 
k - 1. For example, if the 50 plants in Example 25.1 were considered the only plants 
of interest and 80 beetles were distributed among them, J.L would be 80/50 = 1.6. 
Then the observed number of beetles PC! plant could be counted and those numbers 
compared to the expected frequencies (f) determined in Example 25.1 for a random 
distribution. It is only when this parameter is specified that the Kolmogorov-Smirnov 
goodness-of-fit procedure (Section 22.8) may be applied (Massey, 1951). 

EXAMPLE 25.3 Fitting the Poisson Distribution 

Thirty plots of ground were examined within an abandoned golf course, each plot 
being the same size; a total of 74 weeds were counted in the 30 plots. The frequency 
f is the number of plots found to contain X weeds; P( X) is the probability of X 
weeds in a plot if the distribution of weeds is random within the golf course. 

Ho: The weeds are distributed randomly. 
HA: The weeds are not distributed randomly. 

n = 30 
- 74 weeds 
X = = 2.47 weeds/plot 

30 plots 

P(O) = e-X = e-2.47 = 0.08458 
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A 

X f IX P(X) 1= [P(X)][n] 

0 2 0 0.08458 2.537 
1 ) ) (0.08458)(2.47)/1 = 0.20891 6.267 
2 13 26 (0.20891)(2.47)/2 = 0.25800 7.740 
3 10 30 (0.25800)(2.47)/3 = 0.21242 6.373 
4 3 12 (0.21242)(2.47)/4 = 0.13116 3.935 
5 1 5 (0.13116)(2.47)/5 = 0.06479 1.944 
6 0 0 (0.06479)(2.47)/6 = 0.02667 0.800 

30 74 0.98653 29.596 

A A 

The last I calculated (for X 6) is less than 1.2, so the calculation of f's 
proceeds no further. The sum <?f the seven calculated f's is 25.596, so P( X > 6) = 

30 :: 25.596 = 0.404 and the f's of 0.800 and 0.404 are summed to 1.204 to obtain 
anI that is no smaller than 1.0.* 

Then the chi-square goodness of fit would proceed as in Section 22.3: 

X: 0 1 2 3 4 5 ~6 n 

{ 2 1 13 10 3 1 0 30 

I: 2.537 6.267 7.740 6.373 3.935 1.944 1.204 

2 _ (2 - 2.537)2 + (1 - 6.267f + (13 - 7.740)2 
X - 2.537 6.267 7.740 

+ (10 - 6.373)2 + (3 - 3.935)2 + (1 - 1.944)2 + (0 - 1.204)2 

6.373 3.935 1.944 

= 0.114 + 4.427 + 3.575 + 2.064 + 0.222 + 0.458 + 1.204 

= 12.064 

v=k-2=7-2=5 

X5.05.5 = 11.070. 

Therefore, reject Ho. 
0.025 < P < 0.05 

1.204 

* P(X) > 6 could also have been obtained by adding all of the P(X)'s in the preceding table. 
which would result in a sum of 0.98653; and (0.98653 )(30) = 29.596. 

The null hypothesis in Poisson goodness-of-fit testing is that the distribution of 
objects in space (or events in time) is random . 

• A random distribution of objects in a space is one in which each object has the 
same probability of occurring in each portion of the space; that is. the occurrence 
of each object is independent of the occurrence of any other object. There are 
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these two kinds of deviation from randomness that wiIJ cause rejection of the 
null hypothesis: 

• A ulliform distribution of objects in a space is one in which there is equal 
distance between adjacent objects, as if they are repelling each other. 

• A contagious distribution· (also referred to as a "clumped," "clustered," 
"patchy." or "aggregated" distribution) in a space is one in which objects are 
more likely than in a random distribution to occur in the vicinity of other objects. 
as if they are attracting each other. 

Figures 25.2 and 25.3 show examples of these three kinds of distributions. 
If a population has a random (Poisson) distribution, the variance is the same as 

the mean: that is, 0'2 = f.L and 0'2/ f.L = 1.0. t If the distribution is more uniform 
than random (said to be "underdispersed"), 0'2 < f.L and 0'2/ f.L < 1.0; and if the 
distribution is distributed contagiously ("overdispersed"), 0'2 > f.L and 0'2/ f.L > 1.0. 

(a) (0) (e) 

FIGURE 25.2: Distributions in one-dimensional space (i.e .• along a line): (a) random (Poisson). in which 
(,2 = lot; (b) uniform. in which q2 < lot; (c) contagious. in which u2 > lot • 

...... . - •• • • • • • • • • • • • • •• • • • • • • • • • • • •• • • •• •••• • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • •• • •• 
•• • • •• • • • • • • • • • • • • 

• • • • • • • • • 
(a) (b) (e) 

FIGURE 25.3: Distributions in two-dimensional space: (a) random (Poisson). in which u 2 = lot; (b) uniform. 
in which q2 < lot; (c) contagious. in which (,2 > lot. 

* A mathematical distribution that is sometimes used to describe contagious distributions of 
biological data is the negative binomial dislribllliolJ. which is described. for example. by Ludwig and 
Reynolds (1988: 24-26. 32-35) and Pie lou (1977: 278-281). and by Ross and Preece (1985). who 
credit a 1930 French paper by G. Polya with the first use of the term contagious in this context. 
David (1995) reported that "negative binomial distribution" is a term first used by M. Greenwood 
and G. U. Yule. in 1920. 

t Although a population with a random distribution will always have its mean equal to its 
variance_ Hurlbert (1990). Pie lou (1967: 155). and others have emphasized that not every population 
with JL = u 2 has a random distribution. 
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The investigator generally has some control over the size of the space. or the length 
of the time interval. from which counts are recorded. So a plot size twice as large as 
that in Example 25.3 might have been used. in which case each f would most likely 
have been twice the size as in this example. with X of 4.94, instead of 2.47. In analyses 
using the Poisson distribution, it is desirable to use a sample distribution with a fairly 
small mean-let us say certainly below 10, preferably below 5, and ideally in the 
neighborhood of 1. If the mean is too large. then the Poisson too closely resembles 
the binomial, as well as the normal, distribution. If it is too small, however. then the 
number of categories, k, with appreciable frequencies will be too small for sensitive 
analysis. 

Graphical testing of goodness of fit is sometimes encountered. The reader may 
consult Gart (1969b) for such considerations. 

25.4 THE POISSON DISTRIBUTION FOR THE BINOMIAL TEST 

The binomial test was introduced in Section 24.5 as a goodness-of-flt test for counts 
in two categories. If n is large, the binomial test is unwieldy. If p is small, it may be 
convenient to use the Poisson distribution. for it becomes very similar to the binomial 
distribution at such p's. 

(a) One-Tailed Testing. Let us consider the following example. It is assumed (as 
from a very large body of previous information) that a certain type of genetic mutation 
naturally occurs in an insect population with a frequency of 0.0020 (i.e., on average in 
20 out of 10,000 insects). On exposing a large number of these insects to a particular 
chemical. we wish to ask whether that chemical increases the rate of this mutation. 
Thus, we state Ho: p :5 0.0020 and H A: p > 0.0020. (The general one-tailed hypotheses 
of this sort would be Ho: P :5 po and H A: P > po, where Po is the proportion of 
interest in the statistical hypotheses. If we had reason to ask whether some treatment 
reduced the natural rate of mutations. then the one-tailed test would have used Ho: 
p ~ Po and HA : P < Po·) 

As an example. if performing this exposure experiment for the hypotheses Ho: 
Po :5 0.0020 and HA : Po > 0.0020 yielded 28 of the mutations of interest in 8000 
insects observed. then the sample mutation rate is p = X / n .= 28/8000 = 0.0035. 
The question is whether the rate of 0.0035 is significantly greater than 0.0020. If we 
conclude that there is a low probability (i.e.,:5 a) of a sample rate being at least as 
large as 0.0035 when the sample is taken at random from a population having a rate 
of 0.0020, then Ho is to be rejected. 

The hypotheses could also be stated in terms of numbers, instead of proportions, 
as Ho: J1. :5 J1.() and HA : J1. > J1.(), where J1.() = pon (which is 0.0020 x 8000 = 16 in this 
example). 

By substituting pun for J1. in Equation 25.1. we determine the probability of observ­
ing X = 28 mutations if our sample came from a population with po = 0.0020. 
To test the hypothesis at hand, we determine the probability of observing X ~ 28 
mutations in a sample. (If the alternate hypothesis being considered were HA: 
P < Po, then we would compute the probability of mutations less than or equal to 
the number observed.) If the one-tailed probability is less than or equal to a, then 
Ho is rejected at the ex level of significance. This process is shown in Examples 25.4 
and 25.5a. 
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EXAMPLE 25.4 Poisson Probabilities for Performing the Binomial Test 
with a Very Small Proportion 

Po = 0.0020 
It = 8000 

We substitute pon = (0.0020)(8000) = 16 for IL in Equation 25.1 to compute the 
following*: 

For lower tail of distribution For upper tail of distribution 

Cumulative Cumulative 
X P(X) P(X) X P(X) P(X) 

0 0.00000 0.00000 23 0.02156 0.05825 
1 0.00000 0.00000 24 0.01437 0.03669 
2 0.00001 0.00001 25 0.00920 0.02232 
3 0.00008 0.00009 26 0.00566 0.01312 
4 0.00031 0.00040 27 0.00335 0.00746 
5 0.00098 0.00138 28 0.00192 0.00411 
6 0.00262 0.00400 29 0.00106 0.00219 
7 0.00599 0.00999 30 0.00056 0.00113 
8 0.01199 0.02198 31 0.00029 0.00057 
9 0.02131 0.04329 32 0.00015 0.00028 

10 0.03410 0.07739 33 0.00007 0.00013 
34 0.00003 0.00006 
35 0.00002 0.00003 
36 0.00001 0.00001 
37 0.00000 0.00000 

The cumulative probability is the probability in the indicated tail. For example, 
P( X :$ 10) = 0.07739 and P( X ~ 25) = 0.02232. This series of computations 
terminates when we reach a P( X) that is zero to the number of decimal places 
used. 

e- 16 162!! 
*For example. using Equation 25.1a. P(X = 28) = = 0.00192; and P(X = 29) = 

28! 
- 16 1629 

e = O'(lO106. 
29! 

(b) Two-Tailed Testing. If there is no reason, a priori, to hypothesize that a change 
in mutation rate would be in one specified direction (e.g., an increase) from the 
natural rate, then a two-tailed test is appropriate. The probability of the observed 
number of mutations is computed as shown in Example 25.4. Then we calculate and 
sum all the probabilities (in both tails) that are equal to or smaller than that of the 
observed. This is demonstrated in Example 25.5b. 

(c) Power of the Test. Recall that the power of a statistical test is the probability 
of that test rejecting a null hypothesis that is in fact a false statement about the 
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EXAMPLE 25.5a A One-Tailed Binomial Test for a Proportion from a 
Poisson Population, Using the Information of Example 25.4 

Ho: P ::5 0.0020 
HA: P > 0.0020 

ex = 0.05 
n = 8000 
X = 28 
POll = (0.0020)(8000) = 16 

Therefore. we could state 

Ho: J.L ::5 16 

HA: J.L > 16. 

From Example 25.4, we see that P(X = 28) = O.00192andP(X~ 28) = 0.00411. 
As 0.00411 < 0.05, reject Ho. 

EXAMPLE 25.5b A Two-Tailed Binomial Test for a Proportion from a 
Poisson Population, Using the Information of Example 25.4 

HI): P = 0.0020 

HA : P '* 0.0020 
ex = 0.05 

n = 8000 

X = 28 

pon = (0.0020)( 8(00) = 16 

Therefore, we can state 

Ho: J.L = 16 
HA: J.L '* 16. 

From Example 25.4. we see that P( X = 28) = 0.00192. 
The sum of the probabilities in one tail that are ::5 0.00192 is 0.00411; the sum 

of the probabilities in the other tail that are ::5 0.00192 is 0.00138. Therefore, 
the probability of obtaining these data from a population where Ho is true is 
0.00411 + 0.00138 = 0.00549. 

As 0.00549 < 0.05, reject Ho. 

population. We can determine the power of the preceding test when it is performed 
with a sample size of n at a significance level of ex. For a one-tailed test, we first 
determine the critical value of X (i.e., the smaUest X that delineates a proportion 
of the Poisson distribution ::5 ex). Examining the distribution of Example 25.4, for 
example. for ex = 0.05. we see that the appropriate X is 24 [for P( X ~ 24) = 0.037), 
while P(X ~ 23) = 0.058]. We then examine the Poisson distribution having the 
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sample X replace IL in Equation 25.1. The power of the test is ~ the probability of an 
X at least as extreme as the critical value of X.* 

For a two-tailed hypothesis, we identify one critical value of X as the smallest 
X that cuts off $ al2 of the distribution in the upper tail and one as the largest X 
that cuts off $ al2 of the lower tail. In Example 25.6, these two critical values for 
a = 0.05 (i.e., al2 = 0.025) are X = 25 and X = 8 [as P(X ~ 25) = 0.022 and 
P( X $ 8) = 0.022]. Then we examine the Poisson distribution having the sample X 
replace IL in Equation 25.1. As shown in Example 25.6, the power of the two-tailed 
test is at least as large as the probability of X in the latter Poisson distribution being 
more extreme than either of the critical values. That is, power ~ P( X~ upper critical 
value) + P(X$lower critical value). 

COMPARING TWO POISSON COUNTS 

If we have two counts, XI and X2, each from a population with a Poisson distribution, 
we can ask whether they are likely to have come from the same population (or from 
populations with the same mean). The test of Ho: ILl = 1L2 (against HA: ILl ;/; 1L2) 
is related to the binomial test with p = 0.50 (Przyborowski and Wilenski, 1940; 
Pearson and Hartley, 1966: 78-79), so that Appendix Table B.27 can be utilized, 
using n = XI + X2. For the two-tailed test. Ho is rejected if either XI or X2 is $ the 
critical value, Ca(2).n. This is demonstrated in Example 25.7. 

For a one-tailed test of Ho: ILl $ 1L2 against HA: ILl > 1L2, we reject Ho if XI > X2 
and X2 $ Ca(1 ).11' where n = XI + X2. For Ho: ILl ~ IL2 and Hit: ILl < 1L2, Ho is 
rejected if XI < X2 and XI $ Cn ( I ).11' where n = XI + X2. 

This procedure results in conservative testing, and if 11 is at least 5, then a normal 
approximation should be used (Detre and White, 1970; przyborowski and Wilenski. 
1940; Sichel, 1973). For the two-tailed test, 

Z = IXI - X21 
JXI + X2 

(25.l0) 

is considered a normal deviate. so the critical value is Za(2) (which can be read as 
ta(2).00 at the end of Appendix Table 8.3). This is demonstrated in Example 25.7. 

For a one-tailed test, 

(25.11) 

For Ho: ILl $1L2versusHA:1L1 > 1L2.Ho is rejected if XI > X2andZ~ Za(I).For 
Ho: ILl ~ 1L2 versus HA: ILl < 1L2. Ho is rejected if XI < X2 and Z $ -Za( I). 

The normal approximation is sometimes seen presented with a correction for 
continuity, but Pirie and Hamdan (1972) concluded that this produces results that are 
excessively conservative and the test has very low power. 

An alternative normal approximation, based on a square-root transformation 
(Anscombe. 1948) is 

(25.l2) 

*If the critical value delineates exactly a of the tail of the Poisson distribution. then the test's 
power is exactly what was calculated: if the critical value cuts off <a of the tail. then the power is > 
that calculated. 
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EXAMPLE 25.6 Estimation of the Power of the Small-Probability Binomial 
Tests of Examples 25.5a and 25.5b, Using ex = 0.05 

Substituting X = 28 for J.L in Equation 25.1. we compute the following*: 

For lower tail of distribution For upper tail of distribution 

Cumulative Cumulative 
X P(X) P(X) X P(X) P(X) 

0 0.000 0.000 24 0.060 0.798 
I 0.000 0.000 25 0.067 0.738 
2 0.000 0.000 26 0.072 0.671 
3 0.000 0.000 27 0.075 0.599 
3 0.000 0.000 28 0.075 0.524 
5 0.000 0.000 29 0.073 0.449 
6 o.oon 0.000 30 0.068 0.376 
7 0.000 0.000 31 0.061 0.308 
8 0.000 0.000 32 0.054 0.247 

33 0.045 0.193 
34 0.037 0.148 
35 0.030 0.111 
36 0.023 0.081 
37 0.018 0.058 
38 0.013 0.040 
39 0.009 0.027 
40 0.007 0.018 
41 0.004 0.011 
42 0.003 0.007 
43 0.002 0.004 
44 0.001 0.002 
45 0.001 0.001 
46 0.000 0.000 

The critical value for the one-tailed test of Example 25.5a is X = 24. The power 
of this test is > P( X ~ 24) in the preceding distribution. That is, the power is 
>0.798. 

The critical values for the two-tailed test of Example 25.5b are 25 and 8. The 
power of this test is >P(X ~ 25) + P(X ~ 8) = 0.738 + 0.000. That is. the 
power is >0.738. 

e-282S24 
*For example. using Equation 25.1a. P(X = 24) = = 0.060\0: and P(X = 25) = 

24! 
-282025 

e 0 = 0.06731. 
25! 

(Best, 1975). It may be used routinely in place of Equation 25.10. and it has superior 
power when testing at a < 0.05. Equation 25.12 is for a two-tailed test; for one-tailed 
testing, use 

Z = '2X, + ~ - '2X, + ~ V 4 V - 4' 
(25.13) 

with the same procedure to reject Ho as with Equation 25.11. 
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EXAMPLE 25.7 A Two-Sample Test with Poisson Data 

One fish is found to be infected with 13 parasites and a second fish with 220. 
Assuming parasites are distributed randomly among fish, test whether these two 
fish are likely to have come from the same population. (If the two were of 
different species, or sexes, then we could ask whether the two species, or sexes, 
are equally infected.) The test is two-tailed for hypotheses Ho: ILl = IL2 and HA: 

ILl *- IL2· 
Using Appendix Table B.27 for n = XI + X2 = 13 + 22 = 35, we find a 

critical value of CU.OS(2).35 = 11. Because neither XI nor X2 is :c:;; 11, HI) is not 
rejected. Using the smaller of the two X's. we conclude that the probability is 
between 0.20 and 0.50 that a fish with 13 parasites and one with 22 parasites come 
from the same Poisson population (or from two Poisson populations having the 
same mean). 

Using the normal approximation of Equation 25.10, 

Z = IXI - X21 = 113 - 221 = _9_ = 1.521 
JX I + X2 J13 + 22 5.916 

ZO.1)5(2) = to.()S(2).00 = 1.960. 

Therefore, do not reject HIJ. 

0.10 < P < 0.20 [P = 0.13] 

SERIAL RANDOMNESS OF NOMINAL-SCALE CATEGORIES 

Representatives of two different nominal-scale categories may appear serially in 
space or time, and their randomness of occurrence may be assessed as in the following 
example. Members of two species of antelopes are observed drinking along a river, 
and their linear order is as shown in Example 25.8. We may ask whether the sequence 
of occurrence of members of the two species is random (as opposed to the animals 
either forming groups with individuals of the same species or shunning members of the 
same species). A sequence of like elements, bounded on either side by either unlike 
elements or no elements, is termed a run. Thus, any of the following arrangements 
of five members of antelope species A and seven members of species B would be 
considered to consist of five runs: 

BAABBBAAABBB, or BBAAAABBBBA8. or BABAAAABBBBB, or 

BAAABAABBBBB, and so on. 

To test the null hypothesis of randomness, we may use the runs lest.· If nl is the 
total number of elements of the first category (in the present example, the number 
of antelope of species A), n2 the number of antelope of species B, and It the number 
of runs in the entire sequence, then the critical values, 11£1'(2).111. 112' can be read from 
Appendix Table B.29 for cases where both nl :c:;; 30 and n2 :c:;; 30. The critical values 
in this table are given in pairs; if the u in the sample is :c:;; the first member of the pair 
or ~ the second, then Ho is rejected. 

* From its inception the runs test has also been considered to be a non parametric test of whether 
two samples come from the same population (e.g .. Wald and Wolfowitz. 1940). but as a two-sample 
test it has very poor power and the Mann-Whitney test of Section 8.11 is preferable. 
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EXAMPLE 25.8 The Two-Tailed Runs Test with Elements of Two Kinds 

Members of two species of antelopes (denoted as species A and B) are drinking 
along a river in the following order: AABBAABBBBAAABBBBAABBB. 

Ho: The distribution of members of the two species along the river is random. 
H A: The distribution of members of the two species along the river is not random. 

For species A, III = 9; for species B, 112 = 13; and u = 9. 

UO.05(2),9.13 = 6 and 17 (from Appendix Table B.29) 

As u is neither :5 6 nor::=: 17, do not reject Ho. 

0.10 :5 P :5 0.20 

The power of the runs test increases with sample size.* Although Appendix Table 
B.29 cannot be employed if either III or 112 is larger than 30, for such samples the 
distribution of u approaches normality with a mean of 

and a standard deviation of 

all = 

- 21llm + 1 /-LII ---
N 

2111112(2111112 - N) 
N2(N - 1) 

(25.14) 

(25.15) 

where N = III + 112 (Brownlee, 1965: 226-230; Wald and Wolfowitz, 1940). And the 
statistic 

Zc = lu - /-LIII - 0.5 (25.16) 
all 

may be considered a normal deviate, with Za(2) being the critical value for the test. 
(The 0.5 in the numerator of Zc is a correction for continuity.) 

Using Equation 25.16, the runs test may be extended to data with more than 
two categories (Wallis and Roberts, 1956: 571), for, in general, -

N(N + 1) - ~1l7 
/-LII = N (25.17) 

and 

au = (25.18) 
~lln~1l7 + N(N + 1)] 2N~llt - N 3 

N2(N - I) 

where Ilj is the number of items in category i, N is the total number of items 
(Le., N = ~ Ilj), and the summations are over all categories. (For two categories, 

*Mogull (1994) has shown that the runs test should not used in the unusual case of a sample 
consisting entirely of runs of two (for example. a sample consisting of BBAABBAABBAABB). In 
such situations the runs test is incapable of concluding departures from randomness: it has very low 
power, and the power decreases with increased sample size. 



Section 25.7 Serial Randomness of Measurements: Parametric Testing 599 

Equations 25.17 and 25.18 are equivalent to Equations 25.14 and 25.15. respectively.) 
O'Brien (1976) and O'Brien and Dyck (1985) present a runs test, for two or more 
categories, that utilizes more information from the data. and is more powerful. than 
the above procedure. 

(a) One-Tailed Testing. There are two ways in which a distribution of nominal-scale 
categories can be nonrandom: (a) The distribution may have fewer runs than would 
occur at random. in which case the distribution is more clustered, or contagious. 
than random; (b) the distribution may have more runs than would occur at random. 
indicating a tendency toward a uniform distribution. 

To test for the one-tailed situation of contagion, we state Ho: The elements in the 
population are not distributed contagiously. versus HA : The elements in the popula­
tion are distributed contagiously: and HII would be rejected at the a( 1 ) significance 
level if u ~ the lower of the pair of critical values in Appendix Table B.29. Thus. had the 
animals in Example 25.8 been arranged AAAAABBBBBBAAAABBBBBBB. then 
u = 4 and the one-tailed 5% critical value would be the lower value of UII.IIS( 1 ).9.13. 

which is 7; as 4 < 7. Ho is rejected and the distribution is concluded to be clustered. 
In using the normal approximation, Ho is rejected if Ze ~ Za( 1) and u ~ Jl-ll' 

To test for uniformity. we usc Ho: The clements in the population are not uniformly 
distributed versus HA : The clements in the population are uniformly distributed. If 
u ~ the upper critical value in Appendix Table B.29 for a( 1 ), then HI) is rejected. If the 
animals in Example 25.8 had been arranged asABABABBABABBABABBABBAB. 
then u = 18. which is greater than the upper critical value of lIo.I)S( 1 ).9.13 (which is 16): 
therefore, Ho would have been rejected. If the normal approximation were used, Ho 
would be rejected if Ze ~ Za( 1) and /I ~ Jl-ll' 

(b) Centrifugal and Centripetal Patterns. Occasionally. nonrandom ness in the 
sequential arrangement of two nominal-scale categories is characterized by one 
of the categories being predominant toward the ends of the series and the other 
toward the center. In the following sequence. for example. 

AAAABAABBBBBBABBBBBAABBAAAAA 

the A's are more common toward the termini of the sequence, and the B's are more 
common toward the center of the sequence. Such a situation might be the pattern 
of two species of plants along a line transect from the edge of a marsh. through the 
center of the marsh. to the opposite edge. Or we might observe the occurrence of 
diseased and healthy birds in a row of cages. each cage containing one bird. Ghent 
(1993) refers to this as a centrifugal pattern of A 's and a centripetal pattern of B's and 
presents a statistical test to detect such distributions of observations. 

SERIAL RANDOMNESS OF MEASUREMENTS: PARAMETRIC TESTING 

Biologists may encounter continuous data that have been collected serially in space 
or time. For example, rates of conduction might be measured at successive lengths 
along a nerve. A null hypothesis of no difference in conduction rate as one examines 
successive portions essentially is stating that all the measurements obtained are a 
random sample from a popUlation of such measurements. 

Example 25.9 presents data consisting of dissolved oxygen measurements of a 
water solution determined on the same instrument every five minutes. The desire 
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EXAMPLE 25.9 The Mean Square Successive Difference Test 

An instrument for measuring dissolved oxygen is used to record a measurement 
every five minutes from a container of lake water. It is desired to know whether the 
differences in measurements are random or whether they are systematic. (If the 
latter. it could be due to the dissolved oxygen content in the water changing, or 
the instrument's response changing. or to both.) The data (in ppm) are as follows, 
recorded in the sequence in which they were obtained: 9.4. 9.3, 9.3, 9.2, 9.3, 9.2, 
9.1,9.3.9.2.9.1,9.1. 

Ho: Consecutive measurements obtained on the lake water with this instru­
ment have random variability. 

H A: Consecutive measurements obtained on the lake water with this instru-
ment have nonrandom variability and are serially correlated. 

n = 11 

s2 = 0.01018 (ppm)2 

s2 = (9.3 - 9.4)2 + (9.3 - 9.3)2 + (9.2 - 9.3)2 + ... + (9.1 - 9.1)2 
* 2(11 - 1) 

= 0.00550 

C = 1 - 0.00550 = 1 - 0.540 = 0.460 
0.01018 

CO,05.11 = 0.452 

Therefore, reject HI). 
0.025 < P < 0.05 

is to conclude whether fluctuations in measurements are random or whether they 
indicate a nonrandom instability in the measuring device (or in the solution). The null 
hypothesis that the sequential variability among measurements is random may be 
subjected to the mean square successive difference test, a test that assumes normality 
in the underlying distribution. In this procedure, we calculate the sample variance, Sl, 
which is an estimate of the population variance, a 2, as introduced in Section 4.4: 

n 
~(Xi - X)2 

s2 = :....i=....:.I ___ _ (4.15) 
Il - 1 

or 

( ±Xi)2 
,=1 1/ 

~xl 
; = '_'=_I _____ n __ ( 4.17) 

n - 1 

If the null hypothesis is true, then another estimate of 0'2 is 

n-I 

L (Xi+l - Xi)2 
;. = ~i=~I,--____ _ 

2(n - 1) 
(25.19) 
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(von Neumann et aI., 1941). Therefore. the ratio s;/ ~2 should equal! when Ho is true. 
Using Young's (1941) notation, the test statistic is 

s2 
C = 1 - ....!. 

s2 • 
(2S.20) 

and if this value equals or exceeds the critical value COJ" in Appendix Table B.30. 
we reject the null hypothesis of serial randomness. * The mean square successive 
difference test considers the one-tailed alternate hypothesis that measurements are 
serially correlated. 

For It larger than those in Appendix Table B.30, the hypothesis may be tested by a 
normal approximation: 

Z= C 
~ 
V~ 

(2S.22) 

(von Neumann et aI., 1941). with the value of the calculated Z being compared with 
the critical value of Za( I) = ta( I ). 00' This approximation is very good for a = O.OS, 
for n as small as 10: for a = 0.10,0.25, or 0.02S, for n as small as 2S: and for a = 0.01 
and O.OOS. for n of at least 100. 

SERIAL RANDOMNESS OF MEASUREMENTS: NONPARAMETRIC TESTING 

If we do not wish to assume that a sample of serially obtained measurements 
came from a normal population. then the procedure of Section 2S.7 should not be 
employed. Instead. there are non parametric methods that address hypotheses about 
serial patterns. 

(a) Runs Up and Down: Two-Tailed Testing. We may wish to test the null hypothesis 
that successive directions of change in serial data tend to occur randomly. with the 
alternate hypothesis stating the directions of change occur either in clusters (that is. 
where an increase from one datum to another is likely to be followed by another 
increase. and a decrease in the magnitude of the variable is likely to be followed 
by another decrease) or with a tendency toward regular alte'rnation of increases and 
decreases (i.e., an increase is likely to be followed by a decrease. and vice versa). 
In the series of n data, we note whether datum i + 1 is larger than datum i (and 
denote this as a positive change. indicated as .. + ") or is smaller than datum i (which 
is referred to as a negative change. indicated as "- "). By a nonparametric procedure 
presented by Wallis and Moore (1941). the series of +'s and -'s is examined and 
we determine the number of runs of + 's and - 's, calling this number u as we did in 
Section 25.6. Appendix Table B.31 presents pairs of critical values for It, where for 
the two-tailed test for deviation from randomness one would reject Ho if II were either 
s the first member of the pair or ~ the second member of the pair. 

* Equations 4.15 and 25.19 may be combined so that C can be computed as 

II-I 
~ (Xi - Xi +I)2 

C = I - ,;,....;=....;.1 ____ _ 

2(SS) 
(25.21 ) 

where SS is the numerator of either Equation 4.15 or 4.17. 
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For sample sizes larger than those in Table B.31, a normal approximation may be 
employed (Edgington, 1961; Wallis and Moore, 1941) using Equation 25.16. where 

and 

2n - 1 
#L" = 3 

u" = ~16n - 29. 
90 

(25.23) 

(25.24) 

The runs-up-and-down test may be used for ratio, interval, or ordinal data and 
is demonstrated in Example 25.10. It is most powerful when no adjacent data are 
the same; if there are identical adjacent data, as in Example 25.10, then indicate the 
progression from each adjacent datum to the next as "0" and determine the mean of 
all the u's that would result from all the different conversions of the O's to either +'5 
or - 'so Levene (1952) discussed the power of this test. 

EXAMPLE 25.10 Testing of Runs Up and Down 

Data are measurements of temperature in a rodent burrow at noon on successive 
days. 

Ho: The successive positive and negative changes in temperature measure­
ments are random. 

H A: The successive positive and negative changes in the series of tempera­
ture measurements are not random. 

Day Temperature (0C) Difference 

1 20.2 
2 20.4 + 
3 20.1 
4 20.3 + 
5 20.5 + 
6 20.7 + 
7 20.5 
8 20.4 
9 20.8 + 

10 20.8 0 
11 21.0 + 
12 21.7 + 

n = 12 
If the difference of 0 is counted as +, then u = 5; if the 0 is counted as -, 
then II = 7; mean 1I = 6. 
For a = 0.05, the critical values are lIO.05(2).12 = 4 and 11. 
Ho is not rejected; 0.25 < P :=;; 0.50. 
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(h) Runs Up and Down: One-Tailed Testing. In a fashion similar to that in 
Section 25.6a. a one-tailed test would address one of two situations. One is where II,,: 
In the sampled population. the successive positive and negative changes in the series 
of data are not clustered (i.e .. are not contagious). and II,,: I n the sampled population. 
the successive positive and negative changes in the series of data are clustered (i.e .. 
arc contagious). for this test. II" would he rejected if 11:5 the first memher of the pair 
of one-tailed critical values in Appendix Tahle 8.31: if the test is performed using 
the normal approximation. Ho would he rejected if 1£(' ~ Zn( 1)1 and II ~ J.l..1I' The 
other one-tailed circumstance is where lin: In the sampled population. the successive 
positive and negative changes in the series of data do not alternate regularly (i.e .. are 
not uniform). versus II,,: In the sampled population. the series of data do alternate 
regularly (i.e .. arc uniform). II" would he rejected if II ~ the second memher of the 
pair of one-tailed critical values: if the test uses the normal approximation. III) would 
be rejected if Z(' ~ ZII( I) and II ~ J.l..1I' 

(c) Runs Above and Below the Median. Another method of assessing randomness 
of ratio-. interval-. or ordinal-scale measurements examines the pattern of their 
distribution with respect to the set of data. We first determine the median of the 
sample (as explained in Section 3.2). Then we record each datum as being either 
above ( + ) or below ( - ) the median. If a sample datum is equal to the median. it is 
discarded from the analysis. We then record II. the number of runs. in the resulting 
sequence of +'s and - ·s. The test then proceeds as the runs test of Section 25.6. This 
is demonstrated. for two-tailed hypotheses. in Example 25.1 I: common one-tailed 
hypotheses are those inquiring into contagious (i.e .. clumped) distributions of data 
above or below the median. 

EXAMPLE 25.11 Runs Above and Below the Median 

The data and hypotheses are those of Example 25.10. 
The median of the 12 data is determined to be 20.5 C. 
The sequence of data. indicating whether they are above ( + ) or below ( - ) the 
median. is - - - - 0 + 0 - + + + +. 
For the runs test. 111 = 5.112 = 5.11 = 4. 
The critical values are 11".0:'(2)55 = 2 and 10: therefore. do not reject II,,; 0.20 < 
P:5 0.50. 

Although the test for runs up and down and the test for runs above and below 
the median may both be considered nonpllrametric alternatives to the parametric 
means square successive difference test of Section 25.7. the latter runs test often 
resembles the parametric test more than the former runs test does. The test for runs 
up and down works well to detect long-term trends in the data. unless there are 
short-term random nuctuations superimposed upon those trends. The other two tests 
tend to perform hetter in detecting long-term patterns in the presence of short-term 
randomness (A. W. Ghent. personal communication). 
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For sample sizcs larger than those in Table B.31. a normal approximation may be 
employed (Edgington. 1961; Wallis and Moore, 1941) using Equation 25.16. where 

and 

211 -
/LII = 

3 

(Til = /16n - 29. 
\j 90 

(25.23) 

(25.24) 

The runs-up-and-down test may be used for ratio, interval. or ordinal data and 
is demonstrated in Example 25.10. It is most powerful when no adjacent data are 
the same; if there are identical adjacent data. as in Example 25.10. then indicate the 
progression from each adjacent datum to the next as "0" and determine the mean of 
all the u's that would result from all the different conversions of the O's to either +'s 
or - ·s. Levene (1952) discussed the power of this test. 

EXAMPLE 25.10 Testing of Runs Up and Down 

Data are measurements of temperature in a rodent burrow at noon on successive 
days. 

Ho: The successive positive and negative changes in temperaturc measure­
ments are random. 

H A: The successive positive and negative changes in the series of tempera­
ture measurements are not random. 

Day Temperature (~' C) Difference 

1 20.2 
2 20.4 + 
3 20.1 
4 20.3 + 
5 20.5 + 
6 20.7 + 
7 20.5 
8 20.4 
9 20.8 + 

10 20.8 0 
11 21.0 + 
12 21.7 + 

n = 12 
I f the difference of 0 is counted as +, then II = 5; if the 0 is counted as -. 
then II = 7; mean u = 6. 
For a = 0.05. the critical values are uO.O;(2).12 = 4 and 11. 
Ho is not rejected; 0.25 < P ~ 0.50. 
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(b) Runs Up and Down: One-Tailed Testing. In a fashion similar to that in 
Section 25.6a. a one-tailed test would address one of two situations. One is where Ho: 
In the sampled population. the successive positive and negative changes in the series 
of data are not clustered (i.e .. are not contagious). and HA : In the sampled population. 
the successive positive and negative changes in the series of data are clustered (i.e .. 
are contagious). for this test. HI) would he rejected if II s; the first memher of the pair 
of one-tailed critical values in Appendix Tahle B.31; if the test is performed using 
the normal approximation. I/o would be rejected if IZ(' ~ Z,,( ()I and II s; J.L1I' The 
other one-tailed circumstance is where Ho: In the sampled population. the successive 
positive and negative changes in the series of data do not alternate regularly (i.e .. are 
not uniform). versus H,,: In the sampled popUlation. the series of data do alternate 
regularly (i.e .. are uniform). Ho would be rejected if II ~ the second member of the 
pair of one-tailed critical values; if the test uses the normal approximation. Ho would 
be rejected if Zc ~ Zcr( () and II ~ J.L1I' 

(c) Runs Above and Below the Median. Another method of assessing randomness 
of ratio-. interval-. or ordinal-scale measurements examines the pattern of their 
distribution with respect to the set of data. We first determine the median of the 
sample (as explained in Section 3.2). Then we record each datum as being either 
above ( + ) or below ( - ) the median. I f a sample datum is equal to the median. it is 
discarded from the analysis. We then record II. the number of runs. in the resulting 
sequence of + 's and - ·s. The test then proceeds as the runs test of Section 25.6. This 
is demonstrated. for two-tailed hypotheses. in Example 25.11; common one-tailed 
hypotheses are those inquiring into contagious (i.e .. clumped) distributions of data 
above or below the median. 

EXAMPLE 25.11 Runs Above and Below the Median 

The data and hypotheses arc those of Example 25.10. 
The median of the 12 data is determined to be 20S C. 
The sequence of data. indicating whether they arc above ( + ) or below ( - ) the 
median. is - - - - () + () - + + + +. 
for the runs test. "( = 5.112 =: 5.11 = 4. 
The critical values are 110.05(2).5.5 = 2 and 10; therefore. do not reject Ho; 0.20 < 
p s; 0.50. 

Although the test for runs up and down and the test for runs above and below 
the median may both be considered non parametric alternatives to the parametric 
means square successive difference test of Section 25.7. the latter runs test often 
resembles the parametric test more than thc former runs tl!st docs. The test for runs 
up and down works well to detect long-term trends in the data. unless there are 
short-term random Ouctuations superimposed upon those trends. The other two tests 
tcndto perform better in detecting long-term patterns in the presence of short-term 
randomness (A. W. Ghent. personal communication). 
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EXERCISES 

25.1. If, in a Poisson distribution, IL = 1.5, what is P( O)? 
What is P( 5)? 

25.2. A solution contains bacterial viruses in a con­
centration of 5 X 1011 bacterial-virus particles per 
milliliter. In the same solution are 2 x loR bacteria 
per milliliter. If there is a random distribution of 
virus among the bacteria, 
(a) What proportion of the bacteria will have no 

virus particles? 
(b) What proportion of the bacteria will have virus 

particles? 
(c) What proportion of the bacteria will have at 

least two virus particles? 
(d) What proportion of the bacteria will have 

three virus particles? 
25.3. Fifty-seven men were seated in an outdoor area 

with only their arms exposed. After a period of 
time, the number of mosquito bites (X) on each 
man's arms was recorded, as follows, where f is the 
number of men with X bites. Test the null hypoth­
esis that mosquitoes bite these men at random. 

x f 

o 8 
1 17 
2 18 
3 11 
4 3 

;?: 5 0 

25.4. We wish to compile a list of certain types of human 
metabolic diseases that occur in more than 0.01 % 
of the population. A random sample of 25,000 
infants reveals five infants with one of these dis­
eases. Should that disease be placed on our list? 

25.5. A biologist counts 112 diatoms in a milliliter of lake 
water, and 134 diatoms are counted in a milliliter of 

a second collection of lake water. Test the hypoth­
esis that the two water collections came from the 
same lake (or from lakes with the same mean 
diatom concentrations). 

25.6. An economic entomologist rates the annual inci­
dence of damage by a certain beetle as mild (M) 
or heavy (H). For a 27-year period he records the 
following: H M M M H H M M H M H H H M M H 
H H H M M H H M M MM. Test the null hypoth­
esis that the incidence of heavy damage occurs 
randomly over the years. 

25.7. The following data are the magnitudes of fish kills 
along a certain river (measured in kilograms of 
fish killed) over a period of years. Test the null 
hypothesis that the magnitudes of the fish kills 
were randomly distributed over time. 

Year Kill (kg) 

1955 147.4 
1956 159.8 
1957 155.2 
1958 161.3 
1959 173.2 
1960 191.5 
1961 198.2 
1962 166.0 
1963 171.7 
1964 184.9 
1965 177.6 
1966 162.8 
1967 177.9 
1968 189.6 
1969 206.9 
1970 221.5 

25.8. Analyze the data of Exercise 25.7 nonparametri­
cally to test for serial randomness. 
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26.1 DATA ON A CIRCULAR SCALE 

In Section 1.I h. an interval scale of measurement was defined as a scale with equal 
intervals but with no true zero point. A special type of interval scale is a circular scale. 
where not only is there no true zero. hut any designation of high or low values is 
arhitrary. A common example of a circular scale of measurement is compass direction 
(Figure 26.la). where a circle is said to he divided into 360 equal intervals. called 
degrees! and for which the zero point is arhitrary. There is no physical justification 
for a direction of north to he designated 0 (or 360) degrees. and a direction of 270' 
cannot he said to he a "larger" direction than 90:;-

Another common circular scale is time of day (Fig. 26.1 h). where a day is divided 
into 24 equal intervals. called hours. hut where the designation of midnight as the 
zero or starting point is arhitrary. One hour of a day corresponds to I S- (i.e .. 360 124) 
of a circle. and I' of a circle corresponds to four minutes of a day. Other time 
divisions, such as weeks and years (see Figure 26.lc). also represent circular scales of 
measurement. 

• A degree is divided into nO minutes (i.e .. I - = nO') and a minute into hO seconds (I' = hO"). A 
number system hased upon 00 is termed s('xag('sill/ll/. and we owe the division of the circle into 3hO 
degrees-and the nO·minute hour anti nO·second minute-to the ancient Babylonians (about :moo 
years ag.o). The use of the modern symhols ( and' and") appears to date from the I S70s (Cajuri. 
192X-IlJ29. Vol. II: 146). 

-;- Occasionally one will encounter angular measurements exprcssetl in ratlians instead of in 
degrees. A radian is the angle that is suhtentletl hy an arc or a circle equal in length to the radius 
of the circle. As a circle's circumference is 21T times the ratlius. a radian is 3(11)21T = IXO'/1T = 
57.29577951' (or 57 deg. 17 min. 44.XOn2 sec). Thl! term rut/iall was !irst used. in IX73. hy.lames 
Thomson. hrother of Baron William Thomson (Lord Kelvin). the fmnous Scottish mathematician 
and physicist (Cajori. IlJ2X-I929. Vol. II: 147). A direction measuretl clockwise. from 0 at north. is 
called an a:.imlltll. Rarely. a direction is recordetl as an angular measurement called a Krall: a right 
angle (90 ') is divitlcd into 1011 grads. so a grad is 0.9 of a degree. 

605 
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Nonh:()O ()(}:()(} hr 

West:270° f---~IE------l East:90° 18:00 hr f------=:; E=-----j 06:00 hr 

South: tHO° 

(a) 

Jan. 

Oct. f-----3IIIE-------i Apr. 

Jul. 
(c) 

12:00 hr 

(b) 

FIGURE 26.1: Common circular scales of measurement. (a) Compass directions. (b) Times of day. (c) Days 
of the year (with the first day of each month shown). 

In general. X time units may be converted to an angular direction (a, in degrees), 
where X has been measured on a circular scale having k time units in the full cycle: 

a = (360 0 )(X). 
k 

(26.1) 

For example, to convert a time of day (X, in hours) to an angular direction, k = 24 
hr; to convert a day of the week to an angular direction, number the seven days from 
some arbitrary point (e.g., Sunday = day 1) and use Equation 26.1 with k = 7; to 
convert the Xth day of the year to an angular direction, k = 365 (or, k = 366 in a 
leap year); to convert a month of the year, k = 12; and so on.* Such conversions are 
demonstrated in Example 26.1. 

Data from circular distributions generally may not be analyzed using the statistical 
methods presented earlier in this book. This is so for theoretical reasons as well as for 
empirically obvious reasons stemming from the arbitrariness of the zero point on the 
circular scale. For example, consider three compass directions-10°, 30°, and 3500 , 

*Equation 26.1 gives angular directions corresponding to the ends of time periods (e.g .• the end 
of the Xth day of the year). If some other point in a time period is preferred. the equation can be 
adjusted accordingly. For example, noon can be considered on the Xth day of the year by using 
X -0.5 in place of X. If the same point is used in each time period (e.g., always using either noon 
or midnight). then the statistical procedures of this and the following chapter will be unaffected by 
the choice of point. (However. graphical procedures, as in Section 26.2, will of course be affected. 
in the form of a rotation of the graph if Equation 26.1 is adjusted. If. for example. we considered 
noon on the Xth day of the year. the entire graph would be rotated about half a degree counterclock· 
... :-- \ 
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EXAMPLE 26.1 Conversions of Times Measured on a Circular Scale to 
Corresponding Angular Directions 

By Equation 26.1. 

I. Given a time of day of 06:00 hr (which is one-fourth of the 24-hour clock and 
should correspond. therefore. to one-fourth of a circle), 

X = 6 hr, k = 24 hr. and 

a = (360°)(6 hr)/24 hr = 90°. 

2. Given a time of day of 06: 15 hr. 

X = 6.25 hr. k = 24 hr. and 

a = (360")(6.25 hr)/24 hr = 93.75 c • 

3. Given the 14th day of February. being the 45th day of the year, 

X = 45 days. k = 365 days. and 

a = (360°)(45 days)/365 days = 44.38°. 

for which we wish to calculate an arithmetic mean. The arithmetic mean calculation of 
{l0° + 30° + 350°)/3 = 390°/3 = 130° is clearly absurd, for all data are northerly 
directions and the computed mean is southeasterly. 

This chapter introduces some basic considerations useful in calculating descriptive 
statistics for circular data, and Chapter 27 discusses tests of hypotheses.· Statistical 
methods have also been developed for data that occur on a sphere (which are of 
particular interest to earth scientists).+ 

Z GRAPHICAL PRESENTATION OF CIRCULAR DATA 

Circular data arc often presented as a scatter diagram. where the scatter is shown 
on the circumference of a circle. Figure 26.2 shows such a graph for the data of 
Example 26.2. If frequencies of data are too large to be plotted conveniently on a 
scatter diagram, then a bar graph, or histogram. may be drawn. This is demonstrated 
in Figure 26.3. for the data presented in Example 26.3. Recall that in a histogram. the 
length, as well as the area. of each bar is an indication of the frequency observed at 
each plotted value of the variable (Section 1.3). Occasionally. as shown in Figure 26.4, 
a histogram is seen presented with sectors. instead of bars, composing the graph; this 
is sometimes called a rose diagram. Here. the radii forming the outer boundaries 

*More extensive reviews of methods for circular data includc Batschclet t (1965, 1972. 19H1). 
Fisher (1993), Jammalamadaka and SenGupta (2001), Mardia (1972a, 19Ht), and Mardia and Jupp 
(2000). 

tEdward Batschelet (1914-1979), Swiss biomathematician, was one of the most influential 
writers in developing, explaining. and promulgating circular statistical methods. particularly among 
biologists. 

*Notablc discussions of the statistical analysis of sperical data are as follows: Batschelct (1981: 
Chapter 11): Fisher, Lewis. and Embleton () 9H7): Mardia () 972a: Chapters Hand 9): Mardia and 
Jupp (2000: Chapters 9. HI, etc.): Upton and Fingleton (19H9: Chapter 10): and Watson (1983). 
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0" 

FIGURE 26.2: A circular scatter diagram for the data of Example 26.2. (The dashed line defines the 
median as explained in Section 26.6.) 

EXAMPLE 26.2 
Figure 26.2 

A Sample of Circular Data. These Data Are Plotted in 

Eight trees are found leaning in the following compass directions: 45", 55",81°, 
96°, 110°, 117°, 132°, 154°. 

of the sectors are proportional to the frequencies being represented. but the areas of 
the sectors are not. Since it is likely that the areas will be judged by eye to represent 
the frequencies, the reader of the graph is being misled, and this type of graphical 
presentation is not recommended. However, a true-area rose diagram can be obtained 
by plotting the square roots of frequencies as radii.* 

0" 

270· 1--t-t-+--:~~;;;E+++--19()O 270· r-t-t-T:~~~=t--r--t--19O" 

180" 

(a) 

180· 

(b) 

FIGURE 26.3: (a) Circular histogram for the data of Example 26.3 where the concentric circles represent 
frequency increments of 5. (b) A relative frequency histogram for the data of Example 26.3 with the 
concentric circles representing relative frequency increments of 0.05. 

*The earliest user of rose diagrams was the founder of modern nursing and pioneer social 
and health statistician. Florence Nightingale (1820-1910). in 1858. She employed true-area colored 
diagrams. which she termed "coxcombs," to indicate deaths from various causes over months of the 
year (Fisher. 1993: 5-6). (Nightingale gained much fame for her work with the British Army during 
the Crimean War.) 
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EXAMPLE 26.3 A Sample of Circular Data, Presented as a Frequency 
Table, Where a; Is an Angle and f; Is the Observed Frequency of a;. These 
Data Are Plotted in Figure 26.3 

aj (deg) /; Relative f; 

0-30 0 0.00 
30-60 6 0.06 
60-90 9 0.09 
90-120 J3 0.12 

120-150 15 0.14 
150-180 22 0.21 
180-210 17 0.16 
210-240 12 0.11 
240-270 8 0.08 
270-300 3 0.03 
300-330 0 0.00 
330-360 0 0.00 

n = 105 Total = 1.00 

(f 

27CY' 1--+--+-+-r-+L-3j~-+-.....Lj----r+--I---I 

I RO° 

FIGURE 26.4: A rose diagram of the data of Example 26.3, utilizing sectors instead of bars. This procedure 
is not recommended unless square roots of the frequencies are employed (see Section 26.2). 

Another manner of expressing circular frequency distributions graphically is shown 
in Figure 26.5. Here. the length of each bar of the histogram represents a frequency, 
as in Figure 26.3(a), but the bars extend from the circumference of a circle instead 
of from the center. In addition, an arrow extending from the circle's center toward 
the circumference indicates both the direction and the length of the mean vector, and 
this expresses visually both the mean angle and a measure of data concentration (as 
explained in Sections 26.4 and 26.5). 
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FIGURE 26.5: Circular histogram for the data of Example 26.3, including an arrow depicting the mean 
angle (a) and a measure of dispersion (r). 

A histogram of circular data can also be plotted as a linear histogram (see 
Section 1.3), with degrees on the horizontal axis and frequencies (or relative fre­
quencies) on the vertical axis. But the impression on the eye may vary with the 
arbitrary location of the origin of the horizontal axis, and (unless the range of data 
is small-say, no more than 180°) the presentation of Figure 26.3 or Figure 26.5 is 
preferable. 

26.3 TRIGONOMETRIC FUNCTIONS 

A great many of the procedures that follow in this chapter and the next require 
the determination of basic trigonometric functions. Consider that a circle (perhaps 
representing a compass face) is drawn on rectangular coordinates (as on common 
graph paper) with the center as the origin (i.e., zero) of both a vertical X axis and a 
horizontal Y axis; this is what is done in Figure 26.6. 

There are two methods that can be used to locate any point on a plane (such 
as a sheet of paper). One is to specify X and Y (as done previously in discussing 
regression and correlation in Chapters 17 and 19). However, with circular data it is 
conventional to use a vertical, instead of a horizontal, X axis. This second method 

x 
0° 

270· 

sine + 
cosine + 

I)()O 
..... -4-L ..... ~ .......... ~ ____ L-__ ,-~ __ y 

sine -

180° cosine -

FIGURE 26.6: A unit circle, showing four points and their polar (a and r) and rectangular (X and y) 
coordinates. 
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specifies both the angle, a, with respect to some starting direction (say. clockwise from 
the top of the X axis. namely "north") and the straight-line distance. r, from some 
reference point (the center of the circle). This pair of numbers, a and r. is known 
as the "polar coordinates" of a point.* Thus, for example. in Figure 26.6, point 1 is 
uniquely identified by polar coordinates a = 30° and r = 1.00. point 2 by a = 120" 
and r = 1.00, and so on. If the radius of the circle is specified to be 1 unit, as in 
Figure 26.6, the circle is called a unit circle. 

lf a is negative, it is expressing a direction counterclockwise from zero. It 
may be added to 360° to yield the equivalent positive angle; thus, for example, 
- 60° = 3600 - 60" = 300". An angle greater than 360° is equivalent to the num­
ber of degrees by which it exceeds 360'-' or a mUltiple of 360°. So, for example, 
450° = 450 0 - 360° = 90" and 780 0 = 7800, - 360° - 3600 = 60°. 

The first-mentioned method of locating points on a graph referred to the X and Y 
axes. By this method, point 1 in Figure 26.6 is located by the "rectangular coordinates" 
X = 0.87 and Y = 0.50, point 2 by X = -0.50 and Y = 0.87, point 3 by X = -0.87 
and Y = -0.50, and point 4 by X = 0.50 and Y = -0.87. The cosine (abbreviated 
"cos") of an angle is defined as the ratio of the X and the r associated with the circular 
measurement: 

X cosa = -, (26.2) 
r 

while the sine (abbreviated "sin") of the angle is the ratio of the associated Y and r: 

. Y 
sma = -. (26.3) 

r 

Thus, for example, the sine of al in Figure 26.6 is sin 30e = 0.50/1.00 = 0.50, 
and its cosine is cos 30° = 0.87/1.00 = 0.87. Also. sin 1200 = 0.87/1.00 = 
0.87. cos 120° = -0.50/1.00 = -0.50, and so on. Sines and cosines (two of the 
most used "trigonometrict functions") are readily available in published tables, 
and many electronic calculators give them (and sometimes convert between polar 
and rectangular coordinates as well). The sines of 0° and 180° are zero. angles 
between 0° and 180° have sines that are positive, and the sines are negative for 
180° < a < 360". The cosine is zero for 90° and 270°, with positive cosines obtained 
for 0° < a < 900 and for 270 0 < a < 360°, and negative cosines for angles between 90° 
and 270°. 

A third trigonometric function is the tangent:i 

Y sina tana = - = --. 
X cos a 

(26.5) 

*This use of the symbol r has no relation to the r that denotes a sample correlation coefficient 
(Section 19.1). 

tTrigunometry refers. literally. to the measurement of triangles (such as the triangles that 
emanate (rom the center of the circle in Figure 26.6). 

+The angle having a tangent of Y / X is known as the arctangent (abbreviated arcum) of Y / X. 
As noted at the end of Section 26.3. a given tangent can be obtained from either of two different 
angles. If X <? 0, then a = arctan ( Y / X); if X < O. then a = arctan ( Y / X) + ISOo. The cotallgelll 
is the reciprocal of the tangent. namely 

X cos a 
cot" = - = --. 

V c.inn 
(26.4) 
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On the circle, two different angles have the same sine, two have the same cosine, 
and two have the same tangent: 

sin a = sin (180 0 - a) 

cos a = cos ( 360° a) 

tan a = tan (180" + a). 

We shall see later that rectangular coordinates, X and Y, may also be used in 
conjunction with mean angles just as they are with individual angular measurements.· 

26.4 THE MEAN ANGLE 

If a sample consists of n angles, denoted as al through a", then the mean of these 
angles, a, is to be an estimate of the mean angle, /-La in the sampled population. To 
compute the sample mean angle, a, we first consider the rectangular coordinates of 
the mean angle: 

" ~ cosaj 
X = ,_'=_1_- (26.6) 

n 
and 

" ~ sin a, 
y = ,:-'=--=1 __ (26.7) 

n 

Then, the quantity 

(26.8) 

is computed;t this is the length of the mean vector, which will be further discussed in 
Section 26.5. The value of a is determined as the angle having the following cosine 
and sine: 

and 

_ X 
cosa = -

r 

. - y 
sma = -. 

r 

Example 26.4 demonstrates these calculations. It is also true that 

_ Y sina 
tana = - = --. 

X cos a 

(26.9) 

(26.10) 

(26.11) 

If r = 0, the mean angle is undefined and we conclude that there is no mean 
direction. 

·Over time. many different symbols and abbreviations have been used for trigonometric 
functions. The abbreviations sin. and Ian. were established in the latter half of the sixteenth century, 
and the periods were dropped early in the next century (Cajori.I928-1929. Vol. II: ISO, 158). The 
cosine was first known as the "sine of the complement"-bccause the cosine of a equals the sine of 
90° - a for angles from 0° to 90°-and the English writer E. Gunter changed "complementary 
sine" to "cosine" and "complementary tangent" to "cotangent" in 1620 (ibid.: 157). 

tThis use of the symbol r has no relation to the r that denotes a sample correlation coefficient 
(Section 19.1). 
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If the circular data are times instead of angles. then the mean time corresponding 
to the mean angle may be determined from a manipulation of Equation 26.1: 

- ka 
X = -. (26.12) 

3600 

EXAMPLE 26.4 Calculating the Mean Angle for the Data of Example 26.2 

aj (deg) sin aj cosaj 

45 0.70711 0.70711 
55 0.81915 0.57358 
81 0.98769 0.15643 
96 0.99452 -0.10453 

110 0.93969 -0.34202 
117 0.89101 -0.45399 
132 0.74315 -0.66913 
154 0.43837 -0.89879 

L sin aj = 6.52069 LCOSaj = -1.03134 

y = Lsinaj X = LCOSaj 
n n 

= 0.81509 = -0.12892 

n=8 

r = JX2 + y2 = J( -0.12892)2 + (0.81509)2 = JO.68099 = 0.82522 

- - X _ -0.12892 - 0 15623 cosa - - - - - . 
r 0.82522 

. - - Y - 0.81509 - 098772 sma - - - - . 
r 0.82522 

The angle with this sine and cosine is a = 990:>. 

So. to determine a mean time of day, X. from a mean angle, a. X = (24 hr)(a)/360°. 
For example, a mean angle of 270" on a 24-hour clock corresponds to X = (24 hr) 
(270°)/360° = 18:00 hr (also denoted as 6:00 P.M.). 

If the sine of a is S. then it is said that the arcsine of S is a; for example. the sine of 
30° is 0.50. so the arcsine of 0.50 is 30". If the cosine of a is C. then the arccosine of 
C is a; for example. the cosine of 30<' is 0.866. so the arccosine of 0.866 is 30°. And. if 
the tangent of a is T. then the arctangent of T is a: for example. the tangent of 30° is 
0.577, so the arctangent of 0.577 is 30"* 

(a) Grouped Data. Circular data are often recorded in a frequency table (as in 
Example 26.3). For such data. the following computations are convenient alternatives 

*The arcsine is also referred to as the "inverse sine" and can be abbreviated "arcsin" or sin -I: 
the arccosine can be designated as "arccos" or cos-I. and the arctangent as "arctan" or tan-I. 
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to Equations 26.6 and 25.7. respectively: 

~ I"cosa' X = kJ J1 I (26.13) 
n 

~ 1'. sin a-
Y = kJ J1 I (26.14) 

n 

(which are analogous to Equation 3.3 for linear data). In these equations. aj is the 
midpoint of the measurement interval recorded (e.g., a2 = 45° in Example 26.3, 
which is the midpoint of the second recorded interval. 30 - 60 0 ). f; is the frequency 
of occurrence of data within that interval (e.g .. h = 6 in that example). and It = "i,f;. 
Example 26.5 demonstrates the determination of a for the grouped data (where f; is 
not 0) of Example 26.3. 

EXAMPLE 26.5 Calculating the Mean Angle for the Data of Example 26.3 

aj f; sinaj Ii sin aj cosaj f; cosaj 

45° 6 0.70711 4.24266 0.70711 4.24266 
75° 9 0.96593 8.69337 0.25882 2.32938 

105° 13 0.96593 12.55709 -0.25882 -3.36466 
135 0 15 0.70711 10.60665 -0.70711 -10.60665 
165° 22 0.25882 5.69404 -0.96593 -21.25046 
195 0 17 -0.25882 -4.39994 -0.96593 -16.42081 
225° 12 -0.70711 -8.48532 -0.70711 -8.48532 
255° 8 -0.96593 -7.72744 -0.25882 -2.07056 
285 0 3 -0.96593 -2.89779 0.25882 0.77646 

n = 105 ~f;sjnaj = 18.28332 ~f;cosaj = -54.84996 

~j;·sina' y = I I 
~f;cosa' X = I I 

Il n 

= 0.17413 ::::; -0.52238 

r = JX2 + y2 = ~( -0.52238)2 + (0.17413)2 = 0.55064 

- - X _ -0.52238 - 0 94868 cosa - - - - - . 
r 0.55064 

. - - Y - 0.17413 - 031623 sma - - - - . 
r 0.55064 

The angle with this cosine and sine is a = 162'). 

There is a bias in computing r from grouped data. in that the result is too small. 
A correction for this is available (Batschelet, 1965: 16-17, 1981: 37-40; Mardia, 
1972a: 78-79; Mardia and Jupp, 2000: 23; Upton and Fingleton, 1985: 219), which 
may be applied when the distribution is unimodal and does not deviate greatly from 
symmetry. For data grouped into equal intervals of d degrees each. 

r(' = cr, (26.15) 
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where rc is the corrected r, and c is a correction factor, 

d7T 
c = 3600 

sin (~)" 

Angular Dispersion 615 

(26.16) 

The correction is insignificant for intervals smaller than 30°. This correction is for the 
quantity r; the mean angle, ti, requires no correction for grouping. 

ANGULAR DISPERSION 

When dealing with circular data, it is desirable to have a measure, analogous to those 
of Chapter 4 for a linear scale, to describe the dispersion of the data. 

We can define the range in a circular distribution of data as the smallest arc (Le .. 
the smallest portion of the circle's circumference) that contains all the data in the 
distribution. For example, in Figure 26.7a, the range is zero; in Figure 26.7b, the 
shortest arc is from the data point at 38" to the datum at 60°, making the range 22°; in 
Figure 26.7c, the data are found from 10° to 93°. with a range of 83°; in Figure 26.7d, 
the data run from 322(' to 135°, with a range of 173°; in Figure 26.7e, the shortest arc 
containing all the data is that running clockwise from 285° to 171°, namely an arc of 
246°; and in Figure 26.7f, the range is 300°. For the data of Example 26.4, the range 
is 109" (as the data run from 45° to 154°). 

Another measure of dispersion is seen by examining Figure 26.7; the value of r (by 
Equation 26.8, and indicated by the length of the broken line) varies inversely with 
the amount of dispersion in the data. Therefore, r is a measure of concentration. It 
has no units and it may vary from 0 (when there is so much dispersion that a mean 
angle cannot be described) to 1.0 (when all the data are concentrated at the same 
direction). (An r of 0 does not, however, necessarily indicate a uniform distribution. 
For example, the data of Figure 26.8 would also yield r = 0). A line specified by both 
its direction and length is called a vector. so r is sometimes called the length of the 
mean vector. 

In Section 3.1 the mean on a linear scale was noted to be the center of gravity 
of a group of data. Similarly, the tip of the mean vector (i.e., the quantity r), in the 
direction of the mean angle (ti) lies at the center of gravity. (Consider that each circle 
in Figure 26.7 is a disc of material of negligible weight, and each datum is a dot of unit 
weight. The disc, held parallel to the ground, would balance at the tip of the arrow in 
the figure. In Figure 26.7f, r = 0 and the center of gravity is the center of the circle.) 

Because r is a measure of concentration, l-r is a measure of dispersion. Lack of 
dispersion would be indicated by l-r = 0, and maximum dispersion by l-r = 1.0. 
As a measure of dispersion reminiscent of those for linear data, Mardia (1972a: 45), 
Mardia and Jupp (2000: 18). and Upton and Fingleton (1985: 218) defined circular 
variance: 

S2 = 1 - r. (26.17) 

Batschelet (1965, J 981: 34) defined angular variance: 

... 2 = 2( I - r) (26.18) 

as being a closer analog to linear variance (Equation 4.15). While S2 may range from 
o to J, and s2 from 0 to 2, an S2 of 1 or an !;2 of 2 does not necessarily indicate a 
uniform distribution of data around the circle because, as noted previously, r = 0 
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FIGURE 26.7: Circular distributions with various amounts of dispersion. The direction of the broken-line 
arrow indicates the mean angle, which is 50° in each case, and the length of the arrow expresses 
r (Equation 26.8), a measure of concentration. The magnitude of r varies inversely with the amount 
of dispersion, and that the values of 5 and So vary directly with the amount of dispersion. (a) 
r = 1000,s = O°,so = 0°. (b)r = 0.99,5 = 8.10°,50 = 8.12°. (c)r = 0.90,5 = 25.62°,50 = 26.30°. 
(d) r = 0.60,s = 51.25 0 ,50 = 57.9P. (e) r = 0.30,5 = 67.79°,50 = 88.91. (f) r = 0.00,5 = 81.03°,50 = 00. 

(By the method of Section 27.1, the magnitude of r is statistically significant in Figs. a, b, and c, but not 
in d, e, and f.) 

does not necessarily indicate a uniform distribution. The variance measure 

?o = -21nr (26.19) 

is a statistic that ranges from 0 to 00 (Mardia, 1972a: 24). These three dispersion 
measures are in radians squared. To express them in degrees squared, multiply each 
by (l800 j7T)2. 
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Measures analogous to the linear standard deviation include the "mean angular 
deviation." or simply the angular deviation, which is 

1800 ,...----­

s = -~2(1 - r), 
7T' 

(26.20) 

in degrees.* This ranges from a minimum of zero (e.g .. Fig. 26.7a) to a maximum of 
81.03° (e.g., Fig. 26.7f).t Mardia (1972a: 24, 74) defines circular standard deviation as 

180 0 

So = -J-21nr (26.21) 
7T' 

degrees; or, employing common, instead of natural, logarithms: 

I8()" ,...------­
So = -~-4.6051710gr 

7T' 
(26.22) 

degrees. This is analogous to the standard deviation, s, on a linear scale (Section 4.5) 
in that it ranges from zero to infinity (see Fig. 26.7). For large r, the values of s and So 
differ by no more than 2 degrees for r as small as 0.80, by no more than 1 degree for r 
as small as 0.87, and by no more than 0.1 degree for r as small as 0.97. I t is intuitively 
reasonable that a measure of angular dispersion should have a finite upper limit, so 
s is the dispersion measure preferred in this book. Appendix Tables 8.32 and B.33 
convert r to s and So, respectively. If the data are grouped, then s and So are biased in 
being too high, so rc (by Equation 26.15) can be used in place of r. For the data of 
Example 26.4 (where r = 0.82522), s = 34° and So = 36": for the data of Example 
26.5 (where r = 0.55064), s = 54° and So = 63°. 

Dispersion measures analogous to the linear mean deviation (Section 4.3) utilize 
absolute deviations of angles from the mean or median (e.g., Fisher, 1993: 36). 

Measures of symmetry and kurtosis on a circular scale, analogous to those that 
may be calculated on a linear scale (Section 6.5), are discussed by Batschelet (1965: 
14-15,1981: 54-44); Mardia (1972a: 36-38, 74-76), and Mardia and Jupp (2000: 22, 
31,145-146). 

THE MEDIAN AND MODAL ANGLES 

In a fashion analogous to considerations for linear scales of measurement (Sections 3.2 
and 3.3), we can dctermine the sample median and mode of a set of data on a circular 
scale. 

To find the median angle, we first determine which diameter of the circle divides 
the data into two equal-sized groups. The median angle is the angle indicated by 
that diameter's radius that is nearer to the majority of the data points. If 11 is even, 
the median is nearly always midway between two of the data. In Example 26.2, a 
diameter extending from 103° to 2890 divides the data into two groups of four each 
(as indicated by the dashed line in Fig. 26.2). The data are concentrated around 
103°, rather than 289°, so the sample median is 103°. If n is odd, the median will 
almost always be one of the data points or 180" opposite from onc. If the data in 
Example 26.2 had been seven in number-with the 45° lacking-then the diameter 
line would have run through 110° and 290°, and the median would have been 110°. 

Though uncommon, it is possible for a set of angular data to have more than one 
angle fit this definition of median. In such a case, Otieno and Anderson-Cook (2003) 

*Simply delete the constant. I ROo/ 7T. in this and in the following equations if the measurement 
is desired in radians rather than degrees. 

tThis is a range of 0 to 1.41 radians. 
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recommend calculating the estimate of the population median as the mean of the two 
or more medians fitting the definition. Mardia (1972a: 29-30) shows how the median 
is estimated, analogously to Equation 3.5, when it lies within a group of tied data. 
If a sample has the data equally spaced around the circle (as in Fig. 26.7f), then the 
median, as well as the mean, is undefined. 

The modal angle is defined as is the mode for linear scale data (Section 3.3). Just 
as with linear data, there may be more than one mode or there may be no modes. 

26.7 CONFIDENCE LIMITS FOR THE POPULATION MEAN AND MEDIAN ANGLES 

The confidence limits of the mean of angles may be expressed as 

a ± d. (26.23) 

That is, the lower confidence limit is L I = a - d and the upper confidence limit is 
L2 = a + d. For n as small as 8, the following method may be used (Upton, 1986). 
For r ~ 0.9, 

and for r ;;:. 0.9, 

where 

d = arccos 

d = arccos 
Jn2 

R 

(n2 -

R 

R = nr. 

(26.24) 

(26.25) 

(26.26) 

This is demonstrated in Examples 26.6 and 27.3.· As this procedure is only approxi­
mate, d-and confidence limits-should not be expressed to fractions of a degree. 
This procedure is based on the von Mises distribution, a circular analog of the normal 
distribution. t Batschelet (1972: 86; Zar, 1984: 665-666) presents nomograms that 
yield similar results. 

* As shown in these examples, a given cosine is associated with two different angles: 0 and 
360°-0; the smaller of the two is to be used. 

t Richard von M ises (1883-1953), a physicist and mathematician. was born in the AustrG­
Hungarian Empire and moved to Germany. Turkey. and the United States because of two world 
wars (Geiringer, 1978). He introduced this distribution (von Mises. 1918), and it was called 
"circular normal" by Gumbel, Greenwood. and Durand (1953). and later by others. because of its 
similarity to the linear-scale normal distribution. It is described mathematically by Batschelet (1981: 
279-282), Fisher (1993: 48-56), Jammalamadaka and SenGupta (2001: 35-42), Mardia (1972a: 
122-127). Mardia and Jupp (2000: 36. 68-71. 85-88. 167-173), and Upton and Fingleton (1985: 
277-229). 



AXIAL DATA 

Section 26.8 Axial Data 619 

EXAMPLE 26.6 The 95% Confidence Interval for the Data of Example 26.4 

11=8 

a = 99° 

r = 0.82522 

R = nr = (8)(0.82522) = 6.60108 

X5.05.1 = 3.841 

Using Equation 26.24: 

2n(2R2 - nx~.I) 
d 4 2 = arccos \ 11 - Xa.1 

R 

= arccos 
/2( 8 )[2 ( 6.60108)2 - 8( 3.841 )) 

'V 4(8) - 3.841 

6.60108 

= arccos 0.89883 

= 26° or 360(; - 26° = 334°. 

The 95% confidence interval is 99(' ± 26°; L, = 73" and L2 = 125°. 

Confidence limits for the median angle may be obtained by the procedure of 
Section 24.8. The median is determined as in Section 26.6. Then the data are 
numbered 1 through 11, with 1 representing the datum farthest from the median in a 
counterclockwise direction and n denoting the datum farthest in a clockwise direction. 

Although not common, circular data may be encountered that are bimodal and have 
their two modes diametrically opposite on the circle. An example of such data is 
shown in Figure 26.8, where there is a group of seven angular data opposite a group 
of eight data (with the data shown as small black circles). Such measurements are 
known as axial data, and it is desirable to calculate the angle that best describes the 
circle diameter that runs through the two groups of data. Determining the mean angle 
(a) of the diameter in one direction means that the mean angle of the diameter in the 
other direction is a + 180°. 

These 15 measurements are given in Example 26.7 and resulted from the following 
experiment: A river flows in a generally southeasterly-northwesterly direction. 
Fifteen fish, of a species that prefers shallow water at river edges, were released in the 
middle of the river. Then it was recorded which direction from the point of release 
each of the fish traveled. 
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AGURE 26.8: A bimodal circular distribution, showing the data of Example 26.7. 

EXAMPLE 26.7 The Data of Fig. 26.8, and Their Axial Mean 

modulo 
a; 2a; 

(degrees) (degrees) 

35 70 
40 80 
40 80 
45 90 
45 90 
55 110 
60 120 

215 70 
220 80 
225 90 
225 90 
235 110 
235 110 
240 120 
245 130 

n = 15 

r = 0.94842 

sin'ii = 0.99470 

coso = -0.10290 

sin 2a; cos2a; 

0.93964 0.34202 
0.98481 0.17365 
0.98481 0.17365 
1.00000 0.00000 
1.00000 0.00000 
0.93969 -0.34202 
0.86602 -0.50000 
0.93964 0.34202 
0.98481 0.17365 
1.00000 0.00000 
1.00000 0.00000 
0.93969 -0.34202 
0.93969 -0.34202 
0.86602 -0.50000 
0.76604 -0.64279 

~sin2ai ~cos2a; 

= 14.15086 = -1.46386 

Y = -0.94339 X = -0.09759 
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The angle (211) with this sine and cosine is 95.9°; so a = 95.9°/2 = 48°. 
Also: tan 2a = Y / X = -9.66687; and, since C < 0, a = arctan - 9.66687 + 
180° = -84.P+180° = 95.9°; soa = 48°. 

The statistical procedure is to calculate the mean angle (Section 26.4) after dou­
bling each of the data (that is, to find the mean of 2a;). It will be noted that doubling 
of an angle greater than 180° will result in an angle greater than 360°; in that case, 
360 0 is subtracted from the doubled angle. (This results in angles that are said to 
be "modulo 360°.") The doubling of angles for axial data is also appropriate for 
calculating other statistics, such as those in Sections 26.5-26.7, and for the statistical 
testing in Chapter 27. 

The mean angle of 48° determined in Example 26.7 indicates that a line running 
from 48° to 228 0 (that is, from 48 u to 48°+ 180°) is the axis of the bimodal data (shown 
as a dashed line in Fig. 26.8). 

THE MEAN OF MEAN ANGLES 

If a mean is determined for each of several groups of angles, then we have a set of 
mean angles. Consider the data in Example 26.8. Here, a mean angle, a, has been 
calculated for each of k samples of circular data, using the procedure of Section 26.4. 
If. now. we desire to determine the grand mean of these several means, it is not 
appropriate to consider each of the sample means as an angle and employ the 
method of Section 26.4. To do so would be to assume that each mean had a vector 
length, r, of 1.0 (i.e .• that an angular deviation, s, of zero was the case in each of 
the k samples), a most unlikely situation. Instead, we shall employ the procedure 
promulgated by Batschelet* (1978, 1981: 201-202), whereby the grand mean has 
rectangular coordinates 

and 

k 

LXj 
- j=1 
X=--

k 

k 

LYj 
- j=1 
Y=--. 

k 

(26.27) 

(26.28) 

where Xj and Yj are the quantities X and Y, respectively, applying Equations 26.6 
and 26.7 to sample j; k is the total number of samples. If we do not have X and Y for 
each sample, but we have a and r (polar coordinates) for each sample, then 

k 

L rjcosaj 
X = 1_·=_1 __ _ 

k 
(26.29) 

and 
k 

L rjsinaj 
Y = ',---·=_1 __ _ 

k 
(26.30) 

* Batschelet (1981: 198) refers to statistical analysis of a set of angles as a first-order analysis and 
the analysis of a set of mean angles as a second-order analysis. 
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Having obtained X and Y, we may substitute them for X and Y, respectively, 
in Equations 26.8, 26.9, and 26.10 (and 26.11, if desired) in order to determine ii, 
which is the grand mean. For this calculation, all n/s (sample sizes) should be equal, 
although unequal sample sizes do not appear to seriously affect the results (Batschelet, 
1981: 202). 

Figure 26.9 shows the individual means and the grand mean for Example 26.8. (By 
the hypothesis testing of Section 27.1, we would conclude that there is in this example 
no significant mean direction for Samples 5 and 7. However, the data from these two 
samples should not be deleted from the present analysis.) 

Batschelet (1981: 144,262-265) discussed confidence limits for the mean of mean 
angles. 

EXAMPLE 26.8 The Mean of a Set of Mean Angles 

Under particular light conditions, each of seven butterflies is allowed to fly from the 
center of an experimental chamber ten times. From the procedures of Section 26.4, 
the values of 0 and r for each of the seven samples of data are as follows. 

k = 7; n = 10 

Sample U> OJ rj Xj = rjcosoj 

1 160° 0.8954 -0.84140 
2 169 0.7747 -0.76047 
3 117 0.4696 -0.21319 
4 140 0.8794 -0.67366 
5 186 0.3922 -0.39005 
6 134 0.6952 -0.48293 
7 171 0.3338 -0.32969 

-3.69139 

X = ~>jCOSOj = -3.69139 = -0.52734 
k 7 

Y = ~ rj sin OJ = 1.94906 = 0.27844 
k 7 

r = ~ X 2 + y2 = J0.35562 = 0.59634 

- - X _ - 0.52734 - 0 88429 cosa - - - - - . 
r 0.59634 

. - - Y - 0.27844 - 046691 sma - - - - . 
r 0.59634 

Therefore, ii = 152°. 

Yj = rjsinoj 

0.30624 
0.14782 
0.41842 
0.56527 

-0.04100 
0.50009 
0.05222 

1.94906 
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FIGURE 26.9: The data of Example 26.8. Each of the seven vectors in this sample is itself a mean vector. 
The mean of these seven means is indicated by the broken line. 

EXERCISES 

:6.L Twelve nests of a particular bird species were 
recorded on branches extending in the following 
directions from the trunks of trees: 

Direction Frequency 

N: 
NE: 
E: 
SE: 
S: 
SW: 
W: 
NW: 

0° 
45° 
90° 

135° 
1800 

225 0 

2700 

315° 

2 
4 
3 
1 
1 
1 
o 
o 

(a) Compute the sample mean direction. 
(b) Compute the angular deviation for the data. 

(c) Determine 95% confidence limits for the pop­
ulation mean. 

(d) Determine the sample median direction. 

26.2. A total of 15 human births occurred as follows: 

1:15 A.M. 4:40 A.M. 5:30 A.M. 6:50 A.M. 

2:00 A.M. 11:00 A.M. 4:20 A.M. 5:10 A.M. 

4:30 A.M. 5:15 A.M. 10:30 A.M. 8:55 A.M. 

6:10 A.M. 2:45 A.M. 3:10 A.M. 

(a) Compute the mean time of birth. 
(b) Compute the angular deviation for the data. 
(c) Determine 95% confidence limits for the pop-

ulation mean time. 
(d) Determine the sample median time. 
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Circular Distributions: Hypothesis Testing 

27.1 TESTING SIGNIFICANCE OF THE MEAN ANGLE 
27.2 TESTING SIGNIFICANCE OF THE MEDIAN ANGLE 
27.3 TESTING SYMMETRY AROUND THE MEDIAN ANGLE 
27.4 TWO-SAMPLE AND MULTISAMPLE TESTING OF MEAN ANGLES 
27.5 NONPARAMETRICTWO-SAMPLE AND MULTISAMPLE TESTING OF ANGLES 
27.6 TWO-SAMPLE AND MULTISAMPLE TESTING OF MEDIAN ANGLES 
27.7 TWO-SAMPLE AND MULTISAMPLE TESTING OF ANGULAR DISTANCES 
27.8 TWO-SAMPLE AND MULTISAMPLE TESTING OF ANGULAR DISPERSION 
27.9 PARAMETRIC ANALYSIS OF THE MEAN OF MEAN ANGLES 
27.10 NONPARAMETRICANALYSIS OFTHE MEAN OF MEAN ANGLES 
27.11 PARAMETRIC TWO-SAMPLE ANALYSIS OF THE MEAN OF MEAN ANGLES 
27.12 NONPARAMETRIC TWO-SAMPLE ANALYSIS OF THE MEAN OF MEAN ANGLES 
27.13 PARAMETRIC PAIRED-SAMPLE TESTING WITH ANGLES 
27.14 NONPARAMETRIC PAIRED-SAMPLE TESTING WITH ANGLES 
27.15 PARAMETRIC ANGULAR CORRELATION AND REGRESSION 
27.16 NONPARAMETRIC ANGULAR CORRELATION 
27.17 GOODNESS-OF-FIT TESTING FOR CIRCULAR DISTRIBUTIONS 
27.18 SERIAL RANDOMNESS OF NOMINAL-SCALE CATEGORIES ON A CIRCLE 

Armed with the procedures in Chapter 26 and the information contained in the basic 
statistics of circular distributions (primarily it and r). we can now examine a number 
of methods for testing hypotheses about populations measured on a circular scale. 

27.1 TESTING SIGNIFICANCE OF THE MEAN ANGLE 

624 

(3) The Rayleigh Test for Uniformity. We can place more confidence in a as an 
estimate of the population mean angle. J.L". if .'i is small. than if it is large. This is 
identical to stating that a is a better estimate of J.La if r is large than if r is small. What 
is desired is a method of asking whether there is. in fact. a mean direction for the 
population of data that were sampled. for even if there is no mean direction (i.e .. 
the circular distribution is uniform) in the popUlation. a random sample might still 
display a calculable mean. Thc test we require is that concerning /-In: The sampled 
population is uniformly distributed around a circle versus /fA: The popUlation is not 
a uniform circular distribution. This may be tested by the Rayleigh les[*. As circular 
uniformity implies there is no mean direction. the Rayleigh test may also be said to 
test /-10: p = 0 versus /I A: p '" O. where p is the population mean vector length. 

*Namcd for Lord Rayleigh [John William Strut\. Third Baron Rayleigh (I X42-llJ 1l»J. a physicist 
and applied mathematician who gaincd his greatest fame for discovering and isolating the chemical 
clcment argon (winning him the Nohcl Prize in physics in 1\)04). although some of his other 
contrihutions to physics were at least as important (Lindsay. 1 \)711). He was a pioneering worker 
with direclional data heginning in IXXO (Fisher. 1l)\)3: 10: Moore. IllXO: Rayleigh. 19I1J). 
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The Rayleigh test asks how large a sample r must be to indicate confidently a 
nonuniform population distribution. A quantity referred to as "Rayleigh's R" is 
obtainable as 

R = nr. (27.1 ) 

and the so-called "Rayleigh's z,. may be utilized for testing the null hypothesis of no 
population mean direction: 

R2 
Z = - or z = n,2. 

n 
(27.2) 

Appendix Table B.34 presents critical values of ZUJ/' Also an excellent approximation 
of the probability of Rayleigh's R is* 

P = exp[Jl + 4n + 4(/12 - R2) - (1 + 2n)] (27.4) 

(derived from Greenwood and Durand. 1955). This calculation is accurate to three 
decimal places for n as small as 10 and to two decimal places for n as small as 5. t The 
Rayleigh test assumes sampling from a von Mises distribution, a circular analog of 
the linear normal distribution. (See von Mises footnote to Section 26.7.) 

If Ho is rejected by Rayleigh's test, we may conclude that there is a mean 
population direction (see Example 27.1 ), and if Ho is not rejected, we may conclude 
the population distribution to be uniform around the circle; but only if we may 
assume that the population distribution does not have more than one mode. (For 
example, the data in Example 26.7 and Figure 26.8 would result in a Rayleigh test 
failing to reject Ho. While these data have no mean direction, they are not distributed 
uniformly around the circle, and they arc not unimodal.) 

EXAMPLE 27.1 Rayleigh's Test for Circular Uniformity, Applied to the 
Data of Example 26.2 

These data are plotted in Figure 26.2. 

Ho: p :; 0 (i.e., the population is uniformly distributed around the circle). 
HA: p ::F 0 (i.e., the population is not distributed uniformly around the 

circle). 

Following Example 26.4: 

n=8 
r = 0.82522 
R :; nr = (8)(0.82522) = 6.60176 

Z = R2 = (6.60176 )2 = 5.448. 
n 8 

Using Appendix Table B.34, ZO.05.R = 2.899. Reject Ho. 0.001 < P < 0.002 

*Recall the following notation: 
(27.3) 

t A simpler. but less accurate. approximation for P is to consider 2z as a chi-square with 2 
degrees of freedom (Mardia. 1972a: 113: Mardia and Jupp. 2000: 92). This is accurate to two decimal 
places for II as small as about 15. 
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270· 1------* 

FIGURE 27.1: The data for the V test of Example 27.2. The broken line indicates the expected mean 
angle (94°). 

Section 26.8 explains how axially bimodal data-such as in Figure 26.8-can be 
transformed into unimodal data. thereafter to be subjected to Rayleigh testing and 
other procedures requiring unimodality. What is known as "Rao's spacing test" 
(Batschelet. 1981: 66-69; Rao. 1976) is particularly appropriate when circular data 
are neither unimodal nor axially bimodal. and Russell and Levitin (1994) have 
produced excellent tables for its use. 

(b) Modified Rayleigh Test for Uniformity versus a Specified Mean Angle. The 
Rayleigh test looks for any departure from uniformity. A modification of that test 
(Durand and Greenwood. 1958: Greenwood and Durand, 1955) is available for 
use when the investigator has reason to propose, in advance. that if the sampled 
distribution is not uniform it will have a specified mean direction. [n Example 271 
(and presented graphically in Figure 27.1). ten birds were released at a site directly 
west of their home. Therefore, the statistical analysis may include the suspicion that 
such birds will tend to fly directly east (Le., at an angle of 9(}0). The testing procedure 
considers Ho: The population directions are uniformly distributed versus HA: The 
directions in the population are not uniformly distributed and ILII = 90"'. By using 
additional information, namely the proposed mean angle, this test is more powerful 
than Rayleigh's test (Batschelet. 1972: 1981: 60). 

The preceding hypotheses are tested by a modified Rayleigh test that we shall refer 
to as the V lest. in which the test statistic is computed as 

V = Rcos(a - l.Lo), (27.5) 

where J.L() is the mean angle proposed. The significance of V may be ascertained from 

(27.6) 

Appendix Table B.35 gives critical values of llUJI. a statistic which. for large sample 
sizes. approaches a one-tailed normal deviate. Za( I). especially in the neighborhood 
of probabilities of 0.05. If the data are grouped. then R may be determined from Tc 

(Equation 26.15) rather than from r. 

(c) One-Sample Test for the Mean Angle. The Rayleigh test and the V test 
are nonparametric methods for testing for uniform distribution of a population 
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EXAMPLE 27.2 The V Test for Circular Uniformity Under the Alternative 
of Nonuniformity and a Specified Mean Direction 

Ho: The population is uniformly distributed around the circle (i.e., Ho: 
p = 0). 

H A: The population is not uniformly distributed around the circle (Le., 
HA: p ;;j; 0). but has a mean of 90°. 

ai (deg) sinai coso; 

66 0.91355 0.40674 
75 0.96593 0.25882 
86 0.99756 0.06976 
88 0.99939 0.03490 
88 0.99939 0.03490 
93 0.99863 0.05234 
97 0.99255 0.12187 

101 0.98163 0.19081 
118 0.88295 0.46947 
130 0.76604 0.64279 

n = 10 ~ sin ai = 9.49762 ~ COSOi = -0.67216 

y = 9.49762 = 0.94976 
10 

X = - 0.67216 = -0.06722 
10 

r = J( -0.06722)2 + (0.94976)2 = 0.95214 

sin a = r = 0.99751 
r 

cosa = ~ = -0.07060 
r 

R = (10)(0.95214) = 9.5214 

V = Rcos(94° - 90°) 

= 9.5214cos( 4°) 

= (9.5214)(0.99756) 

= 9.498 

u = vi! 
= (9.498) IT \fw 
= 4.248 

Using Appendix Table B.35, UO.05.\O = 1.648. Reject Ho. P < 0.0005. 
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of data around the circle. (See Batschelet, 1981: Chapter 4, for other tests of the 
null hypothesis of randomness.) If it is desired to test whether the population mean 
angle is equal to a specified value, say /LO, then we have a one-sample test situation 
analogous to that of the one-sample t test for data on a linear scale (Section 7.1). The 
hypotheses are 

HI): /La = /L() 

and 
HA: /La "# /LO, 

and Ho is tested simply by observing whether /LO lies within the 1 - a confidence 
interval for /La. If /La lies outside the confidence interval, then Ho is rejected. 
Section 26.7 describes the determination of confidence intervals for the population 
mean angle, and Example 27.3 demonstrates the hypothesis-testing procedure.* 

EXAMPLE 27.3 The One-Sample Test for the Mean Angle, Using the Data 
of Example 27.2 

Ho: The population has a mean of 900 (i.e., /La = 900 ). 

HA: The popUlation mean is not 90° (i.e., /La "# 90 0 ). 

The computation of the following is given in Example 27.2: 
r = 0.95 

a = 94 0 

Using Equation 26.25, for a = 0.05 and n = 10: 

R = nr = (10)(0.95) = 9.5 

X6.05.1 = 3.841 

[ ~n2 - (n2 - R2)e~.dnl 
d = arccos 

R 

[ ~1Q2 - (102 - 9.52)&.841 /10] 
= arccos 

9.5 

= arccos[0.9744] 
= 130 , or 3600 - 13° = 347 0 • 

Thus, the 95% confidence interval for /La is 94 0 ± 130 • 

As this confidence interval does contain the hypothesized mean (/LO = 900 ), do 
not reject Ho. 

*For demonstration purposes (Examples 27.2 and 27.3) we have applied the V test and 
the one-sample test for the mean angle to the same set of data. In practice this would not 
be done. Deciding which test to employ would depend, respectively. on whether the intention 
is to test for circular uniformity or to test whether the population mean angle is a specified 
....... Ia ..... 
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TESTING SIGNIFICANCE OF THE MEDIAN ANGLE 

(a) The Hodges-Ajne Test for Uniformity. A simple alternative to the Rayleigh test 
(Section 27.1) is the so-called Hodges-Ajne test,· which does not assume sampling 
from a specific distribution. This is called an "omnibus test" because it works well 
for unimodal, bimodal, and multi modal distributions. If the underlying distribution is 
that assumed by the Rayleigh test, then the latter procedure is the more powerful. 

Given a sample of circular data, we determine the smallest number of data that 
occur within a range of 180°. As shown in Example 27.4, this is readily done by 
drawing a line through the center of the circle (i.e., drawing a diameter) and rotating 
that line around the center until there is the greatest possible difference between the 
numbers of data on each side of the line. If, for example, the diameter line were 
vertical (i.e., through 0° and 180°), there would be 10 data on one side of it and 14 on 
the other; if the line were horizontal (i.e .. through 90° and 270°). then there would be 
3.5 points on one side and 20.5 points on the other; and if the diameter were rotated 
slightly counterclockwise from horizontal (shown as a dashed line in the figure in 
Example 27.4), then there would be 3 data on one side and 21 on the other. and no 
line will split the data with fewer data on one side and more on the other. The test 
statistic. which we shall call m, is the smallest number of data that can be partitioned 
on one side of a diameter; in Example 27.4, m = 3. 

The probability of an m at least this small, under the null hypothesis of circular 
uniformity, is 

(n) nl (n-2m) (n-2m) . 
p = m = m!(n - m)! 

2"- \ 2"-\ 
(27.7) 

(Hodges, 1955), using the binomial coefficient notation of Equation 24.2. Instead of 
computing this probahility, we may refer to Appendix Table 8.36. which gives critical 
values for m as a function of nand a. (It can be seen from this table that in order to 
test at the 5% significance level, we must have a sample of at least nine data.) For 
n > 50, P may be determined by the following approximation: 

where 

..;z; [ - 'Tf2] p:::::: --exp -- , 
A 8A2 

A= 7T.,fo 
2(n - 2m) 

(27.8) 

(27.9) 

(Ajne, 1968); the accuracy of this approximation is indicated at the end of Appendix 
Table 8.36. 

(b) Modified Hodges-Ajne Test for Uniformity versus a Specified Angle. Just as 
(in Section 27.1b) the V test is a modification of the Rayleigh test to test for circular 
uniformity against an alternative that proposes a specified angle, a test presented 
by Batschelet (1981: 64-66) is a modification of the Hodges-Ajne test to test 

*This procedure was presented by Ajne (1968). Shortly thereafter. Bhattacharyya and Johnson 
(1969) showed that his test is identical to a test given by Hodges (1955) for a different purpose. 
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EXAMPLE 27.4 The Hodges-Ajne Test for Circular Uniformity 

Ho: The population is uniformly distributed around the circle. 
HA: The population is not uniformly distributed around the circle. 

This sample of 24 data is collected: 10°,15°,25°,30°,30°,30°,35°,45°,50°,60°, 
75°,80°, 100°, 110°,255°,270°,280°,280°,300°,320°,330°,350°,350°,355°. 

------------2700 9()O 

IXO° 

n = 24;m = 3 
For a = 0.05, the critical value (from Appendix Table B.36) is mO.05.24 = 4; 
reject Ho. 0.002 < P ::s 0.005. 

(n - 2m)(n) (11 - 2m) n! 
__ P _- m __ m!(n - m)! Exact probability 

211 - 1 211 - 1 

(24 - 6) 24! 
= ___ -=3'-'-! =-21:....:...! = 0.0043 

223 

For comparison, the Rayleigh test for these data would yield a = 12°, 
r = 0.563, R = 13.513, z = 7.609, P < 0.001. 

nonparametrically for uniformity against an alternative that specifies an angle. For 
the Batschelet test, we count the number of data that lie within ±90° of the specified 
angle; let us call this number m' and the test statistic is 

C = n - m'. (27.10) 

We may proceed by performing a two-tailed binomial test (Section 24.5), with p = 0.5 
and with C counts in one category and m' counts in the other. As shown in the figure in 
Example 27.5, this may be visualized as drawing a diameter line perpendicular to the 
radius extending in the specified angle and counting the data on either side of that line. 

(c) A Binomial Test. A nonparametric test to conclude whether the population 
median angle is equal to a specified value may be performed as follows. Count the 
number of observed angles on either side of a diameter through the hypothesized 
angle and subject these data to the binomial test of Section 24.5, with p = 0.5. 
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EXAMPLE 27.5 The Batschelet Test for Circular Uniformity 

Ho: The population is uniformly distributed around the circle. 
H A: The population is not uniformly distributed around the circle, but is 

concentrated around 45". 

The data are those of Example 27.4. 
n = 24; p = 0.5; m' = 19; C = 5 

• I)" 

, , , , , , , , , , / 
'v , , 

18()" 

, , , , , , , , , 

90° 

For the binomial test of Section 24.5, using Appendix Table 8.27, CO.nS(2).24 = 6, 

reject Ho,0.OO5 < P 5 0.01; by the procedure shown in Example 24.8a, the 
exact probability would be P = 0.00661. 

TESTING SYMMETRY AROUND THE MEDIAN ANGLE 

The symmetry of a distribution around the median may be tested nonparametrically 
using the Wilcoxon paired-sample test (also known as the Wilcoxon signed-rank test) 
of Section 9.5. For each angle (Xi) we calculate the deviation of Xi from the median 
(Le., d; = Xi - median), and we then analyze the d/s as explained in Section 9.5. This 
is shown in Example 27.6 for a two-tailed test, where Ho: The underlying distribution 
is not skewed from the median. A one-tailed test could be used to ask whether the 
distribution was skewed in a specific direction from the median. (T _ would be the 
test statistic for Ho: The distribution is not skewed clockwise from the median, and 
T + would be the test statistic for Ho: The distribution is not skewed counterclockwise 
from the median.) 

EXAMPLE 27.6 Testing for Symmetry Around the Median Angle, for the 
Data of Example 27.6 

Ho: The underlying distribution is symmetrical around the median. 
H A: The underlying distribution is not symmetrical around the median. 

For the 8 data below, the median is 161.5". 
Using the Wilcoxon signed-rank test: 
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d; = 
X; X;- mediall 

97° -64.5° 
1040 -57.5° 
121° -40.5 0 

1590 -2.5° 
1640 2.5 0 

172° 10.5° 
1950 33.5° 
213° 51.5° 

T + = 1.5 + 3 + 4 + 6 = 14.5 

T _ = 8 + 7 + 5 + 1.5 = 21.5 

TO.05(2).8 = 3 

Rank of Signed rank of 
Id;1 Id;1 

8 -8 
7 -7 
5 -5 
1.5 -1.5 
1.5 1.5 
3 3 
4 4 
6 6 

Neither T + nor T _ is < TO.1I5(2).8, so do not reject Ho. P > 0.50 

27.4 TWO-SAMPLE AND MULTISAMPLE TESTING OF MEAN ANGLES 

(a) Two-Sample Testing. It is common to consider the null hypothesis Ho: ~1 = !L2, 
where ~1 and ~2 are the mean angles for each of two circular distributions (see 
Example 27.7). Watson and Williams (1956, with an improvement by Stephens, 1972) 
proposed a test that utilizes the statistic 

F = K(N - 2)(RI + R2 - R), 
N - RI - R2 

(27.11) 

where N = 11] + n2. In this equation, R is Rayleigh's R calculated by Equation 27.1 
with the data from the two samples being combined; RI and R2 are the values of 
Rayleigh's R for the two samples considered separately. K is a factor, obtained from 
Appendix Table B.37, that corrects for bias in the F calculation; in that table we use 
the weighted mean of the two vector lengths for the column headed ,: 

_ n]'1 + n2'2 _ RI + R2 'w - - . 
N N 

(27.12) 

The critical value for this test is Fa(I).1.N-2' Alternatively, 

t = / K (N - 2)( R] + R2 - R) 
V N - RI - R2 

(27.13) 

may be compared with ta (2).N-2' This test may be used for ,was small as 0.75, 
if NI2 ~ 25. (Batschelet, 1981: 97, 321; Mardia 1972a: 155; Mardia and Jupp, 
2000: 130). The underlying assumptions of the test are discussed at the end of this 
section. 
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EXAMPLE 27.7 The Watson-Williams Test for Two Samples 

Ho: ILl = 1L2 
HA: ILl ¢ IL2 

Sample 1 
ai (deg) sinai 

94 0.99756 
65 0.90631 
45 0.70711 
52 0.78801 
38 0.61566 
47 0.73135 
73 0.95630 
82 0.99027 
90 1.00000 
40 0.64279 
87 0.99863 

nl = 11 ~sinai 
= 9.33399 

cosaj 

-0.06976 
0.42262 
0.70711 
0.61566 
0.78801 
0.68200 
0.29237 
0.13917 
0.00000 
0.76604 
0.05234 

~cosaj 
= 4.39556 

aj (deg) 

77 
70 
61 
45 
50 
35 
48 
65 
36 

112 = 9 

Sample 2 
sinaj 

0.97437 
0.93969 
0.87462 
0.70711 
0.76604 
0.57358 
0.74314 
0.90631 
0.58779 

~sinaj 
= 7.07265 

cosaj 

0.22495 
0.34202 
0.48481 
0.70711 
0.64279 
0.81915 
0.66913 
0.42262 
0.80902 

~cosai 
= 5.12160 

Y = 0.84854, X = 0.39960 

'I = 0.93792 

Y = 0.78585, X = 0.56907 

'2 = 0.97026 

sin al = 0.90470 

cosal = 0.42605 

al = 65° 

Rl = 10.31712 

By combining the twenty data from both samples: 

~ sin aj = 9.33399 + 7.07265 = 16.40664 

~cosai = 4.39556 + 5.12160 = 9.51716 

N=l1 + 9=20 

Y = 16.40664 = 0.82033 
20 

X = 9.51716 = 0.47586 
20 

, = 0.94836 

R = 18.96720 

'w = 10.31712 + 8.73234 = 0.952: K = 1.0251 
20 

sin a2 = 0.80994 

COSa2 = 0.58651 

a2 = 54° 

R2 = 8.73234 
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F = K (N - 2)( R I + R2 - R) 
N - RI - R2 

=(1.0351)(20 - 2)(10.31712 + 8.73234 -18.96720) 
20 - 10.31712 - 8.73234 

= (1.0351) 1.48068 
0.95054 

= 1.61 

FO.05(1).1.18 = 4.41. 
Therefore, do not reject Ho. 

0.10 < P < 0.25 [P = 0.22] 

Thus, we conclude that the two sample means estimate the same population mean, 
and the best estimate of this population mean is obtained as 

sin a = ! = 0.86500 
r 

cosa = 5.. = 0.50177 
r 

The data may be grouped as long as the grouping interval is!S 10°. See Batschelet 
(1972; 1981: Chapter 6) for a review of other two-sample testing procedures. Mar­
dia (1972a: 156-158) and Mardia and Jupp (2000: 130) give a procedure for an 
approximate confidence interval for ILl -IL2. 

(b) Multisample Testing. The Watson-Williams test can be generalized to a multi­
sample test for testing Ho: ILl = IL2 = ... = ILk, a hypothesis reminiscent of analysis 
of variance considerations for linear data (Section 10.1). In multisample tests with 
circular data (such as Example 27.8), 

(N - k{~ Rj - R ) 

F=K . 

(k - 1) (N - ± Rj) 
J=I 

(27.14) 

Here. k is the number of samples. R is the Rayleigh's R for all k samples combined, 
and N = "'i.'j=1 nj. The correction factor, K, is obtained from Appendix Table B.37, 
using 

k k 

Lnjrj LRj 
j=1 = j=1 (27.15) rw = 

N N 

The critical value for this test is Fer( I ).k-I.N-k' Equation 27.15 (and, thus this test) may 
be used for rw as small as 0.45 if N / k ~ 6 (Batschelet. 1981: 321; Mardia. 1972a: 163; 
Mardia and Jupp, 2000: 135). If the data are grouped, the grouping interval should be 
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EXAMPLE 27.S The Watson-Williams Test for Three Samples 

Ho: All three samples are from populations with the same mean angle. 
HA: All three samples are not from populations with the same mean angle. 

Sample 1 Sample 2 
al (deg) sin a; cos a; a;(deg) sin a; 

135 0.70711 -0.70711 150 0.50000 
145 0.57358 -0.81915 130 0.76604 
125 0.81915 -0.57358 175 0.08716 
140 0.64279 -0.76604 190 -0.17365 
165 0.25882 -0.96593 180 0.00000 
170 0.17365 -0.98481 220 -0.64279 

nl = 6 Lsina; Lcosa; n2 = 6 L sin a; 

= 3.17510 = -4.81662 = 0.53676 

iiI = 147 0 ii2 = 1740 

'1 = 0.96150 '2 = 0.88053 

RI = 5.76894 R2 = 5.28324 

Sample 3 
a; (deg) sin a; cos a; 

140 0.64279 -0.76604 
165 0.25882 -0.96593 
185 -0.08715 -0.99619 
180 0.00000 -1.00000 
125 0.81915 -0.57358 
175 0.08716 -0.99619 
140 0.64279 -0.76604 

113 = 7 L sin a; ~cosai 
= 2.36356 = -6.06397 

ii3 = 1590 

'3 = 0.92976 

R3 = 6.50832 

k=3 

N = 6 + 6 + 7 = 19 

For all 19 data: 

LSina; = 3.17510 + 0.53676 + 2.36356 = 6.07542 

L cos a; = -4.81662 - 5.25586 - 6.06397 = -16.13645 
Y = 0.31976 

X = -0.84929 

cos a; 

-0.86603 
-0.64279 
-0.99619 
-0.98481 
-1.00000 
-0.76604 

~cosa; 

= -5.25586 



636 Chapter 27 Circular Distributions: Hypothesis Testing 

r = 0.90749 

R = 17.24231 
rlV = 5.76894 + 5.28324 + 6.50832 = 0.924 

19 

F = K(N - k)(""22 Rj - R) 
(k - 1)( N - ""22 Rj) 

= (1.0546)(19 - 3)(5.76894 + 5.28324 + 6.50832 - 17.24231) 
(3 - 1)( 19 - 5.76894 - 5.28324 - 6.50832) 

= (1.0546) 5.09104 
2.87900 

= 1.86 

VI = k - 1 = 2 

1/2 = N - k = 16 

FO.05( 1 ).2.16 = 3.63. 

Therefore. do not reject Ho. 

0.10 < P < 0.25 [P = 0.19] 

Thus, we conclude that the three sample means estimate the same population 
mean. and the best estimate of that population mean is obtained as 

sin 0 = ~ = 0.35236 
r 

coso = 5.. = -0.93587 
r 

no larger than 10°. Upton (1976) presents an alternative to the Watson-Williams test 
that relies on X2• instead of F, but the Watson-Williams procedure is a little simpler 
to use. 

The Watson-Williams tests (for two or more samples) are parametric and assume 
that each of the samples came from a population conforming to what is known as 
the von Mises distribution. a circular analog to the normal distribution of linear 
data. (See the second footnote in Section 26.7.) In addition, the tests assume that the 
population dispersions are all the same. Fortunately, the tests are robust to departures 
from these assumptions. But if the underlying assumptions are known to be violated 
severely (as when the distributions are not unimodal). we should be wary of their use. 
In the two-sample case, the nonparametric test of Section 27.5 is preferable to the 
Watson-WiI1iams test when the assumptions of the latter are seriously unmet. 

Stephens (1982) developed a test with characteristics of a hierarchical analysis 
of variance of circular data. and Harrison and Kanji (1988) and Harrison. Kanji, 
and Gadsden (1986) present two-factor ANOVA (including the randomized block 
design). 

Batschelet (1981: 122-126), Fisher (1993: 131-133). lammalamadake and 
SenGupta (2001: 128-130). Mardia (1972a: 158-162.165-166), and Stephens (1972) 
discuss testing of equality of population concentrations. 
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NONPARAMETRIC TWO-SAMPLE AND MULTISAMPLE TESTING OF ANGLES 

If data are grouped-Batschelet (1981: 110) recommends a grouping interval larger 
than lOa-then contingency-table analysis may be used (as introduced in Section 23.1) 
as a two-sample test. The runs test of Section 27.18 may be used as a two-sample test. 
but it is not as powerful for that purpose as are the procedures below, and it is best 
reserved for testing the hypothesis in Section 27.18. 

(a) Watson's Test. Among the nonparametric procedures applicable to two samples 
of circular data (e.g., see Batschelet. 1972. 1981: Chapter 6; Fisher, 1993: Section 5.3: 
Mardia. 1972a: Section 2.4; Mardia and Jupp. 2000: Section 8.3) are the median test 
of Section 27.6 and the Watson test. 

The Watson test, a powerful procedure developed by Watson* (1962), is recom­
mended in place of the Watson-Williams two-sample test of Section 27.4 when at least 
one of the sampled populations is not unimodal or when there are other considerable 
departures from the assumptions of the latter test. It may be used on grouped data if 
the grouping interval is no greater than 5° (Batschelet, 1981: 115). 

The data in each sample are arranged in ascending order, as demonstrated in 
Example 27.9. For the two sample sizes, nl and n2, let us denote the ith observation in 
Sample 1 as ali and the jth datum in Sample 2 as a2j. Then, for the data in Example 27.9, 
all = 35(;, a21 = 75°, al2 = 45", a22 = 80°, and so on. The total number of data is 
N = n) + n2. The cumulative relative frequencies for the observations in Sample 1 
are i/nh and those for Sample 2 are j/n2. As shown in the present example, we then 
define values of dk (where k runs from 1 through N) as the differences between the 
two cumulative relative frequency distributions. The test statistic, called the Watson 
U2, is computed as 

(27.16a) 

where d = "£dk/ N; or. equivalently. as 

(27.16b) 
N 

Critical values of U~.tll.tl2 are given in Appendix Table B.38a bearing in mind that 
U2 - U2 

a.tll.tl2 - aJI2.tll· 

Watson's U2 is especially useful for circular data because the starting point for 
determining the cumulative frequencies is immaterial. It may also be used in any 
situation with linear data that are amenable to Mann-Whitney testing (Section 8.11). 
but it is generally not recommended as a substitute for the Mann-Whitney test; 
the latter is easier to perform and has access to more extensive tables of critical 
values, and the former may declare significance because group dispersions are 
different. 

*Geoffrey Stuart Watson (1921-1998). outstanding Australian-born statistician (Mardia. 1998). 
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EXAMPLE 27.9 Watson's U2 Test for Nonparametric Two-Sample Testing 

Hn: The two samples came from the same population. or from two popu­
lations having the same direction. 

H A: The two samples did not come from the same population. or from two 
populations having the same directions. 

Sample 1 Sample 2 

; ali (de g) 
i 

j a2j (deg) L i _L d2 - dk =- k 
n) 112 nl n2 

1 35 0.1000 0.0000 0.1000 0.0100 
2 45 0.2000 0.0000 0.2000 0.0400 
3 50 0.3000 0.0000 0.3000 0.0900 
4 55 0.4000 0.0000 0.4000 0.1600 
5 60 0.5000 0.0000 0.5000 0.2500 
6 70 0.6000 0.0000 0.6000 0.3600 

0.6000 1 75 0.0909 0.5091 0.2592 
0.6000 2 80 0.1818 0.4182 0.1749 

7 85 0.7000 0.1818 0.5182 0.2685 
0.7000 3 90 0.2727 0.4273 0.1826 

8 95 0.8000 0.2727 0.5273 0.2780 
0.8000 4 100 0.3636 0.4364 0.1904 

9 105 0.9000 0.3636 0.5364 0.2877 
0.9000 5 110 0.4546 0.4454 0.1984 

10 120 1.0000 0.4546 0.5454 0.2975 
1.0000 6 130 0.5455 0.4545 0.2066 
1.0000 7 135 0.6364 0.3636 0.1322 
1.0000 8 140 0.7273 0.2727 0.0744 
1.0000 9 150 0.8182 0.1818 0.0331 
1.0000 10 155 0.9091 0.0909 0.0083 
1.0000 11 165 1.0000 0.0000 0.0000 

nl = 10 n2 = 11 L dk = 7.8272 L di = 3.5018 

N = nl + n2 = 21 

U2 - n~~2 [:~>ti - (L:d] 

Ufi.ns,lo.lI = 0.1856 

Do not reject Hn. 

0.10 < P < 0.20 

= (10)( 11) [3.5018 _ (7.8272 )2] 
212 21 

= 0.1458 
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(b) Watson's Test with Ties. If there are some tied data (i.e., there are two or more 
observations having the same numerical value), then the Watson two-sample test is 
modified as demonstrated in Example 27.10. We define Iii as the number of data in 

EXAMPLE 27.10 Watson's U2 Test for Data Containing Ties 

i 

1 
2 
3 
4 

5 

6 

7 

8 
9 

10 

Ho: The two samples came from the same population, or from two popu­
lations having the same directions. 

HA: The two samples did not come from the same population, or from two 
populations having the same directions. 

ali Iii mli 
mli j a2j 12j m2j 

m2j dk = mli _ m2j 

III 112 III 112 

0.0000 1 30° 1 1 0.1000 -0.1000 
0.0000 2 35 1 2 0.2000 -0.2000 

40° 1 1 0.0833 0.2000 -0.1167 
45 1 2 0.1667 0.2000 -0.0333 
50 1 3 0.2500 3 50 1 3 0.3000 -0.0500 
55 1 4 0.3333 0.3000 0.0333 

0.3333 4 60 1 4 0.4000 -0.0667 
0.3333 5 65 2 6 0.6000 -0.2677 

70 1 5 0.4167 0.6000 -0.1833 
0.4167 6 75 1 7 0.7000 -0.2833 

80 2 7 0.5833 7 80 1 8 0.8000 -0.2167 
0.5833 8 90 1 9 0.9000 -0.3167 

95 1 8 0.6667 0.9000 -0.2333 
0.6667 9 100 1 10 1.0000 -0.3333 

105 1 9 0.7500 1.0000 -0.2500 
110 2 11 0.9167 1.0000 -0.0833 
120 1 12 1.0000 1.0000 0.0000 

nl = 12 n2 = 10 Ltkdk 

= -3.5334 

N = 12 + 10 = 22 

U' ~ n~~, [:~>4 - (L~dd] 

= (12)( 10) [0.8144 _ (-3.5334 )2] 
222 22 

= 0.0612 

U5.115.IO,12 = 0.2246 

Do not reject Ho. 

P> 0.50 

d2 k tk 

0.0100 1 
0.0400 1 
0.0136 1 
0.0011 I 
0.0025 2 
0.0011 1 
0.0044 1 
0.0711 2 
0.0336 1 
0.0803 1 
0.0470 3 
0.1003 1 
0.0544 1 
0.1111 1 
0.0625 1 
0.0069 2 
0.0000 1 

Ltkd~ 
=0.8144 
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Sample 1 with a value of ali and t2j as the number of data in Sample 2 that have a 
value of a2j. Additionally, mli and m2j are the cumulative number of data in Samples 1 
and 2, respectively; so the cumulative relative frequencies are ml;/nl and m2j/n2, 
respectively. As in Section 27.5a, dk represents a difference between two cumulative 
distributions; and each tk is the total number of data, in both samples. at each aij. The 
test statistic is 

(27.17) 

(c) Wheeler and Watson Test. Another non parametric test for the null hypothesis 
of no difference between two circular distributions is one presented by Wheeler and 
Watson (1964; developed independently by Mardia, 1967). This procedure ranks all 
N data and for each a calculates what is termed a uniform score or circular rank: 

d = (360 0 )(rank of a). 
N 

This spaces all of the data equally around the circle. Then 

and 

IIi 

Cj = :L cosdj 
j=1 

IIi 

Sj = :L sin dj, 
j= I 

(27.18) 

(27.19) 

(27.20) 

where i refers to either sample 1 or 2; it does not matter which one of the two samples 
is used for this calculation. The test statistic is 

W = 2 (N - 1)( C1 + S1). (27.21) 
nln2 

Critical values of W have been published for some sample sizes (Batschelet, 1981: 
344; Mardia. 1967; Mardia and Jupp, 2000: 375-376; Mardia and Spurr. 1973). It has 
also been shown that W approaches a X2 distribution with 2 degrees of freedom for 
large N. This approximation works best for significance levels no less than 0.025 and 
has been deemed acceptable by Batschelet (1981: 103) if N is larger than 17, by Fisher 
(1993: 123) if nl and n2 are each at least 10, and by Mardia and Spurr (1973) if N is 
greater than 20. This approximation should not be used if there are tied data or if the 
two sample dispersions are very different (Batschelet 1981: 103). An approximation 
related to the F distribution has been proposed (Mardia, 1967; Mardia and Jupp, 
2000: 148-149) as preferable for some sample sizes. 

This test is demonstrated in Example 27.11. This example shows Cj and Sj for each 
of the two samples, but C and S are only needed from one of the samples in order to 
perform the test. 
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EXAMPLE 27.11 The Wheeler and Watson Two-Sample Test for the Data 
of Example 27.9 

Ho: The two samples came from the same population. or from two popu­
lations having the same directions. 

H A: The two samples did not come from the same population, or from two 
populations having the same directions. 

111 = 10,112 = 11, and N = 21 

3600 = 360" = 17.1429" 
N 21 

Sample 1 Sample 2 

Directiol1 Rank of Circlllar rallk Directiol1 Ral1k of Circular rank 
(degrees) direction (degrees) (degrees) direction (degrees) 

35 1 17.14 
45 2 34.29 
50 3 51.43 
55 4 68.57 
60 5 85.71 
70 6 102.86 

75 7 120.00 
80 8 137.14 

85 9 154.29 
90 10 171.43 

95 II 188.57 
100 12 205.71 

105 13 222.86 
110 14 240.00 

120 15 257.14 
130 16 274.29 
135 17 291.43 
140 18 308.57 
150 19 325.71 
160 20 342.86 
165 21 360.00 

CI = -0.2226 C2 = 0.2226 

SI = 3.1726 S2 = -3.1726 

W= 
2(N - 1)( Cf + Sf) 

nl/2 
2(21 - 1)[( -0.2226)2 + (3.1726?J = 3.678 

(10)(11) 
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v=2 

ro.05.2 = 5.991 

Do not reject Ho. 

0.10 < P < 0.25 

(b) Multisample Testing. The Wheeler and Watson test may also be applied to more 
than two samples. The procedure is as before, where all N data from all k samples 
are ranked and (by Equation 27.18) the circular rank, d, is calculated for each datum. 
Equations 27.19 and 27.20 are applied to each sample, and 

W = 2 ± [Cl + SI]. 
i=1 ni 

(27.22) 

Some critical values for k = 3 have been published (Batschelet, 1981: 345; Mardia, 
1970b; Mardia and Spurr, 1973). For large sample sizes, W may be considered to 
approximate X2 with 2{ k - 1) degrees of freedom. This approximation is considered 
adequate by Fisher (1993: 123) if each nj is at least 10 and by Mardia and Spurr (1973) 
if N is greater than 20. 

Maag (1966) extended the Watson U2 test to k > 2, but critical values are not 
available. Comparison of more than two medians may be effected by the procedure 
in Section 27.6. 

If the data are in groups with a grouping interval larger than 10, then an r X c 
contingency table analysis may be performed, for r samples in c groups; see 
Section 23.1 for this analytical procedure. 

27.6 TWO-SAMPLE AND MULTISAMPLE TESTING OF MEDIAN ANGLES 

The following comparison of two or more medians is presented by Fisher (1933: 114), 
who states it as applicable if each sample size is at least 10 and all data are within 
90° of the grand median (i.e., the median of all N data from all k samples). If we 
designate mi to be the number of data in sample i that lie between the grand median 

k 
and the grand median - 90°, and M = ~ mi, then 

i=1 

N2 k m? NM ____ ~_' -

M (N - M) i = 1 nj N - M 
(27.23) 

is a test statistic that may be compared to X2 with k - 1 degrees of freedom.* 
If" Ho: All k population medians are equal" is not rejected, then the grand median 

is the best estimate of the median of each of the k populations. 

27.7 TWO-SAMPLE AND MULTISAMPLE TESTING OF ANGULAR DISTANCES 

Angular distance is simply the shortest distance, in angles, between two points on a 
circle. For example, the angular distance between 95() and 120" is 25°, between 3400 

and 30° is 50°, and between 190" and 5° is 175°. In general, we shall refer to the angular 
distance between angles al and a2 as dlll-al' (Thus, d95 -120" = 25", and so on.) 

*The same results are obtained if mi is defined as the number of data in sample i that lie between 
the grand median and the grand median + 90". 
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Angular distances are useful in drawing inferences about departures of data from 
a specified direction. We may observe travel directions of animals trained to travel 
in a particular compass direction (perhaps "homeward"), or of animals confronted 
with the odor of food coming from a specified direction. If dealing with times of day 
we might speak of the time of a physiological or behavioral activity in relation to the 
time of a particular stimulus. 

(a) Two-Sample Testing. If a specified angle (e.g .. direction or time of day) is /-LO. 
we may ask whether the mean of a sample of data. Q, significantly departs from /-LO 
by testing the one-sample hypothesis, Ho: ILu = J.LO. as explained in Section 27.1c. 
However. we may have two samples, Sample 1 and Sample 2. each of which has 
associated with it a specified angle of interest, ILl and IL2, respectively (where ILl and 
IL2 need not be the same). We may ask whether the angular distances for Sample 1 
(dali-ILI) are significantly different from those for Sample 2 (dU2i-ILZ)' As shown in 
Example 27.12. we can rank the angular distances of both samples combined and 
then perform a Mann-Whitney test (see Section 8.11). This was suggested by Wallraff 
(1979). 

EXAMPLE 21.12 Two-Sample Testing of Angular Distances 

Birds of both sexes are transported away from their homes and released. with their 
directions of travel tabulated. The homeward direction for each sex is 135°. 

Ho: Males and females orient equally well toward their homes. 
HA : Males and females do not orient equally well toward their homes. 

Males 

Direction Angular 
traveled distance Rank 

145(J 10'" 6 
155 20 11 
130 5 2.5 
145 10 6 
145 10 6 
160 25 12.5 
140 5 2.5 

46.5 

For the two-tailed Mann-Whitney test: 

nl = 7.RI = 46.5 

112 = 6, R2 = 44.5 

Females 

Direction Angular 
traveled distance Rank 

160" 25° 12.5 
135 0 1 
145 10 6 
150 15 9.5 
125 10 6 
120 15 9.5 

44.5 

V = It I n2 + n I (n 12 + 1) - R I = (7)( 6 ) + 7(8) _ 46.5 = 23.5 
2 

V' = nln2 - V = (7)(6) - 23.5 = 18.5 

UO.05(2).7.6 = VO.05(2).6.7 = 36. 

Do not reject Ho. 
P> 0.20 
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The procedure could be performed as a one-tailed instead of a two-tailed test, if 
there were reason to be interested in whether the angular distances in one group were 
greater than those in the other. 

(b) Multisample Testing. If more than two samples are involved, then the angular 
deviations of all of them are pooled and ranked, whereupon the Kruskal-Wallis 
test (Section 10.4) may be applied. followed if necessary by non parametric multiple­
comparison testing (Section 11.5). 

27.8 TWO-SAMPLE AND MULTISAMPLE TESTING OF ANGULAR DISPERSION 

The Wallraff (1979) procedure of analyzing angular distances (Section 27.7) may 
be applied to testing for angular dispersion. The angular distances of concern for 
Sample 1 are dOli-iii and those for Sample 2 are d"2i- ii2' Thus, just as measures 
of dispersion for linear data may refer to deviations of the data from their mean 
(Sections 4.3 and 4.4), here we consider the deviations of circular data from their 
mean. 

The angular distances of the two samples may be pooled and ranked for appli­
cation of the Mann-Whitney test. which may be employed for either two-tailed 
(Example 27.13) or one-tailed testing. 

EXAMPLE 27.13 Two-Sample Testing for Angular Dispersion 

The times of day that males and females are born are tabulated. The mean time 
of day for each sex is determined (to the nearest 5 min) as in Section 26.4. (For 
males. til = 7:55 A.M.: for females. ti2 = 8:15 A.M.) 

Ho: The times of day of male births are as variable as the times of day of 
female births. 

H A: The times of day of male births do not have the same variability as the 
times of day of female births. 

Male Female 

Angular Angular 
Time of day distance Rank Time of day distance Rank 

05:10 hr 2:45 hr 11 08:15 hr 0:00 hr 1 
06:30 1:25 4 10:20 2:05 8.5 
09:40 1:45 6 09:45 1:30 5 
10:20 2:25 10 06:10 2:05 8.5 
04:20 3:35 13 04:05 4:10 14 
11: 15 3:20 12 07:50 0:25 2 

09:00 0:45 3 
10:10 1:55 7 

R2 = 49 

For the two-tailed Mann-Whitney test: 

III = 6,RI = 56 

n2 = 8,R2 = 49 

6(7) 
R I = (6)( 8) + - - 56 = 13 

1. 
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V' = nln2 - V = (6)(8) - 13 = 35 

Vu.OS( 2 ).6.8 = 40. 

Do not reject Ho. 
P = 0.20 

If we wish to compare the dispersions of more than two samples, then the afore­
mentioned Mann-Whitney procedure may be expanded by using the Kruskal-Wallis 
test (Section 10.4), followed if necessary by nonparametric multiple comparisons 
(Section 11.5). 

PARAMETRIC ANALYSIS OF THE MEAN OF MEAN ANGLES 

A set of n angles, ai. has a mean angle. a, and an associated mean vector length, r. 
This set of data may be referred to as afirst-ordel' sample. A set of k such means may 
be referred to as a second-order sample. Section 26.9 discussed the computation of 
the mean of a second-order sample, namely the mean of a set of means. We can also 
test the statistical significance of a mean of means. 

For a second-order sample of k mean angles, X can be obtained with either 
Equation 26.27 or 26.29 and Y with either Equation 26.28 or 26.30. Assuming that the 
second-order sample comes from a bivariate normal distribution (i.e., a population in 
which the Xi's follow a normal distribution. and the Yi's are also normally distributed), 
a testing procedure due to Hotelling* (1931) may be applied. 

The sums of squares and crossproducts of the k means are 

and 

~X2 = ~Xl 

~i = ~Yl 

(~Xj)2 

k 
(~ Yi )2 

k 

(27.24) 

(27.25) 

(27.26) 

where L in each instance refers to a summation over all k means (i.e., L = L7=1)' 
Then, we can test the null hypothesis that there is no mean direction (i.e., Ho: p = 0) 

in the population from which the second-order sample came by using as a test statistic 

= k(k - 2) [X2~i - 2XY~xy + Y2~~1 
F ., 2 ' 

2 ~~ ~y- - (~xy) 
(27.27) 

with the critical value being the one-tailed F with degrees of freedom of 2 and k - 2 
(Batschelet, 1978; 1981: 144-150). This test is demonstrated in Example 27.14, using 
the data from Example 26.8. 

*Harold Hotelling (lR95-1973), American mathematical economist and statistician. He owed 
his life. and thus the achievements of an impressive career. to a zoological mishap. While attending 
the University of Washington he was called to military service in World War I and appointed to 
care for mules. One of his charges (named Dynamite) broke Hotelling's leg. thus preventing the 
young soldier from accompanying his division to France where the unit was annihilated in battle 
(Darnell. 1988). 
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EXAMPLE 27.14 The Second-Order Analysis for Testing the Significance 
of the Mean of the Sample Means in Example 26.8 

Ho: There is no mean population direction (i.e .• p = 0). 
HA: There is a mean population direction (i.e .• p :F- 0). 

k = 7, X = -0.52734. Y = 0.27844 

~Xi = -3.69139, ~Xi = 2.27959. ~~ = 0.33297 

~ Yi = 1.94906. ~ Yi = 0.86474. ~y2 = 0.32205 

~ Xi Yi = - 1.08282, ~ xy = - 0.05500 

F = 7(7 - 2) [( -0.52734)2(0.32205) - 2( -0.52734)(0.27844)( -11.055(0) + (O.27H44)2(0.33297)] 
2 (O.33297)(O.32205) - (-IUI551KI)2 

= 16.66 

FO.05{ 1 ).2.5 = 5.79 
Reject Ho. 

0.005 < P < 0.01 

And. from Example 26.8. we see that the population mean angle is estimated to 
be 152°. 

This test assumes the data are not grouped. The assumption of bivariate normality 
is a serious one. Although the test appears robust against departures due to kurtosis, 
the test may be badly affected by departures due to extreme skewness. rejecting a true 
Ho far more often than indicated by the significance level. a (Everitt. 1979: Mardia, 
1970a). 

27.10 NONPARAMETRIC ANALYSIS OF THE MEAN OF MEAN ANGLES 

The Hotelling testing procedure of Section 27.9 requires that the k X's come from 
a normal distribution. as do the k V's. Although we may assume the test to be 
robust to some departure from this bivariate normality. there may be considerable 
nonnormality in a sample, in which case a nonparametric method is preferable. 

Moore (1980) has provided a nonparametric modification of the Rayleigh test, 
which can be used to test a sample of mean angles; it is demonstrated in Example 27.15. 
The k vector lengths are ranked, so that '1 is the smallest and 'k is the largest. We 
shall call the ranks i (where i ranges from 1 through k) and compute 

k 

~ iCOSai 

X = _;=_1 __ _ 

k 
(27.28) 

k 
~ isina; 

Y = :....i=...;.I __ (27.29) 
k 

~X2 + y2 R'= . 
k 

(27.30) 
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EXAMPLE 27.15 Nonparametric Second-Order Analysis for Significant 
Direction in the Sample of Means of Example 26.8 

Ho: The population from which the sample of means came is uniformly 
distributed around the circle (i.e., p = 0). 

H A: The population of means is not uniformly distributed around the circle 
(i.e .. p ::I: 0). 

Sample rank (i) 'i ai cos ai sinai i cosai isinai 

1 0.3338 171 0 -0.98769 0.15643 -0.98769 0.15643 
2 0.3922 186 -0.99452 -0.10453 -1.98904 -0.20906 
3 0.4696 117 -0.45399 0.04570 -1.36197 2.67302 
4 0.6962 134 -0.69466 0.71934 -2.77863 2.87736 
5 0.7747 169 -0.98163 0.19081 -4.90814 0.95404 
6 0.8794 140 -0.76604 0.64279 -4.59627 3.85673 
7 0.8954 160 -0.93969 0.34202 -6.57785 2.39414 

-23.19959 12.70266 

k=7 

X = 2icosai = -23.19959 = -3.31423 
k 7 

Y = 2isinai = 12.70266 = 1.81467 
k 7 

R,~~X2; y2 ~ ( -3.31423)2 + (1.81467)2 = J2.03959 = 1.428 
7 

Ro.os.? = 1.066 

Therefore. reject Ho. 

P < 0.001 

The test statistic. R', is then compared to the appropriate critical value. R~.II' in 
Appendix Table B.39. 

(a) Testing with Weighted Angles. The Moore modification of the Rayleigh test 
can also be used when we have a sample of angles, each of which is weighted. We 
may then perform the ranking of the angles by the weights. instead of by the vector 
lengths. ,. For example, the data of Example 26.2 could be ranked by the amount of 
leaning. Or, if we are recording the direction each of several birds flies from a release 
point, the weights could be the distances flown. (If the birds disappear at the horizon. 
then the weights of their flight angles are all the same.) 

PARAMETRIC TWO-SAMPLE ANALYSIS OF THE MEAN OF MEAN ANGLES 

Batschelet (1978. 1981: 150-154) explained how the Hotelling (1931) procedure of 
Section 27.9 can be extended to consider the hypothesis of equality of the means of 
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two populations of means (assuming each population to be bivariate normal). We 
proceed as in Section 27.9. obtaining an X and Y for each of the two samples (Xl 
and Y I for Sample 1. and X2 and Y 2 for Sample 2). Then. we apply Equations 27.24, 
27.25. and 27.26 to each of the two samples. obtaining (Lx2)1' (~xY)I' and (~r)l 
for Sample 1, and (~x2)2' (}:xY)2' and (~y2h for Sample 2. 

Then we calculate 

(:~:x2t = (~x2)1 + (~x2)2: 

(Lit = (~i)1 + (Li)2; 

(Lxy)c = (Lxy)) + (~xYh: 

(2731) 

(2732) 

(27.33) 

and the null hypothesis of the two population mean angles being equal is tested by 

F = N - 3 [(XI - Xd(2y2),. - 2(XI - X2)(YI - Y2)(2xy),. + (YI - Yd(2X2 )r] 

2(~ + ~) (2·~),.(2l)( - (2 xy); • 
kl k2 

(27.34) 

where N = kl + k2. and F is one-tailed with 2 and N - 3 degrees of freedom. This 
test is shown in Example 27.16, using the data of Figure 27.2. 

EXAMPLE 27.16 Parametric Two-Sample Second-Order Analysis for Test-
ing the Difference Between Mean Angles 

We have two samples, each consisting of mean directions and vector lengths. as 
shown in Figure 27.2. Sample 1 is the data from Examples 26.8 and 27.14, where 

k) = 7: XI = -0.52734; YI = 0.27844: al = 152°; 

(Lx2)) = 0.33297; (Ll)1 = 0.32205: (LxY)1 = -0.05500. 

Sample 2 consists of the following 10 data: 

j 

1 115° 
2 127 
3 143 
4 103 
5 130 
6 147 
7 107 
8 137 
9 127 
10 121 

'j 

0.9394 
0.6403 
0.3780 
0.6671 
0.8210 
0.5534 
0.8334 
0.8139 
0.2500 
0.8746 

Applying the calculations of Examples 26.8 and 27.14. we find 

k2 = 10; L 'j cos aj = - 3.66655: ~ 'j sin aj = 5.47197; 

X2 = -0.36660; Y2 = 0.54720: a2 = 124°. 
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(~X2)2 = 0.20897; (~l)2 = 0.49793; (~xYh = -0.05940. 

Then, we can test 

Ho: ILl = IL2 (The means of the populations from which these two samples 
came are equal.) 

HA : ILl '" IL2 (The two population means are not equal.) 

N=7+1O 

(~~t = 0.33297 + 0.20897 = 0.54194 

(~i)c = 0.32205 + 0.49793 = 0.81998 

(~xY)(. = -0.05500 + (-0.05940) = -0.11440 

F= (17-3) 

2 (! + ~) 
7 10 

[-0.52734 - (-0.36660)]2(0.81998) 

x 

= 4.69 

- 2[-0.52734 - (-0.36660)](0.27844 - 0.54720)( -0.11440) 

+ (0.27844 - 0.54720)2 (0.54194 ) 

(0.54194 )(0.8]998) - (-0.11440f 

FO.05( I ).2.14 = 3.74. 
Reject Ho. 
0.025 < P < 0.05 [P = 0.028] 

The two-sample Hotelling test is robust to departures from the normality assump­
tion (far more so than is the one-sample test of Section 27.9), the effect of nonnormality 
being slight conservatism (i.e., rejecting a false Ho a little less frequently than indi­
cated by the significance level, €X) (Everitt, 1979). The two samples should be of 
the same size, but departure from this assumption does not appear to have serious 
consequences (Batschelet, 1981: 202). 

NONPARAMETRIC TWO·SAMPLE ANALYSIS OF THE MEAN OF MEAN ANGLES 

The parametric test of Section 27.11 is based on sampled populations being bivariate 
normal and the two populations having variances and covariances in common, 
unlikely assumptions to be strictly satisfied in practice. While the test is rather 
robust to departures from these assumptions, employing a nonparametric test may be 
employed to assess whether two second-order populations have the same directional 
orientation. 

Batschelet (1978; 1981: 154-156) presented the following nonparametric procedure 
(suggested by Mardia, 1967) as an alternative to the Hotelling test of Section 27.11. 
First compute the grand mean vector, pooling all data from both samples. Then, 
the X coordinate of the grand mean is subtracted from the X coordinate of each of 
the data in both samples, and the Y of the grand mean is subtracted from the Y of 
each of the data. (This maneuver determines the direction of each datum from the 
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FIGURE 27.2: The data of Example 27.16. The open circles indicate the ends of the seven mean vectors of 
Sample 1 (also shown in Figure 26.9), with the mean of these seven indicated by the broken-line vector. 
The solid circles indicate the 10 data of Sample 2, with their mean shown as a solid-line vector. (The 
.. +" indicates the grand mean vector of all seventeen data, which is used in Example 27.17.) 

grand mean.) As shown in Example 27.17, the resulting vectors are then tested by a 
nonparametric two-sample test (as in Section 27.5). This procedure requires that the 
data not be grouped. 

EXAMPLE 27.17 Nonparametric Two-Sample Second-Order Analysis, 
Using the Data of Example 27.16 

Ho: The two samples came from the same popUlation, or from two popu­
lations with the same directions. 

HA: The two samples did not come from the same popUlation, nor from 
two popUlations with the same directions. 

Total number of vectors = 7 + 10 = 17 
To determine the grand mean vector (which is shown in Figure 27.2): 

~>jcosaj = (-3.69139) + (-3.66655) = -7.35794 

~>jsin aj = 1.94906 + 5.47197 = 7.42103 

X = -7.35794 = -0.43282 
17 

Y = 7.42103 = 0.43653 
17 

X and Yare all that we need to define the grand mean; however, if we wish we can 
also determine the length and direction of the grand mean vector: 

r = {X2 + y2 = {( -0.43282)2 + (0.43653)2 = 0.61473 

cosa = -0.43282 = -0.70408 
0.61473 
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sino = 0.43653 = 0.71012 
0.61473 

0= 135°. 

Returning to the hypothesis test, we subtract the foregoing X from the X. and the 
y from the Y, for each of the 17 data, arriving at 17 new vectors, as follows: 

Sample 1 

Datum X X-X Y Y-Y New a 

t -0.84140 -0.40858 0.30624 -0.13029 184° 
2 -0.76047 -0.32765 0.14782 -0.28871 210 
3 -0.21319 0.21963 0.41842 -0.01811 20 
4 -0.67366 -0.24084 0.56527 0.12874 137 
5 -0.39005 0.04277 -0.04100 -0.47753 276 
6 -0.48293 -0.05011 0.50009 0.06356 107 
7 -0.32969 0.10313 0.05222 -0.38431 290 

Sample 2 

Datum X X-X Y Y-Y New a 

1 -0.39701 0.03581 0.85139 0.41485 86° 
2 -0.38534 0.04748 0.51137 0.07484 75 
3 -0.30188 0.13084 0.22749 -0.20904 320 
4 -0.15006 0.28276 0.65000 0.21347 48 
5 -0.52773 -0.09491 0.62892 0.19239 108 
6 -0.46412 -0.03130 0.30140 -0.13513 230 
7 -0.24366 0.18916 0.79698 0.36045 68 
8 -0.59525 -0.16243 0.55508 0.11855 127 
9 -0.15045 0.28237 0.19966 -0.23687 334 
10 -0.45045 -0.01763 0.74968 0.31315 92 

Now, using Watson's two-sample test (Section 27.5) on these new angles: 

Sample 1 Sample 2 
i ali i/nl j a2j j/n2 dk d2 k 

1 20 0.1429 0.0000 0.1429 0.0204 
0.1429 1 48 0.1000 0.0429 0.0018 
0.1429 2 68 0.2000 -0.0571 0.0033 
0.1429 3 75 0.3000 -0.1571 0.0247 
0.1429 4 86 0.4000 -0.2571 0.0661 
0.1429 5 92 0.5000 -0.3571 0.1275 

2 107 0.2857 0.5000 -0.2143 0.0459 
0.2857 6 108 0.6000 -0.3143 0.0988 
0.2857 7 127 0.7000 -0.4143 0.1716 

3 137 0.4286 0.7000 -0.2714 0.0737 
4 184 0.5714 0.7000 -0.1286 0.0165 
5 210 0.7143 0.7000 0.0143 0.0002 

0.7143 8 230 0.8000 -0.0857 0.0073 
6 276 0.8571 0.8000 0.0571 0.0033 
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7 290 1.0000 0.8000 0.2000 
1.0000 9 320 0.9000 0.1000 
1.0000 10 334 1.0000 0.0000 

nl = 7 n2 = 10 'I.dk 

= -1.6998 

N = 7 + 10 = 17 

U' ~ n~, [uP. - (~~ )'] 
= (7)(10) [0.7111 _ (-1.6998)2] 

172 17 

U6.05.7.to = 0.1866 
Do not reject Ho. 

= 0.1311 

0.10 < P < 0.20 

0.0400 
0.0100 
0.0000 

~d~ 
= 0.7111 

27.13 PARAMETRIC PAIRED-SAMPLE TESTING WITH ANGLES 

The paired-sample experimental design was introduced in Chapter 9 for linear data, 
and Section 9.1 showed how the analysis of two samples having paired data could 
be reduced to a one-sample test employing the differences between members of 
pairs. 

Circular data in two samples might also be paired, in which case the one-sample 
Hotelling test of Section 27.9 may be used after forming a single sample of data from 
the differences between the paired angles. If aij is the jth angle in the ith sample, then 
alj and a2j are a pair of data. A single set of rectangular coordinates. X's and Y's, is 
formed by computing 

Xj = COSa2j - cosalj (27.35) 

and 
Yj = sin a2j - sin alj' (27.36) 

Then the procedure of Section 27.9 may be applied, as shown in Example 27.18 
(where k is the number of pairs). 

EXAMPLE 27.18 The Hotelling Test for Paired Samples of Angles 

Ten birds are marked for individual identification, and we record on which side of 
a tree each bird sits to rest in the morning and in the afternoon. We wish to test 
the following. 

Ho: The side of a tree on which birds sit is the same in the morning and in 
the afternoon. 
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HA: The side of a tree on which birds sit is not the same in the morning and 
in the afternoon. 

Morning Afternoon Difference 

Bird Direction Direction 
(j) (alj) sin alj cosalj (02j) sina2j COS02j Yj Xj XjYj 

1 1050 0.9659 -0.2588 205 0 -0.4226 -0.9063 -1.3885 -0.6475 0.8991 
2 120 0.8660 -0.5000 210 -0.5000 -0.8660 -1.3660 -0.3660 0.5000 
3 135 0.7071 -0.7071 235 -0.8192 -0.5736 -1.5263 0.1335 -0.2038 
4 95 0.9962 -0.0872 245 -0.9063 -0.4226 -1.9025 -0.3354 0.6381 
5 155 0.4226 -0.9063 260 -0.9848 -0.1736 -1.4074 0.7327 -1.0312 
6 170 0.1736 -0.9848 255 -0.9659 -0.2588 -1.1395 0.7260 -0.8273 
7 160 0.3420 -0.9397 240 -0.8660 -0.5000 -1.2080 0.4397 -0.5312 
8 155 0.4226 -0.9063 245 -0.9063 -0.4226 -1.3289 0.4837 -0.6428 
9 120 0.8660 -0.5000 210 -0.5000 -0.8660 -1.3660 -0.3660 0.5000 
10 115 0.9063 -0.4226 200 -0.3420 -0.9397 -1.2483 -0.5171 0.6455 

k = 10 ~Yj ~Xj 

X = 0.0284 = -13.8814 = 0.2836 

Y = -1.3881 ~y~ 
J 

~X~ 
J ~XjYj 

= 19.6717 = 2.5761 = -0.0536 

~>2 = 2.5761 _ (0.2836)2 = 2.5681 
10 

Li = 19.6717 - (-13.8814)2 = 0.4024 
10 

LXY = -0.0536 _ (0.2836 - 13.8814) = 0.3402 
10 

F = k(k - 2) [x2~i -2XYuy + ru2 ] 

2 ~x2~i - (~xy)2 

F = 10(10 - 2) 
2 

= 217 

FO.05( 1 ).2.8 = 4.46. 

Reject Ho. 

(0.0284 )2( 0.4024) - 2(0.0284)( -1.3881) 

X (0.3402) + (-1.3881)2(2.5681) 

(2.5681)(0.4024) - (0.3402)2 

P « 0.0005 [P = 0.00000011] 
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If each member of a pair of data is a mean angle (a) from a sample, with an 
associated vector length (,), then we are dealing with a second-order analysis. The 
aforementioned Hotelling test may be applied if the following computations are used 
in place of Equations 27.35 and 27.36. respectively: 

Xj = r2jCOSa2j - 'ljCOSalj 

Yj = r2j sin a2j - 'ij sin a Ij. 

(27.37) 

(27.38) 

27.14 NONPARAMETRIC PAIRED-SAMPLE TESTING WITH ANGLES 

Circular data in a paired-sample experimental design may be tested nonparametrically 
by forming a single sample of the paired differences, which can then be subjected to 
the Moore test of Section 27.10. We calculate rectangular coordinates (Xj and Yj) for 
each paired difference, as done in Equations 27.35 and 27.36. Then. for each of the j 
paired differences, we compute 

'j = JXJ + YJ, 
X 

cosaj = -1, 
'j 

. Yj 
smaj=-. 

'j 

(27.39) 

(27.40) 

(27.41) 

Then the values of 'j are ranked, with ranks (i) running from I through n, and we 
complete the analysis using Equations 27.28, 27.29, and 27.30 and Appendix Table 
8.39, substituting n for k. The procedure is demonstrated in Example 27. t 9. 

If each member of a pair of circular-scale data is a mean angle. aj, with an 
associated vector length, 'j. then we modify the preceding analysis. Calculate Xj 
and Yj by Equations 27.37 and 27.38, respectively. instead of by Equations 27.35 
and 27.36. respectively. Then apply Equations 27.39 through 27.41 and Equa­
tions 27.28 through 27.30 to complete the analysis (where k is the number of paired 
means). 

27.15 PARAMETRIC ANGULAR CORRELATION AND REGRESSION 

The correlation of two variables, each measured on a linear scale, was discussed in 
Chapter 19, with linear-scale regression being introduced in Chapter 17. Correlation 
involving angular data may be of two kinds: Either both variables are measured on 
a circular scale (a situation sometimes termed "angular-angular," or "spherical," 
correlation). or one variable is on a circular scale with the other measured on a 
linear scale (sometimes called an "angular-linear," or "cylindrical." correlation). 
The study of biological rhythms deals essentially with the rhythmic dependence (i.e., 
regression) of a linear scale variable (e.g .. a measure of biological activity, such as 
body temperature) on a circular scale variable (namely, time). 

(a) Angular-Angular Correlation. Correlation measures developed for correlation 
between two angular variables were for years characterized by serious deficiencies, 
such as not distinguishing between positive and negative relationships (e.g., see the 
review by Jupp and Mardia. 1980). However, Fisher and Lee (1983) presented a 
correlation coefficient analogous to the familiar parametric correlation coefficient of 
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EXAMPLE 27.19 The Moore Test for Paired Data on a Circular Scale of Measurement 

Ten birds are marked for individual identification. and we record on which side of a tree each bird sits 
to rest in the morning and in the afternoon. (The data are the same as in Example 27.18.) We wish to 
test the folIowing: 

Bi,d 
(j) 

2 

3 

4 

5 

6 

7 

8 

I) 

10 

Ho: The side of a tree on which birds sit is the same in the morning and in 
the afternoon. 

HA : The side of a tree on which birds sit is not the same in the morning and 
in the afternoon. 

Morning Afternoon [)ifference 

Din'clioll Direclj"" 
( lI lj) sin (IIi CUSlIlj (1I2j) sin tl2j CllS tl2j Yj Xj 'j 

105 O.%5Y -0.251'11'1 205- -0.4226 -O.tX163 -1.31'11'15 -0.0475 1.5321 

120 0.M60 - 0.5000 210 -U.50(M) -II.I'IMO -1.3660 -036fiO 1.4142 

135 0.7071 -0.7071 235 -u.l'lin -().5736 -1.52fi3 O.I.U5 1.5321 

Y5 0.l)\}fi2 -O.(IH72 245 -U.9063 -0.4226 -l.tX)25 -0 .. ,354 1.931H 

155 0.4220 -0.9063 200 -O.Y~ -0.1730 -1.4074 O.7J27 1.51'107 

170 0.1730 -O.I)~ 255 -O.Yh5Y -0.25AA -1.1395 0.7260 1.3511 

160 0.3420 -0.93Y7 24t) -O.HMO -O.5(MN) -1.201«) 0.4397 1.21'155 

155 0.4226 -0.9063 245 -O.IJC163 -0.4226 - LUl'ltJ 0.4X37 1.4152 

120 0.1'1660 -U.5000 210 - 0.5000 -O.M60 -1.3660 -0.3060 1.4142 

115 0.9063 -0.4226 2()() -(U420 -O.9.W7 -1.241'13 -0.5171 1.3512 

11 = 10 
11 

:L icosaj 
X = i;1 = 1(0.3420) + 2(0.5373) + ... + IO( -0.1736) 

n 10 

= -0.0106 
n 

:L isin aj 
y = =--j =---'1'-----__ 

II 

l( -0.9397) + 2( -0.8434) + ... + 10( -0.9848) 

10 

sin lIj 

-1I.tX163 

-O.Y659 

-O.Y962 

-O.YI'I48 

-OB1'I70 

-(1.1'\.134 

-O.93Y7 

- O.Y31JC) 

-O.%5Y 

-0.9231'1 

= -5.1825 

)X2 + y2 
R' = = 

(-0.0106)2 + (-5.1825)2 

to 
J2.685842 = 1.639 

n 

R;).05.IO = 1.048. 

Reject Ho. 

P < 0.001 

Rallk IIf 'j 
COStlj (i) 

-0.4226 7.5 

-0.2588 4.5 

o.OIm 7.5 

-0.1736 HI 

().4611'1 I) 

O.5:m 2 

0.3420 

0.3411'1 n 
-0.251'11'1 4.5 

-0.31'127 3 
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Section 19.1*; it ist 

1/-1 " 

L L sin(a; 
i=1 j=i+1 

raa = --;==================== 
II-I 1/ 

L L sin2(ai 
;=lj=i+1 

1/-1 1/ 

aj) L L sin2(bi 
i=1 j=i+1 

where the jth pair of data is denoted as ai. bit. 

(27.43)J 

Upton and Fingleton (1989: 303) gave a relatively simple method to test the 
significance of raa-that is, to test whether the sample of data came from a population 
having a correlation coefficient, Paa, different from zero. The procedure involves 
computing ra(l an additional n times for the sample. each time eliminating a different 
one of the 11 pairs of a and b data. § 

Then a mean and variance of these n additional raa's is calculated (let's call the 
mean rau, and the variance s2r ); and confidence limits for Paa are obtained as 

au 

L (I )- Z / sL 
1 = nrtla - n - rua - a(2)V-;; (27.45) 

and 

/sf. 
L2 = nr(l(/ - (n - 1 )ra(l + Za(2)V ~. (27.46) 

If the confidence interval (Le., the interval between LI and L2) does not include zero, 
then Ho: Paa = 0 is rejected in favor of HA : Paa -:f:. O. The computation of raa, and 
testing its significance, is shown in Example 27.20. 

*Results identical to those from Equation 19.1 may be obtained by 

1/-\ " 
~ ~ (X; - Xj)( Y; - Yj) 
i= 1 j=i+ 1 

, = r================ 
1/-1 " 11-\ II 

~ ~ (X; - Xj)2 ~ ~ (Y; - Yj)2 
;= \ j=;+ \ i= 1 j=;+ 1 

tThe notation "sin2(a; - aj)" means "[sin(a; - aj)f" 
:f:Fisher (1993: 151) gives an alternate computation of 'aa as 

4 [(~ cOSU;COSb;)(~ sinu;sinbi ) - (~Cosu;sinbi)(± sinaicoSbi)] 
1=\ 1=\ 1=\ 1=\ 

(27.42) 

[., -(, t M( 2u,»), - Gt, ,;n( 2u;)), 1 [.2 - (,t em( 2b, »)' - (~I ,;n( 2b,»), 1 
(27.44) 

§This involves what statisticians call the jackknife technique (introduced by Quenouille. 1956). 
named in 1964 by R. G. Miller (David. 1995). 
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EXAMPLE 27.20 Angular-Angular Correlation 

We wish to assess the relationship between the orientation of insects and the 
direction of a light source. 

Ho: Paa = 0: HA: Paa #: 0 

Insect Light 

i Qi hi 

1 145° 1200 

2 190° 180° 
3 310° 330" 
4 210° 225° 
5 80 0 55° 

n = 5; the computations proceed as follows: 

sine Dj - Dj> sin2 sin2 
i j t1j - OJ hj - bj sin(oj - OJ) sin(bj - hi) x sin(bj - hj) (Dj - OJ> (hj - bj) 

I 2 -45~ -60~ -0.70711 -0.86603 0.61237 0.50000 O.750m 
I 3 -165° -210° -O.25H82 0.50000 -0.12941 0.06699 0.25000 
I 4 -65° - lO5° -0.90631 -0.96593 0.87543 0.82140 0.93302 
1 5 65" 65° 0.90631 0.90631 0.82140 0.82140 0.82140 
2 3 -120° -150° -0.86603 -0.50000 0.43302 0.75001 0.25000 
24 -200 -45 0 -0.34202 -0.70711 0.24185 0.11698 0.50000 
25 110° 125 0 0.93969 0.81915 0.76975 0.88302 0.67101 
34 100° 105° 0.98481 0.%593 0.95126 0.%985 0.93302 
3 5 2300 275 0 -0.76604 -0.99619 11.76312 0.58682 0.99239 
4 5 130° 1700 0.76604 0.17365 0.13302 0.58682 0.03015 

Sum: 5.47181 6.10329 6.13100 

II-I n 

~ ~ sine aj - aj) sine bi - hj) 

ruu = 
i=1 j=i+1 

II-I II II-I II 

~ ~ sin2(a; - aj) ~ ~ sin2(bi - bj) 
i=lj=i+1 i= I j=i+1 

5.47181 5.47181 5.47181 = 0.8945 = = = 
~( 6.10329)( 6.13100) ./37.41927 6.11713 

Five raa's computed for the above data, each with a different pair of data deleted: 

i deleted: I 1 2 3 4 5 
r utl 0.90793 0.87419 0.92905 0.89084 0.87393 

rau = 0.89519; ~r = 0.0005552 
"" 

nratl - (n - 1 )rUQ = (5)(0.8945) - (5 - 1 )(0.89519) = 0.8917 



658 Chapter 27 Circular Distributions: Hypothesis Testing 

ZO.05(2)~ ~ I.%OOJO.~5552 ~ 1.%00(0.0105) ~ 0.0206 

LJ = 0.8917 - 0.0206 = 0.8711 

L2 = 0.8917 + 0.0206 = 0.9123. 

As this confidence interval does not encompass zero, reject Ho. 

(b) Angular-Linear Correlation. Among the procedures proposed for correlating 
an angular variable (a) with a linear variable (X) is one by Mardia (1976). Using 
Equation 19.1, determine coefficients for the correlation between X and the sine of 
a (call it rxs), the correlation between X and the cosine of a (call it rxc), and the 
correlation between the cosine and the sine of a (call it res). Then, the angular-linear 
correlation coefficient is 

ral = (27.47) 
ri-e + ri-s - 2rxerxsres 

1 - ,.z.s 
For angular-linear correlation, the correlation coefficient lies between 0 and 1 (i.e., 
there is no negative correlation). If n is large, then the significance of the correlation 
coefficient may be assessed by comparing 11~1 to X~ (Batschelet, 1981: 193). This 
procedure is shown in Example 27.21. It is not known how large n must be for the 
chi-square approximation to give good results, and Fisher (1993: 145) recommends a 
different (laborious) method for assessing significance of the test statistic. 

EXAMPLE 27.21 Angular-Linear Correlation 

For a sampled population of animals, we wish to examine the relationship between 
distance traveled and direction traveled. 

Ho: Pul = 0; HA : Pal #- 0 

a = 0.05 

X aj 
distance direction 

(km) (deg) sin a; cos a; 

1 48 190 -0.17364 -0.98481 
2 55 160 0.34202 -0.93969 
3 26 210 -0.50000 -0.86603 
4 23 225 -0.70711 -0.70711 
5 22 220 -0.64279 -0.76604 
6 62 140 0.64279 -0.76604 
7 64 120 0.86603 -0.50000 

n=7 

~ Xj = 300 kilometers; ~ xl = 14,958 km2 

~ sin aj = - 0.17270 degrees; ~ sin2 aj = 2.47350 deg2 
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~ cos aj = - 5.52972 degrees; ~ cos2 aj = 4.52652 deg2 

"Sum of squares" of X = ~~ = 14,958 - 3fXP/7 = 2100.86 km2 

"Sum of squares" of sin aj = 2.47350 - (- 0.17270)2/7 = 2.46924 deg2 

"Sum of squares" of cos aj = 4.52652 - (-5.52972)2 j7 = 0.15826 deg2 

"Sum of cross products" of X and cosaj = (48)( -0.98481) + (55) 
(-0.93969) + ... + (64)( -0.50(00) - (300)( -5.52972)/7 = -234.08150 
- (-236.98800) = 2.90650 deg-km 

"Sum of cross products" of X and sinaj = (48)( -0.17364) + (55)(0.34202) 
+ ... + (64)(0.86603) - (300)( -0.17270)/7 = 62.35037 - (-7.40143) 
= 69.75180 deg-km 

"Sum of cross products" of cosaj and sinaj = (-0.98481)( -0.17364) 
+ (-0.93969)(0.34202) + ... + (-0.50000)(0.86603) - (-5.52972) 
(-0.17270)/7 = 0.34961 - 0.13643 = -0.21318 deg-km 

rxc = 0.15940; ric = 0.02541 

rxs = 0.96845; ris = 0.93789 

res = 0.34104; tis = 0.11630 

, _ ric + ris - 2rxerxsres 
r:1-
u 1 - tis 

= 0.02541 + 0.93789 - 2(0.15940)(0.96845)(0.34104) 
1 - 0.11630 

= 0.85801 = 0.97093 
0.88370 

ral = JO.97093 = 0.9854 

n~1 = (7)(0.97093) = 6.797. 

X6.05.2 = 5.991; reject Ho: 0.025 < P < 0.05 

(c) Regression. Linear-circular regression, in which the dependent variable (Y) is 
linear and the independent variable (a) circular, may be analyzed, by the regression 
methods of Chapter 20, as 

Yj = bo + b l cosaj + b2 sinaj (27.48) 

(Fisher, 1993: 139-140), where bo is the V-intercept and bl and b2 are partial 
regression coefficients. 

In circular-linear regression, where a is the dependent variable and Y the inde­
pendent variable, the situation is rather more complicated and is discussed by Fisher 
(1993: 155-168). Regression where both the dependent and independent variables 
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are on a circular scale (angular-angular regression), or where there is a circular 
dependent variable and both circular and linear independent variables. has received 
little attention in the statistical literature (Fisher. 1993: 168; Lund, 1999). 

(d) Rhytomometry. The description of biological rhythms may be thought of as a 
regression (often called periodic regression) of the linear variable on time (a circular 
variable). Excellent discussions of such regression are provided by Batschelet (1972; 
1974; 1981: Chapter 8), Bliss (1970: Chapter 17), Bloomfield (1976), and Nelson et at. 
(1979). 

The period, or length, of the cycle* is often stated in advance. Parameters to be 
estimated in the regression are the amplitude of the rhythm (which is the range from 
the minimum to the maximum value of the linear variable)t and the phase angle, or 
acrophase. of the cycle (which is the point on the circular time scale at which the linear 
variable is maximum). If the period is also a parameter to be estimated, then the 
situation is more complex and one may resort to the broad area of time series analysis 
(e.g., Fisher, 1993: 172-189). Some biological rhythms can be fitted, by least-squares 
regression, by a sine (or cosine) curve; and if the rhythm does not conform well to 
such a symmetrical functional relationship, then a "harmonic analysis" (also called a 
"Fourier analysis") may be employed. 

27.16 NONPARAMETRIC ANGULAR CORRELATION 

(a) Angular-Angular Correlation. A nonparametric correlation procedure proposed 
by Mardia (1975) employs the ranks of circular measurements as follows. If pair i 
of circular data is denoted by measurements aj and bi, then these two statistics are 
computed: 

T' ~ {~COS[qrank of ai-rank of bi )Ir + {~sin[qrank of oi:"'rank of bi )[r 
n2 

(27.49) 

" {~ cos[ q ran k of 0i + rank of bi ) I r + {~ sin[ q rank of 0i + rank of bi ) I r 
r = 2-________________________ ~ __ ~ ______________________ ~ 

n2 

(27.50) 

where 
360° C =-' , (27.51) 

It 

and Fisher and Lee (1982) showed that 

(raa)s = r' - r" (27.52) 

*A rhythm with one cycle every twenty-four hours is said to be "circadian" (from the Latin 
circa, meaning "about" and diem. meaning "day"); a rhythm with a seven-day period is said to be 
"circaseptan"; a rhythm with a fourteen-day period is "circadiscptan"; one with a period of one 
year is "circannual" (Halberg and Lee, 1974). 

tThe amplitude is often defined as half this range. 
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is, for circular data, analogous to the Spearman rank correlation coefficient of 
Section 19.9. For n of 8 or more, we may calculate 

(n - 1 )(rat/ h 
and compare it to the critical value of 

A + B/II, 

using A and B from Table 27.1 (which yields excellent approximations to the values 
given by Fisher and Lee. 1982). This procedure is demonstrated in Example 27.22. 

TABLE 27.1: Constants A and 8 for Critical 
Values for Nonparametric Angular-Angular 
Correlation 

a(2): 0.20 0.10 0.05 0.02 0.01 
a( I): 0.10 0.05 0.025 0.01 0.005 

A: 1.61 2.30 2.99 3.91 4.60 
B: 1.52 2.00 2.16 1.60 1.60 

EXAMPLE 27.22 Nonparametric Angular-Angular Correlation 

For a population of birds sampled. we wish to correlate the direction toward which 
they attempt to fly in the morning with that in the evening. 

Ho: (Paa)s = 0; HA: (Pall)s '* 0 

a = 0.05 

Direction 
Bird Evening Morning 

i Qi bi 

1 30° 60° 
2 10° 50° 
3 350° 10° 
4 0° 350° 
5 340° 330° 
6 330° 0° 
7 20° 40° 
8 30° 70° 

n = 8; C = 3600 /n = 45° 

Rank Rank Rank Rank 
of Qi of bi difference sum 

4.5 5 -0.5 9.5 
2 4 -2 6 
8 2 6 10 
1 8 -7 9 
7 7 0 14 
6 1 5 7 
3 3 0 6 
4.5 6 -1.5 10.5 

2 2 

r' ~ {~COS! C( rank of 0; - rank of b;) l} + {~ sin! C( rank of 0, - rank of b, ) l} 
n2 

= ({cos[45°( -0.5)] + cos[45°( -2)] + ... + cos[45"( -1.5)]f 

+ {sin[45°( -0.5)] + sin[45°( -1)] + ... + sin[45°( -1.5)]}2)/82 

= 0.3654 
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" {~ cosl C( rank of iii + ran k of b;) I r + {~sinl C( ran k of iii + rank of bi )] r 
, = ~----------------------~~~----------------------~ 

112 

= ({cos\45 (9.5)] + cos[45'(6)] + . + cos\4S' (IO.S)]}2 

+{sin[45"(9.5)] + sin[4S"(6)] + ... + sin[4S'(1O.S)]}2)/82 

= 0.0316 

(1'1111 )., = 1" - I'" = 0.3654 - 0.0316 = 0.3338 

(n - 1)( '1I11)S = (8 - 1)( 0.3338) = 2.34 

For a( 2) = 0.05 and n = 8. the critical value is estimated to be 

A + B/n = 2.99 + 2.16/1{ = 3.26. 

As 2.34 < 3.26. do not reject Ho. 

We may also compute critical values for other significance levels: 

for a(2) = 0.20: 1.61 + 1.52/8 = 1.80; 

for a( 2) = 0.10 : 2.30 + 2.00/8 = 2.55: 

therefore. 0.10 < P < 0.20. 

Fisher and Lee (1982) also described a nonparametric angular-angular correlation 
that is analogous to the Kendall rank correlation mentioned in Section 19.9c (see also 
Upton and Finglcton. 1989). 

(b) Angular-Linear Correlation. Mardia (1976) presented a ranking procedure for 
correlation between a circular and a linear variable. which is analogous to the 
Spearman rank correlation in Section 19.9. (See also Fisher. 1993: 140-141; Mardia 
and Jupp. 2000: 246-248.) 

27.17 GOODNESS-Of-fiT TESTING FOR CIRCULAR DISTRIBUTIONS 

Either X2 or G may be used to test the goodness of fit of a theoretical to an observed 
circular frequency distribution. (See Chapter 22 for general aspects o,.f goodness-of-fit 
methods.) The procedure is to determine each expected frequency./;. corresponding 
to each observed frequency. f;. in each category. i. For the data of Example 26.3. for 
instance. we might hypothesize a uniform distribution of data among the 12 divisions 
of the data. The test of this hypothesis is presented in Example 27.23. Batschelet 
(1981: 72) recommends grouping the data so that no expected frequency is less than 
4 in using chi-square. All of the k categories do not have to be the same size. U 
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they are (as in Example 27.23, where each category is 30° wide), Fisher (1993: 67) 
recommends that III k be at least 2. 

EXAMPLE 27.23 
Example 26.3 

Chi-Square Goodness of Fit for the Circular Data of 

HI): The data in the population are distributed uniformly around the circle. 
HA : The data in the population are not distributed uniformly around the 

circle. 

A 

Qi (deg) f; f; 

0-30 0 8.7500 
30-60 6 8.7500 
60-90 9 8.7500 
90-120 13 8.7500 

120-150 15 8.7500 
150-180 22 8.7500 
180-210 17 8.7500 
210-240 12 8.7500 
240-270 8 8.7500 
270-300 3 8.7500 
300-330 0 8.7500 
330-360 0 8.7500 

k = 12 n = 105 
" f; = 105/12 = 8.7500 foralli 

2 _ (0 - 8.7500? + (6 - 8.7500? 
X - 8.7500 8.7500 

+ (9 - 8.7500)2 + ... + (0 - 8.7500)2 
8.7500 8.7500 

= 8.7500 + 0.8643 + 0.0071 + ... + 8.7500 

= 66.543 

v=k-l=11 

X~.05.1I = 19.675 

Reject Ho. P « 0.001 [P = 0.00000000055] 

Recall that goodness-of-fit testing by the chi-square or G statistic does not take 
into account the sequence of categories that occurs in the data distribution. In Section 
22.8, the Kolmogorov-Smimov test was introduced in preference to chi-square when 
the categories of data are, in fact, ordered. Unfortunately, the Kolmogorov-Smimov 
test yields different results for different starting points on a circular scale; however. a 
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modification of this test by Kuiper (1960) provides a goodness-of-fit test, the results 
of which are unrelated to the starting point on a circle. 

If data are not grouped, the Kuiper test is preferred to the chi-square procedure. It 
is discussed by Batschelet (1965: 26-27; 1981: 76-79), Fisher (1993: 66-67), Mardia 
(1972a: 173-180), Mardia and Jupp (2000: 99-103). Among others, another goodness­
of-fit test applicable to circular distributions of ungrouped data (Watson, 1961, 1962, 
1995), is often referred to as the Watson one-sample U2 test, which is demonstrated in 
Example 27.24. To test the null hypothesis of uniformity, first transform each angular 
measurement, ai, by dividing it by 360°: 

a' 
U· = -'-, 360°· (27.53) 

Then the following quantities are obtained for the set of n values of Ui : ~ U;, ~ u~, ii, 
and ~ iUi. The test statistic, called "Watson's U2," is 

u2 = ~u~ - (~Ui)2 - ~~iu; + (n + 1)" + !!... 
n n 12 

(27.54) 

(Mardia, 1972a: 182; Mardia and Jupp, 2000: 103-105). Critical values for this test 
are U~JI in Appendix Table B38b. Kuiper's test and Watson's test appear to be 
very similar in power (Stephens, 1969b; Mardia and Jupp, 2000: 115). Lockhart and 
Stephens (1985) discussed the use of Watson's U2 for goodness of fit to the von Mises 
distribution and provided tables for that application. 

EXAMPLE 27.24 
Example 26.2 

Watson's Goodness-of-Fit Testing Using the Data of 

Ho: The sample data come from a population uniformly distributed around 
the circle. 

HA: The sample data do not come from a population uniformly distributed 
around the circle. 

ai Ui u~ , iUi 

1 45° 0.1250 0.0156 0.1250 
2 55° 0.1528 0.0233 0.3056 
3 81° 0.2250 0.0506 0.6750 
4 96° 0.2667 0.0711 1.0668 
5 110° 0.3056 0.0934 1.5280 
6 117° 0.3250 0.1056 1.9500 
7 132° 0.3667 0.1345 2.5669 
8 154° 0.4278 0.1830 3.4224 

n=8 ~Ui ~u~ ~illi 
=2.1946 =0.6771 =11.6397 
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li = ~Ui = 2.1946 = 0.2743 
n 8 

(~Ui)2 2 
U2 = ~ u~ - - ~ iUi + (n + l)u + E-

n n 12 

= 0.6771 - (2.1946)2 _ ~(11.6397) + (8 + 1 )(0.2743) + 8 
8 8 12 

= 0.6771 - 0.6020 - 2.9099 + 2.4687 + 0.6667 

= 0.3006 

U5.U5.7 = 0.179 

Therefore. reject Ho. 0.002 < P < 0.005. 

SERIAL RANDOMNESS OF NOMINAL-SCALE CATEGORIES ON A CIRCLE 

When dealing with the occurrence of members of two nominal-scale categories along 
a linear space or time. the runs test of Section 25.6 is appropriate. A runs test is 
also available for spatial or temporal measurements that are on a circular scale. This 
test may also be employed as a two-sample test. but the tests of Sections 27.4 and 
27.5 are more powerful for that purpose; the circular runs test is best reserved for 
testing the hypothesis of random distribution of members of two categories around a 
circle. 

We define a run on a circle as a sequence of like elements, bounded on each side 
by unlike elements. Similar to Section 25.6, we let nl be the total number of elements 
in the first category, n2 the number of elements in the second category, and U the 
number of runs in the entire sequence of elements. For the runs test on a linear 
scale (Section 25.6), the number of runs may be even or odd; however, on a circle 
the number of runs is always even: half of the runs (i.e., u/2) consist of elements 
belonging to one of the categories, and there are also u/2 runs of elements of the 
other category. 

The null hypothesis may be tested by analysis of the following 2 x 2 contingency 
table (Stevens, 1939), where ll' = u/2: 

u' 111 - ll' 

n2 - u' u' 

1 nl + n2 - 1 

This should be done by the Fisher exact test of Section 24.16, as demonstrated 
in Example 27.25. For that test, m\,m2,1l, and! are as defined in Section 24.16 and 
at the end of Appendix Table B.28. For two-tailed testing, as in Example 27.25, the 
second pair of critical values in that table are used. 
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EXAMPLE 27.25 The Two-Tailed Runs Test on a Circle 

Members of the two antelope species of Example 25.8 (referred to as species A 
and 8) are observed drinking on the shore of a pond in the following sequence: 

A 

A 

A 

B B 

HI): The distribution of members of the two species around the pond is 
random. 

HA: The distribution of members of the two species around the pond is not 
random. 

nl = 7,n2 = 10,u = 6,u' = 3 

3 4 7 
7 2 9 

10 6 16 

To use Appendix Table B.28, m I = 6, m2 = 7, f = 4, n = 17. For a two-tailed 
test, the critical values of f for a = 0.05 are 0 and 5. Therefore, we do not reject 
Ho;P ~ 0.20. 

If one or both sample sizes exceed those in Table B.28, then this 2 x 2 contingency 
table may be subjected to analysis by chi-square, but a correction for continuity 
should be used (Section 23.3c). Ghent and Zar (1992) discuss normal approximations 
for circular runs testing. 

Although this discussion and Example 27.25 depict a distribution around a circle, 
the testing procedure is appropriate if the physical arrangement of observations 
is in the shape of an ellipse, a rectangle, or any other closed figure-however 
irregular-providing that the figure is everywhere wider than the spacing of the 
elements along its periphery; and it may also be used for data that are conceptually 
circular, such as clock times or compass directions. 

<a) One-Tailed Testing. For one-tailed testing we use the first pair of critical values in 
Appendix Table B.28. We can test specifically whether the population is nonrandom 
due to clustering (also known as contagion) in the following manner. We state Ho: 
In the population the members of each of the two groups are not clustered (i.e., not 
distributed contagiously) around the circle and HA : In the population the members of 
each of the two groups are clustered (i.e., distributed contagiously) around the circle; 
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and iff:::; the first member of the pair of one-tailed critical values, then Ho is rejected. 
In using a normal approximation, this Ho is rejected if Z ;::: Za( I) and u' :::; /-LII" 

If our interest is specifically whether the population distribution is nonrandom 
owing to a tendency toward being uniform, then we state Ho: In the population the 
members of each of the two groups do not tend to be uniformly distributed around 
the circle versus HA : In the population the members of each of the two groups tend 
to be uniformly distributed around the circle: and if f;::: the second member of the 
one-tailed pair of critical values then Ho is rejected. If a normal approximation is 
employed, this Ho is rejected if Z ;::: Za( I) and lI' ;::: /-Lit" 

EXERCISES 

, 17.L Consider the data of Exercise 26.1. Test the null 
hypothesis that the population is distributed uni­
formly around the circle (i.e .. p = 0). 

i 7:1.l. Consider the data of Exercise 26.2. Test the null 
: hypothesis that time of birth is distributed uni­

formly around the clock (i.e .. p = 0). 
7:1.3. Trees are planted in a circle to surround a 

cabin and protect it from prevailing west (i.e .• 
270°) winds. The trees suffering the greatest wind 
damage are the eleven at the following direc­
tions. 
(8) Using the V test, test the null hypothesis that 

tree damage is independent of wind direc­
tion, versus the alternate hypothesis that tree 
damage is concentrated around 270". 

(b) Test Ho:J.ta = 270"vs.HA:J.ta ¢ 270". 

285 0 

240 
280 
255 

295" 
275 
310 
260 

335" 
260 
300 

7:1.4. Test nonparametrically for uniformity. using the 
data of Exercise 27.1. 

7:1.5. Test nonparametrically for the data and experi­
mental situation of Exercise 27.3. 

7:1.6. The direction of the spring flight of a certain bird 
species was recorded as follows in eight individu­
als released in full sunlight and seven individuals 
released under overcast skies: 

Sunny Overcast 

350" 340c 

340 305 
315 255 

10 270 
20 305 

355 320 
345 335 
360 

Using the Watson-Williams test, test the null 
hypothesis that the mean flight direction in this 
species is the same under both cloudy and sunny 
skies. 

27.7. Using the data of Exercise 27.6, test nonparametri­
cally the hypothesis that birds of the species under 
consideration fly in the same direction under sunny 
as well as under cloudy skies. 

27.8. Times of arrival at a feeding station of members 
of three species of hummingbirds were recorded as 
follows: __________ _ 

Species I Species 2 Species 3 

05:40hr 05:30hr 05:35hr 
07:15 07:20 08:10 
09:00 09:00 08:15 
11:20 09:40 10:15 
15:10 II :20 14:20 
17:25 15:00 15:35 

17:05 16:05 
17:20 
17:40 

Test the null hypothesis that members of all three 
species have the same mean time of visiting the 
feeding station. 

27.9. For the data in Exercise 27.6, the birds were 
released at a site from which their home lies due 
north (i.e .. in a compass direction of 0°). Test 
whether birds orient homeward better under sunny 
skies than under cloudy skies. 

27.10. For the data in Exercise 27.6. test whether the vari­
ability in flight direction is the same under both sky 
conditions. 

27.11. The following data, for each of nine experimental 
animals. are the time of day when body tempera­
ture is greatest and the time of day when heart rate 
is greatest. 

(8) Determine and test the correlation of these 
two limes of day. 

(b) Perform nonparametric correlation analysis 
on these data. 
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Time of day 
Animal Body temperature Heart rate 

1 
2 
3 
4 
5 
6 
7 
R 
9 

aj hj 

09:50 
\0:20 
11:40 
08:40 
09:10 
10:50 
13:20 
13:10 
12:40 

\0:40 
09:30 
11:\0 
08:30 
08:40 
09:10 
12:50 
13:30 
13:00 

27.12. For a sample of nine human hirths. the following 
are the times of day of the births and the ages 
of the mothers. Test whether there is correlation 
between these two variables. 

Birth Age (yr) Time of day (hr:min) 
Xj OJ 

1 23 06:25 
2 22 07:20 
3 19 07:05 
4 25 08:15 
5 28 15:40 
6 24 09:25 
7 31 18:20 
R 17 07:30 
9 27 16:\0 

27.13. Eight men (M) and eight women (W) were asked 
to sit around a circular conference table: they did 
so in the following configuration (see figure). Test 
whether there is evidence that members of the 
same sex tend to sit next to each other. 

W __ -T-~W 

M 

W 



APPENDIX A 

The Greek Alphabet 

Many Greek leiters arc commonly used in statistical and other scientific writing. English pronunciations are 
expressed below. guided largdy by Webster's Third New Internatiunul Dictionary. Unabridged. Merriam­
Webster. 2(1)2 (online at unabridged.merriam-webster.com. July 2. 200!!). Most of these leiters' names 
and pronunciations used by English speakers are different from Ihose of Greek speakers (Papanasta­
siou. 2003). Those Greek letters used in this book appear, alphabclically by their English names, in the 
index. 

Capital Lowercase 
Greek Greek English 
letter letter I name 

A u alpha 

B f3 bela 

r y gamma 

~ «5 delta 

E epsilon 

Z , zeta 

H Tj eta 

H /l theta 

I iota 

K K kappa 

A A lambda 

M II- mu 

N I' nu 

= ~ xi 

0 0 omicron 

n 1T pi 

P II rho 

L " sigma 

T T tau 
y v upsilon 

III cb phi 

X X chi 

Common English 
pronuncialion2 

ill-fuh 

baY-Iuh 

gam-uh 

del-tuh 

clip-suh-Iahn 

zay-tuh 

~-tuh 

lhay-tuh 

I-oh-tuh 

kap-uh 

lam-duh 

myoo 

nOll 

zl 

oh-muhk-rahn 

pI 

r03 

sig-muh 

tau 

up-suhl-ahn 

fI 

kl 

Alternate English 
pronuncialion2 

chp-suh-I'n 

zee-tuh3 

~-tuh3 

thee-tuh3 

ee-oh-tuh3 

moo 

nyoo 

ksl or ksec3 

ah-muhk-rahn or ah-muhk-r'n 

law 

up-suhl-uhn or yoop-suhl-ahn 

669 

prakash
Rectangle
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Capital Lowercase 
Greek Greek 
letter letter I 

'Y 

'" n tIJ 

English 
name 

psi 

omega 

Common English 
pronunciation2 

51 

oh-meh-guh4 

Alternate English 
pronunciation2 

psIorpsee3 

oh-may-guh4 or oh-mee-guh4 

1 Less commonly encountered are these variants: epsilon. 8; theta D; pi, w; rho. e; sigma. <;; phi,lP. 
2 In this table. accented syllables are underlined and the following pronunciation guide is used: a is as in jam; 
ah is as a in calm; au is as ou in loud; aw is as in paw; ay is as in bay; ee is as in meel; eh is as e in mel; I is as in 
idea: i is as in still; oh is as 0 in lone; 00 is as in 1001; Ih is as in Ihin; IIh is as u in lip. 
3 This pronunciation is similar to that of Greek speakers (Papanastasiou, 2(03). 
4 These pronunciations usually have the accent on the second syllable. but occasionally the accent is placed 
on the first syllable. 
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Statistical Tables and Graphs 

INTERPOLATION 

INTERPOLATION 

In some or the statisticaltaoles that follow (viz. Appt:llllix Taoks B .. '. B.4. B5. B.6. B.7. B.17). a critical value 
might oe required for degrees of freedom not shown in the lllble. or a prohahility not in the lable is needed ror a 
test statistic. In such instances. interpolation may he lI~ed to compute an estimate of tht: required critical value 
or prohability. 

Lin~lIr Int~rpoilltion. Let us say thaI we desire a critical value for " degrees of freedom. where a < I' < ,,: 
lelus call it c, .. We first determine the proportion p = (" - a)/(" - tI). Then. the required crilical value is 
determineu as c" ~ C" ... p( ClI - C,,). 

For example. consider fi),05( 2 ).1.21111' which lies between fiW5( 2 ).UtNI = 5.11) and fi1.05(2 ).UtMI '" 5.07 in 
AppendixTableR.4.Wecalcuhltc/' = (2(,0 - 2(KI)/(300 - 2IMI) = 1l.6(KI:thenourestimatt:isFu.05(2).1.2hU = 

c" = 5.07 + (0.600)( 5.10 5.(7) - 5,07 I 0.02 - 5.09. 
Similarly. we can u~e linear interpolation 10 estimate the prohaoility (Iet's call it 1') associ:lted with a test 

statistic (let's call it C). If. for example. we wish to know the probaoility of a chi-square at least a:. large as 
~ = 7.X45. for 7 degrees or freedom (I' = 7). Appendix T'lole B.I shows us that Plies oetwecn 0.25 and 0.50. 
According to the table. '\·~,050.7 = 6.34(' (let's call this a anu usc 1'" to designate the probability. 0.50. associatcu 

with a) and X~.025.7 = 9.037 (let's call this" and usc I'" to designate the associated prooability. 0.25). We 
proceed as follows: p = (C - tI)/ (" - tI) = (7.!w5 - 6.34(')/ (9.<m - 6.J46) = 1.4l)l)0/2.6l)10 = 0.557. and 
the estimated pmbahility is I' = /',. + p( I'll - 1',,) = 0.25 + (n,557 )(0.50 - 0,25) = 0.39. That is. linear 
interpolation yields X~,.11,.7 = 7.1'145. 

Linear interpolation cannot he used when I, = ','lV. but harmonic intt:rpolation ("dow) can he. 

Harmonic Interpolution. A more accurate interpolation procedure for critical-value detcrmination is onc 
that uses the reciprocals of degrees of freedom. (Because reciprocals of large numbers arc small numbers. 
it is good pntctice to usc I (KI times each reciprocal. and this i~ what will be demonstrated here.) Let us 
say we desire a critical value for I' de!!rees of freedom. where iI < II < II: call it C, .. We first delermine 
p = (toO/a - IIKI/,,)/( IOO/a - lOll/h). Then CO' = C,. + (I - ")(C,, C,,). 

For example. leI us consider the ahove example or desiring l·i)()5(2).1.2(~I' Wt: calculate" = (IOO/21l0 -
IIKI/261l)/ (IOn/2(MI - IIKlj3IKI) = 0.6lJ2: then the estimate is fiW5( 2 l.l.l6H = C,' = 5.07 + (I - n.6(2)( 5.1 0 -
5.1l7) ~ 5.1l7 + (l.lll = S.IlX. 

Similarly. we can usc harmonic interpolation to estimate the probllbility (let's call it 1') associated with a 
tcst statislic (let's call it CJ. If. for example. we wish to know the pro"ability of a chi-square at least as large 
as X2 = U;45. for 7 degrees or frccuom (II = 7). Table 13.1 shows us that P lies between 1l.25 and 0.50. This 
table tells us that Xij.50.7 = (,.346 (it:t's call this a and usc 1'" to designale the probability. 0.50. associated 

with iI) and X~,()2:;) - 9.037 (Iet's call this II and use P" to designate its probability. 0.25). We proceed as 
follows:" = (HMI/a - IIKI/C)/(IIMI/il - lOll/h) ~ (IIKI/('.J46 - HKlj7.R45)/(IIKJ/6.346 - I <Nl/9.1l37) 
( 15.75X11 - 12. 7471l)/ ( 15.75X11 - 11.0(56) = 0.M2. anu the estimated probahility is I' = 1'" + (I -,,)( 1'" -
1',,) = 0.25 + (I - 0.042 )(0.50 - 0.25) = (1.34. That is. harmonic interpolation yields X~ . .1-I.7 = 7.!W5. 

Ilarmonic interpolation is especially usdul when" = .x;. For example. to uetermine rH.UI (2 ).2XlN)' which lies 
"etween 'H.m(2l.IIMN) = 2.5XI and 'n.nl( t ).0" = 2.5751\ in Appendix Table 13.3. we calculate I' = (IIMI/ IIK)O -
IIK)/2ROO)/(IIKI/10(KI - IIKI/:'X!) = 0.IIM3/0.10(MI = 0.0430. Then. 'O.Ot(2).2H1K) = C.' = 2.575X + (I -
0.(430)( 2.5X I - 2.575X) = 2.5751\ + 0.111119 = 2.57K (Note Ihal IIIII/:x. = 0.) 
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Table B.1 was prepared using Equalion 26.4.6 of Zelen and Severo (1964). The chi-square values were 
calculated to six decimal places and then rounded to three decimal places. 

Examples: 
X~.05.J2 = 21.026 and -io.0.138 = 61.162 

For large degrees of freedom (v). critical values of r can be approximated very well by 

~v = V(I - 1.. + Zoe!) IT)3 
• 9v "9v 

(Wilson and Hilferty. 1931). It is for this purpose that the values of Zoe 1) are given below (from White. 1970). 

a: 0.999 0.995 0.99 0.975 0.95 0.90 0.75 

Zo(l): -3.09023 -2.57583 -2.32635 -1.95996 -1.64485 -1.28155 -0.67449 

a: 0.50 0.25 0.10 0.05 0.025 0.0\ 0.005 0.001 

Zo(J): 0.00000 0.67449 1.28155 1.64485 1.95996 2.32635 2.57583 3.09023 

The percent error. that is. (approximation - true value)/true value x 100%. resulting from the use of this 
approximation is as follows: 

v a: 0.999 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.2S 0.10 0.05 0.025 0.01 0.005 0.001 

30 -0.7 -0.3 -0.2 -0.1 0.0- 0.0· 0.0· 0.0· 0.0· 0.0· 0.0· 0.0· 0.0· 0.1 0.2 
100 -0.1 0.0" 0.0* 0.0* 0.0" 0.0" 0.0· 0.0- 0.0· 0.0" 0.0- 0.0· 0.0· 0.0· 0.0· 
140 0.0· 0.0· 0.0· 0.0- 0.0· 0.0· 0.0- 0.0· 0.0" 0.0· 0.0- 0.0· 0.0- 0.0- 0.0· 

where the asterisk indicates a percent error the absolute value or which is less than 0.05%. Zar (1978) and Lin 
(1988a) discuss this and other approximations for xl.v. 

For one degree of freedom. the X2 distribution is related to the normal distribution (Appendix Table B.2) 
and the 1 distribution (Appendix Table B.3) as· 

For example. -io.05.1 = 3.841. and (ZO.05(2»2 = (10.05(2).00)2 = (1.9600)2 = 3.8416. 

The relationship between rand F (Appendix Table B.4) is 

Forexample,ro.05.9 = 16.919, and (9)(Fo.05(1).9.oo) = (9)(1.88) = 16.92. 
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TABLE B.2: Proportions of the Normal Curve (One-Tailed) 
This table gives the proportion of the normal curve in the right-hand tail that lies at 
or beyond (i.e .• is at least as extreme as) a given normal deviate; for example. 
Z = I(Xj - p.)I/u or Z = I(X - p.)l/ux. For example. the proportion of a normal 
distribution for which Z .. 1.51 is 0.0655. 

z 0 I 2 3 4 5 6 7 8 9 

0.0 0.5000 0.4960 0.4920 0.4R80 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 03557 0.3520 03483 
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2&43 0.2810 0.2776 
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 
0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2207 0.2177 0.2148 
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.\056 0.1038 0.1020 0.1003 0.0985 
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.07011 0.0694 0.0681 

1.5 0.066R 0.0655 0.0643 0.0630 0.0618 O.(l606 0.0594 0.0582 0.0571 0.0559 
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.1)401 0.0392 0.0384 0.0375 0.0367 
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 
2.1 0.0\79 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 
2.2 0.0\39 0.0\36 0.0\32 0.0129 0.0125 0.0122 0.0119 0.0116 0.IH13 0.01 \0 
2.3 0.0107 0.0104 0.0\02 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 
2.4 0.0082 0.00110 0.0078 0.0075 0.0073 0.0071 0.(J069 0.0068 0.0066 0.0064 

2.5 0.0062 O.lJ060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 
2.6 O.0I)47 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 O.OO3l! 0.0037 0.()()36 
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0I120 0.0019 
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 O.(K)]O O.OI})O 
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 O.{)()()S 0.0008 0.0008 0.{)()()7 0.{)()()7 
3.2 0.{)()()7 0.0007 0.0006 0.(1006 0.0006 0.0006 0.0006 0.(){)()5 0.{)()()5 0.0005 
3.3 0.{)()()5 O.{)()()S 0.0005 0.()004 0.0004 0.00Il4 0.0004 0.0004 0.0004 0.{)()()3 
3.4 0.{)()()3 0.0003 0.{)()()3 0.0003 0.{)()()3 0.{)()()3 0.{)()()3 0.0003 0.0003 0.{)()()2 

3.5 0.0lI02 O.{)()()2 0.0002 0.0002 0.0002 0.0002 0.0002 0.0(1)2 0.0002 0.0002 
3.6 0.0002 O.{)()()2 0.0001 0.0001 0.0001 O.{)()()I 0.0001 0.0001 0.0001 0.0001 
3.7 0.0001 O.{)()()I 0.{)()()1 0.{)()()1 0.0001 C).{)()()I 0.0001 0.0001 O.{)()()I 0.0001 
3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 O.{)()()I 0.0001 

Z 

(l.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
J.l 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
23 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
33 
3.4 

3.5 
3.6 
3.7 
3.8 

Table B.2 was prepared using an algorithm of Hastings (1955: 187). Probabilities for values of Z in between 
those shown in this table may be obtained by either linear or harmonic interpolation. David (2005) presented a 
brief history of tables related to the normal distribution. 

Critical values of Z may be found in Appendix Table S.3 as Zu = la.oc· For example. ZO.05(2) = '0.05(2),00 = 

1.9600. These critical values are related to those of X2 and F as 

Za(2) = 'a(2).oo = ~Fa(I).1.oo = ~X!.J 

(first described by R. A. Fisher in 1924 and published in 1928; Lehmann. 1999). 
Many computer programs and calculators can generate these proportions. Also. there are many quick and 

easy approximations. For example. we can compute 
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where setting c = n.806z( I - O.OIRz) (Hamaker. 1975) yields P dependable to the third decimal place for z 
as small as about n.2. and using c = z/( 1.237 + 0.0249;:) (Lin. 1988b) achieves that accuracy for z as small 
as about 0.1. Hawkes's (1982) formulas are accurate to within I in the firth decimal place. though they require 
more computation. 

Table 8.3 was prepared using Equations 26.7.3 and 26.7.4 of Zelen and Severo (1964). except for the values 
at infinity degrees of rreedom. which arc adapted from White (1970). Except for the values at infinity degrees 
of freedom. 1 was calculated to eight decimal places and then rounded to three decimal places. 

Examples: 

IU.US(2).U = 2.160 and IO.Ol(I).I<J = 2.;39 

If a critical value is !1eeded for degrees of freedom not on this tahle. one may conservatively employ the 
next smaller 11 that is on the table. Or. the needed critical value. for 11 < 1000. may be calculated by linear 
interpolation. with an error of no more than (1.001. If a little more accuracy is desired. or if the needed 11 is 
> 1000. then harmonic interpolation should be used. 

Critical values of 1 for infinity degrees of freedom are related to critical values of Z and X2 as 

1,,(1).0(; = Z,,(t) and 1,,(2).00 = Z,,(2) = JX~.I· 

The accuracy of arithmetic and harmonic interpolation of 1 is within 0.IK)2 for I' at least as large as that shown 
below. 

a(2): 0.;0 0.20 (1.10 0.05 0.02 O.oJ 0.!Kl; 0.002 (!.OOI 
a(I): 0.2; 0.10 0.0; 0.025 O.O! O.OD5 0.!lO25 O.OIl! 0.000; 

Arithmetic 3 4 ; 6 7 7 9 9 J() 

Harmonic 2 3 4 4 ; 5 n 7 7 
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TABLE B.3: Critical Values of the t Distribution 

a(2):0.5O 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
v a(1): 0.25 0.10 0.05 0.025 O.oJ 0.005 0.0025 0.001 0.0005 

1 1.000 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619 
2 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599 
3 0.765 1.638 2.353 3.182 4.541 5.1141 7.453 10.215 12.924 
4 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 
5 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 

6 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 
7 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 
8 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 
9 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 

10 0.700 1.372 UIl2 2.228 2.764 3.169 3.581 4.144 4.587 

11 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 
12 0.695 1.356 1.782 2.179 2.MI 3.055 3.428 3.930 4.318 
13 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 
14 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 
15 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 
16 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.M6 4.015 
17 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 
18 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 
19 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 
20 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 

21 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 
22 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 
23 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.7M 
24 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 
25 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 

26 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 
27 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 
28 0.683 1.313 1.70l 2.()4l! 2.467 2.763 3.047 3.408 3.674 
29 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 
30 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 

31 0.682 1.309 1.696 2.040 2.453 2.744 3.022 3.375 3.633 
32 0.682 1.309 1.694 2.037 2.449 2.738 3.015 3.365 3.622 
33 0.682 1.308 1.692 2.035 2.445 2.733 3.008 3.356 3.611 
34 0.682 1.307 1.691 2.032 2.441 2.728 3.002 3.348 3.601 
35 0.682 1.306 1.690 2.030 2.438 2.724 2.996 3.340 3.591 

36 0.681 1.306 1.688 2.028 2.434 2.719 2.990 3.333 3.582 
37 0.681 1.305 I.M7 2.026 2.431 2.715 2.985 3.326 3.574 
38 0.681 1.304 1.686 2.024 2.429 2.712 2.980 3.319 3.566 
39 0.681 1.304 1.685 2.023 2.426 2.708 2.976 3.313 3.558 
40 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 

41 0.681 1.303 1.683 2.020 2.421 2.701 2.967 3.301 3.544 
42 0.680 1.302 1.682 2.018 2.418 2.698 2.963 3.296 3.538 
43 0.680 1.302 1.681 2.017 2.416 2.695 2.959 3.291 3.532 
44 0.680 1.301 1.680 2.015 2.414 2.692 2.956 3.286 3.526 
45 0.680 1.301 1.679 2.014 2.412 2.690 2.952 3.281 3.520 

46 0.680 1.300 1.679 2.013 2.4\0 2.687 2.949 3.277 3.515 
47 0.680 1.300 1.678 2.012 2.408 2.685 2.946 3.273 3.510 
48 0.680 1.299 1.677 2.011 2.407 2.682 2.943 3.269 3.505 
49 0.680 1.299 1.677 2.010 2.405 2.680 2.940 3.265 3.500 
50 0.679 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496 
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TABLE B.3 (cont.); Critical Values of the t Distribution 

a(2):050 0.20 0.10 0.05 0.02 om 0.005 0.002 0.001 
II a(I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

52 0.679 1.298 1.675 2.007 2.400 2.674 2.932 3.255 3.4M 
54 0.679 1.297 1.674 2.005 2.397 2.670 2.927 3.248 3.480 
56 0.679 1.297 1.673 2.003 2.395 2.667 2.923 3.242 3.473 
58 0.679 1.296 1.672 2.002 2.392 2.663 2.9111 3.237 3.466 
tiD 0.671) 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 

62 0.6711 1.21)5 1.670 1.991) 2.31!8 2.657 2.911 3.227 3.454 
64 0.6711 1.295 1.669 1.9911 2.3M 2.655 2.908 3.223 3.449 
66 0.6711 1.295 1.668 1.997 2.384 2.652 2.904 3.218 3.444 
61! 0.678 1.294 1.6611 1.995 2.382 2.650 2.902 3.214 3.439 
70 0.6711 1.294 1.667 1.994 2.381 2.648 2.1199 3.211 3.435 

72 0.67t1 1.293 1.666 1.993 2.379 2.646 2.896 3.207 3.431 
74 0.678 1.293 1.666 1.993 2.37t1 2.644 2.894 3.204 3.427 
76 0.678 1.293 1.665 1.992 2.376 2.642 2.891 3.20\ 3.423 
711 0.6711 1.292 1.665 1.991 2.375 2.640 2.889 3.198 3.420 
so 0.6711 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416 

112 0.677 1.292 1.664 1.989 2.373 2.637 2.1!1!5 3.193 3.413 
84 0.677 1.292 1.663 1.989 2.372 2.636 2.883 3.190 3.410 
116 0.677 1.291 1.663 1.988 2.370 2.634 2.881 3.188 3.407 
88 0.677 1.291 1.662 1.987 2.369 2.633 2.880 3.185 3.405 
90 0.677 1.291 1.662 1.987 2.368 2.632 2.tl78 3.183 3.402 

92 0.677 1.291 1.662 1.986 2.368 2.630 2.tl76 3.181 3.399 
94 0.677 1.291 1.661 1.9t16 2.367 2.629 2.875 3.179 3.397 
96 0.677 1.290 1.661 1.91!5 2.366 2.628 2.1173 3.177 3.395 
98 0.677 1.290 1.661 1.984 2.365 2.627 2.872 3.175 3.393 

100 0.677 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390 

105 0.677 1.290 1.659 1.983 2.362 2.62.. 2.t!68 3.170 3.3t16 
110 0.677 1.289 1.659 1.982 2.361 2.621 2.tI65 3.166 3.381 
115 0.677 1.289 1.658 1.981 2.359 2.619 2.1162 3.163 3.377 
120 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 
125 0.676 1.288 1.657 1.979 2.357 2.616 2.1158 3.157 3.370 

130 0.676 1.28I! 1.657 1.9711 2.355 2.614 2.1156 3.154 3.367 
135 0.676 1.2I!I! 1.656 1.9711 2.354 2.613 2.1154 3.152 3.364 
140 0.676 1.288 1.656 1.977 2.353 2.611 2.1152 3.149 3.361 
145 0.676 1.287 1.655 1.976 2.352 2.610 2.851 3.147 3.359 
ISO 0.676 1.287 1.655 1.976 2.351 2.609 2.849 3.145 3.357 

160 0.676 \,2117 1.654 1.975 2.350 2.607 2.846 3.142 3.352 
170 0.676 1.287 1.654 1.974 2.348 2.605 2.1144 3.139 3.349 
ISO 0.676 1.286 \.653 \.973 2.347 2.603 2.842 3.136 3.345 
190 0.676 1.286 1.653 \.973 2.346 2.602 2.840 3.134 3.342 
200 0.676 1.2t16 1.653 1.972 2.345 2.601 2.839 3.131 3.340 

2SO 0.675 1.285 \.651 1.969 2.341 2.596 2.832 3.123 3.330 
300 0.675 1.284 1.650 \.968 2.339 2.592 2.8211 3.1111 3.323 
350 0.675 1.284 1.649 1.967 2.337 2.590 2.825 3.114 3.319 
400 0.675 1.284 1.649 1.966 2.336 2.588 2.823 3.111 3.315 
450 0.675 \.283 1.648 1.965 2.335 2.587 2.821 3.108 3.312 

SOO 0.675 1.283 1.6411 1.965 2.334 2.586 2.820 3.107 3.310 
600 0.675 1.283 1.647 1.964 2.333 2584 2.1117 3.104 3.307 
700 0.675 1.283 1.647 \.963 2.332 2.583 2.1116 3.102 3.304 
800 0.675 1.283 1.647 1.963 2.331 2.582 2.815 3.100 3.303 
900 0.675 \.282 1.647 1.963 2.330 2.581 2.814 3.099 3.301 

1000 0.675 1.2112 1.646 1.962 2.330 2.581 2.813 3.098 3.300 
00 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8()70 3.0902 3.2905 
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TABLE B.4: Critical Values of the F Distribution 
III = Numerator OF = 1 

112 = a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.clO2 0.001 
Oenom.OF a(I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

I 5.83 39.9 161. 648. 4050. 16200. 64800. 405000. 1620000. 
2 2.57 8.53 18.5 38.5 98.5 199. 399. 999. 2000. 
3 2.02 5.54 10.1 17.4 34.1 55.6 89.6 167. 267. 
4 1.81 4.54 7.71 12.2 21.2 31.3 45.7 74.1 106. 
5 1.69 4.06 6.61 10.0 16.3 22.8 31.4 47.2 63.6 

6 1.62 3.78 5.99 8.81 13.7 18.6 24.8 35.5 46.1 
7 1.57 3.59 5.59 8.07 12.2 16.2 21.1 29.2 37.0 
8 1.54 3.46 5.32 7.57 11.3 14.7 18.8 25.4 31.6 
9 1.51 3.36 5.12 7.21 10.6 13.6 17.2 22.9 28.0 

10 1.49 3.29 4.96 6.94 10.0 12.8 16.0 21.0 25.5 

11 1.47 3.23 4.84 6.72 9.65 12.2 15.2 19.7 23.7 
12 1.46 3.18 4.75 6.55 9.33 11.8 14.5 18.6 22.2 
13 1.45 3.14 4.67 6.41 9.07 11.4 13.9 17.8 21.1 
14 1.44 3.10 4.60 6.30 8.86 11.1 13.5 17.1 20.2 
15 1.43 3.07 4.54 6.20 8.68 10.8 13.1 16.6 19.5 

16 1.42 3.05 4.49 6.12 8.53 10.6 12.8 16.1 18.9 
17 1.42 3.03 4.45 6.04 8.40 10.4 12.6 15.7 18.4 
18 1.41 3.01 4.41 5.98 8.29 10.2 12.3 15.4 17.9 
19 1.41 2.99 4.38 5.92 8.18 10.1 12.1 15.1 17.5 
20 1.40 2.97 4.35 5.87 8.10 9.94 11.9 14.8 17.2 

21 1.40 2.96 4.32 5.83 8.02 9.83 11.8 14.6 16.9 
22 1.40 2.95 4.30 5.79 7.95 9.73 11.6 14.4 16.6 
23 1.39 2.94 4.28 5.75 7.88 9.63 11.5 14.2 16.4 
24 1.39 2.93 4.26 5.72 7.82 9.55 11.4 14.0 16.2 
25 1.39 2.92 4.24 5.69 7.77 9.48 11.3 13.9 16.0 

26 1.38 2.91 4.23 5.66 7.72 9.41 11.2 13.7 15.8 
27 1.38 2.90 4.21 5.63 7.68 9.34 11.1 13.6 15.6 
28 1.38 2.89 4.20 5.61 7.64 9.28 11.0 13.5 15.5 
29 1.38 2.89 4.18 5.59 7.60 9.23 11.0 13.4 15.3 
30 1.38 2.!!!! 4.17 5.57 7.56 9.18 10.9 13.3 15.2 

35 1.37 2.85 4.12 5.48 7.42 8.98 10.6 12.9 14.7 
40 1.36 2.84 4.08 5.42 7.31 8.83 10.4 12.6 14.4 
45 1.36 2.82 4.06 5.38 7.23 8.71 10.3 12.4 14.1 
50 1.35 2.81 4.03 5.34 7.17 8.63 10.1 12.2 13.9 
60 1.35 2.79 4.00 5.29 7.08 8.49 9.96 12.0 13.5 

70 1.35 2.78 3.98 5.25 7.01 8.40 9.84 H.8 13.3 
80 1.34 2.77 3.96 5.22 6.96 8.33 9.75 11.7 13.2 
90 1.34 2.76 3.95 5.20 6.93 8.28 9.68 11.6 13.0 

100 1.34 2.76 3.94 5.18 6.90 8.24 9.62 11.5 12.9 
120 1.34 2.75 3.92 5.15 6.85 8.18 9.54 11.4 12.8 

140 1.33 2.74 3.91 5.13 6.82 8.14 9.48 11.3 12.7 
160 1.33 2.74 3.90 5.12 6.80 8.10 9.44 11.2 12.6 
ISO 1.33 2.73 3.89 5.11 6.78 8.08 9.40 11.2 12.6 
200 1.33 2.73 3.89 5.10 6.76 8.06 9.38 11.2 12.5 
300 1.33 2.72 3.87 5.07 6.72 8.00 9.30 11.0 12.4 

500 1.33 2.72 3.86 5.05 6.69 7.95 9.23 11.0 12.3 
00 1.32 2.71 3.84 5.02 6.64 7.88 9.14 10.8 12.1 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
II. = Numerator DF '" 2 

·'2 ~ a(2): 0.511 0.20 0.10 0.05 (W2 (UII 0.005 (1.002 0.001 
Denom. DF a(I): 0.25 ().J U 11.115 11.1125 n.1I1 0.(lO5 0.0025 0.001 0.0005 

I 7.5U 49.5 200. 1«)0. 5(X)(). 21XXIO. 80000. 500000. 2(KlOOOO. 
2 3.()() 9JlO 19.11 39.11 99.0 199. 399. m. 2000. 
3 2.28 5.46 9.55 16.0 30.8 49.8 79.9 149. 237. 
4 2.00 4.32 6.94 10.6 18.11 26.3 38.0 61.2 87.4 
5 1.85 3.78 5.79 8.43 133 18.3 25.0 37.1 49.8 

6 1.76 3.46 5.14 7.26 111.9 14.5 19.1 27.0 34.8 
7 1.711 3.26 4.74 654 9.55 12.4 15.9 21.7 27.2 
8 1.66 3.11 4.46 6.116 8.65 11.11 13.9 IS.5 22.7 
9 1.62 3.U1 4.26 5.71 IUl2 IIJ.1 12.5 16.4 19.9 

10 1.60 2.92 4. III 5.46 7.56 9.43 11.6 14.9 17.9 

11 1.511 2.116 3.98 5.26 7.21 8.91 10.8 13.S 16.4 
12 1.56 2.111 3.119 5.lO 6.93 11.51 10.3 13.0 15.3 
13 1.55 2.76 3.111 4.97 6.70 11.19 9.84 12.3 14.4 
14 1.5.1 2.73 3.74 4.86 6.51 7.92 9.47 11.8 13.7 
15 1.52 2.711 3.611 4.77 6.J6 7.7n 9.17 11.3 13.2 

16 151 2.67 3.63 4.69 6.23 7.51 R.92 11.0 12.7 
17 1.51 2.64 3.59 4.62 6.11 7.35 8.70 10.7 12.3 
18 1.50 2.62 3.55 456 6.01 7.21 11.51 10.4 11.9 
19 1.49 2.61 3.52 4.51 5.93 7.09 8.35 10.2 11.6 
20 1.49 259 3.49 4.46 5.85 6.99 8.21 9.95 11.4 

21 1.411 257 3.47 4.42 5.711 6.119 R.OR 9.77 11.2 
22 1.411 2.56 3.44 4.38 5.72 6.81 7.96 9.61 11.0 
23 1.47 2.55 3.42 4.35 5.66 6.73 7.86 9.47 10.8 
24 1.47 2.54 3.411 4.32 5.61 6.66 7.77 9.34 10.6 
25 1.47 2.53 3.39 4.29 5.57 6.60 7.69 9.22 111.5 

26 1.46 2.52 3.37 4.27 5.53 6.54 7.61 9.12 10.3 
27 1.46 2.51 3.35 4.24 5.49 6.49 7.54 9.02 10.2 
28 1.46 2.5(J 3.34 4.22 5.45 6.44 7.48 8.93 1Il.l 
29 1.45 2.511 3.33 4.211 5.42 MO 7.42 11.85 9.99 
30 1.45 2.49 3.32 4.111 5.39 6.35 7.36 8.77 9.90 

35 1.44 2.46 3.27 4.11 5.27 6.19 7.14 8.47 9.52 
40 1.44 2.44 3.23 4.115 5.111 6.117 6.99 8.25 9.25 
45 1.43 2.42 3.20 4.01 5.11 5.97 6.86 11.119 9.04 
50 1.43 2.41 3.18 3.97 5.116 5.911 6.77 7.96 8.811 
60 1.42 2.39 3.15 3.93 4.911 5.79 6.63 7.77 R,65 

7() 1.41 2.38 3.13 3.89 4.92 5.72 6.53 7.64 8.49 
1«) 1.41 2.37 3.11 3.86 4.88 5.67 6.46 7.54 8.37 
90 1.41 2.36 3.HI 3.114 4.115 5.62 6.41 7.47 8.28 

100 1.41 2.36 3.09 3.83 4.S2 5.59 6.37 7.41 8.21 
120 1.40 2.35 3.07 3.81) 4.79 5.54 6.30 7.32 S.IO 

140 1.40 2.34 3J16 3.79 4.76 5.50 6.26 7.26 Ito3 
161) 1.40 2.34 3.05 3.711 4.74 5.411 6.22 7.21 7.97 
180 1.40 2.33 3.05 3.77 4.73 5.46 6.20 7.111 7.93 
200 1.40 2.33 3.04 3.76 4.71 5.44 6.17 7.15 7.90 
300 1.39 2.32 3.m 3.73 4.ffl 5.39 6.11 7.07 7./10 

S()() 1.39 2.31 3.0\ 3.72 4.65 5.35 6.06 7.00 7.72 
00 1.39 2.30 3.(X) 3.69 4.61 5.30 5.99 6.91 7.60 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
"1 = Numerator OF = 3 

"2 = a(2): 0.50 0.20 0.10 (1.115 1).112 1).oJ 0.0Il5 0.(102 0.001 
Oenom. OF a(I): 0.25 0.10 0.05 0.1125 (1.I11 0.0115 O.O()25 II.(XII 0.0005 

I 11.20 53.£1 21£1. 1164. 54CX). 2161X). ~500. 54CXXX). 21/\0000. 
2 3.15 9.16 19.2 39.2 99.2 199. 399. m. 201lO. 
3 2.36 5.39 9.2X 15.4 29.5 47.5 7£1.1 141. 225. 
4 2.05 4.19 £1.59 9.9X 16.7 24.3 35.0 56.2 110.1 
5 I.AA 3.£12 5.41 7.76 12.1 1£1.5 22.4 33.2 44.4 

6 1.78 3.29 4.76 £1.611 9.7X 12.9 16.9 2.:'0.7 30.5 
7 1.72 3.07 4.35 5.X9 X.45 111.9 13.X Il!.X 13.5 
II 1.67 2.92 4.07 5.42 7.59 9.£10 12.0 15.X 19.4 
9 1.63 2.KI 3.M 5.~ 6.99 l!.72 1lI.7 13.9 16.8 

HI 1.60 2.73 3.71 4.113 6.55 X.l1H 9.X3 12.£1 15.0 

II 158 2.66 3.59 4.63 £1.22 7.li() 9.17 11.6 13.7 
12 1.56 2.61 3.49 4.47 5.95 7.23 l!.65 HI.K 12.7 
13 1.55 2.56 3.41 4.35 5.74 6.93 11.24 1Il.2 11.9 
14 1.53 2.52 3.34 4.24 5.56 6.6K 7.91 9.73 11.3 
15 1.52 2.49 3.29 4.15 5.42 6.4H 7.63 9.34 10.11 

16 1.51 2.46 3.24 4.(1H 5.29 6.30 7.411 9.111 10.3 
17 1.50 2.44 3.20 4.U1 5.19 6.16 7.21 K.73 9.99 
18 1.49 2.42 3.16 3.95 5.119 6.03 7.114 l!.49 9.69 
19 1.49 2.40 3.13 3.90 5.111 5.92 6.X9 l!.2K 9.42 
20 1.48 2.3H 3.10 3.X6 4.94 5.112 6.76 11.10 9.20 

21 1.48 2.36 3.07 3.H2 4.H7 5.73 6.64 7.94 8.99 
22 1.47 2.35 3.05 3.78 4.112 5.65 6.54 7ol!() 8.82 
23 1.47 2.34 3.03 3.75 4.76 5.58 6.45 7.£17 8.66 
24 1.46 2.33 3.01 3.72 4.72 5.52 6.36 7.55 1!.51 
25 1.46 2.32 2.99 3.£19 4.611 5.46 6.29 7.45 1!.39 

26 1.45 2.31 2.911 3."7 4.64 5.41 6.22 7.3£1 1!.27 
27 1.45 2.30 2.% 3.65 4.611 5.36 6.16 7.27 11.16 
28 1.45 2.29 2.95 3.63 4.57 :'-32 6.10 7.1t) 8.07 
29 1.45 2.2K 2.93 3.61 4.54 5.2K 6.05 7.12 7.911 
30 1.44 2.211 2H2 3.59 4.51 5.24 6.nn 7.05 7.89 

35 1.43 2.25 2.K7 3.52 4.411 5.()9 5.110 ".79 7.56 
40 1.42 2.23 2.114 3.46 4.31 4.\)/1 5.66 6.59 7.33 
45 1.42 2.21 2.81 .l42 4.25 4.K9 555 ".45 7.15 
50 1.41 2.20 2.79 3.39 4.20 4.K3 5.47 ".34 7.01 
60 1.41 2.111 2.76 3.34 4.13 4.73 5.34 6.17 6.111 

70 1.40 2.16 2.74 3.31 4.07 4.66 5.2£1 6.1)(, 6.67 
HO 1.40 2.15 2.72 3.211 4.114 4.61 5.19 5.97 £1.57 
90 1.39 2.15 2.71 3.26 4.1lI 4.57 5.14 5.91 £1.49 

100 1.39 2.14 2.70 3.25 3.98 4.54 5.11 5.AA 6.43 
120 1.39 2.13 2.611 3.23 3.95 4.50 5.05 5.7K 6.34 

140 I.3K 2.12 2.67 3.21 3.92 4.47 5.111 5.73 6.28 
160 1.38 2.12 2.66 3.20 3.91 4.44 4.98 5.69 6.23 
1110 1.38 2.11 2.65 3.19 3.K9 4.42 4.95 5.66 6.19 
200 1.3& 2.11 2.£15 3.IH 3.HH 4.41 4.94 5.63 £1.1£1 
300 1.38 2.10 2.63 3.16 3.K5 4.36 4.AA 5.56 6.08 

500 1.37 2.09 2.62 3.14 3.112 4.33 4.114 5.51 6.01 
oc 1.37 2.08 2.61 3.12 3.7K 4.211 4.77 5.42 5.91 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
PI = Numerator OF = 4 

112 = a(2): 050 0.211 11.10 (1.115 lI.m (1.(11 0.005 0.002 0.001 
Jenom. OF a( I): (1.25 0.10 (1.115 11.1125 (UII O.!XI5 0.0025 0.001 O.lJOO5 

I 1t5!! 55.!! 225. 000. 56211. 225110. IKJOOO. 562000. 2250000. 
2 3.23 9.24 19.2 39.2 99.2 199. 399. 999. 2000. 
3 2.31) 5.34 1).12 15.1 2lt7 46.2 73.1) 137. 218. 
4 2.116 4.11 6.31) 9.61' 16.11 23.2 33.3 53.4 76.1 
5 LXI) 352 5.11) 7.39 11.4 15.6 21.11 31.1 41.5 

6 1.71) 3.18 4.53 6.23 9.15 12.0 15.7 21.9 28.1 
7 1.72 2.% 4.12 5.52 7.85 10.1 12.7 17.2 21.4 
8 1.66 2.81 3.1W 5.05 7.1l1 X.XI 1Il.9 14.4 17.6 
9 1.63 2.69 3.63 4.72 6.42 7.% 9.74 12.6 15.1 

10 1.59 2.61 3.4X 4.47 5.99 7.34 11.89 11.3 13.4 

II 157 2.54 3.36 4.28 5.67 6.XX R25 10.3 12.2 
12 155 2.48 3.26 4.12 5.41 652 7.76 9.63 11.2 
13 1.53 2.43 3.HI 4.00 5.21 6.23 7.37 9.07 10.5 
14 152 239 3.11 3.89 5.04 6.IM) 7.116 X.62 9.95 
15 1.51 2.36 3.116 3.1lI1 4.X9 5.81) 6.tIO 1.1.25 9.4X 

16 U() 2.33 3.01 3.73 4.77 5.64 6.58 7.94 9.08 
17 1.49 2.31 2.96 3.66 4.67 5.50 6.39 7.68 X.75 
18 1.4X 2.29 2.93 3.61 4.58 5.37 6.23 7.46 8.47 
19 1.47 2.27 2.90 3.56 4.511 5.27 6.1)9 7.27 R23 
2() 1.47 2.25 2.X7 351 4.43 5.17 5.97 7.10 R02 

21 1.46 2.23 2.1W 3.4X 4.37 5.119 5.86 6.95 7.83 
22 1.45 2.22 2.82 3.44 4.31 5.02 5.76 6.XI 7.67 
23 1.45 2.21 2.80 3.41 4.26 4.95 5.67 6.70 752 
24 1.44 2.19 2.7X 3.38 4.22 4.m 5.60 6.59 7.39 
25 1.44 2.1X 2.76 3.35 4.1X 4.1W 5.53 6.49 7.27 

26 1.44 2.17 2.74 3.33 4.14 4.79 5.46 6.41 7.16 
27 1.43 2.17 2.73 3.31 4.11 4.74 5.40 6.33 7.06 
28 1.43 2.16 2.71 3.29 4.07 4.711 5.35 6.25 6.97 
29 1.43 2.15 2.70 3.27 4.04 4.66 5.30 6.19 6.89 
30 1.42 2.14 2.69 3.25 4.112 4.62 5.25 6.12 6.82 

35 1.41 2.11 2.64 3.1X 3.91 4.4X 5.07 5.XX 6.51 
40 1.40 2.09 2.61 3.13 3.83 4.37 4.93 5.70 6.30 
45 1.40 2.07 2.5X 3.1)9 3.77 4.29 4.1\3 5.56 6.13 

511 1.31) 2.116 2.56 3.05 3.72 4.23 4.75 5.46 6.01 
60 1.3/\ 2.(14 2.53 3.111 .165 4.14 4.64 5.31 5.112 

711 1.38 2.(13 2.51' 2.1)7 3.61' 4.08 456 5.20 5.70 
Ill) 1.311 2.02 2.49 2.CJ5 3.56 4.03 4.50 5.12 5.60 
90 1.37 2.01 2.47 2.93 3.53 3.99 4.45 5.116 5.53 
100 1.37 2.00 2.46 2.92 3.51 3.% 4.42 5.02 5.4X 
120 1.37 1.99 2.45 2.119 .l4X 3.92 4.36 4.95 5.39 

140 1.36 1.99 2.44 2.118 3.46 3.XI) 4.32 4.90 5.33 
160 1.36 1.9S 2.43 2.X7 3.44 3.X7 4.30 4.86 5.29 
1110 1.36 1.9X 2.42 2.86 3.43 3.85 4.27 4.83 5.26 
200 1.36 1.97 2.42 2.X5 3.41 3.1W 4.26 4.81 5.23 
300 1.35 1.% 2.40 2.X3 3.38 3.M 4.21 4.75 5.15 

500 1.35 1.96 239 2.l11 3.36 3.76 4.17 4.69 5.09 
00 \.35 1.1)4 2.37 2.79 3.32 3.72 4.11 4.62 5.1M. 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
"I = Numerator DF = 5 

V2 = a(2): 0.50 0.20 (1.1 II 11.05 0.112 0.111 0.005 0.002 0.001 
Denom.DF a(I): 0.2..'i 0.111 11.05 1I.1l25 (1.111 0.1105 0.0025 O.llll 0.0005 

1 KH2 57.2 231l. 922. 57C\O. 231110. 92200. 576000. 2310000. 
2 3.211 9.29 19.3 39.3 99.3 199. 39<). 999. 2000. 
3 2.41 5.31 9.111 14.9 28.2 45.4 72.6 135. 214. 
4 2.117 4.05 6.26 9.36 15.5 22.5 32.3 51.7 73.6 
5 1.89 3.45 5.115 7.15 11.11 14.9 211.2 29.8 39.7 

6 1.79 3.11 4.39 5.99 K75 11.5 14.9 20.H 26.6 
7 1.71 2.M 3.97 5.29 7.46 9.52 12.11 16.2 20.2 
H 1.66 2.73 3.69 4.H2 6.63 lun 111.3 13.5 16.4 
9 1.62 2.61 3.4H 4.4H to.l16 7.47 9.12 11.7 14.1 

10 1.59 2.52 3.33 4.24 5.64 6.H7 8.29 10.5 12.4 

11 1.56 2.45 3.211 4.114 5.32 6.42 7.67 9.5H 11.2 
12 1.54 2.39 3.11 3.H9 5.(16 6.117 7.211 8.H9 10.4 
13 1.52 2.35 3.113 3.77 4.86 5.79 6.H2 R.35 9.66 
14 1.51 2.31 2.96 3.66 4.69 5.56 6.51 7.92 9.11 
15 1.49 2.27 2.90 3.5H 4.56 5.37 6.26 7.57 8.66 

16 1.4H 2.24 2.H5 3511 4.44 5.21 6.05 7.27 11.29 
17 1.47 2.22 2.81 3.44 4.34 5.117 5.117 7.(J2 7.98 
18 1.46 2.20 2.77 3.3H 4.25 4.96 5.72 6.81 7.71 
19 1.46 2.18 2.74 3.33 4.17 4.X5 5.58 6.62 7.48 
20 1.45 2.16 2.71 .HI) 4.111 4.76 5.46 6.46 7.27 

21 1.44 2.14 2.6l! 3.25 4.c14 4.6l! 5.36 6.32 7.10 
22 1.44 2.13 2.66 3.22 3.99 4.61 5.26 6.19 6.94 
2..'l 1.43 2.11 2.64 3.18 3.94 4.54 5.IX 6.OR 6.80 
24 1.43 2.10 2.62 :U5 3.9() 4.49 5.11 5.98 6.68 
25 1.42 2.()I) 2.60 3.13 U5 4.43 5.114 5.X9 6.56 

26 1.42 2.08 2.59 3.111 3.82 4.38 4.98 5.80 6.46 
27 1.42 2.117 2.57 3.118 3.78 4.34 4.92 5.73 6.37 
28 1.41 2.06 2.56 3.116 3.75 4.30 4.H7 5.66 6.28 
29 1.41 2.1l6 2.55 3.1l4 3.73 4.26 4.82 5.59 6.21 
30 1.41 2.05 253 3.()3 3.70 4.23 4.7H 5.53 6.13 

35 1.40 2.02 2.49 2.96 3.59 4.09 4.60 5.3() 5.115 
40 1.39 2.1Xl 2.45 2.911 3.51 3.99 4.47 5.13 5.64 
45 1.38 1.98 2.42 2.86 3.45 3.1)1 4.37 5.00 5.49 
50 1.37 1.97 2.40 2.X3 3.41 3.85 4.30 4.90 5.37 
60 1.37 1.95 2.37 2.79 3.34 3.76 4.19 4.76 5.20 

70 1.36 1.93 2.35 2.75 3.29 3.70 4.11 4.66 5.OR 
HO 1.36 1.92 2.33 2.73 3.26 3.65 4.()5 4.58 4.99 
90 1.35 1.91 2.32 2.71 3.2..'l 3.62 4.111 4.53 4.92 

100 1.35 1.91 2.31 2.70 3.21 3.59 3.97 4.4H 4.117 
120 1.35 1.90 2.29 2.67 3.17 3.55 3.92 4.42 4.79 

140 1.34 1.119 2.2H 2.66 3.15 3.52 3.H9 4.37 4.74 
Hill 1.34 1.1\8 2.27 2.65 3.13 3.511 3.86 4.33 4.69 
1110 1.34 I.M 2.26 2.64 3.12 3.4H 3.1\4 4.31 4.66 
200 1.34 1.1\8 2.26 2.63 3.11 3.47 3.X2 4.29 4.64 
300 1.33 1.87 2.24 2.61 3.lll! 3.43 3.77 4.22 4.56 

500 1.33 1.86 2.2..'l 2.59 3.05 3.40 3.73 4.IX 4.51 
oc 1.33 1.85 2.21 2.57 3.()2 3.35 3.6l! 4.10 4.42 
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TA8LE 8.4 (cont.): Critical Values of the F Distribution 
'" = Numerator DF = 6 

"2 = 0(2): O.SO 0.20 0.10 11.05 0.02 O.oJ 0.005 0.002 0.001 
Denom. DF a( I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

I 8.98 58.2 234. 937. 5860. 23400. ~moo. 586000. 2340000. 
2 3.31 9.33 19.3 393 99.3 199. 399. 999. 2000. 
3 2.42 5.28 !!.94 14.7 27.9 44.8 71.7 133. 211. 
4 2.08 4.01 6.16 9.20 15.2 22.0 31.5 SO.5 71.9 
5 1.89 3.40 4.95 6.98 10.7 14.5 19.6 28.8 38.5 

6 1.711 3.115 4.211 5.112 H.47 11.1 14.4 20.0 25.6 
7 1.71 2.83 3.87 5.12 7.19 9.16 11.5 15.5 193 
II 1.65 2.67 3.58 4.65 6.37 7.95 9.l!3 12.9 15.7 
9 1.61 2.55 337 4.32 5.80 7.13 !!.6l! 11.1 13.3 

10 1.58 2.46 3.22 4.117 5.39 6.54 7.117 9.93 11.7 

11 1.55 2.39 3.09 3.88 5.07 6.10 7.27 9.05 10.6 
12 1.53 2.33 3.00 3.73 4.82 5.76 6.1«> IU8 9.74 
13 1.51 2.28 2.92 3.60 4.62 5.48 6.44 7.86 9.07 
14 1.50 2.24 2.85 3.50 4.46 5.26 6.14 7.44 8.53 
15 1.48 2.21 2.79 3.41 4.32 5.07 5.89 7.rn RIO 

16 1.47 2.18 2.74 3.34 4.20 4.91 5.611 6.1«) 7.74 
17 1.46 2.15 2.70 3.211 4.10 4.711 5.51 6.56 7.43 
18 1.45 2.13 2.66 3.22 4.111 4.66 5.36 6.35 7.18 
19 1.44 2.11 2.63 3.17 3.94 4.56 5.23 6.18 6.95 
20 1.44 2.09 2.60 3.13 3.87 4.47 5.11 6.tl2 6.76 

21 1.43 2.118 2.57 3.09 3.111 4.39 5.01 5.88 6.59 
22 1.42 2.06 2.55 3.05 3.76 4.32 4.92 5.76 6.44 
23 1.42 2.05 2.53 3.112 3.71 4.26 4.84 5.65 63() 
24 1.41 2.114 2.51 2.99 3.67 4.211 4.76 5.55 6.18 
25 1.41 2.()2 2.49 2.97 3.63 4.15 4.70 5.46 6.07 

26 1.41 2.m 2.47 2.94 3.59 4.10 4.64 5.3l! 5.9S 
27 1.40 2.00 2.46 2.92 3.56 4.116 4.511 531 5.119 
28 1.40 2.00 2.45 2.90 3.53 4.112 4.53 5.24 5.80 
29 1.411 1.99 2.43 2.88 3.SO 3.98 4.48 5.18 5.73 
30 1.39 1.98 2.42 2.87 3.47 3.95 4.44 5.12 5.66 

35 1.38 1.95 2.37 2.110 337 3.111 4.27 4.119 5.39 
40 1.37 1.93 2.34 2.74 3.29 3.71 4.14 4.73 5.19 
45 1.36 1.91 2.31 2.70 3.23 3.64 4.IJ5 4.61 5.04 
50 1.36 1.90 2.29 2.67 3.19 3.58 3.98 4.51 4.93 
60 1.35 1.87 2.25 2.63 3.12 3.49 3.87 437 4.76 

7() 1.34 1.86 2.23 2.S9 3.07 3.43 3.79 4.28 4.64 
80 1.34 1.85 2.21 2.57 3.04 3.39 3.74 4.20 4.56 
90 1.33 1.84 2.20 2.55 3.111 :U5 3.70 4.15 4.50 

\I)() 1.33 1.83 2.19 2.54 2.99 3.33 3.66 4.11 4.45 
120 1.33 1.82 2.18 2.52 2.% 3.28 3.61 4.04 437 

140 1.32 1.82 2.16 2.50 2.93 3.26 3.58 4.()() 4.32 
160 1.32 1.81 2.16 2.49 2.92 3.24 3.55 3.97 4.28 
180 1.32 1.81 2.15 2.48 2.90 3.22 3.53 3.94 4.2.'i 
200 1.32 1.80 2.14 2.47 2.89 3.21 3.52 3.92 4.22 
30tl 1.32 1.79 2.13 2.45 2.86 3.17 3.47 3.8ti 4.15 

500 1.31 1.79 2.12 2.43 2.84 3.14 3.43 3.111 4.\0 
00 1.31 1.77 2.10 2.41 2.BI) 3.09 3.37 3.74 4.02 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
I'J = Numeralor OF = 7 

V2 = 0(2): 0.50 0.20 0.\0 0.05 0.02 lUll 0.005 0.002 tl.OOI 
Oenom. DF a( I): 0.25 0.\0 0.05 0.025 0.01 0.005 (UXI25 0.001 0.0005 

I 9.10 511.9 237. 948. 5930. 23700. 94900. 593000. 2370000. 
2 3.34 9.35 19.4 39.4 99.4 199. 399. m. 2000. 
3 2.43 5.27 !!.1I9 14.6 27.7 44.4 71.0 132. 209. 
4 2.08 3.98 6.09 9.07 15.0 21.6 31.0 49.7 70.7 
5 1.119 3.37 4.118 6.115 10.5 14.2 19.1 28.2 37.6 

6 1.78 3.m 4.21 S.70 8.26 1Il.8 14.0 19.5 24.9 
7 1.70 2.78 3.79 4.99 6.99 1.!.l19 11.2 15.0 18.7 
8 1.64 2.62 3.S0 4.53 6.18 7.69 9.49 12.4 15.1 
9 1.60 2.51 3.29 4.20 5.61 6.M 8.36 10.7 12.8 

\0 1.57 2.41 3.14 3.95 5.20 6.30 7.56 9.52 11.2 

11 1.54 2.34 3.01 3.76 4.89 5.86 6.97 8.66 10.1 
12 1.52 2.28 2.91 3.61 4.64 5.52 6.51 8.011 9.28 
13 1.50 2.23 2.83 3.48 4.44 5.25 6.15 7.49 8.63 
14 1.49 2.19 2.76 3.38 4.28 5.03 5.86 7.08 !UI 
15 1.47 2.16 2.71 3.29 4.14 4.85 5.62 6.74 7.68 

16 1.46 2.13 2.66 3.22 4.03 4.69 5.41 6.46 7.33 
17 1.45 2.10 2.61 3.16 3.93 4.56 5.24 6.22 7.04 
18 1.44 2.118 2.58 3.10 3.84 4.44 5.()9 6.02 6.78 
19 1.43 2.116 2.54 3.05 3.77 4.34 4.96 5.85 6.57 
20 1.43 2.(14 2.51 3.01 3.70 4.26 4.85 5.69 6.38 

21 1.42 2.02 2.49 2.97 3.64 4.111 4.75 5.56 6.21 
22 1.41 2.m 2.46 2.93 3.59 4.11 4.66 5.44 6.07 
23 1.41 1.99 2.44 2.90 3.54 4.05 4.58 5.33 5.94 
24 1.40 1.911 2.42 2.87 3.50 3.99 4.51 5.23 5.82 
25 1.40 1.97 2.40 2.85 3.46 3.94 4.44 5.15 5.71 

26 1.J9 1.96 2.39 2.82 3.42 3.119 4.38 5.U7 5.62 
27 1.J9 1.95 2.37 2.80 3.39 3.85 4.33 5JK) 5.53 
28 1.39 1.94 2.36 2.711 3.36 3.111 4.211 4.93 5.45 
29 1.38 1.93 2.35 2.76 3.:n 3.77 4.24 4.117 5.38 
30 1.311 1.93 2.33 2.75 3.30 3.74 4.19 4.82 5.31 

35 1.37 1.90 2.29 2.6X 3.20 3.61 4.02 4.59 5.04 
40 1.36 1.87 2.25 2.62 3.12 3.51 3.90 4.44 4.85 
45 1.J5 UI5 2.22 2.58 3.117 3.43 3.111 4.32 4.71 
50 1.34 UW 2.20 2.55 3.02 3.311 3.74 4.22 4.60 
60 1.33 1.82 2.17 2.51 2.95 3.29 3.63 4.()9 4.44 

70 1.33 1.80 2.14 2.47 2.91 3.23 3.56 3.99 4.32 
110 1.32 1.79 2.13 2.45 2.117 3.19 3.50 3.92 4.24 
90 1.32 1.711 2.11 2.43 2.84 3.15 3.46 3.87 4.18 

100 1.32 1.711 2.10 2.42 2.112 3.13 3.43 3.83 4.13 
120 1.31 1.77 2.09 2.39 2.79 3.()9 3.38 3.77 4.06 

140 1.31 1.76 2.118 2.38 2.77 3.06 3.35 3.72 4.01 
161) 1.31 1.75 2.117 2.37 2.75 3.114 3.32 3.69 3.97 
180 1.31 1.75 2.06 2.36 2.74 3.02 3.30 3.67 3.94 
200 1.30 1.75 2.(16 2.35 2.73 3.m 3.29 3.65 3.92 
31M) 1.31) 1.14 2.(14 2.33 2.70 2.97 3.24 3.59 3.85 

500 1.30 1.73 2.03 2.31 2.68 2.94 3.20 3.54 3.80 
00 1.29 1.72 2.111 2.29 2.64 2.90 3.15 3.47 3.72 
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TABLE 8.4 (cont.): Critical Values of the F Distribution 
1 = Numerator DF = X 

1-'2 = 0'(2): 05() 0.20 11.10 0.05 0.02 11.01 11.005 0.002 0.001 
:nom. OF a(I): 0.25 0.10 0.1l5 0.1125 0.01 0.005 0.01125 (WO! 0.1XXJ5 

I 9.19 59.4 239. 957. 59XO. 239()(). 95700. 598000. 23'J(J()()(). 
2 3.35 9.37 19.4 39.4 99.4 199. 399. 99t). 20011. 
3 2.44 5.25 X.X5 14.5 275 44.1 70.5 131. 2OR. 
4 2.0X 3.95 6.114 K9X 14.X 21.4 30.6 49.() 69.7 
5 I.X9 3.34 4.R2 6.76 111.3 14.11 IKR 27.6 36.9 

6 1.7H 2.9H 4.IS 5.611 IUO 111.6 13.7 19.0 24.3 
7 1.711 2.75 3.73 4.90 6.H4 H.6H 111.9 14.6 18.2 
II 1.64 259 3.44 4.43 6.03 7.50 9.24 12.0 14.6 
9 I.IiII 2.47 3.23 4.111 5.47 6.(1) H.12 10.4 12.4 

III 156 2.3H 3.117 3.R5 5.06 6.12 7.33 9.20 10.9 

11 1.53 2.30 2.95 3.M 4.74 5.1llI 6.74 K35 9.76 
12 1.51 2.24 2.lIS 351 450 5.35 6.29 7.71 K94 
13 1.49 2.20 2.77 3.39 4030 5.OR 5.93 7.21 11.29 
14 1.4lI 2.15 2.70 3.29 4.14 4.X6 5.64 6.HO 7.78 
IS 1.46 2.12 2.64 3.21l 4.011 4.67 5.40 fl.47 7.37 

16 1.45 2.(19 2.59 3.12 3.H9 4.52 5.20 6.19 7.02 
17 1.44 2.1)6 255 3.06 3.79 4.39 5.03 5.96 6.73 
IX 1.43 2.(14 251 3.01 3.71 4.211 4.1\9 5.76 6.4lI 
19 1.42 2.02 2.4lI 2.% 3.63 4.IH 4.76 5.59 6.27 
20 1.42 2.IKI 2.45 2.91 356 4.119 4.65 5.44 6.09 

21 1.41 1.9X 2.42 2.X7 3.51 4.1l1 455 5.31 5.92 
22 1.40 1.97 2.40 2.X4 3.45 3.94 4.46 5.19 5.7R 
23 1.40 1.95 2.37 2.XI 3.41 3.811 4.311 5.119 5.65 
24 1.39 1.94 2.36 2.71\ 3.36 3.113 4.31 4.99 5.54 
25 1.39 1.93 2.34 2.75 3.32 3.711 4.25 4.91 5.43 

26 I.3R 1.92 2.32 2.73 3.29 3.73 4.19 4.R3 5.34 
27 1.3X 1.91 2.31 2.71 3.26 3.69 4.14 4.76 5.25 
2K 1.31\ 1.90 2.29 2.69 3.23 3.65 4.119 4.69 5.18 
29 1.37 LXI) 2.211 2J,7 3.21l 3.61 4.114 4.64 5.11 
3() 1.37 I.AA 2.27 2.65 3.17 3.S11 4.0() 4.5R 5.114 

35 136 1.l~5 2.22 25R 3.()7 3.45 3.X3 4.36 4.78 
40 1.35 I.X3 2.IK 2.53 2.99 3.35 3.71 4.21 4.59 
45 1.34 I.RI 2.15 2.49 2.94 3.28 3.62 4.U9 4.45 
50 1.33 I.XII 2.13 2.46 2.89 3.22 3.55 4.0() 4.34 
60 1.32 1.77 2.10 2.41 2.82 3.13 3.45 3.116 4.19 

70 1.32 1.76 2.07 2.3H 2.711 3.011 3.37 3.77 4.08 
RO 1.31 1.75 2.116 2.35 2.74 3.03 3.32 3.70 4.00 
90 1.31 1.74 2.114 2.34 2.72 3.IMI 3.28 3.65 3.94 

100 1.30 1.73 2.03 2.32 2.69 2.97 3.25 3.61 3.89 
120 1.30 1.72 2.(12 2.30 2.M 2.93 3.20 355 3.HZ 

140 1.3() 1.71 2.01 2.211 2.64 2.91 3.17 3.51 3.77 
160 1.29 1.71 2.110 2.27 2.62 2.811 3.14 3.4R 3.73 
180 1.29 1.7U 1.99 2.26 2.61 2.X7 3.12 3.45 3.70 
200 1.21) I.7Il 1.98 2.26 2.1iI1 2.lI6 3.11 3.43 3.68 
300 1.29 I.fl9 1.97 2.23 2.S7 2.X2 3.06 3.38 3.61 

500 1.28 I.IllI 1.96 2.22 255 2.79 3.03 3.33 3.56 
00 1.21\ 1.67 1.94 2.19 2.51 2.74 2.97 3.27 3.411 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
VI ~ Numerator OF = 9 

"1 :;;;; a(2): 0.50 0.20 0.10 0.05 0.02 o.m 0.005 0.002 0.001 
Dcnom.OF a( I): 0.25 0.10 0.05 0.025 o.m 0.005 0.11025 0.001 0.0005 

I 9.26 59.9 241. 963. 6020. 24100. 96400. 602000. 2410000. 
2 3.37 9.38 19.4 39.4 99.4 199. 399. m. 2000. 
3 2.44 5.24 IU~1 14.5 27.3 43.9 70.1 130. 207. 
4 2.08 3.94 6.00 8.90 14.7 21.1 30.3 48.5 69.0 
5 1.89 3.32 4.77 6.68 10.2 13.8 111.5 27.2 36.3 

6 1.77 2.96 4.10 5.52 7.98 1Il.4 13.4 111.7 23.9 
7 1.69 2.72 3.68 4.82 6.72 8.51 \Il.7 14.3 17.8 
R 1.63 2.56 ~.39 4.36 5.91 7.34 9.03 Il.ll 14.3 
9 1.59 2.44 3.\8 4.03 5.35 6.54 7.92 10.1 12.1 

10 1.56 2.35 3.02 3.78 4.94 5.97 7.14 1l.96 10.6 

II 1.53 2.27 2.90 3.59 4.63 5.54 6.56 R.12 9.48 
12 1.51 2.21 2.80 3.44 4.39 5.20 6.11 7.4!l 8.66 
\3 1.49 2.16 2.71 3.31 4.19 4.94 5.76 6.911 8.03 
14 1.47 2,\2 2.65 3.21 4.03 4.72 5.47 6.511 7.52 
15 1.46 2.09 2.59 3.12 3.119 4.54 5.23 6.26 7.11 

16 1.44 2.06 2.54 3.05 3.78 4.38 5.04 5.98 6.77 
17 1.43 2.03 2.49 2.98 3.68 4.25 4.87 5.75 6.49 
18 1.42 2.00 2.46 2.93 3.60 4.14 4.72 5.56 6.24 
19 1.41 J.911 2.42 2.118 3.52 4.04 4.60 5.39 6.03 
20 1.41 1.96 2.~9 2.84 3.46 3.96 4.49 5.24 5.85 

21 1.40 1.95 2.37 2.XO 3.40 3.88 4.39 5.11 5.69 
22 1.39 1.93 2.34 2.76 3.35 3.81 4.30 4.99 55S 
23 1.39 1.92 2.32 2.73 3.311 3.75 4.22 4.89 5.43 
24 1.38 1.91 2.30 2.711 3.26 3.69 4.15 4.80 5.31 
25 1.38 1.89 2.28 2.68 3.22 3.64 4.119 4.71 511 

26 1.37 1.88 2.27 2.65 3.\8 3.60 4.03 4.64 5.12 
27 1.37 1.87 2.25 2.63 3.15 3.56 3.98 4.57 5.04 
2l! \.37 un 2.24 2.61 3.12 2.52 3.93 4.50 4.96 
29 1.36 1.86 2.22 2.59 3.09 3048 3.X9 4.45 4.89 
30 1.36 1.85 2.21 2.57 3.07 3.45 3.85 4.39 4.82 

35 \.35 1.112 2.16 2.50 2.96 3.32 3.68 4.18 4.57 
40 1.34 1.79 2.12 2.45 2.X9 3.22 3.56 4.02 4.38 
45 1.33 1.77 2.111 2.41 2.X3 3.15 3.47 3.91 4.25 
SO 1.32 1.76 2.07 2.38 2.78 3.()I} 3.40 3.82 4.14 
60 1.31 1.74 2.04 2.33 2.72 3.01 3.30 3.69 3.98 

70 1.31 1.72 2.02 2.30 2.67 2.95 3.23 3.60 3.88 
XO 1.30 1.71 2.(10 2.W 2.64 2.91 3.17 3.53 3.80 
911 1.30 1.70 1.99 2.26 2.61 2.X7 3.\3 3.4!l 3.74 

100 1.29 1.69 1.97 2.24 2.59 2.85 3.10 3.44 3.69 
12() 1.29 1.68 1.% 2.22 2.56 2.X1 3.06 3.38 3.62 

140 1.29 1.68 1.95 2.21 2.54 2.78 3.02 3.34 3.57 
160 1.2R 1.67 1.94 2.19 2.52 2.76 3.00 3.31 3.54 
180 1.2l! 1.67 1.93 2.19 2.51 2.74 2.911 3.2X 3.51 
200 1.28 1.66 1.93 2.18 2.50 2.73 2.96 3.26 3.49 
300 1.27 1.65 1.91 2.16 2.47 2.69 2.92 3.21 3.42 

500 1.27 1.64 J.90 2.14 2.44 2.66 2.M 3.16 3.37 
00 1.27 1.63 1.88 2.11 2.41 2.62 2.83 3.10 3.30 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
VI = Numerator DF = III 

V2 = (1(2): 0.50 0.20 0.111 0.05 0.02 0.111 0.005 0.(lO2 0.(1111 
knom. DF a( I): 0.25 0.10 0.05 11.025 O.oJ 0.(lO5 0.0025 0.001 0.0005 

I 9.32 60.2 242. 969. 6060. 24200. 9ti9UO. 606000. 2420000. 
2 3.311 9.39 19.4 39.4 99.4 199. 399. m. 2000. 
3 2.44 5.23 8.79 14.4 27.2 43.7 69.11 129. 206. 
4 2.118 .3.92 S.% RI!4 145 21.0 30.0 48.1 68.3 
5 1.119 3.30 4.74 6.62 111.1 Uti 18.3 26.9 35.9 

6 1.77 2.94 4.06 5.46 7.117 10.3 13.2 IR.4 23.5 
7 1.69 2.70 3.64 4.76 ti.62 lOll 10.5 14.1 17.5 
R 1.63 2.54 3.35 4.3U 5.111 7.21 1\.1\7 11.5 14.0 
9 1.59 2.42 3.14 3.\16 5.26 6.42 7.77 9.119 11.1\ 

to 1.55 2.32 2.91\ 3.72 4.115 5.1\5 6.99 R.75 10.3 

II 1.52 2.25 2.1\5 3.53 4.54 5.42 6.41 7.92 9.24 
12 1.50 2.19 2.75 3.37 4.30 5.11') 5.97 7.29 !!.43 
13 1.48 2.14 2.67 3.25 4.10 4.82 5.62 6.110 7.RI 
14 1.46 2.10 2.60 3.15 3.94 4.60 5.33 6.40 7.31 
15 1.45 2.06 2.54 3.(l6 3.1\0 4.42 5.10 ti.Ol! 6.91 

16 1.44 2.03 2.49 2.99 3.69 4.27 4.90 5.81 6.57 
17 1.43 2.1lO 2.45 2.92 3.59 4.14 4.73 5.511 6.29 
III 1.42 1.91\ 2.41 2.117 3.51 4.03 4.59 5.39 6.05 
19 1.41 1.% 2.31\ 2.1\2 3.43 3.93 4.46 5.22 5.1!4 
20 1.40 1.94 235 2.77 3.37 3.1\5 4.35 5.118 5.M 

21 r.:W 1.92 2.32 2.73 3.31 3.77 4.26 4.95 5.50 
22 1.39 1.1}() 230 2.70 3.26 3.70 4.17 4.83 5.36 
2.' 1.3R I.X9 2.27 2.67 3.21 3.64 4.09 4.73 5.24 
24 1.3R I.I\Il 2.25 2.64 3.17 3.59 4.03 4.64 5.\3 
25 1.37 LIn 2.24 2.61 3.13 3.54 3.96 4.56 5.03 

26 1.37 1.X6 2.22 2.59 3.1)9 3.49 3.91 4.48 4.94 
27 1.36 1.115 2.20 2.57 3.(l6 3.45 3.1\5 4.41 4.86 
211 1.36 I.I!4 2.19 2.55 3.03 3.41 3.XI 4.35 4.78 
29 1.35 1.113 2.111 253 3.00 3.311 3.76 4.29 4.71 
30 1.35 1.1\2 2.16 2.51 2.911 3.34 3.72 4.24 4.65 

35 1.34 1.79 2.1 I 2.44 2.AA 3.21 3.56 4.03 4.39 
40 1.33 1.76 2.118 2.39 2.8(J 3.12 3.44 3.X7 4.21 
45 1.32 1.74 2.05 2.35 2.74 3.114 3.35 3.76 4.08 
50 1.31 1.73 2.03 2.32 2.7U 2.99 3.28 3.67 3.97 
60 1.30 1.71 1.99 2.27 2.63 2.1}() 3.lll 3.54 3.112 

70 1.30 J.t\9 1.97 2.24 2.59 2.115 3.11 3.45 3.71 
I!O 1.29 1.6I! 1.95 2.21 2.55 2.8(J 3.05 3.39 3.64 
I}() 1.29 1.67 1.94 2.19 2.52 2.77 3.01 3.34 3.58 

100 1.28 I.M 1.93 2.lll 2.50 2.74 2.98 3.30 3.53 
12fl 1.28 1.65 1.91 2.16 2.47 2.71 2.94 3.24 3.40 

140 1.28 1.64 1.1}() 2.14 2.45 2.611 2.90 3.20 3.42 
160 1.27 1.64 J.!19 2.13 2.43 2.M 2.88 3.17 3.3R 
ISO 1.27 1.6.1 I.AA 2.12 2.42 2.64 2.86 3.14 3.35 
200 1.27 1.63 I.AA 2.1 I 2.41 2.63 2.1!4 3.12 3.33 
300 1.26 1.62 1.X6 2.1)IJ 2.311 259 2.110 3.07 3.27 

suo 1.26 1'.61 I.&.'i 2.07 2.36 2.56 2.76 3.02 3.22 
00 1.25 1.60 I.X3 2.05 2.32 2.52 2.71 2.% 3.14 



690 Appendix B Statistical Tables and Graphs 

TABLE B.4 «(ont.): Critical Values of the F Distribution 
"I = Numerator OF = 11 

"2 ;::: a(2): 1150 0.20 (1.1 II (1Jl5 (1.02 (1.01 0.005 11.002 0.001 
Oenom. OF a( I): 0.25 0.10 (1.05 0.1125 0.111 0.0115 0.0025 0.001 0.0005 

1 937 60.5 243. 973. (11)1!(). 243(11). 9731)0. 60XIIlIO. 2430000. 
2 3.39 9.40 19.4 39.4 99.4 199. 399. 999. 2000. 
3 2.45 5.22 X.76 14.4 27.1 435 69.5 129. 205. 
4 2.08 3.91 5.94 11.79 145 20.$ 29.11 47.7 67.8 
5 1$9 3.2R 4.70 6.57 9.% B5 IS.1 26.6 35.5 

6 1.77 2.92 4.03 5.41 7.79 111.1 B.1 HI.2 23.2 
7 1.69 2.61! 3.(1) 4.71 6.54 11.27 W.4 D.9 17.2 
$ 1.63 252 3.31 4.24 5.13 7. HI 1t73 11.4 13.S 
9 1.5X 2.40 3.10 3.91 5.111 6.31 7.63 9.72 11.6 

HI 1.55 2.31) 2.94 3.66 4.77 5.75 6.M !!.59 tO.I 

11 1.52 2.23 2.112 3.47 4.46 5.32 6.29 7.76 9.05 
12 1.49 2.17 2.72 3.32 4.22 4.99 5.115 7.14 8.25 
13 1.47 2.12 2.63 3.20 4.02 4.72 550 6.65 7.63 
14 1.46 2.07 257 3.09 3.M 451 5.21 6.26 7.13 
15 1.44 2.04 251 3.01 3.73 4.33 4.98 5.94 6.73 

16 1.43 2.01 2.46 2.93 3.62 4.111 4.79 5.67 6.40 
17 1.42 1.911 2.41 2.117 3.52 4.05 4.62 5.44 6.12 
18 1.41 1.95 2.37 2.111 JA3 3.94 4.411 5.25 5.S9 
19 1.40 1.93 2.34 2.76 3.36 3.114 4.35 5.1lR 5.68 
20 1.39 1.91 2.31 2.72 3.29 3.76 4.24 4.94 5.50 

21 1.39 1.90 2.211 2.611 3.24 3.611 4.15 4.111 5.35 
22 1.311 I.!I!! 2.26 2.M 3.111 3.61 4.116 4.70 5.21 
23 1.37 un 2.24 2.62 3.14 3.55 3.W 4.60 5.09 
24 1.37 1.115 2.22 2.59 3.()9 3.50 3.92 451 4.98 
25 1.36 1.114 2.20 2.56 3.(16 3.45 3.115 4.42 4.88 

26 1.36 1.83 2.11! 2.54 3.02 3.40 3.81) 4.35 4.79 
27 1.35 1.112 2.17 2.51 2.99 3.36 3.75 4.2R 4.71 
211 1.35 1.111 2.15 2.49 2.% .3..32 3.70 4.22 4.63 
29 1.35 I.!!O 2.14 2.411 2.93 3.29 3.66 4.16 4.56 
311 1.34 1.79 2.13 2.46 2.91 3.25 .3.61 4.11 4.50 

35 1.33 1.76 2.117 2.39 2.XU 3.12 3.45 3.90 4.25 
40 1.32 1.74 2.1)4 2.33 2.13 3.03 3.33 3.75 4.07 
45 1.31 1.72 2.01 2.29 2.67 2.% 3.25 3.64 3.94 
50 1.30 1.70 1.99 2.26 2.63 2.90 3.IS 3.55 3.83 
60 1.29 1.611 1.95 2.22 256 2.S2 3.(1!! 3.42 3.68 

70 1.29 1.66 1.93 2.11! 251 2.76 3.IXJ 3.33 3.58 
!!O 1.2l! 1.65 1.91 2.16 2.411 2.72 2.95 3.27 3.50 
90 1.28 1.64 1.90 2.14 2.45 2.61\ 2.91 3.22 3.44 

1(10 1.27 1.64 1.89 2.12 2.43 2.66 2.!!R 3.IS 3.40 
120 1.27 1.63 1.87 2.111 2.40 2.62 2.S3 3.12 3.33 

140 1.27 1.t!2 I.M 2.1)9 2.311 259 2.!!o 3.08 3.28 
160 1.26 1.61 1.85 2.117 2.36 257 2.78 3.05 3.25 
IXU 1.26 1.61 1.114 2.117 2.35 256 2.76 3.112 3.22 
200 1.26 1.60 1.114 2.116 2.34 2.54 2.74 3.(11) 3.20 
300 1.26 1.59 1.112 2.1)4 2.31 2.51 2.70 2.95 3.14 

500 1.25 1.58 1.111 2.112 2.211 2.411 2.66 2.91 3.09 
00 1.25 1.57 1.79 1.99 2.25 2.43 2.61 2.114 3.01 



AppendixB Statistical Tables and Graphs 691 

TABLE B.4 (cont.): Critical Values of the F Distribution 
III = Numerator OF = 12 

1'2= a(2): 0.50 0.20 0.10 0.05 0.02 om 0.005 0.002 0.001 
Denom. OF a(1): 0.25 0.10 0.05 0.025 om 0.005 0.0025 0.001 0.0005 

1 9.41 00.7 244. m. 6110. 24400. 97700. 611000. 2440000. 
2 3.39 9.41 19.4 39.4 99.4 199. 399. 999. 2000. 
3 2.45 5.22 8.74 14.3 27.1 43.4 69.3 128. 204. 
4 2.08 3.90 5.91 8.75 14.4 20.7 29.7 47.4 67.4 
5 1.89 3.27 4.68 6.52 9.89 13.4 18.0 26.4 35.2 

6 1.77 2.90 4.00 5.37 7.72 10.0 12.9 18.0 23.0 
7 1.68 2.67 3.57 4.67 6.47 8.18 10.3 13.7 17.0 
8 1.62 2.50 3.28 4.20 5.67 7.01 8.61 11.2 13.6 
9 1.58 2.38 3.07 3.87 5.11 6.23 7.52 9.57 11.4 

10 1.54 2.28 2.91 3.62 4.71 5.66 6.75 8.45 9.94 

11 1.51 2.21 2.79 3.43 4.40 5.24 6.18 7.63 8.88 
12 1.49 2.15 2.69 3.28 4.16 4.91 5.74 7.00 8.09 
13 1.47 2.10 2.60 3.15 3.96 4.64 5.40 6.52 7.48 
14 1.45 2.05 2.53 3.05 3.80 4.43 5.12 6.13 6.99 
15 1.44 2.02 2.48 2.96 3.67 4.25 4.88 5.81 6.59 

16 1.43 1.99 2.42 2.89 3.55 4.10 4.69 5.55 6.26 
17 1.41 1.96 2.38 2.82 3.46 3.97 4.52 5.32 5.98 
18 1.40 1.93 2.34 2.77 3.37 3.86 4.38 5.13 5.75 
19 1.40 1.91 2.31 2.72 3.30 3.76 4.26 4.97 5.55 
20 1.39 1.89 2.28 2.68 3.23 3.68 4.15 4.82 5.37 

21 1.38 1.87 2.25 2.64 3.17 3.60 4.06 4.70 5.21 
22 1.37 1.86 2.23 2.60 3.12 3.54 3.97 4.58 5.08 
23 1.37 1.84 2.20 2.57 3.07 3.47 3.89 4.48 4.96 
24 1.36 1.83 2.18 2.54 3.03 3.42 3.83 4.39 4.85 
25 1.36 1.82 2.16 2.51 2.99 3.37 3.76 4.31 4.75 

26 1.35 1.81 2.15 2.49 2.96 3.33 3.71 4.24 4.66 
27 1.35 1.80 2.13 2.47 2.93 3.28 3.66 4.17 4.58 
28 1.34 1.79 2.12 2.45 2.90 3.25 3.61 4.11 4.51 
29 1.34 1.78 2.10 2.43 2.87 3.21 3.56 4.05 4.44 
30 \.34 1.77 2.09 2.41 2.84 3.18 3.52 4.00 4.38 

35 1.32 1.74 2.04 2.34 2.74 3.05 3.36 3.79 4.13 
40 \.31 1.71 2.00 2.29 2.66 2.95 3.25 3.64 3.95 
45 \.30 1.70 1.97 2.25 2.61 2.1!8 3.16 3.53 3.82 
50 \.30 1.68 1.95 2.22 2.56 2.82 3.09 3.44 3.71 
60 1.29 1.66 1.92 2.17 2.50 2.74 2.99 3.32 3.57 

70 1.28 1.64 1.89 2.14 2.45 2.68 2.92 3.23 3.46 
80 1.27 1.63 \.88 2.11 2.42 2.64 2.87 3.16 3.39 
90 ].27 1.62 1.86 2.09 2.39 2.61 2.83 3.11 3.33 

100 1.27 1.61 1.85 2.08 2.37 2.58 2.80 3.07 2.28 
120 1.26 1.60 1.83 2.05 2.34 2.54 2.75 3.02 3.22 

140 1.26 \.59 1.82 2.04 2.31 2.52 2.72 2.98 3.17 
160 1.26 1.59 1.81 2.03 2.30 2.50 2.69 2.95 3.14 
180 1.25 1.58 1.81 2.02 2.28 2.48 2.67 2.92 3.11 
200 1.25 1.58 1.80 2.01 2.27 2.47 2.66 2.90 3.09 
300 1.25 1.57 1.78 1.99 2.24 2.43 2.61 2.85 3.02 

500 1.24 1.56 1.77 1.97 2.22 2.40 2.58 2.8] 2.97 
00 1.24 1.55 1.75 1.94 2.18 2.36 2.53 2.74 2.90 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
"I = Numerator OF = 13 

t'2 = a(2): 0.50 0.20 (1.1 0 0.05 0.02 0.0\ 0.005 0.002 0.001 
Ocnom. OF a( I): 0.25 0.10 (J.05 0.025 0.01 0.005 O.llO25 O.(XlI 0.(1005 

I 9.44 60.9 245. 980. 6130. 24500. 9R(l(J(). 613000. 2450000. 
2 3.40 9.41 19.4 39.4 99.4 199. 399. 999. 2000. 
3 2.45 5.21 8.73 14.3 27.0 43.3 69.1 12K 204. 
4 2.08 3.89 5.89 8.71 14.3 20.6 29.5 47.2 67.1 
5 U!9 :\.26 4.66 6.49 9.82 13.3 17.9 26.2 34.9 

6 1.77 2.89 3.911 5.33 7.66 9.95 12.11 17.11 22.7 
7 1.68 2.65 3.55 4.63 6.41 11.10 10.1 13.6 16.8 
II 1.62 2.49 3.26 4.16 5.61 6.94 11.51 11.1 13.4 
9 1.58 2.36 3.05 3.113 5.115 6.15 7.43 9.44 11.3 

10 1.54 2.27 2.119 3.511 4.65 5.59 6.66 11.32 9.110 

II 1.51 2.19 2.76 3.39 4.34 5.16 6.09 7.51 11.74 
12 1.49 2.13 2.66 3.24 4.10 4.114 5.66 6.89 7.96 
13 1.47 2.08 2.58 3.12 3.91 4.57 5.31 6.41 7.35 
14 1.45 2.04 2.51 .101 3.75 4.36 5.03 6.02 6.86 
15 1.43 2.00 2.45 2.92 3.61 4.111 4.110 5.71 6.47 

16 1.42 1.97 2.40 2.85 3.50 4.03 4.61 5.44 6.14 
17 1.41 1.94 2.35 2.79 3.40 3.90 4.44 5.22 5.116 
18 I.4U 1.92 2.31 2.73 3.32 3.79 4.30 5.03 5.63 
19 1.39 1.119 2.28 2.68 3.24 3.70 4.18 4.117 5.43 
20 1.38 1.117 2.25 2.64 3.111 3.61 4.07 4.72 5.25 

21 1.37 1.86 2.22 2.60 3.12 3.54 3.911 4.60 5.10 
22 1.37 1.114 2.20 2.56 3.07 3.47 3.89 4.49 4.97 
23 1.36 1.83 2.18 2.53 3.02 3.41 3.82 4.39 4.84 
24 1.36 1.111 2.15 2.50 2.911 3.35 3.75 4.30 4.74 
25 1.35 1.811 2.14 2.411 2.94 3.30 3.69 4.22 4.64 

26 1.35 1.79 2.12 2.45 2.90 3.26 3.63 4.14 4.55 
27 1-14 1.78 2.10 2.43 2.87 3.22 3.58 4.11.'1 4.47 
28 1.34 1.77 2.09 2.41 2.84 3.18 3.53 4.01 4.40 
29 1.33 1.76 2.11.'1 2.39 2.81 3.15 3.49 3.96 4.33 
30 1.33 1.75 2.116 2.37 2.79 3.11 3.45 3.91 4.27 

35 1.32 1.72 2.111 2.30 2.69 2.98 3.29 3.70 4.02 
40 1.31 1.70 1.97 2.25 2.61 2.89 3.17 3.55 3.85 
45 1.30 1.68 1.94 2.21 2.55 2.82 3.08 3.44 3.71 
50 1.29 1.66 1.92 2.18 2.51 2.76 3.01 3.35 3.61 
60 1.28 1.64 1.89 2.13 2.44 2.68 2.91 3.23 3.46 

70 1.27 1.62 1.86 2.10 2.40 2.62 2.84 3.14 3.36 
110 1.27 1.61 1.114 2.m 2.36 2.58 2.79 3.07 3.29 
911 1.26 1.60 1.83 2.05 2.33 2.54 2.75 3.02 3.23 

100 1.26 1.59 1.82 2.04 2.31 2.52 2.72 2.99 3.19 
120 1.26 1.58 1.80 2.01 2.211 2.48 2.67 2.93 3.12 

140 1.25 1.57 1.79 2.1XI 2.26 2.45 2.64 2.89 3.07 
160 1.25 1.57 1.78 1.99 2.24 2.43 2.62 2.86 3.04 
1110 1.25 1.56 1.77 1.911 2.23 2.42 2.60 2.83 3.01 
200 1.24 1.56 1.77 1.97 2.22 2.40 2.58 2.82 2.99 
300 1.24 1.55 1.75 1.95 2.19 2.37 2.54 2.76 2.93 

51Kl 1.24 1.54 1.74 1.93 2.17 2.34 2.50 2.72 2.88 
00 1.23 1.52 1.72 1.90 2.13 2.29 2.45 2.M 2.81 



Appendix B Statistical Tables and Graphs 693 

TABLE B.4 (cont.): Critical Values of the F Distribution 
PI = Numerator OF = 14 

"2 ~ a(2): 0.50 0.20 (1.111 (1.115 0.02 (1.111 0.(105 0.002 0.001 
)enum. OF a(I): 0.25 (1.10 0.05 0.025 0.01 0.005 0.0025 0.001 O.lXI05 

I 9.47 61.1 245. 910. 6140. 246110. 91130n. 614000. 24611000. 
2 3.41 9.42 19.4 39.4 99.4 199. 399. 999. 2000. 
3 2.45 5.20 K.71 14.3 26.9 43.2 69.0 12l!. 203. 
4 l.OK 3.KK 5.117 lt6l! 14.2 20.5 29.4 46.9 66.11 
5 1.119 3.25 4.64 6.46 9.77 13.2 17.11 26.1 34.7 

6 1.76 2.KK 3.% 5.30 7.60 9.KK 12.7 17.7 22.6 
7 1.6K 2.64 3.53 4.(1) 6.36 11.03 10.1 13.4 16.6 
X 1.62 2.4!l 3.24 4.13 5.56 flJI,7 11.43 10.9 13.3 
9 1.57 2.35 3.m 3.110 5.111 fl.(19 7.35 9.33 11.1 

III 154 2.2fl 2.Kt. 355 4.611 5.53 6.5X !l.22 9.67 

II 1.51 2.IX 2.74 3.36 4.29 5. J() 6.02 7.41 8.62 
12 1.411 2.12 2.64 3.21 4.()5 4.77 5.511 fl.79 7.K4 
13 l.4fl 2.117 2.55 3.llX 3.Kt. 451 5.24 fl.31 7.23 
14 1.44 2.02 2.411 2.9l1, 3.7n 4.30 4.% 5.93 6.75 
15 1.43 1.99 2.42 2.119 356 4.12 4.73 5.62 6.36 

16 1.42 1.95 2.37 2.112 3.45 3.97 4.54 5.35 6.03 
17 1.41 1.93 2.33 2.75 3.35 3.K4 4.37 5.13 5.76 
IX 1.411 1.911 2.29 2.70 3.27 3.73 4.23 4.94 553 
19 1.39 1.11K 2.26 2.65 3.19 3.64 4.11 4.711 5.33 
20 1.311 1.Kt. 2.22 2.(1) 3.13 3.55 4.no 4.64 5.15 

21 1.37 1.K4 2.20 2.St. 3.07 3.411 3.91 4.51 5.110 
22 1.36 1.113 2.17 2.53 3.1)2 3.41 3.X2 4.40 4.117 
23 1.36 1.111 2.15 2.50 2.97 3.35 3.75 4.30 4.75 
24 1.35 I.KO 2.13 2.47 2.93 3.311 3.t.X 4.21 4.64 
25 1.35 1.79 2.11 2.44 2.119 3.25 3.fl2 4.13 4.54 

26 1.34 1.77 2.09 2.42 2.Kt. 3.20 356 4.Ot. 4.46 
27 1.34 1.7fl 2.IIR 2.39 2.112 3.16 3.SI 3.99 4.38 
211 1.33 1.75 2.116 2.37 2.79 3.12 3.46 3.93 4.30 
29 1.33 1.75 2.05 2.36 2.77 3.09 3.42 3.1111 4.24 
30 1.33 1.74 2.(14 2.34 2.74 3.(16 3.311 3.!l2 4.18 

35 131 1.70 1.99 2.27 2.64 2.93 3.22 3.fl2 3.93 
40 1.3() 1.t.X 1.95 2.21 2.Sfl 2.K3 3. J() 3.47 3.76 
45 1.29 1.66 1.92 2.17 2.51 2.76 3.02 3.36 3.63 
50 1.211 1.64 1.119 2.14 2.46 2.70 2.95 3.27 352 
60 1.27 1.62 I.X6 2.09 2.39 2.62 2.115 3.15 3.311 

711 1.27 1.(1) 1.K4 2.06 2.35 2.56 2.711 3.06 3.28 
KO 1.26 1.59 1.112 2.03 2.31 2.52 2.73 3.00 3.20 
I)() 1.26 1.511 1.111) Z.02 2.29 2.49 2.69 2.95 3.14 

)(I() 1.2.'; 1.57 1.79 2.1IO 2.27 2.46 2.65 2.91 3. III 
1211 1.2.'; 1.56 1.7X 1.911 2.23 2.42 2.tll 2.115 3.03 

140 1.24 1.55 1.7fl 1.96 2.21 2.40 2.58 2.81 2.99 
If(1) 1.24 1.55 1.75 1.95 2.20 2.38 2.55 2.78 2.95 
IKO 1.24 154 1.75 1.94 2.18 2.3fl 2.53 2.76 2.93 
200 1.24 1.54 1.74 1.93 2.17 2.35 2.52 2.74 2.91 
300 1.23 153 1.72 1.91 2.14 2.31 2.47 2.69 2.K4 

500 1.2.- 1.52 1.71 1.119 2.12 2.2K 2.44 2.64 2.79 
00 1.22 1.50 1.69 1.117 2.llX 2.24 2.39 2.5K 2.72 
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TABLE B.4 «(ont.): Critical Values of the F Distribution 
"1 = Numerator OF = 15 

"2 = a(2): 0.50 0.20 0.10 0.05 0.02 om 0.005 0.002 0.001 
Oenom.DF a(I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

1 9.49 61.2 246. 985. 6160. 24600. 98SOO. 616000. 2460000. 
2 3.41 9.42 19.4 39.4 99.4 199. 399. m. 2000. 
3 2.46 5.20 8.70 14.3 26.9 43.1 68.8 127. 203. 
4 2.08 3.87 5.86 8.66 14.2 20.4 29.3 46.8 66.5 
5 1.89 3.24 4.62 6.43 9.72 13.1 17.7 25.9 34.5 

6 1.76 2.87 3.94 5.27 7.56 9.81 12.7 17.6 22.4 
7 1.68 2.63 3.51 4.57 6.31 7.97 9.98 13.3 16.5 
8 1.62 2.46 3.22 4.10 5.52 6.81 8.35 10.8 13.1 
9 1.57 2.34 3.01 3.77 4.96 6.03 7.28 9.24 11.0 

10 1.53 2.24 2.85 3.52 4.56 5.47 6.51 8.13 9.56 

11 1.50 2.17 2.72 3.33 4.25 5.05 5.95 7.32 8.52 
12 1.48 2.10 2.62 3.18 4.01 4.72 5.52 6.71 7.74 
13 1.46 2.05 2.53 3.05 3.82 4.46 5.17 6.23 7.13 
14 1.44 2.01 2.46 2.95 3.66 4.25 4.89 5.85 6.65 
15 1.43 1.97 2.40 2.86 3.52 4.07 4.67 5.54 6.26 

16 1.41 1.94 2.35 2.79 3.41 3.92 4.47 5.27 5.94 
17 1.40 1.91 2.31 2.72 3.31 3.79 4.31 5.05 5.67 
18 \.39 1.89 2.27 2.67 3.23 3.68 4.17 4.87 5.44 
19 1.38 1.86 2.23 2.62 3.15 3.59 4.05 4.70 5.24 
20 1.37 1.84 2.20 2.57 3.09 3.50 3.94 4.56 5.07 

21 1.37 1.83 2.18 2.53 3.03 3.43 3.85 4.44 4.92 
22 1.36 1.81 2.15 2.50 2.98 3.36 3.76 4.33 4.78 
23 \.35 I.SO 2.13 2.47 2.93 3.30 3.69 4.23 4.66 
24 1.35 1.78 2.11 2.44 2.89 3.25 3.62 4.14 4.56 
25 1.34 1.77 2.09 2.41 2.85 3.20 3.56 4.06 4.46 

26 1.34 1.76 2.07 2.39 2.81 3.15 3.50 3.99 4.37 
27 1.33 1.75 ·2.06 2.36 2.78 3.11 3.45 3.92 4.29 
28 1.33 1.74 2.04 2.34 2.75 3.07 3.40 3.86 4.22 
29 1.32 1.73 2.03 2.32 2.73 3.04 3.36 3.80 4.15 
30 1.32 1.72 2.01 2.31 2.70 3.01 3.32 3.75 4.09 

35 1.31 1.69 1.96 2.23 2.60 2.88 3.16 3.55 3.85 
40 1.30 1.66 1.92 2.18 2.52 2.78 3.04 3.40 3.68 
45 1.29 1.64 1.89 2.14 2.46 2.71 2.96 3.29 3.55 
50 1.28 1.63 1.87 2.11 2.42 2.65 2.119 3.20 3.45 
60 1.27 1.60 1.84 2.06 2.35 2.57 2.79 3.08 3.30 

70 1.26 1.59 1.81 2.03 2.31 2.51 2.72 2.99 3.20 
80 1.26 1.57 1.79 2.00 2.27 2.47 2.67 2.93 3.12 
90 1.25 1.56 1.78 1.98 2.24 2.44 2.63 2.88 3.07 

100 1.25 1.56 1.77 1.97 2.22 2.41 2.60 2.84 3.02 
120 1.24 1.55 1.75 1.94 2.19 2.37 2.55 2.78 2.96 

140 1.24 1.54 1.74 1.93 2.17 2.35 2.52 2.74 2.91 
160 1.24 1.53 1.73 1.92 2.15 2.33 2.49 2.71 2.88 
ISO 1.23 1.53 1.72 1.91 2.14 2.31 2.48 2.69 2.85 
200 1.23 1.52 1.72 1.90 2.13 2.30 2.46 2.67 2.83 
300 1.23 1.51 1.70 1.88 2.10 2.26 2.42 2.62 2.77 

500 1.22 1.50 1.69 1.86 2.07 2.23 2.38 2.58 2.72 
00 1.22 1.49 1.67 1.83 2.04 2.19 2.33 2.51 2.65 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
~1 '" Numerator OF '" 16 

"2 :::: a(2): 0.50 0.20 (UO 0.05 0.112 0.01 0.005 0.002 0.001 
)enom. DF a(I): 0.25 0.\0 0.05 0.025 (1.01 0.1105 0.(102.'i 0.001 0.0005 

I 9.52 61.3 246. 987. 6170. 24700. 98700. 617000. 2470000. 
2 3.41 9.43 19.4 39.4 99.4 199. 399. m. 2000. 
3 2.46 5.20 11.69 14.2 26.R 43.0 68.7 127. 202. 
4 2.08 3.116 5.84 8.63 14.2 20.4 29.2 46.6 66.2 
5 I.AA 3.2.' 4.60 6.411 9.68 13.1 17.6 25.8 34.3 

6 1.7/\ 2.86 3.92 5.24 7.52 9.7/\ 12.6 17.4 22.3 
7 I.IlX 2.62 3.49 4.54 6.211 7.91 9.91 13.2 16.4 
X 1.62 2.45 3.20 4.08 5.411 6.76 X.29 \11.8 13.0 
9 1.57 2.33 2.99 3.74 4.92 5.9R 7.21 9.15 10.9 

\0 1.53 2.23 2.R3 3.50 4.52 5.42 6.45 8.05 9.46 

11 1.50 2.16 2.70 3.30 4.21 5.(MI 5.89 7.24 8.43 
12 1.4l! 2.(19 . 2.()(1 3.15 3.97 4.67 5.46 6.63 7.65 
13 1.46 2.(14 2.51 3.03 3.7R 4.41 5.11 6.16 7.05 
14 1.44 2.00 2.44 2.92 3.62 4.20 4.84 5.78 6.57 
15 1.42 1.% 2.38 2.84 3.49 4.02 4.61 5.46 6.18 

16 1.41 1.93 2.33 2.76 3.37 3.87 4.42 5.20 5.!!6 
17 1.40 1.90 2.29 2.70 3.27 3.75 4.25 4.99 5.59 
IR 1.39 1.87 2.2.<; 2.64 3.19 3.64 4.11 4.80 5.36 
19 1.38 I.R5 2.21 2.59 3.12 3.54 3.99 4.64 5.16 
20 1.37 I.X3 2.IR 2.55 3.05 3.46 3.89 4.49 4.99 

21 1.36 I.RI 2.16 2.51 2.99 33R 3.79 4.37 4.84 
22 1.36 1.811 2.13 2.47 2.94 3.31 3.71 4.26 4.71 
2., 1.35 1.78 2.11 2.44 2.89 3.25 3.63 4.16 4.59 
24 1.34 1.77 2.119 2.41 2.R5 3.20 3.56 4.07 4.48 
25 1.34 1.76 2.m 2.3X 2.RI 3.15 3.50 3.99 4.39 

26 1.33 1.75 2.05 2.36 2.711 3.11 3.45 3.92 4.30 
27 1.33 1.74 2.(14 2.34 2.75 3.07 3.40 3.86 4.22 
28 1.32 1.73 2.02 2.32 2.72 3.03 3.35 3.110 4.15 
29 1.32 1.72 2.111 2.30 2.69 2.99 3.31 3.74 4.1ll! 
3() 1.32 1.71 1.99 2.211 2.66 2.% 3.27 3.69 4.02 

35 1.3() 1./\7 1.94 2.21 2.56 2.X3 3.11 3.48 3.78 
4() 1.29 1.65 1.90 2.15 2.48 2.74 2.99 3.34 3.61 
45 1.2X 1.63 1.117 2.11 2.43 2.M 2.911 3.23 3.48 
50 1.27 1.61 1.85 2.(lK 2.38 2.61 2.84 3.14 338 
60 1.26 1.59 1.112 2.03 2.31 2.53 2.74 3.02 3.23 

70 1.26 1.57 1.79 2.110 2.27 2.47 2.67 2.93 3.13 
80 1.25 1.56 1.77 1.97 2.23 2.43 2.62 2.l!7 3.06 
90 1.25 1.55 1.76 1.95 2.21 2.39 2.511 2.112 3.00 

100 1.24 1.54 1.75 1.94 2.19 2.37 2.55 2.78 2.96 
120 1.24 1.53 1.73 1.92 2.15 2.33 2.50 2.72 2.89 

140 1.2) 1.52 1.72 1.90 2.13 2.30 2.47 2.68 2.84 
160 1.23 1.52 1.71 1.119 2.11 2.28 2.44 2.65 2.R1 
1811 1.23 1.51 1.70 I.AA 2.W 2.26 2.42 2.63 2.7X 
200 1.23 1.51 1.69 U!7 2.(19 2.25 2.41 2.61 2.76 
300 1.22 1.49 1.68 1.85 2.116 2.21 2.36 2.56 2.70 

5(10 1.22 1.49 1.66 1.83 2.114 2.19 2.33 2.52 2.65 
00 1.21 1.47 1.64 1.811 2.(10 2.14 2.211 2.45 2.58 
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TABLE B.4 «(ont.): Critical Values of the F Distribution 
". = Nurneralllr OF = 17 

"2 ::;. a(2): 0.50 0.20 (1.10 0.115 0.02 (1.(1\ O.lXl5 O.lXI2 0.001 
Denorn. OF a( I): 11.25 0.10 0.05 0.025 (1.111 0.005 0.1K125 O.(XII 0.0005 

1 9.53 61.5 247. 9119. 611!O. 24700. 9I!9OU. 611lOOO. 2470000. 
2 3.42 9.43 19.4 39.4 99.4 199. 399. m. 2000. 
3 2.46 5.19 l!.68 14.2 26.11 42.9 611.6 127. 202. 
4 2.(111 3.M 5.113 11.61 14.1 20.3 29.1 46.5 66.0 
5 1.118 3.22 4.5lJ 6.311 9.64 13.0 17.5 25.7 34.2 

6 1.76 2.R5 3.91 5)2 7.41! 9.71 12.5 17.4 22.1 
7 1.67 2.61 3.411 4.52 6.24 7.117 9.115 13.1 16.3 
II 1.61 2.45 3.19 4.115 5.44 6.72 8.23 10.7 12.9 
9 1.57 2.32 2.97 3.72 4.119 5.94 7.16 9.0~ 10.8 

)(I 1.53 2.22 2.111 3.47 4.49 5.38 6.40 7.91! 9.38 

II 1.50 2.15 2.69 3.m 4.IX 4.96 5.X4 7.17 8.34 
12 1.47 VIII 2.51\ 3.13 3.94 4.63 5.40 657 7.57 
13 1.45 2.03 2.511 3.00 3.75 4.37 5.(16 6.119 6.97 
14 1.44 1.\19 2.43 2.911 3.59 4.16 4.79 5.71 6.49 
15 1.42 1.95 2.37 2.111 3.45 3.98 4.56 5.40 6.11 

16 1.41 1.92 2.32 2.74 3.34 3.113 437 5.14 5.79 
17 1.39 1.119 2.27 2.h7 3.24 3.71 4.21 4.92 5.52 
III 1.38 I.M 2.23 2.h2 3.lh 3.ttll 4.07 4.74 5.29 
19 1.37 1.X4 2.20 2.57 3.(111 3.511 3.94 4.5R 5.09 
20 1.37 1.82 2.17 2.52 3.02 3.42 3.84 4.44 4.92 

21 1.36 1.811 2.14 2.41! 2.96 3.34 3.74 4.31 4.71 
22 1.35 1.79 2.11 2.45 2.91 3.27 3.6ft 4.20 4.64 
2:1 1.35 1.77 2.09 2.42 2.M 3.21 3.58 4.10 4.52 
24 1.34 1.7h 2.U7 2.39 2.82 3.lh 3.52 4.02 4.41 
25 1.33 1.75 2.05 2.36 2.71« 3.11 3.46 3.94 4.32 

26 1.33 1.73 2.03 2.34 2.75 :1.117 3.40 3.M 4.23 
27 1.33 1.72 2.02 2.31 2.71 3.03 3.35 3.W 4.15 
28 1.32 1.71 2.(XI 2.29 2.68 2.99 3.30 3.74 4.08 
29 1.32 1.71 1.99 2.27 2.66 2.95 3.26 3.68 4.02 
30 1.31 1.70 1.911 2.2h 2.63 2.92 3.22 3.63 3.96 

35 1.30 1.66 1.92 2.111 2.53 2.79 3.116 :1.43 3.72 
40 1.29 1.64 I.X9 2.13 2.45 2.711 2.95 3.2~ 3.54 
45 1.28 1.62 1.86 2.119 2.:19 2.h2 2.M 3.17 3.41 
50 1.27 1.60 UG 2.06 2.35 2.57 2.79 3.(J9 3.31 
60 1.26 1.58 1.811 2.(11 2.2R 2.49 2.6lJ 2.96 3.17 

70 1.25 1.56 1.77 1.97 2.23 2.43 2.62 2.118 3.07 
XII 1.2.'1 1.55 1.75 1.95 2.20 2.39 2.57 2.81 3.00 
I)() 1.24 1.54 1.74 1.93 2.17 2.35 2.53 2.76 2.94 

HX) 1.24 1.53 1.73 1.91 2.15 2.33 2.50 2.73 2.89 
120 1.23 1.52 1.71 1.119 2.12 2.29 2.45 2.67 2.83 

140 1.23 1.51 1.70 1.117 2.10 2.26 2.42 2.63 2.78 
160 1.23 1.511 1.69 I.M 2.1111 2.24 2.40 2.60 2.75 
1811 1.22 1.50 1.68 1.&,'1 2.07 2.22 2.311 2.5X 2.72 
200 1.22 1.49 1.67 1.X4 2.116 2.21 2.36 2.56 2.70 
300 1.22 1.4I! 1.66 1.1«2 2.03 2.17 2.32 2.50 2.64 

500 1.21 1.47 1.64 1.811 2.0n 2.14 2.m 2.46 2.59 
oc 1.21 1.46 1.62 1.711 1.97 2.10 2.23 2.40 2.52 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
'I = Numerator DF = IX 

1'2 = n(2): 0.50 0.20 U.lO (1.05 U.02 (J.OI 0.(K)5 O.(K12 0.001 
Icnom. DF u(I): 0.2.'i 0.10 (1.05 0.025 (1.01 O.(Kl5 O.(Kl2.'i 0.001 0.0005 

9.55 61.6 247. 990. 6190. 24S00. 99100. 619000. 2480000. 
2 3.42 9.44 19.4 39.4 99.4 199. 399. 999. 2000. 
3 2.46 5.19 1\./i7 14.2 2/i.8 42.9 68.5 127. 2()2. 
4 l.OK 3.85 5.X2 8.59 14.1 20.3 29.11 46.3 65.8 
5 1.88 3.22 4.58 6.36 9./i1 13.11 17.4 25.6 34.0 

6 1.76 2.H.'i 3.90 5.20 7.45 9.66 12.4 17.3 22.0 
7 1.67 2.61 3.47 4.50 6.21 7.83 9.79 13.1 16.2 
8 1.61 2.44 3.17 4.03 5.41 6.68 IWI 111.6 12.8 
9 1.56 2.31 2.96 3.70 4.!«i 5.90 7.11 9.01 10.7 

III 1.53 2.22 2.80 3.45 4.40 5.34 6.35 7.91 9.30 

II 1.50 2.14 2./i7 3.26 4.15 4.92 5.79 7.11 8.27 
12 1.47 2.118 2.57 3.11 3.91 4.59 5.36 6.51 7.50 
13 1.45 2.(12 2.48 2.98 3.72 433 5.02 6.03 6.90 
14 1.43 1.98 2.41 2.88 3.56 4.12 4.74 5.66 6.43 
15 1.42 1.94 2.35 2.79 3.42 3.95 4.51 5.35 6.04 

16 1.40 1.91 2.30 2.72 .DI 3.80 4.32 5.()9 5.72 
17 1.39 1.88 2.26 2.65 3.21 3.67 4.16 4.87 5.45 
18 1.311 1.85 2.22 2.6() 3.13 3.S6 4.02 4.611 5.23 
19 1.37 1.83 2.18 2.55 3.IIS 3.46 .t90 4.52 5.03 
211 1.36 I.l!l 2.15 2.511 2.99 3.311 3.79 4.38 4.86 

21 \.36 1.79 2.12 2.46 2.93 3.31 3.70 4.26 4.71 
22 U5 \,711 2.10 2.43 2.118 3.24 3.62 4.IS 4.5X 
23 1.34 \.76 2.118 2.39 2.113 3.18 3.54 4.05 4.46 
24 1.34 1.75 2.115 2.36 2.79 3.12 3.47 3.96 4.35 
25 1.33 1.74 2.()4 2.34 2.75 3.118 3.41 3.88 4.26 

26 1.33 1.72 2.02 2.31 2.72 3.03 3.36 3.111 4.17 
27 1.32 1.71 2.1Kl 2.29 2.68 2.99 3.31 3.75 4. J() 

28 1.32 I.7Il 1.99 2.27 2.65 VJ5 3.26 3.69 4.02 
29 1.31 1.69 1.97 2.25 2.63 2.92 3.22 3.63 3.96 
30 1.31 1.69 1.96 2.23 2.6() 2.119 3.18 3.58 3.90 

35 1.29 1.65 1.91 2.16 2.50 2.76 3.02 3.3X 3.66 
40 1.28 1.62 1.87 2.11 2.42 2.66 2.W 3.23 3.49 
45 1.27 1.6Il 1.84 2.07 2.36 2.59 2.!12 3.12 3.36 
50 1.27 1.51) 1.111 2.03 2.32 2.53 2.75 3.1l4 3.26 
6() 1.26 1.56 1.78 1.911 2.25 2.45 2.65 2.91 3.11 

70 1.25 1.55 1.75 1.95 2.20 2.39 2.58 2.113 3.0\ 
80 1.24 1.53 1.73 1.92 2.17 2.35 2.53 2.76 2.94 
90 1.24 1.52 1.72 1.91 2.14 2.32 2.49 2.71 2.SS 

11K) 1.23 1.52 1.71 1.89 2.12 2.29 2.46 2.68 2.84 
120 \.23 1.50 1.69 1.87 2.()9 2.25 2.41 2.62 2.78 

140 1.22 1.50 1.68 1.85 2.07 2.22 2.38 2.58 2.73 
16IJ \,22 1.49 1.67 1.84 2.05 2.20 2.35 2.55 2.70 
Il!O 1.22 \.48 1.66 1.83 2.04 2.19 2.34 2.53 2.67 
200 1.22 \.48 1.66 1.82 2.03 2.18 2.32 2.51 2.65 

J(K) 1.21 1.47 1.64 1.80 1.99 2.14 2.28 2.46 2.59 

500 1.21 1.46 1.62 1.78 1.97 2.11 2.24 2.41 2.54 
00 UO 1.44 1.60 1.75 1.93 2.06 2.19 2.35 2.47 
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TABLE 8.4 (cont.): Critical Values of the F Distribution 
111 = Numerator OF = 19 

112= a(2); 0.50 0.20 0.10 0.05 0.02 O.oJ 0.005 0.002 0.001 
Oenom.OF a(1): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

I 9.57 61.7 248. 992. 6200. 24800. 99200. 620000. 2480000. 
2 3.42 9.44 19.4 39.4 99.4 199. 399. 999. 2000. 
3 2.46 5.19 8.67 14.2 26.7 42.8 68.4 127. 201. 
4 2.08 3.85 5.81 8.58 14.0 20.2 28.9 46.2 65.7 
5 1.88 3.21 4.57 6.34 9.58 12.9 17.4 25.5 33.9 

6 1.76 2.84 3.88 5.18 7.42 9.62 12.4 17.2 21.9 
7 1.67 2.60 3.46 4.48 6.18 7.79 9.74 13.0 16.1 
8 1.61 2.43 3.16 4.02 5.38 6.64 8.13 10.5 12.8 
9 1.56 2.30 2.95 3.68 4.83 5.86 7.06 8.95 10.7 

10 1.53 2.21 2.79 3.44 4.43 5.31 6.31 7.86 9.23 

11 1.49 2.13 2.66 3.24 4.12 4.89 5.75 7.06 8.20 
12 1.47 2.07 2.56 3.09 3.88 4.56 5.32 6.45 7.43 
\3 1.45 2.01 2.47 2.96 3.69 4.30 4.98 5.98 6.84 
14 1.43 1.97 2.40 2.86 3.53 4.09 4.70 5.60 6.37 
15 1.41 1.93 2.34 2.n 3.40 3.91 4.47 5.29 5.98 

16 1.40 1.90 2.29 2.70 3.28 3.76 4.28 5.04 5.66 
17 1.39 1.87 2.24 2.63 3.19 3.64 4.12 4.82 5.40 
18 1.38 1.84 2.20 2.58 3.10 3.53 3.98 4.63 5.17 
19 1.37 1.82 2.17 2.53 3.03 3.43 3.86 4.47 4.97 
20 1.36 1.110 2.14 2.48 2.96 3.35 3.76 4.33 4.80 

21 1.35 1.78 2.11 2.44 2.90 3.27 3.66 4.21 4.65 
22 1.35 I.n 2.08 2.41 2.85 3.21 3.58 4.10 4.52 
23 1.34 1.75 2.06 2.37 2.80 3.15 3.50 4.00 4.41 
24 1.33 1.74 2.04 2.35 2.76 3.09 3.44 3.92 4.30 
25 1.33 1.73 2.02 2.32 2.72 3.04 3.38 3.84 4.21 

26 1.32 1.71 2.00 2.29 2.69 3.00 3.32 3.n 4.12 
27 1.32 1.70 1.99 2.27 2.66 2.96 3.27 3.70 4.04 
28 1.31 1.69 1.97 2.25 2.63 2.92 3.22 3.64 3.97 
29 1.31 1.68 1.96 2.23 2.60 2.88 3.18 3.59 3.91 
30 1.31 1.68 1.95 2.21 2.57 2.85 3.14 3.53 3.85 

35 1.29 1.64 1.89 2.14 2.47 2.72 2.98 3.33 3.61 
40 1.28 1.61 1.85 2.09 2.39 2.63 2.87 3.19 3.44 
45 1.27 1.59 1.82 2.04 2.34 2.56 2.78 3.08 3.31 
50 1.26 1.58 1.80 2.01 2.29 2.50 2.71 2.99 3.21 
60 1.25 1.55 1.76 1.96 2.22 2.42 2.61 2.87 3.06 

70 1.24 1.54 1.74 1.93 2.18 2.36 2.54 2.78 2.96 
80 1.24 1.52 1.72 1.90 2.14 2.32 2.49 2.72 2.89 
90 1.23 1.51 1.70 1.88 2.11 2.28 2.45 2.67 2.83 

100 1.23 1.50 1.69 1.87. 2.09 2.26 2.42 2.63 2.79 
120 1.22 1.49 1.67 1.84 2.06 2.22 2.37 2.58 2.73 

140 1.22 1.48 1.66 1.83 2.04 2.19 2.34 2.54 2.68 
160 1.22 1.48 1.65 1.82 2.02 2.17 2.32 2.51 2.65 
180 1.21 1.47 1.64 1.81 2.01 2.15 2.30 2.48 2.62 
200 1.21 1.47 1.64 1.80 2.00 2.14 2.28 2.46 2.60 
300 1.21 1.46 1.62 1.77 1.97 2.10 2.24 2.41 2.54 

500 1.20 1.45 1.61 1.76 1.94 2.07 2.20 2.37 2.49 
00 1.20 1.43 1.59 1.73 1.90 2.03 2.15 2.31 2.42 
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TABLE B.4 «(ont.): Critical Values of the F Distribution 
VI = Numerator OF = 20 

"2 = (r(2): O.5U 0.20 11.1 II 0.05 0.112 lUll O.llU5 0.11()2 OJlOl 
Denom.DF a(l): 0.25 U.W (W5 U.1I25 um 0.(11)5 OJXl25 0.00 I 0.OU05 

I 9.5X 61.7 241!. 1)1)3. 6211J. 24800. 1)1)3(1(1. 621111XI. 24&JUUO. 
2 3.43 9.44 19.4 39.4 1)1).4 11)1). 399. 1)1)9. 2(IIXI. 
3 2.46 5.18 8.66 14.2 26.7 42.X 6I!.3 126. 201. 
4 2.0!! 3.1!4 5.1«1 1!.56 14.0 211.2 2X.9 46.1 65.5 
5 I.XX 3.21 4.56 6.33 9.55 12.9 17.3 25.4 33.X 

6 1.76 2.84 3.X7 5.17 7.40 9.59 12.3 17.1 21.8 
7 1.67 2.59 3.44 4.47 6.16 7.75 9.70 12.9 16.11 
8 1.61 2.42 3.15 4.1111 5.36 6.61 IW9 111.5 12.7 
9 1.56 2.3U 2.94 3.67 4.81 5.83 7.112 X.90 10.6 

III 1.52 2.2U 2.77 3.42 4.41 5.27 6.27 7.80 9.17 

II 1.49 2.12 2.65 3.23 4. III 4.M 5.71 7.UI X.14 
\2 1.47 2.116 2.54 3.117 3.M 4.53 5.28 6.40 7.37 
13 1.45 2.111 2.46 2.95 3.66 4.27 4.94 5.93 6.78 
14 1.43 1.96 2.39 2.1!4 3.51 4.116 4.66 5.56 6.31 
15 1.41 1.92 2.33 2.76 3.37 3.88 4.44 5.25 5.93 

16 1.40 I.X9 2.28 2.61! 3.26 3.73 4.2.'i 4.1)1) 5.61 
17 1.39 I.M 2.23 2.62 3.16 3.61 4.09 4.7X 5.34 
III 1.38 I.I!4 2.19 2.56 3.1lS 3.50 3.95 4.59 5.\2 
19 1.37 1.8\ 2.16 2.51 3.()U JAO 3.X3 4.43 4.92 
211 1.36 1.79 2.12 2.46 2.94 3.32 3.72 4.29 4.75 

21 1.35 1.78 2.10 2.42 2.88 3.24 3.63 4.17 4.60 
22 1.34 1.76 2.U7 2.39 2.X3 3.\8 3.54 4.06 4.47 
23 1.34 1.74 2.115 2.36 2.711 3.12 3.47 3.96 4.36 
24 1.33 1.73 2.113 2.33 2.74 3.06 3.40 3.87 4.25 
25 1.33 1.72 2.UI 2.30 2.70 3.111 3.34 3.79 4.16 

26 1.32 1.7\ 1.1)1) 2.28 2.66 2.97 3.28 3.72 4.117 
27 1.32 1.7() 1.97 2.25 2.63 2.93 .l23 3.66 3.1)1) 
211 1.31 1.69 1.96 2.23 2.60 2.89 3.19 3.60 3.92 
29 1.31 1.6I! 1.94 2.21 2.57 2.M 3.14 3.54 3.M 
311 1.311 1.67 1.9 .• 2.20 2.55 2.X2 3.11 3.49 3.80 

35 1.29 1.63 1.88 2.12 2.44 2.69 2.95 3.29 3.56 
411 1.211 1.61 I.I!4 2.117 2.37 2.60 2.X3 3.14 3.39 
45 1.27 1.511 1.81 2.03 2.31 2.53 2.74 3.04 3.26 
50 1.26 1.57 1.7X 1.99 2.27 2.47 2.68 2.95 3.16 
60 1.25 1.54 1.75 1.94 2.20 2.39 2.5X 2.t!3 3.!12 

7U 1.24 1.53 1.72 1.9\ 2.15 2.33 2.51 2.74 2.92 
80 1.23 1.51 1.7U 1.88 2.12 2.29 2.46 2.68 2.85 
90 1.23 1.50 1.69 I.M 2.1)1) 2.25 2.42 2.63 2.79 

100 1.23 1.49 1.6X I.X5 2.U7 2.23 2.38 2.59 2.75 
120 1.22 I.4X 1.66 I.X2 2.113 2.19 2.34 2.53 2.68 

140 1.22 1.47 1.65 I.IlI 2.111 2.16 2.31 2.49 2.64 
160 1.21 1.47 1.64 1.80 1.1)1) 2.14 2.28 2.47 2.60 
II!O 1.21 1.46 1.63 1.79 1.9X 2.12 2.26 2.44 2.58 
2(XI 1.21 1.46 1.62 1.78 1.97 2.11 2.25 2.42 2.56 
30U 1.2() 1.45 1.61 1.75 1.94 2.07 2.20 2.37 2.49 

500 1.20 1.44 1.59 1.74 1.92 2.1)4 2.17 2.33 2.45 
00 1.19 1.42 1.57 1.71 1.88 2.011 2.\2 2.27 2.37 
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TABLE B.4 «(ont.): Critical Values of the F Distribution 
"1 = Numerator OF = 22 

"2 = a(2}: 0.50 0.20 0.10 0.05 (1.02 0.01 0.005 U.002 O.()(II 
Oenom.OF a(l): 0.25 0.10 0.05 0.025 (1.01 0.1)(15 0.0025 0.()(1I O'()(IOS 

I 9.61 61.9 249. 995. 6220. 24900. 99600. 622000. 2490000. 
2 3.43 9.45 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.46 5.18 8.65 14.1 26.6 42.7 6K2 126. 201. 
4 2.08 3.84 5.79 11.53 14.0 2().1 2K7 45.9 65.3 
5 1.118 3.20 4.54 6.30 9.51 12.11 17.2 25.3 33.6 

6 1.76 2.113 3.116 5.14 7.35 953 12.3 17.0 21.1 
7 1.67 2.58 3.43 4.44 6.11 7.69 9.62 12.8 15.9 
8 1.61 2.41 3.13 3.97 5.32 6.55 K02 10.4 12.6 
9 1.56 2.29 2.'.12 3.64 4.77 5.78 6.95 11.80 10.5 

10 1.52 2.19 2.75 3.39 4.36 5.22 6.20 7.71 9.06 

II 1.49 2.11 2.63 3.20 4.(16 4.80 5.64 6.92 8.04 
12 1.46 2.05 2.52 3.(14 3.82 4.411 5.21 6.32 7.27 
13 1.44 1.99 2.44 2.'.12 3.62 4.22 4.87 5.115 6.6Il 
14 1.42 1.95 2.37 2.111 3.46 4.111 4.60 5.411 6.21 
15 1.41 1.91 2.31 2.73 3.33 3.83 4.37 5.17 5.83 

16 1.39 1.88 2.25 2.65 3.22 3.68 4.18 4.91 5.52 
17 1.38 1.85 2.21 2.59 3.12 3.56 4.02 4.70 5.25 
18 1.37 1.82 2.17 2.53 3.03 3.45 3.88 4.51 5.03 
19 1.36 1.110 2.13 2.411 2.96 3.35 3.76 4.35 4.83 
20 1.35 1.78 2.10 2.43 2.90 3.27 3.M 4.21 4.67 

21 1.35 1.76 2.07 2.39 2.84 3.19 3.56 4.09 4.52 
22 1.34 1.74 2.05 2.36 2.78 3.12 3.411 3.911 4.39 
23 1.33 1.13 2.02 2.33 2.74 3.116 3.41 3.119 4.27 
24 1.33 1.71 2.()(1 2.30 2.70 3.01 3.34 3.80 4.17 
25 1.32 1.10 1.911 2.27 2.66 2.96 3.28 3.72 4.07 

26 1.32 1.69 1.97 2.24 2.62 2.92 3.22 3.65 3.99 
27 1.31 1.6R 1.95 2.22 2.59 2.K!! 3.17 3.58 3.91 
211 1.31 1.67 1.93 2.20 2.56 2.84 3.13 3.52 3.84 
29 1.30 1.66 1.92 2.18 2.53 2.8U 3.08 3.47 3.77 
30 1.30 1.65 1.91 2.16 2.51 2.77 3.04 3.42 3.71 

35 1.28 1.62 1.85 2.09 2.40 2.64 2.89 3.22 3.48 
40 1.27 1.59 loX I 2.03 2.33 2.55 2.77 3.117 3.31 
45 1.26 1.57 1.78 1.99 2.27 2.47 2.68 2.96 3.18 
50 1.25 1.55 1.76 1.96 2.22 2.42 2.62 2.K!! 3.08 
60 1.24 1.S3 1.72 1.91 2.15 2.33 2.52 2.75 2.94 

70 1.23 1.51 1.70 1.88 2.11 2.28 2.45 2.67 2.84 
80 1.23 1.49 1.68 1.115 2.117 2.23 2.39 2.61 2.77 
90 1.22 1.48 I.M 1.113 2.(14 2.20 2.35 2.56 2.71 

100 1.22 1.48 1.65 1.81 2.112 2.17 2.32 2.52 2.67 
120 1.21 1.46 1.63 1.79 1.99 2.13 2.28 2.46 2.60 

140 1.21 1.45 1.62 1.77 1.97 2.11 2.24 2.42 2.56 
160 1.21 1.45 1.61 1.76 1.95 2.119 2.22 2.39 2.52 
180 1.20 1.44 1.60 1.75 1.94 2.07 2.20 2.37 2.50 
2()(1 1.20 1.44 1.60 1.74 1.93 2.06 2.19 2.35 2.48 
300 1.20 1.43 1.58 1.72 1.89 2.02 2.14 2.30 2.41 

500 1.19 1.42 1.56 1.70 1.117 1.99 2.11 2.26 2.37 
oc 1.111 1.40 1.54 1.67 1.113 1.95 2.05 2.19 2.30 
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TABLE BA «(ont.): Critical Values of the F Distribution 
'1 '" Numeralor DF = 24 

V2 = (1(2): 0.50 0.211 11.10 (1.115 0.112 O.oJ 0.005 0.002 0.001 
Denom. DF a( I): U.25 O. J(l 0.05 (1.1125 1I.oJ 0.005 0.0025 0.001 0.0005 

I 9.63 62.11 249. 997. 6230. 24900. 99!!OO. 623000. 2490000. 
2 3.43 9.45 19.5 39.5 99.5 199. 399. m. 2000. 
3 2.46 5.IX ll.64 14.1 26.6 42.6 68.1 126. 200. 
4 2.~ 3.X3 5.77 ll.51 13.9 20.n 2X.7 45.R 65.11 
5 LXX 3.19 4.53 6.2X 9.47 12.X 17.1 25.1 33.4 

6 1.75 2.X2 3.X4 5.12 7.31 9.47 12.2 16.9 21.5 
7 1.67 2.5X 3.41 4.41 6.117 7.64 9.56 12.7 15.R 
X 1.60 2.40 3.12 3.95 5.2X 6.50 7.95 10.3 12.5 
9 1.56 2.2X 2.90 3.61 4.73 5.73 6.89 8.72 10.4 

10 1.52 2.IX 2.74 3.37 4.33 5.17 6.14 7.64 R.96 

II 1.49 2.10 2.61 3.17 4.02 4.76 5.511 6.&.'i 7.95 
12 1.46 2.114 2.51 3.112 3.7X 4.43 5.16 6.25 7.19 
13 1.44 1.9X 2.42 2.X9 3.59 4.17 4.X2 5.7R 6.60 
14 1.42 1.94 2.35 2.79 3.43 3.96 4.55 5.41 6.13 
15 1.41 1.90 2.29 2.70 3.29 3.79 4.32 5.10 5.75 

16 1.39 1.117 2.24 2.63 3.IR 3.64 4.13 4.R5 5.44 
17 I.3K 1.K4 2.19 2.56 3.tlK 3.51 3.97 4.63 5.18 
18 1.37 1.1\1 2.15 2.50 3.011 3.40 3.X3 4.45 4.95 
19 1.36 1.79 2.11 2.45 2.92 3.31 3.71 4.29 4.76 
20 1.35 1.77 2.OX 2.41 2.M 3.22 3.61 4.15 4.59 

21 1.34 1.75 2.05 2.37 2.M 3.15 3.51 4.03 4.44 
22 1.33 1.73 2.03 2.33 2.75 3.OX 3.43 3.92 4.31 
23 1.33 1.72 2.01 2.30 2.70 3.112 3.35 3.&2 4.20 
24 1.32 1.70 1.91\ 2.27 2.66 2.97 3.29 3.74 4.09 
25 1.32 1.69 1.96 2.24 2.62 2.92 3.23 3.66 4.011 

26 1.31 U,x 1.95 2.22 2.511 2.X7 3.17 3.59 3.92 
27 1.31 1.67 1.93 2.19 2.55 2.K3 3.12 3.52 3.1!4 
28 1.30 1.66 1.91 2.17 2.52 2.79 3.07 3.46 3.77 
29 1.30 1.65 1.90 2.15 2.49 2.76 3.03 3.41 3.70 
30 1.29 1.64 1.119 2.14 2.47 2.73 2.99 3.36 3.64 

35 1.211 1.60 1.113 2.!16 2.36 2.60 2.113 3.16 3.41 
40 1.26 1.57 1.79 2.U1 2.29 2.50 2.72 3.01 3.24 
45 1.26 1.55 1.76 1.96 2.23 2.43 2.63 2.90 3.11 
50 1.25 1.54 1.74 1.93 2.111 2.37 2.56 2.81 3.01 
60 1.24 1.51 1.70 I.XX 2.12 2.29 2.46 2.69 2.R7 

70 1.23 1.49 1.67 I.X5 2.117 2.23 2.39 2.61 2.77 
RO 1.22 1.48 1.65 I.X2 2.03 2.19 2.34 2.54 2.70 
90 1.22 1.47 1.64 I.M 2.m 2.15 2.30 2.50 2.64 

100 1.21 1.46 1.63 1.7K 1.9& 2.13 2.27 2.46 2.60 
120 1.21 1.45 Ull 1.76 1.95 2.09 2.23 2.40 2.53 

140 1.20 1.44 1.60 1.74 1.93 2.(16 2.19 2.36 2.49 
160 UO 1.43 1.59 1.73 1.91 2.114 2.17 2.33 2.45 
180 1.2U 1.43 1.511 1.72 1.90 2.02 2.15 2.31 2.43 
200 1.19 1.42 1.57 1.71 1.119 2.01 2.13 2.29 2.41 
300 1.19 1.41 1.55 1.69 1.85 1.97 2.09 2.24 2.35 

500 1.18 1.40 1.54 1.67 1.10 1.94 2.05 2.20 2.30 
00 1.1X 1.38 1.52 1.64 1.79 1.90 2.m 2.13 2.23 
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TABLE 8.4 (cont.): Critical Values of the F Distribution 
1'1 = Numerator OF = 26 

"2 = a(2): (1.5(1 0.20 0.10 (1.05 (1.02 0.1)1 U.ouS 0.002 0.001 
Dcnom. DF a(I): 0.25 0.10 (l.()5 U.025 um O.lX)5 O.IK)25 U.l101 U.M5 

9.64 62.1 249. 999. 6240. 25(100. 99900. 624UUU. 2500000. 
2 3.44 9.45 19.5 39.5 99.5 199. 399. 999. 21K1O. 
3 2.46 5.17 X.63 14.1 26.6 42.6 6I!.0 126. 2OU. 
4 2.M 3.113 5.76 X.49 13.9 20.0 21!.6 45.6 64.9 
5 I.AA 3.11l 4.52 6.26 9.43 12.7 17.1 2';.0 33.3 

6 1.75 2.RI 3.1l3 5.10 7.2& 9.43 12.1 16.1l 21.4 
7 1.67 2.57 3.40 4.39 6.(14 7.(,1) 9.50 12.7 15.7 
X 1.(,1) 2.40 3.10 3.93 5.2<; 6.46 7.90 10.2 12.4 
9 1.55 2.27 2.1l9 3.59 4.70 5.69 6.M K66 10J 

10 1.52 2.17 2.72 3.34 4.30 5.13 6.119 7.57 !!.89 

II 1.4I! 2.(1) 2.59 3.15 3.99 4.72 5.54 6.71l 7.R7 
12 1.46 2.03 2.49 3.m .l75 4.39 5.11 6.19 7.12 
13 1.44 1.97 2.41 2.1l7 3.56 4.13 4.TI 5.72 6.53 
14 1.42 1.93 2.33 2.77 3.40 3.92 4.50 5.35 6.07 
15 1.40 1.1\9 2.27 2.M 3.26 3.75 4.27 5.114 5.69 

16 1.39 1.H6 2.22 2.(,1) 3.15 3.(,1) 4.119 4.79 5.37 
17 1.31\ 1.1\3 2.17 2.54 3.05 3.47 3.92 4.57 5.11 
III 1.36 I.!:I() 2.13 2.4X 2.97 .l36 3.79 4.31) 4.89 
19 1.35 1.7& 2.10 2.43 2.X9 3.27 3.67 4.21 4.70 
2U 1.35 1.76 2.07 2.31) 2.X3 3.IX 3.56 4.09 4.53 

21 1.34 1.74 2.(14 2.34 2.77 3.11 3.47 3.97 4.38 
22 1.33 1.72 2.1lI 2.31 2.72 3.()4 3.3S 3.H6 4.25 
23 1.32 1.70 1.99 2.28 2.67 2.9X 3.31 3.77 4.14 
24 1.32 1.69 1.97 2.25 2.63 2.93 3.24 3.61\ 4.03 
25 1.31 1.6I! 1.95 2.22 2.51) 2.AA 3.11\ 3.(,11 3.94 

26 1.31 1.67 1.93 2.19 2.55 2.M 3.13 3.53 3.R5 
27 1.30 1.65 1.91 2.17 2.52 2.79 3.111! 3.47 3.711 
2R 1.30 1.64 I.IJO 2.15 2.49 2.76 3.03 3.41 3.71 
29 1.29 1.63 I.AA 2.13 2.46 2.72 2.99 3.35 3.64 
30 1.29 1.63 I.X7 2.11 2.44 2.69 2.95 3.30 3.58 

35 1.27 1.59 I.X2 2.114 2.33 2.56 2.79 3.10 3.35 
40 1.26 1.56 1.77 1.91l 2.26 2.46 2.67 2.96 3.111 
45 1.25 1.54 1.74 1.94 2.20 2.:W 2.59 2.&5 3.05 
50 1.24 1.52 1.72 1.91 2.15 2.33 2.52 2.76 2.95 
(,II 1.23 1.50 1.6I! 1.H6 VII! 2.25 2.42 2.64 2.S1 

70 1.22 1.41\ 1.65 I.X2 2.113 2.19 2.35 2.56 2.71 
IlO 1.22 1.47 1.63 1.79 2.1KI 2.15 2.3U 2.49 2.64 
IJO 1.21 1.45 1.62 1.77 1.97 2.12 2.26 2.44 2.511 

IOU 1.21 1.45 1.61 1.76 1.95 2.09 2.23 2.41 2.54 
120 1.20 1.43 1.59 1.73 1.92 2.05 2.IS 2.35 2.48 

140 1.20 1.42 1.57 1.72 I.X9 2.02 2.15 2.31 2.43 
16(1 1.19 1.42 1.57 1.70 I.AA 2.00 2.12 2.2x 2.40 
IIlO 1.19 1.41 1.56 1.69 1.H6 1.91\ 2.10 2.26 2.37 
20U 1.19 1.41 1.55 1.6I! 1.1l5 1.97 2.119 2.24 2.35 
300 1.1& 1.39 1.53 1.66 1.&2 1.93 2.C14 2.1& 2.29 

5UO I. III 1.3X 1.52 1.64 1.79 I.IJO VII 2.14 2.24 
oc 1.17 1.37 1.511 1.61 1.76 1.86 1.95 2.M 2.17 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
'1 = Numerator DF = 211 

1'2 = u(2): 0.50 0.20 0.10 11.05 0.02 0.01 O.lXI5 0.002 0.001 
~nom. OF a( I): 1l.25 0.10 0.05 0.025 0.01 0.005 0.0025 OJI01 0.0005 

I 9.66 62.2 250. WOO. 6250. 25000. IIXlIXlII. 625000. 2500000. 
2 3.44 9.46 19.5 395 99.5 199. 399. 1)1)\). 2()(J(1. 
3 2.46 5.17 K62 14.1 26.5 42.5 67.9 126. 200. 
4 2.011 3.t(2 5.75 !lA1I 13.9 19.9 211.5 45.5 M.7 
5 I.III! 3.1!I 4.50 6.24 9.40 12.7 17.0 24.9 33.2 

6 1.75 2.SI 3.112 5.0!! 7.25 9.39 12.1 16.7 21.3 
7 \.66 2.56 3.39 4.3!1 6.02 7.57 9.45 12.6 15.0 
S \.tiO 2.39 3.09 3.91 5.22 6.43 7.!16 10.2 12.3 
9 1.55 2.26 2.!l7 3.51! 4.67 5.(15 6.M !I.6O 10.2 

10 1.51 2.16 2.71 3.n 4.27 5. III 6.05 7.52 X.1I2 

II 1.4!I 2.0!! 2.5S 3.13 3.96 4.6!I 5.49 6.73 7.111 
12 1.46 2.02 2.411 2.98 3.72 4.36 5.07 6.14 7.05 
13 1.43 1.96 2.39 2.115 3.53 4.10 4.73 5.67 6.47 
14 1.42 1.92 2.32 2.75 3.37 3.S9 4.46 5.30 6.01 
15 1.40 \.XI! 2.26 2.66 3.24 3.72 4.23 4.99 5.63 

16 1.39 1.!l5 2.21 2.511 3.12 3.57 4.05 4.74 5.32 
17 1.37 1.112 2.16 2.52 3.03 3.44 3.119 4.53 5.05 
II! 1.36 1.79 2.12 2.46 2.94 3.33 3.75 4.34 4.113 
19 1.35 1.77 2.(J!I 2.41 2.!l7 3.24 3.63 4.1!I 4.64 
20 1.34 1.75 2.05 2.37 2.!IO 3.15 3.52 4.05 4.47 

21 1.33 1.73 2.02 2.33 2.74 3.1)!I 3.43 3.93 4.33 
22 1.33 1.71 2.00 2.29 2.69 3.01 3.35 3.!l2 4.20 
23 1.32 \.69 \.97 2.26 2.64 2.95 3.27 3.72 4.08 
24 1.31 \.6!I \.95 2.23 2.60 2.90 3.20 3.63 3.Y!I 
25 1.31 \.67 I.Y3 2.20 2.56 2.x5 3.14 3.56 3.X9 

26 1.30 1.66 1.91 2.17 2.53 2.xo 3.09 .H9 3.!IO 
27 1.30 \.64 1.90 2.15 2.49 2.76 3.114 3.42 3.72 
2R 1.29 \.63 \.XI! 2.13 2.46 2.72 2.99 3.36 3.65 
29 1.29 \.62 1.!l7 2.11 2.44 2.69 2.95 3.31 3.59 
30 1.29 1.62 UI5 2.09 2.41 2.66 2.91 3.26 3.53 

35 1.27 1.5!1 1.1«) 2.02 2.30 2.53 2.75 3.06 3.30 
40 1.26 1.55 1.76 1.96 2.23 2.43 2.M 2.91 3.13 
45 1.25 1.53 1.73 \.92 2.17 2.36 2.55 2.&1 3.00 
50 1.24 1.51 \.70 1.!l9 2.12 2.30 2.4M 2.72 2.90 
60 1.23 1.49 1.66 1.!l3 2.115 2.22 2.3!I 2.60 2.76 

70 1.22 1.47 1.64 1.1«1 2.01 2.16 2.31 2.51 2.66 
I!O 1.21 1.45 1.62 1.77 1.97 2.11 2.26 2.45 2.59 
9Cl 1.21 1.44 1.60 1.75 1.94 2.011 2.22 2.40 2.53 

100 \.20 1.43 1.59 1.74 1.92 2.05 2.19 2.36 2.49 
120 1.20 1.42 1.57 1.71 1.!l9 2.01 2.14 2.30 2.42 

140 1.19 1.41 1.56 1.69 1.86 1.99 2.11 2.26 2.3X 
160 1.19 1.40 1.55 1.6!I 1.115 1.97 2.08 2.23 2.35 
ISO 1.19 1.40 1.54 1.67 I.X3 1.95 2.1)(i 2.21 2.32 
200 1.18 1.39 1.53 1.66 1.!l2 1.94 2.05 2.19 2.30 
300 1.1 X 1.3!1 1.51 1.64 1.79 1.90 2.11O 2.14 2.24 

500 1.17 1.37 1.50 1.62 1.76 1.!l7 1.97 2.10 2.19 
00 1.17 1.35 1.4M 1.59 1.72 1.82 1.91 2.m 2.12 
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TABLE BA (cont.): Critical Values of the F Distribution 
"1 = Numerator OF = 30 

"2 = a(2):0.50 0.20 0.10 0.05 0.02 O.oI 0.005 0.002 0.001 
Oenom.OF a(l): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

I 9.67 62.3 250. 1000. 6260. 2SOOO. 100000. 626000. 2SOOOOO. 
2 3.44 9.46 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.17 8.62 14.1 26.5 42.5 67.8 125. 200. 
4 2.08 3.82 5.75 8.46 13.8 19.9 28.5 45.4 64.6 
5 1.88 3.17 4.50 6.23 9.38 12.7 17.0 24.9 33.1 

6 1.75 2.SO 3.81 5.07 7.23 9.36 12.0 16.7 21.2 
7 1.66 2.56 3.38 4.36 5.99 7.53 9.41 12.5 15.5 
8 1.60 2.38 3.08 3.89 5.20 6.40 7.82 10.1 12.2 
9 1.55 2.25 2.86 3.56 4.65 5.62 6.76 8.55 10.2 

10 1.51 2.16 2.70 3.31 4.25 5.07 6.01 7.47 8.76 

II 1.48 2.08 2.57 3.12 3.94 4.65 5.46 6.68 7.75 
12 1.45 2.01 2.47 2.96 3.70 4.33 5.03 6.09 7.00 
13 1.43 1.96 2.38 2.84 3.51 4.07 4.70 5.63 6.42 
14 1.41 1.91 2.31 2.73 3.35 3.86 4.42 5.25 5.95 
15 1.40 1.87 2.25 2.64 3.21 3.69 4.20 4.95 5.S8 

16 1.38 1.84 2.19 2.57 3.10 3.54 4.01 4.70 5:1:1 
17 1.37 1.81 2.15 2.50 3.00 3.41 3.85 4.48 5.01 
18 1.36 1.78 2.11 2.44 2.92 3.30 3.71 4.30 4.78 
19 1.35 1.76 2.07 2.39 2.84 3.21 3.59 4.14 4.59 
20 1.34 1.74 2.04 2.35 2.78 3.12 3.49 4.00 4.42 

21 1.33 1.72 2.01 2.31 2.72 3.05 3.40 3.88 4.28 
22 1.32 1.70 1.98 2.27 2.67 2.98 3.31 3.78 4.15 
23 1.32 1.69 1.96 2.24 2.62 2.92 3.24 3.68 4.03 
24 1.31 1.67 1.94 2.21 2.58 2.87 3.17 3.59 3.93 
25 1.31 1.66 1.92 2.18 2.54 2.82 3.11 3.52 3.84 

26 1.30 1.65 1.90 2.16 2.50 2.77 3.06 3.44 3.75 
27 1.30 1.64 1.88 2.13 2.47 2.73 3.00 3.38 3.68 
28 1.29 1.63 1.87 2.11 2.44 2.69 2.96 3.32 3.61 
29 1.29 1.62 1.85 2.()9 2.41 2.66 2.92 3.27 3.54 
30 1.28 1.61 1.84 2.07 2.39 2.63 2.88 3.22 3.49 

35 1.27 1.57 1.79 2.00 2.28 2.50 2.72 3.02 3.25 
40 1.25 1.54 1.74 1.94 2.20 2.40 2.60 2.87 3.08 
45 1.24 1.52 1.71 1.90 2.14 2.33 2.51 2.76 2.96 
50 1.23 1.50 1.69 1.87 2.10 2.27 2.45 2.68 2.86 
60 1.22 1.48 1.65 1.82 2.03 2.19 2.35 2.55 2.71 

70 1.21 1.46 1.62 1.78 1.98 2.13 2.28 2.47 2.62 
80 1.21 1.44 1.60 1.75 1.94 2.08 2.22 2.41 2.54 
90 1.20 1.43 1.59 1.73 1.92 2.05 2.18 2.36 2.49 

100 1.20 1.42 1.57 1.71 1.89 2.02 2.15 2.32 2.44 
120 1.19 1.41 1.55 1.69 1.86 1.98 2.11 2.26 2.38 

140 1.19 1.40 1.54 1.67 1.84 1.96 2.07 2.22 2.33 
160 1.18 1.39 1.53 1.66 1.82 1.93 2.05 2.19 2.30 
ISO 1.18 1.39 1.52 1.65 1.81 1.92 2.03 2.17 2.'1:1 
200 1.18 1.38 1.52 1.64 1.79 1.91 2.01 2.15 2.25 
300 1.17 1.37 1.50 1.62 1.76 1.87 1.97 2.10 2.19 

SOO 1.17 1.36 1.48 1.60 1.74 1.84 1.93 2.05 2.14 
00 1.16 1.34 1.46 1.57 1.70 1.79 U!8 1.99 2.07 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
'1 = Numerator OF = 40 

"2 = a(2): 0.50 0.20 (1.1 0 11.05 0.02 0.01 0.1105 O.lXI2 0.001 
)enom. DF n( I): n.25 (1.10 0.n5 0.1125 O,UJ O.tX15 0,(11125 0.001 0.0005 

I 9.71 62.5 251. IOJ(). 6290. 25100. 101000. 629tXX1. 2510000. 
2 3.45 1).47 19.5 :W.5 W.5 19<.1. 39<J. m. 2000. 
3 2.47 5.16 H.59 14.0 26.4 42.3 67.5 125. 11)9. 
4 2.(lH 3.1«1 5.72 H.41 13.7 19.H 2K2 45.1 64.1 
5 I.AA 3.16 4,46 6.IH 9.29 12.5 16.H 24.6 32.7 

6 1.75 2.7H 3.77 5.111 7.14 9.24 11.9 16.4 21.0 
7 1.66 2.54 3.~ 4.31 5.91 7,42 9.26 12.3 15.2 
H 1.59 2.36 3,(14 3.84 5.12 6.29 7./iH 9.92 12.0 
9 1.54 2.23 2.1l3 3.51 4.57 5.52 6.62 K37 9.94 

III 1.51 2.13 2.M) 3.26 4.17 4.97 5.AA 7.30 R.55 

II 1.47 2.05 2.53 3.(16 3.H6 4.55 5.33 6.52 7.55 
12 1,45 1.9<J 2.43 2.91 3.62 4.23 4.91 5.93 6.HI 
13 1.42 1.93 2.34 2.71l 3.43 3.97 4.57 5.47 6.23 
14 1.41 I.Il9 2.27 2.67 3.27 3.76 4.3U 5.10 5.77 
15 1.39 I.H5 2.2U 2.59 3.13 3.5H 4.1lH 4.1«1 S,40 

16 1.37 I.HI 2.15 2.51 3.02 3.44 3.H9 4.54 5.09 
17 1.36 1.7H 2.10 2.44 2.92 3.31 3.73 4.33 4.H3 
II! 1.35 1.75 2.116 2.3H 2.1\4 3.20 3.51) 4.15 4.61 
19 1.34 1.73 2.113 2.33 2.76 3.11 3,47 3.9<J 4.42 
20 1.33 1.71 I.W 2.29 2.69 3.112 3.37 3.Hti 4.25 

21 1.32 1.69 1.% 2.25 2.64 2.1)5 3.27 3.74 4.11 
22 1.31 1.67 1.94 2.21 2.5H 2.M 3.19 3.63 3.9H 
2.~ 1.31 1.66 1.91 2.11l 2.54 2.H2 3.12 3.53 3.1l7 
24 1.30 1.64 I.H9 2.15 2.49 2.77 3.05 3.45 3.76 
25 1.29 1.63 I.H7 2.12 2.45 2.72 2.W 3.37 3.67 

26 1.29 1.61 I.H5 2.U') 2.42 2.67 2.93 3.30 3.59 
27 1.2H 1.60 1.1\4 2.07 2.3H 2.63 2.AA 3.23 3.51 
28 1.2H 1.59 I.H2 2.05 235 2.59 2.1\4 3.18 3.44 
29 1.27 1.5H I.KI 2.03 2.33 2.56 2.79 3.12 3.38 
30 1.27 1.57 1.79 2.111 2.30 2.52 2.76 3.07 3.32 

35 1.25 1.53 1.74 1.93 2.19 2.39 2.60 2.H7 3.09 
40 1.24 1.51 1.69 I.AA 2.11 2.3U 2.4K 2.73 2.92 
45 1.23 1.4K 1.66 1.1!3 2.05 2.22 2.39 2.62 2.79 
50 1.22 1,46 1.63 1.1«1 2.(11 2.16 2.32 2.53 2.69 
60 1.21 1.44 1.59 1.74 1.94 2.(lH 2.22 2.41 2.55 

7U 1.2U 1.42 1.57 1.71 I.H9 2.02 2.15 2.32 2.45 
8U 1.19 I,4U 1.54 1.6K I.K5 1.97 2.10 2.26 2.38 
90 1.19 1.39 1.53 1.66 I.H2 1.94 2.116 2.21 2.32 

100 I.IH 1.3H 1.52 1.64 1.1«) 1.91 2.02 2.17 2.28 
120 I.IR 1.37 1.511 1.61 1.76 un 1.9H 2.11 2.21 

140 1.17 1.36 1.4H 1.60 1.74 1.1\4 1.94 2.07 2.17 
160 1.17 1.35 1.47 1.5/\ 1.72 1.1l2 1.92 2.(14 2.13 
II!O 1.16 1.34 1.46 1.57 1.71 1.1«1 1.90 2.02 2.11 
200 1.16 1.34 1.46 1.56 1.69 1.79 I.AA 2.00 2.09 
300 1.15 1.32 1.43 1.54 1.66 1.75 1.1\4 1.94 2.02 

500 1.15 1.31 1.42 1.52 1.63 1.72 1.811 1.90 1.9H 
00 1.14 1.30 1.39 1.4K 1.59 1.67 1.74 1.1\4 1.90 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
"I = Numerator OF = 50 

1'2= a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
Oenom.OF a(1): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

1 9.74 62.7 252. 1010. 6300. 25200. 101000. 630000. 2520000. 
2 3.46 9.47 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.15 8.58 14.0 26.4 42.2 67.4 125. 198. 
4 2.08 3.80 5.70 8.38 13.7 19.7 28.1 44.9 63.8 
5 1.88 3.15 4.44 6.14 9.24 12.5 16.7 24.4 32.5 

6 1.75 2.TI 3.75 4.98 7.("1) 9.17 11.8 16.3 20.8 
7 1.66 2.52 3.32 4.28 5.86 7.35 9.17 12.2 15.1 
8 1.59 2.35 3.02 3.81 5.01 6.22 7.59 9.80 U.8 
9 1.54 2.22 2.80 3.47 4.52 5.45 6.54 8.26 9.81 

10 1.50 2.12 2.64 3.22 4.12 4.90 5.80 7.19 8.43 

11 1.47 2.04 2.51 3.03 3.81 4.49 5.25 6.42 7.43 
12 1.44 1.97 2.40 2.87 3.57 4.17 4.83 5.83 6.69 
13 \,42 \.92 2.31 2.74 3.38 3.91 4.50 5.37 6.11 
14 1.40 1.87 2.24 2.64 3.22 3.70 4.23 5.00 5.66 
15 1.38 1.83 2.18 2.55 3.08 3.52 4.00 4.70 5.29 

16 1.37 1.79 2.12 2.47 2.97 3.37 3.111 4.45 4.98 
17 1.36 1.16 2.08 2.41 2.87 3.25 3.65 4.24 4.n 
18 1.34 1.74 2.04 2.35 2.78 3.14 3.52 4.06 4.50 
19 1.33 1.11 2.00 2.30 2.71 3.04 3.40 3.90 431 
20 1.32 1.69 1.97 2.25 2.64 2.96 3.29 3.TI 4.15 

21 1.32 1.67 1.94 2.21 2.58 2.88 3.20 3.64 4.00 
22 1.31 1.65 1.91 2.17 2.53 2.82 3.12 3.54 3.88 
23 1.30 1.64 1.88 2.14 2.48 2.76 3.04 3.44 3.76 
24 1.29 1.62 1.86 2.11 2.44 2.70 2.98 3.36 3.66 
25 1.29 1.61 1.84 2.08 2.40 2.65 2.91 3.28 3.57 

26 1.28 1.59 1.82 2.05 2.36 2.61 2.86 3.21 3.49 
27 1.28 1.58 1.81 2.03 2.33 2.57 2.81 3.14 3.41 
28 1.27 1.57 1.79 2.01 2.30 2.53 2.76 3.("1) 3.34 
29 1.27 1.56 I.TI 1.99 2.27 2.49 2.72 3.03 3.28 
30 1.26 1.55 1.76 1.97 2.25 2.46 2.68 2.98 3.22 

35 1.24 1.51 1.70 1.89 2.14 2.33 2.52 2.78 2.98 
40 1.23 1.48 1.66 1.83 2.06 2.23 2.40 2.64 2.82 
45 1.22 1.46 1.63 1.79 2.00 2.16 2.31 2.53 2.69 
50 1.21 1.44 1.60 1.75 1.95 2.10 2.24 2.44 2.59 
60 1.20 1.41 1.56 1.70 1.88 2.01 2.14 2.32. 2.45 

70 1.19 1.39 1.53 1.66 1.113 1.95 2.07 2.23 2.35 
80 1.18 1.38 1.51 1.63 1.79 1.90 2.02 2.16 2.28 
90 1.111 1.36 1.49 1.61 1.76 1.87 1.98 2.11 2.22 

100 1.17 1.35 1.48 1.59 1.14 1.84 1.94 2.08 2.18 
120 1.16 1.34 1.46 1.56 1.70 1.80 1.89 2.02 2.11 

140 1.16 1.33 1.44 1.55 1.67 I.TI 1.86 1.98 2.06 
160 1.15 1.32 1.43 1.53 1.66 1.75 1.83 1.95 2.03 
180 1.15 1.32 1.42 1.52 1.64 1.73 1.81 1.92 2.00 
200 1.15 1.31 1.41 1.51 1.63 1.71 1.80 1.90 1.98 
300 1.14 1.29 1.39 1.48 1.59 1.67 1.75 1.85 1.92 

500 1.14 1.28 1.38 1.46 1.57 1.64 1.71 1.80 1.87 
00 1.13 1.26 1.35 1.43 1.52 1.59 1.65 1.73 1.79 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
1'1 ; Numerator DF = 60 

I'~ = 0'(2): 0.50 !I.21l 0.10 11.115 0.1)2 (Ull (1.005 0.002 1I.(Xll 
lenom. DF a( I): 0.2.'i 0.10 0.05 0.(125 0.111 0.!MI5 (1.0025 0.001 0.0005 

I 9.76 62.1\ 252. 1010. f,J Ill. 2:'iJOO. 1000no. 631000. 2531X)()0. 
2 3.40 9.47 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 ;'1.15 11.57 14.0 26.3 42.1 67.:' 124. 19K 
4 2.0!! 3.79 5.69 !U6 13.7 19.6 2KIJ 44.7 H6 
5 1.117 :'.14 4.43 6.12 9.20 12.4 16.6 24.3 32.4 

6 1.74 2.76 3.74 4.% 7.1lf1 9.12 11.7 16.2 2IJ.7 
7 1.65 2.51 :UO 4.25 5.X2 7.31 9.12 12.1 15.0 
8 1.59 2.34 3.01 3.78 5.m 6.111 7.54 9.7?> 11.8 
9 1.54 2.21 2.79 3.45 4.41! 5.41 6.49 lU9 9.72 

10 1.50 2.11 2.62 3.211 4.1l1! 4.1!6 5.75 7.12 8.34 

11 1.47 2.03 2.49 3.(X) 3.711 4.45 5.20 6.35 7.35 
12 1.44 1.% VI! 2.1!5 3.54 4.12 4.7X 5.76 6.61 
13 1.42 1.90 2.3U 2.72 3.34 3.1!7 4.44 5.30 6.04 
14 1.40 1.116 2.22 2.61 3.111 3.M 4.17 4.94 5.58 
15 1.38 I.X2 2.16 2.52 3.05 JAX 3.95 4.64 5.21 

16 1.36 1.78 2.11 2.45 2.93 3.33 3.76 4.39 4.91 
17 1.35 1.75 2.06 2.38 2.1!3 3.21 3.M 4.IX 4.65 
IX 1.34 1.72 2.112 1.32 2.75 3.10 3.47 4.(X) 4.43 
19 1.33 1.70 1.98 2.27 2.67 3.()() 3.35 3.X4 4.24 
20 1.32 1.68 1.95 2.22 2.61 2.92 3.24 3.70 4.118 

21 1.31 I.M 1.92 2.IS 255 2.X4 3.15 3.5X 3.93 
22 1.31) 1.64 1.119 2.14 250 2.77 3.07 3.41! 3.81 
23 1.30 1.62 1.86 2.11 2.45 2.71 2.99 3.31! 3.69 
24 1.29 1.61 1.X4 2.0!! 2.40 2.M 2.n 3.29 3.59 
25 1.2X 1.59 I.X2 2.05 2.36 2.61 2.1!6 3.22 3.50 

26 1.2X LSI! 1.110 2.03 2.33 256 2.111 3.15 3.42 
27 1.27 1.57 1.79 2.lX) 2.29 2.52 2.76 3.OX 3.34 
21! 1.27 1.56 1.77 1.911 2.26 2.41! 2.71 3.02 3.27 
29 1.26 1.55 1.75 1.96 2.23 2.45 2.67 2.97 3.21 
30 1.26 1.54 1.74 1.94 2.21 2.42 2.63 2.92 3.15 

35 1.24 150 1.68 I.I!6 2.111 2.21! 2.47 2.72 2.91 
40 1.27 1.47 1.64 I.M 2.02 2.111 2.35 2.57 2.75 
45 1.21 1.44 1.60 1.76 1.% 2.11 2.26 2.40 2.62 
SO 1.20 1.42 1.511 1.72 1.9 I 2.1)5 2.19 2.38 2.52 
60 1.19 1.40 1.53 1.67 1.X4 1.% 2.()I) 2.25 2.38 

70 1.111 1.37 1.50 1.63 I.7I! 1.90 2.111 2.16 2.28 
SO 1.17 1.36 1.4I! 1.60 1.75 1.1!5 1.% 2.10 2.20 
90 1.17 1.35 1.46 1.511 1.72 1.1!2 1.92 2.05 2.15 

100 1.16 1.34 1.45 1.56 1.69 1.79 1.89 2.111 2.10 
120 1.16 1.32 1.43 1.53 I.M 1.75 1.X4 1.95 2.04 

140 1.15 1.31 1.41 1.51 1.63 1.72 I.XI) 1.91 1.99 
1(1) 1.15 1.30 1.40 1.50 1.61 1.69 1.77 1.&\ 1.95 
180 1.14 1.29 1.39 1.4I! 1.(1) 1.68 1.75 1.1!5 1.93 
200 1.14 1.29 1.39 1.47 1.511 I.M 1.74 1.113 1.90 
300 1.13 1.27 1.36 1.45 1.55 1.62 1.69 1.71' 1.X4 

500 1.13 1.26 1.35 1.42 1.52 LSI! 1.65 1.73 1.79 
00 1.12 1.24 1.32 1.39 1.47 1.53 1.59 I.M 1.71 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
III = Numerator DF = 70 

112= a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
Denom.DF a(1): 0.25 0.10 0.05 0.025 0.0\ 0.005 0.0025 0.001 0.0005 

I 9.n 62.9 252. 1010. 6320. 25300. 101000. 632000. 2530000. 
2 3.46 9.48 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.15 8.57 14.0 26.3 42.1 67.2 124. 198. 
4 2.08 3.79 5.68 8.35 13.6 19.6 28.0 44.6 63.4 
5 1.87 3.14 4.42 6.11 9.18 12.4 16.6 24.3 32.3 

6 1.74 2.76 3.73 4.94 7.03 9.09 11.7 16.1 20.6 
7 1.65 2.51 3.29 4.24 5.80 7.28 9.07 12.1 14.9 
8 1.59 2.33 2.99 3.n 5.01 6.15 7.49 9.67 11.7 
9 1.54 2.20 2.78 3.43 4.46 5.38 6.45 8.\3 9.65 

10 1.50 2.10 2.61 3.111 4.06 4.83 5.71 7.07 8.28 

11 1.46 2.02 2.48 2.99 3.75 4.41 5.16 6.30 7.29 
12 1.44 1.95 2.37 2.83 3.51 4.09 4.74 5.71 6.55 
\3 1.41 1.90 2.28 2.70 3.32 3.84 4.41 5.26 5.98 
14 1.39 1.85 2.21 2.M 3.16 3.62 4.14 4.89 5.53 
15 1.38 1.81 2.15 2.51 3.02 3.45 3.91 4.59 5.16 

16 1.36 1.77 2.09 2.43 2.91 3.30 3.73 4.34 4.85 
17 1.35 1.74 2.05 2.36 2.81 3.18 3.57 4.13 4.60 
18 1.34 1.71 2.00 2.30 2.72 3.07 3.43 3.95 4.38 
19 1.33 1.69 1.97 2.25 2.65 2.97 3.31 3.79 4.19 
20 1.32 1.67 1.93 2.20 2.58 2.88 3.20 3.66 4.03 

21 1.31 1.65 1.90 2.16 2.52 2.111 3.11 3.54 3.88 
22 1.30 1.63 1.88 2.\3 2.47 2.74 3.03 3.43 3.76 
23 1.29 1.61 1.85 2.()9 2.42 2.68 2.95 3.34 3.64 
24 1.28 I.M 1.83 2.06 2.38 2.63 2.89 3.25 3.54 
25 1.28 1.58 1.81 2.03 2.34 2.58 2.83 3.17 3.45 

26 1.27 1.57 1.79 2.01 2.30 2.53 2.n 3.10 3.37 
27 1.27 1.56 I.n 1.98 2.27 2.49 2.72 3.04 3.29 
28 1.26 1.55 1.75 1.96 2.24 2.45 2.67 2.98 3.22 
29 1.26 1.54 1.74 1.94 2.21 2.42 2.63 2.92 3.16 
30 1.25 1.53 1.72 1.92 2.18 2.38 2.59 2.87 3.10 

35 1.23 1.49 1.66 1.84 2.07 2.25 2.43 2.67 2.86 
40 1.22 1.46 1.62 1.78 1.99 2.15 2.31 2.53 2.70 
45 1.21 1.43 1.59 1.74 1.93 2.08 2.22 2.42 2.57 
50 1.20 1.41 1.56 1.70 1.88 2.02 2.15 2.33 2.47 
60 1.19 1.38 1.52 1.64 1.81 1.93 2.05 2.21 2.33 

70 1.18 1.36 1.49 1.60 1.75 1.86 1.97 2.12 2.22 
80 1.17 1.34 1.46 1.57 1.71 1.82 1.92 2.05 2.15 
90 1.16 1.33 1.44 1.55 1.68 1.78 1.88 2.00 2.09 

100 1.16 1.32 1.43 1.53 1.66 1.75 1.84 1.96 2.05 
120 1.15 1.31 1.41 1.50 1.62 1.71 1.79 1.90 1.98 

140 1.14 1.29 1.39 1.48 1.60 1.68 1.76 1.86 1.93 
160 1.14 1.29 1.38 1.47 1.58 1.65 1.73 1.83 1.90 
180 1.14 1.28 1.37 1.46 1.56 1.64 1.71 1.80 1.87 
200 1.13 1.27 1.36 1.45 1.55 1.62 1.69 1.78 1.85 
300 1.13 1.26 1.34 1.42 1.51 1.58 1.64 1.72 1.78 

500 1.12 1.24 1.32 1.39 1.48 1.54 1.60 1.68 1.73 
00 1.11 1.22 1.29 1.36 1.43 1.49 1.54 1.60 1.65 



AppendixB Statistical Tables and Graphs 709 

TABLE B.4 (cont.): Critical Values of the F Distribution 
11\ = Numerator OF = 80 

112= a(2): 0.50 0.20 11.10 0.05 0.112 0.111 1I.llU5 0.002 0.001 
Denom.OF a(I): 0.25 0.10 11.05 0.1125 0.01 0.005 0.0025 0.001 0.0005 

I 9.78 62.9 253. 1010. 6330. 25300. I0100lO. 633000. 2530000. 
2 3.46 9.411 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.15 K.56 14.0 26.3 42.1 67.1 124. 198. 
4 2.08 3.78 5.67 8.33 13.6 19.5 27.9 44.6 63.3 
5 1.87 3.13 4.41 6.10 9.16 12.3 16.5 24.2 32.2 

6 1.74 2.75 3.72 4.93 7.111 9.06 11.6 16.1 20.5 
7 1.65 2.50 3.29 4.23 5.78 7.25 9.04 12.0 14.8 
II 1.59 2.33 2.99 3.76 4.99 6.12 7.46 9.63 11.6 
9 1.54 2.20 2.77 3.42 4.44 5.36 6.42 8.09 9.61 

to 1.50 2.09 2.60 3.17 4.114 4.110 5.68 7.03 8.23 

11 1.46 2.01 2.47 2.97 3.73 4.39 5.13 6.26 7.25 
12 1.44 1.95 2.36 2.82 3.49 4.07 4.71 5.611 6.51 
13 1.41 1.l!9 2.27 2.69 3.30 3.111 4.38 5.22 5.94 
14 1.39 1.l!4 2.20 2.511 3.14 3.60 4.11 4.86 5.49 
15 1.37 1.80 2.14 2.49 3.()() 3.43 3.119 4.56 5.12 

16 1.36 1.77 2.08 2.42 2.119 3.211 3.70 4.31 4.81 
17 1.35 1.74 2.03 2.35 2.79 3.15 3.54 4.10 4.56 
111 1.33 1.71 1.99 2.29 2.70 3.04 3.40 3.92 4.34 
19 1.32 1.611 1.96 2.24 2.63 2.95 3.28 3.76 4.15 
20 1.31 1.66 1.92 2.19 2.56 2.116 3.IS 3.62 3.99 

21 1.30 1.64 U!9 2.15 2.50 2.79 3.08 3.50 3.84 
22 1.30 1.62 1.86 2.11 2.45 2.72 3.00 3.40 3.72 
23 1.29 1.61 1.l!4 2.118 2.40 2.66 2.93 3.311 3.60 
24 1.2S 1.59 1.l!2 2.05 2.36 2.60 2.86 3.22 3.50 
2.'1 1.211 1.511 1.110 2.112 2.32 2.55 2.110 3.14 3.41 

26 1.27 1.56 1.711 1.99 2.211 2.51 2.74 3.07 3.33 
27 1.26 \.55 1.76 1.97 2.25 2.47 2.69 3.00 3.25 
211 1.26 1.54 1.74 1.94 2.22 2.43 2.64 2.94 3.18 
29 1.25 1.53 1.73 1.92 2.19 2.39 2.60 2.119 3.12 
3(1 1.25 1.52 1.71 1.90 2.16 2.36 2.56 2.l!4 3.06 

35 1.23 1.411 1.65 1.l!2 2.05 2.22 2.40 2.64 2.83 
40 1.22 1.45 1.61 1.76 1.97 2.12 2.28 2.49 2.66 
45 1.21 1.42 1.57 1.72 1.91 2.05 2.19 2.38 2.53 
50 1.20 1.40 1.54 1.611 1.86 1.99 2.12 2.30 2.43 
60 1.18 1.37 1.50 1.63 1.711 1.90 2.02 2.17 2.29 

70 1.17 1.35 1.47 1.59 1.73 1.84 1.94 2.08 2.IS 
80 1.16 1.33 1.45 1.55 1.69 1.79 1.119 2.01 2.11 
90 1.16 1.32 1.43 1.53 1.66 1.75 1.114 1.96 2.05 

100 1.15 1.31 1.41 1.51 1.63 1.72 1.111 1.92 2.01 
120 1.14 1.29 1.39 1.411 1.60 1.68 1.76 1.86 1.94 

140 1.14 1.28 1.38 1.46 1.57 1.65 1.72 1.82 1.89 
160 1.13 1.27 1.36 1.45 1.55 1.62 1.69 1.79 1.85 
180 \.13 1.27 1.35 1.43 1.53 1.61 1.67 1.76 1.83 
200 1.13 1.26 1.35 1.42 1.52 1.59 1.66 1.74 1.80 
300 1.12 1.24 1.32 1.39 1.411 1.55 1.61 1.68 1.74 

500 1.11 1.23 1.30 1.37 1.45 1.51 1.56 1.63 1.68 
00 1.10 1.21 1.27 1.33 1.40 1.45 1.50 1.56 1.60 
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TABLE 8.4 (cont.): Critical Values of the F Distribution 
"I = Numerator DF = 90 

"2= a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
Denom.DF a(I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

1 9.79 63.0 253. 1010. 6330. 25300. 101000. 633000. 2530000. 
2 3.46 9.48 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.15 8.56 14.0 26.3 42.0 67.1 124. 197. 
4 2.08 3.78 5.67 8.33 13.6 19.5 27.9 44.5 63.2 
5 1.87 3.13 4.41 6.09 9.14 12.3 16.5 24.2 32.1 

6 1.74 2.75 3.72 4.92 7.00 9.04 11.6 16.1 20.4 
7 1.65 2.50 3.28 4.22 5.n 7.23 9.01 12.0 14.8 
8 1.59 2.32 2.98 3.75 4.97 6.10 7.44 9.60 11.6 
9 1.53 2.19 2.76 3.41 4.43 5.34 6.40 8.06 9.57 

\0 1.49 2.09 2.59 3.16 4.03 4.79 5.66 7.00 8.20 

11 1.46 2.01 2.46 2.96 3.72 4.37 5.11 6.23 7.21 
12 1.43 1.94 2.36 2.81 3.48 4.05 4.69 5.65 6.48 
13 1.41 1.89 2.27 2.68 3.28 3.79 4.36 5.19 5.91 
14 1.39 1.84 2.19 2.57 3.12 3.58 4.09 4.83 5.45 
15 1.37 1.80 2.13 2.48 2.99 HI 3.86 4.53 5.09 

16 1.36 1.76 2.07 2.40 2.87 3.26 3.68 4.28 4.78 
17 1.34 1.73 2.03 2.34 2.78 3.13 3.52 4.07 4.53 
18 1.33 1.70 1.98 2.28 2.69 3.02 3.38 3.89 4.31 
19 1.32 1.68 1.95 2.23 2.61 2.93 3.26 3.73 4.12 
20 1.31 1.65 1.91 2.18 2.55 2.84 3.16 3.60 3.96 

21 1.30 1.63 1.88 2.14 2.49 2.n 3.06 3.48 3.81 
22 1.29 1.62 1.86 2.10 2.43 2.70 2.98 3.37 3.69 
23 1.29 1.60 1.83 2.07 2.39 2.64 2.90 3.28 3.57 
24 1.28 1.58 1.81 2.03 2.34 2.58 2.84 3.19 3.47 
25 1.27 1.57 1.79 2.01 2.30 2.53 2.78 3.11 3.38 

26 1.27 1.56 I.n 1.98 2.26 2.49 2.72 3.04 3.30 
27 1.26 1.54 1.75 1.95 2.23 2.45 2.67 2.98 3.22 
28 1.26 1.53 1.73 1.93 2.20 2.41 2.62 2.92 3.15 
29 1.25 1.52 1.72 1.91 2.17 2.37 2.58 2.86 3.09 
30 1.25 1.51 1.70 1.89 2.14 2.34 2.54 2.81 3.03 

35 1.23 1.47 1.64 1.81 2.03 2.20 2.38 2.61 2.80 
40 1.21 1.44 1.60 1.75 1.95 2.10 2.26 2.47 2.63 
45 1.20 1.41 1.56 1.70 1.89 2.03 2.17 2.36 2.50 
50 1.19 1.39 1.53 1.67 1.84 1.97 2.10 2.27 2.40 
60 1.18 1.36 1.49 1.61 1.76 1.88 \.99 2.14 2.25 

70 1.17 1.34 1.46 1.57 1.71 1.81 1.92 2.05 2.15 
80 1.16 1.33 1.44 1.54 1.67 I.n 1.86 1.98 2.08 
90 1.15 1.31 1.42 1.52 1.64 1.73 1.82 1.93 2.02 

100 1.15 1.30 1.40 1.50 1.61 1.70 1.78 1.89 1.97 
120 1.14 1.28 1.38 1.47 1.58 1.66 1.73 1.83 1.90 

140 1.13 1.27 1.36 1.45 1.55 1.62 1.70 1.79 \.86 
160 1.13 1.26 1.35 1.43 1.53 1.60 1.67 1.75 1.82 
180 1.13 1.26 1.34 1.42 1.51 1.58 1.65 1.73 1.79 
200 1.12 1.25 1.33 1.41 1.50 1.56 1.63 1.71 1.77 
300 1.11 1.23 1.31 1.38 1.46 1.52 1.58 1.65 1.70 

500 1.11 1.22 1.29 1.35 1.43 1.48 1.53 1.60 1.65 
00 1.10 1.20 1.26 1.31 1.38 1.43 1.47 1.52 1.56 
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TABLE BA (cont.): Critical Values of the F Distribution 
VI ~ Numerator DF = 100 

"2 = (1(2): 0.50 0.20 0.10 0.05 0.(12 0.01 0.005 0.(J02 O.ool 
Denom. DF cr( I ): 0.2.'1 0.10 (1.05 0.025 lUll 0.IK)5 0.(1)2.'1 11.001 0.0005 

J 9.80 63.0 2.'13. 1010. 6330. 253(](). 10101JO. 6331100. 2530000. 
2 3.47 9.48 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.14 !!.55 14.0 26.2 42.0 67.1 124. 197. 
4 2.08 3.78 5.66 K32 13.6 195 27.9 44.5 63.2 
5 1.87 3.13 4.41 6.08 9.13 12.3 16.5 24.1 32.1 

6 1.74 2.75 Ul 4.92 6.99 9.03 11.6 16.0 20.4 
7 1.65 2.50 3.27 4.21 5.75 7.22 8.1)<) 12.0 14.8 
8 1.58 2.32 2.97 3.74 4.96 6.119 7.42 957 11.6 
9 1.53 2.19 2.76 3.411 4.41 5.32 6.38 R04 9.54 

10 1.49 2.09 2.59 3.15 4.01 4.77 5.64 6.9!! 8.17 

11 1.41i 2.01 2.46 2.96 3.71 4.31i 5.119 6.21 7.19 
12 1.43 1.94 2.35 2.1«) 3.47 4.04 4.67 5.63 1i.45 
13 1.41 1.88 2.26 2.67 3.27 3.78 4.34 5.17 5.88 
14 1.39 1.83 2.19 2.56 3.11 3.57 4.117 4.81 5.43 
15 1.37 1.79 2.12 2.47 2.98 3.39 3.8.'1 4.51 5.06 

16 1.36 1.76 2.07 2.40 2.86 3.2.'i 3.66 4.26 4.76 
17 1.34 1.73 2.02 2.33 2.76 3.12 3.50 4.05 4.50 
18 1.33 1.70 1.98 2.27 2.68 3.01 3.36 3.87 4.28 
19 1.32 1.67 1.94 2.22 2.60 2.91 3.24 3.71 4.10 
20 1.31 1.65 1.91 2.17 2.54 2.!13 3.14 3.58 3.93 

21 1.30 1.63 1.88 2.13 2.48 2.75 3.1)4 3.46 3.79 
22 1.29 1.61 1.85 2.119 2.42 2.69 2.96 3.35 3.66 
23 1.29 1.59 1.82 2.06 2.37 2.62 2.89 3.2.'i 3.55 
24 1.28 1.58 1.80 2.02 2.33 2.57 2.82 3.17 3.45 
2.'1 1.27 1.56 1.78 2.011 2.29 2.52 2.76 3.09 3.36 

26 1.27 1.55 1.76 1.97 2.25 2.47 2.70 3.112 3.27 
27 1.26 1.54 1.74 1.94 2.22 2.43 2.65 2.96 3.20 
28 1.25 1.53 1.73 1.92 2.19 2.39 2.60 2.90 3.13 
29 1.25 1.52 1.71 1.90 2.16 2.36 2.56 2.84 3.06 
30 1.25 1.51 1.70 1.88 2.13 2.32 252 2.79 3.01 

35 1.23 1.47 1.63 1.81) 2.02 2.19 2.36 2.59 2.77 
40 1.21 1.43 1.59 1.74 1.94 2.119 2.24 2.44 2.60 
45 J.2() 1.41 1.55 1.69 1.88 2.01 2.15 2.33 2.47 
50 1.19 1.39 1.52 1.66 1.82 1.95 2.08 2.25 2.37 
60 1.18 1.36 1.4H 1.60 1.75 1.86 1.97 2.12 2.23 

70 1.16 1.34 1.45 1.56 1.70 1.80 1.90 2.03 2.13 
I«) 1.16 1.32 1.43 1.53 1.65 1.75 1.84 1.96 2.05 
90 1.15 1.30 1.41 1.50 1.62 1.71 1.1«) 1.91 1.99 

loo 1.14 1.29 1.39 1.4H 1.60 1.68 1.76 1.87 1.95 
120 1.14 1.28 1.37 1.45 1.56 1.64 1.71 1.81 1.88 

140 1.13 1.26 1.35 1.43 1.53 1.60 1.67 1.76 1.83 
160 1.13 1.26 1.34 1.42 1.51 1.58 1.64 1.73 1.79 
180 1.12 1.2.'1 1.33 1.40 1.49 1.56 1.62 1.71l 1.76 
200 1.12 1.24 1.32 1.39 1.48 1.54 1.60 1.68 1.74 
300 1.11 1.22 1.30 1.36 1.44 1.511 1.55 1.62 1.67 

500 1.10 1.21 1.2!! 1.34 1.41 1.46 1.51 1.57 1.62 
00 1.09 1.18 1.24 1.30 1.36 1.40 1.44 1.49 1.53 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
111 = Numerator DF ; 120 

"2 '" a(2): 0.50 0.20 0.111 0.05 0.02 0.01 O.OOS OJl()2 0.001 
Dcnom. DF a(I): 0.25 0.10 O.OS 0.025 0,01 0.1105 0.111125 1l.1101 IWOO5 

I 9.l!Il 63.1 253. 1010. 6340. 254110. 10111(11). 63411(11). 254(1111)0. 
2 3.47 9.48 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.14 11.55 D.9 26.2 42.0 fl7.0 124. 197. 
4 2.08 3.78 5.66 lUI 13.6 19.5 27.11 44.4 63.1 
S 1.87 3.12 4.40 6.07 9.11 12.3 16.4 24.1 32.0 

6 1.74 2.74 3.70 4.911 6.97 9.00 11.6 16.0 20.3 
7 1.65 2.49 3.27 4.20 5.74 7.19 l!.96 11.9 14.7 
8 1.58 2.32 2.97 3.73 4.95 6.1)6 7.39 9.53 11.5 
9 1.53 2.1!! 2.75 3.39 4.4{) 5.30 6.35 lUll) 9.49 

10 1.49 2.08 2.58 3.14 4.m 4.75 5.61 6.94 8.12 

II 1.46 2.(10 2.45 2.94 3.69 4.34 5.07 fl. I!! 7.14 
12 1.43 1.93 2.34 2.79 3.45 4.111 4.65 5.59 6.41 
13 1.41 1.88 2.25 2.66 3.25 3.76 4.31 S.14 5.l!4 
14 1.39 un 2.18 2.55 3.09 3.55 4.04 4.77 5.39 
15 1.37 1.79 2.11 2.46 2.96 3.37 3.!!2 4.47 5.02 

16 1.35 1.75 2.1)6 2.38 2.!!4 3.22 3.63 4.23 4.72 
17 1.34 1.72 2.01 2.32 2.75 3.W 3.47 4.02 4.46 
18 1.33 1.69 1.97 2.26 2.66 2.99 3.34 3.84 4.25 
19 1.32 1.67 1.93 2.20 2.58 2./(9 3.22 3.6l! 4.1)6 
20 1.31 1.64 1.(1) 2.16 2.52 2.81 3.11 3.54 3.90 

21 1.30 1.62 1.87 2.11 2.46 2.73 3.m 3.42 3.75 
22 1.29 1.60 1.84 2.(1lI 2.40 2.66 2.93 3.32 3.62 
23 1.28 1.59 I.RI 2.114 2.35 2.60 2.86 3.22 3.51 
24 1.28 1.57 1.79 2.01 2.31 2.55 2.79 3.14 3.41 
25 1.27 1.56 1.77 1.98 2.27 2.50 2.73 3.()6 3.32 

26 1.26 1.54 1.75 1.95 2.23 2.45 2.6l! 2.99 3.24 
27 1.26 1.53 1.73 1.93 2.211 2.41 2.62 2.92 3.16 
28 1.25 1.52 1.71 1.91 2.17 2.37 2.Sl! 2.M 3.1)9 
29 1.25 1.51 1.70 1.119 2.14 2.33 2.53 2./(1 3.03 
30 1.24 1.50 1.6l! 1./(7 2.11 2.30 2.49 2.76 2.97 

35 1.22 1.46 1.62 1.79 2.(11) 2.16 2.33 2.5t! 2.73 
40 1.21 1.42 1.Sl! 1.72 1.92 2.()6 2.21 2.41 2.56 
45 1.20 1.40 1.54 1.6l! 1.85 1.99 2.12 2.30 2.44 
50 1.19 1.38 1.51 1.64 I.SO 1.93 2.05 2.21 2.34 
60 1.17 1.35 1.47 1.58 1.73 1.113 1.94 2.0!! 2.19 

70 1.16 1.32 1.44 1.54 1.67 1.77 1.!!7 1.99 2.09 
80 1.15 1.31 1.41 1.51 1.63 1.72 1.81 1.92 2.01 
911 1.15 1.29 1.39 1.48 1.60 1.6l! 1.76 1.87 1.95 

100 1.14 1.28 1.311 1.46 157 1.65 1.73 I.lB 1.90 
120 1.13 1.26 1.35 1.43 1.53 1.61 1.6l! 1.77 1.83 

140 1.13 1.25 1.33 1.41 1.51) 1.57 1.64 1.72 1.78 
160 1.12 1.24 1.32 1.39 1.411 1.55 1.61 1.69 1.75 
ISO 1.12 1.23 1.31 1.38 1.47 1.53 1.59 1.66 1.72 
200 1.11 1.23 1.30 1.37 1.45 1.51 1.57 1.64 1.69 
300 1.10 1.21 1.28 1.34 1.41 1.46 1.51 1.511 1.62 

51l1) 1.10 1.19 1.26 1.31 1.38 1.42 1.47 I.S3 1.57 
00 1.08 1.17 1.22 1.27 1.32 Ut! 1.40 1.45 1.48 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
1'1 = NumCr"dtor DF = 140 

1'2 = a(2): 0.50 0.20 (1.10 0.05 0.02 O.oJ 0.£105 0.002 (1.001 
Denom. DF «(I): 0.25 0.10 0.05 U.I)25 O.oJ 0.005 O.U()25 0.001 0.0005 

I 9.111 63.1 253. WJ(). 6.140. 25400. 101000. 6340011. 2540000. 
2 3.47 9.48 19.5 395 995 199. 399. 999. 21lOO. 
3 2.47 5.14 X55 13.9 26.2 42.0 67.0 124. 197. 
4 2.08 3.77 5.65 11.30 13.5 19.4 27.1l 44.4 63.0 
5 1.117 3.12 4.39 fl.()6 9.W 12.3 16.4 24.0 31.9 

6 1.74 2.74 3.70 4.90 6.96 l!.9X 11.5 15.9 20.3 
7 1.65 2.49 3.26 4.19 5.72 7.18 l!.94 11.9 14.7 
II \.5/1 2.31 2.96 3.72 4.93 6.115 7.37 9.50 11.5 
9 1.53 2.11! 2.74 3.3Il 4.39 5.28 6.33 7.97 9.46 

10 1.49 2.08 2.57 3.13 3.9X 4.73 559 6.92 IUJ9 

II 1.46 2.00 2.44 2.94 3.68 4.32 5.05 6.15 7.11 
12 1.43 1.93 2.33 2.71l 3.44 4.1K) 4.63 557 6.311 
13 1.41 un 2.25 2.65 3.24 3.74 4.29 5.11 5.XI 
14 1.39 1.112 2.17 254 3.0X 3.53 4.02 4.75 5.36 
15 1.37 I.7X 2.11 2.45 2.95 3.36 3.M 4.45 5.00 

16 1.35 1.75 2.05 2.37 2.X3 3.21 3.61 4.20 4.69 
17 1.34 1.71 2.00 2.31 2.73 3.1l11 3.45 3.99 4.44 
III 1.33 1.69 1.% 2.25 2.65 2.97 3.32 3.111 4.22 
19 1.32 1.66 1.92 2.19 2.57 2.117 3.2() 3.66 4.03 
20 1.31 1.64 I.H9 2.15 2.50 2.79 3.()I) 3.52 3.87 

21 1.30 1.62 1.86 2.10 2.44 2.71 3.00 3.40 3.73 
22 1.29 1.60 I.X3 2.07 2.39 2.65 2.92 3.29 3.60 
23 1.2H 1.511 I.IlI 2.113 2.34 2.59 2.114 3.20 3.49 
24 1.27 1.57 1.7X 2.1K) 2.31) 253 2.77 3.11 3.3X 
25 1.27 1.55 1.76 1.97 2.26 2.48 2.71 3.03 3.29 

26 1.26 1.54 1.74 1.94 2.22 2.43 2.66 2.96 3.21 
27 1.26 1.53 1.72 1.92 2.111 2.39 2.60 2.90 3.13 
28 1.25 1.51 1.71 1.90 2.15 2.35 2.56 2.114 3.06 
29 1.24 150 1.69 I.AA 2.12 2.32 2.51 2.79 3.00 
30 1.24 1.49 1.68 1.86 2. J() 2.2X 2.47 2.74 2.94 

35 1.22 1.45 1.61 1.77 1.9X 2.15 2.31 253 2.71 
40 1.21 1.42 1.;7 1.71 1.90 2.05 2.19 2.39 2.54 
45 1.19 1.39 1.53 I.M 1.R4 1.97 2.W 2.27 2.41 
50 1.1 X 1.37 1.50 1.63 1.79 1.9 I 2.03 2.19 2.31 
60 \.17 1.34 1.46 1.57 1.71 LXI 1.92 2.1l6 2.16 

70 1.16 1.32 1.42 1.53 1.65 1.75 1.114 1.96 2.06 
80 1.15 1.30 1.40 1.49 1.61 1.7() 1.79 1.90 1.911 
90 1.14 1.211 I.3X 1.47 1.511 1.66 1.74 1.H4 1.92 

100 1.14 1.27 1.36 1.45 1.55 1.63 1.70 I.M 1.117 
120 1.13 1.26 1.34 1.42 1.51 1.511 1.65 1.74 I.XII 
140 1.12 1.24 1.32 1.39 1.48 1.55 1.61 1.69 1.75 
160 1.12 1.23 1.31 1.311 1.46 1.52 1.51! 1.66 1.71 
1M 1.11 1.22 1.30 1.36 1.45 1.50 1.51'1 1.6.1 1.68 
200 1.11 1.22 1.29 1.35 1.43 1.49 1.54 1.61 1.66 
300 1.10 1.20 1.26 1.32 1.39 1.44 1.49 1.55 1.59 

500 J.(J9 1.1 X 1.24 1.29 1.35 1.40 1.44 1.49 1.53 
00 1.08 1.16 1.20 1.25 1.30 1.33 1.37 1.41 1.44 
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TABLE B.4 (cont.): Critical Values of the F Distribution 
VI = Numerator OF = 200 

"2 = a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
Denom.OF a(I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

I 9.82 63.2 254. 102(J. 6350. 25400. 102000. 635000. 2540000. 
2 3.47 9.49 19.5 39.5 99.5 199. 399. m. 2000. 
3 2.47 5.14 8.54 13.9 26.2 41.9 66.9 124. 197. 
4 2.08 3.77 5.65 11.29 13.5 19.4 27.7 44.3 62.9 
5 un 3.12 4.39 6.05 9.OR 12.2 16.4 24.0 31.8 

6 1.74 2.73 3.69 4.M 6.93 11.95 11.5 15.9 20.2 
7 1.65 2.4X 3.25 4.IH 5.70 7.15 8.90 lUI 14.6 
8 1.58 2.31 2.95 3.70 4.91 6.02 7.33 9.45 11.4 
9 1.53 2.17 2.73 3.37 4.36 5.26 6.29 7.93 9.40 

10 1.49 2.07 2.56 3.12 :l96 4.71 5.56 6.87 8.04 

11 1.46 1.99 2.43 2.92 3.66 4.29 5.01 6.10 7.06 
12 1.43 1.92 2.32 2.76 3.41 3.97 4.59 5.52 6.33 
13 1.40 1.86 2.23 2.63 3.22 3.71 4.26 5.07 5.76 
14 1.38 1.82 2.16 2.53 3.(16 3.50 3.99 4.71 5.31 
15 1.37 1.77 2.10 2.44 2.92 3.33 3.77 4.41 4.95 

16 1.35 1.74 2.04 2.36 2.81 3.18 3.58 4.16 4.64 
17 1.34 1.71 1.99 2.29 2.71 3.(J5 3.42 3.95 4.39 
18 1.32 1.68 1.95 2.23 2.62 2.94 3.28 3.77 4.17 
19 1.31 1.65 1.91 2.18 2.55 2.85 3.16 3.61 3.98 
20 1.30 1.63 I.M 2.13 2.4X 2.76 3.06 3.48 3.82 

21 1.29 1.61 1.84 2.09 2.42 2.68 2.96 3.36 3.68 
22 1.28 1.59 1.82 2.u5 2.36 2.62 2.M 3.25 3.55 
23 1.28 1.57 1.79 2.0\ 2.32 2.56 2.81 3.16 3.44 
24 1.27 1.56 1.77 1.98 2.27 2.S0 2.74 3.07 3.34 
25 1.26 1.54 1.75 1.95 2.23 2.45 2.68 2.99 3.24 

26 1.26 1.53 1.73 1.92 2.19 2.40 2.62 2.92 3.16 
27 1.25 1.52 1.71 1.90 2.16 2.36 2.57 2.86 3.09 
28 1.2S 1.50 1.69 1.88 2.13 2.32 2.52 2.1!O 3.02 
29 1.24 1.49 1.67 1.86 2.10 2.29 2.48 2.74 2.95 
30 1.24 1.48 1.66 1.84 2.07 2.25 2.44 2.69 2.89 

35 1.22 1.44 1.60 1.75 1.96 2.11 2.27 2.49 2.66 
40 1.20 1.41 1.55 1.69 I.X7 2.01 2.15 2.34 2.49 
45 1.19 1.38 1.51 1.64 LXI 1.93 2.06 2.23 2.36 
50 1.18 1.36 1.48 1.611 1.76 1.87 1.99 2.14 2.26 
60 1.16 1.33 1.44 1.54 1.68 1.78 1.88 2.0l 2.11 

70 1.15 1.30 1.40 1.5(J 1.62 1.71 I.IlII 1.92 2.00 
80 1.14 1.28 1.38 1.47 1.58 1.66 1.74 1.85 1.93 
90 1.13 1.27 1.36 1.44 1.55 1.62 1.70 1.79 1.86 

100 1.13 1.26 1.34 1.42 1.52 1.59 1.66 1.75 1.82 
12(J 1.12 1.24 1.32 1.39 1.48 1.54 1.60 1.68 1.74 

140 1.11 1.22 1.30 1.36 1.45 1.51 1.56 1.64 1.69 
160 1.11 1.21 1.28 1.35 1.42 1.48 1.53 1.60 1.65 
180 1.10 1.21 1.27 1.33 1.41 1.46 1.51 1.57 1.62 
200 1.\0 1.20 1.26 1.32 1.39 1.44 1.49 I.S5 1.60 
300 1.09 1.18 1.23 1.28 1.35 1.39 1.43 1.48 1.52 

SOO 1.08 1.16 1.21 1.25 1.31 1.35 1.38 1.43 1.46 
00 1.07 1.13 1.17 1.21 1.25 1.28 1.30 1.34 1.36 
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TAILE 1.4 (cont.): Critical Values of the F Distribution 
III = Numerator DF = 00 

1'2= a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
Denom. DF a(I): 0.25 0.10 0.05 0.025 0.01 0.D05 0.0025 0.001 0.0005 

1 9.85 63.3 254. 1020. 6370. 25500. 102000. 637000. 25SOOOO. 
2 3.48 9.49 19.5 39.5 99.5 199. 399. 999. 2000. 
3 2.47 5.13 8.53 13.9 26.1 41.8 66.8 123. 196. 
4 2.08 3.76 5.63 8.26 13.5 19.3 27.6 44.0 62.6 
5 1.87 3.11 4.37 6.02 9.02 12.1 16.3 23.8 31.6 

6 1.74 2.n 3.67 4.85 6.88 8.88 11.4 15.7 20.0 
7 1.65 2.47 3.23 4.14 5.65 7.08 8.81 11.7 14.4 
8 1.58 2.29 2.93 3.67 4.86 5.95 7.25 9.33 11.3 
9 1.53 2.16 2.71 3.33 4.31 5.19 6.21 7.81 9.26 

10 1.48 2.06 2.54 3.08 3.91 4.64 S.47 6.76 7.91 

11 1.45 1.97 2.40 2.88 3.60 4.23 4.93 6.00 6.93 
12 1.42 1.90 2.30 2.n 3.36 3.90 4.51 5.42 6.20 
13 1.40 1.85 2.21 2.60 3.17 3.65 4.18 4.97 5.64 
14 1.38 1.80 2.13 2.49 3.00 3.44 3.91 4.60 5.19 
15 1.36 1.76 2.07 2.40 2.87 3.26 3.69 4.31 4.83 

16 1.34 1.72 2.01 2.32 2.75 3.11 3.50 4.06 4.52 
17 1.33 1.69 1.96 2.25 2.65 2.98 3.34 3.85 4.27 
18 1.32 1.66 1.92 2.19 2.57 2.87 3.20 3.67 4.05 
19 1.30 1.63 1.88 2.13 2.49 2.78 3.08 3.51 3.87 
20 1.29 1.61 1.84 2.09 2.42 2.69 2.97 3.38 3.71 

21 1.28 1.59 1.81 2.04 2.36 2.61 2.88 3.26 3.56 
22 1.28 1.57 1.78 2.00 2.31 2.55 2.80 3.15 3.43 
23 1.27 1.55 1.76 1.97 2.26 2.48 2.n 3.05 3.32 
24 1.26 1.53 1.73 1.94 2.21 2.43 2.65 2.97 3.22 
25 1.25 1.52 1.71 1.91 2.17 2.38 2.59 2.89 3.13 

26 1.25 1.50 1.69 1.88 2.13 2.33 2.54 2.82 3.05 
27 1.24 1.49 1.67 1.85 2.10 2.29 2.48 2.75 2.97 
28 1.24 1.48 1.65 1.83 2.06 2.25 2.44 2.69 2.90 
29 1.23 1.47 1.64 1.81 2.03 2.21 2.39 2.64 2.84 
30 1.23 1.46 1.62 1.79 2.01 2.18 2.35 2.59 2.78 

35 1.20 1.41 1.56 1.70 1.89 2.04 2.18 2.38 2.54 
40 1.19 1.38 1.51 1.64 1.80 1.93 2.06 2.23 2.37 
45 1.18 1.35 1.47 1.59 1.74 1.85 1.97 2.12 2.23 
50 1.16 1.33 1.44 1.55 1.68 1.79 1.89 2.03 2.13 
60 1.15 1.29 1.39 1.48 1.60 1.69 1.78 1.89 1.98 

70 1.13 1.27 1.35 1.44 1.54 1.62 1.69 1.79 1.87 , 
80 .\.12 1.24 1.32 1.40 1.49 1.56 1.63 I.n 1.79 

! 90 1.12 1.23 1.30 1.37 1.46 1.52 1.58 1.66 I.n 
100 1.11 1.21 1.28 1.35 1.43 1.49 1.54 1.62 1.67 
120 1.10 1.19 1.25 1.31 1.311 1.43 1.48 1.54 1.59 

140 1.09 1.18 1.23 1.28 1.35 1.39 1.43 1.49 1.53 
160 1.08 1.16 1.21 1.26 1.32 1.36 1.40 1.45 1.49 
180 1.08 1.15 1.20 1.24 1.30 1.33 1.37 1.42 1.45 
200 1.07 1.14 1.19 1.23 1.28 1.31 1.35 1.39 1.42 
300 1.06 1.11 1.15 1.18 1.22 1.25 1.27 1.30 1.33 

500 1.05 1.09 1.11 1.14 1.16 1.18 1.20 1.23 1.24 
00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Appendix Table B.4 was prepared using Equations 26.6.4.26.6.5.26.6.8.26.6.11.26.6.12.26.4.6. and 26.4.14 
of Zelen and Severo (1964). Values of F were calculated to a relative error 510-8 and then were rounded to 
three significant figures. 

Examples: 

Fo.oS( I ).2.18 = 3.55. Fo.ol (I ).8.10 = 5.06 and Fo.05(2).20.40 = 2.07 

If a critical value is needed for degrees of freedom not on this table. we may conservatively employ the 
next smaller degrees of freedom that are on the table. Or. the needed critical value may be obtained by linear 

prakash
Rectangle
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interpolation. with an error no greater than 0.01 for a() ~ 0.0) and no greater than 0.02 for a() < 0.01. If a 
little more accuracy is desired, or if "I > 200 or "2 > 500, harmonic interpolation should be used. 

Note that P( FVI ,v2 ) = ) - P( II FV2 ,V1 ). 

For example, 
P(FU8 ~ 2.50) = 0.10 and P(1IF28.2!S 2.50) = 0.90 

F is related to t. Z. and K- as 

Fa(I).I • ., = (ta(2),vt Fa(l).l.oo = (Za(2)t Fa(I) .•• .oo = ~.vl". 
Also, 

Fa ,"I."2 = II Fa"'2'''1 . 

Mantel (1966) and George (1987) discuss approximating the F distribution using binomial probabilities. 



Appendix 8 Statistical Tables and Graphs 717 

TABLE B.5: Critical Values of the q Distribution, for the Tukey Test 
a = 0.50 

v k:2 3 4 5 6 7 8 9 10 

I 1.414 2.338 2.918 3.335 3.658 3.920 4.139 4.327 4.491 
2 1.155 1.908 2.377 2.713 2.973 3.184 3.361 3.513 3.645 
3 1.082 1.791 2.230 2.545 2.789 2.987 3.152 3.294 3.418 
4 1.048 1.737 2.163 2.468 2.704 2.895 3.055 3.193 3.313 
5 1.028 1.705 2.124 2.423 2.655 2.843 3.000 3.135 3.253 

6 1.015 1.685 2.098 2.394 2.623 2.809 2.964 3.097 3.214 
7 1.()06 1.670 2.0!!0 2.375 2.601 2.785 2.938 3.070 3.186 
8 0.9990 1.659 2.067 2.359 2.584 2.767 2.920 3.051 3.165 
9 0.9938 1.651 2.057 2.347 2.572 2.753 2.905 3.035 3.149 

10 0.9897 1.645 2.049 2.338 2.561 2.742 2.893 3.023 3.137 

11 0.9863 1.639 2.042 2.330 2.553 2.733 2.884 3.014 3.127 
12 0.9836 1.635 2.037 2.324 2.546 2.726 2.876 3.005 3.118 
13 0.9812 1.631 2.032 2.319 2.540 2.719 2.870 2.998 3.111 
14 0.9792 1.628 2.028 2.314 2.535 2.714 2.864 2.993 3.105 
15 0.9775 1.625 2.025 2.310 2.531 2.709 2.859 2.987 3.099 

16 0.9760 1.623 2.022 2.307 2.527 2.705 2.855 2.983 3.095 
17 0.9747 1.621 2.020 2.304 2.524 2.702 2.851 2.979 3.091 
18 0.9735 1.619 2.018 2.301 2.521 2.699 2.848 2.976 3.087 
19 0.9724 1.618 2.015 2.299 2.518 2.696 2.845 2.973 3.084 
20 0.9715 1.616 2.013 2.297 2.516 2.693 2.842 2.970 3.081 

24 0.9685 1.611 2.007 2.290 2.509 2.68.'i 2.834 2.961 3.071 
30 0.9656 1.606 2.001 2.284 2.501 2.678 2.!!25 2.952 3.062 
40 0.9626 1.602 1.996 2.2n 2.494 2.670 2.817 2.943 3.053 
60 0.9597 1.597 1.990 2.270 2.486 2.662 2.808 2.934 3.043 

120 0.9568 1.592 1.984 2.264 2.479 2.654 2.799 2.925 3.034 
00 0.9539 1.588 1.978 2.257 2.472 2.645 2.791 2.915 3.024 

\' k: II 12 13 14 15 16 17 18 19 
I 4.637 4.767 4.885 4.992 5.091 5.182 5.266 5.345 5.420 
2 3.762 3.867 3.963 4.049 4.129 4.203 4.271 4.335 4.395 
3 3.528 3.626 3.715 3.797 3.871 3.940 4.004 4.064 4.120 
4 3.419 3.515 3.601 3.680 3.752 3.819 3.881 3.939 3.993 
5 3.357 3.451 3.535 3.613 3.684 3.749 3.811 3.867 3.920 

6 3.317 3.409 3.493 3.569 3.639 3.704 3.764 3.820 3.873 
7 3.288 3.380 3.463 3.538 3.608 3.672 3.732 3.788 3.840 
8 3.267 3.358 3.440 3.515 3.585 3.648 3.708 3.763 3.815 
9 3.250 3.341 3.423 3.498 3.567 3.630 3.689 3.744 3.796 

10 3.237 3.328 3.410 3.484 3.552 3.616 3.674 3.729 3.781 

II 3.227 3.317 3.398 3.472 3.540 3.604 3.662 3.717 3.769 
12 3.219 3.308 3.389 3.463 3.531 3.594 3.652 3.706 3.757 
13 3.211 3.300 3.381 3.455 3.523 3.585 3.643 3.698 3.749 
14 3.204 3.293 3.375 3.448 3.515 3.578 3.636 3.690 3.741 
15 3.199 3.288 3.369 3.442 3.509 3.572 3.630 3.684 3.735 

16 3.194 3.283 3.364 3.436 3.504 3.567 3.624 3.678 3.729 
17 3.190 3.278 3.359 3.432 3.499 3.562 3.620 3.673 3.724 
18 3.186 3.274 3.355 3.428 3.495 3.558 3.615 3.669 3.719 
19 3.183 3.271 3.352 3.424 3.491 3.554 3.611 3.665 3.715 
20 3.179 3.268 3.348 3.421 3.488 3.550 3.608 3.661 3.712 

24 3.170 3.258 3.338 3.410 3.477 3.539 3.596 3.650 3.700 
30 3.160 3.248 3.327 3.400 3.466 3.528 3.585 3.639 3.688 
40 3.150 3.238 3.317 3.389 3.456 3.517 3.574 3.627 3.677 
60 3.141 3.228 3.306 3.378 3.444 3.505 3.562 3.615 3.665 

120 3.131 3.217 3.296 3.367 3.433 3.494 3.551 3.603 3.653 
00 3.121 3.207 3.285 3.356 3.422 3.4!!2 3.538 3.591 3.640 
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TABLE B.5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a ~ 0.50 

\. k:20 22 24 26 21! 30 32 34 

I 5.489 5.616 5.731 5.835 5.930 6.017 6.098 6.173 
2 4.451 4554 4.646 4.730 4.R07 4.87!! 4.943 5.004 
3 4.172 4.269 4.356 4.434 4.507 4.573 4.634 4.691 
4 4.044 4.138 4.222 4.298 4.36X 4.432 4.492 4.547 
5 3.970 4.(162 4.145 4.220 4.2M 4.352 4.410 4.464 

6 3.922 4.1l14 4.095 4.169 4.237 4.299 4.357 4.411 
7 3.!!!I9 3.979 4.(1611 4.133 4.2nO 4.262 4.319 4.372 
8 ."!IM ... 953 4.033 4.\06 4.174 4.214 4.291 4.344 
9 3.844 3.933 4.1l13 4.1IM 4.152 4.214 4.27() 4.323 

\0 3.1:129 3.917 3.997 4.1ltl9 4.135 4.196 4.253 4.305 

11 3.816 3.904 3.984 4.056 4.122 4.18J 4.239 4.291 
12 3.8I)() J.894 3.973 4.(J45 4.110 4.171 4.227 4.279 
\3 3.797 3.884 J.964 4.035 4.101 4.162 4.21X 4.269 
14 3.7X9 3.X77 3.956 4.027 4.092 4.15J 4.209 4.261 
15 3.783 3.87() 3.949 4.U20 4.0X5 4.145 4.201 4.253 

16 3.777 3.!IM 3.942 4.Ul4 4.079 4.139 4.195 4.246 
17 3.772 3.859 3.937 4.009 4.073 4.\33 4.1X9 4.241 
18 3.767 3.854 3.932 4.1X)3 4.069 4.128 4.184 4.236 
19 3.763 3.850 3.928 3.999 4.064 4.124 4.181) 4.231 
20 3.759 3.!!4Ii 3.995 3.995 4.060 4.120 4.175 4.227 

24 3.74X 3.1!34 3.912 3.983 4.(J4!I 4.107 4.162 4.214 
30 3.736 3.822 3.899 3.971l 4.035 4.1194 4.149 4.200 
40 3.724 3.!109 3.!!!I7 3.957 4.021 4.(11«) 4.135 4.186 
60 3.711 3.797 3.X74 3.944 4.()()X 4.067 4.121 4.172 

120 3.699 3.784 3.861 3.930 3.994 4.053 4.107 4.157 
:x> 3.686 3.771 3.847 3.91'" 3.979 4.037 4.1)!) I 4.141 

\. k: 3X 40 50 60 7() !IU 90 100 

1 6.3JO 6.372 6.637 6.M7 7.021 7.169 7.297 7.411 
2 5.115 5.165 5379 5550 5.69() 5.1110 5.914 6.(106 
3 4.795 4.842 5.1143 5.2H2 5.335 5.447 5.544 5.630 
4 4.647 4.693 4.!I!I!! 5.(J43 5.171 5.2M 5.374 5.458 
5 4.563 4.601\ 4.799 4.951 5.077 5.184 5.277 5.359 

6 451X) 4.552 4.741 4.891 5.111 6 5.121 5.213 5.294 
7 4.469 4513 4.7(X) 4.850 4.973 5.078 5.169 5.249 
8 4.441) 4.484 4.671 4.819 4.941 5.(J45 5.136 5.215 
9 4.418 4.462 4.M7 4.794 4.916 5.0211 5.110 5.189 

10 4.4110 4.444 4.629 4.775 4.897 5.000 5.1190 5.169 

11 4.386 4.429 4.613 4.760 4.!!!I1 4.984 5.073 5.152 
12 4.374 4.417 4.6IM) 4.747 4.867 4.97() 5.059 5.138 
13 4.364 4.4116 4.59() 4.736 4.856 4.959 5.048 5.126 
14 4.355 4.397 4.5111 4.726 4.846 4.949 5.037 5.116 
15 4.347 4.390 4.573 4.718 4.X3X 4.94() 5.029 5.\07 

16 4.340 4.3X3 4.566 4.710 4.831 4.932 5.1121 5.099 
17 4.334 4.377 4.559 4.704 4.H24 4.926 5.014 5.1192 
18 4.329 4.372 4554 4.69X 4.818 4.920 5.(X)8 5.1186 
19 4.324 4.367 4.549 4.693 4.813 4.914 5.IX)3 5.1)81 
211 4.320 4.36J 4.545 4.6!l9 4.8118 4.9\0 4.998 5.076 

24 4.307 4.349 4530 4.n74 4.793 4.894 4.982 5.11(1) 
311 4.293 4.335 4.515 4.659 4.778 4.S7X 4.966 5.044 
41) 4.279 4.321 4.500 4.M4 4.762 4.Rti2 4.950 5.Ol7 
60 4.264 4.3116 4.485 4.627 4.745 4.845 4.932 5.(X)!) 

120 4.249 4.2l)() 4.469 4.610 4.727 4.827 4.914 4.990 
·Xl 4.232 4.274 4.4511 4.591 4.707 4.8116 4.892 4.968 

36 
6.244 
5.061 
4.745 
4.599 
4.515 

4.461 
4.422 
4.394 
4.m 
4.354 

4.340 
4.328 
4.311:1 
4309 
4.302 

4.295 
4.289 
4.284 
4.279 
4.275 

4.262 
4.248 
4.234 
4.220 
4.204 
4.188 
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TABLE B.S (cant.): Critical Values of the q Distribution, for the Tukey Test 
It = 11.20 

~. k:2 3 4 5 6 7 1\ 9 ]I) 

I 4.353 6.615 S.075 9.13X 9.966 10.64 11.21 11.711 12.12 
2 2.667 3.S2U 4.559 5.119X 5.521 5.M7 (U51\ 6.409 6.630 
3 2.316 3.245 3.X33 4.261 4.597 4.H72 5.\04 5.305 5.41\1 
4 2.I/\X 3.llO4 3.527 3.907 4.205 4.449 4.655 4.X32 4.IJIN 
5 2.11ll7 2.S72 3.351\ 3.712 3.'.I1lX 4.214 4.405 4.570 4.715 

6 2.1136 2.71lX 3.252 .lsllX 3.HsO 4.Otis 4.24/\ 4.403 4540 
7 2.001 2.731 3.179 3.5m 3.756 3.%2 4.13/\ 4.21\7 4.419 
X 1.976 2.M9 3.126 .l44U 3.6X6 3.1lX6 4.U55 4.201 4.330 
9 1.956 2.65R 3.11115 .l393 3./\33 3.X21\ 3.994 4.136 4.261 

10 1.941 2.632 3.U53 3.355 3.5911 3.7H2 .l944 4.1lll4 4.206 

II 1.92S 2.612 3.1127 3.325 3557 3.745 3.905 4.1142 4.1/\2 
12 1.91H 2596 3.IM)6 .nlX) 3.529 3.715 3$72 ·toll7 4.126 
13 1.910 25X2 2.'>XX 3.279 3505 3.6H9 3.1;44 3.97X 4.095 
14 1.9112 25711 2.973 3.261 3.4X5 3.667 3.H20 3.953 4.1)69 
IS I.X% 2560 2.960 3.24/\ 3.4/\7 3.641\ 3.XOO 3.931 4.1146 

16 I.S91 2551 2.94X 3.232 3.452 3.631 3.7X2 3.912 4.()2/\ 
17 1.H!!ti 2543 2.938 3.2211 3.439 3.617 3.766 3.1\95 4.0Clll 
IS 1.1lX2 2.536 2.9311 3.2111 3.427 3.61l4 3.753 3.HXI 3.l)l)3 
19 I.H7X 2.530 2.922 3.2(MI 3.416 3.592 3.740 3.X67 3.979 
20 I.X74 2.524 2.914 3.192 3.4117 3.5X2 3.729 3.S55 3.966 

24 I.X64 2.5117 2.x92 3.166 3.377 3.549 3.694 3.SIX 3.927 
30 I.X53 2.4911 2.X711 3.140 3.348 3.517 3.659 3.7XI 3.1lX7 
40 1.843 2.473 2.X4X 3.114 3.31X 3.4X4 3.624 3.743 .lX4X 
60 1.K~3 2.456 2.x26 3.11119 3.2911 3.452 35s9 3.7117 3.1«19 

120 1.1\22 2.440 2.1«15 3.1)63 3.260 3.420 3554 3.669 .l770 
00 UU2 2.424 2.784 3.1I.~7 3.232 3.3X9 3.520 3.632 .173U 

l' k: II 12 13 14 IS 16 17 IX 1<) 

I 12.50 12.84 13.14 13.43 13.6X 13.93 14.14 14.35 14.54 
2 6.x26 7.«1(12 7.162 DOX 7.442 7566 7.6X2 7.790 7.X91 
3 5.637 5.77X 5.'.1116 6.1123 6.131 6.230 6323 6.4 10 6.491 
4 5.128 5.253 5.367 5.471 5566 5.655 5.73S S,S15 5.AAX 
5 4.1;44 4.960 5.(l6/i 5.162 5.251 5.334 5.411 5.41\2 5.55" 

6 4.663 4.773 4.873 4.'.165 5.1149 5.128 5.201 5.269 5.333 
7 4537 4.643 4.739 4.X27 4.9Illl 4.9X4 5.1154 5.120 5.IXI 
X 4.444 4547 4.640 4.726 4.805 4.877 4.945 5.()()<) 5.()69 
9 4.372 4.473 4.5ti4 4.M7 4.724 4.7% 4.M2 4.'.124 4.9H2 

10 4.316 4.414 4.503 4.5X5 4.660 4.731) 4,795 4.HS6 4.913 

II 4.270 4.366 4.454 4.534 4.(,(1ll 4.677 4.741 4.MI 4.X57 
12 4.231 4.327 4.413 4.492 4.565 4.633 4./\% 4.755 4.XIU 
13 4.199 4.293 4.379 4.457 4529 45% 4.MS 4.716 4.770 
14 4.172 4.265 4.349 4.426 4.491\ 4.564 4.625 4.M3 4.737 
15 4.14H 4.240 4.324 4.400 4.471 4.5:16 4597 4.654 4.71l7 

16 4.127 4.21S Onl 4.:m 4.447 4512 4572 4.62X 4./\XI 
17 4.109 4.1l)l) 4.2X2 057 4.42/\ 4.491) 4550 4./\06 4./\59 
11\ 4.1)1)3 4.IX2 4.264 4.339 4.4!l7 4.471 4531 45M 4.63X 
19 4.!l7X 4.1/\7 4.241\ 4.323 4.391 4.454 4.513 4.569 4.620 
20 4.1)65 4.154 4.234 01 III 4.376 4.439 4.49X 4552 4.604 

24 4.024 4.111 4.IYO 4.262 4.329 4.391 4.448 4.502 4552 
30 3.9X2 4.06X 4.145 4.216 4.2111 4.342 4.391\ 4.451 4.5lKI 
40 3.941 4.025 4.101 4.171l 4.234 4.2'.13 4.348 4.3l)l) 4.447 
611 3.9IMI 3.9H2 4.05/\ 4.124 4.IM 4.244 4.297 4.347 4.:W5 

120 3.Xs9 3.93X 4.011 4.077 4.138 4.194 4.246 4.295 4.341 
oc 3.XI7 3.895 3.966 4.(31) 4.(1ll9 4.144 4.195 4.242 4.2X7 
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TABLE B.S (cont.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.20 

v k:20 22 24 26 28 30 32 34 36 
I 14.72 15.06 15.36 15.63 15.88 16.11 16.32 16.52 16.71 
2 7.986 8.162 8.320 8.463 8.594 8.715 8.827 8.931 9.029 
3 6.568 6.709 6.835 6.951 7.057 7.154 7.244 7.328 7.4fT1 
4 5.956 6.082 6.195 6.298 6.392 6.479 6.560 6.635 6.706 
5 5.613 5.730 5.835 5.931 6.019 6.100 6.175 6.245 6.311 

6 5.393 5.504 5.604 5.695 5.779 5.856 5.927 5.994 6.056 
7 5.239 5.346 5.442 5.530 5.610 5.684 5.753 5.817 5.tm 
8 5.125 5.228 5.322 5.407 5.485 5.557 5.624 5.686 5.744 
9 5.037 5.138 5.229 5.312 5.388 5.459 5.524 5.585 5.641 

10 4.967 5.066 5.155 5.237 5.311 5.380 5.444 5.504 55S9 

11 4.910 5.007 5.095 5.175 5.248 5.316 5.379 5.437 5.492 
12 4.862 4.958 5.044 5.123 5.196 5.262 5.324 5.382 5.436 
13 4.822 4.917 5.002 5.080 5.151 5.217 5.278 5.335 5.388 
14 4.787 4.881 4.965 5.042 5.113 5.178 5.238 5.295 5.347 
15 4.757 4.850 4.934 5.010 5.080 5.144 5.204 5.260 5.312 

16 4.731 4.82.1 4.906 4.981 5.050 5.114 5.174 5.229 5.281 
17 4.708 4.799 4.881 4.956 5.02S 5.088 5.147 5.202 5.253 
18 4.688 4.n8 4.859 4.934 5.002 5.065 5.123 5.177 5.228 
19 4.669 4.759 4.840 4.914 4.98\ 5.044 5.102 5.156 5.206 
20 4.652 4.742 4.822 4.895 4.963 5.025 5.082 5.136 5.186 

24 4.599 4.687 4.766 4.838 4.904 4.964 5.021 5.073 5.122 
30 4546 4.632 4.710 4.n9 4.844 4.903 4.958 5.010 5.058 
40 4.493 4.576 4.652 4.720 4.783 4.841 4.895 4.945 4.993 
60 4.439 4.520 4.594 4.661 4.722 4.778 4.831 4.880 4.925 

120 4.384 4.463 4.535 4.600 4.659 4.714 4.765 4.812 4.857 
00 4.329 4.405 4.475 4.537 4.595 4.648 4.697 4.743 4.786 

v k:38 40 SO 60 70 80 90 100 
1 16.88 17.05 17.74 18.30 18.76 19.15 19.49 19.79 
2 9.121 9.207 9.576 9.869 10.11 10.32 10.50 10.66 
3 7.481 7.551 7.849 8.086 8.283 8.450 8.596 8.725 
4 6.771 6.834 7.100 7.313 7.489 7.639 7.769 7.885 
5 6.372 6.430 6.678 6.877 7.041 7.181 7.303 7.411 

6 6.115 6.170 6.406 6.595 6.751 6.885 7.001 7.103 
7 5.934 5.987 6.214 6.397 6.548 6.676 6.788 6.887 
8 5.799 5.851 6.072 6.249 6.395 6.520 6.629 6.725 
9 5.695 5.745 5.961 6.134 6.277 6.399 6.506 6.600 

10 5.612 5.661 5.873 6.042 6.182 6.302 6.407 6.499 

11 5.544 5.592 5.800 5.967 6.105 6.223 6.326 6.416 
12 5.487 5.535 5.740 5.904 6.040 6.156 6.257 6.347 
13 5.438 5.486 5.689 5.850 5.985 6.100 6.200 6.288 
14 5.397 5.444 5.644 5.804 5.937 6.051 6.150 6.237 
15 5.361 5.407 5.606 5.764 5.896 6.008 6.106 6.193 

16 5.329 5.375 5.572 5.729 5.859 5.971 6.068 6.154 
17 5.301 5.347 5.542 5.698 5.827 5.938 6.034 6.119 
18 5.276 5.321 5.515 5.670 5.798 5.908 6.004 6.089 
19 5.254 5.299 5.491 5.645 5.772 5.881 5.976 6.061 
20 5.233 5.278 5.469 5.622 5.749 5.857 5.951 6.035 

24 5.169 5.212 5.400 5.549 5.674 5.780 5.872 5.954 
30 5.103 5.146 5.329 5.475 5.597 5.701 5.791 5.871 
40 5.037 5.008 5.257 5.399 5.518 5.619 5.708 5.786 
60 4.969 5.009 5.183 5.321 5.437 5.535 5.621 5.697 

120 4.899 4.938 5.106 5.240 5.352 5.447 5.530 5.603 
00 4.826 4.864 5.026 5.155 5.262 5.353 5.433 5.503 
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TABLE B.5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.10 

" k:2 3 4 5 6 7 8 9 10 
I 8.929 13.44 16.36 18.49 20.15 2\.51 22.64 23.62 24.48 
2 4.130 5.733 6.773 7.538 8.139 8.633 9.049 9.409 9.725 
3 3.328 4.467 5.199 5.738 6.162 6.511 6.806 7.062 7.21rl 
4 3.015 3.976 4.586 5.035 5.388 5.679 5.926 6.139 6.327 
5 2.850 3.717 4.264 4.664 4.979 5.238 5.458 5.648 5.816 

6 2.748 3.559 4.065 4.435 4.726 4.966 5.168 5.344 5.499 
7 2.680 3.451 3.931 4.280 4.555 4.780 4.972 5.137 5.283 
8 2.630 3.374 3.834 4.169 4.431 4.646 4.829 4.987 5.126 
9 2.592 3.316 3.761 4.084 4.337 4.545 4.721 4.873 5.007 

10 2.563 3.270 3.7()4 4.018 4.264 4.465 4.636 4.783 4.913 

II 2.540 3.234 3.658 3.965 4.205 4.401 4.568 4.711 4.838 
12 2.521 3.204 3.621 3.922 4.156 4.349 4.511 4.652 4.776 
13 2.5115 3.179 3.589 3.88.'1 4.116 4.305 4.464 4.6112 4.724 
14 2.491 3.158 3.563 3.854 4.081 4.267 4.424 4.560 4.680 
15 2.479 3.140 3.540 3.828 4.052 4.235 4.390 4.524 4.641 

16 2.469 3.124 3.520 3.804 4.1l26 4.207 4.360 4.492 4.608 
17 2.460 3.110 3.5113 3.784 4.004 4.183 4.334 4.464 4.579 
18 2.452 3.098 3.488 3.767 3.984 4.161 4.311 4.440 4.554 
19 2.445 3.087 3.474 3.751 3.966 4.142 4.290 4.418 4.531 
20 2.439 3.078 3.462 3.736 3.9511 4.124 4.271 4.398 4.510 

24 2.420 3.047 3.423 3.692 3.9011 4.070 4.213 4.336 4.445 
30 2.400 3.1117 3.31!6 3.648 3.851 4.0\6 4.155 4.275 4.381 
40 2.381 2.988 3.349 3.605 3.803 3.963 4.099 4.215 4.317 
60 2.363 2.959 3.312 3.562 3.755 3.911 4.042 4.155 4.254 

120 2.344 2.930 3.276 3.5211 3.707 3.859 3.987 4.096 4.191 
00 2.326 2.9112 3.240 3.478 3.661 3.808 3.931 4.1137 4.129 

" k: II 12 13 14 15 16 17 18 19 

1 25.24 25.92 26.54 27.10 27.62 28.10 28.54 28.96 29.35 
2 10.0\ 10.26 10.49 10.70 111.89 1 \.07 11.24 11.39 11.54 
3 7.487 7.667 7.832 7.982 8.120 8.249 8.368 8.479 8.584 
4 6.495 6.645 6.783 6.909 7.025 7.133 7.233 7.327 7.414 
5 5.966 6.101 6.223 6.336 6.440 6.536 6.626 6.710 6.789 

6 5.637 5.762 5.875 5.979 6.075 6.164 6.247 6.325 6.398 
7 5.413 5.530 5.637 5.735 5.1126 5.910 5.9118 6.061 6.130 
8 5.250 5.362 5.464 5.558 5.644 5.724 5.799 5.1!69 5.935 
9 5.127 5.234 5.333 5.42.1 5.506 5.583 5.655 5.723 5.786 

10 5.029 5.134 5.229 5.317 5.397 5.472 5.542 5.t1.r1 5.668 

II 4.951 5.053 5.146 5.231 5.309 5.3112 5.450 5.514 5.573 
12 4.8116 4.986 5.077 5.1611 5.236 5.308 5.374 5.436 5.495 
13 4.1132 4.9311 5.019 5.1011 5.176 5.245 5.311 5.372 5.429 
14 4.7116 4.l1li2 4.9711 5.0511 5.124 5.192 5.256 5.316 5.373 
15 4.746 4.841 4.927 5.006 5.1l79 5.147 5.209 5.269 5.324 

16 4.712 4.8115 4.890 4.968 5.040 5.107 5.169 5.227 5.282 
17 4.6112 4.774 4.858 4.935 5.005 5.1171 5.133 5.1911 5.244 
18 4.655 4.746 4.829 4.905 4.975 5.1140 5.101 5.158 5.211 
19 4.631 4.721 4.803 4.879 4.948 5.012 5.073 5.129 5.1112 
20 4.6()9 4.699 4.780 4.1155 4.924 4.987 5.047 5.103 5.155 

24 4.541 4.62H 4.708 4.780 4.847 4.909 4.966 5.021 5.071 
30 4.474 4.559 4.635 4.706 4.770 4.830 4.8116 4.939 4.988 
40 4.4()8 4.490 4.564 4.632 4.695 4.752 4.807 4.1157 4.905 
60 4.342 4.421 4.493 4.558 4.619 4.675 4.727 4.775 4.821 

120 4.276 4.353 4.422 4.485 4.543 4.597 4.647 4.694 4.738 
00 4.211 4.2H5 4.351 4.412 4.468 4.519 4.568 4.612 4.654 
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TABLE 1.5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.10 

I' k:20 22 24 26 28 30 32 34 36 

1 29.71 30.39 30.99 31.54 32.04 32.SO 32.93 33.33 33.71 
2 11.68 11.93 12.16 12.36 12.55 12.73 12.89 13.04 13.18 
3 8.683 8.864 9.029 9.177 9.314 9.440 9.557 9.666 9.768 
4 7.497 7.650 7.789 7.914 8.029 IU35 11.234 8.326 8.412 
5 6.1163 7.000 7.123 7.236 7.340 7.435 7.523 7.606 7.683 

6 6.467 6.593 6.708 6.812 6.9011 6.996 7.078 7.155 un 
7 6.195 6.315 6.422 6.521 6.611 6.695 6.773 6.845 6.913 
8 5.997 6.111 6.214 6.3011 6.395 6.475 6.549 6.618 6.683 
9 5.846 5.956 6.055 6.146 6.229 6.306 6.3711 6.444 6.5f11 

10 5.726 5.1133 5.930 6.017 6.091! 6.173 6.242 6.307 6.368 

11 5.630 5.734 5.828 5.914 5.992 6.065 6.132 6.196 6.255 
12 5.5SO 5.652 5.744 5.827 5.904 5.976 6.042 6.103 6.161 
13 5.4113 5.583 5.673 5.755 5.830 5.900 5.965 6.025 6.lMI2 
14 5.426 5.524 5.612 5.693 5.767 5.836 5.S99 5.959 6.014 
15 5.376 5.473 5.560 5.639 5.713 5.780 5.843 5.901 5.956 

16 5.333 5.428 5.515 5.593 5.665 5.732 5.793 5.851 5.905 
17 5.295 5.389 5.474 5.552 5.623 5.689 5.750 5.806 5.860 
18 5.262 5.355 5.439 5.515 5.585 5.6SO 5.711 5.767 5.820 
19 5.232 5.324 5.407 5.4113 5.552 5.616 5.676 5.732 5.784 
20 5.205 5.296 5.378 5.453 5.522 5.586 5.645 5.700 5.752 

24 5.119 5.208 5.287 5.360 5.427 5.489 5.546 5.600 5.6S0 
30 5.034 5.120 5.197 5.267 5.332 5.392 5.447 5.499 5.547 
40 4.949 5.032 5.107 5.174 5.236 5.294 5.347 5.397 5.444 
60 4.864 4.944 5.015 5.081 5.141 5.196 5.247 5.295 5.340 

120 4.779 4.856 4.924 4.987 5.044 5.097 5.146 5.192 5.235 
00 4.694 4.767 4.832 4.1192 4.947 4.997 5.044 5.087 5.128 

v k :38 40 so 60 70 80 90 100 

1 34.06 34.38 35.79 36.91 37.113 38.62 39.30 39.91 
2 13.31 13.44 13.97 14.40 14.75 15.05 15.31 15.54 
3 9.864 9.954 10.34 10.65 10.91 11.12 11.31 11.48 
4 8.493 8.569 8.896 9.156 9.373 9.557 9.718 9.ll6O 
5 7.756 7.825 lI.llS 8.353 11.5411 8.715 11.859 8.988 

6 7.294 7.358 7.630 7.848 8.029 8.184 11.319 8.438 
7 6.976 7.036 7.294 7.500 7.672 7.818 7.946 8.059 
8 6.744 6.1101 7.048 7.245 7.409 7.5SO 7.672 7.780 
9 6.566 6.621 6.859 7.050 7.208 7.343 7.461 7.566 

10 6.425 6.479 6.709 6.895 7.048 7.1110 7.295 7.396 

11 6.310 6.363 6.588 6.768 6.918 7.047 7.158 7.258 
12 6.215 6.267 6.487 6.663 6.810 6.936 7.045 7.142 
13 6.135 6.11!6 6.402 6.575 6.719 6.842 6.949 7.045 
14 6.067 6.116 6.329 6.499 6.641 6.762 6.1168 6.961 
IS 6.008 6.057 6.266 6.433 6.573 6.692 6.796 6.888 

16 5.956 6.004 6.210 6.376 6.513 6.631 6.734 6.825 
17 5.910 5.958 6.162 6.325 6.461 6.577 6.679 6.769 
18 5.1170 5.917 6.118 6.280 6.414 6.529 6.630 6.719 
19 5.833 5.8110 6.079 6.239 6.372 6.486 6.585 6.674 
20 5.801 5.847 6.044 6.203 6.335 6.447 6.546 6.633 

24 5.697 5.741 5.933 6.086 6.214 6.324 6.419 6.503 
30 5.593 5.636 5.821 5.969 6.093 6.198 6.291 6.372 
40 5.488 5.529 5.708 5.8SO 5.969 6.071 6.160 6.238 
60 5.382 5.422 5.593 5.730 5.844 5.941 6.026 6.102 

120 5.275 5.313 5.476 5.606 6.715 5.808 5.8l1li 5.960 
00 5.166 5.202 5.357 5.4110 5.582 5.669 5.745 5.812 
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TABLE •. 5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.05 

v k:2 3 4 5 6 7 8 9 10 
I 17.97 26.98 32.82 37.0l! 40.41 43.12 45.40 47.36 49.07 
2 6.0l!5 8.331 9.798 1O.l!l! 11.74 12.44 13.03 13.54 13.99 
3 4.501 5.910 6.825 7.5()2 8.037 8.478 8.853 9.177 9.462 
4 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.fm. 7.826 
5 3.635 4.fm. 5.218 5.673 6.033 6.330 6.582 6.802 6.995 

6 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493 
7 3.344 4.165 4.681 5.060 5.359 5.606 5.815 5.998 6.158 
8 3.261 4.041 4.529 4.1!1!6 5.167 5.399 5.597 5.767 5.918 
9 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739 

10 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 .5.599 

II 3.113 3.820 4.256 4.574 4.823 5.028 5.2()2 5.353 5.487 
12 3.0l!2 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395 
13 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318 
14 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254 
15 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198 

16 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150 
17 2.984 3.628 4.()20 4.303 4.524 4.705 4.858 4.991 5.1011 
18 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071 
19 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038 
20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008 

24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915 
30 2.8l!l! 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824 
40 2.SSS 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735 
60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646 

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560 
00 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 4.474 

v k: II 12 13 14 15 16 17 18 19 

I SO.59 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83 
2 14.39 14.75 15.0l! 15.38 15.65 15.91 16.14 16.37 16.57 
3 9.717 9.946 10.15 10.35 10.53 10.69 10.84 10.98 11.11 
4 8.027 8.2OS 8.373 8.525 8.664 8.794 8.914 9.028 9.134 
5 7.168 7.324 7.466 7.596 7.717 7.828 7.932 8.030 8.122 

6 6.649 6.789 6.917 7.034 7.143 7.244 7.338 7.426 7.508 
7 6.302 6.431 6.550 6.658 6.759 6.852 6.939 7.020 7.097 
8 6.054 6.175 6.287 6.389 6.483 6.571 6.653 6.729 6.1!02 
9 5.867 5.983 6.(1R9 6.186 6.276 6.359 6.437 6.510 6.579 

10 5.722 5.833 5.935 6.028 6.114 6.194 6.269 6.339 6.405 

11 5.605 5.713 5.811 5.901 5.984 6.062 6.134 6.202 6.265 
12 5.511 5.615 5.710 5.798 5.878 5.953 6.02.1 6.089 6.151 
13 5.431 5.533 5.62.'i 5.711 5.789 5.862 5.931 5.995 6.055 
14 5.364 5.463 5.554 5.637 5.714 5.786 5.R.'i2 5.915 5.974 
15 5.306 5.404 5.493 5.574 5.649 5.720 5.7R.'i 5.846 5.904 

16 5.256 5.352 5.439 5.520 5.593 5.662 5.727 5.786 5.843 
17 5.212 5.307 5.392 5.471 5.544 5.612 5.675 5.734 5.790 
18 5.174 5.267 5.352 5.429 5.501 5.568 5.6..10 5.688 5.743 
19 5.140 5.2.11 5.315 5.391 5.462 5.528 5.589 5.647 5.701 
20 5.1OS 5.199 5.282 5.357 5.427 5.493 5.553 5.610 5.663 

24 5.012 5.099 5.179 5.251 5.319 5.381 5.439 5.494 5.545 
30 4.917 5.001 5.077 5.147 5.211 5.271 5.327 5.379 5.429 
40 4.824 4.904 4.977 5.044 5.106 5.163 5.216 5.266 5.313 
60 4.732 4.808 4.878 4.942 5.001 5.056 5.107 5.154 5.199 

120 4.641 4.714 4.781 4.842 4.898 4.950 4.998 5.044 5.086 
00 4.552 4.622 4.6Il'i 4.743 4.796 4.845 4.891 4.934 4.974 
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TABLE B.5 (com.): Critical Values of the q Distribution, for the Tukey Test 
cr = 0.05 

I' k:20 22 24 26 28 30 32 34 36 
1 59.56 60.91 62.12 63.22 64.23 6S.l5 66.01 66.81 67.56 
2 16.77 17.13 17.45 17.75 18.02 \8.27 18.50 18.72 18.92 
3 11.24 11.47 11.68 11.87 12.05 12.21 12.36 12.SO 12.63 
4 9.233 9.418 9.584 9.736 9.875 10.00 10.12 10.23 10.34 
5 8.208 8.368 8.512 8.643 8.764 8.875 8.979 9.075 9.t6S 

6 7.587 7.730 7.861 7.979 8.088 8.189 8.283 8.370 8.452 
7 7.170 7.303 7.423 7.533 7.634 7.m 7.814 7.895 7.1112 
8 6.870 6.995 7.109 7.212 7.307 7.395 7.477 7.554 7.625 
9 6.644 6.763 6.871 6.970 7.061 7.145 7.222 7.295 7.363 

10 6.467 6.582 6.686 6.781 6.868 6.948 7.023 7.093 7.159 

" 6.326 6.436 6.536 6.628 6.712 6.790 6.863 6.930 6.994 
12 6.209 6.317 6.414 6.503 6.585 6.660 6.731 6.796 6.858 
13 6.112 6.217 6.312 6.398 6.478 6.551 6.620 6.684 6.744 
14 6.029 6.132 6.224 6.309 6.387 6.459 6.526 6.588 6.647 
15 5.9S8 6.059 6.149 6.233 6.309 6.379 6.445 6.506 6.564 

16 5.897 5.995 6.084 6.166 6.241 6.310 6.374 6.434 6.491 
17 5.842 5.940 6.027 6.107 6.181 6.249 6.313 6.372 6.427 
18 5.794 5.890 5.977 6.055 6.128 6.195 6.258 6.316 6.371 
19 5.752 5.846 5.932 6.009 6.081 6.147 6.209 6.267 6.321 
20 5.714 5.M7 5.891 5.968 6.039 6.104 6.165 6222 6.275 

24 5.594 5.683 5.764 5.838 5.906 5.968 6.027 6.081 6.132 
30 5.475 5.561 5.638 5.709 5.774 5.833 5.889 5.941 5.990 
40 5.358 5.439 5.513 5.581 5.642 5.700 5.753 5.803 5.849 
60 5.241 5.319 5.389 5.453 5.512 5.566 5.617 5.664 5.708 

120 5.126 5.200 5.266 5.327 5.382 5.434 5.481 5.526 5.S68 
00 5.012 5.081 5.144 5.201 5.253 5.301 5.346 5.388 5.427 

" k :38 40 SO 60 70 80 90 100 
I 68.26 68.92 71.73 73.97 75.82 77.40 7R.77 79.98 
2 19.11 19.28 20.05 20.66 21.16 21.59 21.96 2229 
3 12.75 12.87 13.36 13.76 14.08 14.36 14.61 14.82 
4 10.44 10.53 10.93 11.24 11.51 11.73 11.92 12.09 
5 9.250 9.330 9.674 9.949 10.18 10.38 10.54 10.69 

6 8.529 8.601 8.913 9.163 9.370 9.548 9.702 9.839 
7 8.043 8.110 8.400 8.632 8.824 8.989 9.133 9.261 
8 7.693 7.756 8.029 8.248 8.430 8.586 8.722 8.843 
9 7.428 7.488 7.749 7.958 8.132 8.281 8.410 8.526 

10 7.220 7.279 7.529 7.730 7.897 8.041 8.166 8276 

11 7.053 7.110 7.352 7.546 7.708 7.847 7.968 8.075 
12 6.916 6.970 7205 7.394 7.552 7.687 7.804 7.909 
13 6.800 6.854 7.083 7.267 7.421 7.552 7.667 7.769 
14 6.702 6.754 6.979 7.159 7.309 7.438 7.5SO 7.650 
15 6.618 6.669 6.888 7.065 7.212 7.339 7.449 7.546 

16 6.544 6.594 6.810 6.984 7.128 7.252 7.360 7.457 
17 6.479 6.529 6.741 6.912 7.054 7.176 7.283 7.377 
18 6.422 6.471 6.680 6.848 6.989 7.109 7.213 7.307 
19 6.371 6.419 6.626 6.792 6.930 7.048 7.152 7.244 
20 6.325 6.373 6.576 6.740 6.877 6.994 7.097 7.187 

24 6.181 6.226 6.421 6.579 6.710 6.822 6.920 7.008 
30 6.037 6.080 6.267 6.417 6.543 6.650 6.744 6.827 
40 5.893 5.934 6.112 6.255 6.375 6.477 6.566 6.645 
60 5.750 5.789 5.958 6.093 6.206 6.303 6.387 6.462 

120 5.607 5.644 5.M2 5.929 6.035 6.126 6.205 6.275 
00 5.463 5.498 5.646 5.764 5.863 5.947 6.020 6.085 
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TABLE B.5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.025 

v 

I 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

24 
30 
40 
60 

120 
00 

v 

I 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 I 

13 
14 
15 

16 
17 
18 
19 
20 

24 
30 
40 
60 

120 
00 

k:2 

35.99 
8.n6 
5.907 
4.943 
4.474 

4.199 
4.018 
3.892 
3.797 
3.725 

3.667 
3.620 
3.582 
3.550 
3.522 

3.498 
3.4n 
3.458 
3.442 
3.427 

3.381 
3.337 
3.294 
3.251 
3.210 
3.170 

k: 11 

10\.3 
20.52 
12.46 
9.788 
8.490 

7.729 
7.230 
6.879 
6.617 
6.416 

6.256 
6.125 
6.017 
5.926 
5.848 

5.781 
5.722 
5.670 
5.624 
5.583 

5.455 
5.330 
5.208 
5.089 
4.972 
4.858 

3 

54.00 
11.94 
7.661 
6.244 
5.558 

5.158 
4.897 
4.714 
4.578 
4.474 

4.391 
4.325 
4.269 
4.222 
4.182 

4.148 
4.118 
4.092 
4.068 
4.047 

3.983 
3.919 
3.858 
3.798 
3.739 
3.682 

12 
104.0 
21.03 
12.75 
10.01 
8.670 

7.887 
7.373 
7.011 
6.742 
6.534 

6.369 
6.235 
6.123 
6.029 
5.949 

5.879 
5.818 
5.765 
5.718 
5.675 

5.543 
5.414 
5.288 
5.164 
5.043 
4.925 

4 5 

65.69 74.22 
14.01 15.54 
K801l 9.660 
7.088 7.716 
6.257 6.n5 

5.772 6.226 
5.455 5.86R 
5.233 5.616 
5.069 5.430 
4.943 5.287 

4.843 5.173 
4.762 5.081 
4.694 5.004 
4.638 4.940 
4.589 4.885 

4.548 4.838 
4.512 4.797 
4.480 4.761 
4.451 4.728 
4.426 4.700 

4.347 4.610 
4.271 4.523 
4.197 4.439 
4.124 4.356 
4.053 4.276 
3.984 4.197 

\3 14 

106.5 108.8 
21.49 21.91 
13.01 13.26 
10.20 10.39 
8.834 8.984 

8.031 8.163 
7.504 7.624 
7.132 7.244 
6.856 6.961 
6.643 6.742 

6.473 6.568 
6.335 6.427 
6.220 6.309 
6.123 6.210 
6.041 6.125 

5.969 6.052 
5.907 5.987 
5.852 5.931 
5.803 5.881 
5.759 5.836 

5.623 5.697 
5.490 5.560 
5.360 5.426 
5.232 5.295 
5.\07 5.166 
4.985 5.041 

6 7 8 9 10 

80.87 AA.29 90.85 94.n 98.20 
16.75 17.74 18.58 19.31 19.95 
10.34 10.89 11.37 11.78 12.14 
8.213 8.625 8.976 9.279 9.548 
7.1R6 7.527 7.816 8.068 8.291 

6.586 6.884 7.138 7.359 7.554 
6.194 6.464 6.695 6.895 7.072 
5.919 6.169 6.382 6.568 6.732 
5.715 5.950 6.151 6.325 6.479 
5.558 5.782 5.972 6.138 6.285 

5.433 5.64R 5.831 5.989 6.130 
5.332 5.540 5.716 5.869 6.004 
5.248 5.449 5.620 5.769 5.900 
5.178 5.374 5.540 5.684 5.811 
5.118 5.309 5.471 5.612 5.737 

5.066 5.253 5.412 5.550 5.672 
5.020 5.204 5.361 5.496 5.615 
4.981 5.162 5.315 5.448 5.565 
4.945 5.123 5.275 5.405 5.521 
4.914 5.089 5.238 5.368 5.481 

4.816 4.984 5.126 5.250 5.358 
4.720 4.881 5.017 5.134 5.2.38 
4.627 4.780 4.910 5.022 5.120 
4.536 4.682 4.806 4.912 5.006 
4.447 4.587 4.704 4.805 4.894 
4.361 4.494 4.605 4.700 4.784 

15 16 17 18 19 

110.8 112.7 114.5 116.2 117.7 
22.30 22.67 23.01 23.32 23.62 
13.48 13.69 13.88 14.06 14.23 
10.55 10.71 10.85 10.99 ILl I 
9.124 9.253 9.374 9.486 9.593 

8.286 K399 8.506 8.605 8.698 
7.735 7.839 7.935 8.025 8.111 
7.347 7.443 7.532 7.616 7.695 
7.058 7.148 7.232 7.311 7.385 
6.834 6.920 7.000 7.075 7.146 

6.657 6.739 6.815 6.887 6.955 
6.512 6.591 6.665 6.734 6.799 
6.392 6.468 6.539 6.607 6.670 
6.290 6.364 6.434 6.499 6.560 
6.203 6.276 6.344 6.407 6.467 

6.128 6.199 6.265 6.328 6.386 
6.062 6.132 6.197 6.258 6.315 
6.004 6.073 6.137 6.197 6.253 
5.954 6.020 6.083 6.142 6.198 
5.907 5.974 6.036 6.093 6.148 

5.764 5.827 5.8M 5.941 5.994 
5.624 5.684 5.740 5.792 5.841 
5.487 5.544 5.597 5.646 5.693 
5.352 5.406 5.456 5.503 5.546 
5.221 5.271 5.318 5.362 5.403 
5.092 5.139 5.183 5.224 5.262 
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TABLE 1.5 (cont.): Critical Values of the q Distribution. for the Tukey Test 
a ; O.U2.'i 

v k :20 22 24 26 2!! 30 32 34 36 
I 119.2 121.9 124.3 126.5 128.6 130.4 132.1 133.7 135.2 
2 23.X9 24.41 24.!!7 2.'1.29 25.67 26.03 26.35 26.66 26.95 
3 14.39 14.69 14.95 15.19 15.41 15.62 15.81 15.99 16.15 
4 11.23 11.46 11.66 11.84 12.00 12.16 12.30 12.44 12.56 
5 9.693 9.!!7X 10.04 10.20 10.34 10.47 10.59 10.70 10.80 

6 H.787 1l.949 9.em 9.231 9.355 9.469 9.575 9.674 9.767 
7 8.191 8.339 !!.473 !!.595 8.708 8.812 8.909 8.999 9.084 
!! 7.769 7.907 8.031 X.l45 8.250 8.346 !!.436 8.520 8.599 
9 7.455 7.5X5 7.702 7.809 7.908 7.999 8.084 1l.163 8.237 

\0 7.212 7.335 7.447 7.549 7.643 7.729 7.810 7.885 7.956 

11 7.019 7.137 7.244 7.341 7.431 7.514 7.592 7.664 7.732 
12 6.H61 6.974 7.07!! 7.172 7.258 7.338 7.413 7.483 7.548 
\3 6.730 6.840 6.939 7.031 7.115 7.192 7.265 7.332 7.396 
14 6.619 6.726 6.823 6.911 6.993 7.069 7.139 7.204 7.266 
15 6.523 6.628 6.72.'l 6.809 6.889 6.962 7.031 7.095 7.155 

16 6.441 6.543 6.636 6.721 6.799 6.1l70 6.938 7.000 7.059 
17 6.370 6.469 6.56() 6.644 6.720 6.790 6.1l56 6.917 6.975 
1/1 6.306 6.404 6.493 6.575 6.650 6.720 6.784 6.H44 6.900 
19 6.250 6.347 6.434 6.514 6.588 6.656 6.719 6.779 6.835 
20 6.200 6.295 6.381 6.460 6.532 6.600 6.662 6.720 6.775 

24 6.043 6.133 6.215 6.290 6.359 6.423 6.482 6.538 6.589 
30 5.HBIl 5.974 6.052 6.123 6.188 6.248 6.305 6.357 6.406 
40 5.737 5.818 5.891 5.958 6.020 6.077 6.130 6.179 6.226 
60 5.588 5.664 5.733 5.797 5.584 5.908 5.958 6.004 6.048 

120 5.442 5.513 5.57!! 5.637 5.691 5.741 5.788 5.H31 5.872 
00 5.299 5.365 5.425 5.480 5.530 5.577 5.620 5.660 5.698 

v k:38 40 50 60 70 80 90 100 
1 136.6 137.9 143.6 148.1 151.8 154.9 157.7 160.0 
2 27.22 27.47 28.55 29.42 30.13 30.74 31.27 31.74 
3 16.31 16.46 17.0/! 17.59 11l.00 18.36 18.67 18.95 
4 12.6/! 12.79 13.27 13.65 13.96 14.23 14.47 14.68 
5 10.91 11.00 11.40 11.72 11.99 12.21 12.41 12.59 
6 9.!!55 9.93!! 10.30 10.58 10.81 11.02 11.19 11.35 
7 9.164 9.239 9.563 9.822 10.04 10.23 10.38 10.53 
8 8.673 8.743 9.044 9.286 9.487 9.660 9./110 9.944 
9 8.307 8.373 H.657 8./!85 9.076 9.238 9.381 9.507 

10 8.023 8.086 1l.356 8.574 8.755 8.911 9.046 9.167 
11 7.796 7.856 1!.I16 8.325 8.499 X.648 8.779 8.894 
12 7.610 7.668 7.919 8.120 8.289 8.433 8.559 8.671 
13 7.455 7.512 7.755 7.950 8.113 8.253 8.375 8.4H4 
14 7.324 7.379 7.615 7.1106 7.965 8.101 8.220 8.325 
15 7.212 7.265 7.496 7.682 7.837 7.970 8.086 8.189 
16 7.115 7.167 7.393 7.574 7.726 7.856 7.969 8.070 
17 7.030 7.081 7.302 7.480 7.62!! 7.756 7.868 7.966 
18 6.954 7.005 7.221 7.396 7.543 7.667 7.777 7.874 , 
19 6.8/!1 6.936 7.150 7.322 7.465 7.589 7.696 7.792 
20 6.827 6.876 7.(186 7.255 7.397 7.518 7.624 7.718 
24 6.639 6.685 M85 7.046 7.180 7.296 7.397 7.486 
30 6.453 6.497 6.686 6.839 6.96.'i 7.075 7.171 7.2.'\5 
40 6.270 6.311 6.489 6.633 6.753 6.8S5 6.945 7.025 
60 6.0/!9 6.127 6.295 6.429 6.540 6.636 6.720 6.795 

120 5.910 5.946 6.101 6.225 6.329 6.418 6.495 6.564 
00 5.733 5.766 5.909 6.023 6.1 III 6.199 6.270 6.333 
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TABLE 8.5 «(ont.): Critical Values of the q Distribution, for the Tukey Test 
a = (l.(JI 

~. k:2 3 4 5 6 7 X 9 to 
I 90.03 135.0 164.3 11)5.6 202.2 215.X 227.2 237.0 245.h 
2 14.114 19.02 22.29 24.72 2M3 211.20 29.53 30.61< 31.h9 
3 X.261 10.62 12.17 13.33 14.24 15.m 15.64 Ih.20 Ih.69 
4 6512 11.120 9.173 9.95X lIl.5X 11. III 11.55 11.93 12.27 
5 5.702 6.976 7.X1I4 1<.421 11.913 9.321 9.669 9.972 111.24 

6 5.243 6.331 7.1133 7556 7.973 x.31R X.613 x.I!69 9.097 
7 4.949 5.919 6543 7.1105 7.373 7.679 7.939 x.lM x.3fIX 
X 4.746 5.635 6.2114 M2.'i 6.960 7.237 7.474 7.flXl 7.Xft3 
9 4.596 5.42X 5.957 h.348 6.65X 6.915 7.134 7.325 7.495 

10 4.482 5.270 5.769 6.13h M2X 6.M9 6.X75 7.055 7.213 

II 4.392 5.146 5.621 5.9711 6.247 6.476 M72 h.X42 h.9'12 
12 4320 5.()46 5502 5.X36 6.101 6.321 6.5U7 h.670 6.1114 
13 4.2611 4.%4 5.4(14 5.727 5.9XI 6.192 6.372 652X 6.M7 
14 4.210 4.X1)5 5.322 5.634 5.XXI 6.(11<5 6.2511 h.409 h543 
15 4.16X 4.X3h 5.252 5556 5.796 5.1)<)4 6.162 0309 6.439 

16 4.131 4.7Xft 5.192 5.4X9 5.722 5.1)15 6.U79 6.222 6.34<) 
17 4.(1)<) 4.742 5.140 5.430 5.h59 5.1147 6.IK17 6.147 6.270 
IX 4.U71 4.703 5.0<)4 5.37<) 5.603 5.7XX 5.1)44 6.1 II! I 6.201 
19 4.114h 4.670 5.1154 5.334 5.554 5.735 5.XXI) 6.U22 6.141 
20 4.024 4.639 5.0111 5.294 5510 5.hXX 5.1139 5.1)70 0.OX7 

24 3.956 4546 4.1)07 5.lfIX 5.374 5.542 5.61<5 5.X09 5.1)11) 
30 3.XX9 4.455 4.71)<) 5.114l! 5.242 5.401 5536 5.653 5.750 
40 3.X25 4.367 4.696 4.<)31 5.114 5.265 5.31)2 5502 5.55<) 
60 3.762 4.282 4.595 4.X18 4.991 5.133 5.253 5.35h 5.447 

120 3.702 4.21MI 4.497 4.709 4J!72 5.005 5.IIS 5.214 5.2W 
x 3.643 4.120 4.403 4.603 4.757 4.M2 4.I)X7 5.I17X :'i. 157 

\. k: II 12 13 14 15 16 17 IX 1<) 

I 253.2 260.0 2M.2 271.X 277.11 2X1.I) 2X6.3 2<XJ.4 21)4.3 
2 3251) 33.411 34.13 34.XI 35.43 36.(XI ."\6.53 37.03 3750 
3 17.13 1753 17.89 18.22 111.52 111.1)1 19.07 19.32 11)55 
4 1257 12.114 l.lU<) 13.32 13.53 13.73 13.<)1 14.111< 14.24 
5 10.411 10.711 III.X<) lUll! 11.24 11.40 11.55 Il.fIX II.XI 

6 1).3111 <).485 9.653 <;I.XCII! <;1.<)51 I lUll! 10.21 10.32 111.43 
7 X548 11.711 8.XftO 11.1)<)7 1).124 <).242 9.353 <;1.456 9554 
8 11.1127 11.176 8.312 8.436 11.552 11.659 x.7hO 8.X54 11.943 
9 7.647 7.7114 7.1)111 11.1125 11.132 8.232 11.325 8.412 1<.495 

III 7.356 7.4115 7.603 7.712 7.X12 7.9116 7.1)<)3 11.076 11.153 

II 7.128 7.2511 7.362 7.465 7560 7.649 7.732 7.XCII) 7.XX3 
12 6.943 7.060 7.167 7.265 7.356 7.441 7.520 7.594 7.665 
13 6.791 6.W3 7.()(1t! 7.101 7.IXX 7.2(1) 7.345 7.417 7.485 
14 6.664 6.772 h.X71 6.962 7.1147 7.126 7.(1)<) 7.2M 7.33.' 
15 6.555 6.(>6(1 6.757 6.1145 6.927 7.1K13 7.074 7.142 7.204 

16 6.462 6.564 6.65X 6.744 6.X23 6.X9X 6.967 7.032 7.111}3 
17 6.3XI 6.4110 6.572 6.656 6.734 6.!!06 6.X73 6.937 6.997 
IX 6310 6.407 6.497 6.571) 6.655 6.725 6.792 6.854 6.1)12 
II) 6.247 6.342 M30 6.510 6.5115 6.654 6.711) 6.7XO 6.X37 
211 6.191 6.2X5 6.371 M511 6.523 6591 6.654 6.714 6.771 

24 6.1117 6. Hit! 6.IXft 6.261 6.330 6.394 h.453 6.510 0.563 
311 5.1149 5.1)32 6.IKII! O.ll7X 6.143 6.203 0.259 6.311 6.361 
411 5.61<6 5.764 5.X35 5.9I1f1 5.961 6.017 6.()(l1) 0.119 6.165 
60 5.52!! 5.601 5.M7 5.72X 5.7!!5 5.!!37 5.Rxn 5.931 5.974 

1211 5.375 5.443 5505 5.562 5.614 5.662 5.711X 5.7511 5.790 
00 5.227 2.5911 5.34X 5.,"){1 5.44X 5.493 5.535 5574 5.hll 
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TABLE B.5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.01 

v k :20 22 24 26 28 30 32 34 36 
1 298.0 304.7 310.8 316.3 321.3 326.0 330.3 334.3 338.0 
2 37.95 38.76 39.49 40.15 40.76 41.32 41.84 42.33 42.78 
3 19.77 20.17 20.53 20.86 21.16 21.44 21.70 21.95 22.17 
4 14.40 14.68 14.93 15.16 15.37 15.57 15.75 15.92 16.08 
5 11.93 12.16 12.36 12.54 12.71 12.87 13.02 13.15 13.28 

6 10.54 10.73 10.91 11.06 11.21 11.34 11.47 11.58 11.69 
7 9.646 9.815 9.970 10.11 10.24 10.36 10.47 10.58 10.67 
8 9.027 9.182 9.322 9.450 9.569 9.678 9.779 9.874 9.964 
9 8.573 8.717 8.1147 8.966 9.075 9.177 9.271 9.360 9.443 

\0 8.226 8.361 8.483 8.595 8.698 8.794 8.883 8.966 9.044 

11 7.952 8.0I!0 8.196 8.303 8.400 8.491 8.575 8.654 8.728 
12 7.731 7.853 7.964 8.066 8.159 8.246 8.327 8.402 8.473 
13 7.548 7.665 7.772 7.870 7.960 8.043 8.121 8.193 8.262 
14 7.395 7.508 7.611 7.705 7.792 7.873 7.948 8.018 8.084 
15 7.264 7.374 7.474 7.566 7.650 7.728 7.800 7.869 7.932 

16 7.152 7.258 7.356 7.445 7.527 7.602 7.673 7.739 7.Pm. 
17 7.053 7.158 7.253 7.340 7.420 7.493 7.563 7.627 7J1fl 
18 6.968 7.070 7.163 7.247 7.325 7.398 7.465 7.528 7.StrT 
19 6.891 6.992 7.082 7.166 7.242 7.313 7.379 7.440 7.498 
20 6.823 6.922 7.011 7.092 7.168 7.237 7.302 7.362 7.419 

24 6.612 6.705 6.789 6.865 6.936 7.001 7.062 7.119 7.173 
30 6.407 6.494 6.572 6.644 6.710 6.772 6.828 6.881 6.932 
40 6.209 6.289 6.362 6.429 6.490 6.547 6.600 6.650 6.697 
60 6.015 6.090 6.158 6.220 6.277 6.330 6.378 6.424 6.467 

120 5.827 5.897 5.959 6.016 6.069 6.117 6.162 6.204 6.244 
00 5.645 5.709 5.766 5.818 5.866 5.911 5.952 5.990 6.026 

v k: 31! 40 50 60 70 80 90 100 

1 341.5 344.8 358.9 370.1 379.4 387.3 394.1 400.1 
2 43.21 43.61 45.33 46.70 47.83 48.80 49.64 50.38 
3 22.39 22.59 23.45 24.13 24.71 25.19 25.62 25.99 
4 16.23 16.37 16.98 17.46 17.86 18.02 18.SO 18.77 
5 13.40 13.52 14.00 14.39 14.72 14.99 15.23 15.45 

6 11.80 11.90 12.31 12.65 12.92 13.16 13.37 13.55 
7 10.77 10.85 11.23 11.52 11.77 11.99 12.17 12.34 
8 10.05 10.13 10.47 10.75 10.97 11.17 11.34 11.49 
9 9.521 9.594 9.912 10.17 10.38 10.57 10.73 10.87 

10 9.117 9.187 9.486 9.726 9.927 10.10 10.25 10.39 

11 8.798 8.864 9.148 9.377 9.568 9.732 9.875 10.00 
12 8.539 8.603 8.875 9.094 9.277 9.434 9.571 9.693 
13 8.326 8.387 8.648 8.859 9.035 9.187 9.318 9.436 
14 8.146 8.204 8.457 8.661 8.832 8.978 9.106 9.219 
15 7.992 8.049 8.295 8.492 8.658 8.800 8.924 9.035 

16 7.860 7.916 8.154 8.347 8.507 8.646 8.767 8.874 
17 7.745 7.799 8.031 8.219 8.377 8.511 8.630 8.735 
18 7.643 7.696 7.924 8.107 8.261 8.393 8.508 8.611 
19 7.553 7.605 7.828 8.008 8.159 8.288 8.401 8.502 
20 7.473 7.523 7.742 7.919 8.067 8.194 8.305 8.404 

24 7.223 7.270 7.476 7.642 7.780 7.900 8.004 8.097 
30 6.978 7.023 7.215 7.370 7.500 7.611 7.709 7.796 
40 6.740 6.782 6.960 7.104 7.225 7.328 7.419 7.500 
60 6.507 6.546 6.710 6.843 6.954 7.0SO 7.133 7.207 

120 6.281 6.316 6.467 6.588 6.689 6.776 6.852 6.919 
00 6.060 6.092 6.228 6.338 6.429 6.507 6.575 6.636 
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TABLE B.5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a ~ O.(]()5 

v k:2 3 4 :; fl 7 M 9 10 

I I~UI.I 270.1 32X5 371.2 404.4 431.6 454.4 474.0 491.1 
2 19.93 2fl.97 31.60 35.02 37.73 39.95 41.M3 43.46 44.X9 

.' 11155 13.50 15.45 Ifl.91 IlUl6 19.01 19.X3 2053 21.15 
4 7.916 9.M14 11.06 11.99 12.74 13.35 13.8R 14.33 14.74 
5 6.751 8.1% 9.141 9J!47 10.41 1II.8M 11.28 11.63 11.93 

6 6.\05 7.306 X.!)AA R670 9.135 9522 9.X52 10.14 10.40 
7 5.699 6.75!) 7.429 7.935 8.339 R674 R961 9.211 9.433 
X 5.420 6.370 6.%1 7.435 7.797 11.097 X354 X57R R777 
9 5.21X 6.1196 6.657 7.074 7.405 7.680 7.915 X, 120 8.303 

\0 5.1l65 5.Xl!X MI2 6.Xm 7.109 7.3fl5 7.584 7.775 7.944 

II 4.945 5.727 b.222 6.58R b.X7X 7.119 7.325 7.505 7.664 
12 4.1\49 5.597 6.06X 6.416 fl.693 6.922 7.IIX 7.m 7.439 
13 4.770 5.490 5.943 fl.277 6541 6.7611 6.947 7.111 7.255 
14 4.704 5.40 I 5.t:I3X 6.160 6.414 6.626 6.805 6.962 7.101 
15 4.M7 5.325 5.750 6.()fi1 6.30l! 6.511 6.6115 6.837 6.971 

16 4.599 5.261 5.674 5.977 6.216 M13 65X2 6.729 6.X59 
17 4.557 5.205 5JlIIX 5.W3 6.130 6.329 6.493 6.636 6.763 
IX 4.521 3.156 5.550 5.s:W 6.(l67 6.255 MIS 6.554 6.67R 
1\1 4.48R 5.113 5.500 5.7X3 6.005 6.1!!9 6.346 6.4H2 6.603 
20 4.46!) 5.074 5.455 5.732 5.951 6.\31 6.2X5 6.41X 6.537 

24 4.:'71 4.955 5.:1I5 5.577 5.7X3 5.952 6,(196 6.221 6.332 
30 4.285 4.X41 5.IXI 5.42X 5.621 5.7XO 5.\114 6.031 6.135 
40 4.202 4.731 5.053 5.2X4 5.465 5.614 5.739 5.848 5.944 
60 4.122 4.625 4.\l2X 5.146 5.316 5.454 5571 5.61-' 5.762 

120 4.1145 4523 4.1«19 5.fll3 5.172 5301 5.410 5.504 5.5!1O 
00 3.\170 4.424 4.694 4.M6 5.OJ3 5.154 5.255 5.341 5.41!! 

v k: II 12 13 14 15 16 17 18 19 

I 5(l6.3 520.0 532.4 543.6 554.0 563.6 572.5 580.9 58R.7 
2 46.16 4731 48.35 4\130 50.17 50.99 51.74 52.45 53.12 
3 21.70 22.20 22.66 23.1IX 23.46 23.l:!2 24.15 24.46 24.76 
4 15.10 15.42 15.72 15.99 16.24 16.4H 16.70 16.l)(} 17.0\1 
5 12.21 12.46 12.69 12.l)(} I3J19 13.27 13.44 \3.60 13.75 

6 10.63 10.8., 11.02 11.20 11.36 11.51 11.65 11.78 11.l)() 
7 \1.632 9.1<12 9.977 10.13 10.27 10.40 1U.52 IO.M 10.75 
II 8.955 9.117 9.265 lJ.401 9.527 9.644 9.754 9.XS7 9.953 
9 8.466 X,614 11.749 X,874 R990 9.097 9.191< 9.292 9.381 

10 R096 8.234 IU60 X.476 X583 R6X3 R777 R!I05 8.947 

II 7.807 7.937 X.055 RIM X.265 X,359 K447 R530 R608 
12 7.575 7.697 7.XW 7.914 R009 X.<l99 RIIB K261 X.335 
\3 7.31\4 7502 7Hr.) 7.7OX 7.1100 7.8R6 7.%5 K040 Kill 
14 7.225 7.33X 7.442 7.537 7.625 7.707 7.7X4 7.X56 7.924 
15 7.<l9) 7.2(M) 13(M) 7.392 7.477 7556 7.630 7.699 7.765 

16 6.976 7.0XI 7.178 7.267 7.349 7.426 7.49X 7.566 7.629 
17 6.X76 6.979 7.072 7.15\1 7.239 7.314 7.384 7.44\1 7.511 
IX 6.78R 6.88R 6.\180 7.()fi4 7.142 7.215 7.2K' 7.347 7.407 
19 b.711 6.1!!.l9 fl.X9X 6.9XI 7.057 7.121< 7.1\15 7.257 7.316 
20 6.M2 6.73X 6.X2fl 6.907 6.981 7.051 7.llfl 7.177 7.235 

24 6.431 6.520 6.602 6.677 6.747 6.R12 6.X72 6.'>30 6.9X'" 
30 6.227 6.310 n.3X7 fl.456 6.521 b.5RI 6.63X 6.691 6.741 
40 6.031) 6. WI{ 6.179 6.244 6.3!14 6.360 (,.412 6.461 6.507 
60 5.1\41 5.913 5.979 6.039 6.094 6.146 6.194 6.239 6.2XI 

120 5.660 5.726 5.7!1O 5.1\42 5,X93 5.940 5.91\4 6.025 6.!)64 
00 5.4H5 5.546 5.6U2 5.652 5.699 5.742 5.7X3 5.X20 5.1156 
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TABLE B.S (cont.): Critical Values of the q Distribution. for the Tukey Test 
a = 0.005 

v k:20 22 24 26 28 30 32 34 36 
1 596.0 609.5 621.7 632.6 642.7 652.0 660.6 668.5 676.0 
2 53.74 54.89 55.92 56.116 57.73 58.52 59.26 59.95 60.59 
3 25.03 25.54 26.00 26.42 26.80 27.15 27.48 27.79 28.07 
4 17.28 17.61 17.91 18.19 18.44 18.68 18.89 19.09 19.28 
5 13.89 14.14 14.38 14.59 14.79 14.96 15.13 15.29 15.44 

6 12.02 12.23 12.43 12.61 12.77 12.92 13.06 13.19 13.32 
7 10.85 11.03 11.21 11.36 11.50 11.64 11.76 11.88 11.99 
8 10.04 10.22 10.37 10.51 10.64 10.76 10.87 10.97 11.07 
9 9.465 9.620 9.761 9.890 10.0\ 10.12 10.22 10.32 10.41 

10 9.026 9.170 9.302 9.422 9.532 9.635 9.730 9.820 9.904 

11 8.682 8.818 8.941 9.055 9.159 9.256 9.345 9.430 9.509 
12 8.405 8.534 8.652 8.759 8.858 8.950 9.036 9.116 9.191 
13 8.178 8.302 8.414 8.516 8.611 8.699 8.781 8.857 8.929 
14 7.988 8.107 8.215 8.314 8.404 8.489 8.568 8.641 8.710 
15 7.827 7.942 8.046 8.141 8.229 8.311 8.387 8.458 8.524 -16 7.689 7.800 7.901 7.994 8.078 8.158 8.231 8.300 8.365 
17 7.569 7.677 7.775 7.1165 7.948 8.024 8.096 8.163 8.226 
18 7.464 7.570 7.665 7.753 7.833 7.908 7.978 8.043 8.104 
19 7.372 7.474 7.568 7.653 7.732 7.805 7.873 7.937 7.996 
20 7.289 7.390 7.481 7.565 7.642 7.713 7.780 7.842 7.901 

24 7.034 7.128 7.213 7.291 7.362 7.429 7.491 7.549 7.603 
30 6.788 6.875 6.954 7.026 7.093 7.154 7.212 7.265 7.316 
40 6.550 6.631 6.704 6.770 6.832 6.889 6.942 6.991 7.038 
60 6.321 6.396 6.462 6.523 6.580 6.632 6.1161 6.726 6.769 

120 6.101 6.169 6.230 6.286 6.337 6.385 6.428 6.470 6.508 
00 5.889 5.951 6.006 6.057 6.103 6.146 6.1116 6.223 6.258 

v k:38 40 SO 60 70 80 90 100 

I 683.0 689.6 717.8 740.2 758.8 774.5 788.2 800.3 
2 61.19 61.76 64.19 66.13 67.74 69.10 70.29 7\.35 
3 28.34 28.60 29.68 30.55 31.27 31.88 32.42 32.90 
4 19.46 19.63 20.36 20.93 21.42 21.83 22.18 22.50 
5 15.58 15.71 16.27 16.72 17.09 17.41 17.69 17.94 

6 13.43 13.54 14.02 14.40 14.71 14.98 15.21 15.43 
7 12.09 12.18 12.60 12.93 13.21 13.44 13.65 13.84 
8 11.16 11.25 11.63 11.93 12.18 12.39 12.58 12.75 
9 10.49 10.58 10.92 11.20 11.43 11.63 11.80 11.96 

10 9.983 10.06 10.38 10.64 10.86 11.04 11.20 1\.35 

II 9.583 9.654 9.957 10.20 10.41 10.59 10.74 10.88 
12 9.262 9.328 9.617 9.850 10.04 10.21 10.36 10.49 
13 8.997 9.061 9.337 9.560 9.747 9.907 10.05 10.17 
14 8.775 8.837 9.103 9.317 9.497 9.652 9.787 9.907 
15 8.587 8.647 8.904 9.111 9.285 9.434 9.565 9.680 

16 8.425 8.483 8.733 8.933 9.102 9.247 9.373 9.486 
17 8.285 8.341 8.583 8.779 8.943 9.084 9.206 9.316 
18 8.162 8.217 8.452 8.643 8.803 8.940 9.061 9.167 
19 8.053 8.106 8.337 8.523 8.679 8.813 8.931 9.036 
20 7.956 8.008 8.234 8.416 8.569 8.700 8.815 8.917 

24 7.655 7.704 7.914 8.083 8.226 8.348 8.455 8.551 
30 7.364 7.409 7.603 7.760 7.893 8.006 8.105 8.193 
40 7.082 7.123 7.302 7.447 7.568 7.672 7.763 7.845 
60 6.808 6.846 7.010 7.143 7.2..'i2 7.347 7.431 7.504 

120 6.545 6.580 6.728 6.846 6.946 7.032 7.107 7.173 
00 6.291 6.322 6.454 6.561 6.649 6.725 6.792 6.850 
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TABLE B.5 (cont.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.001 

v k:2 3 4 5 6 7 8 9 10 

1 900.3 1351. 1643. 1856. 2022. 2158. 2272. 2370. 2455. 
2 44.69 60.42 70.77 78.43 R4.49 R9.46 93.67 97.30 100.5 
3 18.28 23.32 26.65 29.13 31.11 32.74 34.12 35.33 36.39 
4 12.18 14.99 16.84 18.23 19.34 20.26 21.04 21.73 22.33 
5 9.714 11.67 12.96 13.93 14.71 15.35 15.90 16.38 16.81 

6 8.427 9.960 10.97 11.72 12.32 12.83 13.26 13.63 13.97 
7 7.648 8.930 9.763 10.40 10.90 11.32 11.68 11.99 12.27 
R 7.130 8.250 8.97R 9.522 9.958 10.32 10.64 10.91 11.15 
9 6.762 7.768 8.419 8.906 9.295 9.619 9.897 10.14 10.36 

10 6.487 7.411 8.006 8.450 8.804 9.099 9.352 9.573 9.769 

II 6.275 7.136 7.687 8.098 8.426 8.699 8.933 9.138 9.319 
12 6.106 6.917 7.436 7.R21 R.l27 8.383 8.601 8.793 8.962 
13 5.970 6.740 7.231 7.595 7.885 R.l26 8.333 R.513 8.673 
14 5.856 6.594 7.062 7.409 7.685 7.915 8.110 8.282 8.434 
15 5.760 6.470 6.920 7.252 7.517 7.736 7.925 8.0R!! 8.234 

16 5.678 6.365 6.799 7.119 7.374 7.585 7.766 7.923 8.063 
17 5.608 6.275 6.695 7.005 7.250 7.454 7.629 7.781 7.916 
18 5.546 6.196 6.604 6.905 7.143 7.341 7.510 7.657 7.788 
19 5.492 6.127 6.525 6.817 7.049 7.242 7.405 7.549 7.676 
20 5.444 6.065 6.454 6.740 6.966 7.154 7.313 7.453 7.577 

24 5.297 5.877 6.238 6.503 6.712 6.884 7.031 7.159 7.272 
30 5.156 5.698 6.033 6.278 6.470 6.628 6.763 6.880 6.984 
40 5.022 5.528 5.838 6.063 6.240 6.386 6.509 6.616 6.711 
60 4.894 5.365 5.653 5.860 6.022 6.155 6.268 6.366 6.451 

120 4.771 5.211 5.476 5.667 5.815 5.937 6.039 6.128 6.206 
00 4.654 5.063 5.309 5.484 5.619 5.730 5.823 5.903 5.973 

v k: 11 12 13 14 15 16 17 18 19 

1 2.'132. 2600. 2662. 271R. 2770. 2818. 2863. 2904. 2943. 
2 103.3 105.9 108.2 110.4 112.3 114.2 115.9 117.4 118.9 
3 37.34 3820 38.98 39.69 40.35 40.97 41.54 42.07 42.58 
4 22.87 23.36 23.81 24.21 2459 24.94 25.27 25.58 2.'1.87 
5 17.18 17.53 17.85 18.13 18.41 18.66 18.89 19.10 19.31 

6 14.27 14.54 14.79 15.01 15.22 15.42 15.60 15.7R 15.94 
7 12.52 12.74 12.95 13.14 13.32 13.48 13.64 13.78 13.92 
8 11.36 11.56 11.74 11.91 12.06 12.21 12.34 12.47 12.59 
9 10.55 10.73 10.89 11.03 11.18 11.30 11.42 11.54 11.64 

10 9.946 10.11 10.25 10.39 10.52 10.64 10.75 10.85 10.95 

11 9.482 9.630 9.766 9.892 10.0\ 10.12 10.22 10.31 10.41 
12 9.115 9.254 9.381 9.498 9.606 9.701 9.802 9.891 9.975 
\3 8.817 8.948 9.068 9.178 9.281 9.376 9.466 9.550 9.629 
14 8.571 8.696 8.809 8.914 9.012 9.103 9.188 9.267 9.343 
15 8.365 8.483 8.592 8.693 8.786 8.872 8.954 9.030 9.102 

16 8.189 8.303 8.407 8.504 8.593 8.676 8.755 R.828 8.897 
17 8.037 8.148 8.248 8.342 8.427 R.508 8.583 8.654 8.720 
18 7.906 R.012 8.110 8.199 8.283 R.361 8.434 8.502 8.567 
19 7.790 7.893 7.988 8.075 R.I56 8.232 8.303 8.369 8.432 
20 7.688 7.788 7.880 7.966 8.044 8.11R 8.186 8.251 8.312 

24 7.374 7.467 7.551 7.629 7.701 7.768 7.831 7.890 7.946 
30 7.077 7.162 7.239 7.310 7.375 7.437 7.494 7.548 7.599 
40 6.796 6.R72 6.942 7.007 7.067 7.122 7.174 7.223 7.269 
60 6.528 6.59R 6.661 6.720 6.774 6.824 6.871 6.914 6.956 

120 6.276 6.339 6.396 6.448 6.496 6.542 6.583 6.623 6.660 
00 6.036 6.092 6.144 6.191 6.234 6.274 6.312 6.347 6.380 
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" 

TABLE B.S (cant.): Critical Values of the q Distribution, for the Tukey Test 
a = 0.001 

" k:20 22 24 26 28 30 32 34 36 
1 2980. 3047. 3108. 3163. 3213. 3260. 3303. 3343. 3380. 
2 120.3 122.9 125.2 127.3 129.3 131.0 132.7 134.2 13S.7 
3 43.05 43.92 44.70 45.42 46.07 46.68 47.24 47.77 48.26 
4 26.14 26.65 27.10 27.51 27.89 28.24 28.57 28.88 29.16 
5 19.51 19.86 20.19 20.48 20.75 21.01 21.24 21.46 21.66 
6 16.09 16.38 16.64 16.87 17.08 17.28 17.47 17.64 17.81 
7 14.04 14.29 14.50 14.70 14.88 15.05 15.20 15.35 15.49 
8 12.70 12.91 13.09 13.26 13.42 13.57 13.71 13.84 13.96 
9 11.75 11.93 12.10 12.25 12.39 12.53 12.65 12.77 1287 

10 11.03 11.20 11.36 11.50 11.63 11.75 11.87 11.97 12.07 
11 10.49 10.65 10.79 10.92 11.04 11.16 11.26 11.35 11.45 
12 10.06 10.20 10.34 10.46 10.57 10.68 10.78 10.87 10.96 
13 9.704 9.843 9.969 10.09 10.19 10.29 10.39 10.47 1055 
14 9.414 9.546 9.666 9.776 9.878 9.972 10.06 10.14 10.22 
15 9.170 9.296 9.411 9.517 9.613 9.703 9.788 9.867 9.940 
16 8.963 9.084 9.194 9295 9.388 9.475 9.556 9.631 9.702 
17 8.784 8.900 9.007 9.104 9.194 9.277 9.355 9.429 9.497 
18 8.628 8.741 8.844 8.938 9.025 9.106 9.181 9.2.'il 9.318 
19 8.491 8.601 8.701 8.792 8.876 8.955 9.028 9.096 9.161 
20 8.370 8.477 8.574 8.663 8.745 8.821 8.892 8.959 9.021 
24 7.999 8.097 8.185 8.267 8.342 8.411 8.476 8.537 8.S94 
30 7.647 7.735 7.816 7.890 7.958 8.021 8.080 8.135 8.188 
40 7.312 7.393 7.466 7.533 7.594 7.651 7.704 7.754 7.801 
60 6.995 7.067 7.133 7.193 7.248 7.299 7.347 7.392 7.433 

120 6.695 6.760 6.818 6.872 6.921 6.966 7.008 7.048 7.085 
00 6.411 6.469 6.520 6.568 6.611 6.651 6.689 6.723 6.756 

" k:38 40 SO 60 70 80 90 IIlO 
1 3415. 3448. 3589. 3701. 3794. 3873. 3941. 4002. 
2 137.0 138.3 143.7 148.0 151.6 154.7 157.4 159.7 
3 48.72 49.16 51.02 52.51 53.75 54.81 55.72 56.53 
4 29.43 29.68 30.78 31.65 32.37 32.98 33.52 34.00 
5 21.86 22.03 22.82 23.45 23.97 24.41 24.80 25.15 
6 17.96 18.10 18.73 19.22 19.64 20.00 20.31 20.58 
7 15.62 15.74 16.27 16.69 17.04 17.35 17.61 17.85 
8 14.07 14.18 14.64 15.01 15.32 15.59 15.82 16.02 
9 12.97 13.07 13.49 13.82 14.10 14.34 14.55 14.74 

10 12.16 12.25 12.63 12.94 13.20 13.42 13.61 13.78 
11 11.53 11.62 11.97 12.25 12.49 12.70 12.88 13.04 
12 11.03 11.11 11.44 11.71 11.94 12.13 12.29 12.45 
13 10.63 10.70 11.01 11.27 11.48 11.66 11.82 11.97 
14 10.30 10.37 10.66 10.91 11.11 11.28 11.43 11.57 
15 10.01 10.08 10.37 10.59 10.79 10.96 11.10 11.23 
16 9.769 9.833 10.11 10.34 10.52 10.68 10.82 10.95 
17 9.562 9.623 9.888 10.10 10.29 10.44 10.58 10.70 
18 9.381 9.440 9.696 9.904 10.08 10.23 10.36 10.48 
19 9.221 9.279 9.528 9.730 9.899 10.04 10.17 10.29 
20 9.081 9.137 9.379 9.575 9.740 9.881 10.01 10.12 
24 8.648 8.700 8.921 9.100 9.250 9.380 9.494 9.596 
30 8.237 8.283 8.484 11.647 8.783 8.901 9.004 9.096 
40 7.845 7.887 8.067 8.214 8.337 8.442 8.535 8.618 
60 7.473 7.510 7.671 7.802 7.911 8.005 8.08R 8.161 

120 7.121 7.153 7.296 7.411 7.507 7.590 7.662 7.726 
00 6.787 6.816 6.941 7.041 7.124 7.196 7.259 7.314 

Table 8.5 is reprinted. with permission of the aUlhor. from the more extensive Table 8.2 of H. L. Harter 
(1970). 

Examples: 
QO.05.24.3 = 5.532 and QO.III.20.5 = 5.294 

If a critical value is needed for degrees of freedom not on this table. we may conservatively use the next 
lower degrees of freedom in the table. The required critical value may be estimated by harmonic interpolation. 
See Harter (1960) for further considerations of interpolation. 
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TABLE 8.6: Critical Values of q' for the One-Tailed Dunnett's Test 

a = 0.115 

~. k:2 3 4 5 6 7 K 9 HI 

5 2.02 2.44 2.68 2.K5 2.9K 3.IIK 3.16 3.24 3.30 
6 1.94 2.34 2.56 2.71 2.83 2.92 3.UO 3.07 3.12 
7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.111 
8 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92 
9 1.83 2.18 2.37 2511 2.60 2.68 2.75 2.1\1 2.86 

10 1.81 2.15 2.34 2.47 256 2.64 2.70 2.76 2.81 
11 1.80 2.13 2.31 2.44 2.53 2.611 2.67 2.72 2.77 
12 1.78 2.11 2.29 2.41 2511 2.58 2.64 2.69 2.74 
13 1.77 2.119 2.27 2.39 2.4K 255 2.61 2.66 2.71 
14 1.76 2.OK 2.2.'i 2.37 2.46 253 2.59 2.64 2.69 

15 1.75 2.07 2.24 2.36 2.44 2.51 257 2.62 2.67 
16 1.75 2.06 2.23 2.34 2.43 2.511 2.56 2.61 2.65 
17 1.74 2.05 2.22 2.33 2.42 2.49 254 2.59 2.64 
18 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2511 2.62 
19 1.73 2.03 2.211 2.31 2.411 2.47 2.52 2.57 2.61 

211 1.72 2.113 2.19 2.30 2.39 2.46 2.51 2.56 2.60 
24 1.71 2.01 2.17 2.2x 2.36 2.43 2.48 2.53 2.57 
30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54 
40 1.6I! 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 
6U 1.67 1.95 2.10 2.21 2.211 2.35 2.39 2.44 2.48 

120 1.66 1.93 2.011 2.IX 2.26 2.32 2.37 2.41 2.45 
00 1.64 1.92 2.()6 2.16 2.23 2.29 2.34 2.311 2.42 

a = 0.01 
v k:2 3 4 5 6 7 II 9 HI 

5 3.37 3.90 4.21 4.43 4.60 4.73 4.K5 4.94 5.03 
6 3.14 3.61 3.88 4.117 4.21 4.33 4.43 4.51 4.59 
7 3.00 3.42 3.66 3.113 3.96 4.07 4.15 4.23 4.30 
S 2.90 3.29 351 3.67 3.79 3.xx 3.96 4.113 4.09 
9 2.112 3.19 3.40 355 3.66 3.75 3.112 3.89 3.94 

10 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.x3 
II 2.72 3.06 3.2.'; 3.38 3.48 3.56 3.63 3.69 3.74 
12 2.61! 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 
13 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61 
14 2.62 2.94 3.11 3.2., 3.32 3.411 3.46 351 3.56 

15 2.60 2.91 3.(1I! 3.20 3.29 3.36 3.42 3.47 3.52 
16 2.58 2.XS 3.05 3.17 3.26 3.33 3.39 3.44 3.48 
17 2.57 2.116 3.03 3.14 3.23 3.30 3.36 3.41 3.45 
18 2.55 2.1!4 3.01 3.12 3.21 3.27 3.33 3.38 3.42 
19 2.54 2.113 2.99 3.10 3.IX 3.25 331 3.36 3.40 

20 2.53 2.111 2.97 3.011 3.17 3.23 3.29 3.34 3.38 
24 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31 
30 2.46 2.72 2.87 2.97 3.()5 3.11 3.16 3.21 3.24 
40 2.42 2.61\ 2.1!2 2.92 2.99 3.115 3.111 3.14 3.11! 
611 2.39 2.64 2.711 2.K7 2.94 3.00 3.04 3.(111 3.12 

120 2.36 2.60 2.73 2.82 2.K9 2.94 2.99 3.113 3.116 
00 2.33 2.56 2.68 2.77 2.1!4 2.K9 2.93 2.97 3.110 



734 Appendix B Statistical Tables and Graphs 

Values in Table B.6 are reprinted. with the permission of the author ad publisher. from the tables of C. W. 
Dunnelt (1955,1. Amer. Slalisl. Assoc. 50: 1096-1121.) 

Examples: 

qO.05(l }.16.4 = 2.23 and QO.Ol( 1 }.24.3 = 2.77 

If a critical value is required for degrees of freedom not on this table. we may conservatively use the critical 
value with the next lower degrees of freedom. Or. the critical value may be estimated by harmonic interpolation. 

Values in Table B.7 are reprinted. with the permission of the author and editor. from the tables of C. W. 
Dunnett (1964. Biometrics 20: 482-491). 

Examples: 

QO.05{2).30.5 = 2.58 and QO.Ol{2).20.4 = 3.29 

If a critical value is required for degrees of freedom not on this table. we may conservatively use the critical 
value with the next lower degrees of freedom. Or, the critical value may be estimated by harmonic interpolation. 
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TABLE B.7: Critical Values of q' for the Two-Tailed Dunnett's Test 
a = 0.05 

v k:2 3 4 5 6 7 8 9 10 II 12 13 16 21 

5 2.57 3.03 3.29 3.48 3.62 3.73 3.112 3.90 3.97 4.03 4.09 4.14 4.26 4.42 
6 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.7\ 3.76 3.81 3.86 3.97 4.11 
7 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53 3.58 3.63 3.67 3.78 3.91 
II 2.31 2.67 2.88 3.02 3.\3 3.22 3.29 3.35 3.41 3.46 3.50 3.54 3.64 3.76 
9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32 3.36 3.40 3.44 3.53 3.65 

10 2.23 2.57 2.76 2.89 2.99 3.07 3.\4 3.19 3.24 3.29 3.33 3.36 3.45 3.57 
11 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.\4 3.19 3.23 3.27 3.30 3.39 3.50 
\2 2.\8 2.50 2.68 2.81 2.90 2.911 3.04 3.09 3.14 3.18 3.22 3.25 3.34 3.45 
13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.\0 3.14 3.18 3.2\ 3.29 3.40 
14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07 3.11 3.14 3.18 3.26 3.36 

15 2.13 2.44 2.6\ 2.73 2.82 2.89 2.95 3.00 3.04 3.08 3.12 3.15 3.23 3.33 
16 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02 3.06 3.09 3.12 3.20 3.30 
17 2.11 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00 3.03 3.07 3.10 3.18 3.27 
18 2.\0 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98 3.01 3.05 3.08 3.16 3.25 
19 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96 3.00 3.03 3.06 3.14 3.23 

20 2.09 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95 2.98 3.02 3.05 3.12 3.22 
24 2.06 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90 2.94 2.97 3.00 3.07 3.16 
30 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.!16 2.89 2.92 2.95 3.02 3.1\ 
40 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81 2.85 2.87 2.90 2.97 3.06 
60 2.00 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77 2.80 2.83 2.86 2.92 3.00 

120 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73 2.76 2.79 2.81 2.87 2.95 
00 1.96 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69 2.72 2.74 2.77 2.83 2.91 

a = 0.01 

v k:2 3 4 5 6 7 8 9 \0 1l 12 13 16 21 

5 4.03 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89 5.98 6.05 6.12 6.30 6.52 
6 3.71 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28 5.35 5.41 5.47 5.62 5.81 
7 3.50 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 4.95 5.ot 5.06 5.19 5.36 
8 3.36 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62 4.68 4.73 4.78 4.90 5.05 
9 3.25 3.63 3.85 4.0\ 4.12 4.22 4.30 4.37 4.43 4.48 4.53 4.57 4.68 4.82 

10 3.17 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28 4.33 4.37 4.42 4.52 4.65 
11 3.11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.\6 4.2\ 4.25 4.29 4.30 4.52 
12 3.05 3.39 3.511 3.71 3.81 3.89 3.96 4.02 4.07 4.12 4.16 4.19 4.29 4.41 
13 3.0\ 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99 4.04 4.08 4.11 4.20 4.32 
14 2.98 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93 3.97 4.0\ 4.05 4.13 4.24 

15 2.95 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88 3.92 3.95 3.99 4.07 4.1S 
16 2.92 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83 3.87 3.9\ 3.94 4.02 4.13 
17 2.90 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79 3.83 3.!16 3.90 3.98 4.08 
18 2.88 3.17 3.33 3.44 3.53 3.60 3.66 3.7\ 3.75 3.79 3.83 3.86 3.94 4.04 
19 2.86 3.15 3.3\ 3.42 3.50 3.57 3.63 3.68 3.72 3.76 3.79 3.S3 3.90 4.00 

20 2.85 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69 3.73 3.77 3.80 3.87 3.97 
24 2.80 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61 3.64 3.68 3.70 3.78 3.87 
30 2.75 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52 3.56 3.59 3.62 3.69 3.78 
40 2.70 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 3.48 3.51 3.53 3.60 3.68 
60 2.66 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37 3.40 3.42 3.45 3.5\ 3.59 

120 2.62 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29 3.32 3.35 3.37 3.43 3.51 
00 2.58 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22 3.25 3.27 3.29 3.35 3.42 



736 AppendixB Statistical Tables and Graphs 

TABLE B.8: Critical Values of dmax for the Kolmogoroy-Smirnoy Goodness-of-Fit for Discrete or 
Grouped Data 

0 : < O.SO 0.20 0.10 0.05 .01 0.005 O. .001 
k n 0(1): < 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

3 3 2 2 2 3 3 3 3 3 3 
3 6 2 3 3 3 4 4 4 5 5 
3 9 2 3 4 4 4 5 5 5 6 
3 12 3 4 4 4 5 5 6 6 7 
3 15 3 4 4 5 6 6 6 7 7 
3 18 3 4 5 5 6 6 7 7 8 
3 21 3 4 5 6 6 7 7 8 8 
3 24 3 5 5 6 7 7 8 8 9 
3 27 3 5 6 6 7 8 8 9 9 
3 30 4 5 6 7 8 8 9 9 10 
3 33 4 5 6 7 8 8 9 10 10 
3 35 4 5 6 7 8 9 9 10 11 
3 39 4 6 7 7 8 9 10 11 11 
3 42 4 6 7 8 9 9 10 11 12 
3 45 4 6 7 8 9 10 10 1\ 12 
3 48 4 6 7 8 9 10 11 12 12 
3 51 4 6 7 8 10 10 11 12 13 
3 54 4 6 8 9 10 11 11 12 13 
3 57 5 7 8 9 10 11 12 13 13 
3 60 5 7 8 9 10 11 12 13 14 
3 63 5 7 8 9 10 11 12 13 14 
3 66 5 7 8 9 10 11 12 13 14 
3 69 5 7 8 9 11 12 13 14 14 
3 72 5 7 8 9 11 12 13 14 15 
3 75 4 7 8 10 11 12 13 14 15 
3 78 5 7 9 10 11 12 13 14 IS 
3 81 5 7 9 10 11 13 13 15 16 
3 84 5 7 9 10 12 13 14 15 16 
3 87 4 7 9 10 12 13 14 15 16 
3 90 4 7 9 10 12 13 14 15 16 
3 93 4 7 9 11 12 13 14 15 16 
3 96 4 7 9 10 12 13 14 15 16 
3 99 4 7 9 10 12 13 14 IS 16 
4 4 2 2 3 3 3 3 4 4 4 
4 8 2 3 4 4 4 5 5 5 5 
4 12 3 4 4 5 5 6 6 6 7 
4 16 3 4 5 5 6 6 7 7 8 
4 20 3 4 5 6 6 7 7 8 8 
4 24 4 5 6 6 7 8 8 9 9 
4 28 4 5 6 7 7 8 9 9 10 
4 32 4 5 6 7 8 9 9 10 10 
4 36 4 6 7 7 8 9 10 10 II 
4 40 4 6 7 8 9 9 10 11 12 
4 44 5 6 7 8 9 10 11 " 12 
4 48 5 6 7 8 10 10 11 12 13 

4 52 5 7 8 9 10 11 11 12 13 
4 56 5 7 8 9 10 11 12 13 13 
4 60 5 7 8 9 10 11 12 13 14 
4 64 5 7 8 9 11 12 13 14 14 
4 68 5 7 9 10 11 12 13 14 15 
4 72 5 7 9 10 11 12 13 14 15 
4 76 5 8 9 10 11 12 13 14 15 
4 80 5 8 9 10 11 12 13 15 15 
4 84 5 7 9 10 12 13 14 15 16 
4 88 5 7 9 10 12 13 14 15 16 
4 92 5 7 9 10 12 13 14 16 16 
4 96 5 7 9 10 12 13 14 16 17 
4 100 5 8 9 11 12 13 14 16 17 
5 5 2 3 3 3 4 4 4 4 4 
5 10 3 3 4 4 5 5 5 6 6 
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TABlE B.8 (cont.): Critical Values of dmax for the Kolmogorov-Smimov Goodness-of-Fit for Discrete or 
Grouped Data 

a2:<0.SO 0.20 0.10 O.OS 0.02 0.01 0.005 0.002 0.001 
k n a(I): < 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

5 15 3 4 5 5 6 6 7 7 7 
5 20 4 5 5 6 7 7 7 8 8 
5 25 4 5 6 6 7 8 8 9 9 
5 30 4 5 6 7 8 8 9 10 10 
5 35 4 6 7 7 8 9 10 10 II 

5 40 5 6 7 8 9 10 10 11 12 
5 45 5 6 7 H 9 10 11 12 12 
5 SO 5 7 8 9 10 11 11 12 13 
5 55 5 7 8 9 10 11 12 13 14 
5 60 5 7 8 9 11 12 12 13 14 
5 6S 5 7 9 10 11 12 13 14 14 
5 70 6 8 9 10 11 12 13 14 15 
5 75 6 8 9 10 12 13 14 15 15 
5 I!O 5 8 9 11 12 13 14 15 16 
5 HS 5 8 9 11 12 13 14 15 16 

5 90 6 8 10 11 12 13 14 15 16 
5 95 6 8 9 11 12 13 14 16 17 
5 100 5 8 9 11 12 14 15 16 17 
6 6 2 3 3 4 4 4 4 5 5 
6 12 3 4 4 5 5 6 6 6 7 

6 18 3 4 5 6 6 7 7 8 II 
6 24 4 5 6 6 7 8 II 9 9 
6 30 4 6 6 7 II 9 9 10 10 
6 36 5 6 7 8 9 9 10 11 II 
6 42 5 6 7 II 9 10 11 11 12 

6 4H 5 7 8 9 10 11 11 12 13 
6 54 5 7 8 9 10 11 12 13 14 
6 6() 6 7 9 II) II 12 13 13 14 
6 66 6 II 9 10 11 12 13 14 15 
6 n 6 8 9 10 12 13 13 14 15 

6 78 6 8 9 II 12 13 14 15 16 
6 84 6 8 9 11 [2 13 14 15 16 
6 90 5 8 10 11 13 14 15 16 16 
6 96 6 8 10 11 [3 14 15 16 17 
7 7 3 3 4 4 4 5 5 5 5 

7 14 3 4 5 5 6 6 7 7 7 
7 21 4 5 6 6 7 7 8 8 9 
7 28 4 5 6 7 8 8 9 10 10 
7 35 5 6 7 8 9 9 10 11 11 
7 42 5 6 7 8 9 10 11 12 12 

7 49 5 7 8 9 [0 11 12 12 13 
7 56 6 7 8 9 11 12 12 13 14 
7 63 6 8 9 10 11 12 13 14 15 
7 70 6 8 9 10 12 13 13 15 15 
7 77 6 8 9 11 12 13 14 15 16 

7 84 6 8 10 12 12 13 14 15 16 
7 91 6 8 10 11 13 14 15 16 17 
7 98 6 8 10 11 13 14 15 16 17 
8 8 3 3 4 4 5 5 5 5 6 
8 16 3 4 5 6 6 7 7 7 8 

8 24 4 5 6 7 7 8 8 9 9 
8 32 4 6 7 7 8 9 10 10 11 
8 40 5 6 7 8 9 10 11 II 12 
8 48 5 7 8 9 10 11 12 12 13 
8 56 6 7 9 10 11 12 12 13 14 

8 64 6 8 9 10 11 12 13 14 15 
8 n 6 8 9 11 12 13 14 15 15 
8 80 6 8 10 11 12 13 14 15 [6 
8 88 6 8 10 11 13 14 15 16 17 
8 95 6 9 10 11 13 14 15 16 17 
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TABLE B.8 (cont.): Critical Values of dmax for the Kolmogorov-Smirnov Goodness-of-Fit for Discrete or , Grouped Data 
a 2 : < O.SO 0.20 0.10 0.05 0.01 0.005 0.002 0.001 

k n a{I): < 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

9 9 3 4 4 4 5 5 5 6 6 
9 18 4 5 5 6 7 7 7 8 8 
9 27 4 6 6 7 8 8 9 10 10 
9 36 5 6 7 8 9 10 10 11 11 
9 45 5 7 8 9 10 11 11 12 13 
9 54 6 7 9 10 11 11 12 13 14 
9 63 6 8 9 10 11 12 13 14 15 
9 72 6 8 10 11 12 13 14 15 16 
9 81 6 8 10 11 13 13 14 15 16 
9 90 6 9 10 11 13 14 15 16 17 
9 99 6 9 10 12 13 14 15 17 18 
10 10 3 4 4 5 5 5 6 6 6 
10 20 4 5 6 6 7 7 8 II 9 
10 30 4 6 7 7 8 9 9 10 11 
10 40 5 7 8 8 9 10 11 11 12 
10 SO 6 7 8 9 10 11 12 I3 13 
10 60 6 8 9 10 11 12 13 14 15 
10 70 6 8 10 11 12 13 14 15 15 
10 80 6 9 10 11 13 14 14 16 16 
10 90 6 9 10 12 13 14 15 16 17 
10 100 6 9 10 12 13 14 15 17 18 
11 11 3 4 4 5 5 6 6 6 7 
11 22 4 5 6 6 7 8 8 9 9 
11 33 5 6 7 8 9 9 10 11 11 
11 44 5 7 8 9 10 11 11 12 13 

11 55 6 8 9 10 11 12 12 13 14 
11 66 6 8 9 11 12 13 14 15 15 
11 77 6 9 10 11 12 13 14 15 16 
11 88 6 9 10 12 13 14 15 16 17 
11 99 6 9 10 12 13 14 16 17 18 
12 12 3 4 5 5 6 6 6 7 7 
12 24 4 5 6 7 8 II 9 9 10 
12 36 5 6 7 8 9 \0 10 11 12 
12 48 6 7 8 9 10 11 12 13 13 
12 60 6 8 9 10 II 12 13 14 15 
12 72 6 9 10 11 12 13 14 15 16 
12 84 7 9 10 11 13 14 IS 16 17 
12 96 7 9 10 12 13 14 IS 17 18 
13 13 3 4 5 5 6 6 6 7 7 
13 26 4 6 6 7 8 II 9 10 10 
13 39 5 7 8 8 9 10 11 11 12 
13 52 6 8 9 10 11 12 12 13 14 
13 65 6 8 9 11 12 13 14 15 15 
13 78 7 9 10 11 13 14 14 16 16 
13 91 7 9 11 12 13 14 15 16 17 
14 14 3 4 5 5 6 6 7 7 7 
14 28 5 6 7 7 8 9 9 10 10 
14 42 5 7 8 9 \0 10 11 12 12 
14 56 6 8 9 10 11 12 I3 14 14 
14 70 7 8 \0 II 12 13 14 15 16 
14 84 7 9 10 12 13 14 15 16 17 
14 98 7 9 11 12 13 15 16 17 18 
15 15 4 4 5 6 6 7 7 7 8 
15 30 5 6 7 8 8 9 10 \0 11 
14 45 6 7 8 9 10 11 12 12 13 
15 60 6 8 9 \0 12 12 13 14 15 
15 75 7 9 10 11 13 14 14 15 16 
15 90 7 9 11 12 13 14 15 16 17 
16 16 4 5 5 6 6 7 7 8 8 
16 32 5 6 7 8 9 9 10 11 11 
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TABLE B.8 (cont.): Critical Values of dmax for the Kolmogorov-Smirnov Goodness-of-Fit for Discrete or 
Grouped Data 

a 2 : < 0.50 .OS 0.02 0.01 0.005 0.002 0.001 
k n a( 1): < 0.2S O.OS 0.025 om O.OOS 0.0025 0.001 O.OOOS 

16 48 6 7 8 9 10 11 12 13 13 
16 64 6 8 10 II 12 13 14 IS IS 
16 80 7 9 10 11 \3 14 IS 16 17 
16 96 7 9 11 12 14 IS 16 17 18 
17 17 4 S 5 6 7 7 7 8 8 
17 34 S 6 7 8 I) 10 10 II 11 
17 51 6 8 9 10 1 I 12 12 13 14 
17 68 7 9 10 II 12 13 14 15 16 
17 85 7 9 10 12 13 14 15 16 17 
18 18 4 5 6 6 7 7 8 8 8 
18 36 5 7 7 8 9 10 10 11 12 
18 54 6 8 9 10 II 12 13 14 14 
18 72 7 9 10 11 13 13 14 IS 16 
18 90 7 9 11 12 13 14 15 17 17 
19 19 4 5 6 6 7 7 8 8 9 
19 38 5 7 8 8 9 10 11 11 12 
19 57 6 8 9 10 11 12 13 14 15 
19 76 7 9 10 11 13 14 15 16 16 
19 95 7 9 II 12 14 15 16 17 18 
20 20 4 5 6 6 7 8 8 9 9 
20 40 5 7 8 9 10 10 11 12 12 
20 60 6 8 9 10 12 13 13 14 15 
20 80 7 9 10 12 13 14 15 16 17 
20 100 7 9 II 12 14 IS 16 17 18 
21 21 4 5 6 7 7 8 8 9 9 
21 42 5 7 8 9 10 11 II 12 13 
21 63 7 8 10 II 12 13 14 IS 15 
21 84 7 9 11 12 13 14 IS 16 17 
22 22 4 5 6 7 7 8 8 9 9 
22 44 6 7 8 9 to 11 12 12 13 
22 66 7 9 10 11 12 13 14 15 16 
22 88 7 9 11 12 13 15 15 17 17 
23 23 4 5 6 7 8 8 9 9 9 
23 46 6 7 8 9 10 II 12 13 13 
23 69 7 9 10 11 12 13 14 15 16 
23 92 7 9 II 12 14 15 16 17 18 
24 24 4 6 6 7 8 8 9 9 10 
24 48 6 8 9 10 11 II 12 13 14 
24 72 7 9 10 II 13 14 14 16 16 
24 96 7 10 II 12 14 IS 16 17 18 
25 25 4 6 6 7 8 8 9 10 10 
25 50 6 8 9 10 11 12 12 13 14 
2S 7S 7 9 10 11 13 14 15 16 16 
25 100 7 10 11 12 14 15 16 17 18 
26 26 S 6 7 7 8 9 9 10 10 
26 52 6 8 9 10 11 12 13 13 14 
26 78 7 9 11 12 13 14 15 16 17 
27 27 5 6 7 7 8 9 9 10 10 
27 54 6 8 9 10 11 12 13 14 14 
27 81 7 9 11 12 13 14 15 16 17 
28 28 5 6 7 7 8 9 9 10 II 
28 56 6 8 9 10 11 12 13 14 15 
28 84 7 9 11 12 J3 14 15 16 17 
29 29 5 6 7 8 8 9 10 10 11 
29 58 6 8 9 10 12 12 13 14 15 
29 87 7 10 11 12 14 15 16 17 17 
30 30 5 6 7 8 9 9 10 10 11 
30 60 7 8 10 11 12 13 13 14 15 
30 90 7 9 11 12 14 15 16 17 18 
31 31 5 6 7 8 9 9 10 11 11 
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TABLE B.8 (cont.): Critical Values of d max for the Kolmogorov-Smirnov Goodness-of-Fit for Discrete or 
Grouped Data 

a(2 : < 0.50 0.20 0.10 0.115 0.02 0.111 0.005 11.0112 0.001 
k n a( I): < 0.25 0.10 (1.05 0.025 0.01 0.005 1I.1l()25 IUK)] 0.0005 

31 62 7 I) 10 II 12 13 14 15 IS 
31 93 7 9 II 12 14 IS 16 17 18 
32 32 5 6 7 II 9 9 10 II II 
32 M 7 9 III II 12 13 14 15 16 
32 96 7 10 II 12 14 15 16 17 18 
33 33 5 6 7 8 I) III 10 II II 
33 66 7 I) III II 12 \3 14 15 16 
33 99 7 IU II 13 14 15 16 17 18 
34 34 5 7 7 8 9 10 III II 12 
34 68 7 I) 10 11 13 13 14 15 16 

35 35 5 7 II II I) IU II II 12 
35 70 7 I) III II 13 14 14 16 16 
36 36 5 7 8 8 I} III II II 12 
36 72 7 I) 10 II \3 14 15 16 16 
37 37 5 7 8 9 III III II 12 12 
37 74 7 9 II 12 13 14 15 16 17 
38 3H 5 7 8 9 III 10 II 12 12 
38 76 7 I) II 12 13 14 15 16 17 
39 39 6 7 8 I) IU 10 II 12 12 
39 78 7 9 II 12 13 14 15 16 17 
40 40 6 7 8 I) III II II 12 13 
40 80 7 9 11 12 13 14 15 16 17 
41 41 6 7 II 9 10 II II 12 13 
41 82 7 10 II 12 13 14 15 16 17 
42 42 6 7 8 9 III II II 12 13 
42 84 7 10 1\ 12 14 15 15 17 17 
43 43 6 7 8 9 10 II 12 12 13 
43 86 8 10 11 12 \3 15 16 17 18 
44 44 6 7 II 9 10 II 12 13 13 
44 !:IS 7 10 II 12 14 15 16 17 18 
45 45 6 I! 9 I) 10 II 12 13 13 
45 90 7 III II 12 14 15 16 17 18 
46 46 6 I! 9 10 II II 12 \3 \3 
46 92 7 10 II 13 14 15 16 17 18 
47 47 6 8 I) 10 II II 12 \3 14 
47 94 8 10 II 13 14 15 16 17 18 
41! 4H 6 8 9 III II 12 12 13 14 
41! % 7 10 II 13 14 15 16 18 18 
49 49 6 II 9 III 11 12 12 13 14 
49 91! 8 10 II 13 14 15 16 18 19 
50 50 6 8 9 III 1\ 12 13 13 14 
50 100 7 10 II 13 14 15 16 18 19 

These crilical values were determined by the mClhod used in Pettitt and Stephens (1977) by modifying a 
computer program kindly provided by A. N. Pettitt. 

Examples: 
( dmax lo.os( 2 ).3().<)() = II and (dmax )0.01 ( I ).2$.75 = 13 

Appendix Table B.8 is applicable when all expected frequencies are equal: it also works well with expected 
frequencies that are slightly to moderately unequal (Pellitt and Stephens 1977). 

Note: The values of d max shown have probabilities slightly less than their column headings. Therefore. for 
example.O.02 < P(dmax = 12. for k = 30. and" = 90) < 0.05. 
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TABLE B.9: Critical Values of D for the Kolmogorov-Smirnov Goodness-of-Fit Test for Continuous 
Distributions 

a 2): < 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
n a( I): < 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

I 0.75000 0.90000 0.95000 0.97500 0.9'}()()() 0.99500 0.99750 0.99900 0.99950 
2 0.50000 0.68377 0.77639 0.!!4189 0.'lOOOO 0.92929 0.95000 0.96838 0.97764 
3 0.43529 0.56481 0.63604 0.70760 0.7H456 0.82900 0.86428 0.90000 0.92063 
4 0.38209 0.49265 0.56522 0.62394 0.68l!H7 0.73424 0.77639 0.82217 0.85047 
5 0.34319 0.44698 0.50945 0.56328 0.6271H 0.66853 0.70543 0.75000 0.78137 
6 0.31447 0.41037 0.46799 0.51926 0.57741 0.61661 0.65287 0.69571 0.72479 
7 0.29312 0.38148 0.43607 0.48342 0.53844 0.57581 0.60975 0.65071 0.67930 
8 0.27567 0.35831 0.40962 0.45427 0.50654 0.54179 0.57429 0.61368 0.64098 
9 0.26OH2 0.33910 0.38746 0.43001 0.47960 0.51332 0.54443 0.58210 0.60846 

10 0.24809 0.32260 0.36866 0.40925 0.45662 0.48893 0.51872 0.55500 0.58042 
11 0.23709 0.30829 0.35242 0.39122 0.43670 0.46770 0.49639 0.53135 0.55588 
12 0.22748 0.29577 0.33815 0.37543 0.41918 0.44905 0.47672 0.51047 0.53422 
13 0.21901 0.2!!470 0.32549 0.36143 0.40362 0.43247 0.45921 0.49189 0.51490 
14 0.21146 0.27481 0.31417 0.34890 0.3R970 0.41762 0.44352 0.47520 0.49753 
15 0.20465 0.26589 0.30397 0.33760 0.37713 0.40420 0.42934 0.46011 0.48182 
16 0.19844 0.25778 0.29472 0.32733 0.36571 0.39201 0.41644 0.44637 0.46750 
17 0.19277 0.25039 0.28627 0.31796 0.35528 0.380!!6 0.40464 0.43380 0.45440 
18 0.18757 0.24360 0.27851 0.30936 0.34569 0.37062 0.39380 0.42224 0.44234 
19 0.18277 0.23735 0.27136 0.30143 0.33685 0.36117 0.38379 0.41156 0.43119 
20 0.17833 0.23156 0.26473 0.29408 0.32866 0.35241 0.37451 0.40165 0.42085 
21 0.17421 0.22617 0.25858 0.28724 0.32104 0.34426 0.36588 0.39243 0.41122 
22 0.17036 0.22115 0.25283 0.28087 0.31394 0.33666 0.35782 0.38382 0.40223 
23 0.16676 0.21646 0.24746 0.27490 0.30728 0.32954 0.35027 0.37575 0.39380 
24 0.16338 0.21205 0.24242 0.26931 0.30104 0.32286 0.34318 0.36817 0.38588 
25 0.16021 0.20790 0.23768 0.26404 0.29516 0.31657 0.33651 0.36104 0.37843 
26 0.15721 0.20399 0.23320 0.25908 0.28962 0.31063 0.33022 0.35431 0.37139 
27 0.15437 0.20030 0.22898 0.25438 0.2!:w38 0.30502 11.32426 0.34794 0.36473 
28 0.15169 0.19680 0.22497 0.24993 0.27942 0.29971 0.31862 0.34190 0.35842 
29 0.14914 0.19348 0.22117 0.24571 0.27471 0.29466 0.31327 0.33617 0.35242 
30 0.14672 0.19032 0.21756 0.24170 0.27023 0.28986 0.30818 0.33072 0.34672 
31 0.14442 0.18732 0.21412 0.23788 0.26596 0.28529 0.30333 0.32553 0.34129 
32 0.14222 0.18445 0.21085 0.23424 0.26189 0.28094 0.29870 0.32058 0.33611 
33 0.14012 0.18171 0.20771 0.23076 0.25801 0.27677 0.29428 0.31584 0.33115 
34 0.13811 0.17909 0.20472 0.22743 0.25429 0.27279 0.29005 (1.31131 0.32641 
35 0.13618 0.17659 0.20185 0.22425 0.25073 0.26897 0.28600 0.30697 0.32187 
36 0.13434 0.17418 0.19910 0.22119 0.24732 0.26532 0.28211 0.30281 0.31751 
37 0.13257 0.17188 0.19646 0.21826 0.24404 0.26180 0.27838 0.29882 0.31333 
38 0.13086 0.16966 0.19392 0.21544 0.24089 0.25843 0.27480 0.29498 0.30931 
39 0.12923 0.16753 0.19148 0.21273 0.23786 0.25518 0.27135 0.29128 0.30544 
40 0.12765 0.16547 0.18913 0.21012 0.23494 0.25205 0.26803 0.28772 0.30171 
41 0.12613 0.16349 0.18687 0.20760 0.23213 0.24904 0.26482 0.28429 0.29811 
42 0.12466 0.16158 0.18468 0.20517 0.22941 0.24613 0.26173 0.28097 0.29465 
43 0.12325 0.15974 0.18257 0.20283 0.22679 0.24332 0.25875 0.2m8 0.29130 
44 0.12188 0.15796 0.18053 0.20056 0.22426 0.24060 0.25587 0.27468 0.28R06 
45 0.12056 0.15623 0.17856 0.19837 0.22181 0.23798 0.25308 0.27169 0.28493 
46 0.11927 0.15457 0.17665 O.I962.'i 0.21944 0.23544 0.25038 0.26880 0.28190 
47 0.11803 0.15295 0.17481 0.19420 0.21715 0.23298 0.24776 0.26600 0.27896 
48 0.11683 0.15139 0.17301 0.19221 0.21493 0.23059 0.24523 0.26328 0.27611 
49 0.11567 0.14987 0.17128 0.19028 0.21277 0.22828 0.24277 0.26065 0.27335 
50 0.11453 0.14840 0.16959 0.18841 0.21068 0.22604 0.24039 0.25809 0.27067 
51 0.11344 0.14697 0.16796 0.18659 0.20864 0.22386 0.23807 0.25561 0.26807 
52 0.11237 0.14558 0.16637 0.18482 0.20667 0.22174 0.23582 0.2.'i319 0.26555 
53 0.11133 0.14423 0.16483 0.18311 0.20475 0.21968 0.23364 0.25085 0.26309 
54 0.11032 0.14292 0.16332 0.18144 0.20289 0.2176R 0.23151 0.24857 0.26070 
55 0.10934 0.14164 0.16186 0.17981 0.20107 0.21574 0.22944 0.24635 0.25837 
56 0.10839 0.14040 0.16044 0.17823 0.19930 0.2 I 3!!4 0.22742 0.24419 0.25611 
57 0.10746 0.13919 0.15906 0.17669 0.19758 0.21199 0.22546 0.24208 0.25390 
58 0.10655 0.13801 0.15771 0.17519 0.19590 0.21020 0.22355 0.24003 0.25175 
59 0.10566 0.13686 0.15639 0.17373 0.19427 0.20844 0.22169 0.23803 0.24966 
60 0.10480 0.13573 0.15511 0.17231 0.19267 0.20673 0.21987 0.23608 0.24761 
61 0.10396 0.13464 0.15385 0.17091 0.19112 0.20506 0.21809 0.2.'\418 0.24562 
62 0.10314 0.13357 0.15263 0.16956 0.18960 0.20343 0.21636 0.23232 0.24367 
63 0.10234 0.13253 0.15144 0.16823 0.18812 0.20184 0.21467 0.23051 0.24177 
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TABLE 1.9 (cont.): Critical Values of D for the Kolmogorov-Smirnov Goodness-of-Fit Test for Continuous 
Distributions 

a 2): < O.SO 0.20 0.10 0.05 0.02 0.01 0.005 0.002 O. 1 
n a(I): < 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

64 0.10155 0.13151 0.15027 0.16693 0.18667 0.20029 0.21302 0.22873 0.23991 
6S 0.10079 0.13052 0.14913 0.16567 0.18525 0.19877 0.21141 0.22700 0.23810 
66 0.10004 0.12954 0.14802 0.16443 0.18387 0.19729 0.20983 0.22531 0.23633 
67 0.09931 0.12859 0.14693 0.16322 0.18252 0.19584 0.20829 0.22365 0.23459 
68 0.09859 11.12766 0.14587 0.16204 0.18119 0.19442 0.20678 0.22204 0.23239 
69 0.09789 0.12675 0.14483 0.16088 0.17990 0.19303 0.20530 0.22045 0.23123 
70 0.09721 0.12586 0.14381 0.15975 0.17863 0.19167 0.20386 0.21890 0.22961 
71 0.09653 0.12499 0.14281 0.15864 0.ln39 0.19034 0.20244 0.21738 0.22Im 
72 0.09588 0.12413 0.14183 0.15755 0.17618 0.18903 0.20105 0.21589 0.22646 
73 0.09523 0.12329 0.14087 0.15649 0.17499 0.18776 0.19970 0.21444 0.22493 
74 0.09460 0.12247 0.13993 0.\5544 0.17382 O.I86SO 0.19837 0.21301 0.22343 
75 0.09398 0.12167 0.13901 0.\5442 0.17268 0.18528 0.19706 0.21161 0.22196 
76 0.09338 0.12088 0.13811 0.15342 0.17155 0.\8408 0.19578 0.21024 0.220S3 
n 0.09278 0.12011 0.13723 0.15244 0.17045 0.18290 0.\9453 0.20889 0.21912 
78 0.09220 0.\ 1935 0.13636 0.15147 0.16938 0.18174 0.19330 0.20757 0.21773 
79 0.09162 0.11860 0.13551 0.IS052 0.16832 0.18060 0.19209 0.20628 0.21637 
80 0.09106 0.11787 0.13467 0.14960 0.16728 0.17949 0.19091 0.20501 0.21504 
81 0.09051 0.11716 0.13385 0.14868 0.16626 0.17840 0.18974 0.20376 0.21373 
82 0.OS997 0.1 1645 0.13305 0.14779 0.16526 0.17732 0.18860 0.20253 0.21245 
83 O.OS944 0.11576 0.13226 0.14691 0.16428 0.17627 0.18748 0.20133 0.21119 
84 0.08891 O.l1SUS 0.13148 0.14605 0.16331 0.17523 0.18638 0.20015 0.20995 
85 0.08840 0.11442 0.13072 0.14520 0.16236 0.17421 0.18530 0.19898 0.20873 
86 0.08790 0.11376 0.12997 0.14437 0.16143 0.17321 0.18423 0.19784 0.20753 
87 0.08740 0.11311 0.12923 0.14355 0.16051 0.17223 0.18319 0.19672 0.20635 
88 0.08691 0.11248 0.12850 0.14274 0.15961 0.17126 0.18216 0.\9562 0.2OS2() 
89 0.08643 0.11186 0.12779 0.14195 0.15873 0.17031 0.18115 0.19453 0.20406 
90 0.08596 0.11125 0.12709 0.14117 0.15786 0.16938 0.18016 0.19347 0.20294 
91 O.085SO 0.11064 0.12640 0.14040 0.15700 0.16846 0.17918 0.19242 0.20184 
92 0.08S04 0.11005 0.12572 0.13965 0.15616 0.16755 0.17822 0.19138 0.20076 
93 0.08459 0.10947 0.12506 (1.13891 0.15533 0.16666 0.1m7 0.19037 0.19969 
94 0.08415 0.10889 0.12440 0.13818 0.15451 0.16579 0.17634 0.18937 0.19865 
95 0.08371 0.10833 0.12375 0.13746 0.15371 0.16493 0.17542 0.18838 0.19761 
96 0.08328 O.lOm 0.12312 0.13675 0.15291 0.16408 0.17452 0.18741 0.19660 
97 0.08286 0.10722 0.12249 0.13606 0.15214 0.16324 0.17363 0.18646 0.19560 
98 0.08245 0.10668 0.12187 0.13537 0.15137 0.16242 0.17275 0.18552 0.19461 
99 0.OS204 0.10615 0.12126 0.13469 0.15061 0.16162 0.17189 0.18460 0.19364 

100 O.OSI63 0.10563 0.12067 0.13403 0.14987 0.16081 0.17104 0.18.168 0.19268 
102 0.08084 0.10460 0.11949 0.13273 0.14841 0.1592S 0.16938 0.18190 0.19081 
104 0.08008 0.10361 0.11836 0.13146 0.14700 0.15773 0.16m 0.18017 0.18900 
106 0.07933 0.10264 0.11725 0.13023 0.14562 0.1562S 0.16620 0.17848 0.18723 
lOS 0.07861 0.10170 0.11618 0.12904 0.14429 0.15482 0.16467 0.1768.'i 0.18551 
110 0.07790 0.10079 0.11513 0.12787 0.14299 0.15342 0.16319 0.17525 0.18384 
112 0.Dn22 0.09990 0.11411 0.12674 0.14172 0.15207 0.16174 0.17370 0.18222 
114 0.07655 0.09903 0.11312 0.12S64 0.14049 0.15074 0.16034 0.17219 0.18063 
116 0.07590 0.09818 0.11215 0.12457 0.13929 0.14945 0.15897 0.17072 0.17909 
118 0.07527 0.09736 0.11121 0.12352 0.13812 0.14820 0.15763 0.16929 O.InS9 
120 0.07465 0.09656 0.11029 0.12250 0.13697 0.14697 0.15633 (J.16789 0.17612 
122 0.07404 0.09577 0.10940 0.121SO 0.13586 0.14578 0.15506 0.16652 0.17469 
124 0.07345 0.09501 0.10852 0.12053 O.134n 0.14461 0.15382 0.16519 0.17329 
126 0.07288 0.09426 0.10767 O. 11 95S 0.13371 0.14347 0.15261 0.16389 0.17193 
128 0.07232 0.09353 0.10684 0.11866 0.13268 0.14236 0.15142 0.16262 0.17060 
130 0.071n 0.09282 0.10602 0.l1n5 0.13166 0.14128 0.15027 0.16138 0.16930 
132 0.07123 0.09213 0.10523 0.11687 0.13068 0.14021 0.14914 0.16017 0.16802 
134 0.07071 0.09144 0.10445 0.11600 0.12971 0.13918 0.14804 0.15898 0.16678 
136 0.07019 0.09078 0.10369 0.11516 0.12876 0.13816 0.14696 0.15782 O.16SS6 
138 0.06969 0.09013 0.10294 0.11433 0.12784 0.13717 0.14590 0.15669 0.16437 
140 0.06920 0.08949 0.10221 0.11352 0.12693 0.13620 0.14487 0.155S8 0.16321 
142 0.06872 0.08887 0.101SO 0.11273 0.12604 0.13524 0.14385 0.15449 0.16207 
144 0.0682S 0.08826 0.10080 0.11195 0.12517 0.13431 0.14286 0.15343 0.1609S 
146 O.06nS 0.08766 0.10012 0.11119 0.12432 0.13340 0.14189 0.15238 0.15986 
148 0.06733 0.08707 0.09944 0.11044 0.12349 0.13250 0.14094 0.15136 0.15879 
ISO 0.06689 0.8650 0.09879 0.10971 0.12267 0.13163 0.14001 O.IS036 0.15774 
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TABLE B.9 (cont.): Critical Values of D for the Kolmogorov-Smirnov Goodness-of-Fit Test for Continuous 
Distributions 

a(2): < O.SO 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
n a(I): < 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

152 0.06646 0.08593 0.09814 0.10900 0.12187 0.13077 0.13909 0.14938 0.15671 
154 0.06603 0.08538 0.09751 0.10830 0.12109 0.12993 0.13820 0.14842 0.15570 
156 0.06561 0.08484 0.09689 0.10761 0.12032 0.12910 0.13732 0.14747 0.15471 
158 0.06520 0.08430 0.09628 0.10693 0.11956 0.12829 0.13645 0.14655 0.15374 
160 0.06480 0.08378 0.09569 0.10627 0.11882 0.12749 0.13561 0.14564 0.15278 
da 0.83255 1.0n98 \.22387 1.35810 1.51743 1.62762 \.73082 \.85846 1.94947 
Aa -0.042554 0.002557 0.052556 0.112820 0.205662 0.284642 0.370673 0.494581 0.595698 

Table 8.9 was prepared using Equation 3.0 of Birnbaum and Tingey (1951). The values of DaJl were 
computed to eight decimal places and then rounded to live decimal places. 

Examples: 
DO.05(2).20 = 0.29408 and Do.OJ( I ).55 = 0.20107 

For large n, critical values of Da(2)11 can be approximated by 

D - ~ - In(a/2) 
a(2)11 - 2n 

(Smirnov, 1939a) or. more accurately. by either 

D _ ~ -In(a/2) 
a(2),11 - 2n -

0.16693 
n 

or 

D - ~ -In(a/2) 0.16693 Aa 
a(2),11 - 2n - -n- - .fij'J 

(Miller. 1956). where 

Aa = 0.09037 [ - log (i) t2 + 0.015l5[ log (i) r + 0.08467 (i) - 0.11143. 

For the significance levels. a. in Table 0.9. the appropriate values of Aa at given at the end of the table. 
These approximations are for critical values of D for two-tailed testing. To obtain critical D's for one-tailed 

tests. insert the one-tailed a in these equations instead of the two-tailed a. 
The accuracy of each of these three approximations is shown below as percent error. where percent 

error = (approximate DaJl - exact Da.n)/ (exact Dall ) X 100%. 
For the first approximating equation,-

a(2): 0.50 0.20 0.10 0.05 0.Q2 0.01 0.005 0.002 0.001 

n a( 1): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

20 4.4% 3.6% 3.4% 3.3% 3.2% 3.3% 3.3% 3.5% 3.6% 
50 2.8 2.3 2.1 1.9 1.9 1.8 1.8 1.8 1.9 

100 2.0 1.6 1.4 1.3 1.2 1.2 1.2 1.2 1.2 
160 1.6 1.3 1.1 1.0 1.0 0.9 0.9 0.9 0.9 

-The first approximation may also be written as 

Dall = ~. 

where 
da = J( -lna)/2 

is given at the bottom of Table 8.9. 
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For the second approximating equation. 

a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

n a(l): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

10 0.6% 0.0* 0.5% 0.9% 1.4% 1.9% 2.3% 2.9% 3.3% 
20 0.3 0.0· 0.2 0.4 0.7 0.9 1.1 1.4 1.6 
50 0.1 0.0· 0.1 0.2 0.3 0.4 0.4 0.5 0.6 

100 0.1 0.0· 0.0· 0.1 0.1 0.2 0.2 0.3 0.3 
160 0.0· ~.O. 0.0· ~.O. 0.1 0.1 0.1 0.2 0.2 

For the third approximating equation: 

a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

n a(l): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

5 -0.1% -0.2% 0.0· 0.1 0.1% 0.1% 3.3% 0.5% 0.5% 
10 -0.1 0.0* 0.2% 0.0· 0.0· 0.1 0.0· 0.1 0.1 
20 0.0· 0.0· 0.0· 0.0· 0.0· 0.0· 0.0· 0.0· 0.0· 

*This percent error is less than 0.05%. 
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TABLE B.10: Critical Values of D6 for the 6-Corrected Kolmogorov-Smirnov Goodness-of-Fit Test for 
Continuous Distributions 

1/ /j 

3 0 
I 

4 0 
I 

5 0 
I 

6 0 
I 

7 0 
I 

1$ 0 
I 

'I 0 
I 

to 0 
I 

11 0 
I 

12 0 
I 

D 0 
I 

14 0 
I 

15 0 
I 

16 0 
I 

17 n 
I 

III 0 
I 

I<J 0 
I 

2n 0 
I 

21 II 
I 

22 0 
I 

23 0 
I 

24 n 
I 

25 II 
I 

26 0 
I 

27 0 
1 

a(2): 0.51) 
a I): 0.25 

0.231175 
n.38345 

0.23261 
n.33126 

n.22665 
0.2W30 
0.21Xt13 
0.27516 

0.20935 
0.25645 

0.201411 
n.24 14'1 
0.19475 
n.22'11'1 

0.111'113 
o.2181!1 

0.111381 
n.20981 
0.1711711 
0.2111 <JU 

0.17410 
n.I'I4X7 

(1.I6'17t. 
O.IAA59 
0.16575 
n.18293 

O.162()4 
O.Imll 

0.1585'1 
0.1'13011 
0.15537 
O.IM75 

0.15235 
0.16475 

n.14'14X 
0.1(11)4 
n.1467X 
0.157511 

n.I4422 
n.15435 

0.1417<J 
0.15132 
(l.13949 
O.I4X4X 

O.1373(J 
0.14579 
0.13522 
0.14326 

0.13323 
O.I4IlI!6 

0.20 
0.1 0 

0.35477 
0.53584 

0.33435 
0.46154 

0.31556 
0.41172 
II.J0244 
0.377()(\ 

0.2119'11 
0.35()(\6 

0.271128 
0.32925 
0.267'14 
0.31\57 

0.251\84 
0.29668 

0.25071 
O.2113K1\ 
O.2432.'i 
0.27269 

0.23639 
0.26279 

0.2311\0 
0.253'15 
O.2243(J 
0.24600 

O.2111<J5 
O.2.'\X79 

0.213'17 
0.23221 
0.20933 
0.22617 

O.2()4<J1I 
0.22060 

0.200119 
0.21544 
0.1'1705 
0.211l64 

0.1'1343 
0.21)(\16 

O.I9(KlI 
0.20197 
0.11\677 
O.19Xt)4 

0.11\370 
n. 1 '1433 
O.IXtl77 
n.I9()84 

0.177'1'1 
0.111753 

0.10 
(!.O5 

0.411111 
0.63150 

0.39(175 
0.531129 

0.37359 
0.411153 
0.35522 
0.44074 

0.33905 
O.41JIIl)2 

0.325311 
0.311365 
0.31325 
n.362117 

0.3U22I 
0.34525 

0.2'1227 
0.330011 
0.211330 
lUI tlI\6 

0.27515 
0.30520 

0.26767 
0.2'14711 
0.261l77 
0.211541 

0.2343'1 
0.276'12 

0.24847 
0.26'1111 
0.242'16 
0.262011 

0.237111 
0.25553 

0.232'111 
0.24947 
O.22X44 
0.24384 

0.22416 
0.23115<) 

0.22012 
0.23367 
0.21630 
O.229()(\ 

0.212M 
0.21472 
O.2!1924 
0.22()(\3 

0.205'16 
0.21676 

(!.Os 
(l.O25 

0.46702 
O.70761J 

O.44Ml 
O.6I)4M 

0.42174 
0.34273 
0,4(K145 
0.4956'1 

0.3112'14 
0.4(1)10 

O.3M'I7 
0.43160 
0.35277 
0.40794 

0.34022 
0.3117'111 

0.321194 
0.37()84 
0.31116'1 
0.355XII 

0.30935 
0.34265 

O.3IKIXI 
0.331lX6 
0.292'16 
0.3202f) 

0.211570 
0.3)()(\5 

0.27X<)7 
O.3IlIX'I 
0.27270 
0.2931\6 

O.26M5 
O.2X646 

0.26137 
0.27%1 
0.25622 
0.27325 

O.25U6 
0.26732 

(1.2467'1 
(1.26176 
0.24245 
fl.25656 

O.23X35 
0.25166 
0.23445 
0.247(14 

0.231174 
0.24267 

0.02 
(WI 

0.53456 
0.78456 

0.5114')5 
0.M377 

0.47692 
0.61\33 
0.45440 
0.55'16'1 

0.43337 
0.51'16.'\ 

0.41522 
0.411732 
0.3'1'122 
0.4(1)(\7 

O.3114XI 
0.431109 

0.371117 
0.411164 
IU6019 
0.40167 

0.34954 
0.3X6t.8 

0.33'1XtI 
0.37331 
0.330113 
0.361211 

0.32256 
0.35039 

0.314.';'1 
0.341)45 
(J.3Il773 
0.33134 

0.31) HIX 
0.322<)5 

0.29484 
(UI5111 
0.21111911 
0.307% 

0.2X346 
030123 

0.27X25 
0.29494 
0.2733., 
0.2119()4 

0.2M66 
0.211349 
0.26423 
O.27X25 

O.261XlI 
0.273311 

n.ol 
O.lXJ5 

0579(XI 
0.112'100 

0.54210 
0.71411'1 

O.:'i 1 57t. 
0.63t.'I2 
O.4I1'1XX 
0.(1)2117 

(J.467t.I 
0.55'170 

(J.44XI9 
0.52.";1'1 
0.43071 
0.4%52 

0.41517 
0.47220 

0.40122 
0.45127 
0.3XX56 
0.4.'2(IX 

0.37703 
0.416110 

0.36649 
0.402311 
0.35679 
(UII'I40 

0347!14 
1137764 

0.33'153 
1I.3M'.) I 
0.3.>1 X I 
0.35707 

(U2459 
0.J4X()\ 

0.31784 
0.33962 
0.31149 
0331X2 

0.30552 
0.32456 

1I.2'1'1X'I 
0.31776 
0.29456 
0.3113x 

1J.2x<)51 
0.30531) 
U.2!\472 
0.21)'.)73 

0.211016 
11.294."1 

O.lK)5 
O.lK125 

0.6142X 
O.IIM211 

057722 
0.77639 

054'1111 
O.69XX7 
052240 
0.64167 

0.4'1'132 
0.59646 

0.471134 
11560(lO 
0,459113 
052'153 

0.4432'1 
050373 

0.42X35 
0.411146 
0.4 I 4!\4 
0.46197 

0.411254 
0.44475 

0.39127 
0.42'136 
O.3XtI'lO 
0.41551 

0.37132 
0.402% 

036245 
O.391S1 
0.35419 
0.3!\101 

0.34647 
0.37133 

0.33'124 
0.362.~7 

(I..U24t. 
0.35404 

0.326117 
0.346211 

0.32005 
0.331)02 
0.31435 
0.33221 

o.3(IX'I5 
0.325XtJ 
0.310112 
0.319110 

0.2911'15 
0.31403 

O.llO2 
O.(}() I 

0.631KIO 
0.9(~){}() 

0.62216 
0.X2217 

0511'114 
O.74X!11 
0.56231 
0.M777 

053714 
0.640111 

()51499 
0.6111'14 
0.49525 
0.5b%3 

0.47747 
0.542U7 

0.46147 
0.51X23 
0.44696 
0.4'1737 

0.43372 
O.47X1I'I 

0.4215'1 
0.462.,7 
U.4((143 
0.447411 

O.4{JOI2 
0.433'111 

0.3'1055 
0.4216X 
O.3!\I64 
0.4 \Il37 

0.37.U2 
039W5 

O.3M33 
0.3<JU31 
0.351122 
0.311\34 

0.35l3.' 
0.372'1X 

0.344!\'~ 

0.36516 
0.33Xt.8 
0.357112 

0.332x5 
0.35091 
032733 
0.34441 

0.322()(\ 
0.33x23 

0.001 
O.O{)(l5 

0.67063 
0.'12063 

0.65046 
0.1I5tl47 

0.61M2 
0.76133 
0.5S'lS4 
0.71966 

0.56345 
O.6712b 

0.541165 
0.63114 
051W7 
059760 

0.5014X 
0.56XX9 

0.48475 
O.5440X 
0.46954 
052235 

0.45570 
05112'12 

0.442'1X 
0.411563 
0.43129 
0.47(}() 1 

0.42043 
0.455'11 

0.41041 
0.4429X 
0.40106 
0.43114 

0.3'1235 
0.42020 

0.38414 
0.410M 
037645 
0.40067 

0.36921 
1I.3'1IX9 

0.362."1 
0.3X365 
0.355<J3 
0.37597 

0.34'11\0 
O.3M75 
0.3439X 
O.361X7 

0.33845 
0.35541 
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TABLE B.10 «(ont.): Critical Values of Ds for the Ii-Corrected Kolmogorov-Smirnov Goodness-of-Fit Test for 
Continuous Distributions 

a(2): 050 11.211 0.10 0.05 0.02 0.01 0.005 1I.(x'2 0.001 
n Ii a( I): 0.25 11.10 0.05 0.025 0.01 0.(105 0.0025 O.llOl (1.0005 

28 0 0.13133 0.17533 O.202X3 0.22721 0.25600 0.275X2 0.294311 1I.J1704 0.J33 19 
I 0.13x5X (1.1 X44t. 0.21309 0.23X.'i3 o.26X61 O.2X933 o.3AA64 11.33242 0.34927 

29 0 11.12951 O.I72XII 0.IIJ9X5 O.223X3 0.25217 0.271611 o.2X9R7 1I.J1227 0.32818 
I 0.13641 0.IX142 0.20961 0.23461 0.26417 0.28452 0.31'351 0.J26XX 0.34349 

30 0 0.12777 0.17037 0.1 97(X' 1I.22()61 0.24X5 I 0.36772 0.28564 0.30770 0.32335 
I 0.13435 II. I 7X59 0.20630 0.23(lXX 0.251J94 0.271J96 0.29R63 0.32162 0.33794 

31 II 11.126111 11.161105 IJ. I 9427 IJ.21752 0.245111 IJ.26393 IJ.2N157 0.30333 0.311175 
I 1I.132JX 0.175X9 0.20314 0.22732 0.25391 0.275hl 0.29399 0.31662 0.33268 

32 0 0.12450 O.165X2 0.19166 0.21457 0.24165 0.26030 0.27771 0.29<)15 0.31436 
I 0.13051 0.17332 0.20014 11.22393 0.252()7 0.27146 0.28955 0.31184 0.32764 

33 0 0.12295 O.l636R 0.IX915 11.21173 0.23M3 0.256113 0.27399 0.29513 0.31015 
I 0.12X71 0.171lX6 0.19726 0.22069 0.24840 0.26750 0.2X532 0.3072X 0.32286 

34 0 0.12147 O.161h2 0.1R674 0.20901 0.23534 U.2534X 0.27042 0.29127 0.30609 
I U.12699 0.161150 U.19451 0.21759 0.24490 0.26371 0.2X127 0.30296 0.31827 

35 0 0.12004 0.15%4 0.1R442 0.20639 0.23237 0.25027 0.2669X 0.2X757 0.30219 
I 0.12534 0.16625 0.19188 0.21462 0.24154 0.2600S 0.27740 0.29X73 0.31388 

36 0 0.11866 0.15774 0.IX2IX 0.203X7 0.22951 U.2471X 0.2636X 0.28401 0.29844 
I 0.12375 0.1640X 0.IX935 0.2127X 0.23X31 0.25660 0.273611 0.29472 0.30968 

37 0 0.11733 0.15591' 0.I!!Ix'3 0.21l144 11.22676 0.24421 0.26050 1I.2S057 0.29481 
I 0.12223 0.1 h2110 0.1X692 o.21)1}(14 11.23522 0.25326 0.27011 0.291lX7 0.30558 

3X 0 O.llllll4 0.15413 11.17796 O.11J91O 0.224\0 11.24134 0.25743 0.27726 0.29135 
I 0.12U76 O.I6OCX' 0.18459 0.21IM2 0.23225 0.25005 0.2666X 0.2X717 0.30172 

39 II 11.1141«' 0.15242 0.17595 /).I96!W 0.22154 0.23857 0.25447 0.27406 0.28800 
I 0.11935 II. I 5!!1lX O.IX234 O.203X9 1I.2293X 0.240% 0.2(1334 0.2X3hl O.29m 

40 0 0.11360 O.15U76 II. I 74t12 0.19465 (J.2191.7 0.235X9 0.25161 0.271198 0.28474 
I O.ll79X 0.15622 O.I!!I))X /).21l145 0.22663 0.2431J9 0.26020 0.28019 0.29439 

41 II 0.11243 0.14911'1 0.17215 0.19254 0.21667 11.23331 1I.24X!W 0.21'171J9 0.28162 
I 0.11667 0.15443 1I.17XHl 1I.199W 0.22397 0.24112 11.25713 0.276X8 0.29092 

42 0 11.11130 11.14761 0.171134 11.191'50 0.21436 O.23tlX I 11.24(,17 0.26511 0.27880 
I 11.11540 11.15270 0.1761lX 1I.196!W 0.22141 0.23X35 O.2541X 0.27369 0.28758 

43 II 0.1 Hl21 II.IMII 0.16X5X O.IXX52 0.21212 11.22839 0.2435X O.262J2 0.27564 
I 0.11417 O.15H13 11.17414 (I. I 94h5 0.2 I X93 11.235611 IJ.25132 0.271161 0.28433 

44 0 0.Hl915 0.14466 0.166XX 0.18661 1I.21J995 11.22604 0.24108 0.29962 0.272n 
I 0.1129X 0.14942 0.17226 0.19253 0.21(,54 O.2331ll 0.24857 0.267M 0.28120 

45 0 0.111812 11.14325 11.16524 0.18475 0.20785 0.22377 0.23X65 0.25700 0.27004 
I 0.111!!3 0.147R6 0.17044 (J.l9(J49 0.21423 0.23t)60 0.24591' 0.2M76 0.27815 

46 0 11.10712 0.141XX 0.163M 0.IX295 0.205XI 0.22157 0.231'129 0.25445 0.26737 
I 0.1 Hl72 0.14635 0.16X5H 0.IXX51 0.21199 o.22HIX 0.24331 0.2619X 0.27524 

47 0 0.111615 0.14055 0.16208 0.IX120 0.20383 0.21943 0.23401 0.25199 0.264n 
I 0.Hl964 0.144XX 0.16697 O.lX659 O.2119H2 0.225H4 O.24OX1 O.2592R 0.27242 

48 0 (1.10520 0.13926 O.I6I.5X 0.17950 0.20190 0.21735 0.23179 0.24959 0.26225 
I (I. I OR59 0.14346 11.16532 O.IX473 0.20772 11.22357 0.23!!"W 0.25666 0.26966 

49 0 0.1I142H (j. I 3!!11O 0.15911 0.177H5 IJ.20003 0.21534 0.22%3 0.24725 0.25991 
I U. \0737 O.1421lX 0.16371 0.IX293 0.205611 11.22137 /).236114 0.25413 0.26701 

50 0 0.1033\1 0.13678 0.15769 1I.17h24 O.19X22 0.21337 n.22753 O.2451K' 0.25742 
I 0.111659 n.I4I'74 n.l6216 IUXI17 0.20370 0.21924 0.23376 0.25167 0.26441 

These crilical values were kindly provided by H. J. Khamis. by the method described in Khamis (11)9(1). 
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TABLE B.11: Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.10 0.05 0.02 O.ot 0.005 0.002 0.001 

n) n2 a(I): 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

1 
2 
3 
4 
5 
6 
7 
8 
9 9 

10 10 

11 11 
12 12 
13 13 
14 14 
15 15 
16 16 
17 17 
18 18 
19 18 19 
20 19 20 
21 20 21 
22 21 22 
23 22 23 
24 23 24 
2S 24 2S 

26 2S 26 
27 26 27 
28 27 28 
29 27 29 
30 28 30 

31 29 31 
32 30 32 
33 31 33 
34 32 34 
35 33 35 
36 34 36 
37 35 37 
38 36 38 
39 36 38 39 

1 40 37 39 40 
2 2 

3 6 
4 8 
5 9 10 
6 11 12 
7 10 14 
8 14 15 16 
9 16 17 18 

10 17 19 20 
11 19 21 22 
12 20 22 23 
13 22 24 2S 26 
14 23 2S 27 28 
15 2S 27 29 30 

16 27 29 31 32 
17 28 31 32 34 
18 30 32 34 36 
19 31 34 36 37 38 

2 20 33 36 38 39 40 
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TABLE B.11 (cont.): Critical Values of the Mann-Whitney U Distribution 

a(2): 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
nl n2 a( I): 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

2 21 34 37 39 41 42 - - -
22 36 39 41 43 44 - - -
23 37 41 43 45 46 - - -
24 39 42 45 47 48 - - -
25 41 44 47 49 50 - - -
26 42 46 48 51 52 - - -
27 44 47 50 52 53 54 - -
28 45 49 52 54 55 56 - -
29 47 51 54 56 57 58 - -
30 48 53 55 58 59 60 - -
31 50 54 57 60 61 62 - -
32 51 56 59 62 63 64 - -
33 53 58 61 64 65 66 - -
34 55 59 63 65 67 6R - -
35 56 61 64 67 69 70 - -
36 58 63 66 69 71 72 - -
37 59 64 68 71 73 74 - -
38 61 66 70 73 75 76 - -
39 62 68 71 75 76 77 - -

2 40 64 69 73 77 78 79 - -

3 3 8 9 - - - - - -
4 II 12 - - - - - -
5 \3 14 15 - - - - -

6 15 16 17 - - - - -
7 15 19 20 21 - - - -
8 19 21 22 24 - - - -
9 22 23 25 26 27 - - -

10 24 26 27 29 30 - - -
\1 26 28 30 32 33 - - -
12 28 31 32 34 35 36 - -
\3 30 33 35 37 38 39 - -
14 32 35 37 40 41 42 - -
15 35 38 40 42 43 44 - -
16 37 40 42 45 46 47 - -
17 39 42 45 47 49 50 51 -
18 41 45 47 50 52 53 54 -
19 43 47 50 53 54 56 57 -
20 45 49 52 55 57 58 60 -
21 48 52 55 58 60 61 62 63 
22 50 54 57 60 62 64 65 66 
23 52 56 60 63 65 67 68 69 
24 54 59 62 66 68 69 71 72 
25 56 61 65 68 70 72 74 75 
26 58 63 67 71 73 75 77 78 
27 60 66 70 74 76 78 79 80 
28 63 68 72 76 79 80 82 83 
29 65 70 74 79 81 83 85 86 
30 67 73 77 81 84 86 88 89 

31 69 75 79 84 87 89 91 92 
32 71 77 82 87 89 91 94 95 
33 73 80 84 89 92 94 96 98 
34 76 82 87 92 95 97 99 101 
35 78 84 89 94 97 100 102 103 
36 80 87 92 97 100 103 105 106 
37 82 89 94 100 103 105 lOS 109 
38 84 91 97 102 105 lOS 111 112 
39 86 94 99 105 lOS HI H3 115 

3 40 89 96 102 107 III 114 116 118 
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TABLE B 11 (cont.)· Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 O.\() 0.05 lI.m 0.01 0.005 (1.I)()2 lI.!lOl 

n, n2 a( 1): 11.10 0.115 0.025 0.01 0.0115 (1,0025 0.001 0.!)(105 

4 4 13 15 16 - - - - -
5 16 IK 19 20 - - - -

6 19 21 22 23 24 - - -
7 20 24 25 27 28 - - -
K 25 27 28 30 31 32 - -
9 27 30 32 33 35 36 - -

\() 30 33 35 37 3K 39 40 -
II 33 36 J8 40 42 43 44 -
12 36 39 41 43 45 46 48 -
13 39 42 44 47 49 50 51 52 
14 41 45 47 511 52 53 55 56 
15 44 4K 50 53 55 57 59 60 

16 47 50 53 57 59 60 62 63 
17 50 53 57 60 62 64 66 67 
III 52 56 60 63 66 67 69 71 
19 55 59 63 67 69 71 73 74 
20 58 62 66 70 72 75 n 78 

21 61 65 69 73 76 78 !l() 82 
22 63 6X 72 77 79 82 !l4 85 
23 66 71 75 80 83 85 !l8 89 
24 69 74 79 83 86 !l9 91 93 
25 72 77 R2 117 90 92 95 97 

26 74 80 115 9() 93 96 98 II)() 
27 n 8.1 Il8 93 96 99 1112 104 
28 I!O 86 91 96 100 103 1U6 108 
29 113 89 94 till) 103 106 109 III 
30 85 92 97 \03 107 Ito 113 115 

31 R8 95 100 106 Ito 113 117 119 
32 91 91l 104 1111 114 117 120 122 
33 94 \01 \07 113 117 120 124 126 
34 96 104 110 116 120 124 127 130 
35 99 \07 113 120 124 127 131 133 
36 \112 110 116 123 127 131 135 137 
37 105 113 119 126 131 134 1311 141 
3K 107 116 122 131) 134 138 142 144 
39 1111 1111 125 133 137 141 145 14K 

4 40 113 121 129 136 141 145 149 152 

5 5 211 21 23 24 25 - - -
6 23 2.'i 27 21l 29 J() - -
7 24 29 J() 32 34 35 - -
II 311 32 34 36 3K 39 40 -

9 33 36 J8 40 42 43 44 45 
10 37 39 42 44 46 47 49 50 
II 40 43 46 4K 50 52 53 54 
12 43 47 49 52 54 56 58 59 
13 47 50 53 56 58 60 62 63 
14 50 54 57 60 63 64 67 68 
15 53 57 61 64 67 69 71 72 

16 57 61 65 fill 71 73 75 77 
17 60 65 68 72 75 n !l() 81 
III 63 68 72 76 79 III !l4 K6 
19 67 72 76 811 !l3 K6 !Ill 9() 

20 70 75 IlII 84 117 90 93 95 

21 73 79 113 8K 91 94 97 99 
22 77 112 If7 92 96 98 1112 1114 
23 HII K6 91 96 II)() \03 106 IIIIl 
24 !l4 90 95 IOI) 1114 107 110 113 

5 25 H7 93 91l Hl4 \08 III 115 117 
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TABLE B.11 (cont.): Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

n, n2 a( 1): 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

5 26 90 97 102 108 112 115 119 121 
27 94 100 106 112 119 120 123 126 
28 97 104 110 116 120 124 128 130 
29 100 107 113 120 124 128 132 135 
30 104 III 117 124 128 132 136 139 
31 107 115 121 128 133 136 141 144 
32 110 1l!! 125 132 137 141 145 148 
33 114 122 128 136 141 145 ISO 153 
34 117 125 132 140 145 149 154 157 
35 120 129 136 144 149 153 158 161 
36 124 132 140 148 153 158 163 166 
37 127 136 144 152 157 162 167 170 
38 130 140 147 156 161 166 171 175 
39 134 143 151 160 165 170 176 179 

5 40 137 147 155 164 169 174 1M 184 

6 6 27 29 31 33 34 35 - -
7 29 34 36 38 39 40 42 -
8 35 38 40 42 44 45 47 48 
9 39 42 44 47 49 50 52 53 

10 43 46 49 52 54 55 57 58 

11 47 50 53 57 59 60 62 64 
12 51 55 58 61 63 65 68 69 
13 55 59 62 66 68 70 73 74 
14 59 63 67 71 73 75 78 79 
15 63 67 71 75 78 80 83 85 
16 67 71 75 M 83 85 88 90 
17 71 76 80 84 87 90 93 95 
18 74 M 84 R9 92 95 98 100 
19 78 84 89 94 97 100 103 106 
20 82 88 93 98 102 105 lOS 111 
21 86 92 97 103 107 110 114 116 
22 90 96 102 108 III 115 119 121 
23 94 101 106 112 116 120 124 126 
24 98 105 111 117 121 125 129 132 
25 102 109 115 121 126 130 134 137 
26 106 113 119 126 131 134 139 142 
27 110 117 124 131 135 139 144 147 
28 114 122 128 135 140 144 149 152 
29 118 126 132 140 145 149 154 157 
30 122 130 137 145 150 154 159 163 
31 125 134 141 149 154 159 164 168 
32 129 138 146 154 159 164 169 173 
33 133 142 150 158 164 169 174 178 
34 137 147 154 163 169 174 179 183 
35 141 151 159 168 173 179 185 188 
36 145 155 163 172 178 184 190 194 
37 149 159 167 177 183 188 195 199 
38 153 163 172 182 188 193 200 204 
39 157 167 176 186 193 198 205 201J 

6 40 161 172 181 191 197 203 210 214 
7 7 36 38 41 43 45 46 48 49 

8 40 43 46 49 50 52 54 55 
9 45 48 51 54 56 58 60 61 

10 49 53 56 59 61 63 65 67 
11 54 58 61 65 67 69 71 73 
12 58 63 66 70 72 75 n 79 
13 63 67 71 75 78 80 83 85 
14 67 72 76 81 83 86 89 91 

7 15 72 n 81 86 89 92 95 97 



Appendix B Statistical Tables and Graphs 751 

TABLE B." (cont.): Critical Values of the Mann-Whitney U Distribution 
0(2): 0.20 0.10 0.05 0.02 om 0.005 0.002 0.001 

nl n2 o( I): 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

7 16 76 82 86 91 94 en 101 103 
17 81 1!6 91 96 100 103 106 109 
18 85 91 96 102 105 lOS 112 115 
19 90 96 101 107 111 114 1\8 120 
20 94 101 106 112 116 120 124 126 
21 99 106 III 117 122 125 129 132 
22 103 110 116 123 127 131 135 138 
23 lOS 115 121 128 132 136 141 144 
24 112 120 126 133 138 142 147 150 
25 117 125 131 139 143 148 153 156 
26 121 129 136 144 149 153 158 162 
27 126 134 141 149 154 159 164 168 
28 130 139 146 154 160 164 170 174 
29 135 144 151 160 165 170 176 179 
30 139 149 156 165 170 176 181 185 
31 144 153 161 170 176 181 187 191 
32 148 158 166 175 181 187 193 len 
33 153 163 I7l 181 187 192 199 203 
34 157 168 176 186 192 198 204 209 
35 162 172 181 191 198 203 210 215 
36 166 177 186 196 203 209 216 221 
37 I7l 182 191 202 208 215 222 227 
38 175 187 196 207 214 220 227 232 
39 ISO 191 201 212 219 226 233 238 

7 40 184 196 206 217 225 231 239 244 
8 8 45 49 51 55 57 58 60 62 

9 so 54 57 61 63 65 67 68 
10 56 60 63 67 69 71 74 75 
11 61 65 69 73 75 77 SO 82 
12 66 70 74 79 HI 84 87 89 
13 71 76 80 84 87 90 93 95 
14 76 81 86 90 94 96 100 102 
15 81 87 91 96 100 103 106 109 
16 86 92 97 102 106 109 113 115 
17 91 97 102 lOS 112 1\5 119 122 
18 96 103 lOS 114 118 122 126 129 
19 101 108 114 120 124 128 132 135 
20 106 113 119 126 130 134 139 142 
21 112 119 125 132 136 140 145 148 
22 117 124 131 138 142 147 152 155 
23 122 130 136 144 149 153 158 162 
24 127 135 142 ISO 155 159 165 168 
25 132 140 147 155 161 165 I7l 175 
26 137 146 153 161 167 172 177 181 
27 142 151 159 167 173 178 184 188 
28 147 156 164 173 179 184 190 195 
29 152 162 170 179 185 190 197 201 
30 157 167 175 185 191 197 203 208 
31 162 172 181 191 197 203 210 214 
32 167 178 187 197 203 209 216 221 
33 172 183 192 203 209 215 223 227 
34 177 188 198 208 215 222 229 234 
35 182 194 203 214 221 228 235 241 
36 188 199 209 220 228 234 242 247 
37 193 205 215 226 234 240 248 254 
38 198 210 220 232 240 247 255 260 
39 203 215 226 238 246 253 261 267 

8 40 208 221 231 244 252 259 268 273 

9 9 56 60 64 67 70 72 74 76 
10 62 66 70 74 77 79 82 83 

9 II 68 72 76 81 83 86 89 91 
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TABLE B.11 «(ont.): Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.10 0.05 0,02 0.01 0.005 0.002 0.001 

"1 "2 a( 1): 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

9 12 73 78 82 87 90 93 96 98 
13 79 84 89 94 m 100 103 106 
14 85 90 95 100 104 107 III 113 
15 90 96 101 107 111 114 118 120 
16 96 102 107 113 117 121 125 128 
17 101 lOS 114 120 124 128 132 135 
H! 107 114 120 126 131 135 139 142 
19 113 120 126 133 138 142 146 ISO 
20 118 126 132 140 144 149 154 157 
21 124 132 139 146 151 155 161 164 
22 130 138 145 153 158 162 168 172 
23 135 144 151 159 164 169 175 179 
24 141 150 157 166 171 176 182 186 
25 147 156 163 172 178 183 189 193 
26 152 162 170 179 185 190 196 20\ 
27 158 168 176 185 191 197 203 208 
28 164 174 182 192 198 204 211 215 
29 169 179 188 198 205 211 218 222 
30 175 185 194 205 212 218 225 230 
31 ISO 191 201 211 218 224 232 237 
32 186 197 207 218 225 231 239 244 
33 192 203 213 224 232 238 246 251 
34 197 209 219 231 238 245 253 259 
35 203 215 226 2.17 245 252 260 266 
36 209 221 232 244 252 259 267 273 
37 214 227 238 250 258 266 275 280 
38 220 233 244 257 265 273 282 288 
39 225 239 250 263 272 280 289 295 

9 40 231 245 257 270 279 286 296 302 

10 10 68 73 n 81 84 87 90 92 
11 74 79 84 88 92 94 98 100 
12 81 86 91 96 99 102 106 108 
13 87 93 m 103 106 110 113 116 
14 93 99 104 110 114 117 121 124 
15 99 106 111 117 121 125 129 132 
16 106 112 118 124 129 133 137 140 
17 112 119 125 132 136 140 145 148 
18 118 125 132 139 143 148 153 156 
19 124 132 138 146 151 155 161 164 
20 130 138 145 153 158 163 168 172 
21 137 145 152 160 166 170 176 ISO 
22 143 152 159 167 173 178 184 188 
23 149 158 166 175 ISO 186 192 196 
24 155 165 173 182 188 193 200 204 
25 161 171 179 189 195 20\ 207 212 
26 168 178 186 196 202 20S 215 220 
27 174 184 193 203 210 216 223 228 
28 180 191 200 210 217 223 231 236 
29 186 1m 207 217 224 231 238 244 
30 192 204 213 224 232 238 246 252 
31 199 210 220 232 239 246 254 259 
32 205 217 227 239 246 253 262 267 
33 211 223 234 246 254 261 269 275 
34 217 230 241 253 261 268 2n 283 
35 223 236 247 260 268 276 285 291 
36 229 243 254 267 276 284 293 299 
37 236 249 261 274 283 291 300 307 
38 242 256 268 281 290 299 308 315 
39 248 262 275 289 298 306 316 323 

10 40 254 269 281 296 305 314 324 331 
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TABLE B.11 (cont.): Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.\0 0.05 0.02 0.01 0.005 0.002 0.001 

nl n2 a( I): 0.\0 0.05 0.025 O.ot 0.005 0.0025 0.001 0.0005 

II 11 81 87 91 96 100 103 106 109 
12 88 94 99 104 108 111 115 117 
13 95 101 106 112 116 119 123 126 
14 102 lOS 114 120 124 128 132 135 
15 lOS 115 121 128 132 136 141 144 
16 lIS 122 129 135 140 144 149 152 
17 122 130 136 143 148 152 158 161 
18 129 137 143 151 156 161 166 170 
19 136 144 151 159 164 169 175 178 
20 142 151 158 167 172 177 183 187 
21 149 158 166 174 180 185 191 196 
22 156 165 173 182 188 193 200 204 
23 163 172 180 190 196 202 20S 213 
24 169 179 188 198 204 210 217 222 
2.'i 176 186 195 205 212 218 225 230 

26 183 194 203 213 220 226 234 239 
27 190 201 2\0 221 228 234 242 247 
28 196 208 218 229 236 243 251 256 
29 203 215 225 236 244 251 259 265 
30 210 222 232 244 252 259 267 273 
31 217 229 240 252 260 267 276 282 
32 223 236 247 260 268 275 284 290 
33 230 243 255 267 276 283 293 299 
34 237 250 262 275 284 292 301 307 
35 244 257 269 2S3 292 300 309 316 
36 250 265 217 290 300 308 318 325 
37 257 272 284 298 308 316 326 333 
38 264 279 291 306 316 324 335 342 
39 271 286 299 314 323 332 343 350 

11 40 277 293 306 321 331 341 351 359 

12 12 95 102 \07 113 117 120 124 127 
13 103 109 115 121 125 129 133 136 
14 110 117 123 130 134 138 143 146 
15 117 125 131 138 143 147 152 155 
16 125 132 139 146 151 156 161 165 
17 132 140 147 155 160 165 170 174 
18 139 148 155 163 169 173 179 183 
19 147 156 163 172 177 182 188 193 
20 154 163 171 180 186 191 198 202 
21 161 171 179 188 194 200 207 211 
22 169 179 187 197 203 209 216 220 
23 176 186 195 205 212 218 225 230 
24 183 194 203 213 220 227 234 239 
25 191 202 211 222 229 235 243 248 
26 198 209 219 230 238 244 252 258 
27 205 217 227 239 246 253 261 267 
28 213 225 235 247 255 262 270 276 
29 220 232 243 255 263 271 279 285 
30 227 240 251 264 272 279 288 295 
31 235 248 259 272 280 288 297 304 
32 242 256 267 280 289 297 307 313 
33 249 263 275 289 298 306 316 322 
34 257 271 283 297 306 315 325 332 
35 264 279 291 305 315 323 334 341 
36 271 286 299 314 323 332 343 350 
37 278 294 307 322 332 341 352 359 
38 286 302 315 330 340 350 361 368 
39 293 309 323 339 349 359 370 378 

12 40 300 317 331 347 358 367 379 387 
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TABLE B.11 (tont.): Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

nl n2 a(l): 0.10 0.05 0.025 0,0) 0.005 0.0025 0.001 0.0005 

13 13 111 118 124 130 135 139 143 146 
14 119 126 132 139 144 148 153 157 
15 127 134 141 148 153 158 163 167 
16 134 143 149 157 163 167 173 177 
17 142 151 158 166 172 177 183 187 
18 150 159 167 175 181 186 192 197 
19 158 167 111 184 190 196 202 207 
20 166 176 184 193 200 205 212 217 
21 174 184 193 202 209 215 222 227 
22 182 192 201 211 218 224 232 237 
23 190 201 210 220 227 234 241 247 
24 198 209 218 229 237 243 251 256 
25 205 217 227 238 246 253 261 266 
26 213 225 236 247 255 262 270 276 
27 221 234 244 256 264 271 280 286 
28 229 242 253 265 273 281 290 296 
29 237 250 261 274 283 290 300 306 
30 245 258 270 283 292 300 309 316 
31 253 267 278 292 301 309 319 326 
32 260 275 287 301 310 319 329 336 
33 268 283 296 310 319 328 338 346 
34 276 291 304 319 329 337 348 355 
35 284 299 313 328 338 347 358 365 
36 292 308 321 337 347 356 367 375 
37 300 316 330 346 356 366 377 385 
38 308 324 338 355 36..'1 375 387 395 
39 315 332 347 363 374 38.'1 397 405 

13 40 323 341 355 372 384 394 406 415 

14 14 127 135 141 149 154 161 164 167 
15 136 144 151 159 164 169 174 178 
16 144 153 160 168 174 179 185 189 
17 153 161 169 178 184 189 195 199 
18 161 170 178 187 194 199 206 210 
19 169 179 188 197 203 209 216 221 
20 178 188 197 207 213 219 226 231 
21 186 197 206 216 223 229 237 242 
22 195 206 215 226 233 240 247 253 
23 203 215 224 235 243 250 258 263 
24 212 223 234 245 253 260 268 274 
25 220 232 243 255 263 270 278 284 

26 228 241 252 264 272 280 289 295 
27 237 250 261 274 282 290 299 306 
28 245 259 270 283 292 300 309 316 
29 254 268 279 293 302 310 320 327 
30 262 276 289 302 312 320 330 337 
31 271 285 298 312 321 330 340 348 
32 279 294 307 321 331 340 351 358 
33 287 303 316 331 341 350 361 369 
34 296 312 325 341 351 360 371 379 
35 304 320 334 350 361 370 382 390 
36 313 329 343 360 370 380 392 400 
37 321 338 353 369 380 390 402 411 
38 329 347 362 379 390 400 413 421 
39 338 356 371 388 400 410 423 432 

14 40 346 364 380 398 410 420 433 442 

15 15 145 153 161 169 174 179 185 189 
16 154 163 170 179 185 190 197 201 
17 163 172 180 189 195 201 208 212 
18 172 182 190 200 206 212 219 224 
19 181 191 200 210 216 223 230 235 

15 20 190 200 210 220 227 233 241 246 
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TABLE B.11 (cont.): Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.\0 0.05 0.02 0.01 0.005 0.002 0.001 

"I n2 a(I): 0.\0 0.05 0.025 O.ot 0.005 0.0025 0.001 0.0005 

15 21 199 210 219 230 237 244 252 257 
22 208 219 229 240 248 255 263 269 
23 217 229 239 251 258 265 274 280 
24 226 238 249 261 269 276 28S 291 
25 235 247 258 271 279 1K/ 296 302 
26 244 257 268 281 290 298 307 313 
27 2..')3 266 278 291 300 308 318 325 
28 262 276 288 .301 311 319 329 336 
29 271 285 297 312 321 3.30 340 347 
.30 280 294 307 322 331 340 351 358 
31 288 .304 317 332 342 351 362 369 
32 2m 313 327 342 352 362 373 381 
33 306 323 336 352 363 372 384 392 
34 315 332 346 362 373 383 395 403 
35 324 341 356 372 383 394 406 414 
36 333 351 366 382 394 404 417 425 
37 342 360 375 393 404 415 428 436 
38 351 369 385 403 415 425 439 448 
39 360 379 395 413 425 436 449 459 

15 40 369 388 404 423 435 447 460 470 
16 16 163 173 181 190 196 202 208 213 

17 173 183 191 201 207 213 220 225 
18 182 193 202 212 218 224 232 237 
19 192 203 212 222 230 236 244 249 
20 201 213 222 233 241 247 255 261 
21 211 223 233 244 252 259 267 273 
22 221 233 243 255 263 270 279 28S 
23 2.30 243 253 266 274 281 290 296 
24 240 253 264 276 28S 293 302 308 
25 249 263 274 287 296 304 314 320 
26 259 273 284 298 307 315 325 332 
27 268 283 295 .309 318 327 337 344 
28 278 292 .305 319 329 338 348 356 
29 287 .302 315 330 340 349 360 367 
.30 2m 312 326 341 351 360 372 379 
31 306 322 336 352 362 372 383 391 
32 316 332 346 362 373 383 395 403 
33 325 342 357 373 384 394 406 415 
34 335 352 367 384 395 406 418 427 
35 344 362 377 395 406 417 429 438 
36 354 372 388 405 417 428 441 450 
37 363 382 398 416 428 439 453 462 
38 373 392 408 427 439 451 464 474 
39 382 402 418 437 450 462 476 485 

16 40 392 412 429 448 461 473 487 4m 

17 17 183 193 202 212 219 225 232 238 
18 193 204 213 224 231 237 245 250 
19 203 214 224 235 242 249 257 263 
20 213 225 235 247 254 261 270 275 
21 223 236 246 258 266 273 282 288 
22 233 246 257 269 278 285 294 300 
23 244 257 26t! 281 289 2m 306 313 
24 254 267 279 292 .301 .309 319 325 
25 264 278 290 303 313 321 331 338 
26 274 288 301 315 324 333 343 350 
27 284 299 312 326 336 345 355 363 
28 294 309 322 337 348 357 368 375 
29 .304 320 333 349 359 369 380 388 

17 30 314 330 344 360 371 380 392 400 
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TABLE 8.11 ((ont.): Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.10 0.05 0.02 om 0.005 0.002 0.001 

111 112 a( I ): 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

17 31 324 341 355 371 382 392 404 413 
32 334 351 366 383 394 404 417 425 
33 344 362 377 394 406 416 429 438 
34 354 372 388 405 417 428 441 450 
35 365 383 399 417 429 440 453 462 
36 375 393 410 428 440 452 465 475 
37 385 404 420 439 452 464 478 487 
38 395 414 431 451 464 476 490 500 
39 405 425 442 462 475 487 502 512 

17 40 415 435 453 473 487 499 514 525 

18 18 204 215 225 236 243 250 258 263 
19 214 226 236 248 255 257 271 277 
20 225 237 248 260 268 275 284 287 
21 236 248 259 272 280 288 297 303 
22 246 260 271 284 292 300 310 316 
23 2."'7 271 282 296 305 313 323 329 
24 268 282 294 308 317 325 336 343 
25 278 293 306 320 329 338 348 356 
26 289 304 317 332 341 350 361 369 
27 300 315 328 344 354 363 374 382 
28 310 326 340 355 366 376 387 395 
29 321 337 351 367 378 388 400 408 
30 331 348 363 379 390 401 413 421 
31 342 359 374 391 403 413 426 434 
32 353 370 386 403 415 426 438 447 
33 363 382 397 415 427 438 451 460 
34 374 393 409 427 439 451 464 473 
35 385 404 420 439 451 463 477 487 

36 395 415 432 451 464 475 490 500 
37 406 426 443 463 476 48!! 502 513 
38 416 437 454 475 48!! 5(1) 515 526 
39 427 448 466 486 500 513 528 539 

18 40 438 459 477 498 512 525 541 552 

19 19 226 238 248 260 26!! 276 284 291 
20 237 250 261 273 281 289 298 304 

21 248 261 273 286 294 302 312 318 
22 259 273 285 298 307 315 325 332 
23 270 28..'i 297 311 320 329 339 346 
24 282 296 309 323 333 342 352 360 
25 293 30!! 321 336 346 355 366 373 
26 304 320 333 348 359 368 379 387 
27 315 331 345 361 371 381 393 401 
28 326 343 357 373 384 394 406 415 
29 338 355 369 386 397 407 420 428 
30 349 366 381 398 410 421 433 442 
31 360 378 393 411 423 434 447 456 
32 371 390 405 423 436 447 460 469 
33 382 401 417 436 448 460 474 483 
34 393 413 429 448 461 473 487 497 

19 35 405 424 441 461 474 486 500 511 
36 416 436 453 473 487 499 514 524 
37 427 448 465 486 500 512 527 538 
38 438 459 477 498 512 525 541 552 
39 449 471 489 511 525 538 554 565 
40 - 482 502 523 538 551 568 579 
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TABLE 1.11 (cont.): Critical Values of the Mann-Whitney U Distribution 
a(2): 0.20 0.10 0.05 0.02 0.01 0.005 11.002 0.001 

nl n2 a( I): 0.10 0.05 0.025 0.01 0.005 0.1J025 II.OO! 0.11005 

20 20 249 262 273 286 295 303 312 319 
21 260 274 286 299 308 317 326 333 
22 272 276 299 313 322 330 341 348 
23 284 299 311 326 335 344 355 362 
24 296 311 324 339 349 358 369 377 
25 307 323 337 352 362 372 383 391 
26 319 335 349 365 376 386 397 405 
27 331 348 362 371( 389 399 411 420 
28 343 360 374 391 403 413 425 434 
29 354 372 387 404 416 427 440 449 
31) 366 384 400 411( 430 440 454 463 
31 378 396 412 431 443 454 468 4n 
32 31(9 409 425 444 456 468 482 492 
33 401 421 438 457 470 482 496 506 
34 413 433 450 470 483 495 510 520 
35 425 445 463 483 497 509 524 534 
36 436 457 475 496 5\0 523 538 549 
37 44R 469 488 509 523 536 552 563 
38 482 501 522 537 550 566 5n 
39 494 513 535 550 564 5SG 592 

20 40 506 526 548 563 5n 594 6()6 

The preceding values were derived. with permission of the publisher. from the tables of Milton (1964. J. 
Amer. Statist. Assoc. 59: 925-934). with the italicized values derived from Wilcoxon. Katti. and Wilcox (1970). 
Each U has a probability of no more than that indicated in its column heading: for example. for nl = 20 and 
n2 = 21. the two-tailed probability of U = 299 is 0.01 < P < 0.02. 

Examples: 
UO.05(2}_~.1I = 34 and Uo.OS( 1 }.IO.II = Uo.OS( I ).8.10 = 60 

For the Mann-Whitney test involving nl and/or n2 larger than those in this table. the normal approximation 
of Section 8.lld may be used. For example. using the normal approximation when nl ~ 20 and n2 ~ 40 results 
in two-tailed testing at a P(Type I error) < 0.005 different (lower) from a for a = 0.10 or 0.05 and the P(Type 
I error) is no more than about 0.0005 different from (higher than) a for a = 0.02 or 0.01. Fahoome (2002) 
determined that the approximation results in a probability of a Type I error between 0.045 and 0.055 when 
testing at the two-tailed 0.05 significance level and nl and n2 of at least 15. and a probability between 0.009 and 
0.011 when a(2) = 0.01 and nl and n2 ~ 29. Wilcoxon. Katti. and Wilcox (1970) gave critical values for larger 
sample sizes for Wilcoxon's two-sample T. where T = nln2 + "1 (nl + 1)/2 - U. but they are generally not 
needed thanks to this approximation. 
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TABLE B.12: Critical Values of the Wilcoxon T Distribution 
Note: Contrary to most other tables of critical values, low values of 
T are associated with low probabilities (a); see Section 9.S 

a~2rO,50 0.20 0.10 0.05 0.02 om 0.005 0.001 
n a 1 :0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.005 

4 2 0 
5 4 2 0 
6 6 3 2 0 
7 9 5 3 2 0 
8 12 8 5 3 1 0 
9 16 10 8 5 3 1 0 

10 20 14 10 8 5 3 1 
11 24 17 13 10 7 5 3 0 
12 29 21 17 13 9 7 5 1 
13 35 26 21 17 12 9 7 2 
14 40 31 25 21 15 12 9 4 
15 47 36 30 25 19 15 12 6 
16 54 42 35 29 23 19 15 8 
17 61 48 41 34 27 23 19 11 
II! 69 55 47 40 32 27 23 14 
19 77 62 53 46 37 32 27 18 
20 86 69 60 52 43 37 32 21 
21 95 77 67 58 49 42 37 25 
22 104 86 75 65 55 48 42 30 
23 114 94 83 73 62 54 48 35 
24 125 104 91 81 69 61 54 40 
25 136 113 100 89 76 68 60 45 
26 148 124 110 98 84 75 67 51 
27 160 134 119 107 92 83 74 57 
28 In 145 130 116 lot 91 82 64 
29 185 157 140 126 110 100 90 71 
30 198 169 151 137 120 109 98 78 
31 212 181 163 147 130 lUI 107 86 
32 226 194 175 159 140 128 116 94 
33 241 207 187 170 151 138 126 102 
34 257 221 200 182 162 148 136 111 
35 2n 235 213 195 173 159 146 120 
36 289 250 227 208 185 171 157 130 
37 305 265 241 221 198 182 168 140 
38 323 281 256 235 211 194 180 ISO 
39 340 297 271 249 224 207 192 161 
40 358 313 286 264 238 220 204 In 
41 377 330 302 279 252 233 217 183 
42 396 348 319 294 266 247 230 195 
43 416 365 336 310 281 261 244 207 
44 436 384 353 327 296 276 258 220 
45 456 402 371 343 312 291 272 233 
46 477 422 389 361 328 307 287 246 
47 499 441 407 378 345 322 302 260 
48 521 462 426 396 362 339 318 274 
49 543 482 446 415 379 355 334 289 
SO 566 S03 466 434 397 373 3SO 304 

51 590 525 486 453 416 390 367 319 
52 613 547 507 473 434 408 384 335 
53 638 569 529 494 454 427 402 351 
54 668 592 5SO 514 473 445 420 361! 
55 688 615 573 536 493 465 438 385 

56 714 639 595 557 514 484 457 402 
57 740 664 618 579 535 504 477 420 
58 767 688 642 602 556 525 497 438 
59 794 714 666 625 578 546 517 457 
60 822 739 690 648 600 567 537 476 
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TABLE B.12 (cont.): Critical Values of the Wilcoxon T Distribution 

a(2): 11.50 0.20 11.10 0.115 0.112 0.01 0.005 0.001 
n a( I): 0.25 0.10 0.05 0.1125 0.111 0.01l5 0.01l25 0.005 

61 850 765 715 672 623 589 558 495 
62 879 792 741 697 646 611 580 515 
63 908 819 767 721 669 634 602 535 
64 938 847 793 747 693 657 624 556 
65 968 875 820 772 718 681 647 5n 
66 998 903 847 798 742 705 670 599 
67 1029 932 875 825 768 729 694 621 
68 1061 962 903 852 793 754 718 643 
69 1093 992 931 879 819 n9 742 666 
70 1126 1022 960 907 846 805 767 689 

71 1159 1053 990 936 873 831 792 712 
72 1192 1084 1020 964 901 858 818 736 
73 1226 1116 1050 994 928 884 844 761 
74 1261 1148 1081 1023 957 912 871 786 
75 1296 1181 1112 1053 986 940 898 811 
76 1331 1214 1144 1084 1015 968 925 836 
n 1367 1247 1176 1115 1044 997 953 862 
78 1403 1282 12()9 1147 1075 1026 981 IUl9 
79 1440 1316 1242 1179 1105 1056 1010 916 
80 1478 1351 1276 1211 1136 1086 1039 943 
81 1516 1387 1310 1244 1168 1116 1069 971 
82 1554 1423 1345 1277 1200 1147 11199 999 
83 1593 1459 1380 1311 12.12 1178 1129 1028 
84 1632 1496 1415 1345 1265 1210 1160 1057 
85 1672 1533 1451 1380 1298 1242 1191 1086 
86 1712 1571 1487 1415 1332 1275 1223 1116 
87 1753 1609 1524 1451 1366 1308 1255 1146 
88 1794 1648 1561 1487 14011 1342 12811 1177 
89 1836 1688 1599 1523 1435 1376 1321 1208 
90 1878 1727 1638 1561l 1471 1410 1355 1240 
91 1921 1767 1676 1597 1507 1445 1389 1271 
92 1964 1808 1715 1635 1543 14811 1423 1304 
93 2008 1849 1755 1674 15811 1516 1458 1337 
94 2052 11191 1795 1712 1617 1552 1493 1370 
95 2m7 1933 1836 1752 1655 1589 1529 1404 
96 2142 1976 18n 1791 1693 1626 1565 1438 
97 2187 2019 1918 1832 1731 1664 1601 1472 
98 2233 2062 1960 1872 InO 1702 1638 IS07 
99 2280 2106 2003 1913 1810 1740 1676 1543 

100 2327 2151 2045 1955 1850 In9 1714 1578 

Each T in Appendix Table B.12 has a probability less than or equal to the a in its column heading. 
Appendix Table B.12 is taken. with permission of the publisher. from the more extensive table of R. L. 

McComack (1965. J. Amer. Statist. Assoc. 60: 864-871). 
Examples: 

TII.OS(2).J6 = 29 and Tn.OI( J ).62 = 646. 

For performing the Wilcoxon paired-sample test when n > 100. we may use the normal approximation 
(Section 9.5). The accuracy of this approximation is expressed below as follows: critical T from approximalion-
true critical T. In parentheses is the accuracy of the approximation with the continuity correction. 
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a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 O.(KJI 
n 

20 0(0) 1(1) 0(0) 0(-1) -1(-1) -2(-2) -3( -3) -5(-5) 
40 1(1) 1(1) 1(1) 0(-1) -2( -2) -2(-3) -3(-4) -7(-8) 
60 1(0) 1(1) 1(1) 0(0) -2(-2) -2(-3) -4(-4) -9(-9) 
80 1(0) 1(1) 1(0) 0(-1) -2(-2) -4( -4) -5( -5) -10(-10) 

100 1(1) 1(0) 1(1) -1(-1) -2( -3) -4( -4) -6(-7) -11(-11) 

The accuracy of the ( approximation of Section 9.5 is similarly expressed here: 

a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.001 
n 

20 O( -1) 1 (0) 0(0) 1(0) 1(1) 2(1) 2(1) 4(3) 
40 1(0) 0(0) 1 (0) 1(0) 1(1) 2(2) 3(3) 5(4) 
60 0(-1) 0(0) 1 (0) 1(1) 2(1) 3(2) 4(3) 6(5) 
80 O( -1) 0(0) 0(0) 1 (0) 2(2) 3(2) 4(4) 7(7) 

100 0(0) O( -1) 1(0) 0(0) 2(2) 3(3) 4(4) 8(7) 
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TABLE B.13: Critical Values of the Kruskal-Wallis H Distribution 

"I "2 1/.1 1/4 <r; 0.10 0.05 0.(12 0.01 0.005 0.002 O.!lOl 

2 2 2 4.571 
3 2 I 4.286 

" 2 2 45()() 4.714 
3 3 I 4571 5.143 
3 3 2 4556 5.361 6.250 

3 3 3 4.622 5.6()O 6.4119 7.200 7.200 
4 2 I 4.50() 
4 2 2 4.4511 5.333 6.(lIK) 
4 3 I 4.056 5.2011 
4 3 2 4511 5.444 6.144 6.444 7.(J01l 

4 3 3 4.709 5.791 6.564 6.745 7318 8.018 
4 4 1 4.167 4.%7 6.667 6.667 
4 4 2 4.555 5.455 6.6(11) 7.036 7.2112 7.855 
4 4 3 4545 5.598 6.712 7.144 7.598 8.227 8.909 
4 4 4 4.654 5.692 6.%2 7.654 8.000 8.654 9.269 

5 2 I 4.21l1) 5.IX)O 
5 2 2 4.373 5.16() 6.0(JO 6.533 
5 3 I 4.1l\8 4.%() 6.1144 
5 3 2 4.6..'i1 5.251 6.124 6.909 7.11l2 
5 3 3 4.533 5.ti4K 6.533 7.079 7.636 8.048 8.727 

5 4 I 3.987 4.985 6.431 6.955 7.364 
5 4 2 4.541 5.273 6.505 7.2OS 7.573 8.114 8.591 
5 4 3 4549 5.656 6.676 7.445 7.927 8.481 8.795 
5 4 4 4.619 5.657 6.953 7.760 11.189 8.868 9.168 
5 5 1 4.10\1 5.127 6.145 7.309 11.1112 

5 5 2 4.623 5.3311 6.446 73311 8.131 6.446 7.338 
5 5 3 4.545 5.705 6.!!6ti 7.5711 8.316 8.809 9.521 
5 5 4 4.523 5.tititi 7.0£M) 7.K23 8.523 9.163 9.606 
5 5 5 4.940 5.7110 7.221l 11.000 R7HO 9.620 9.920 
6 I I 

6 2 I 4.2IX) 4.1122 
6 2 2 4.545 5.345 6.1112 6.982 
6 3 I 3.')09 4.1155 6.236 
6 3 2 4.6112 5.34!! 6.227 6.970 7.515 11.182 
6 3 3 4.5311 5.615 6.590 7.410 7.f1.72 11.628 9.346 

6 4 I 4.0311 4.947 6.174 7.106 7.614 
6 4 2 4.494 5.340 6.571 7.340 7.1146 R.494 8.827 
6 4 3 4.604 5.610 6.725 7.500 8.033 8.918 9.170 
6 4 4 4.595 5.6111 6.l)()() 7.795 8.381 9.167 9.861 
6 5 I 4.12H 4.9\11) 6.1311 7.1!!2 8.077 8.515 

6 5 2 45% 5.3311 6.5115 7.376 lU96 8.967 9.189 
6 5 3 4535 5.6()2 6.829 7.590 8.314 9.150 9.669 
6 5 4 4522 5.661 7.01H 7.936 8.643 9.458 9.960 
6 5 5 4.547 5.729 7.110 1I.02H 8.859 9.771 10.271 
6 6 I 4.()(K) 4.945 6.286 7.121 8.165 9.077 9.692 

6 6 2 4.4311 SA\() 6.667 7.467 8.210 9.219 9.752 
6 6 3 4.55H 5.625 6.\II)() 7.725 8.4511 9.458 10.150 
6 6 4 4.5411 5.724 7.107 1I.1lI)!) 8.754 9.662 10.342 
6 6 5 4.542 5.765 7.152 H.124 8.987 9.94!! 10.524 
6 6 6 4.643 5.1101 7.240 H.222 9.170 10.187 10.889 

7 7 7 4.51)4 5.1119 7.332 8.3711 9.373 10.516 11.310 
H II H 4.51)5 5.805 7.355 H.465 9.495 10.805 11.705 
2 2 I 
2 2 2 5.357 5.679 
2 2 2 2 5.667 6.167 6.667 6.667 
3 I 1 I 
3 2 1 1 5.143 
3 2 2 I 5.556 5.!!33 6.51lO 
3 2 2 2 5.544 6.333 6.97H 7.133 7.533 
3 3 I I 5.333 6.333 
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TABLE B.13 (cont.): Critical Values of the Kruskal-Wallis H Distribution 

III 112 II.' II~ u:O.IO O.tI:; IW2 IWI n.oo:; 0.002 Il.OOI 

3 3 2 I 5.6H9 6.244 6.6119 7.21KI 7.4<KI 
3 3 2 2 :;.745 6.527 7.1112 7.636 7.1173 ROlli 11.455 
3 3 3 I 5.655 6.6IK) 7. HI') 7.4«M) 11.055 R345 
3 3 3 2 5.1179 6.727 7.n3(' II. Ill:; 11.379 RX03 9.030 
3 3 3 3 6.(126 7.1MK) 7.1172 11.5311 11.1197 9.462 9.513 
4 I I I 
4 2 I I 5.25n 5.1133 
4 2 2 I 5.533 6.133 6.667 7.0m 
4 2 2 2 5.755 6.545 7.1)')1 7.391 7.%4 11.291 
4 3 I I 5.1167 6.1711 6.711 7.1167 
4 3 2 I 5591 (,.30<) 7.(HI! 7.455 7.773 RI1I2 
4 3 2 2 5.750 6.n21 75311 7.871 11.273 11.6119 11.909 
4 3 3 I 55119 n545 7.4H5 7.751! 8.212 II.n97 9.182 
4 3 3 2 5.1172 0.795 7.763 11.333 11.7111 9.167 8.455 
4 3 3 3 nJllo 0.9X4 7.995 8.659 9.253 9.711') 111.016 
4 4 I I 5.11!2 5.945 7.091 7.91.)') 7.91.19 
4 4 2 I 55n.'{ 6.311n 7.3M 7.AA6 11.341 K591 Kl)()9 
4 4 2 2 5.lUll! n.731 7.75C1 11.346 11.692 9.2n9 9.462 
4 4 3 I 5.692 6.635 7.661) 11.231 11.5113 9.1138 9.327 
4 4 3 2 5.91.lJ 0.1!74 7.951 11.621 9.165 9.615 9.945 
4 4 3 3 6.01 1) 7.0311 11.1111 11.1170 9.495 Ill. 105 10.467 
4 4 4 I 55M 0.725 7.1'.79 1151'.11 9.0(J() 9.4711 9.751'. 
4 4 4 2 5.914 6.957 11.157 11.1'.71 9.4AA 10.043 10.429 
4 4 4 3 6.1142 7.142 lU50 9.075 9.742 10.542 10.929 
4 4 4 4 6.11AA 7.235 11.515 9.2117 9.971 10.11(1') 11.338 
2 I I 1 1 
2 2 I 1 I 5.71'.6 
2 2 2 I I 6.25n 6.750 
2 2 2 2 I 6.(lIK) 7.133 7.533 7.533 
2 2 2 2 2 6.9112 7.418 1;,073 8.291 8.727 R727 
3 I 1 I 1 
3 2 1 I I 6.139 6.51'.3 
3 2 2 I 1 6511 6.1100 7.4IM) 7.6IM) 
3 2 2 2 1 6.711') 7.309 7.1136 11.127 8.327 11.6111 
3 2 2 2 2 0.955 7.6H2 8.3113 l!.6H2 lI.9X5 9.273 9.3M 
3 3 1 1 1 /1.311 7.111 7.467 
3 3 2 I I 6.tiCK) 7.200 7.m2 11.073 IU45 
3 3 2 2 I 6.7l1l1 7.591 11.2511 1\.576 11.924 9.167 9.303 
3 3 2 2 2 7.112n 7.910 8.667 9.115 9.474 9.769 IO.02n 
3 3 3 I I 6.7l1l1 7.57() 8.242 8.424 8.l\4H 9.455 9.455 
3 3 3 2 I 6.9111 7.769 H,590 9.051 9.4111 9.769 9.974 
3 3 3 2 2 7.121 IUI44 9.011 9.505 9.890 10.330 10.637 
3 3 3 3 1 7.077 IUMII) 11.1'.79 9.451 9.1146 10.286 10.549 
3 3 3 3 2 7.2111 8.2011 9.207 9.1'.76 In.333 IIl.I!JH 11.171 
3 3 3 3 3 7.333 1033 9.407 111.200 J().733 111.267 11.(,67 

Each tabled H in Appendix Table B.13 has a probability less than or equal to the IX in its column heading. 
The values of II in Appendix Table B.13 were determined from Selecled Tables ill Mathematical Statistics. 

Volume III. pp. 320-3114. by permission of the American Mathematical Society. © 1975 by the American 
Mathematical Society (Iman. Quade. and Alexander. 1(75). 

£,rample.f: 
Ho 05.4..l2 = 5.444 and /lO.U1.4.4.5 = /10.015.4.4 = 7.7611 

Approximations are availahle (Section 10.4) for larger sample sizes. 
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TABLE B.14: Critical Values of the Friedman x~ Distribution 
II 

(M)· (f/) a: 11.511 0.20 11.1 II ".115 ".1'2 IWI lI.nu5 0.002 OJXlI 

3 2 3.0m 4JMII' 
3 3 2.607 4.607 6.IKXI 
3 4 2JKX' 451XI 6.INXI 6.51XI IWIXI 
3 5 2.111X' 3.6110 5.2(11) 6.4IX) X.400 W.I)(N) 

3 6 2.330 4.1I(N) 5.33 7.(N)O X.330 9JXN' 10.330 12.0()O 
3 7 2.()(X' 3.714 5.429 7.143 X.I)(N' X.X57 HI.2116 11.14.~ 12.2116 
3 X 2.2.5() 4.(N)O 5.250 6.250 7.75n 9JIIX' 9.750 12.()(X) 12.250 
3 9 2JX)(' 3.556 5556 6.222 KINX) 9556 HI.M7 11.556 12.607 
3 10 I.XINI 3.~1I) 5JKM) 6.21M' 7.~K) 9.600 HI.4OO 12.200 12.6IN' 

3 II 1.636 3.XIX 4.909 6.545 7JilX 9.455 HI.364 11.636 13.273 
3 12 I.5IX) 351X) 5.167 6.167 lUMMI 9.SIXI 10.167 12.167 12.5IXI 
3 J3 1.X46 3.X46 4.769 flJXMI IUIIM) 9.3X5 1O.3111! 11.53X 12.923 
3 14 1.714 3.571 5.143 6.143 X.l43 9.000 111.429 12.IXIO 13.2116 
3 15 1.733 3.6111' 4.933 6.4111' X.l33 X.933 IIUX)(I 12.133 12.933 

4 2 3.6111' 5.41111 6.(11)(1 
4 3 3.4110 5.41111 6.6(11) 7.4111' X.2IK) 9.01l() 9.111111 
4 4 3.IXXI 4.~/Il 6.3(1() 7.~X) X.4I1I1 9.61111 1lI.21Xl II. 11111 
4 .5 3.1/110 5.160 6.3611 7.XOII 9.240 9.961) 1lI.920 11.640 12.6110 

4 6 3.!NX' 4.Xm 6.4IX) 7.6IXI 9.4IHI 1Il.2IX) 11.4110 12.200 12.~)(J 

4 7 2.X29 4.XX6 6.429 7.~X) 9.343 111.371 11.400 12.771 13.XIIII 
4 X 25S0 4.~MI 6.3(XI 7.650 9.4511 111.350 II.X50 12.')(11' J3.xno 
4 9 6.467 7.~1I) 9.133 1lI.X67 12.1167 14.467 
4 In 6.3611 7.~III 9.120 III.~MI IVIIXI 14.640 

4 II 6.3X2 7.1J('H 9.327 11.073 12.273 14.891 
4 12 6.41111 7.1J(1I1 9.2IM' II. 11111 12.31111 15.0m 
4 13 6.415 7.%5 7.369 11.123 12.323 15.277 
4 14 6.343 7.3X6 9.343 11.143 12514 15.257 
4 15 6.44IJ IW40 9.41)0 1l.240 12.520 15.400 

5 2 7.2(11) 7.61111 !UIIIII XJMIO 
5 3 7.467 X533 9.6()(' 111.133 10.607 11.467 
5 4 HIIII) K~II' 9.5(11) 11.200 12.11110 13.2IX) 
5 S 7.~' K96l) JII.24() II.~) 12.4XI) 14.4()(' 

5 fl 7.7.n 9.1167 111.4111' 11.X67 I.l1167 15.21M' 
5 7 7.771 9.143 111.514 12.114 13.257 15.657 
5 X 7.~N) 9.3<11' 1O.6IX' 12.3(11) 13.5()() 16.INK) 
5 9 7.733 9.244 HI.M7 12.444 13.6X9 16.356 
5 10 7.761' 9.2~I HI.720 12.4~) 13.4~) 16.4~I 

6 2 X.2X6 9.143 9.429 9.714 IO.()()O 
6 3 X.714 9.R.'i7 IlI.X 10 11.762 12524 13.2X6 
6 4 9.1M/I, I ().2X6 11.429 12.714 1J.571 15.2X6 
fl 5 9.IIIM) HI.4X6 11.743 13.229 14.257 16.429 

6 6 9.114X Ill.S71 12.1KM' 13.619 14.762 I7JI4X 
6 7 9.122 10.674 12.1161 I3.X57 15JIIK' 17.612 
6 X 9.143 111.714 12.214 14JIIN) 15.2X6 IX.INK' 
6 9 9.127 1O.77!! 12.3ll2 14.143 15.476 1X.270 
6 10 9.143 J(I.~IO 12.343 14.299 15.6()(' IX514 

·For Kendllll"s coefficient of concordance. W. use the column headings in parentheses. 

Eaeh x~ in Appendix Tahle B.14 ha~ a prohahility less than or equal to the a in its column heading. 
Fur a = 3. and for a = 4. with b :s I!. the values of X; in Appendix Tahle B.14 were determined from 

the exact prohabilities of D. B. Owen. Hal/(/book of SUllislical T{/ble.~. © 1962. U.S. Department of Energy. 
published hy Addision-Weslcy. Reading. Massachusetts. Table 14.1. pp. 408-409: reprinted with permission. 
Critical values for a with b > II. and for a = .5 and 6. were taken. with permission of the puhlisher. from Marlin. 
leBlanc. and Toan (1993). 

Examples: 
(X; )"."~U.6 = 7.()()() and WU.U5.4_1 = 7.4(11) 
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TABLE B.15: Critical Values of Q for Nonparametric Multiple-Comparison Testing 

k a: 0.50 0.20 (J.l1l 0.05 IW2 om 0.005 n.UU2 0.001 

2 0.674 1.282 1.645 1.960 2327 2.576 2.1«/7 3.091 3.291 
3 1.3!!3 1.834 2.1ZH 2.394 2.713 2.936 3.144 3.403 3.588 
4 1.732 2.12!! 2.394 2.639 2.936 3.144 3.342 3.SAA 3.765 
5 1.960 2.327 2.576 2.1«/7 3.091 3.291 3.481 3.719 3.891 

6 2.128 2.475 2.713 2.936 3.209 3.403 3.581( 3.820 3.988 
7 2.261 2.593 2.H23 3.038 3.304 3.494 3.675 3.902 4.067 
8 2.369 2.690 2.914 3.124 3.384 3.570 3.748 3.972 4.134 
9 2.461 2.773 2.992 3.197 3.453 3.635 3.HIII 4.031 4.191 

10 2.540 2.H45 3.n59 3.261 3.S12 3.692 3.H65 4.(183 4.241 

II 2.609 2.9UH 3.119 3.317 3.565 3.743 3.914 4.129 4.286 
12 2.671 2.965 3.172 33/i1! 3.613 3.7H9 3.957 4.171 4.326 
13 2.726 3.1116 3.220 3.414 3.656 3.83() 3.997 4.209 4.363 
14 2.777 3J162 3.264 3.456 3.695 3.HfiI! 4.034 4.244 4.397 
15 2.HZ3 3.105 3.304 3.494 3.731 3.902 4.067 4.276 4.428 

16 2.866 3.144 3.342 3.529 3.765 3.935 4.098 4.305 4.456 
17 2.905 3.181 3.376 3.562 3.796 3.965 4.127 4.333 4.483 
18 2.942 3.215 3.409 3.593 3.H25 3.1)<)3 4.154 4.359 4.508 
19 2.976 3.246 3.439 3.622 3.852 4.1119 4.179 4.3M3 4.532 
20 3.008 3.276 3.467 3.649 3.878 4.(144 4.203 4.406 4.554 

21 3.038 3.304 3.494 3.675 3.902 4.(l67 4.226 4.428 4.575 
22 3.067 3.331 3.519 3.(1)<) 3.925 4.(189 4.247 4.448 4.595 
23 3.094 3.356 3.S43 3.722 3.947 4.1111 4.2/i1! 4.4fiH 4.614 
24 3.120 3.380 3.566 3.744 3.968 4.130 4.287 4.486 4.632 
25 3.144 3.403 3.588 3.765 3.988 4.149 4.305 4.504 4.649 

Appendix Table B.15 was prepared using Equation 26.2.23 of Zelen and Severo (1964). which determines 
Qn such that P( Qn) :$ a( I l/Ik(k - I »). where Qn is a normal deviate (Appendix Table B.2). (This procedure 
is a form of what is known as a Bonferroni calculation.) 

Examples: 
QO.05.4 = 2.639 and Qo. \O~~ = 2.576 
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TABLE B.16: Critical Values of Q' for Nonparametric Multiple-Comparison Testing with a Control 
a(2):050 0.20 0.\0 0.05 0.02 O.ol 0.005 0.002 0.001 

k a( 1): 0.25 0.\0 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

2 0.674 1.282 1.645 1.960 2.327 2.576 2.807 3.091 3.291 
3 1.150 1.645 1.960 2.242 2.576 2.807 3.024 3.291 3.481 
4 1.383 1.834 2.128 2.394 2.713 2.936 3.144 3.403 3.588 
5 1.534 1.960 2.242 2.498 2.807 3.024 3.227 3.481 3.662 

6 1.645 2.054 2.327 2.576 2.879 3.091 3.291 3.540 3.719 
7 1.732 2.128 2.394 2.639 2.936 3.144 3.342 3.588 3.765 
II 1.803 2.190 2.450 2.690 2.983 3.1119 3.384 3.628 3.803 
9 1.1!63 2.242 2.498 2.735 3.024 3.227 3.421 3.662 3.836 

10 1.915 2.287 2.540 2.TI3 3.059 3.261 3.453 3.692 3.865 

11 1.960 2.327 2.576 2.807 3.091 3.291 3.481 3.719 3.891 
12 2.001 2.362 2.609 2.1!38 3.119 3.317 3.506 3.743 3.914 
13 2.037 2.394 2.639 2.1166 3.144 3.342 3.529 3.765 3.935 
14 2.070 2.424 2.666 2.891 3.168 3.364 3551 3.7115 3.954 
15 2.101 2.450 2.690 2.914 3.1119 3.384 3.570 3.803 3.9n 

16 2.1211 2.475 2.713 2.936 3.209 3.403 3588 3.820 3.9811 
17 2.154 2.498 2.735 2.955 3.227 3.421 3.605 3.836 4.003 
111 2.1711 2.520 2.755 2.974 3.245 3.437 3.621 3.851 4.018 
19 2.201 2.540 2.TI3 2.992 3.261 3.453 3.635 3.865 4.031 
20 2.222 2.5511 2.791 3.008 3.276 3.467 3.649 3.878 4.044 

21 2.242 2.576 2.807 3.024 3.291 3.481 3.662 3.891 4.056 
22 2.261 2.593 2.823 3.038 3.304 3.494 3.675 3.902 4.067 
23 2.278 2.609 2.8311 3.052 3.317 3.506 3.687 3.914 4.078 
24 2.295 2.624 2.852 3.066 3.330 3.518 3.6911 3.924 4.088 
25 2.311 2.639 2.866 3.078 3.342 3529 3.709 3.935 4.098 

Appendix Table B.16 was prepared using Equation 26.2.23 of Zelen and Severo (1964). which determines 
Q~ such that P( Q~) s a(2)/[(k - I l) = a( 1 l/(k - I). where Q~ is a normal deviate. (This procedure is a 
form of what is known as a Bonferroni calculation.) 

Examples: 
QO.05(2).9 = 2.735 and QO.OI ( 1 ).12 = 3.119 
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TABLE B.17: Critical Values of the Correlation Coefficient, r 

u:0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.00\ 
v u:O.25 0.10 0.05 0.025 0.0\ 0.005 0.0025 0.001 0.0005 

1 0.707 0.951 0.988 0.997 J.()(J() 1.000 1.000 1.000 1.000 
2 0.500 0.800 0.900 0.950 0.91lO 0.990 0.995 0.998 0.999 
3 0.404 0.687 0.805 0.878 0.934 0.959 0.974 0.986 0.991 
4 0.347 0.608 0.729 0.811 0.882 0.917 0.942 0.963 0.974 
5 0.309 0.551 0.669 0.755 0.833 0.875 0.906 0.935 0.951 

6 0.281 0.507 0.621 0.707 0.789 0.834 0.870 0.905 0.925 
7 0.260 0.472 0.582 0.666 0.750 0.798 0.836 0.875 0.898 
8 0.242 0.443 0.549 0.632 0.715 0.765 0.805 0.847 0.872 
9 0.228 0.419 0.521 0.602 O.6l!5 0.735 0.776 0.820 0.847 

10 0.216 0.398 0.497 0.576 0.658 0.708 0.750 0.795 0.823 

II 0.206 0.3llO 0.476 0.553 0.634 0.684 0.726 0.772 O.SOI 
12 0.197 0.365 0.457 0.532 0.612 0.661 0.703 0.750 O.7M 
13 0.189 0351 0.441 0.514 0.592 0.641 0.683 0.730 0.760 
14 0.182 0338 0.426 0.497 0.574 0.623 0.664 0.711 0.742 
15 0.176 0327 0.412 0.482 0.558 0.606 0.647 0.694 0.725 

16 0.170 0.317 0.400 0.468 0.542 0.590 0.631 0.678 0.708 
17 0.165 0.308 0.389 0.456 0.529 0.575 0.616 0.662 0.693 
18 0.160 0.299 0.378 0.444 0.515 0.561 0.602 0.648 0.679 
19 0.156 0.291 0.369 0.433 0.503 0.549 0.589 0.635 0.665 
20 0.152 0.284 0.360 0.423 0.492 0.537 0.576 0.622 0.652 

21 0.148 0.277 0.352 0.413 0.482 0.526 0.565 0.610 0.640 
22 0.145 0.271 0.344 0.404 0.472 0.515 0.554 0.599 0.629 
23 0.141 0.265 0.337 0.396 0.462 0.505 0.543 0.588 0.618 
24 0.138 0.260 0.330 0.388 0.453 0.496 0.534 0.578 0.607 
25 0.136 0.255 0.323 0.38\ 0.445 0.487 0.524 0.568 0.597 

26 0.133 0.250 0.317 0.374 0.437 0.479 0.515 0.559 0.588 
27 0.13\ 0.245 0.3\\ 0.367 0.430 0.471 0.507 0.550 0.579 
28 0.128 0.241 0.306 0.361 0.423 0.463 0.499 0.54\ 0.570 
29 0.126 (J.237 0.301 0.355 0.4\6 0.456 0.491 0.533 0.562 
30 0.124 0.233 0.296 0.349 0.409 0.449 0.484 0.526 0.554 

31 0.122 0.229 0.291 0.344 0.403 0.442 0.477 0.518 0.546 
32 0.120 0.225 0.287 0.339 0.397 0.436 0.470 0.511 0.539 
33 O.1l8 0.222 0.283 0.334 0.392 0.430 0.464 0.504 0.532 
34 0.116 0.219 0.279 0.329 0.386 0.424 0.458 0.498 0.525 
35 0.115 0.216 0.275 0.325 0.381 0.418 0.452 0.492 0.519 

36 0.113 0.213 0.271 0.320 0.376 0.413 0.446 0.486 0.513 
37 0.111 0.210 0.267 0.316 0.371 0.408 0.441 0.480 0.507 
38 0.110 0.207 0.264 0.312 0.367 0.403 0.435 0.474 0.501 
39 O.IOS 0.204 0.261 0.3OS 0.362 0.398 0.430 0.469 0.495 
40 0.107 0.202 0.2.'i7 0.304 0.358 0.393 0.425 0.463 0.490 

41 0.106 0.199 0.254 0.30\ 0.354 0.389 0.420 0.458 0.484 
42 0.104 0.197 0.251 0.297 0.350 0.384 0.416 0.453 0.479 
43 0.103 0.195 0.248 0.294 0.346 0.380 0.411 0.449 0.474 
44 0.102 0.192 0.246 0.291 0.342 0.376 0.407 0.444 0.469 
45 0.101 0.190 0.243 0.288 1l.338 0.372 0.403 0.439 0.465 

46 0.100 0.188 0.240 0.285 0.335 0.368 0.399 0.435 0.460 
47 0.099 0.186 0.238 0.282 0.331 0.365 0395 0.431 0.456 
48 0.098 0.184 0.235 0.279 0.328 0.361 0.391 0.427 0.451 
49 0.097 0.182 0.233 0.276 0325 0358 0.387 0.423 0.447 
50 0.096 0.181 0.231 0.273 0.322 0.354 0.384 0.419 0.443 

52 0.094 0.177 0.226 0.268 0.316 0.348 0.377 0.411 0.435 
54 0.092 0.174 0.222 0.263 0.310 0.341 0.370 0.404 0.428 
56 0.090 0.171 0.218 0.259 0.305 0336 0.364 0.398 0.421 
58 0.089 0.168 0.214 0.254 0.300 0.330 0.358 0.391 0.414 
60 0.087 0.165 0.211 0.250 0.295 0325 0.352 0.385 0.4OS 
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TABLE 8.17 (cont.): Critical Values of the Correlation Coefficient, , 
a: 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

62 0.086 0.162 0.207 0.246 0.290 0.320 0.347 0.379 0.402 
64 0.084 0.160 0.204 0.242 0.286 0.315 0.342 0.374 0.396 
66 0.083 0.157 0.201 0.239 0.282 0.310 0.337 0.368 0.390 
68 0.0I!2 0.155 0.198 0.235 0.278 0.306 0.332 0.363 0.385 
70 0.081 0.153 0.195 0.232 0.274 0.302 0.327 0.358 0.380 
72 0.080 0.151 0.193 0.229 0.270 0.298 0.323 0.354 0.375 
74 0.079 0.149 0.190 0.226 0.266 0.294 0.319 0.349 0.370 
76 0.078 0.147 0.188 0.223 0.263 0.290 0.315 0.345 0.365 
78 o.on 0.145 0.185 0.220 0.260 0.286 0.311 0.340 0.361 
80 0.076 0.143 0.183 0.217 0.257 0.283 0.307 0.336 0.357 
82 0.075 0.141 0.181 0.215 0.253 0.280 0.304 0.333 0.328 
114 0.074 0.140 0.179 0.212 0.251 0.276 0.300 0.329 0.349 
86 0.073 0.138 0.177 0.210 0.248 0.273 0.297 0.325 0.345 
88 0.072 0.136 0.174 0.207 0.245 0.270 0.293 0.321 0.341 
90 0.071 0.135 0.173 0.205 0.242 0.267 0.290 0.318 0.338 
92 0.070 0.133 0.171 0.203 0.240 0.264 0.287 0.315 0.334 
94 0.070 0.132 0.169 0.201 0.237 0.262 0.2114 0.312 0.331 
96 0.069 0.13\ 0.167 0.199 0.235 0.259 0.281 0.308 0.327 
98 0.068 0.129 0.165 0.197 0.232 0.256 0.279 0.305 0.324 
100 0.068 0.128 0.164 0.195 0.230 0.254 0.276 0.303 0.321 
105 0.066 0.125 0.160 0.190 0.225 0.248 0.270 0.296 0.314 
110 0.064 0.122 0.156 0.186 0.220 0.242 0.264 0.289 0.307 
115 0.063 0.119 0.153 0.182 0.215 0.237 0.258 0.283 0.300 
120 0.062 0.117 0.150 0.178 0.210 0.232 0.253 0.2n 0.294 
125 0.060 0.114 0.147 0.174 0.206 0.228 0.248 0.272 0.289 
130 0.059 0.112 0.144 0.171 0.202 0.223 0.243 0.267 0.283 
135 0.058 0.110 0.141 0.168 0.199 0.219 0.239 0.262 0.278 
140 0.057 0.108 0.139 0.165 0.195 0.215 0.234 0.257 0.273 
145 0.056 0.106 0.136 0.162 0.192 0.212 0.230 0.253 0.269 
150 0.055 0.105 0.134 0.159 0.189 0.208 0.227 0.249 0.264 
160 0.053 0.101 0.130 0.154 0.183 0.202 0.220 0.241 0.256 
170 (1.052 0.098 0.126 0.150 o.m 0.196 0.213 0.234 0.249 
180 0.050 0.095 0.122 0.145 0.172 0.190 0.207 0.228 0.242 
190 0.049 0.093 0.119 0.142 0.168 0.185 0.202 0.222 0.236 
200 0.0411 0.091 0.116 0.138 0.164 0.181 0.197 0.216 0.230 
250 0.043 0.081 0.104 0.124 0.146 0.162 0.176 0.194 0.206 
300 0.039 0.074 0.095 0.113 0.134 0.148 0.161 O.1n 0.188 
350 0.036 0.068 0.0118 0.105 0.124 0.137 0.149 0.164 0.175 
400 0.034 0.064 0.082 0.098 0.116 0.128 0.140 0.154 0.164 
450 0.032 0.060 o.on 0.092 0.109 0.121 0.132 0.145 0.154 
500 0.030 0.057 0.074 0.088 0.104 0.115 0.125 0.138 0.146 
600 0.028 0.052 0.067 0.080 0.095 0.\05 0.114 0.126 0.134 
700 0.026 0.0411 0.062 0.074 0.088 0.097 0.\06 0.116 0.124 
800 0.024 0.045 0.058 0.069 0.082 0.091 0.099 0.109 0.116 
900 0.022 0.043 0.055 0.065 o.on 0.086 0.093 0.103 0.109 
1000 0.021 0.04\ 0.052 0.(J62 0.073 0.081 0.089 0.098 0.104 

The values in Appendix Table B.17 were computed using Equation 19.4 and Table B.3. 
Examples: 

'0.05(2).25 = 0.381 and '0.01 ( 1),30 = 0.409 

If we require a critical value for degrees of freedom not on this table. the critical value for the next lower 
degrees of freedom in the table may be conservatively used. Or, linear or harmonic interpolation may be used. 
If v > tOOO, then use harmonic interpolation, setting the critical value equal to zero for v = 00. 

Also IIOle: 

Ta." = ~ 
la ... + " 
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TABLE B.18: Fisher's Z Transformation for Correlation Coefficients, r 

r 0 I 2 3 4 5 6 7 8 9 r 

0.000 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.000 
0.010 0.0\00 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.010 
0.020 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.020 
0.030 0.0300 0.0310 0.0320 0.0330 0.0340 0.0350 0.0360 0.0370 0.0380 0.0390 0.030 
0.040 0.0400 0.0410 0.(1420 0.0430 0.0440 0.0450 0.0460 0.0470 0.0480 0.0490 0.040 

0.050 0.0500 0.0510 0.0520 0.0530 0.0541 0.0551 0.0561 0.0571 0.05111 0.0591 0.050 
0.060 0.0601 0.0611 0.0621 0.0631 0.0641 0.0651 0.0661 0.0671 0.0681 0.0691 0.060 
0.070 0.0701 0.0711 0.0721 0.0731 0.0741 0.0751 0.0761 0.0172 0.0782 0.0792 0.010 
0.080 0.0802 0.0812 0.0822 0.0832 0.0842 0.0852 0.0862 0.0872 0.0882 0.0892 0.080 
0.090 0.0902 0.0913 0.0923 0.0933 O'{1943 0.(1953 O.(l%3 0.(1973 0.09113 0.0993 0.090 

0.100 0.1003 0.1013 0.1024 0.1034 0.1044 0.1054 0.1064 0.1074 0.1084 0.1094 0.100 
0.110 0.1104 0.1115 0.1125 0.1135 0.1145 0.1155 0.1165 0.1175 0.11116 0.1196 0.110 
0.120 0.1206 0.1216 0.1226 0.1236 0.1246 0.1257 0.1267 0.1277 0.1287 0.1297 0.120 
0.130 0.1307 0.1318 0.1328 0.1338 0.1348 0.1358 0.1368 0.1379 0.1389 0.1399 0.130 
0.140 0.1409 0.1419 0.1430 0.1440 0.1450 0.1460 0.1470 0.1481 0.1491 0.1501 0.140 

0.150 0.1511 0.1522 0.1532 0.1542 0.1552 0.1563 0.1573 0.1583 0.1593 0.1604 0.150 
0.160 0.1614 0.1624 0.1634 0.1645 0.1655 0.1655 0.1675 0.1686 0.1696 0.1706 0.160 
0.170 0.1717 0.1727 0.1737 0.17411 0.1758 0.1768 0.1779 0.1789 0.1799 0.1809 0.170 
0.180 0.1820 0.1830 0.1840 0.1851 0.1861 0.1872 0.1882 0.1892 0.1903 0.1913 0.180 
0.190 0.1923 0.1934 0.1944 0.1955 0.1965 0.1975 0.1986 0.1996 0.2006 0.2017 0.190 

0.200 0.2027 0.2038 0.2048 0.2059 0.2069 0.2079 0.2090 0.2100 0.2111 0.2121 0.200 
0.210 0.2132 0.2142 0.2153 0.2163 0.2174 0.2184 0.2195 0.2205 0.2216 0.2226 0.210 
0.220 0.2237 0.2247 0.22511 0.2268 0.2279 0.2289 0.2300 0.2310 0.2321 0.2331 0.220 
0.230 0.2342 0.2352 0.2363 0.2374 0.2384 0.2395 0.2405 0.2416 0.2427 0.2437 0.230 
0.240 0.2448 0.2458 0.2469 0.2480 0.2490 0.2501 0.2512 0.2522 0.2533 0.2543 0.240 

0.250 0.2554 0.2565 0.2575 0.2586 0.2597 0.2608 0.2618 0.2629 0.2640 0.2650 0.250 
0.260 0.2661 0.2672 0.2683 0.2693 0.2704 0.2715 0.2726 0.2736 0.2747 0.2758 0.260 
0.270 0.2769 0.2779 0.2790 0.2801 0.2812 0.2823 0.2833 0.2844 0.2855 0.2866 0.270 
0.280 0.2877 0.2888 0.2899 0.2909 0.2920 0.2931 0.2942 0.2953 0.2964 0.2975 0.280 
0.290 0.2986 0.2997 0.3008 0.3018 0.3029 0.3040 0.3051 0.3062 0.3073 0.3084 0.290 

0.300 0.3095 0.3106 0.3117 0.3128 0.3139 0.3150 0.3161 0.3172 0.3183 0.3194 0.300 
0.310 0.3205 0.3217 0.3228 0.3239 0.3250 0.3261 0.3272 0.3283 0.3294 0.3305 0.310 
0.320 0.3316 0.3328 0.3339 0.3350 0.3361 0.3372 0.3383 0.3395 0.3406 0.3417 0.320 
0.330 0.3428 0.3440 0.3451 0.3462 0.3473 0.3484 0.3496 0.3507 0.3518 0.3530 0.330 
0.340 0.3541 0.3552 0.3564 0.3575 0.3586 0.3598 0.3609 0.3620 0.3632 0.3643 0.340 

0.350 0.3654 0.3666 0.3677 0.3689 0.3700 0.3712 0.3723 0.3734 0.3746 0.3757 0.350 
0.360 0.3769 0.3780 0.3792 0.3803 0.3815 0.3826 0.3838 0.3850 0.31161 0.3873 0.360 
0.370 0.3884 0.3896 0.3907 0.3919 0.3931 0.3942 0.3954 0.3966 0.3977 0.3989 0.370 
0.380 0.4001 0.4012 0.4024 0.4036 0.4047 0.4059 0.4011 0.4083 0.4094 0.4106 0.380 
0.390 0.4118 0.4130 0.4142 0.4153 0.4165 0.4177 0.4189 0.4201 0.4213 0.4225 0.390 

0.400 0.4236 0.4248 0.4260 0.4272 0.4284 0.4296 0.4308 0.4320 0.4332 0.4344 0.400 
0.4\0 0.4356 0.4368 0.4380 0.4392 0.4404 0.4416 0.4428 0.4441 0.4453 0.4465 0.410 
0.420 0.4477 0.4489 0.4501 0.4513 0.4526 0.4538 0.4550 0.4562 0.4574 0.4587 0.420 
0.430 0.4599 0.4611 0.4624 0.4636 0.4648 0.4660 0.4673 0.4685 0.4698 0.4710 0.430 
0.440 0.4722 0.4735 0.4747 0.4760 0.4772 0.4784 0.4797 0.4809 0.4822 0.4834 0.440 

0.450 0.4847 0.4860 0.4872 0.4885 0.4897 0.4910 0.4922 0.4935 0.4948 0.4960 0.450 
0.460 0.4973 0.4986 0.4999 0.5011 0.5024 0.5037 0.5049 0.5062 0.5075 0.5088 0.460 
0.470 0.5101 0.5114 0.5126 0.5139 0.5152 0.5165 0.5178 0.5191 0.5204 0.5217 0.470 
0.480 0.5230 0.5243 0.5256 0.5269 0.5282 0.5295 0.5308 0.5321 0.5334 0.5347 0.480 
0.490 0.5361 0.5374 0.5387 0.5400 0.5413 0.5427 0.5440 0.5453 0.5466 0.5480 0.490 

0.500 0.5493 0.5506 0.5520 0.5533 0.5547 0.5560 0.5573 0.5587 0.5600 0.5614 0.500 
0.510 0.5627 0.5641 0.5654 0.5668 0.5681 0.5695 0.5709 0.5722 0.5736 0.5750 0.510 
0.520 0.5763 0.5777 0.5791 0.5805 0.5818 0.5832 0.5846 0.5860 0.5874 0.5888 0.520 
0.530 0.5901 0.5915 0.5929 0.5943 0.5957 0.5971 0.598.'i 0.5999 0.6013 0.6027 0.530 
0.540 0.6042 0.6056 0.6070 0.6084 0.6098 0.6112 0.6127 0.6141 0.6155 0.6169 0.540 
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TABLE B.18 (cont.)· Fisher's z Transformation for Correlation Coefficients. r 
r 0 I 2 3 4 5 6 7 8 9 r 

0.550 0.6184 0.6198 0.6213 0.6227 0.6241 0.6256 0.6270 0.6285 0.6299 0.6314 0.550 
0.560 0.6328 0.6343 0.6358 0.6372 0.6387 0.6401 0.6416 0.6431 0.6446 0.6460 0.560 
0.570 0.6475 0.6490 0.6505 0.6520 0.6535 0.6550 0.6565 0.65!1O 0.6595 0.6610 0.570 
0.580 0.6625 0.6640 0.6655 0.6670 0.6685 0.6700 0.6716 0.6731 0.6746 0.6761 0.580 
0.590 0.6777 0.6792 0.6807 0.6823 0.6838 0.6854 0.6869 0.6S85 0.6900 0.6916 0.590 

0.600 0.6931 0.6947 0.6963 0.6978 0.6994 0.7010 0.7026 0.7042 0.7057 0.7073 0.600 
0.610 0.7089 0.7105 11.7121 0.7137 0.7153 0.7169 0.7185 0.7201 0.7218 0.7234 0.610 
0.620 0.7250 0.7266 0.7283 0.7299 0.7315 0.7332 0.7348 0.7365 0.7381 0.7398 0.620 
0.630 0.7414 0.7431 0.7447 0.7464 0.7481 0.7497 0.7514 0.7531 0.7548 0.7565 0.630 
0.640 0.7582 0.7599 0.7616 0.7633 0.7650 0.7667 0.7684 0.7701 0.7718 0.7736 0.640 

0.650 0.7753 0.7770 0.7788 0.7805 0.7823 0.7840 0.7858 0.7875 0.7893 0.7910 0.650 
0.660 0.7928 0.7946 0.7964 0.7981 0.7999 0.8017 n.8035 0.8053 0.!I071 0.8089 0.661l 
0.670 0.8107 0.11126 0.8144 0.8162 0.81!1O 0.8199 0.8217 0.8236 0.8254 0.11273 0.670 
0.680 0.8291 0.8310 0.8328 0.8347 0.8366 0.8385 0.8404 0.8422 0.8441 0.8460 0.680 
0.690 0.8480 0.8499 0.85111 0.8537 0.8556 0.8576 0.8595 0.8614 0.8634 0.8653 0.690 

0.700 0.8673 0.8693 0.8712 0.8732 0.8752 0.8772 0.8792 0.8812 0.8832 0.8852 0.700 
0.710 0.8872 0.8892 0.8912 0.8933 0.8953 0.8973 0.8994 0.9014 0.9035 0.9056 0.710 
0.7W 0.9076 0.9097 0.91111 0.9139 0.9160 0.9181 0.9202 n.9223 0.9245 0.9266 0.720 
0.730 0.9287 0.9309 0.9330 0.9352 0.9373 0.9395 0.9417 0.9439 0.9461 0.9483 0.730 
0.740 0.9505 0.9527 0.9549 0.9571 0.9594 0.9616 0.9639 0.9661 0.9684 0.9707 0.740 

0.750 0.9730 0.9752 0.9775 0.9798 0.9822 0.9845 0.91!68 0.9I!91 0.9915 0.9938 0.750 
0.760 0.9962 0.9986 \.0010 1.0034 UJ058 1.0082 1.0106 1.0130 1.0\54 1.0179 0.760 
0.770 1.0203 1.0228 1.0253 1.0277 \.0302 1.0327 \.0352 1.0378 1.0403 1.0428 0.770 
0.780 1.0454 \.0479 \.0505 1.0531 1.0557 1.0583 1.0609 1.0635 1.0661 1.0688 0.780 
0.790 \.0714 1.0741 1.0768 1.0795 1.0822 1.0849 1.0876 1.0903 1.0931 1.0958 0.790 

0.800 1.0986 1.1014 1.1042 1.1070 1.1098 1.1127 J.l155 1.1184 1.1212 1.1241 0.800 
0.810 1.1270 1.1299 1.1329 1.1358 1.1388 1.1417 1.1447 1.1477 1.1507 1.1538 0.810 
0.820 \.1568 1.1599 1.1630 1.1660 1.1691 1.1723 1.1754 1.1786 1.1817 1.1849 0.820 
0.1l3O I.1AAI 1.1914 1.1946 1.1979 1.2011 1.2044 1.2077 1.2111 1.2144 1.2178 0.830 
0.840 1.2212 1.2246 1.2280 1.2314 1.2349 1.2384 1.2419 1.2454 1.2490 1.2526 0.840 

0.850 1.2561 1.2598 1.2634 \.2671 1.2707 \,2744 1.2782 1.2819 1.2857 \.2895 0.R.50 
0.1l6O \.2933 12.972 1.301\ 1.3050 1.3089 1.3129 1.3169 1.3209 \.3249 1.3290 0.860 
0.870 1.3331 1.3372 \.3414 \.3456 1.3498 1.3540 1.3583 1.3626 1.3670 1.3713 0.870 
0.880 1.3758 1.3802 1.3847 1.3892 1.3938 \.3984 \.4030 1.4077 1.4124 1.4171 0.880 
0.890 1.4219 1.4268 1.4316 \.4365 1.4415 \.4465 1.4516 1.4566 1.4618 1.4670 0.890 

0.900 1.4722 1.4775 1.4828 1.4882 1.4937 \.4992 \.5047 1.5\03 1.5160 1.5217 0.900 
0.910 \.5275 1.5334 \.5393 1.5453 1.5513 1.5574 1.5636 1.5698 \.5762 \.5825 0.910 
0.920 1.5890 \.5956 1.6022 1.6089 \.6157 \.6226 \.6296 1.6366 1.6438 1.65\0 0.920 
0.930 1.6584 1.6658 1.6734 1.6811 1.6888 1.6967 1.7047 1.7129 1.7211 1.7295 0.930 
0.940 1.7380 1.7467 1.7555 1.7645 1.7736 \.7828 1.7923 1.!I019 1.8116 1.8216 0.940 

0.950 \.8318 \.8421 \.8527 1.8635 1.8745 \.8857 1.8972 1.9090 1.9210 1.9333 0.950 
0.960 \.9459 \.95AA \.9721 1.9856 1.9996 2.0139 2.0m 2.0439 2.0595 2.0756 0.960 
0.970 2.0923 2.1095 2.1273 2.1457 2.1648 2.1847 2.2054 2.2269 2.2494 2.2729 0.970 
0.980 2.2975 2.3234 2.3507 2.3795 2.4\01 2.4426 2.4774 2.5147 2.5549 2.5987 0.980 
0.990 2.6466 2.6995 2.7587 2.8257 2.9030 2.9944 3.1062 3.2502 3.4531 3.7997 0.990 

Appendix Table B.18 was produced using Equation 19.8. Example: For r = 0.641, z = 0.7599. 
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TABLE 1.19: Correlation Coefficients. r, Corresponding to Fisher's z Transformation 
l 0 I 2 3 4 5 6 7 8 9 l 

0.00 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.00 
0.01 O.OtOO 0.0110 0.0120 0.0\30 0.0140 0.0150 0.0160 0.0170 0.0180 0.0\90 0.D1 
0.02 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.02 
0.03 0.0300 0.0310 0.0320 0.0330 0.0340 0.0350 0.0360 0.0370 0.0380 0.0390 0.03 
0.04 0.0400 0.0410 0.0420 0.0430 0.0440 0.0450 0.0460 0.0470 0.0480 0.0490 0.04 

0.05 0.0500 0.0510 0.0520 0.0530 0.0539 0.0549 0.0559 0.0569 0.0579 0.0589 0.05 
0.06 0.0599 0.0609 0.0619 0.0629 0.0639 0.0649 0.0659 0.0669 0.0679 0.0689 0.06 
0.07 0.0699 0.0709 0.0719 0.0729 0.0739 0.0749 0.0759 0.0768 0.0778 0.0788 0.07 
0.08 0.0798 0.0808 0.0818 0.0828 0.0838 0.0848 0.0858 0.0I!68 0.0878 0.08811 0.08 
0.09 0.0898 0.0907 0.0917 0.0927 0.0937 0.0947 0.0957 0.0967 0.0977 0.0987 0.09 

0.10 0.0997 0.1007 0.1016 0.1026 0.1036 0.1046 0.1056 0.1066 0.1076 0.1086 0.10 
0.11 0.1096 0.1105 0.1115 0.1125 0.1135 0.1145 0.1155 0.1165 0.1175 0.1184 0.11 
0.12 0.1194 0.1204 0.1214 0.1224 0.1234 0.1244 0.1253 0.1263 0.1273 0.1283 0.12 
0.13 0.1293 0.1303 0.1312 0.1322 0.1332 0.1342 0.1352 0.1361 0.1371 0.1381 0.13 
0.14 0.1391 0.1401 0.1411 0.1420 0.1430 0.1440 0.1450 0.1460 0.1469 0.1479 0.14 

0.15 0.1489 0.1499 0.1508 0.1518 0.1528 0.1538 0.1547 0.1557 0.1567 0.1577 0.15 
0.16 0.1586 0.1596 0.1606 0.1616 0.1625 0.1635 0.1645 0.1655 0.1664 0.1674 0.16 
0.17 0.1684 0.1694 0.1703 0.1713 0.1723 0.1732 0.1742 0.1752 0.1761 0.1771 0.17 
0.18 0.1781 0.1790 0.1800 0.1810 0.1820 0.1829 0.1839 0.1849 0.1858 0.1868 0.18 
0.19 0.1871 0.1887 0.1897 0.1906 0.1916 0.1926 0.1935 0.1945 0.1955 0.1964 0.19 

0.20 0.1974 0.1983 0.1993 0.2003 0.2012 0.2022 0.2031 0.2041 0.2051 0.2060 0.20 
0.21 0.2070 0.2079 0.2089 0.2098 0.2108 0.2117 0.2127 0.2137 0.2146 0.2156 0.21 
0.22 0.2165 0.2175 0.2184 0.2194 0.2203 0.2213 0.2222 0.2232 0.2241 0.2251 0.22 
0.23 0.2260 0.2270 0.2279 0.2289 0.2298 0.2308 0.2317 0.2327 0.2336 0.2346 0.23 
0.24 0.2355 0.2364 0.2374 0.2383 0.2393 0.2402 0.2412 0.2421 0.2430 0.2440 0.24 

0.25 0.2449 0.2459 0.2468 0.2477 0.2487 0.2496 0.2506 0.2515 0.2524 0.2534 0.25 
0.26 0.2543 0.2552 0.2562 0.2571 0.2580 0.2590 0.2599 0.2608 0.2618 0.2627 0.26 
0.27 0.2636 0.2646 0.2655 0.2664 0.2673 0.2683 0.2692 0.2701 0.2711 0.2720 0.27 
0.28 0.2729 0.2738 0.2748 0.2757 0.2766 0.2775 0.2784 0.2794 0.2803 0.2812 0.28 
0.29 0.2821 0.2831 0.2840 0.2849 0.2858 0.2867 0.2876 0.2886 0.2895 0.2904 0.29 

0.30 0.2913 0.2922 0.2931 0.2941 0.2950 0.2959 0.2968 0.2977 0.2986 0.2995 0.30 
0.31 0.3004 0.3013 0.302."\ 0.3032 0.3041 0.3050 0.3059 0.3068 0.3077 0.3086 0.31 
0.32 0.3095 0.3104 0.3113 0.3122 0.3\31 0.3140 0.3149 0.3158 0.3167 0.3176 0.32 
0.33 0.3185 0.3194 0.3203 0.3212 0.3221 0.3230 0.3239 0.3248 0.3257 0.3266 0.33 
0.34 0.3275 0.3284 0.3293 0.3302 0.3310 0.3319 0.3328 0.3337 0.3346 0.3355 0.34 

0.35 0.3364 0.3373 0.3381 0.3390 0.3399 0.3408 0.3417 0.3426 0.3435 0.3443 0.35 
0.36 0.3452 0.3461 0.3470 0.3479 0.3487 0.3496 0.3505 0.3514 0.3522 0.3531 0.36 
0.37 0.3540 0.3549 0.3557 0.3566 0.3575 0.3584 0.3592 0.3601 0.3610 0.3618 0.37 
0.38 0.3627 0.3636 0.3644 0.3653 0.3662 0.3670 0.3679 0.3688 0.3696 0.3705 0.38 
0.39 0.3714 0.3722 0.3731 0.3739 0.3748 0.3757 0.3765 0.3774 0.3782 0.3791 0.39 

0.40 0.3799 0.3808 0.3817 0.3825 0.3834 0.3842 0.3851 0.3859 0.38611 0.3876 0.40 
0.41 0.3885 0.3893 0.3902 0.3910 0.3919 0.3927 0.3936 0.3944 0.3952 0.3961 0.41 
0.42 0.3969 0.3978 0.3986 0.3995 0.4003 0.4011 0.4020 0.4028 0.4036 0.4045 0.42 
0.43 0.4053 0.4062 0.4070 0.4078 0.4087 0.4095 0.4103 0.4112 0.4120 0.4128 0.43 
0.44 0.4136 0.4145 0.4153 0.4161 0.4170 0.4178 0.4186 0.4194 0.4203 0.4211 0.44 

0.45 0.4219 0.4227 0.4235 0.4244 0.4252 0.4260 0.4268 0.4276 0.4285 0.4293 0.45 
0.46 0.4301 0.4309 0.4317 0.4325 0.4333 0.4342 0.4350 0.4358 0.4366 0.4374 0.46 
0.47 0.4382 0.4390 0.4398 0.4406 0.4414 0.4422 0.4430 0.4438 0.4446 0.4454 0.47 
0.48 0.4462 0.4470 0.4478 0.4486 0.4494 0.4502 0.4510 0.4518 0.4526 0.4534 0.48 
0.49 0.4542 0.4550 0.4558 0.4566 0.4574 0.45112 0.4590 0.4598 0.4605 0.4613 0.49 

0.50 0.4621 0.4629 0.4637 0.4645 0.4653 0.4660 0.4668 0.4676 0.4684 0.4692 0.50 
0.51 0.4699 0.4707 0.4715 0.4723 0.4731 0.4738 0.4746 0.4754 0.4762 0.4769 0.51 
0.52 0.4777 0.4785 0.4792 0.4800 0.4808 0.4815 0.4823 0.4831 0.4838 0.4846 0.52 
0.53 0.4854 0.4861 0.4869 0.4877 0.4884 0.4892 0.4900 0.4907 0.4915 0.4922 0.53 
0.54 0.4930 0.4937 0.4945 0.4953 0.4960 0.4968 0.4975 0.4983 0.4990 0.4998 0.54 

0.55 0.5005 0.S013 0.5020 0.5028 0.S035 0.5043 0.50SO 0.5057 0.5065 0.5072 0.55 
0.56 0.5080 0.5087 0.5095 0.5102 0.5109 0.5117 0.5124 0.5132 0.5139 0.5146 0.56 
0.57 0.5154 0.5161 0.5168 0.5176 0.5183 0.5190 0.5198 0.5205 0.5212 0.5219 0.57 
0.58 0.5227 0.5234 0.5241 0.5248 0.5256 0.5263 0.5270 0.5277 0.5285 0.5292 0.58 
0.59 0.5299 0.5306 0.5313 0.5320 0.5328 0.5335 0.5342 0.5349 0.5356 0.5363 0.59 
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TABLE B.19 (cont.): Correlation Coefficients r: Corresponding to Fisher's z Transformation .. 
;: 0 I 2 3 4 5 6 1 8 9 :: 

0.611 11.53111 11.5318 1I.53K5 05392 1153911 1I.S406 0.5413 11.5420 11.5421 11.5434 11.1\0 
lUi I 0.5441 O.S44K 11.5455 O.S462 11.5469 0.541/1 1I.S4K3 054\111 11.5491 0.5504 0./11 
0.62 1I~'i511 11.5518 115525 115532 11.5539 11.5546 115553 11.55611 11.55/11 115514 0.62 
0.63 11.5581 11.5581 11.5594 1I~'i6l11 11.56118 0.5615 11.5622 11.5/129 0.5635 0.5642 0.63 
11.64 0.5649 1156.'i6 11.5/\6.' 0.5/\69 11.5616 1I.56K.' 11.56911 (1.56% 11.5103 0.5110 0.64 

0.6.'i 05111 11.5123 11.51311 11.5131 11.5144 11.51511 0.5151 0.5164 0.51111 O~'i117 0.65 
0./\6 0.5184 0.51911 11.5191 II.5H04 1I.5K10 II.SKI1 11.51123 1I.58.'tC1 0.5831 11.5843 0./\6 
11.61 1I.5K.'i() 0.5K.'i6 11.586.' II.SM9 11.581/1 II.SKH3 1I.5KH9 0.5896 0.5902 11.5909 11.61 
0.68 11.5915 0.5922 1I.592K 05935 0.5941 11.5948 11.5954 11.5961 0.5961 0.5913 11.68 
11.69 11.5980 059M 0.59113 O.5C}t)9 lI.hlM)S 0.61112 1I.601K lI.hI)25 0.hI)31 0.hI))7 0.69 

11.10 lI.hl144 lI.hllSO 11.61156 11.61163 11.61169 lI.hl115 11.61182 O.6I1AA 1I.6U94 11.6100 11.10 
11.11 11.61111 0.6113 11.6119 11.6126 11.6132 n.61311 11.6144 II.ClI5I) 0.6151 0.6163 0.11 
11.12 11.6169 11.6115 11.6181 1I.61KH 11.6194 11.62110 0.62116 0.6212 11.6218 11.6225 0.12 
0.13 11.6231 11.6231 11.6243 11.6249 11.6255 0.6261 0.6261 11.6213 0.6219 0.628..'1 11.13 
11.14 11.6291 0.6291 11.6304 0.6310 11.6316 11.6322 11.6328 11.6334 11.63411 0.6346 0.14 

0.15 11.6351 11.6351 0.6363 OJ,36\J 11.6315 1I.63K1 II.MII1 0.6393 11.63911 11.6405 0.15 
11.16 11.6411 11.6411 11.6423 11.6428 0.6434 11.64411 0.6446 0.6452 0.6458 0.6463 0.16 
11.11 11.6469 11.6415 11.6481 11.6481 11.6492 11.64911 11.6504 1I.6..'i1O II.MI(, II.M21 0.11 
11.18 11.6521 1I.6..'i33 1I.6.'i39 1I.6..'i44 11.65511 11.6556 1I.6.'i61 11.6561 0.6513 0.6.'i111 0.111 
0.19 11.6584 1I.65'JO 0.6595 11.6601 0.66111 0./\612 1I./\6IK 11./\624 11./\629 0./\635 0.19 

11.110 11./\6411 11.6646 11./\652 1I.6M1 11.6/\63 1I./\66K 11.6614 11.6619 0.6685 11./\690 lUlU 
11.81 11./\696 0.61111 11.,.,,111 11.,.,,12 11.61111 11.6123 11.6129 11.6134 11.6140 11.6145 O.KI 
0.112 11.6151 11.6156 11.""(,2 11.6161 11.6112 11.6118 11.618.' 0.6189 11.6194 0.6199 0.82 
11.8.' 1I.6K05 0.6810 11.61115 11.61121 11.61126 1I.6K.'2 11.61131 11,(>1142 11.6841 1I.68.'i3 11.8.' 
0.84 0.68S8 1I.6HtI3 0.6II6'J 11.61114 11.61119 1I.6KK4 11.68\111 11.61195 11.69011 0.6905 11.84 

lUIS 11.6911 11.6916 11.6')21 0.,.,926 11.6')32 11.6931 0.6942 0.6941 11.6952 0.6957 II.KS 
0.116 0.696.' 0.69611 0.6913 0.,.,918 0.698.' O.69KH 11.69\13 0.6998 0.111114 1I.11XI'} 0.116 
0.111 11.7014 11.11119 11.11124 11.11129 11.11134 11.11139 11.71144 0.1049 0.1054 0.7059 O.ll7 
0.811 11.11164 11.11169 0.11114 11.11119 11.11184 0.11189 11.1094 0.1099 U.11114 0.1111'} 0.l1li 
11.89 11.1114 11.1119 11.1124 11.1129 11.1134 11.1139 11.1143 11.1148 11.1153 0.1158 0.89 

11.\111 11.1163 11.11611 11.1113 11.1118 11.1182 11.1181 11.1192 0.1191 11.12112 11.1207 11.\111 
0.91 11.1211 0.1216 11.1221 11.1226 n.12311 11.1235 11.1240 11.1245 0.1249 11.1254 11.91 
0.92 11.1259 11.1264 11.12611 0.1213 11.12111 0.12K3 11.7281 0.1292 11.7291 11.13111 0.92 
0.93 11.1306 0.1311 11.1315 1I.132t1 11.1325 0.1329 11.1334 0.1338 0.1343 0.1348 n.93 
0.94 11.1352 0.1351 0.1361 0.1J6(, 11.1311 11.1315 n.13KII 11.1384 0.1389 f1.13'l3 11.94 

0.95 0.1398 0.14112 0.14111 11.1411 0.1416 0.14211 11.1425 0.1429 0.1434 0.143ft 11.95 
0.96 0.1443 0.1441 11.1452 0.1456 11.1461 0.1465 11.1469 0.1414 0.1418 0.1483 0.% 
0.91 0.1481 0.1491 0.14% 0.151XI 0.15115 11.15119 11.1513 11.1518 0.7522 11.1526 0.91 
0.98 11.1531 11.1535 11.1539 0.1544 0.1!I4K 11.1552 0.1551 11.1561 0.1565 0.1569 0.98 
0.911 11.1514 0.1518 11.1582 0.15116 0.1591 0.1595 11.1599 0.16113 1I.1h1l1! 0.7612 0.99 

1.0 0.1616 0.1658 11.169\1 0.1139 11.1119 11.1818 0.18.'i1 0.1895 n.1932 0.1%9 1.0 
1.1 1I.1I011S 11.11041 0.111116 11.81111 11.8144 11.8118 0.112111 n.1I243 11.8214 0.8.;116 1.1 
1.2 n.1I331 0./1.;61 11.11391 0.842'" 11.8455 0.8483 1I.8.'i11 0.8.'i38 0.11565 1I.8.'i91 1.2 
1.3 0.11611 0.8643 O.HtI6K II.M92 0.11111 0.11141 0.11164 0.8181 11.811(19 11.88.'2 1.3 
1.4 O.llll..'i4 0.81115 II.KH96 n.89 I 1 (1.8931 0.8951 1I.8'l11 n.8996 0.9015 0.9033 1.4 

L'i 0.\11151 0.\11169 11.\11181 (1.91114 11.9121 0.913K n.9154 0.9110 0.91M 0.92t1l 1.5 
1.6 11.9211 11.9232 11.9246 1I.92M 0.9215 0.9289 0.9302 0.9316 0.9329 0.9341 1.6 
1.1 11.9354 11.93/\6 11.9319 0.9391 0.94112 0.9414 0.9425 0.9436 0.9441 0.9458 1.1 
I.K 1I.946K 11.9418 1I.94KH 11.94911 11.95118 11.9511 0.9521 0.9536 0.9545 0.9554 1.11 
1.9 11.9562 0.9511 11.9519 11.95111 0.95'l5 0.96113 0.9611 (1.9618 0.9626 0.9633 1.9 

2.0 O.964IJ 0.9641 0.9654 0.9/\61 0.9/\61 0.%14 11.9680 0.96111 11.9693 0.9699 2.0 
2.1 0.9105 11.9110 0.9116 0.9121 0.9121 11.9132 0.9131 11.9143 11.9148 11.9153 2.1 
2.2 11.9151 11.9162 11.9161 11.9111 11.9116 1I.91KO 0.'l18.'i 0.91m 0.9193 0.9197 2.2 
2.3 0.981J1 11.911115 11.98119 11.91112 0.91116 11.911211 0.91123 11.91121 11.911311 0.91133 2.3 
2.4 11.98.;1 0.9K4U 0.9843 0.9846 0.9849 11.9852 0.9855 11.98.-;8 11.91161 0.9R63 2.4 
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TABLE B.19 (cont.): Correlation Coefficients r, Corresponding to Fisher's z Transformation , 
z 0 I 2 3 

2.5 0.9866 0.9869 n.IIX7\ O.9X74 
2.6 0.981)() 0.9892 0.9X9' 0.9897 
2.7 0.9910 0.9912 0.9914 0.9915 
2.8 0.992(, 0.9928 0.9929 11.9931 
2.9 0.9940 0.9941 n.W42 0.994.1 

3.0 0.9951 0.W,2 0.9952 0.9953 
3.1 0.9959 0.9960 0.9961 11.9962 
3.2 0.9967 0.9967 O.99~ 0.9969 
3.3 0.1J<J73 0.9973 0.9974 0.9974 
3.4 0.9978 0.997X 0.9979 0.9979 

3.5 0.9982 0.9982 0.9982 1I.99x3 
3.6 0.9985 0.9985 O.99X(' 0.9986 
3.7 O.99AA 0.9988 0.9988 0.9988 
3.8 0.9990 0.9990 0.9990 0.9991 
3.9 U.99'J2 0.1J<)92 0.9992 O.99'J2 

4.0 0.9993 0.9993 U.9994 0.9994 
4.1 0.9995 0.9995 U.9995 (1.9995 
4.2 n.99% 0.9996 0.99% n.99% 
4.3 0.99% n.99% 0.9996 n.99'J7 
4.4 0.9997 n.9997 11.9997 0.9997 

4.5 0.9998 1I.9IJ<)X 1).9998 0.9998 
4.6 0.9998 n.999B (I.999B 11.9998 
4.7 o.m!! 0.9IJ<)8 n.999H o.m!! 
4.8 0.9999 0.9999 0.9999 0.9999 
4.9 0.9999 0.9999 0.9999 0.9999 

Example: 

4 , 
O.9X76 !J.IIX7'J 
O.9K99 n.99IlI 
11.9917 n.9919 
0.9932 U.IJ<J33 
0.9944 U.W45 

U.9954 n.w" 
11.9963 n.9963 
11.9969 n.997(J 
0.9975 n.W75 
0.9979 0.991(1) 

U.99x3 U.99IW 
U.99116 0.1J<)1l6 
n.99X9 O.99X9 
O.IJ<J'1( 11.9991 
0.9992 n.9993 

O.9<J94 0.9IJ<)4 
n.999S 0.9995 
0.99% n.91J<)6 
n.9997 0.9997 
0.9997 0.9997 

1I.999!I 1).999X 
0.9998 (I.99'J8 
O.9IJ<J!! n.99IJ<) 
0.9999 O.IJ<)I}<) 
U.9999 O.9IJ<)9 

e2; - I r = tanh z = --­
{.2: + I 

z = 2.42. r = 0.91143 

(, 

1I.9AAI 
O.IJ<XI3 
(J.992n 
(J.9935 
n.9946 

n.9956 
11.9964 
11.9971 
0.9976 
0.991(1) 

0.99X4 
0.9987 
n.9989 
n.9991 
0.9993 

0.91J<)4 
1).9995 
11.99% 
n.9997 
1).9997 

1I.999X 
(I.999H 
n.9999 
0.9999 
0.9999 

7 X 9 

O.II!\X4 O.9AAfl n.9AAX 
0.9905 1I.1J<J06 U.99OR 
11.9922 11.9923 11.992, 
U.9936 11.9937 U.993X 
U.9947 1l.994'J U.9950 

1I.1J<)57 0.9958 11.9959 
0.9965 0.9965 O.99M 
0.9971 0.9972 O.IJ<J72 
n.9976 U.9977 0.9977 
n.99IU O.99!l1 0.9981 

0.99X4 0.99X4 0.9985 
0.9987 O.IJ<)87 O.991!8 
U.99X9 0.9990 11.9991) 
0.999\ n.999 I 0.9992 
0.W93 0.9993 0.9993 

U.9994 O.9IJ<)4 0.9994 
0.9995 0.9995 n.9995 
0.99% n.IJ<)<)6 0.9996 
O.Y997 n.9997 0.9997 
0.9997 O.IJ<J97 U.9997 

U.999!I 0.999!! 0.9998 
0.1J<J9H 11.9998 0.99911 
U.9999 U.9999 0.1J<J99 
U.9IJ<J9 0.9999 0.9999 
U.99CJtJ 0.9999 0.9999 

z 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
31 
3J 
3.4 

3.5 
3.6 
3.7 
3.8 
3.9 

4.0 
4.1 
41 
43 
4.4 

4.5 
4.6 
4.7 
4.8 
4.9 



Appendix B Statistical Tables and Graphs n3 

TABLE B.20: Critical Values of the Spearman Rank-Correlation Coefficient, 's 
a(2): 0.50 0.20 0.10 0.05 0.112 om 11.005 0.002 0.001 

n a(I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

4 11.6011 1.000 1.000 
5 0.500 0.800 0.900 1.1100 1.000 

6 0.371 0.657 0.1129 0.1U!6 0.943 1.000 1.000 
7 0.321 0.571 0.714 0.786 0.893 0.929 0.964 1.000 1.000 
II 11.310 11.524 0.643 0.738 0.833 0.881 0.905 0.952 0.976 
9 0.267 0.483 O.C\OO 0.700 0.783 0.833 0.867 0.917 0.933 

10 1I.24K 0.455 0.564 0.648 0.745 0.794 0.830 0.879 0.903 

II 11.236 0.427 0.536 0.61S 0.709 0.755 0.800 0.845 0.873 
12 11.217 0.406 0.503 0.5117 0.678 11.727 0.769 O.SIS 0.846 
13 11.209 0.385 0.4114 0.560 0.648 0.703 11.747 0.791 0.S24 
14 11.200 11.367 0.464 0.538 0.626 0.679 0.723 0.771 0.802 
15 11.181) 0.354 0.446 0.521 0.604 0.654 11.700 0.750 0.779 

16 0.182 11.341 0.429 0.503 11.5112 11.635 0.679 0.729 0.762 
17 0.176 0.328 0.414 0.4115 0.566 0.615 0.662 0.713 0.748 
111 0.170 11.317 0.401 0.472 11.550 0.600 0.643 0.695 0.728 
19 0.165 11.309 0.391 0.460 0.535 0.584 0.628 0.677 0.712 
20 11.161 11.299 0.3110 0.447 11.5211 11.570 0.612 0.662 0.696 

21 0.156 0.292 0.370 0.435 0.508 0.556 0.599 0.648 0.681 
22 0.152 11.284 0.361 0.425 0.496 0.544 11.586 0.634 0.667 
23 0.148 11.2711 11.353 0.415 O.4l!6 11.532 0.573 0.622 0.654 
24 11.144 11.271 0.344 0.406 0.476 11.521 0.562 0.610 0.642 
25 0.142 0.265 0.337 0.398 0.466 11.511 0.551 0.598 0.630 

26 0.138 0.259 0.331 0.390 0.457 0.501 0.541 0.587 0.619 
27 0.136 0.255 0.324 0.3M2 0.448 0.491 0.531 0.577 0.608 
28 0.133 0.250 0.317 0.375 0.440 0.483 0.522 0.567 0.598 
29 0.130 0.245 0.312 0.368 0.433 0.475 0.513 0.55S 0.589 
30 0.128 0.240 0.306 0.362 0.425 0.467 0.504 0.549 0.580 

31 0.126 0.236 0.301 0.356 Q.4111 0.459 0.496 0.541 0.571 
32 0.124 0.232 0.296 0.350 0.412 0.452 0.489 0.533 0.563 
33 0.121 0.229 0.291 0.345 0.405 0.446 0.482 0.525 0.554 
34 0.120 0.225 0.287 0.340 0.399 0.439 0.475 0.517 0.547 
35 0.118 0.222 0.283 0.335 0.394 11.433 0.468 0.510 0.539 

36 0.116 0.219 0.279 0.330 0.388 0.427 0.462 0.504 0.533 
37 0.114 0.216 0.275 0.325 0.38.'\ 0.421 0.456 0.497 0.526 
38 0.113 0.212 0.271 0.321 0.378 0.415 0.450 0.491 0.519 
39 Il.lII 0.210 0.267 0.317 0.373 0.410 0.444 0.485 0.513 
40 0.110 0.207 0.264 0.313 O.36H 11.405 0.439 0.479 0.507 

41 11.1 OK 0.204 0.261 0.309 0.364 0.400 11.433 0.473 0.501 
42 11.107 0.202 0.2.'i7 0.305 0.359 0.395 11.428 0.468 0.495 
43 0.105 0.199 0.2.'i4 0.301 0.355 0.391 0.423 0.463 0.490 
44 0.104 0.197 0.251 0.298 11.351 0.386 0.419 0.45S 0.4114 
45 0.103 0.194 0.248 0.294 11.347 0.382 0.414 0.453 0.479 

46 0.102 0.192 0.246 O.21J1 0.343 0.378 0.410 0.448 0.474 
47 0.101 0.1911 0.243 0.2HH 0.340 0.374 0.405 0.443 0.469 
48 0.100 0.188 0.240 0.285 11.336 0.370 0.401 0.439 0.465 
49 11.098 0.11!6 0.238 0.282 0.333 0.366 0.397 0.434 0.460 
50 0.097 0.1114 0.235 0.279 0.329 0.363 0.393 0.430 0.456 

51 0.096 0.182 0.233 0.276 0.326 0.359 0.390 0.426 0.451 
52 0.095 O.I!!O 0.2.'\1 0.274 0.323 0.356 0.386 0.422 0.447 
53 0.095 0.179 0.228 0.271 0.320 0.352 0.382 0.41S 0.443 
54 0.094 0.177 0.226 0.268 0.317 0.349 0.379 0.414 0.439 
55 0.1193 0.175 0.224 11.266 11.314 0.346 0.375 Q.411 0.435 

56 11.092 0.174 0.222 0.264 0.311 0.343 0.372 0.407 0.432 
57 0.091 0.172 0.220 0.261 0.308 0.340 0.369 0.404 0.428 
5S 0.1190 0.171 0.218 0.259 0.306 0.337 0.366 0.400 0.424 
59 0.089 0.169 0.216 0.257 0.303 11.334 0.363 0.397 0.421 
60 0.1)89 0.168 0.214 0.255 0.300 0.331 0.360 0.394 0.41S 

61 0.1lH8 0.166 0.213 0.252 0.298 0.329 0.357 0.391 0.414 
62 0.1187 0.165 0.211 0.250 11.296 0.326 0.354 0.388 0.411 
63 O.(1l!6 0.163 0.209 O.24K 0.293 0.323 0.351 0.385 0.408 
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TABLE B.20 (cont.): Critical Values of the Spearman Rank-Correlation Coefficient, rs 

a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
/I a(l): 0.25 0.10 0.05 0.025 0.0\ 0.005 0.0025 0.001 0.0005 

64 0.086 0.162 0.207 0.246 0.291 0.321 0.348 0.382 0.405 
65 0.085 0.161 0.206 0.244 0.289 0.318 0.346 0.379 0.402 

66 0.084 0.160 0.204 0.243 0.287 0.316 0.343 0.376 0.399 
67 0.084 0.158 0.203 0.241 0.284 0.314 0.341 0.373 0.396 
68 0.083 0.157 0.201 0.239 0.282 0.3\1 0.338 0.370 0.393 
69 0.082 0.156 0.200 0.237 0.280 0.309 0.336 0.368 0.390 
70 0.D!l2 0.155 0.198 0.235 0.278 0.307 0.333 0.365 0.388 

71 0.081 0.154 0.197 0.234 0.276 0.305 0.331 0.363 0.385 
72 0.081 0.153 0.195 0.232 0.274 0.303 0.329 0.360 0.382 
73 0.080 0.152 0.194 0.230 0.272 0.301 0.327 0.358 0.380 
74 0.080 0.151 0.193 0.229 0.271 0.299 0.324 0.355 0.377 
75 0.079 0.150 0.191 0.227 0.269 0.297 0.322 0.353 0.375 

76 0.078 0.149 0.190 0.226 0.267 0.295 0.320 0.351 0.372 
77 0.078 0.148 0.189 0.224 0.265 0.293 0.318 0.349 0.370 
78 0.077 0.147 0.188 0.223 0.264 0.291 0.316 0.346 0.368 
79 0.077 0.146 0.186 0.221 0.262 0.289 0.314 0.344 0.365 
80 0.076 0.145 0.185 0.220 0.260 0.287 0.312 0.342 0.363 

81 0.076 0.144 0.184 0.219 0.259 0.285 0.310 0.340 0.361 
82 0.075 0.143 0.183 0.217 0.257 0.284 0.308 0.338 0.359 
83 0.075 0.142 0.182 0.216 0.255 0.282 0.306 0.336 0.357 
84 0.074 0.141 0.181 0.215 0.254 0.280 0.305 0.334 0.355 
85 0.074 0.140 0.180 0.213 0.252 0.279 0.303 0.332 0.353 

86 0.074 0.139 0.179 0.212 0.251 0.277 0.301 0.330 0.351 
87 0.073 0.139 0.177 0.211 0.250 0.276 0.299 0.328 0.349 
88 0.073 0.138 0.176 0.2\0 0.248 0.274 0.298 0.327 0.347 
89 0.072 0.137 0.175 0.209 0.247 0.272 0.296 0.325 0.345 
90 0.072 0.136 0.174 0.207 0.245 0.271 0.294 0.323 0.343 

91 0.072 0.135 0.173 0.206 0.244 0.269 0.293 0.321 0.341 
92 0.071 0.135 0.173 0.205 0.243 0.268 0.291 0.319 0.339 
93 0.071 0.134 0.172 0.204 0.241 0.267 0.290 0.318 0.338 
94 0.070 0.133 0.171 0.203 0.240 0.265 0.288 0.316 0.336 
95 0.070 0.133 0.170 0.202 0.239 0.264 0.287 0.314 0.334 

96 0.070 0.132 0.169 0.201 0.238 0.262 0.285 0.313 0.332 
97 0.069 0.131 0.168 0.200 0.236 0.261 0.284 0.311 0.331 
98 0.069 0.130 0.167 0.199 0.235 0.260 0.282 0.310 0.329 
99 0.068 0.130 0.166 0.198 0.234 0.258 0.281 0.308 0.327 
100 0.068 0.129 0.165 0.197 0.233 0.257 0.279 0.307 0.326 

For the table entries through n =- II in Appendix Table B.20. the exact distribution of 'kd2 was used (Owen. 
1962: 400-406). For 1/ 12, the exact distribution of de Jonge and van Montfort (1972) was used; for I/'S of 
13 through 16, the exact distributions of Otten (1973) were used; and for n = 12-18. the exact distributions 
of Franklin (1988a) were used. For larger n. the Pearson-curve approximations described by Olds (1938) were 
employed. with the excellent accuracy of results discussed elsewhere (Franklin, 1988b, 1989; Zar, 1972). 

Examples: 

( r .• )O.05( 2 ).9 = 0.700 and ( rs )0.01 (2 ).52 = 0.356 

For II larger than those in this table, we may utilize either Appendix Table B.17 or,equivalently, Equation 19.4. 
The accuracy of this procedure is discussed by Zar (1972). 

The critical values in this table are the probabilities s the column headings. 
The exact probability of r" can be estimated as the probability of a normal deviate (see Section 6.1), 

Z = 's ..,t;t::\. 
or by substitutingr.. for rin calculating 1 via Equations 19.3 and 19.4. Iman and Conover (1978) reported that the 
use of Z is conservative (i.e .• the probability of a Type I error is less than a) for a > 0.05 and liberal (probability 
greater than a) for a < 0.05. whereas 1 behaves in the opposite fashion; and an even better estimate is obtained 
by averaging the probability of Z and the probability of I. Fahoome (2002) advised that. for a = 0.05. P(Z) lies 
between 0.045 and 0.055 if II is at least 12; and. for a = 0.01. P(Z) is between 0.009 and O.ot 1 for II of at least 40. 
It appears inadvisable to use these approximations for probabilities as small as 0.001 unless II is at least 60. 
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TABLE B.21: Critical Values of the Top-Down Correlation Coefficient, 'r 
n a(1): 0.25 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 

3 0.786 1.000 1.000 1.000 1.000 l.000 l.000 1.000 
4 0.478 0.870 0.942 l.000 l.000 l.000 1.000 1.000 
5 0.752 0.905 0.959 0.977 1.000 1.000 1.000 1.000 

6 0.324 0.676 0.810 0.887 0.943 0.969 1.000 1.000 
7 0.271 0.622 0.738 0.836 0.906 0.934 0.977 0.991 
8 0.245 0.575 0.692 0.n9 0.865 0.904 0.960 0.972 
9 0.228 0.530 0.654 0.742 0.826 0.871 0.936 0.953 

10 0.245 0.492 0.620 0.707 0.793 0.840 0.913 0.933 

II 0.204 0.461 0.539 0.6n 0.762 0.812 0.890 0.913 
12 0.195 0.435 0.560 0.650 0.735 0.786 0.868 0.893 
13 0.186 0.412 0.535 0.625 0.711 0.762 0.847 0.873 
14 0.179 0.393 0.513 0.602 0.689 0.740 0.827 0.854 
15 0.389 0.486 0.565 0.680 0.688 0.826 

16 0.376 0.470 0.546 0.656 0.665 0.798 
17 0.364 0.454 0.528 0.635 0.644 0.n3 
18 0.353 0.440 0.512 0.615 0.625 0.750 
19 0.343 0.428 0.497 0.598 0.607 0.728 
20 0.334 0.416 0.433 0.581 0.591 0.709 

21 0.325 0.405 0.470 0.566 0.576 0.691 
22 0.317 0.395 0.459 0.552 0.562 0.674 
23 0.310 0.386 0.448 0.538 0.549 0.659 
24 0.303 O.3n 0.438 0.526 0.537 0.644 
25 0.2<)7 0.368 0.428 0.515 0.526 0.631 

26 0.291 0.361 0.419 0.504 0.515 0.618 
27 0.285 0.354 0.411 0.494 0.505 0.606 
28 0.280 0.347 0.403 0.484 0.496 0.595 
29 0.275 0.340 0.395 0.475 0.487 0.584 
30 0.270 0.334 0.388 0.466 0.478 0.574 

For n through 14. the critical values were determined from the exact distributions of Iman and Conover 
(1985) and Iman (1987). For 15 :s n :s 30. the critical values are reprinted. with permission of the publisher. 
from Iman and Conover. copyright 1987. Technomet,ics 29: 351-357; all rights reserved. For n > 30. the normal 
approximation may be employed: 

Z = 'T v'ii"'-=I. 
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TABLE B.22: Critical Values of the Symmetry Measure • .Jii1 
a(2): 0.10 0.05 0.02 0,0) 

n a( I): 0.05 0.025 0,0) 0.005 

20 0.n2 0.940 1.150 1.304 
25 0.711 0.866 1.059 1.200 
30 0.662 0.806 0.986 1.117 
35 0.521 0.756 0.923 1.044 
40 0.588 0.714 0.871 0.985 
45 0.559 0.679 0.826 0.934 

50 0.534 0.647 0.788 0.889 
60 0.492 0.596 0.724 0.816 
70 0.459 0.556 0.673 0.758 
80 0.432 0.522 0.632 0.710 
90 0.409 0.494 0.597 0.670 

100 0.390 0.470 0.567 0.636 
125 0.351 0.422 0.5OS 0.569 
ISO 0.322 0.387 0.465 0.519 
175 0.299 0.359 0.430 0.481 
200 0.280 0.336 0.403 0.449 

250 0.251 0.301 0.361 0.402 
300 0.230 0.275 0.329 0.366 
350 0.213 0.2S5 0.305 0.339 
400 0.200 0.239 0.285 0.317 
450 0.188 0.225 0.269 0.299 

SOO 0.179 0.214 0.355 0.283 

Values in Appendix Table B.22 are reprinted from E. S. Pearson and H. O. Hartley (eds.). Biometrika Tables 
for Statisticians. Volume I. 1976, p. 207, by permission of the Oxford University Press. 
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TABLE 1.23: Critical Values of the Kurtosis Measure, b2 

Lower Tail Upper Tail 

a(2): 0.01 0.02 0.05 0.10 0.10 0.05 0.02 0.01 
n a 1): 0.005 0.01 0.025 0.05 0.05 0.025 om 0.005 

20 1.58 1.64 1.73 1.83 4.18 4.68 5.38 5.91 
30 1.73 1.79 1.89 1.98 4.12 4.57 5.20 5.69 
40 1.83 1.89 1.99 2.07 4.06 4.46 5.04 5.48 
50 1.91 1.95 2.06 2.15 4.00 4.36 4.88 5.28 
75 2.05 2.08 2.19 2.27 3.87 4.17 4.59 4.90 

100 2.13 2.18 2.27 2.35 3.77 4.03 4.39 4.66 
125 2.19 2.24 2.32 2.40 3.70 3.93 4.24 4.48 
150 2.24 2.29 2.37 2.45 3.65 3.86 4.13 4.34 
175 2.28 2.34 2.41 2.48 3.61 3.79 4.04 4.23 
200 2.32 2.37 2.44 2.51 3.57 3.75 3.98 4.16 

250 2.42 2.55 3.52 3.87 
300 2.46 2.59 3.47 3.79 
400 2.52 2.64 3.41 3.67 
500 2.57 2.67 3.37 3.60 
600 2.60 2.70 3.34 3.54 

700 2.62 2.72 3.31 3.50 
800 2.65 2.74 3.29 3.46 
900 2.66 2.75 3.28 3.43 
1000 2.68 2.76 3.26 3.41 
2000 2.77 2.83 3.18 3.28 

Values in Appendix Table B.23 are reprinted from E. S. Pearson and H. O. Hartley (eds.).Biomelrika Tables 
for Statisticians. Volume 1.1976. p. 208. by permission of the Oxford University Press. 
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TABLE B.24:The Arcsine Transformation, p' 
p 0 2 3 4 5 6 7 8 9 P 

0.000 0.00 0.57 0.81 0.99 1.15 /.28 1.40 /.52 /.62 /.72 0.000 
0.001 1.81 /.90 /.99 2.07 2.14 2.22 2.29 2.36 2.43 2.50 0.001 
0.002 2.56 2.63 3.69 2.75 2.81 2.87 2.92 2.98 3.03 3.09 0.002 
0.003 3.14 3.19 3.24 3.29 3.34 3.39 3.44 3.49 3.53 3.58 0.003 
0.004 3.63 3.67 3.72 3.76 3.80 3.85 3.89 3.93 3.97 4.01 0.004 

0.005 4.05 4.10 4.14 4.17 4.21 4.25 4.29 4.33 4.37 4.41 0.005 
0.006 4.44 4.48 4.52 4.55 4.59 4.62 4.66 4.70 4.73 4.76 0.006 
0.007 4.80 4.83 4.87 4.90 4.93 4.97 5.00 5.03 5.07 5.10 0.007 
O.OOR 5.13 5.16 5.20 5.23 5.26 5.29 5.32 5.35 5.38 5.41 O.OOR 
0.009 5.44 5.47 5.50 5.53 5.56 5.59 5.62 5.65 5.68 5.71 0.009 

0.01 5.74 6.02 6.29 6.55 6.80 7.03 7.27 7.49 7.71 7.92 0.01 
0.02 3.13 8.33 8.53 8.72 8.91 9.10 9.28 9.46 9.63 9.80 0.02 
0.03 9.97 10.14 10.30 10.47 10.63 10.78 10.94 11.09 11.24 1/.39 0.03 
0.04 1/.54 11.68 1/.83 1/.97 12.11 12.25 12.38 12.52 12.66 12.79 0.04 
0.05 12.92 13.05 13.18 13.31 13.44 13.56 13.69 13.81 13.94 14.06 0.05 

0.06 14.18 14.30 14.42 14.54 14.65 14.71 14.89 15.00 15.12 15.23 0.06 
0.07 15.34 15.45 15.56 15.68 15.79 15.89 16.00 16.11 16.22 16.32 0.07 
0.08 16.43 16.54 16.64 16.74 16.85 16.95 17.05 17.15 17.26 17.36 0.08 
0.09 17.46 17.56 17.66 17.76 17.85 17.95 18.05 18.15 18.24 18.34 0.09 
0.10 18.43 18.53 1M3 18.72 18.81 18.91 19.00 19.09 19.19 19.28 0.10 

0.11 19.37 19.46 19.55 19.64 19.73 19.82 19.91 20.00 20.09 20.18 0.11 
0.12 0.27 20.36 20.44 20.53 20.62 20.70 20.79 20.88 20.96 2/.05 0.12 
0.13 1.13 2/,22 21.30 2/.39 21.47 2/.56 21.64 2/.72 2/.81 2/.89 0.13 
0.14 /.97 22.06 22.14 22.22 22.30 22.38 22.46 22.54 22.63 22.71 0.14 
0.15 2.79 22.87 22.95 23.03 23.11 23.18 23.26 23.34 23.42 23.50 0.15 

0.16 23.66 23.73 23.81 23.89 23.97 24.04 24.12 24.20 24.27 0.16 
0.17 24.43 24.50 24.58 24.65 24.73 24.80 24.88 24.95 25.03 0.17 
0.18 25.18 25.25 25.33 25.40 25.47 25.55 25.62 25.70 25.77 0.18 
0.19 25.91 25.99 26.06 26.13 26.21 26.28 26.35 26.42 26.49 0.19 
0.20 26.64 26.71 26.78 26.85 26.92 26.99 27.06 27.13 27.20 0.20 

0.21 27.35 27.42 27.49 27.56 27.62 27.69 27.76 27.83 27.90 0.21 
0.22 28.04 28.11 28.18 28.25 28.32 28.39 28.45 28.52 28.59 0.22 
0.2.1 28.73 28.79 28.86 28.93 29.00 29.06 29.13 29.20 29.27 0.23 
0.24 29.40 29.47 29.53 29.60 29.67 29.73 29./lO 29.87 29.93 0.24 
0.25 30.07 30.13 30.20 30.26 30.33 30.40 30.46 30.53 30.59 0.25 

0.26 30.72 30.79 30.85 30.92 30.98 3/.05 31.11 31.18 31.24 0.26 
0.27 3/.37 31.44 3/.50 31.56 31.63 31.69 31.76 31.82 31.88 0.27 
0.28 32.01 32.08 32.14 32.20 32.27 32.33 32.39 32.46 32.52 0.28 
0.29 32.65 32.71 32.77 32.83 32.90 32.96 33.02 33.09 33.15 0.29 
0.30 33.27 33.34 33.40 33.46 33.52 33.58 33.65 33.71 33.71 0.30 

0.31 33.90 33.96 34.02 34.08 34.14 34.20 34.27 34.33 34.39 0.31 
0.32 34.51 34.57 34.63 34.70 34.76 34.82 34.88 34.94 35.00 0.32 
0.33 35.12 35.18 35.24 35.30 35.37 35.43 35.49 35.55 35.61 0.33 
0.34 35.73 35.79 35.85 35.91 35.97 36.03 36.09 36.15 36.21 0.34 
0.35 36.33 36.39 36.45 36.51 36.57 36.63 36.69 36.75 36.81 0.35 

0.36 36.93 36.99 37.05 37.11 37.17 37.23 37.29 37.35 37.41 0.36 
0.37 37.52 37.58 37.64 37.70 37.76 37.82 37.88 37.94 38.00 0.37 
0.38 38.12 38.17 38.23 38.29 38.35 38.41 38.47 38.53 38.59 0.38 
0.39 38.70 38.76 38.82 38.88 38.94 39.00 39.06 39.11 39.17 0.39 
0.40 39.29 39.35 39.41 39.47 39.52 39.58 39.64 39.70 39.76 0.40 

0.41 39.87 39.93 39.99 40.05 40.11 40.16 40.22 40.28 40.34 0.41 
0.42 40.45 40.51 40.57 40.63 40.69 40.74 40.80 40.86 40.92 0.42 
0.43 41.03 4/.09 41.15 41.21 41.27 41.32 41.38 41.44 41.50 0.43 
0.44 41.61 41.67 4/.73 41.78 4/.84 41.90 41.96 42.02 42.07 0.44 
0.45 42.19 42.25 42.30 42.36 42.42 42.48 42.53 42.59 42.65 0.45 

0.46 42.76 42.82 42.88 42.94 42.99 43.05 43.11 43.17 43.22 0.46 
0.47 43.94 43.39 43.45 43.51 43.57 43.62 43.68 43.74 43.80 0.47 
0.48 43.91 43.97 44.03 44.08 44.14 44.20 44.26 44.31 44.37 0.48 
0.49 44.48 44.54 44.60 44.66 44.71 44.77 44.83 44.89 44.94 0.49 
0.50 45.06 45.11 45.17 45.23 45.29 45.34 45.40 45.46 45.52 0.50 

0.51 45.63 45.69 45.74 45.80 45.86 45.92 45.97 46.03 46.09 0.51 
0.52 46.20 46.26 46.32 46.38 46.43 46.49 46.55 46.61 46.66 0.52 
0.53 46.78 46.83 46.89 46.95 47.01 47.06 47.12 47.18 47.24 0.53 
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TABLE B.24 (cont.): The Arcsine Transformation, p' 
p 0 I 2 3 4 5 6 7 8 9 P 

0.54 47.29 47.35 47.41 47.47 47.52 47.58 47.64 47.70 47.75 47.81 0.54 
0.55 47.87 47.93 47.98 48.04 48.10 48.16 48.22 48.27 48.33 48.39 0.55 

0.56 48.45 48'SO 48.56 48.62 48.68 48.73 48.79 48.85 48.91 48.97 0.56 
0.57 49.02 49.08 49.14 49.20 49.26 49.31 49.37 49.43 49.49 49.55 0.57 
0.58 49.60 49.66 49.72 49.78 49.84 49.89 49.95 50.01 50.07 50.13 0.5!! 
0.59 50.18 SO.24 50.30 50.36 SO.42 50.48 50.53 50.59 SO.65 50.71 0.59 
0.60 SO.77 50.83 SO.89 50.94 51.00 51.06 51.12 51.18 51.24 51.30 0.60 

0.61 51.35 51.41 51.47 51.53 51.59 51.65 51.71 51.77 51.83 51.AA 0.61 
0.62 51.94 52.00 52.06 52.12 52.18 52.24 52.30 52.36 52.42 52.48 0.62 
0.63 52.54 52.59 52.65 52.71 52.77 52.83 52.89 52.95 53.01 53.07 0.63 
0.64 53.13 53.19 53.25 53.31 53.37 53.43 53.49 53.55 53.61 53.67 0.64 
0.65 53.73 53.79 53.85 53.91 53.97 54.03 54.09 54.15 54.21 54.27 0.65 

0.66 54.33 54.39 54.45 54.51 54.57 54.63 54.70 54.76 54.82 54.88 0.66 
0.67 54.94 55.00 55.06 55.12 55.18 55.24 55.30 55.37 55.43 55.49 0.67 
0.68 55.55 55.61 55.67 55.73 55.80 55.M 55.92 55.98 56.04 56.10 0.68 
0.69 56.17 56.23 56.29 56.35 56.42 56.48 56.54 56.60 56.66 56.73 0.69 
0.70 56.79 56.85 56.91 56.98 57.04 57.10 57.17 57.23 57.29 57.35 0.70 

0.71 57.42 57.48 57.54 57.61 57.67 57.73 57.80 57.86 57.92 57.99 0.71 
0.72 58.05 51U2 58.18 58.24 58.31 58.37 58.44 58.50 58.56 58.63 0.72 
0.73 58.69 58.76 5&.82 58.89 58.95 59.02 59.08 59.15 59.21 59.28 U.73 
0.74 59.34 59.41 59.47 59.54 59.60 59.67 59.74 59.80 59.87 59.93 0.74 
0.75 60.00 60.07 60.13 60.20 60.27 60.33 60.40 60.47 60.53 60.60 0.75 

0.76 60.67 60.73 60.80 60.87 60.94 61.00 61.07 61.14 61.21 61.27 0.76 
0.77 61.34 61.41 61.48 61.55 61.61 61.68 61.75 6 \.82 61.89 61.96 0.77 
0.78 62.03 62.10 62.17 62.24 62.31 62 . .38 62.44 62.51 62.58 62.65 0.78 
0.79 62.73 62.SO 62.87 62.94 63.01 63.08 63.15 63.22 63.29 63.36 0.79 
O.SO 63.43 63.51 63.58 63.65 63.72 63.79 63.87 63.94 64.01 64.09 0.80 

0.81 64.16 64.23 64.30 64 . .38 64.45 64.53 64.60 64.67 64.75 64.82 0.81 
0.82 64.90 64.97 65.05 65.12 65.20 65.27 65.35 65.42 65.SO 65.57 0.82 
0.83 65.65 65.73 65.80 65.88 65.96 66.03 66.11 66.19 66.27 66.34 0.83 
0.84 66.42 66.SO 66.58 66.66 66.74 66.82 66.89 66.97 67.05 67.13 0.84 
0.85 67.21 67.29 67.37 67.46 67.54 67.62 67.70 67.78 67.86 67.94 0.85 

0.86 68.03 68.11 61U9 68.28 68.36 68.44 68.53 68.61 68.70 68.78 0.86 
0.87 68.87 68.95 69.04 69.12 69.21 69.30 69.38 69.47 69.56 69.64 0.87 
0.88 69.73 69.82 69.91 70.00 70.09 70.18 70.27 70.36 70.45 70.54 0.88 
0.89 70.63 7U.72 70.81 70.91 71.00 71.09 71.19 71.28 71.37 71.47 0.89 
0.90 71.57 71.66 71.76 71.85 71.95 72.05 72.15 72.24 72.34 72.44 0.90 

0.91 72.54 72.64 72.74 72.85 72.95 73.05 73.15 73.26 73.36 73.46 0.91 
0.92 73.57 73.68 73.78 73.89 74.00 74.11 74.21 74.32 74.44 74.55 0.92 
0.93 74.66 74.77 74.88 75.00 75.1\ 75.23 75.35 75.46 75.58 75.70 0.93 
0.94 75.82 75.94 76.06 76.19 76.31 76.44 76.56 76.69 76.82 76.95 0.94 
0.95 77.08 71.21 71.34 77.48 77.62 71.75 77.89 78.03 78.17 78.32 0.95 

0.96 78.46 78.61 78.76 78.91 79.06 79.22 79.37 79.53 79.70 79.86 0.96 
0.97 SO.03 80.20 80.37 SO.54 80.72 SO.90 81.09 81.28 81.47 81.67 0.97 
0.98 8l.87 !!2.08 82.29 82.51 82.73 82.97 83.20 83.45 83.71 83.98 U.9!! 
0.990 84.26 84.29 84.32 84.35 84.38 84.41 84.44 84.47 84.50 84.53 0.990 
0.991 84.56 84.59 84.62 84.65 84.68 84.71 84.74 84.17 84.80 84.84 0.991 

0.992 84.87 84.90 84.93 84.97 85.00 85.03 85.07 85.\0 85.13 85.17 0.992 
0.993 85.20 85.24 85.27 85.30 85.34 85.38 85.41 85.45 85.48 85.32 0.993 
0.994 85.56 85.59 85.63 85.67 85.71 85.75 85.79 85.83 85.86 85.90 U.994 
0.995 85.95 83.99 M.03 86.07 86.11 86.15 M.20 86.24 86.28 86.33 0.995 
0.996 86.37 86.42 M.47 86.51 86.56 M.61 86.66 86.71 86.76 M.81 0.996 

0.997 86.86 M.91 86.97 87.02 87.08 87.13 87.19 87.25 87.31 87.37 0.997 
0.998 87.44 87.50 87.57 87.64 87.71 87.78 87.M 87.93 88.01 88.10 0.998 
0.999 88.19 88.28 88.38 88.48 88.60 88.72 88.85 89.0\ !!9.19 89.43 0.999 
1.000 90.00 

By Equation 13.5. 
pI ~ arcsin,,;p 

Examples: 
p ~ (1.712. p' = 57.54 and p = 0.9921. p' = 84.90 
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TABLE B.25: Proportions, P, Corresponding to Arcsine Transformations, p' 
p' 0 I 2 3 4 5 6 7 8 9 ,. 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0 
1.0 0.0003 0.0004 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 1.0 
2.0 0.0012 0.0013 0.0015 0.0016 0.0018 0.0019 0.0021 0.0022 0.0024 0.0026 2.0 
3.0 0.0027 0.0029 0.0031 0.0033 0.0035 0.0037 0.0039 0.0042 0.0044 0.0046 3.0 
4.0 0.0049 0.0051 0.0054 0.0056 0.0059 0.0062 O.llO64 0.0067 0.0070 0.0073 4.0 

5.0 0.0076 0.0079 0.0082 0.0085 0.0089 0.0092 0.0095 0.0099 0.0102 0.011)6 S.O 
6.0 0.0109 0.0113 0.0117 0.0120 0.0124 0.0128 0.0132 0.0136 0.0140 0.0144 6.0 
7.0 0.0149 0.0153 0.0157 0.0161 0.0166 0.0170 0.0175 0.0180 0.0184 0.0189 7~ 
8.0 0.0194 0.0199 0.0203 0.0208 0.0213 0.0218 0.0224 0.0229 0.0234 0.0239 8.0 
9.0 0.0245 0.0250 0.0256 0.0261 0.0267 0.0272 0.0278 0.0284 0.0290 0.0296 9.0 

10.0 0.0302 0.0308 0.0314 0.0320 0.0326 0.0332 0.0338 0.0345 0.0351 0.0358 10~ 
11.0 0.0364 0.0371 o.o:m 0.0384 0.0391 0.0397 0.0404 0.0411 0.0418 0.0425 lU 
12.0 0.0432 0.0439 0.0447 0.0454 0.0461 0.0468 0.0476 0.0483 0.0491 0.0498 12.0 
13.0 0.0506 0.0514 0.0521 0.0529 0.0537 0.0345 0.o.'i53 0.0561 0.0669 0.0577 13.0 
14.0 0.0585 0.0593 0.0602 0.0610 0.0618 0.0627 0.0635 0.0644 0.0653 0.0661 14.0 

15.0 0.0670 0.0679 0.0687 0.0696 0.0705 0.0714 0.0723 0.0732 0.0741 0.07SI 15.0 
16.0 0.0760 0.0769 0.0778 0.0788 0.0797 0.0807 0.0816 0.0826 0.0835 0.0845 16.0 
17.0 0.0855 0.0865 0.0874 0.0884 0.0894 0.0904 0.0914 0.0924 0.0934 0.0945 17.0 
18.0 0.0955 0.0965 0.0976 0.0986 0.0996 0.1007 0.1017 0.1028 0.1039 0.1049 18.0 
19.0 0.1060 0.1071 0.1082 0.1092 0.1103 0.1114 0.1125 0.1136 0.1147 0.1159 19.0 

20.0 0.1170 0.1181 0.1192 0.1204 0.1215 0.1225 0.1238 0.1249 0.1261 0.1273 20.0 
21.0 0.1284 0.1296 0.1308 0.1320 0.1331 0.1343 0.1355 0.1367 0.1379 0.1391 21.0 
22.0 0.1403 0.1415 0.1428 0.1440 0.1452 0.1464 0.1477 0.1489 0.JS02 0.1514 22.0 
23.0 0.1527 0.1539 0.1552 0.1565 0.1577 0.1590 0.1603 0.1616 0.1628 0.1641 23.0 
24.0 0.1654 0.1667 0.1680 0.1693 0.1707 0.1720 0,\733 0.1746 0.1759 0,\773 24.0 

25.0 0.\786 0.1799 0.1813 0.1826 0.1840 0.1853 0.1867 0.1881 0.1894 0.1908 25.0 
26.0 0.1922 0.1935 0.1949 0.1963 0.1977 0.1991 0.2005 0.2019 0.2033 0.2047 26.0 
27.0 0.2061 0.2075 0.2089 0.2104 0.2118 0.2132 0.2146 0.2161 0.2175 0.2190 27.0 
28.0 0.2204 0.2219 O.22.U 0.2248 0.2262 0.2277 0.2291 0.2306 0.2321 0.2336 28.0 
29.0 0.2350 0.2365 0.2380 0.2395 0.2410 0.2425 0.2440 0.2455 0.2470 0.2485 29.0 

30.0 0.2S00 0.2515 0.2530 0.2545 0.2561 0.2576 0.2591 0.2607 0.2622 0.2637 30.0 
31.0 0.2653 0.2668 0.2684 0.2699 0.2715 0.2730 0.2746 0.2761 0.2777 0.2792 31.0 
32.0 0.2808 0.2824 0.2840 0.2855 0.2871 0.2887 0.2903 0.2919 0.2934 0.2950 32.0 
33.0 0.2966 0.2982 0.2998 0.3014 0.3030 0.3046 0.3062 0.3079 0.3095 0.31\1 33.0 
34.0 0.3127 0.3143 0.3159 0.3176 0.3192 0.3208 0.3224 0.3241 0~'l257 0.3274 34.0 

35.0 0.3290 0.3306 0.3323 0.3339 0.3356 0.3372 0.3389 0.3405 0.3422 0.3438 35.0 
36.0 0.3455 0.3472 0.3488 0.3505 0.3521 0.3538 0.3555 0.3572 0.3588 0.3605 36.0 
37.0 0.3622 0.3639 0.3655 0.3672 0.3689 0.3706 0.3723 0.3740 0.3757 0.3773 37.0 
38.0 0.3790 0.3807 0.3824 0.3841 0.3858 0.3875 0.3892 0.3909 0.3926 0.3943 38.0 
39.0 0.3960 0.3978 0.3995 0.4012 0.4029 0.4046 0.4063 0.4080 0.4097 0.4115 39.0 

40.0 0.4132 0.4149 0.4166 OAIS.'l 0.4201 0.4218 0.4235 0.4252 OA270 0.4287 40.0 
41.0 0.4304 0.4321 0.4339 0.4356 0.4373 0.4391 0.4408 0.4425 0.4443 0.4460 41.0 
42.0 0.4677 0.4495 0.4512 0.4529 0.4547 0.4564 0.4582 0.4599 0.4616 0.4634 42.0 
43.0 0.4651 0.4669 0.4686 0.4703 0.4721 0.4738 0.4756 0.4773 0.4791 0.4808 43.0 
44.0 0.4826 0.4843 0.4860 0.4878 0.4895 0.49]3 0.4930 0.4948 0.4965 0.4983 44.0 

45.0 0.5000 0.5017 0.5035 0.5052 0.5070 0.5(117 0.5105 0.5122 0.5140 0.5157 45.0 
46.0 0.5174 0.5]92 0.5209 0.5227 0.5244 0.5262 0.5279 0.5297 0.5314 0.5331 46.0 
47.0 0.5349 0.5366 0.5384 0.5401 0.5418 0~'i436 0.5453 0.5471 0.5488 0.5505 47.0 
48.0 0.5523 0.5540 0.5557 0.5575 0.5592 0.5609 0.5627 0.5644 0.5661 0.5679 48.0 
49.0 0.5696 0.5713 0.5730 0.5748 0.5765 0.5782 0.5799 0.5817 0.5834 0.58.'i1 49.0 

SO.O 0.5868 0.5885 0.5903 0.5920 0.5937 0.5954 0.5971 0.5988 0.6003 0.6022 SO.O 
51.0 0.6040 0.6057 0.6074 0.6091 0.6]08 0.6125 0.6142 0.6159 0.6176 0.6]93 51.0 
52.0 0.6210 0.6227 0.6243 0.6260 0.6277 0.6294 0.6311 0.6328 0.6345 0.6361 52.0 
53.0 0.6378 0.6395 0.6412 0.6428 0.6445 0.6462 0.6479 0.6495 0.6512 0.6528 53.0 
54.0 0.6545 0.6562 0.6578 0.6595 0.6611 0.6628 0.6644 0.6661 0.6677 0.6694 54.0 

55.0 0.6710 0.6726 0.6743 0.6759 0.6776 0.6792 0.6808 0.6824 0.6841 0.6857 55.0 
56.0 0.6873 0.6889 0.6905 0.6921 0.6938 0.6954 0.6970 0.6986 0.7002 0.7018 56.0 
57.0 0.7034 0.7050 0.7066 o.mll 0.7097 0.7113 0.7129 0.7145 0.7160 0.7176 57.0 
58.0 0.7192 0.7208 0.7223 0.7239 0.72.'i4 0.7270 0.7285 0.7301 0.7316 0.7332 58.0 
59.0 0.7347 0.7363 0.7378 0.7393 0.7409 0.7424 0.7439 0.7455 0.7470 0.7485 59.0 
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TABLE B.25 (conto): Proportions, p, Corresponding to Arcsine Transformations, p' 
p' 0 I 2 3 4 5 6 7 8 9 pi 

60.0 0.7500 0.7515 0.7530 0.7545 0.7560 0.7575 0.7590 0.7605 0.7620 0.7635 60.0 
61.0 0.7650 0.7664 0.7679 0.7694 0.7709 0.7723 0.7738 0.7752 0.7767 0.7781 61.0 
62.0 0.7796 0.7810 0.7825 0.7839 0.7854 0.7868 0.7882 0.7896 0.7911 0.7925 62.0 
63.0 0.7939 0.7953 0.7967 0.7981 0.7995 0.8009 0.8023 0.8037 0.8051 0.8065 63.0 
64.0 0.8078 0.8092 0.8106 0.8119 0.8133 0.8147 0.8160 0.8174 0.8187 0.8201 64.0 

65.0 0.8214 0.8227 0.8241 0.8254 0.8267 0.8280 0.8293 0.8307 0.8320 0.8333 65.0 
66.0 0.8346 0.8359 0.8372 0.8384 0.8397 0.8410 0.8423 0.8435 0.8448 0.8461 66.0 
67.0 0.8473 0.8486 0.8498 0.8511 0.8523 0.8536 0.8548 0.8560 0.8572 0.8585 67.0 
68.0 0.8597 0.8609 0.8621 0.8633 0.8645 0.8657 0.8659 0.8680 0.8692 0.8704 68.0 
69.0 0.8716 0.8727 0.8739 0.8751 0.8762 0.8774 0.8785 0.8796 0.8808 0.8819 69.0 

70.0 0.8830 0.8841 0.8853 0.8864 0.8875 0.8886 0.8897 0.8908 0.8918 0.8929 70.0 
71.0 0.8940 0.8951 0.8961 0.8972 0.8983 0.8993 0.9004 0.9014 0.9024 0.9035 71.0 
72.0 0.9045 0.9055 0.9066 0.9076 0.9086 0.9096 0.9106 0.9116 0.9126 0.9135 72.0 
73.0 0.9145 0.9155 0.9165 0.9174 0.9184 0.9193 0.9203 0.9212 0.9222 0.9231 73.0 
74.0 0.9240 0.9249 0.9259 0.9268 0.9277 0.9286 0.9295 0.9304 0.9313 0.9321 74.0 

75.0 0.9330 0.9339 0.9347 0.9356 0.9365 0.9373 0.9382 0.9390 0.9398 0.9407 75.0 
76.0 0.9415 0.9423 0.9431 0.9439 0.9447 0.9455 0.9463 0.9471 0.9479 0.9486 76.0 
77.0 0.9494 0.9502 0.9509 0.9517 0.9524 0.9532 0.9539 0.9546 0.9553 0.9581 77.0 
78.0 0.9568 0.9575 0.9582 0.9589 0.9596 0.9603 0.9609 0.9616 0.9623 0.9629 78.0 
79.0 0.9636 0.9642 0.9649 0.9653 0.9662 0.9668 0.9674 0.9680 0.9686 0.9692 79.0 

80.0 0.9698 0.9704 0.9710 0.9716 0.9722 0.9728 0.9733 0.9739 0.9744 0.9750 SO.O 
81.0 0.9755 0.9761 0.9766 0.9771 0.9776 0.9782 0.9787 0.9792 0.9797 0.9801 81.0 
82.0 0.9806 0.9811 0.9816 0.9820 0.9825 0.9830 0.9834 0.9839 0.9843 0.9847 82.0 
83.0 0.9851 0.9856 0.9860 0.9864 0.9868 0.9872 0.9876 0.9880 0.9833 0.9887 83.0 
84.0 0.9891 0.9894 0.9898 0.9901 0.9903 0.9908 0.9911 0.9915 0.9918 0.9921 84.0 

85.0 0.9924 0.9927 0.9930 0.9933 0.9935 0.9938 0.9941 0.9944 0.9946 0.9949 85.0 
86.0 0.9951 0.9954 0.9956 0.9958 0.9961 0.9963 0.9965 0.9967 0.9969 0.9971 86.0 
87.0 0.9973 0.9974 0.9976 0.9978 0.9979 0.9981 0.9982 0.9984 0.9985 0.9987 87.0 
88.0 0.9988 0.9989 0.9990 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9996 88.0 
89.0 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 89.0 
90.0 1.0000 

By Equation 13.6. 
p = (sinp')2 

Examples: 
p' = 46.2. p = 0.5209 and p' = 85.3, p = 0.9933 
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TABLE B.27: Critical Values of C for the Sign Test or the Binomial Test with p = 0.5 
a(2): .50 .20 .to .05 .02 .01 .005 .002 .001 a(2): .50 .20 .10 .05 .02 .0\ .005 .002 .001 

/I a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .(XXJ5 /I a(I): .25 .10 .OS .025 .01 .005 .0025 .001 .lXXl5 

51 22 20 19 18 16 15 15 14 13 
2 - - - - - - - - - 52 23 20 19 18 17 16 15 14 13 
3 0 - - - - - - - - 53 23 21 20 18 17 16 IS 14 14 
4 0 0 - - - - - - - 54 24 21 20 19 18 17 16 15 14 
5 1 0 0 - - - - - - 55 24 22 20 19 18 17 16 15 14 
6 1 0 0 0 - - - - - 56 24 22 21 20 18 17 17 16 15 
7 2 1 0 0 0 - - - - 57 25 23 21 20 19 18 17 16 15 
8 2 1 1 0 0 0 - - - 58 25 23 22 21 19 18 17 Hi 16 
9 2 2 1 1 0 0 0 - - 59 26 24 22 21 20 19 18 17 16 

to 3 2 1 I 0 0 0 0 - 60 26 24 23 21 20 19 18 17 16 
11 3 2 2 1 I 0 0 0 0 61 27 24 23 22 20 20 19 18 17 
12 4 3 2 2 I 1 0 0 0 62 27 25 24 22 21 20 19 18 17 
13 4 3 3 2 1 I 1 0 0 63 28 25 24 23 21 20 19 18 18 
14 5 4 3 2 2 1 I 1 0 64 28 26 24 23 22 21 20 19 18 
IS 5 4 3 3 2 2 I I I 65 29 26 25 24 22 21 20 19 18 
16 6 4 4 3 2 2 2 I I 66 29 27 23 24 23 22 21 20 19 
17 6 5 4 4 3 2 2 1 I 67 30 27 26 25 23 22 21 20 19 
18 7 5 5 4 3 3 2 2 1 68 30 28 26 25 23 22 22 20 20 
19 7 6 5 4 4 3 3 2 2 69 31 28 27 25 24 23 22 21 20 
20 7 6 5 5 4 3 3 2 2 70 31 29 27 26 24 23 22 21 20 

21 8 7 6 5 4 4 3 3 2 71 32 29 28 26 25 24 23 22 21 
22 8 7 6 5 5 4 4 3 3 72 32 30 28 27 25 24 23 22 21 
23 9 7 7 6 5 4 4 3 3 73 33 30 28 27 26 25 24 22 22 
24 9 8 7 6 5 5 4 4 3 74 33 30 29 28 26 25 24 23 22 
25 10 8 7 7 6 5 .5 4 4 75 34 31 29 28 26 25 24 23 22 
26 10 9 II 7 6 6 5 4 4 76 34 31 30 28 27 26 25 24 23 
27 II 9 8 7 7 6 5 5 4 77 35 32 30 29 27 26 25 24 23 
28 11 10 9 8 7 6 6 5 5 78 35 32 31 29 28 27 26 24 24 
29 12 10 9 8 7 7 6 5 5 79 36 33 31 30 28 27 26 25 24 
30 12 10 10 9 8 7 6 6 5 80 36 33 32 30 29 28 27 25 24 
31 13 II 10 9 8 7 7 6 6 81 36 34 32 31 29 28 27 26 25 
32 13 11 10 9 8 II 7 6 6 82 37 34 33 31 30 28 27 26 25 
33 14 12 II 10 9 8 8 7 6 83 37 35 33 32 30 29 28 27 26 
34 14 12 11 10 9 9 8 7 7 84 38 35 33 32 30 29 28 27 26 
35 15 13 12 11 10 9 8 8 7 85 38 36 34 32 31 30 29 27 26 
36 15 13 12 11 10 9 9 8 7 86 39 36 34 33 31 30 29 28 27 
37 15 14 13 12 10 10 9 8 8 87 39 37 35 33 32 31 29 28 27 
38 16 14 13 12 11 10 9 9 8 88 40 37 35 34 32 31 30 29 28 
39 16 15 13 12 11 II 10 9 8 89 40 37 36 34 33 31 30 29 28 
40 17 15 14 13 12 II 10 9 9 90 41 38 36 35 33 32 31 29 29 
41 17 15 14 13 12 11 II 10 9 91 41 38 37 35 33 32 31 30 29 
42 18 16 15 14 13 12 11 10 10 92 42 39 37 36 34 33 32 30 29 
43 18 16 15 14 13 12 11 11 10 93 42 39 38 36 34 33 32 31 30 
44 19 17 16 15 13 13 12 11 10 94 43 40 38 37 35 34 32 31 30 
45 19 17 16 IS 14 13 12 11 11 95 43 40 38 37 35 34 33 32 31 
46 20 18 16 IS 14 13 13 12 11 96 44 41 39 37 36 34 33 32 31 
47 20 18 17 16 15 14 13 12 11 97 44 41 39 38 36 35 34 32 31 
48 21 19 17 16 15 14 13 12 12 98 45 42 40 38 37 35 34 33 32 
49 21 19 18 17 15 15 14 13 12 99 45 42 40 39 37 36 35 33 32 
50 22 19 18 17 16 IS 14 13 13 100 46 43 41 39 37 36 35 34 33 
101 46 43 41 40 38 37 35 34 33 lSI 70 67 64 62 60 59 57 56 54 
102 47 44 42 40 38 37 36 35 34 152 71 67 65 63 61 59 58 56 55 
103 47 44 42 41 39 37 36 35 34 153 71 68 65 63 61 60 58 56 55 
104 48 44 43 41 39 38 37 35 34 154 72 68 66 64 62 60 59 57 56 
105 48 45 43 41 40 38 37 36 35 155 72 69 66 64 62 61 59 57 56 
106 49 45 44 42 40 39 38 36 35 156 73 69 67 65 63 61 60 58 57 
107 49 46 44 42 41 39 38 37 36 157 73 69 67 65 63 61 60 58 57 
lOS 49 46 44 43 41 40 38 37 36 ISS 74 70 68 66 63 62 60 59 57 
109 SO 47 45 43 41 40 39 37 36 159 74 70 68 66 64 62 61 59 58 
110 50 47 45 44 42 41 39 38 37 160 75 71 69 67 64 63 61 60 58 

---
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TABLE B 27 (cont.)· Critical Values of C for the Sign Test or the Binomial Test with p = 05 
a(2): 50 .20 .10 .05 .02 .01 .005 .002 .001 a(2): .50 .20 .\0 .05 .02 .01 .005 .002 .0111 

n a(I): .25 .10 .05 .025 .0\ .005 .0025 .001 .0005 n a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 
111 51 48 46 44 42 41 40 38 37 161 75 71 69 67 65 63 62 60 59 
112 51 48 46 45 43 41 40 39 38 162 76 72 70 68 liS 64 li2 60 59 
113 52 49 47 45 43 42 41 39 38 163 76 72 70 68 61'1 64 63 61 60 
114 52 49 47 46 44 42 41 40 39 11'14 77 73 70 68 61'1 65 63 61 60 
115 53 50 48 46 44 43 42 40 39 lli5 77 73 71 69 67 65 64 li2 60 
116 53 50 48 46 45 43 42 40 39 166 78 74 71 69 67 li5 64 62 iiI 
117 54 51 49 47 45 44 42 41 40 167 78 74 72 70 68 66 64 li3 61 
118 54 51 49 47 45 44 43 41 40 168 79 75 72 70 68 61i li5 63 62 
119 55 52 SO 48 46 45 43 42 41 169 79 75 73 71 68 67 65 63 62 
120 55 52 SO 48 46 45 44 42 41 170 80 71i 73 71 li9 li7 66 1'14 63 
121 51i 52 50 49 47 45 44 43 42 171 80 76 74 72 69 68 66 1'14 63 
122 56 53 51 49 47 46 45 43 42 172 81 77 74 72 70 /i8 67 65 1'14 
123 57 53 51 50 48 46 45 43 42 173 81 77 75 73 70 69 67 65 64 
124 57 54 52 50 48 47 45 44 43 174 82 78 75 73 71 69 /i8 66 64 
125 58 54 52 51 49 47 46 44 43 175 82 78 76 74 71 70 68 66 65 

126 58 55 53 51 49 48 46 45 44 176 83 79 71i 74 72 70 68 67 65 
127 59 55 53 51 49 48 47 45 44 177 83 79 77 74 72 70 69 67 66 
128 59 51i 54 52 50 48 47 46 45 178 83 79 77 75 73 71 69 67 66 
129 60 56 54 52 50 49 48 46 45 179 84 80 78 75 73 71 70 68 67 
130 60 57 55 53 51 49 48 46 45 180 84 80 78 76 73 72 70 68 li7 
131 61 57 55 53 51 50 49 47 46 181 85 81 78 76 74 72 71 69 67 
132 61 58 56 54 52 50 49 47 46 182 85 81 79 77 74 73 71 69 68 
133 62 58 56 54 52 51 49 48 47 183 86 82 79 77 75 73 72 70 68 
134 62 59 56 55 53 51 SO 48 47 184 86 82 80 78 75 74 72 70 69 
135 63 59 57 55 53 52 SO 49 48 185 87 83 80 78 76 74 72 71 69 
136 63 60 57 56 53 52 51 49 48 186 87 83 81 79 76 74 73 71 70 
137 1'14 60 58 56 54 52 51 50 48 187 88 84 81 79 77 75 73 71 70 
138 1'14 60 58 57 54 53 52 50 49 188 88 84 82 80 77 75 74 72 71 
139 65 61 59 57 55 53 52 50 49 189 89 85 82 80 78 71i 74 72 71 
140 65 61 59 57 55 54 52 51 50 190 89 85 83 81 78 76 75 73 71 
141 65 62 60 58 56 54 53 51 50 191 90 86 83 81 78 77 75 73 72 
142 66 62 60 58 56 55 53 52 51 192 90 86 84 81 79 77 76 74 72 
143 66 63 61 59 57 55 54 52 51 193 91 87 84 82 79 78 76 74 73 
144 67 63 61 59 57 56 54 53 51 194 91 87 85 82 80 78 77 75 73 
145 67 1'14 62 60 58 56 55 53 52 195 92 88 85 tl3 80 79 77 75 74 
146 68 1'14 62 60 58 56 55 53 52 196 92 88 85 tl3 81 79 77 75 74 
147 68 65 63 61 58 57 56 54 53 197 93 89 86 84 81 79 78 76 75 
148 69 65 63 61 59 57 56 54 53 198 93 89 86 84 82 80 78 76 75 
149 69 61'1 63 62 59 5t! 56 55 54 199 94 89 87 85 82 80 79 77 75 
150 70 61'1 64 62 60 5t! 57 55 54 200 94 90 87 85 83 81 79 77 76 
201 95 90 l!8 86 83 81 80 78 76 251 119 114 111 109 106 104 102 100 99 
202 95 91 88 86 83 82 80 78 77 252 120 115 112 109 107 \05 103 101 99 
203 96 91 89 87 84 82 81 79 77 253 120 115 112 110 107 105 103 101 99 
204 96 92 89 87 84 tl3 81 79 78 254 121 116 113 110 107 106 104 101 100 
205 97 92 90 87 85 83 81 79 78 255 121 116 113 111 lOS 106 104 102 100 
206 97 93 90 88 85 84 82 80 7t1 256 122 117 114 111 108 106 105 \02 101 
207 98 93 91 88 86 84 82 80 79 257 122 117 114 112 109 107 105 103 101 
208 98 94 91 89 86 84 83 81 79 258 123 118 115 112 109 107 106 103 102 
209 99 94 92 89 87 85 83 81 80 259 123 118 115 113 1\0 lOS 106 104 102 
210 99 95 92 90 87 85 84 82 80 260 124 119 116 113 110 108 106 104 103 
211 100 95 93 90 88 86 84 tl2 81 261 124 119 116 114 III 109 107 105 103 
212 100 96 93 91 88 86 85 83 81 262 125 120 117 114 III 109 107 105 103 
213 101 96 94 91 89 87 85 83 82 263 125 120 117 115 112 110 108 1116 104 
214 101 97 94 92 89 87 86 83 82 264 126 121 1\8 115 112 110 108 106 104 
215 102 97 94 92 89 88 86 84 82 265 126 121 11K 116 113 111 109 106 105 
216 102 98 95 93 90 88 86 84 83 261'1 126 122 119 116 113 111 109 107 105 
217 103 98 9S 93 90 89 87 85 83 267 127 122 119 117 114 111 110 107 106 
218 103 99 96 94 91 89 87 8.'1 84 268 127 123 120 117 114 112 110 108 106 
219 104 99 96 94 91 89 tIS 86 84 269 128 123 120 117 114 112 III lOS 107 
220 104 99 97 94 92 90 88 86 85 270 128 123 120 118 115 113 111 109 107 
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TABLE 1.27 (cont.): Critical Values of C for the Sign Test or the Binomial Test with p = 0.5 
a(2): .50 .20 .10 .05 .02 .01 .005 .002 .001 a(2): .SO .20 .10 .05 .02 .oI .005 .002 .001 

" a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 " a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 

221 104 100 97 95 92 90 89 87 8S 271 129 124 121 118 115 113 III 109 107 
222 105 100 98 95 93 91 89 87 86 272 129 124 121 119 116 114 112 110 108 
223 105 101 98 96 93 91 90 88 86 273 130 125 122 119 116 114 112 1I0 108 
224 106 101 99 96 94 92 90 88 86 274 130 125 122 120 117 115 113 110 109 
225 106 102 99 97 94 92 91 88 87 275 131 126 123 120 117 115 113 III 109 

226 107 102 100 97 95 93 91 89 87 276 131 126 123 121 118 116 114 111 110 
227 107 103 100 98 95 93 91 89 88 277 132 127 124 121 118 1I6 114 112 110 
228 108 103 101 98 95 94 92 90 88 27& 132 127 124 122 1I9 117 115 112 III 
229 108 104 101 99 96 94 92 90 89 279 133 128 125 122 119 117 115 113 111 
230 109 104 102 99 96 95 93 91 89 280 133 128 125 123 120 117 116 113 112 

231 109 105 102 100 97 95 93 91 90 281 134 129 126 123 120 118 116 114 112 
232 110 105 102 100 97 95 94 92 90 282 134 129 126 124 120 118 116 114 112 
233 110 106 103 101 98 96 94 92 90 283 135 130 127 124 121 119 117 115 113 
234 111 106 103 101 98 96 95 92 91 284 135 130 127 124 121 119 117 115 113 
235 III 107 104 101 99 97 95 93 91 285 136 131 128 125 122 120 118 115 114 
236 112 107 104 102 99 97 95 93 92 286 136 131 128 125 122 120 118 116 114 
237 112 lOS 105 102 100 98 96 94 92 287 137 132 129 126 123 121 119 116 115 
238 113 108 105 103 100 98 96 94 93 288 137 132 129 126 123 121 119 117 lIS 
239 113 109 106 103 101 99 97 95 93 289 138 133 130 127 124 122 120 117 116 
240 114 109 106 104 101 99 97 95 94 290 138 133 130 127 124 122 120 118 116 
241 114 110 107 104 101 100 98 96 94 291 139 134 130 128 125 123 121 118 117 
242 115 110 107 105 102 100 98 96 94 292 139 134 131 128 125 123 121 119 117 
243 115 111 108 105 102 100 99 96 95 293 140 135 131 129 126 123 122 119 117 
244 116 111 108 106 103 101 99 97 95 294 140 135 132 129 126 124 122 120 118 
245 116 III 109 106 103 101 100 97 96 295 141 135 132 130 127 124 122 120 118 
246 117 112 109 107 104 102 100 98 96 296 141 136 133 130 127 125 123 120 119 
247 117 112 110 107 104 102 100 98 97 297 142 136 133 131 127 125 123 121 119 
248 118 113 110 lOS 105 103 101 99 97 298 142 137 134 131 128 126 124 121 120 
249 118 113 III lOS 105 103 101 99 98 299 143 137 134 132 128 126 124 122 120 
250 119 114 111 109 106 104 102 100 98 300 143 138 135 132 129 127 125 122 121 

301 144 138 135 133 129 127 125 123 121 351 168 162 159 156 153 ISO 148 146 144 
302 144 139 136 133 130 128 126 123 121 352 169 163 160 157 153 151 149 146 144 
303 145 139 136 133 130 128 126 124 122 353 169 163 160 157 154 151 149 147 145 
304 145 140 137 134 131 129 127 124 122 354 170 164 161 158 154 152 ISO 147 145 
305 146 140 137 134 131 129 127 125 123 35S 170 164 161 158 155 152 150 147 146 
306 146 141 138 135 132 130 127 125 123 356 111 165 161 159 ISS 153 151 148 146 
307 147 141 138 I3S 132 130 128 125 124 357 171 165 162 159 156 153 151 148 146 
308 147 142 139 136 133 130 128 126 124 358 172 166 162 159 156 154 151 149 147 
309 148 142 139 136 133 131 129 126 125 359 172 166 163 160 156 154 152 149 147 
310 148 143 140 137 134 131 129 127 125 360 173 167 163 160 157 ISS 152 ISO 148 
311 149 143 140 137 134 132 130 127 126 361 173 167 164 161 157 ISS 153 ISO 148 
312 149 144 140 138 134 132 130 128 126 362 174 168 164 161 158 156 153 151 149 
313 ISO 144 141 138 135 133 131 128 126 363 174 168 165 162 158 156 154 151 149 
314 ISO 145 141 139 135 133 131 129 127 364 175 169 165 162 159 156 154 152 150 
315 151 145 142 139 136 134 132 129 127 365 175 169 166 163 159 157 ISS 152 150 

316 151 146 142 140 136 134 132 130 128 366 176 170 166 163 160 157 ISS 152 151 
317 151 146 143 140 137 135 133 130 128 367 176 170 167 164 160 158 156 153 151 
318 152 147 143 141 137 135 133 131 129 368 177 171 167 164 161 158 156 153 152 
319 152 147 144 141 138 136 133 131 129 369 177 111 168 165 161 159 157 154 152 
320 153 148 144 141 138 136 134 131 130 370 178 172 168 165 162 159 157 154 152 
321 153 148 145 142 139 136 134 132 130 371 178 172 169 166 162 160 158 155 153 
322 154 149 145 142 139 137 135 132 131 372 178 173 169 166 163 160 158 ISS 153 
323 154 149 146 143 140 137 135 133 131 373 179 173 170 167 163 161 158 156 154 
324 ISS 149 146 143 140 138 136 133 131 374 179 174 170 167 164 161 159 156 154 
325 ISS ISO 147 144 141 138 136 134 132 375 1&0 174 171 168 164 162 159 157 ISS 

326 156 ISO 147 144 141 139 137 134 132 376 180 175 171 168 164 162 160 157 ISS 
327 156 151 148 145 141 139 137 135 133 377 181 175 172 168 165 163 160 158 156 
328 157 151 148 145 142 140 138 135 133 378 181 176 172 169 165 163 161 158 156 
329 157 152 149 146 142 140 138 136 134 379 182 176 172 169 166 163 161 158 157 
330 158 152 149 146 143 141 139 136 134 380 182 177 173 170 166 164 162 ISS 157 
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TABLE 8.27 (cont): Critical Values of C for the Sign Test or the Binomial Test with p = 0.5 
a(2): .50 .20 .111 .05 .02 .01 .005 .002 .001 a(2): .50 .20 .10 .05 .02 .01 .005 .002 .001 

n a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 " a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 
3JI 158 153 150 147 143 141 139 136 135 381 183 In 173 170 167 164 162 159 157 
332 159 153 150 147 144 142 139 137 135 382 183 In 174 171 167 165 163 160 158 
333 159 154 ISO 148 144 142 140 137 136 383 184 178 174 171 168 165 163 160 158 
334 160 154 151 148 145 142 140 138 136 384 184 178 175 172 168 166 164 161 159 
335 160 155 151 149 145 143 141 138 136 385 185 179 175 172 169 166 164 161 159 

336 161 155 152 149 146 143 141 139 137 386 1115 179 176 173 169 167 164 162 160 
337 161 156 152 150 146 144 142 139 137 387 186 180 176 173 170 167 165 162 160 
338 162 156 153 ISO 147 144 142 140 138 31!8 11!6 180 In 174 170 168 165 163 161 
339 162 157 153 ISO 147 145 143 140 138 389 187 181 In 174 171 168 166 163 161 
340 163 157 154 151 148 145 143 141 139 390 187 181 178 175 171 169 166 164 162 
341 163 158 154 lSI 148 146 144 141 139 391 188 182 178 175 172 169 167 164 162 
342 164 158 ISS 152 149 146 144 141 140 392 II!8 182 179 176 172 170 167 164 162 
343 164 159 ISS 152 149 147 145 142 140 393 189 183 179 176 172 170 168 165 163 
344 165 159 156 153 149 147 145 142 141 394 189 183 11:10 In 173 170 168 165 163 
345 165 160 156 153 ISO 148 145 143 141 395 190 184 180 In 173 171 169 166 164 

346 166 160 157 154 150 148 146 143 141 396 190 184 181 178 174 171 169 166 164 
347 166 161 157 154 lSI 149 146 144 142 397 191 185 181 178 174 172 170 167 165 
348 167 161 158 155 151 149 147 144 142 398 191 185 182 178 175 172 170 167 165 
349 167 162 158 155 152 149 147 145 143 399 192 186 182 179 175 173 171 168 166 
3SO 168 162 159 156 152 150 148 145 143 400 192 186 183 179 176 173 I7l 168 166 
401 193 187 183 ISO 176 174 I7l 169 167 451 217 211 207 204 200 197 195 192 190 
402 193 187 184 180 In 174 172 169 167 452 218 211 208 204 200 198 195 192 190 
403 194 188 184 un In 175 172 170 168 453 218 212 208 205 201 198 196 193 191 
404 194 188 184 181 178 175 173 170 168 454 219 212 208 205 201 199 196 193 191 
40S 195 189 185 182 178 176 173 170 168 455 219 213 209 206 202 199 197 194 191 
406 195 189 185 182 179 176 174 171 169 456 220 213 209 206 202 200 197 194 192 
407 196 190 186 183 179 117 174 171 169 457 220 214 210 207 203 200 198 195 192 
408 196 190 186 183 ISO In 175 172 170 458 221 214 210 2m 203 200 198 195 193 
409 197 191 187 184 ISO In 175 In 170 459 221 215 211 208 204 201 198 195 193 
410 197 191 187 184 ISO 178 176 173 171 460 222 215 211 208 204 201 199 196 194 
411 198 192 188 185 181 178 176 173 171 461 222 216 212 208 205 202 199 196 194 
412 198 192 188 185 181 179 In 174 172 462 223 216 212 209 205 202 200 197 195 
413 199 192 189 186 182 179 177 174 172 463 223 217 213 209 205 203 200 197 195 
414 199 193 189 186 182 ISO In 175 173 464 224 217 213 210 206 203 201 198 196 
415 200 193 190 187 183 180 178 175 173 465 224 218 214 210 206 204 20\ 198 196 
416 200 194 190 187 183 181 178 176 174 466 225 218 214 211 207 204 202 199 197 
417 201 194 191 187 184 181 179 176 174 467 225 219 215 211 207 205 202 199 197 
418 201 195 191 188 184 H!2 179 176 174 468 226 219 215 212 208 205 203 200 197 
419 202 195 192 188 185 182 ISO In 175 469 226 220 216 212 208 206 203 200 198 
420 202 196 192 189 185 183 ISO In 175 470 227 220 216 213 209 206 204 201 198 
421 203 196 193 189 186 183 181 178 176 471 227 221 217 213 209 207 204 201 199 
422 203 197 193 190 186 184 181 178 176 472 228 221 217 214 210 207 205 20\ 199 
423 204 197 194 190 187 184 182 179 177 473 228 222 218 214 210 208 205 202 200 
424 204 198 194 191 187 185 182 179 In 474 229 222 218 215 211 208 205 202 200 
425 205 198 195 191 188 185 183 ISO 178 475 229 223 219 215 211 208 206 203 201 
426 205 199 195 192 188 185 183 ISO 178 476 230 223 219 216 212 209 206 203 20\ 
427 206 199 196 192 188 186 184 181 179 4n 230 224 220 216 212 209 2m 204 202 
428 206 200 196 193 189 186 184 181 179 478 231 224 220 217 213 210 207 204 202 
429 207 200 196 193 189 187 184 182 179 479 231 224 221 217 213 210 208 205 203 
430 207 201 197 194 190 187 185 182 180 480 232 225 221 218 214 211 208 205 203 
431 207 201 197 194 190 188 185 182 ISO 481 232 225 221 218 214 211 209 206 203 
432 208 202 198 195 191 188 186 183 181 482 233 226 222 218 214 212 209 206 204 
433 208 202 198 195 191 189 186 183 181 483 233 226 222 219 215 212 210 207 204 
434 209 203 199 196 192 189 187 184 182 484 234 227 223 219 215 213 210 207 205 
43S 209 203 199 196 192 190 187 184 182 485 234 227 223 220 216 213 211 208 205 
436 210 204 200 197 193 190 188 185 183 486 235 228 224 220 216 214 211 208 206 
437 210 204 200 197 193 191 188 185 183 487 235 228 224 221 217 214 212 208 206 
438 211 205 201 198 194 191 189 186 184 488 236 229 225 221 217 215 212 209 207 
439 211 205 201 198 194 192 189 186 184 489 236 229 225 222 218 215 212 209 2m 
440 212 206 202 198 195 192 190 187 185 490 237 230 226 222 218 216 213 210 208 



790 Appendix B Statistical Tables and Graphs 

TABLE B.27 (cont.): Critical Values of C for the Sign Test or the Binomial Test with p = 0.5 
a(2); .50 .20 .\0 .OS .02 .01 .005 .002 .001 a(2): .50 .20 .\0 .05 .02 .01 .005 .002 .001 

n a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 n a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 

441 212 206 202 199 195 192 190 187 185 491 237 230 226 223 219 216 213 210 208 
442 213 207 203 199 196 193 191 188 185 492 238 231 227 223 219 216 214 211 209 
443 213 207 203 200 196 193 191 188 186 493 238 231 227 224 220 217 214 211 209 
444 214 207 204 200 197 194 191 188 186 494 239 232 228 224 220 217 215 212 209 
445 214 208 204 201 197 194 192 189 187 495 239 232 228 225 221 218 215 212 210 
446 215 208 205 201 197 195 192 189 187 496 239 233 229 225 221 218 216 213 210 
447 215 209 205 202 198 195 193 190 188 497 240 233 229 226 222 219 216 213 211 
448 216 209 206 202 198 196 193 19() 188 498 240 234 230 226 222 219 217 214 211 
449 216 210 206 203 199 196 194 191 189 499 241 234 230 227 223 220 217 214 212 
450 217 2\0 207 203 199 197 194 191 189 500 241 235 231 227 223 220 218 214 212 
501 242 235 231 228 223 221 218 215 213 551 267 259 255 252 247 244 242 238 236 
502 242 236 232 228 224 221 219 215 213 552 267 260 256 252 248 245 242 239 236 
503 243 236 232 229 224 222 219 216 214 553 268 260 256 252 248 245 243 239 237 
504 243 237 233 229 225 222 220 216 214 554 268 261 257 253 249 246 243 240 237 
505 244 237 233 229 225 223 220 217 215 555 269 261 257 253 249 246 243 240 238 
506 244 238 234 230 226 223 220 217 215 556 269 262 258 254 250 247 244 241 238 
507 245 238 234 230 226 224 221 218 216 557 270 262 258 254 250 247 244 241 239 
508 245 239 234 231 227 224 221 218 216 558 270 263 259 255 251 248 245 242 239 
509 246 239 235 231 227 224 222 219 216 559 271 263 259 255 251 248 245 242 240 
510 246 240 235 232 228 225 222 219 217 560 271 264 260 256 251 249 246 242 240 
511 247 240 236 232 228 225 223 220 217 561 272 264 260 256 252 249 246 243 241 
512 247 241 236 233 229 226 223 220 218 562 272 265 261 257 252 249 247 243 241 
513 248 241 237 233 229 226 224 221 218 563 272 265 261 257 253 250 247 244 242 
514 248 241 237 234 230 227 224 221 219 564 273 266 261 258 253 250 248 244 242 
515 249 242 238 234 230 227 225 221 219 565 273 266 262 258 254 251 248 245 242 
516 249 242 238 235 231 228 225 222 220 566 274 267 262 259 254 251 249 245 243 
517 2.'iO 243 239 235 231 228 226 222 220 567 274 267 263 259 255 252 249 246 243 
518 2.'iO 243 239 236 232 229 226 223 221 568 275 268 263 260 255 252 250 246 244 
519 251 244 240 236 232 229 227 223 221 569 275 268 264 260 2S6 253 250 247 244 
520 251 244 240 237 232 230 227 224 222 570 276 269 264 261 256 253 251 247 245 
521 252 245 241 237 233 230 227 224 222 571 276 269 265 261 257 254 251 248 245 
522 252 245 241 238 233 231 228 225 222 572 277 270 265 262 257 254 251 248 246 
523 253 246 242 238 234 231 228 225 223 573 277 270 266 262 258 255 252 249 246 
524 253 246 242 239 234 232 229 226 223 574 278 271 266 263 258 255 252 249 247 
525 254 247 243 239 235 232 229 226 224 575 278 271 267 263 259 256 253 249 247 
526 254 247 243 240 235 232 230 227 224 576 279 272 267 263 259 256 253 2SO 248 
527 255 248 244 240 236 233 230 227 225 577 279 272 268 264 260 257 254 250 248 
528 255 248 244 240 236 233 231 228 225 578 280 273 268 264 260 2.')7 254 251 249 
529 256 249 245 241 237 234 231 228 226 579 280 273 269 265 261 258 255 251 249 
530 256 249 245 241 237 234 232 228 226 580 281 274 269 265 261 258 255 252 249 
531 257 250 246 242 238 235 232 229 227 581 281 274 270 266 261 258 256 252 250 
532 257 250 246 242 238 235 233 229 227 582 282 275 270 266 262 259 256 253 250 
533 258 251 247 243 239 236 233 230 228 583 282 275 271 267 262 259 257 253 251 
534 2.')8 251 247 243 239 236 234 230 228 584 283 276 271 267 263 260 257 254 251 
535 259 252 247 244 240 237 234 231 229 585 283 276 272 268 263 260 258 2S4 252 
536 259 252 248 244 240 237 235 231 229 586 284 276 272 268 264 261 258 2.')5 252 
537 260 253 248 245 241 238 235 232 229 587 284 277 273 269 264 261 259 255 253 
538 260 253 249 245 241 238 235 232 230 588 285 277 273 269 265 262 259 256 253 
539 261 254 249 246 242 239 236 233 230 589 285 278 274 270 265 262 259 2.')6 254 
540 261 254 250 246 242 239 236 233 231 590 286 278 274 270 266 263 260 257 254 

541 262 255 250 247 242 240 237 234 231 591 286 279 275 271 266 263 260 257 255 
542 262 255 251 247 243 240 237 234 232 592 287 279 275 271 267 264 261 257 255 
543 263 256 251 248 243 241 238 235 232 593 287 280 275 272 267 264 261 258 255 
S44 263 256 252 248 244 241 238 235 233 594 288 280 276 272 268 265 262 258 256 
545 264 257 252 249 244 241 239 235 233 595 288 281 276 273 268 265 262 259 2S6 

546 264 257 253 249 245 242 239 236 234 596 289 281 277 273 269 266 263 259 257 
547 265 258 253 250 245 242 240 236 234 597 289 282 277 274 269 266 263 260 257 
548 265 258 254 250 246 243 240 237 235 598 290 282 278 274 270 267 264 260 258 
549 266 258 254 251 246 243 241 237 235 599 290 283 278 275 270 267 264 261 258 
550 266 259 255 251 247 244 241 238 235 600 291 283 279 275 271 267 265 261 259 
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TABLE 1.27 (cont.): Critical Values of C for the Sign Test or the Binomial Test with p = 0.5 
a(2): .50 .20 .10 .05 .02 .01 .005 .002 .001 a(2): .50 .20 .10 .05 .02 .01 .005 .002 .001 

n a(l): .25 .10 .05 .025 .0\ .005 .0025 .001 .0005 n a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 
601 291 284 279 275 271 268 265 262 259 651 316 308 304 300 295 292 289 285 283 
602 292 284 2l!O 276 271 268 266 262 260 652 316 309 304 300 295 292 289 286 283 
603 292 285 280 276 272 269 266 263 260 653 317 309 304 300 296 293 290 286 284 
604 293 28.<; 281 2n 272 269 267 263 261 654 317 3\0 305 301 296 293 290 287 284 
605 293 286 281 277 273 270 267 264 261 655 318 3\0 305 301 297 294 291 287 284 

606 294 286 282 278 273 270 267 264 262 656 318 311 306 302 297 294 291 287 285 
fJJ1 294 287 282 278 274 271 268 264 262 657 319 311 306 302 298 295 292 288 285 
608 295 287 283 279 274 271 268 265 262 658 319 312 307 303 298 295 292 28R 286 
609 295 288 283 279 275 272 269 265 263 659 320 312 307 303 299 295 293 289 286 
610 296 288 284 280 275 272 269 266 263 660 320 313 308 304 299 296 293 289 287 

611 296 289 284 280 276 273 270 266 264 661 321 313 308 304 300 296 293 290 287 
612 297 289 285 281 276 273 270 267 264 662 321 314 309 305 300 297 294 290 288 
613 297 290 285 281 277 274 271 267 265 663 322 314 309 305 301 297 294 291 288 
614 298 290 286 282 2n 274 271 268 265 664 322 314 3\0 306 301 298 295 291 289 
615 298 291 286 282 278 275 272 268 266 665 323 315 310 306 302 298 295 292 289 
616 299 291 287 283 278 275 272 269 266 666 323 315 311 307 302 299 296 292 290 
617 299 292 287 283 279 276 273 269 267 667 324 316 311 307 302 299 296 293 290 
618 300 292 288 284 279 276 273 270 267 668 324 316 312 308 303 300 297 293 291 
619 300 293 288 284 280 276 274 270 268 669 325 317 312 308 303 300 297 294 291 
620 301 293 289 285 280 277 274 271 268 670 325 317 313 309 304 301 298 294 291 

621 301 294 289 285 281 277 275 271 269 671 326 318 313 309 304 301 298 295 292 
622 302 294 289 286 281 278 275 272 269 672 326 318 314 310 305 302 299 295 292 
623 302 295 290 286 281 278 276 272 269 673 327 319 314 3\0 305 302 299 295 293 
624 303 295 290 287 282 279 276 272 270 674 327 319 315 311 306 303 300 296 293 
625 303 295 291 287 282 279 276 273 270 675 328 320 315 311 306 303 300 296 294 
626 304 296 291 287 283 280 277 273 271 676 328 320 316 312 307 304 301 297 294 
627 304 296 292 288 283 2l!O 2n 274 271 6n 329 321 316 312 307 304 301 297 295 
628 305 297 292 288 284 281 278 274 272 678 329 321 317 312 308 304 301 298 295 
629 305 297 293 289 284 281 278 275 272 679 330 322 317 313 308 305 302 298 296 
630 306 298 293 289 285 282 279 275 273 680 330 322 318 313 309 305 302 299 296 

631 306 298 294 290 285 282 279 276 273 681 331 323 318 314 309 306 303 299 297 
632 307 299 294 290 286 283 280 276 274 682 331 323 319 314 3\0 306 303 300 297 
633 307 299 295 291 286 283 280 2n 274 683 332 324 319 315 3\0 307 304 300 298 
634 308 300 295 291 287 284 281 2n 275 684 332 324 319 315 311 307 304 301 298 
635 308 300 296 292 287 284 281 278 275 685 333 325 320 316 311 308 305 301 298 

636 308 301 296 292 288 285 282 278 276 686 333 325 320 316 312 308 305 302 299 
637 309 301 297 293 288 285 282 279 276 687 334 326 321 317 312 309 306 302 299 
638 309 302 297 293 289 285 283 279 276 688 334 326 321 317 313 309 306 303 300 
639 3\0 302 298 294 289 286 283 279 2n 689 335 327 322 318 313 310 307 303 300 
640 310 303 298 294 290 286 284 280 277 690 335 327 322 318 313 310 307 303 301 
641 311 303 299 295 290 287 284 280 278 691 336 328 323 319 314 311 308 304 301 
642 311 304 299 295 291 287 284 281 278 692 336 328 323 319 314 311 308 304 302 
643 312 304 300 296 291 288 285 281 279 693 337 329 324 320 315 312 309 305 302 
644 312 305 300 296 291 288 285 282 279 694 337 329 324 320 315 312 309 305 303 
645 313 305 301 297 292 289 286 282 280 695 338 330 325 321 316 313 310 306 303 

646 313 306 301 297 292 289 286 283 280 696 338 330 325 321 316 313 3\0 306 304 
647 314 306 302 298 293 290 287 283 281 697 339 331 326 322 317 314 310 307 304 
648 314 307 302 298 293 290 287 284 281 698 339 331 326 322 317 314 311 307 305 
649 315 307 303 299 294 291 288 284 282 699 340 332 327 323 318 314 311 308 305 
6SO 315 308 303 299 294 291 288 285 282 700 340 332 327 323 318 315 312 308 306 

701 341 333 328 324 319 315 312 309 306 751 365 357 352 348 343 339 336 332 329 
702 341 333 328 324 319 316 313 309 306 752 366 357 352 348 343 340 337 333 330 
703 342 334 329 325 320 316 313 310 307 753 366 358 353 349 344 340 337 333 330 
704 342 334 329 325 320 317 314 310 307 754 367 358 353 349 344 341 337 334 331 
705 343 334 330 325 321 317 314 311 308 755 367 359 354 350 345 341 338 334 331 
706 343 335 330 326 321 318 315 311 308 756 368 359 354 350 345 342 338 335 332 
707 344 335 331 326 322 318 315 311 309 757 368 360 355 351 346 342 339 335 332 
708 344 336 331 327 322 319 316 312 309 758 369 360 355 351 346 343 339 336 333 
709 345 336 332 327 323 319 316 312 310 759 369 361 356 352 346 343 340 336 333 
710 345 337 332 328 323 320 317 313 310 760 370 361 356 352 347 344 340 336 334 



792 Appendix B Statistical Tables and Graphs 

TABLE B.27 (cont.): Critical Values of C for the Sign Test or the Binomial Test with p "" 0 5 
a(2): .50 .20 .10 .05 .02 .01 .005 .002 .001 a(2): .50 .20 .10 .os .02 .01 .005 .002 .001 

n a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 n a(I): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 
711 346 337 333 328 324 320 317 313 311 761 370 362 357 352 347 344 341 337 334 
712 346 338 333 329 324 321 318 314 311 762 371 362 357 353 348 344 341 337 335 
713 346 338 334 329 324 321 318 314 312 763 371 363 358 353 348 345 342 338 335 
714 347 339 334 330 325 322 319 315 312 764 372 363 358 354 349 345 342 338 336 
715 347 339 335 330 325 322 319 315 313 765 372 364 359 354 349 346 343 339 336 
716 348 340 335 331 326 323 319 316 313 766 373 364 359 355 350 346 343 339 337 
717 348 340 335 331 326 323 320 316 313 767 373 365 360 355 350 347 344 340 337 
718 349 341 336 332 327 324 320 317 314 768 374 365 360 356 351 347 344 340 337 
719 349 341 336 332 327 324 321 317 314 769 374 366 361 356 351 348 345 341 338 
720 350 342 337 333 328 324 321 318 315 770 375 366 361 357 352 348 345 341 338 
721 350 342 337 333 328 325 322 318 315 771 375 367 362 357 352 349 346 342 339 
722 351 343 338 334 329 325 322 319 316 772 376 367 362 351! 353 349 346 342 339 
723 351 343 338 334 329 326 323 319 316 713 376 368 363 358 353 350 347 343 340 
724 352 344 339 335 330 326 323 319 317 774 377 368 363 359 354 350 347 343 340 
725 352 344 339 335 330 327 324 320 317 775 377 369 364 359 354 351 347 344 341 
726 353 345 340 336 331 327 324 320 318 776 378 369 364 360 355 351 348 344 341 
727 353 345 340 336 331 328 325 321 318 717 378 370 365 360 355 352 348 344 342 
728 354 346 341 337 332 328 325 321 319 778 379 370 365 361 356 352 349 345 342 
729 354 346 341 337 332 329 326 322 319 779 379 371 366 361 356 353 349 345 343 
730 355 347 342 338 333 329 326 322 320 780 380 371 366 362 357 353 350 346 343 
731 355 347 342 338 333 330 327 323 320 781 380 372 367 362 357 354 350 346 344 
732 356 348 343 338 334 330 327 323 321 782 381 372 367 363 357 354 351 347 344 
733 356 348 343 339 334 331 328 324 321 783 381 373 367 363 358 354 351 347 345 
734 357 349 344 339 335 331 328 324 321 784 382 373 368 364 358 355 352 348 345 
735 357 349 344 340 335 332 328 325 322 785 382 374 368 364 359 355 352 348 345 
736 358 350 345 340 335 332 329 325 322 786 383 374 369 365 359 356 353 349 346 
737 358 350 345 341 336 333 329 326 323 787 383 375 369 365 360 356 353 349 346 
738 359 351 346 341 336 333 330 326 323 788 384 375 370 365 360 357 354 350 347 
739 359 351 346 342 337 334 330 327 324 789 384 376 370 366 361 357 354 350 347 
740 360 352 347 342 337 334 331 327 324 790 385 376 371 366 361 358 355 351 348 
741 360 352 347 343 338 334 331 327 325 791 385 376 371 367 362 358 355 351 348 
742 361 353 348 343 338 335 332 328 325 792 386 377 372 367 362 359 356 352 349 
743 361 353 348 344 339 335 332 328 326 793 386 377 372 368 363 359 356 352 349 
744 362 354 349 344 339 336 333 329 326 794 386 378 373 368 363 360 356 353 350 
745 362 354 349 345 340 336 333 329 327 795 387 378 373 369 364 360 357 353 350 
746 363 354 350 345 340 337 334 330 327 796 387 379 374 369 364 361 357 353 351 
747 363 355 350 346 341 337 334 330 328 797 388 379 374 370 365 361 358 354 351 
748 364 355 351 346 341 338 335 331 328 798 388 380 375 370 365 362 358 354 352 
749 364 356 351 347 342 338 335 331 329 799 389 380 375 371 366 362 359 355 352 
750 365 356 351 347 342 339 336 332 329 800 389 381 376 371 366 363 359 355 353 
801 390 381 376 372 367 363 360 356 353 851 415 406 401 396 391 387 384 379 377 
802 390 382 377 372 367 364 360 356 353 852 415 406 401 396 391 387 384 380 377 
803 391 382 377 373 368 364 361 357 354 853 416 407 401 397 392 388 385 380 377 
804 391 383 378 373 368 365 361 357 354 854 416 407 402 397 392 388 385 381 378 
805 392 383 378 374 369 365 362 358 355 855 417 408 402 398 393 389 385 381 378 
806 392 384 379 374 369 365 362 358 355 856 417 408 403 398 393 389 386 382 379 
807 393 384 379 375 369 366 363 359 356 857 418 409 403 399 393 390 386 382 379 
808 393 38S 380 375 370 366 363 359 356 858 418 409 404 399 394 390 387 383 3m 
809 394 385 380 376 370 367 364 360 357 859 419 410 404 400 394 391 387 383 3m 
810 394 386 381 376 371 367 364 360 357 860 419 410 405 400 395 391 388 384 381 
811 395 386 381 377 371 368 365 361 358 861 420 411 405 401 395 392 388 384 381 
812 395 387 382 377 372 368 365 361 358 862 420 411 406 401 396 392 389 385 382 
813 396 387 382 378 372 369 366 361 359 863 421 412 406 402 396 393 389 385 382 
814 396 388 383 378 373 369 366 362 359 864 421 412 407 402 397 393 390 386 383 
815 397 388 383 379 373 370 366 362 360 865 422 413 407 403 397 394 390 386 383 
816 397 389 384 379 374 370 367 363 360 866 422 413 408 403 398 394 391 387 384 
817 398 389 384 379 374 371 367 363 361 867 423 414 408 404 398 395 391 387 384 
818 398 390 384 380 375 371 368 364 361 868 42.1 414 409 404 399 395 392 388 38S 
819 399 390 385 380 375 372 368 364 361 869 424 415 409 405 399 396 392 388 38S 
820 399 391 385 381 376 372 369 365 362 870 424 415 410 405 400 396 393 388 386 
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TABLE 1.27 (cont.): Critical Values of C for the Sign Test or the Binomial Test with p = 0 5 
a(2): .so .20 .10 .05 .02 .01 .11115 .1102 .1101 a(2): .50 .20 .111 .05 .(12 ,(11 .1105 .(102 .OIJl 

n a(I): .25 .10 .OS .025 .01 .0115 .01125 .(XII .(UI5 n a(I): .25 .10 .115 .1125 .01 .11115 .lX125 .(XII .IKl1I5 

821 4011 391 3H6 381 376 373 369 365 362 871 425 416 4111 406 4(XI 397 393 389 .'KIi 
822 400 392 3H6 382 377 373 370 366 36.1 872 425 41t1 411 406 4111 397 394 389 3146 
823 4111 .192 387 .lK2 377 374 .170 366 363 K73 426 417 411 4117 401 397 394 39(1 387 
824 401 393 387 383 378 374 371 367 364 K74 426 417 412 4117 4(12 398 395 39(1 387 
82.~ 4112 393 3AA 383 378 375 371 367 364 875 427 418 412 408 4112 398 395 391 3N8 
826 402 394 3KK 384 .179 375 372 36K 36S 876 427 418 413 4118 41).1 399 395 391 388 
827 403 394 389 384 .179 .175 372 36K 365 8n 428 419 413 4118 4111 399 3% 392 389 
828 403 395 3K9 385 380 376 373 369 366 878 428 419 414 4119 4114 4IlO 3% 392 3K9 
829 4114 395 390 385 380 376 373 369 366 879 429 42() 414 4119 4114 4CHI 397 393 390 
830 4Cl4 396 390 386 381 377 374 370 367 880 429 4211 415 410 4115 401 397 393 39!.1 
831 405 3% 391 386 381 3n 374 3711 367 881 429 420 415 410 4115 4111 398 394 391 
832 405 397 391 387 381 378 375 3711 36K 882 430 421 416 411 4115 402 398 394 391 
833 406 397 392 387 382 37K 375 371 36K 883 4311 421 416 411 4C1fI 4112 399 395 392 
834 406 397 392 38!1 382 379 375 371 369 8!14 431 422 417 412 4C1fI 403 399 395 392 
835 407 398 393 38!1 38.1 379 376 372 369 885 431 422 417 412 4117 41)3 4CXI 396 393 
836 407 398 393 3K9 383 380 376 372 369 8M 432 423 418 413 4117 4114 41111 3% 393 
837 408 399 394 3K9 384 380 377 373 370 887 432 423 418 413 41111 4114 401 397 394 
838 408 399 394 390 384 381 3n 373 37() K!I8 433 424 418 414 4(111 4115 4111 397 394 
839 4119 4CXI 395 39() 3K.'i 381 378 374 371 889 433 424 419 414 4CI9 4115 402 397 .194 
840 4(19 400 395 391 38.'i .lK2 378 374 371 8911 434 42.~ 419 415 4119 4IlIi 4112 398 395 
841 410 401 3% 391 386 .lK2 379 375 372 891 434 42.~ 4211 415 4111 4IlIi 403 398 395 
842 410 401 3% 392 3!11i 3K3 379 375 372 892 435 426 4211 416 4111 4117 403 399 3% 
843 411 402 397 392 387 383 3l!I1 376 373 893 435 426 421 416 411 4117 4Cl4 399 3% 
844 411 402 397 393 387 384 380 376 373 K94 436 427 421 417 411 4C1K 4114 400 397 
84S 412 403 398 393 38!1 384 381 3n 374 895 436 427 422 417 412 4(111 41'S 4IXI 397 
846 412 403 398 394 388 385 381 377 374 8% 437 428 422 418 412 4118 4115 4111 398 
847 413 4Cl4 399 394 389 3K.~ .lK2 378 375 897 437 428 42.1 41K 413 4119 4(1.'i 401 398 
848 413 4114 399 394 389 386 3K2 378 375 !19K 438 429 423 419 413 4119 401l 4112 399 
849 414 405 400 :\95 39(1 3M 3ltl 379 376 899 438 429 424 419 414 4111 406 4112 399 
&50 414 405 4()() 395 390 3M 3K.l 379 376 9(111 439 430 424 420 414 4111 41)7 4113 400 

901 439 430 425 420 415 411 407 4113 41111 951 464 455 449 444 439 435 431 427 424 
IJ02 440 431 425 421 415 411 41111 4114 4111 952 4lt5 455 450 445 439 435 432 427 424 
IJII3 440 431 426 421 416 412 4118 4114 401 953 465 45l\ 450 445 44CI 436 432 42K 425 
904 441 432 426 422 416 412 4119 405 4112 954 466 45t1 451 44t1 44CI ·BtI 433 428 425 
90S 441 432 427 422 417 413 4119 405 4112 955 466 457 451 44tI 441 437 433 429 42t1 
906 442 433 427 423 417 413 410 4IlIi 403 956 467 457 452 447 441 437 434 429 426 
907 442 433 428 423 417 414 410 4116 4113 957 467 458 452 447 442 43K 434 430 427 
9IM 443 434 428 42.1 418 414 411 4ClIi 4113 958 4tIK 458 453 448 442 438 435 43() 427 
~ 443 434 429 424 4111 415 411 4117 4114 959 4tIK 459 453 448 442 439 435 431 428 
910 444 435 429 424 419 415 412 4117 4114 %0 4tl9 459 454 449 443 439 436 431 4214 
911 444 435 430 42.~ 419 416 412 4118 4115 961 4tl9 4611 454 449 443 44CI 436 432 429 
912 445 436 430 42.~ 4211 416 413 41111 4(l'i %2 4711 460 454 450 444 440 436 432 429 
913 445 436 431 426 420 417 413 4119 4116 96.1 470 4tl1 455 450 444 441 437 433 429 
914 44tI 437 431 426 421 417 414 4119 4C1fI 964 471 4tl1 455 451 445 441 437 433 430 
915 44t1 437 432 427 421 4111 414 41C1 4117 965 471 4tl2 456 451 445 442 43K 434 43() 
916 447 438 432 427 422 418 415 41C1 4117 %6 472 4tl2 45l\ 452 44tI 442 438 434 431 
917 447 438 433 4211 422 419 415 411 4C)8 967 472 46.1 457 452 44tI 442 439 434 431 
918 448 439 433 428 423 419 41lt 411 4(111 9l\II 473 4tl3 457 453 447 443 439 435 432 
919 448 439 434 429 42.1 419 41lt 412 4119 969 473 4M 4511 453 447 443 4411 435 432 
920 449 440 434 429 424 4211 416 412 4(19 9711 473 <1M 4511 453 448 444 440 436 433 
921 449 440 435 4311 424 420 417 413 410 971 474 46.'i 459 454 44K 444 441 436 433 
922 450 441 435 430 425 421 417 413 410 972 474 465 459 454 449 445 441 437 434 
923 450 441 436 431 425 421 418 414 411 973 475 46Ii 460 455 449 445 442 437 434 
924 451 442 436 431 426 422 4114 414 411 974 475 466 46(1 455 450 44tI 4"2 438 435 
92.'i 451 442 436 432 426 422 419 415 412 975 47lt 466 461 456 450 44tI 443 438 435 
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a(2): .50 .20 
n a(1): .25 .10 

926 452 443 
927 452 443 
928 453 443 
929 453 444 
930 454 444 

931 454 445 
932 455 445 
933 455 446 
934 456 446 
935 456 447 
936 457 447 
937 457 448 
938 458 448 
939 458 449 
940 459 449 
941 459 450 
942 460 450 
943 460 451 
944 461 451 
945 461 452 
946 462 452 
947 462 453 
948 463 453 
949 463 454 
950 464 454 

TABLE a.27 (cont): Critical Values of C for the Sign Test or the Binomial Test with p = 0.5 
.10 
.05 
437 
437 
438 
438 
439 
439 
440 
440 
441 
441 
442 
442 
443 
443 
444 

444 
445 
445 
446 
446 

447 
447 
448 
448 
449 

.05 .02 .01 .005 .002 .001 a(2): .50 .20 .10 .OS .02 .01 .005 .002 .001 
.025 .01 .005 .0025 .001 .0005 II a(1): .25 .10 .05 .025 .01 .005 .0025 .001 .0005 

432 427 423 419 415 412 976 476 467 461 456 451 447 443 439 436 
433 427 423 420 415 412 977 477 467 462 457 451 447 444 439 436 
433 428 424 420 416 413 978 477 468 462 457 452 448 444 440 437 
434 428 424 421 416 413 979 478 468 463 458 452 448 445 440 437 
434 429 425 421 417 414 980 478 469 463 458 453 449 445 441 438 
435 429 425 422 417 414 981 479 469 464 459 453 449 446 441 438 
435 430 426 422 418 415 982 479 470 464 459 454 450 446 442 438 
436 430 426 423 418 415 983 480 470 465 460 454 450 447 442 439 
436 430 427 423 419 416 984 480 471 465 460 455 451 447 443 439 
437 431 427 424 419 416 985 481 471 466 461 4S5 451 447 443 440 
437 431 428 424 420 417 986 481 472 466 461 455 452 448 444 440 
438 432 428 425 420 417 987 482 472 467 462 456 452 448 444 441 
438 432 429 425 421 418 988 482 473 467 462 456 453 449 444 441 
438 433 429 426 421 418 989 483 473 468 463 457 453 449 445 442 
439 433 430 426 422 419 990 483 474 468 463 457 453 450 445 442 
439 434 430 426 422 419 991 484 474 469 464 458 454 450 446 443 
440 434 430 427 423 420 992 484 475 469 464 458 454 451 446 443 
440 435 431 427 423 420 993 48S 475 470 465 459 455 451 447 444 
441 435 431 428 424 420 994 48S 476 470 465 459 455 452 447 444 
441 436 432 428 424 421 995 486 476 471 466 460 456 452 448 445 
442 436 432 429 425 421 996 486 477 471 466 460 456 453 448 445 
442 437 433 429 425 422 997 487 477 472 467 461 457 453 449 446 
443 437 433 430 425 422 998 487 478 472 467 461 457 454 449 446 
443 438 434 430 426 423 999 488 478 473 468 462 458 454 450 447 
444 438 434 431 426 423 1000 488 479 473 468 462 458 455 450 447 

Appendix Table 8.27 was prepared by considering binomial probabilities, such as those in Table B.26b, 
where the probability of a lower critical value, Ca"h is < a(2); upper critical values are n - Ca.ll' 

Example: 
CO.ot.950 = 434. with 950 - 434 = 516 as the upper critical value 
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2 

2 

3 

3 

3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

13 
14 
15 
16 
17 

18 
19 
20 
21 
22 

23 
24 
25 
26 
27 

28 
29 
30 

3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

13 
14 
15 
16 
17 

18 
19 
20 
21 
22 

23 
24 

a(2): O.SO 
aCl): 0.25 

2,4 
2.5 
2,-
2,-
3,-

3,-
3, -
3, -
3,-
3,-

3,-
3,-
3,-
3,-
3,-

3,-
3,-
3, -
4,-
4,-

4,-
4,-
4,-
4,-
4,-

4,-
4,-
4,-

2,6 
3,6 
3,7 
3,7 
3,7 

4, 7 
4,-
4,-
4,-
4,-

4,-
4,-
4, -
4,-
4,-

4,-
4,-
4,-
5,-
5,-

5,-
5,-

TABLE B.29: Critical Values of u for the Runs Test 
0.20 0.10 0.05 0.02 0.01 0.005 
0.10 0.05 0.025 0.01 0.005 0.0025 

-,5 
-,-
2, -
2,-
2,-

2,-
2,-
2, -
2,-
2,-

2, -
2,-
2, -
2, -
2,-

2, -
3, -
3, -
3, -
3,-

3,-
3,-
3,-
3,-
3,-

3,-
3,-
3,-

2,6 
2,7 
2,7 
2,-
3,-

3,-
3, -
3,-
3.-
3, -

3,-
3,-
4.-
4,-
4.-

4. -
4. -
4. -
4, -
4,-

4, -
4,-

-,-
-,-
-,-
-,-
-,-
2,-
2,-
2,-
2,-
2.-

2,-
2,-
2,-
2, -
2.-

2,-
2,-
2,-
2,-
2,-

2,-
2,-
2,-
2,-
2. -
2,-
2,-
2,-

-.-
-.7 
2,-
2,-
2,-

2.-
2,-
3,-
3,-
3,-

3.-
3,-
3,-
3,-
3,-

3,-
3,-
3,-
3,-
4,-

4,-
4,-

-, -
-,-

-,-
-,-

-,-
-,-
-,-
-,-
2,-

2,-
2,-
2,-
2, -
2,-

2,-
2,-
2,-
2,-
2.-

2,-
2,-
2,-
2, -
2,-

2,-
2,-
2,-

-,-
-,-
-,-
2, -
2.-

2,-
2,-
2,-
2,-
2,-

2,-
3,-
3,-
3,-
3, -

3,-
3,-
3,-
3,-
3.-

3,-
3,-

-,-

-,-
-.-
-.-
-,-
-,-
-.-
-,-

-,-
-,-
-,-
-,-
-,-

-.-
2, -
2,-
2,-
2,-

2.-
2, -
2.-
2,-
2.-

2, -
2.-
2, -

-,-

-,-
-,-

-,-
2,-
2,-
2,-
2,-

2,-
2,-
2,-
2.-
2,-

2,-
2, -
2,-
2,-
2,-

3, -
3,-

-,-
-.-
-,-
-,-
-,-

-,-
-,-
-.-
-,-

-,-
-,-
-,-

-,-
-,-
-,-

-,-

-,-
-,-
-,-
-,-
2,-

2,-
2,-
2,-

-,-

-,-
-,-

-,-
-,-
-,-
-,-
2,-

2.-
2,-
2, -
2,-
2,-

2,-
2,-
2, -
2,-
2,-

2, -
2, -

-,-
-,-
-,-
-,-
-,-
-,-
-,-
-,-
-,-
-,-

-,-
-,-
-,-

-,-

-,-

-,--.--.-
-,-
-,-
-,-
-,-
-.-
-,-
-,-
-,-

-,-
-.-
-,-
-,-

-,-
-,-
-,-
-.-
-,-
-.-
2,-
2,-
2.-

2,-
2,-
2.-
2,-
2,-

2,-
2,-

0.002 
0.001 

-.-
-,-
-,-
-,-
-,-
-,-
-,-
-,-
-,-

-,-

-,-
-,-
-,-

-,-
-,-
-,-
-,-
-,-

-,-
-,-
-,-
-,-
-,-

-,-
-,-
-,-

-,-
-,-
-,-
-, -
-,-

-,-
-.-
-,-
-,-
-,-
-,-

-.-
-,-
-,-
-,-
-,-
-,-
2, -
2,-

2,-
2,-

0.001 
0.0005 

-,-
-.-
-,-
-,-
-.-
-,-
-,-
-,-
-,-
-,-
-,-

-,-
-,-
-,-

-,-

-,-
-,-
-,-

-,-
-,-
-,-
-,-
-.-
-,-
~,-

-,-
-,-
-,-
-,-
-,-
-,-

-,-
-,-

-,-
-,-

-,-
-,-
-,-
-,-
-,-

-,-
-,-
-,-
-,-
-,-
-,-
-,-
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TABLE B.29 (cont.)· Critical Values of u for the Runs Test 
a(2):0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

nl n2 a(1): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

3 25 5,- 4,- 4,- 3,- 3,- 2,- 2,- 2,- -,-
26 5,- 4,- 4,- 3,- 3, - 2,- 2,- 2,- - -
27 5,- 4,- 4,- 3,- 3,- 2,- 2,- 2,- 2,-

28 5,- 4,- 4, - 3,- 3,- 2,- 2,- 2,- 2,-
29 5,- 4,- 4,- 3, - 3,- 2, - 2,- 2,- 2,-

3 30 5,- 4,- 4,- 3, - 3,- 2, - 2,- 2,- 2,-
4 4 3,7 2,8 2,8 - , - - - - - - - - , - - -

5 3,6 3,8 2,9 2,9 -,9 -, - - - - - -,-
6 4,8 3,9 3,9 2,9 2, - -, - -, - - , - - -
7 4,8 3,9 3,9 2,- 2,- - - - - - -
8 4,8 3,9 3,- 3, - 2,- 2, - - - - - - -

9 5,9 4,9 3,- 3,- 2,- 2,- - - - - - -
10 5,9 4,- 3,- 3,- 2,- 2,- 2,- - , - - -
11 5,9 4,- 3, - 3,- 2,- 2.- 2,- - - -,-
12 5,9 4,- 4,- 3,- 3,- 2,- 2,- - - - -
13 5,9 4,- 4,- 3,- 3,- 2.- 2,- 2,- - -
14 5,9 4,- 4,- 3, - 3,- 2. - 2,- 2.- - -
15 6.- 4,- 4,- 3,- 3,- 3.- 2,- 2,- - , -
16 6.- 5.- 4.- 4,- 3. - 3, - 2. - 2.- 2,-
17 6,- 5,- 4,- 4.- 3.- 3.- 2,- 2.- 2.-
18 6.- 5.- 4,- 4.- 3,- 3.- 2, - 2,- 2,-

19 6,- 5,- 4.- 4,- 3,- 3,- 2.- 2,- 2,-
20 6,- 5,- 4,- 4.- 3,- 3. - 3,- 2,- 2,-
21 6, - 5,- 4,- 4,- 3,- 3,- 3.- 2,- 2,-
22 6.- 5.- 4.- 4.- 3.- 3,- 3,- 2,- 2,-
23 6,- 5.- 4.- 4.- 4,- 3.- 3. - 2,- 2. -

24 6.- 5.- 5.- 4.- 4.- 3.- 3. - 2,- 2,-
25 6, - 5,- 5,- 4.- 4,- 3.- 3.- 2.- 2,-
26 6.- 5,- 5,- 4,- 4.- 3,- 3.- 2,- 2,-
27 6,- 5,- 5,- 4.- 4, - 3.- 3.- 3,- 2.-
28 6,- 6.- 5.- 4. - 4, - 3.- 3,- 3.- 2.-

29 6, - 6,- 5,- 4,- 4, - 4,- 3,- 3,- 2. -
4 30 6.- 6,- 5,- 4.- 4,- 4,- 3, - 3,- 2.-
5 5 4,8 3,9 3.9 2,10 2,10 -, - - , - - - - -

6 4,9 3.9 3, 10 3,10 2.11 2,11 -.11 - - -, -
7 5,9 4.10 3.10 3,11 2.11 2, -. - , - - - -. -
8 5.9 4,10 3,11 3.11 2,- 2,- 2. - - - - -
9 5.10 4.10 4.11 3, - 3,- 2, - 2.- 2,- -, -

10 6.10 5.11 4,11 3,- 3, - 3,- 2.- 2,- - -
11 6,10 5.11 4,- 4,- 3,- 3,- 2,- 2,- 2.-
12 6.10 5,11 4, - 4,- 3. - 3,- 2.- 2, - 2.-
13 6.10 5,11 4,- 4, - 3,- 3,- 3,- 2,- 2, -
14 6,10 5, - 5, - 4,- 3, - 3,- 3.- 2,- 2, -

15 6,11 5,- 5,- 4, - 4.- 3,- 3,- 2,- 2,-
16 7, \1 6,- 5,- 4,- 4. - 3.- 3.- 2,- 2. -
17 7,11 6,- 5, - 4,- 4,- 3,- 3.- 3.- 2,-
18 7,11 6.- 5.- 5,- 4, - 4.- 3.- 3.- 2,-
19 7,11 6, - 5,- 5,- 4,- 4.- 3, - 3,- 2.-

20 7,11 6,- 5, - 5,- 4, - 4,- 3.- 3,- 3,-
21 7.11 6,- 5. - 5,- 4,- 4,- 3. - 3,- 3, -
22 7,- 6,- 6,- 5,- 4,- 4.- 4, - 3,- 3.-
23 7, - 6,- 6,- 5,- 4, - 4,- 4,- 3,- 3, -

5 24 7.- 6,- 6,- 5,- 4,- 4,- 4.- 3,- 3,-
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TABLE B.29 «(Ont.): Critical Values of u for the Runs Test 
a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

nl n2 a(l): 0.25 0.10 0.05 0.025 0.01 0.005 0.()()?..5 0.001 O.ems 
5 25 8.- 6. - 6, - 5,- 4.- 4.- 4,- 3,- 3.-

26 8,- 6.- 6, - 5,- 5. - 4.- 4. - 3,- 3,-
27 8,- 6. - 6.- 5,- 5. - 4,- 4, - 3.- 3.-
28 8.- 6. - 6. - 5.- 5. - 4.- 4, - 3.- 3,-
29 8,- 7.- 6,- 6,- 5.- 4.- 4.- 4.- 3,-

5 30 8, - 7.- 6,- 6,- 5,- 4,- 4.- 4,- 3,-
6 6 5,9 4,10 3,11 3. 11 2, 12 2.12 2,12 -.- -,-

7 5.8 4,11 4,11 3,12 3, 12 2.13 2.13 -,13 -,-
8 6,10 5,11 4, 12 3, 12 3.13 3. 13 2.13 2.- -,-
9 6,10 5.11 4. 12 4.13 3.13 3.- 2,- 2.- 2,-

10 6.11 5. 12 5. 12 4.13 3.- 3.- 3.- 2.- 2,-

11 7.11 5.12 5.13 4.13 4.- 3.- 3.- 2.- 2,-
12 7.11 6,12 5.13 4.13 4,- 3. - 3.- 3. - 2,-
13 7.12 6.12 5.13 5.- 4.- 3. - 3. - 3.- 2,-
14 7.12 6,13 5.13 5.- 4.- 4.- 3.- 3. - 2,-
15 7.12 6, 13 6.- 5.- 4.- 4.- 3.- 3.- 3,-

16 8.12 6.13 6. - 5.- 4.- 4.- 4.- 3.- 3.-
17 8. 12 6,13 6.- 5,- 5.- 4,- 4.- 3. - 3,-
18 8. 12 7.13 6.- 5.- 5.- 4.- 4.- 3.- 3,-
19 8. 12 7.- 6.- 6. - 5.- 4,- 4.- 3, - 3 -" 
20 8.12 7.- 6.- 6.- 5.- 4.- 4.- 4.- 3.-

21 8.12 7,- 6.- 6.- 5.- 5.- 4.- 4. - 3.-
22 8.13 7.- 6.- 6,- 5.- 5.- 4. - 4,- 3,-
23 8,13 7. - 6,- 6.- 5,- 5.- 4, - 4.- 3,-
24 8,13 7.- 7. - 6,- 5. - 5.- 4.- 4,- 4,-
25 8.13 8. - 7.- 6.- 5.- 5.- 4,- 4.- 4,-

26 9,13 8. - 7.- 6. - 6.- 5.- 5.- 4. - 4.-
27 9.13 8.- 7.- 6.- 6.- 5,- 5.- 4,- 4,-
28 9,13 8.- 7.- 6.- 6.- 5.- 5.- 4.- 4.-
29 9,13 8, - 7.- 6.- 6,- 5,- 5.- 4.- 4,-

6 30 9,13 8. - 7.- 6,- 6,- 5,- 5, - 4, - 4,-
7 7 6.10 5.11 4,12 3. 13 3.13 3.13 2. 14 2. 14 -,-

S 6,11 5.12 4.13 4.13 3, 14 3.14 3.14 2.15 2, 15 
9 7.11 5, 12 5,13 4, 14 4,14 3, 15 3. 15 2,15 2,-

10 7.12 6, 13 5.13 5. 14 4.15 3.15 3.15 3. - 2,-
11 7.12 6.13 5, 14 5.14 4,15 4.15 3.- 3,- 2,-

12 8,12 6. 13 6.14 5.14 4,15 4. - 3,- 3, - 3.-
13 8,12 7.14 6. 14 5,15 5.- 4,- 4,- 3,- 3,-
14 8,13 7.14 6,14 5,15 5,- 4. - 4.- 3,- 3.-
15 8,13 7.14 6,15 6.15 5.- 4.- 4.- 3.- 3,-
16 8,13 7. 14 6,15 6,- 5,- 5,- 4.- 4,- 3,-

17 9,13 7, 14 7,15 6.- 5.- 5,- 4. - 4,- 3.-
18 9.14 8,14 7.15 6,- 5.- 5. - 4,- 4,- 4.-
19 9,14 8, 15 7.15 6.- 6.- 5.- 5. - 4,- 4.-
20 9.14 8. 15 7,- 6,- 6.- 5. - 5,- 4, - 4.-

7 21 9,14 8. 15 7.- 7.- 6,- 5.- 5, - 4,- 4,-
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TABLE B.29 (cont.): Critical Values of u for the Runs Test 
a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

nl n2 a(I): 0.25 0.10 0.05 0.025 O.oI 0.005 0.0025 0.!101 0.0005 

7 22 9,14 8,15 7, - 7,- 6.- 5,- 5, - 4,- 4,-
23 10, 14 8, 15 11,- 7,- 6,- 6,- 5.- 5,- 4,-
24 10,14 8, 15 8,- 7,- 6,- 6, - 5,- 5,- 4,-
25 10. 14 8,- 8,- 7,- 6,- 6,- 5, - 5,- 4, -
26 10,14 8,- 8,- 7, - 6,- 6,- 5,- 5,- 4.-

27 10, 14 9.- 8.- 7.- 6.- 6,- 6.- 5.- 5. -
28 10,14 9,- 8,- 7, - 7,- 6. - 6,- 5, - 5.-
29 10,14 9, - 8, - 8,- 7,- 6,- 6.- 5.- 5, -

7 30 10,14 9,- 8,- 11,- 7, - 6,- 6,- 5,- 5,-

8 8 7, \l 5.13 5,13 4,14 4,14 3.15 3, 15 2,16 2, 16 
9 7,10 6,13 5, 14 5, 14 4, IS 3,15 3,16 3,16 2,17 

10 7,12 6,13 6,14 5,15 4. IS 4, 16 3, 16 3,17 3.17 
11 8,13 7,14 6.15 5,15 5,16 4,16 4, 17 3,17 3,-
12 8,13 7,14 6,15 6, 16 5.16 4.17 4.17 3.- 3.-

13 8.13 7, 15 6, 15 6, 16 5.17 5.17 4. 17 4, - 3,-
14 9, 14 7.15 7,16 6. 16 5.17 5.17 4, - 4,- 3.-
15 9.14 8. IS 7.16 6. 16 5.17 5. - 5. - 4.- 4. -
16 9,14 8,15 7.16 6.17 6,17 5.- 5.- 4,- 4,-
17 9.14 8.16 7.16 7.17 6,- 5.- 5,- 4.- 4.-

18 10.14 8.16 II. 16 7.17 6.- 6.- S. - 4, - 4.-
20 10.15 9.16 8,17 7.17 6.- 6.- 5. - 5. - 4. -
21 10.15 9.16 8,17 7.- 7.- 6.- 6.- 5.- 5.-
22 10.15 9.16 8.17 8,- 7. - 6. - 6.- 5.- 5, -
23 10,15 9.16 8,17 8,- 7.- 6.- 6.- 5.- 5. -
24 11.16 9.16 8.17 8.- 7.- 6.- 6.- 5.- 5. -
25 11.16 9,17 9.- 8,- 7,- 7.- 6. - 5. - S.-
26 11.16 10.17 9.- 8.- 7.- 7.- 6.- 6,- 5.-
27 11.16 10.17 9,- 8.- 7.- 7.- 6. - 6, - 5.-
28 II. 16 10.17 9. - 8,- 8.- 7.- 6, - 6,- 5,-

29 11.16 10.17 9, - 11.- 8.- 7.- 6. - 6.- 5.-
8 30 II. 16 10.17 9.- 8.- 8,- 7. - 7.- 6.- 6.-

9 9 8.12 6.14 6.14 5.15 4,16 4.16 3.17 3,17 3, 17 
10 8,13 7, 14 6,15 5,16 5.16 4. 17 4,17 3.18 3.18 
11 8.13 7.15 6.15 6. 16 5,17 5,17 4. 18 3. 18 3.19 
12 9.14 7. IS 7.16 6.16 5.17 5.18 4.18 4.19 3.19 
13 9,14 8. 15 7,16 6.17 6.18 5.18 5,18 4,19 4.19 

14 9. 14 8,16 7,17 7,17 6. 18 5,18 5,19 4,19 4.-
15 10,15 8. 16 8,17 7,18 6.18 6,19 5. 19 4,- 4. -
16 10, 15 9,16 8.17 7. 18 6.18 6.19 5. 19 5. - 4.-
17 10.15 9,17 8.17 7,18 7.19 6, 19 5,- 5.- 4.-
18 10.16 9.17 8.18 8. 18 7.19 6.- 6.- 5. - 5.-

19 11.16 9. 17 8. 18 8. 18 7.19 6. - 6.- 5,- 5, -
20 11.16 10.17 9,18 8. 18 7,19 7.- 6,- 5,- 5. -
21 11,16 10,18 9.18 8, 19 7. - 7.- 6.- 6.- 5,-
22 11,16 10. 18 9,18 8.19 7.- 7. - 6.- 6.- 5.-
23 12,16 10.18 9,18 8.19 8.- 7.- 6. - 6.- 5.-

24 12.17 10.18 9. 18 9. 19 8.- 7, - 7. - 6,- 6.-
25 12.17 10.18 to. 19 9. 19 8.- 7. - 7,- 6, - 6. -
26 12, 17 10.18 10.19 9,- 8.- 7.- 7.- 6.- 6. -
27 12.17 11. 18 10, 19 9,- 8,- 8.- 7,- 6.- 6. -
28 12. 17 II. 18 10. 19 9. - 8.- 8.- 7. - 6. - 6.-

29 12.17 11.18 10.19 9,- 8.- 8,- 7, - 7.- 6.-
9 30 12, III 11.18 10,19 9, - 8.- 8,- 7. - 7. - 6,-



830 Appendix B Statistical Tables and Graphs 

TABLE B.29 (cont.): Critical Values of u for the Runs Test 
a(2): 0.50 1J.21J 0.10 0.05 0.02 0.01 0.005 0.O()2 0.001 

1/1 1/2 a( I): 0.25 11.10 0.05 n.025 0.01 0.005 O.()(J25 0.()(J1 0.0005 

10 10 9.13 7. IS 6.16 6.16 5.17 S.17 4. IX 4.IX 3.19 
II 9.12 IUS 7.16 6.17 5. IX S. IX 4.19 4.19 3.19 
12 9.14 X.16 7.17 7.17 6. IX 5.19 5.19 4.20 4.20 
D 10. 15 X.16 X.17 7.IX 6.19 5.19 5.20 4.20 4.20 
14 10.15 9.17 X.17 7.18 6. 19 6.19 5.20 5.20 4.21 

15 10.16 9.17 X. 18 7.18 7.19 6.20 6.20 5.21 5,21 
16 11.16 9.17 IU8 8. 19 7.20 6.20 6.20 5.21 5.-
17 11.16 10.18 9.111 8. 19 7.20 6.20 6.20 5.21 5.-
18 11.16 10.18 9. 19 8. 19 7.211 7.21 6.21 6.- 5. -
19 12.17 10.18 9.19 8.20 X.20 7.21 6.21 6.- 5. -

20 12.17 10.18 9.19 9.20 X.20 7.21 7. - 6.- 6. -
21 12.17 10.18 10.19 9.20 8.21 7.21 7. - 6.- 6.-
22 12.17 11.19 111.20 9.21l 8. 21 8.- 7.- 6.- 6. -
23 12.18 II. 19 Ill. 20 9.20 8.21 8.- 7. - 6. - 6.-
24 12.18 II. 19 10. 21l 9.20 8.21 1\.- 7.- 7.- 6. -

25 13.18 11. 19 10.20 10.20 9.- 8.- 7. - 7.- 6.-
26 13.18 11. 20 10.20 10.21 9.- 8. - X.- 7.- 6.-
27 13. IX 12.20 II. 20 10.21 9.- 8.- 8.- 7.- 7.-
28 13.18 12.20 II. 211 10.21 9.- 8.- 8.- 7.- 7.-
29 13.18 12.20 II. 20 10.21 9.- 9.- X.- 7.- 7.-

10 30 14.18 12.20 II. 20 10.21 9.- 9.- 8.- 8.- 7.-

II 11 9.15 8. 16 7.17 7.17 6. IX 5.19 5.19 4.20 4.20 
12 10.15 9.16 8.17 7.18 6.19 6.19 5.20 5.20 4.21 
13 10,16 9.17 X.18 7.19 6.19 6.20 5.20 5.21 4.21 
14 II. 16 9.17 IU8 X.19 7.20 6.20 6.21 5.21 5.22 
15 11.16 10. IX 9.19 ll.19 7.211 7.21 6.21 5.22 5.22 

16 11. 17 H). 18 9. 19 S.20 7.21 7.21 6.22 6.22 5.23 
17 12.17 10.18 9.19 9.20 X.21 7.22 7.22 6.22 5.23 
18 12.17 HI. 19 HI.20 9.20 lUI 7.22 7.22 6.23 6.23 
19 12,18 11. 19 10.20 9.21 R. 22 8.22 7.22 6.23 6.-
20 12. IX 11.19 HI.211 9.21 IU2 1l.22 7.23 7.23 6.-

21 13. IX 11. 20 10.20 10.21 9.22 8. 22 7.23 7. - 6. -
22 13.18 II. 20 10.21 10.22 9.22 1l.23 8. 23 7.- 6.-
23 13.19 12.20 II. 21 10.22 9.22 8.23 8. 23 7. - 7. -
24 13.19 12.211 11.21 10.22 9.22 9.23 8.- 7. - 7. -
25 14.19 12.20 II. 21 10.22 9.23 9.23 8.- 7. - 7. -

26 14.19 12.21 11.22 10.22 10.23 9. - 8.- 8.- 7. -
27 14.19 12.21 II. 22 11.22 10.23 9. - 8.- 8.- 7. -
28 14.20 LUI 12.22 11.22 10.23 9. - 9.- 8.- 7. -
29 14.20 13.21 12.22 11.22 Hl.23 9. - 9.- 8.- 8. -

II 30 14.20 13.21 12.22 11. 22 10.- W. - 9.- X.- 8. -

12 12 10.16 9.17 ll. 111 7.19 7.19 6.20 5.21 5.21 4.22 
13 11.14 9. 18 9.18 8. 19 7,20 6.21 6.21 5.22 5.22 
14 11.17 10.18 9.19 8.20 7.21 7.21 6.22 5.22 5.23 
IS 12.17 10.19 9.19 IUO 8.21 7.22 6.22 6.23 5.23 
16 12.17 10.19 10.20 9.21 8.22 7.22 7.23 6.23 6.24 

17 12.18 11.19 10.20 9.21 8. 22 8,22 7.23 6.24 6.24 
III 13.18 II. 20 Hl,21 9.21 8.22 ll. 23 7.23 7.24 6,24 
19 D.18 11. 20 10.21 10.22 9.23 8.23 7.24 7.24 6.25 
20 13.19 12.20 11.21 10.22 9.23 8.23 8.24 7.24 7.25 

12 21 14.19 12.21 11. 22 10.22 9.23 9.24 8.24 7.25 7.25 
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TABLE B.29 (cont.): Critical Values of u for the Runs Test 
a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

"1 "2 a(1): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

12 22 14.19 12.21 11.22 10.22 9.23 9.24 8.24 7.25 7. -
23 14.20 12.21 11.22 11.23 10.24 9.24 8.24 8.25 7. -
24 14.20 13.21 12.22 11.23 10.24 9.24 9.25 8.- 7. -
25 14.20 13.22 12.22 11.23 10.24 9.24 9.25 8.- 8.-
26 15.20 13.22 12.2.'\ 11.23 10.24 10.25 9.25 8.- 8.-

27 15.20 13.22 12.23 11.24 10.24 10.25 9.25 8.- 8.-
28 15.21 13.22 12.23 12.24 11.24 10.25 9.- 9,- 8.-
29 15.21 14.22 13.23 12.24 II. 24 10.25 10. - 9,- 8.-

12 30 15.21 14,22 13.23 12,24 1l.25 10.25 10. - 9. - 8.-
13 13 11.17 10.18 9.19 8.20 7.21 7.21 6.22 5.23 5.23 

14 12.17 10.19 9.20 9.20 8.21 7.22 7.22 6.23 5.24 
15 12.18 11.19 10.20 9.21 8.22 7.22 7.23 6.24 6.24 
16 13.18 11.20 10.21 9.21 8.22 8.23 7.23 6.24 6.25 
17 13.19 11.20 10.21 10.22 9.23 8.23 7.24 7.25 6.25 

18 13.19 12.20 11.21 10.22 9.23 8.24 8.24 7.25 7.25 
19 14.19 12.21 II. 22 10.23 9.24 9.24 8.25 7.25 7.26 
20 14.20 12.21 11.22 10.23 10.24 9.24 8.25 8.26 7.26 
21 14.20 13.22 12.22 11.23 10.24 9.25 9.25 8.26 7.26 
22 15.20 13.22 12.23 11.24 10.24 9.25 9.26 8.26 7.27 

23 15.20 13.22 12.23 11.24 10.25 10.25 9.26 8.26 8.27 
24 15.21 13.22 12.23 11.24 10.25 10.26 9.26 8.27 8.27 
25 15.21 14.23 13.24 12.24 11. 25 10.26 9.26 9.27 8.27 
26 16.21 14.23 13.24 12.24 11,26 10.26 10.26 9.27 8.-
27 16.21 14.23 13.24 12.25 11.26 10.26 10.26 9.27 9.-

28 16.22 14.23 13.24 12.25 11.26 11.26 10.27 9.- 9.-
29 16.22 14.24 13.24 13.25 12.26 11.26 10.27 9.- 9.-

13 30 16.22 15.24 14.24 13.25 12,26 11.26 10.27 10. - 9. -
14 14 12.18 11.19 10.20 9.21 8.22 7.23 7.23 6.24 6.24 

15 13.16 11.20 10.21 9.22 8.23 8.23 7.24 7.24 6.25 
16 13.19 11.20 11.21 10.22 9.23 8.24 8.24 7.25 6.25 
17 14.19 12.21 II. 22 10.23 9.24 8.24 8.25 7.25 7.26 
18 14.20 12.21 1l.22 10.23 9.24 9.25 8.25 7.26 7.26 

19 14.20 13.22 12.23 11.23 10.24 9.25 8.26 8.26 7.27 
20 15.20 13.22 12.23 11.24 10,25 9.25 9.26 8.27 7.27 
21 15.21 13.22 12.23 11.24 10.25 10.26 9.26 8.27 8.28 
22 15.21 14.23 12.24 12.24 11. 26 10.26 9.27 9.27 8.28 
23 16.21 14.23 13.24 12.25 11.26 10.26 10.27 9.28 8.28 

24 16.22 14.23 13.24 12.25 11.26 10.27 10.27 9.28 8.28 
25 16.22 14.24 13.24 12.25 11,26 11.27 10.28 9.28 9.28 
26 16.22 15.24 14,25 13.26 12.26 11.27 10.28 9.28 9.29 
27 17.22 15.24 14.25 13.26 12.27 11.27 10.28 10.28 9,29 
28 17.23 15.24 14.25 13.26 12.27 11. 28 11. 28 10.29 9.29 

29 17.23 15.24 14.26 13.26 12.27 12.28 11. 28 10.29 9.-
14 30 17.23 15.25 14.26 13.26 12.27 12.28 11. 28 10.29 10. -
15 15 13.19 12.20 11.21 10.22 9.23 8.24 8.24 7.25 6.26 

16 14.19 12.21 11.22 10.23 9.24 9.24 8.25 7.26 7.26 
17 14.20 12.21 11.22 11.23 10.24 9.25 8,26 8.26 7.27 
18 14.20 13.22 12.23 11,24 10,25 9.25 9.26 8.27 7.27 
19 15.21 13.22 12.23 11.24 10.25 10.26 9.27 8.27 8,28 

20 15.21 13.23 12.24 12.25 11,26 10.26 9.27 8.28 8.28 
21 16.21 14.23 13.24 12.25 11,26 10.27 10.27 9.28 8.29 
22 16.22 14,24 13.25 12.25 11.26 10.27 10,28 9.28 8.29 
23 16.22 14.24 13.25 12.26 11.27 II. 27 10.28 9.29 9.29 

15 24 16.22 15.24 14.25 13.26 12,27 11.28 10,28 10.29 9.30 
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TABLE B.29 (cont.): Critical Values of u for the Runs Test 
a(2): 0.50 0.20 0010 0.05 0.02 (1.01 n.005 0.002 0.001 

"1 "2 a(I): 0.25 0.10 0.05 0.025 om o.oos 0.0025 O.llOl 0.0005 

15 25 17.23 15.24 14.26 13.26 12.27 II. 28 II. 29 10.29 9.30 
26 17.2.1 15.2.'5 14.26 13.27 12.28 II. 2X II. 29 10.30 9.30 
27 17.2.1 16.25 14.26 14.27 12,28 12.2X II. 29 10.30 10,30 
28 18,24 16.25 15,26 14.27 13,28 12.29 II. 29 10.30 10,30 
29 18,24 16.26 15.26 14.27 13.28 12.29 II. 31l II. 30 10,31 

15 31l 18.24 16.26 15.27 14.21! 13.21! 12.29 12.30 11.30 10.31 

16 16 14.20 12.22 11.23 II. 23 10.24 9.25 8.26 8.26 7.27 
17 15.18 13.22 12.23 II. 24 Ill. 25 9.26 9.26 8.27 7.28 
18 15.21 13.23 12.24 II. 25 10.26 10.26 9.27 IU8 8.28 
19 15.21 14.23 13.24 12.25 II. 26 10.27 9.27 9.2K 8.29 
20 16,22 14.24 13.25 12.25 II. 26 10.27 10.28 9.29 8,29 

21 16.22 14,24 13.25 12.26 11,27 I1.2X 10.28 1).29 9.30 
22 17.23 15.24 14.25 13.26 12.27 II. 2& 10.29 9.29 9.30 
23 17.23 15.25 14.26 13.27 12.28 II. 2X 11.29 10.30 9.30 
24 17.23 15.25 14.26 13.27 12.28 12.29 II. 29 10.30 9.31 
25 17.24 16.25 15.26 14.27 13.2K 12.29 1I.31l 10.30 10.31 

26 1R. 24 16.26 15.27 14.21! 13.29 12.29 11.30 II. 31 10.31 
27 18.24 16.26 15.27 14.21! 13.29 12.3() 12.30 11.31 10.32 
28 18.24 16.26 15.27 14.28 13.29 13.30 12.30 II. 31 10.32 
21) 19.25 17.26 16.28 15.28 14.30 13.3() 12.31 11.32 11.32 

16 30 19.25 17.27 16.28 15.29 14.30 13.30 12.31 11.32 11,32 

17 17 15,21 13.23 12.24 II. 25 10.26 10.26 9.27 8.2K 8.28 
18 16.21 14.23 13.24 12.25 11.26 10.27 9.27 9.28 8.29 
19 16.22 14.24 13.25 12.26 II. 27 Ill. 27 10.28 9.29 8.29 
20 16.22 15.24 13.25 13.26 II. 27 II. 28 10.29 9.29 9.30 
21 17.23 15.25 14.26 13.27 12.28 11.2X Ill. 29 10.30 9.30 

22 17.23 15.25 14.26 13.27 12.28 11.29 1I.31l 10.30 9.31 
23 17.24 16.25 15.27 14.27 13.29 12.29 11.30 10.31 10.31 
24 IK.24 16.26 15.27 14.2K 13.29 12.30 II. 31l II. 31 10.32 
25 18.24 16.26 15.27 14.28 13.29 12.30 12.31 II. 31 10.32 
26 18.25 17.26 15.28 14.29 13.30 13.30 12.31 11.32 10.32 

27 19.25 17.27 16.2K 15.29 14.3() 13.31 12.31 II. 32 11.33 
28 19.25 17.27 16.28 15.29 14.30 13.31 12.32 12.32 11.33 
29 19.26 17.27 16.28 15.21) 14.30 13.31 13.32 12.33 11.33 

17 31l 20.26 18.28 17.29 16.30 14.31 14.32 13.32 12.33 11.33 

18 18 16.22 14.24 13.25 12.26 II. 27 II. 27 1(1.28 9.29 9.29 
II) 16.20 15.24 14.25 13.26 12.27 II. 28 10.29 9.30 9.30 
20 17.23 15.25 14.26 13.27 12.2K II. 29 II. 29 Ill. 30 9,31 
21 17.23 15.25 14.26 13.27 12.28 12.29 II. 31l 10.31 10.31 
22 18.24 16.26 15.27 14.28 13.29 12.30 II. 31l 10.31 10.32 

23 18.24 16.26 15.27 14.28 13.29 12.30 12.31 11.32 10.32 
24 18.25 17.27 15.28 14.29 13.30 13.30 12.31 II. 32 10.33 
2.'i 19.25 17.27 16.28 15.29 14.3() 13.31 12.32 11.32 11.33 
26 19.25 17.27 16.28 15.29 14.31l 13.31 12.32 12.33 11.33 
27 19.26 18.2K 16.29 15.30 14.31 13.32 13.32 12.33 11,34 

28 20.26 18.28 17.29 16.311 14.31 14.32 13.33 12.33 12.34 
29 21l.26 !lUI! 17.29 16.30 15.32 14.32 13.33 12.34 12.34 

18 30 20.27 18.29 17.30 16,31 15.32 14.32 14.33 13.34 12, 34 
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TABLE 8.29 (cont.): Critical Values of u for the Runs Test 
a(2): O.SO 0.20 {UO n.1l5 0.02 0.01 Il.lJ05 U.002 (UJUI 

III "2 a( I): 0.25 0.1Il n.1l5 O.1l25 {WI 0.005 n.OO25 0.001 1I.{XXI5 

19 19 17.23 15.25 14.26 13.27 12.18 II. 29 11.29 Ill. 30 9.31 
20 17.24 16.25 14.27 13.27 12.29 12.29 I\. 30 10.31 10.31 
21 Ill. 24 16.26 15.27 14.211 13.29 12.30 11. 31 11. 31 10.32 
22 Ill. 25 16.26 15.211 14.29 13.30 12.30 12.31 11. 32 Ill. 32 
23 19.25 17.27 16.211 15.29 13.30 13.31 12.32 11.32 11.33 

24 19.25 17.27 16.18 15.29 14,31 13.31 12.32 11. 33 11.33 
25 19.26 17.211 16.29 15.311 14.31 13.32 13.32 12.33 II. 34 
26 20.26 1/l.21l 17.29 16.31l 14.31 14.32 13.33 12.34 II. 34 
27 20.26 1/l.211 17.31l 16.31 15.32 14.32 13.33 12.34 12.35 
18 20.27 1/l.29 17.30 16.31 15.32 14.33 14.34 13.34 12.35 

29 21.27 19.29 Ill. 30 17.31 15.32 15.33 14.34 13.35 12.35 
19 30 21. 211 19.29 II.UI 17.32 16.33 15.34 14.34 13.35 13.36 

20 21l Ill. 24 16.26 15.27 14.2/l 13.29 12.30 11. 31 II. 31 Ill. 32 
21 II:!. 22 16.27 15.18 14.29 13.30 12.31 12.31 II. 32 10.33 
22 19.25 17.27 16.18 15.21l 14.31l 13.31 12.32 II. 33 II. 33 
23 19.26 17.211 16,29 15.30 14.31 13.32 12.32 12.33 II. 34 
24 20.26 III. 211 16.29 15.30 14.31 14.32 13.33 12.34 11.34 

25 20.26 1ll.211 17.30 16.31 15.32 14.33 13.33 12.34 12.35 
26 20.27 1!l.29 17.31l 16.31 15.32 14.33 13.34 13.35 12.35 
27 21.27 19.29 Ill. 30 17.31 15.33 15.33 14.34 13.35 12.36 
18 2\. 2/l 19.31l Ill. 31 17.32 16.33 15.34 14.34 13.35 13.36 
29 21. 28 19.30 Ill. 31 17.32 16.33 15.34 14.35 13.36 13.36 

20 30 22.211 20.3\1 Ill. 32 17.32 16.34 15.34 15.35 14.36 13.37 

21 21 19.2'i 17.27 16.2/l 15.29 14.30 13.31 12.32 11.33 1l.33 
22 Ill. 26 17.18 16.29 15.30 14.31 13.32 13.32 12.33 11.34 
23 20.26 1/l.211 17.29 16.30 14.31 14.32 13.33 12.34 11.35 
24 20.27 Ill. 29 17.30 16.31 15.32 14.33 13.34 12.34 12.35 
25 21. 27 19.29 17.31l 16.31 15.32 14.33 14.34 13.35 12.36 

26 2\. 27 19.3U Ill. 31 17.32 15.33 15.34 14,34 13.35 12.36 
27 21. 2ll Ill. 30 111.31 17.32 16.33 15.34 14.35 13.36 13.36 
18 22.2ll 2U.30 111.32 17.33 16.34 15.35 15.35 14.36 13.37 
29 22.29 20.31 19.32 Ill. 33 16.34 16.35 15.36 14.37 13.37 

21 30 22.29 2{1,31 19.32 Ill. 33 17.35 16.35 15,36 14.37 13.3/l 

22 22 21l.26 111.18 17.29 16.30 14.32 14.32 13.33 12.34 11.35 
23 20.24 1/l.29 17.30 16.31 15.32 14.33 13.34 12.35 12.35 
24 21. 27 19.29 17.30 16.31 15.33 14.33 14.34 13.35 12.36 
2'i 21. 2/l 19.30 Ill. 31 17.32 16.33 15.34 14.35 13.36 13.36 
26 n.2/l 19.30 Ill. 31 17.32 16.34 15.34 14.35 13.36 13.37 

27 22.29 20.31 19.32 Ill. 33 16.34 15.35 15.36 14.37 13.37 
28 22.29 20.31 19.32 Ill. 33 17.35 16.35 15.36 14.37 13.311 
29 23.29 21. 31 19.33 Ill. 34 17.35 16.36 15.37 14.311 14.3/l 

22 30 23.30 21. 32 20.33 19.34 17.35 16.36 16.37 15.311 14.39 

23 23 21.27 19.29 17.31 16.32 15.33 14.34 14.34 13.35 12.36 
24 21.211 19.30 \lUI 17.32 16.33 15.34 14.35 13.36 13.36 
25 22.18 20.30 111.32 17.33 16.34 15.35 14.35 14.36 13.37 
26 22.29 20.31 19.32 Ill. 33 It'. 34 16.35 15.36 14.37 13.311 
27 23.29 20.31 19.33 111.34 17.35 16.36 15.36 14.37 14.311 

2ll 23.30 21. 32 20.33 I!!. 34 17.35 16.36 16.37 15.311 14.39 
29 23.30 21.32 20.33 19.35 17.36 17.37 16. :17 15.311 14.39 

23 30 24.30 21. 33 20.34 19.35 Ill. 36 17.37 16.311 15.39 15.39 
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TABLE B.29 (cont.): Critical Values of u for the Runs Test 
a(2): O.SO 0.20 0.10 O.OS 0.02 0.01 0.005 0.002 0.001 

nl n2 a( I): 0.25 0.10 0.05 0.025 O.QI 0.005 0.0025 0.00 I 0.0005 

24 24 22.2H 20.30 UI.32 17.33 16.34 15.35 15.35 14.36 13.37 
25 22.26 20.31 19.32 HU3 17.34 16.35 15.36 14.37 13.38 
26 23.29 20.31 19.33 111.34 17.35 16.36 15.37 14.3H 14.38 
27 23.30 21. 32 20.33 19.34 17.36 16.36 16.37 15.3H 14.39 
28 23.30 21.32 20.34 19.35 IH.36 17.37 I()']II 15.39 14.39 

29 24.31 22.33 20.34 19.35 IK. 36 17.37 16.3H 15.39 15.40 
24 30 24.31 22.33 21.35 20.36 18.37 17.38 17.39 16.40 15.40 

25 25 23.29 21. 31 19.33 111.34 17.35 16.36 15.37 14.311 14.38 
26 23.30 21.32 20.33 19.34 17.36 16.37 16.37 15.311 14.39 
27 24.30 21.33 20.34 19.35 111.36 17.37 Hi,38 15.39 14.39 
211 24.31 22.33 21. 34 19.35 UU7 17.311 16.3H 15.39 15.40 
29 24.31 22.33 21. 35 20.36 111.37 111.311 17.39 16.40 15.41 

25 30 25.32 23.34 21. 35 20.36 19.311 111.39 17.39 16.40 15.41 
26 26 24.30 21.33 20.34 19.35 111.36 17.37 16.3R 15.39 14.40 

27 24.28 22.33 21.34 19.36 18.37 17.3H 16.39 15.39 15.40 
2R 25.31 22.34 21. 35 20.36 19.37 UU8 17.39 16.40 15.41 
29 25.32 23.34 21.35 20.37 19.38 18.39 17.40 16.41 16.41 

26 30 25.32 23.35 22.36 21. 37 19.311 111.39 lit 40 17.41 16.42 

27 27 25.31 22.34 21. 35 20.36 19.37 IIUR 17.39 16.40 15.41 
28 25.32 23.34 21.36 20.37 19.38 IR.39 17.411 16.41 16.41 
29 25.32 23.35 22.36 21.37 19.39 19.39 111.40 17.41 16.42 

27 30 26.33 24.35 22.37 21. 38 20.39 19.40 18.41 17.42 16.43 

28 28 25.33 23.35 22.36 21. 37 19.39 19.39 18.411 17.41 16.42 
29 26.30 24.35 22.37 21.38 20.39 19.4() 18.41 17.42 16.43 

28 30 26.34 24.36 23.37 22.38 20.411 19.41 111.41 17.42 17.43 

29 29 26.34 24.36 23.37 22.38 20.411 19.41 19.41 17.43 17.43 
29 30 27.34 25.36 23.3R 22.39 21. 41) 20.41 19.42 18.43 17.44 

30 30 27.35 25.37 24.311 23.39 21.41 20.42 19.43 18. 44 111.44 

Appendix Table B.29 was prepared using the procedure described by Brownlee (1965: 22S-226) and Swed 
and Eisenhart (1943). 

Example: 
1/0.05(2).24.30 = 20 and 36 

The pairs or critical values are consulted as described in Section 25.6. The probability of a /I found in the 
table is less than or equal to its column heading and greater than the next smaller column heading. For example. 
the two-tailed probability for "I = 2S.112 = 26. and 1/ = 20 is 0.05 < P s n.lo; the two-tailed probability for 
II, = 20.112 = 30. and /I = 15 is 0.002 < P s 0.005; and the one-tailed probability for "I = 24. "2 = 25. and 
u = 21 is 0.10 < P s 0.25. For" larger than 30. use the normal approximation of Section 25.6. 
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TABLE B.30: Critical Values of C for the Mean Square Successive Difference Test 
n a: 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

8 0.2,23 0.4,09 0.5,09 0.5,87 0.6.68 0.7.16 0.7,56 0.7.99 0.8,25 
9 0.2.12 0.3.91 0.4.88 0.5.65 0.6.45 0.6.94 0.7.35 0.7.79 0.8.07 

10 0.2.03 0.3.74 0.4.69 0.5.44 0.6.24 0.6.73 0.7.14 0.7.60 0.7.88 

II 0.1.94 0.3.60 0.4,52 0.5,26 0.6.04 0.6.53 0.6,94 0.7,40 0.7.70 
12 0.1.87 0.3.47 0.4,36 0.5,09 0.5.86 0.6,34 0.6,76 0.7,22 0.7,52 
13 0.1.80 0.3,35 0.4,22 0.4,93 0.5.69 0.6,17 0.6,58 0.7,05 0.7.35 
14 0.1,74 0.3,25 0.4,09 0.4.78 0.5.53 0.6.01 0.6.42 0.6.89 0.7,19 
15 0.1.69 0.3,15 0.3,97 0.4.65 0.5.39 0.5.86 0.6,27 0.6,73 0.7,04 

16 0.1.64 0.3,06 0.3,86 0.4_~3 0.5,25 0.5.72 0.6,12 0.6,511 0.6.89 
17 0.1,59 0.2,98 0.3,76 0.4,41 0.5,13 0.5,58 0.5.99 0.6,45 0.6,75 
18 0.1.55 0.2,90 0.3,67 0.4.31 0.5.01 0.5.46 0.5,86 0.6.32 0.6,62 
19 0.1.51 0.2.83 0.3.58 0.4,21 0.4.90 0.5.35 0.5.74 0.6.19 0.6,50 
20 0.1.48 0.2.76 0.3,50 0.4.12 0.4.80 0.5.24 0.5,63 0.6.08 0.6,38 

21 0.1.44 0.2.70 0.3,43 0.4.03 0.4.70 0.5.13 0.5,52 0.5.97 0.6.27 
22 0.1.41 0.2,64 0.3,35 0.3.95 0.4.61 0.5.04 0.5.42 0.5.!16 0.6.16 
23 0.1.38 0.2,59 0.3,29 0.3.87 0.4,52 0.4,94 0.5,32 0.5.76 0.6.06 
24 0.1.35 0.2.54 0.3,22 0.3,80 0.4.44 0.4.86 0.5,23 0.5.66 0.5.96 
25 0.1,33 0.2,49 0.3.16 0.3.73 0.4.36 0.4.77 0.5.14 0.5.57 0.5.87 

26 0.1,30 0.2.45 0.3,11 0.3.66 0.4,29 0.4.69 0.5,06 0.5,49 0.5.78 
27 0.1,211 0.2.40 0.3.05 0.3.60 0.4,22 0.4.62 0.4.98 0.5.40 0.5.69 
28 0.1,26 0.2.36 0.3.00 0.3.54 0.4.15 0.4,55 0.4.90 0.5,32 0.5,61 
29 0.1,23 0.2,32 0.2.95 0.3.49 0.4.09 0.4.48 0.4.113 0.5.25 0.5,53 
30 0.1,21 0.2,29 0.2.91 0.3.43 0.4.02 0.4,41 0.4.76 0.5.17 0.5.46 

31 0.1.20 0.2.25 0.2.86 0.3,38 0.3.97 0.4,35 0.4.70 0.5.10 0.5,38 
32 0.1.18 0.2.22 0.2,82 0.3,33 03.91 0.4,29 0.4.63 0.5.04 0.5,31 
33 0.1.16 0.2.111 0.2.78 0.3,29 0.3.!16 0.4,23 0.4,57 0.4.97 0.5,25 
34 0.1.14 0.2.15 0.2,74 0.3.24 0.3.80 0.4.18 0.4,51 0.4.91 0.5,18 
35 0.1.13 0.2.12 0.2.71 0.3.20 0.3.76 0.4.12 0.4,46 0.4.85 0.5.12 

36 0.1.11 0.2,10 0.2.67 0.3.16 0.3.71 0.4.07 0.4.40 0.4.79 0.5.06 
37 0.1,10 0.2.07 0.2,64 0.3,12 0.3.66 0.4.02 0.4,35 0.4,74 0.5.00 
38 0.1,08 0.2.04 0.2,60 0.3,08 0.3.62 0.3,97 0.4.30 0.4.68 0.4,95 
39 0.1,07 0.2.02 0.2,57 0.3,04 0.3,57 0.3.93 0.4,25 0.4.63 0.4.89 
40 0.1.06 0.1,99 0.2,54 0.3.01 0.3,53 0.3,88 0.4,20 0.4,58 0.4,!14 

41 0.1.04 0.1,97 0.2,51 0.2.97 0.3.49 0.3.84 0.4,15 0.4,53 0.4,79 
42 0.1.03 0.1.95 0.2,48 0.2.94 0.3.45 0.3.80 0.4,11 0.4.48 0.4.74 
43 0.1,02 0.1,92 0.2,45 0.2.90 0.3.42 0.3.76 0.4.07 0.4.44 0.4,69 
44 0.1.01 0.1.90 0.2,43 0.2.87 0.3.38 0.3,72 0.4,02 0.4.39 0.4,64 
45 0.1,00 0.1.88 0.2.40 0.2,!14 0.3,35 0.3.68 0.3,911 0.4.35 0.4,60 

46 0.0.99 O.1,!16 0.2,38 0.2.81 0.3,31 0.3.64 0.3,94 0.4,31 0.4.55 
47 0.0.98 0.1.84 0.2,35 0.2,79 0.3.28 0.3.61 0.3.91 0.4.26 0.4,51 
48 0.0,97 0.1.82 0.2,33 0.2,76 0.3.25 0.3,57 0.3.87 0.4,22 0.4,47 
49 0.0,96 0.1,81 0.2,30 0.2,73 0.3.22 0.3.54 0.3.83 0.4.19 0.4.43 
50 0.0.95 0.1,79 0.2.28 0.2.70 0.3.19 0.3,51 0.3.80 0.4.15 0.4,39 

52 0.0,93 0.1,75 0.2.24 0.2,65 0.3.13 0.3,44 0.3.73 0.4,08 0.4,31 
54 0.0,91 0.1,72 0.2.20 0.2,61 0.3,07 0.3.38 0.3.67 0.4,01 0.4,24 
56 0.0,90 0.1.69 0.2,16 0.2,56 0.3,02 0.3.33 0.3.61 0.3.94 0.4.17 
58 0.0,88 0.1.66 0.2,12 0.2,52 0.2,97 0.3.27 0.3,55 0.3.88 0.4.11 
60 0.0.87 0.1.64 0.2.09 0.2.48 0.2.92 0.3,22 0.3.49 0.3.82 0.4.05 
62 0.0,85 0.1,61 0.2,06 0.2.44 0.2.88 0.3.17 0.3.44 0.3,76 0.3.99 
64 0.0.84 O.US 0.2.03 0.2.40 0.2.84 0.3.13 0.3,39 0.3.71 0.3.93 
66 0.0.83 0.1,56 0.2.00 0.2,37 0.2.79 0.3,08 0.3,34 0.3,66 0.3.117 
68 0.0.81 0.1,54 0.1.97 0.2,33 0.2.76 0.3.04 0.3,30 0.3,61 0.3.82 
70 0.0.80 0.1,52 0.1.94 0.2,30 0.2,72 0.3.00 0.3.25 0.3.56 0.3.77 
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TABLE B.30 (cont.): Critical Values of C for the Mean Square Successive Difference Test 
n 0: 0.25 0.\0 0.05 0.025 0.01 0.005 0.0025 O.lH} I 0.0005 

72 0.0.79 U.I.50 0.1.91 0.2.27 O.2.till 0.2.% 0.3.21 0.3.51 003.72 
74 0.0.7R 1I.1.4R 0.1.89 0.2.24 0.2.65 0.2.92 0.3.17 0.3.47 003.68 
76 0.0.77 0.1.46 O.l.X6 0.2.21 U.2.61 O.2.~ O.3.I:l 0.3.42 0.3,63 
78 0.11.76 0.1.44 II.I.M 0.2.IR 0.2.58 0.2.85 O.3J)<) 0.3.38 003.59 
80 0.0.75 0.1.42 0.1.82 0.2.16 0.2.55 O.2.RI 11.3.05 0.3.34 003.55 

82 11.11.74 0.1.40 0.1.811 0.2.13 0.2.52 0.2.78 0.3.112 003.31 003.51 
84 0.0.73 0.1.39 0.1.77 0.2.11 0.2.49 0.2.75 O.2.9X 0.3.27 0.3.47 
86 0.0.72 0.1,37 0.1.75 0.2.08 0.2.46 O.2.n 0.2.95 0.3.23 0.3.43 
8ll 0.0.71 0.1.36 0.1.73 1I.2.1J(i 0.2.44 0.2.69 0.2.92 0.3.20 0.3.39 
90 0.0.70 0.1.34 U.I.72 0.2.04 11.2.41 U.2.66 1l.2.89 0.3.16 0.3.36 

92 1l.O.69 O. I.:H 0.1.70 11.2.02 0.2.38 0.2.63 0.2.R6 0.3.13 U.3.32 
94 0.0.68 0.1.31 O.l.till 0.2.00 0.2.36 1l.2.60 (I.2.X3 0.3.10 0.3.29 
% 0.0.67 0.1.30 0.1.66 0.1.98 0.2.33 1l.2.58 O.2.AA 1l.3.07 0.3.26 
9X 0.0.65 0.1.29 0.1.65 0.1.96 0.2.31 U.2.55 11.2.77 0.3.04 003.23 

100 0.11,64 0.1.27 1I.l.ei3 0.1.94 11.2.29 0.2.53 0.2.75 0.3,01 0.3.20 

105 0.\.24 11.1.59 0.1.89 0.2.24 0.2.47 0.2.68 0.2.94 0.3.12 
110 11.1.21 1l.1.56 O.I.R5 0.2.19 0.2.41 1l.2.62 O.2.R8 0.3.05 
115 11.1.19 0.152 O.I.RI 0.2.14 0.2.36 0.2.57 U.2.R2 0.2.99 
120 0.1.16 0.1.49 0.1.77 0.2.10 0.2.31 0.2.52 0.2.76 0.2.93 
125 0.1.14 O.IA6 0.1.74 0.2.05 0.2.27 0.2.47 0.2.71 0.2.87 

130 0.1.11 0.1.43 O.I.711 1l.2.112 0.2.23 0.2.42 1I.2.M 1I.2.K2 
135 0.1.09 1l.1.41 1l.1.67 11.1.98 0.2.19 0.2.31\ 0.2.61 0.2.n 
140 0.1.07 O.I.3R II.I.M 0.1.94 0.2.15 0.2-14 0.2.56 0.2.72 
145 0.1.05 1l.1.36 0.1.61 0.1.91 0.2.11 0.2.311 0.2.52 0.2.68 
150 0.1.1l2 0.1.33 11.1.59 O.I.AA 0.2.1lR 0.2.26 0.2.4R 0.2,63 

Appendix Table B.30 was prepared by the method outlined in Young (1941). Examples: 

Cn.o5.60 = 0.209 and CO.lll.6/( = 0.276 

For II greater than shown in the table. the normal approximation (Equation 25.22) may be utili1.ed. This 
approximation is excellent. especially for 0 ncar 0.05. as shown in the following tabulation. The following table 
considers the absolute difference between the exact critical valuc of C and the value of C calculated from the 
normal approximation. Given in the table are the minimum samplc sizes necessary to achieve such absolute 
differences of various specified magnitudes. 

Absolute 
Difference a = 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

:50.002 30 35 8 35 70 90 120 
:5 O.OOS 20 20 8 20 45 60 80 100 120 
:5 0.010 15 10 8 15 30 40 50 60 lID 
:50.020 8 8 8 8 20 25 30 40 45 
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TABlE B.31: Critical Values, U, for the Runs-Up-and-Down Test 
a(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

n a(\): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

4 I.. 1. - -. - -. - -. - '. - -. -
5 2. - 1.- I. - I.- -. - -. -
6 2.5 2. - I. - 1.- 1.- I. - -. - -. -
7 3.6 2. - 2. - 2. - I. - 1.- I. - 1.- 1.. 
II 3.7 3. 7 2.- 2. - 2. - I. - 1. - 1.- I. -
9 4.7 3.8 3.8 2. - 2. - 2.- 2. - 1.- I. -

10 5,8 4.9 3.9 3, - 3.- 2. - 2, - 2,- 2. -

11 5.9 4.10 4.10 4,10 3. - 3. - 3.- 2. - 2. -
12 6.10 5.10 4.11 4.11 4. - 3. - 3. - 3. - 2. -
13 6.10 6. Ii 5.12 5. 12 4.12 4. - 3. - 3. - 3. -
14 7.11 6.12 6.12 5.13 5.13 4.13 4.- 4.- 3. -
15 8.12 7.13 6.13 6. 14 3.14 5.14 4.- 4. - 4. -

16 8.12 7.13 7.14 6.14 6. 15 5. 15 5, 15 5. - 4. -
17 9.13 ll. 14 7.15 7.15 6. 16 6.16 5. 16 5. - 5. -
18 10.14 8.IS 1l.15 7.16 7.16 6. 17 6.17 6. 17 5. -
19 10.15 9.10 8. 16 8.17 7.17 7. III 7. 18 6. III 6.18 
20 11.15 10.16 9.17 8.17 8.18 7.18 7.19 7.19 6.19 

21 11.16 10,17 10.18 9. 18 8.19 8.19 8.20 7.20 7.20 
22 12,17 11. 18 10.18 10.19 9.20 8.20 8.20 8.21 7.21 
23 13.17 12.18 11.19 10.20 10.20 9.21 9.21 8.22 8.22 
24 13. 18 12.19 11.20 11,20 10.21 10.22 9.22 9,22 8.23 
25 14.19 13.20 12.21 11. 21 II. 22 10.22 \0.23 9.23 9.23 

26 15.29 13.21 13.21 12.22 1I.23 11.23 10.24 10.24 9.24 
27 15.20 14.21 13.22 13.23 12.23 11,24 11.24 10.25 10.2S 
28 16.21 15.22 14.23 13.23 12,24 12.25 11.25 II. 26 10.26 
29 17.21 15.23 14.24 14.24 13.25 12.25 12.26 11.26 11. 27 
30 17.22 16.24 15.24 14.25 13.26 13.26 12.27 12.27 11.28 

31 18.23 16.24 16.25 15.26 14.26 13.27 13.27 12.28 12.28 
32 18.24 17,25 16.26 15.26 15.27 14.28 14.28 13.29 12.29 
33 19.24 18.26 17.26 16.27 15.28 15,29 14.29 13.30 13.30 
34 20.25 18.26 17.27 17.28 16.29 15.29 15,30 14.20 14,31 
35 20,26 19.27 18.28 17.29 16,29 16.30 15.31 15.31 14.32 

36 21.26 20.28 19.29 18.29 17.30 16.31 16.31 15.32 15.32 
37 22.27 20.29 19.29 18.20 18.31 17.32 16.32 16.33 15.33 
38 22.28 21. 29 20.30 19,31 18.32 17.32 17.33 16.33 16.34 
39 23.28 21.30 20.31 20.32 19.32 18.33 17.34 17.34 16.35 
40 24.29 22.31 21. 32 20.32 19.33 19.34 18.34 17.35 17.35 

41 24.30 23.31 22.32 21. 33 20.34 19.35 19.34 18.36 17.36 
42 25.30 23.32 22.33 21.34 20.35 20.35 19.36 18.37 18,37 
43 26.31 24.33 23.34 22.35 21.35 20.36 20.37 19.37 Ill. 38 
44 26.32 24.33 23.34 23.35 22.36 21.37 20.37 20.38 19.39 
45 27.33 25.34 24.35 23.36 22.37 22.38 21.38 20.39 20.39 

46 27.33 26.35 25.36 24.37 23.38 22.38 21.39 21.40 20.40 
47 28,34 26.36 25,37 24,37 23,38 23.39 22.40 21.40 21.41 
48 29.35 27.36 26.37 25.38 24.39 23.40 23.40 22, 41 21.42 
49 29.35 28.37 27.38 26.39 25.40 24,41 23.41 22.42 22.42 
50 30.36 28.38 27.39 26.40 25,41 24.41 24.42 23.43 22.43 

Appendix Table B.31 was prepared using the recursion algorithm attributed to Andre (1883; Bradley. 1968: 
281) in order to ascertain the probability of a particular II, after which it was determined what value of It would 
yield a cumulative tail probability,.;; a. Note: The a represented by each u in the table is less than or equal to 
that in the column heading and greater than the next smaller column heading. For example. if n = 9 and II = 3 
for a two-tailed test, 0.05 < p,.;; 0.10: if n = 15 and u = 7 for u one-tailed test for uniformity. 0.05 < p,.;; 0.10. 

The normal approximation of Section 25.8 will correctly reject Ho at the indicated one-tailed and two-tailed 
significance levels for sample sizes as small as these: 

a(2): 0.50 0.20 0.10 0.05 0.02 0.Q1 0.005 0.002 0.001 
er(I): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

n: 5 4 9 11 13 15 19 20 20 
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TABLE B.32: Angular Deviation, s, As a Function of Vector Length, r , 0 I 2 3 4 5 6 7 8 9 

0.00 81.0285 80.9879 80.9474 80.9068 80.8662 80.8256 80.7850 80.7444 80.7037 80.6630 
0.01 80.6223 80.5816 80.5408 80.5000 80.4593 80.4185 80.3776 80.3368 80.2959 80.2550 
0.02 80.2141 80.1731 80.1322 80.0912 80.0502 80.0092 79.9682 79.9271 79.8860 79.8449 
0.03 79.8038 79.7626 79.7215 79.6803 79.6391 79.5978 79.5566 79.5153 79.4740 79.4327 
0.04 79.3914 79.3500 79.3086 79.2672 79.2258 79.1843 79.1429 79.1014 79.0599 79.0183 

0.05 78.9768 78.9352 78.8936 78.8520 78.8103 78.7687 78.7270 78.6853 78.6435 78.6018 
0.06 78.5600 78.5182 78.4764 78.4345 78.3927 78.3508 78.3089 78.2670 78.2250 78.1830 
0.07 711.1410 78.0990 78.0569 78.0149 77.9728 77.9307 77.8885 77.8464 77.8042 n.7620 
0.08 77.7198 77.6775 77.6353 77.5930 77.5506 77.5083 77.4659 77.4235 77.3811 n.33f1!1 
0.09 77.2962 77.2537 77.2112 77.1687 77.1262 77.0836 77.0410 76.9984 76.9557 76.9130 

0.10 76.8703 76.8276 76.7849 76.7421 76.6993 76.6565 76.6137 76.5708 76.5279 76.4850 
0.11 76.4421 76.3991 76.3562 76.3132 76.2701 76.2271 76.1840 76.1409 76.0978 76.0546 
0.12 76.0114 75.9582 75.9250 75.8818 75.8385 75.7952 75.7519 75.7085 75.6651 75.6217 
0.13 75.5783 75.5349 75.4914 75.4479 75.4044 75.3608 75.3172 75.2737 75.2300 75.1864 
0.14 75.1427 75.0990 75.0553 75.0115 74.9678 74.9240 74.8801 74.8363 74.7924 74.7485 

0.15 74.7045 74.6606 74.6166 74.5726 74.5286 74.4845 74.4404 74.3963 74.3522 74.3080 
0.16 74.2638 74.2196 74.1754 74.1311 74.0868 74.0425 73.9981 73.9537 73.9093 73.8649 
0.17 73.8204 73.7760 73.7314 73.6869 73.6423 73.5978 73.5531 73.5085 73.4638 73.4191 
0.18 73.3744 73.3296 73.2849 73.2401 73.1952 73.1503 73.1055 73.0605 73.0156 72.9706 
0.19 72.9256 72.8805 72.8355 72.7904 72.7453 72.7002 72.6550 72.6098 72.5646 72.5193 

0.20 72.4741 72.4287 72.3834 72.3380 72.2926 72.2472 72.2018 72.1563 72.1108 72.0652 
0.21 72.0197 71.9741 71.9285 71.8828 71.8371 71.7914 71.7457 71.6999 71.6541 71.6083 
0.22 71.5624 71.5165 71.4706 71.4247 71.3787 71.3327 71.2866 71.2406 71.1945 71.1483 
0.23 71.1022 71.0560 71.0098 70.9635 70.9173 70.8710 70.8246 70.7783 70.7319 70.6854 
0.24 70.6390 70.5925 70.5460 70.4994 70.4528 70.4062 70.3596 70.3129 70.2662 70.2195 

0.25 70.1727 70.1259 70.0791 70.0322 69.9853 69.9384 69.8914 69.8445 69.7975 69.7504 
0.26 69.7033 69.6562 69.6091 69.5619 69.5147 69.4674 69.4202 69.3729 69.3255 69.2782 
0.27 69.2307 69.1833 69.1358 69.0883 69.0408 68.9933 68.9456 68.8980 68.8504 68.8027 
0.28 68.7549 68.7072 68.6594 68.6115 68.5637 68.5158 68.4678 68.4199 68.3719 68.3239 
0.29 68.2758 68.2277 68.1796 68.1314 68.0832 68.0350 67.9867 67.9384 67.8901 67.8417 

0.30 67.7933 67.7448 67.6964 67.6478 67.5993 67.5507 67.5021 67.4535 67.4048 67.3560 
0.31 67.3073 67.2585 67.2097 67.1608 67.1119 67.0630 67.0140 66.9650 66.9160 66.8669 
0.32 66.8178 66.7686 66.7195 66.6702 66.6210 66.5717 66.5223 66.4730 66.4236 66.3741 
0.33 66.3246 66.2751 66.2256 66.1760 66.1264 66.0767 66.0270 65.9773 65.9275 65.8777 
0.34 65.8278 65.7779 65.7280 65.6781 65.6281 65.5780 65.5279 65.4778 65.4277 65.3775 

0.35 65.3272 65.2770 65.2267 65.1763 65.1259 65.0755 65.0250 64.9745 64.9240 64.8734 
0.36 64.8228 64.7721 64.7214 64.6707 64.6199 64.5691 64.5182 64.4673 64.4164 64.3654 
0.37 64.3143 64.2533 64.2122 64.1610 64.1098 64.0586 64.0074 63.9561 63.9047 63.8533 
0.38 63.8019 63.7504 63.6989 63.6473 63.5957 63.5441 63.4924 63.4407 63.3889 63.3371 
0.39 63.2852 63.2334 63.IIH4 63.1294 63.0774 63.0253 62.9732 62.9211 62.8689 62.8167 

0.40 62.7644 62.7121 62.6597 62.6073 62.5548 62.5023 62.4498 62.3972 62.3445 62.2919 
0.41 62.2391 62.1854 62.1336 62.0807 62.0278 61.9749 61.9219 61.8688 61.8158 61.7626 
0.42 61.7094 61.6562 61.6030 61.5496 61.4963 61.4429 61.3894 61.3359 61.2824 61.2288 
0.43 61.1751 61.1215 61.0677 61.0139 60.9601 60.9063 60.8523 60.7984 60.7443 60.6903 
0.44 60.6361 60.5820 60.5278 60.4735 60.4192 60.3648 60.3104 60.2560 60.2015 60.1469 

0.45 60.0923 60.0377 59.9830 59.9282 59.8734 59.8185 59.7636 59.7087 59.6537 59.5986 
0.46 59.5435 59.4884 59.4332 59.3779 59.3226 59.2672 59.2118 59.1563 59.1008 59.0452 
0.47 58.9896 58.9339 58.8782 58.8224 58.7666 58.7107 58.6548 58.5988 58.5427 58,4866 
0.48 58.4305 58.3743 58.3180 58.2617 58.2053 58.1489 58.0924 58.0358 57.9792 57.9226 
0.49 57.8659 57.8091 57.7523 57.6954 57.6385 57.5815 57.5245 57.4674 57.4102 57.3530 



Appendix B Statistical Tables and Graphs 839 

TABLE B.32 (cont.): Angular Deviation, s, As a Function of Vector Length, r 
r 0 I 2 :I 4 5 6 7 II IJ 

0.50 57.295R 57.23!14 57.11111 57.12:16 57.(1061 57.IXl!I6 56.1J51O 56.RIJ:I:I 56.1135f1 5f1.777R 
0.51 56.71W 5f1.6620 55.5040 56.5460 5f1.41179 56.421JR 56.3716 56.:1133 56.2550 5f1.1%6 
0.52 56.D1I2 56.11797 56.11211 55.9625 55.IJ0311 55.!I450 55.71162 55.7273 55.66114 55.Ot)<)4 
O.s3 55.5503 55.41J12 55.4320 55.3727 55.3134 55.2540 55. I 1J46 55.1351 55.0755 55.01 59 
0.54 54.1J562 54.R964 54.11366 54.7767 54.7167 54.6567 54.5%6 54.5364 54.4762 54.4159 

0.55 54.3555 54.2951 54.2346 54.1741 54.1134 54.0527 53.W20 53.1J311 53.11702 5.1X092 
0.56 53.74R2 53.6R7 I 53.6259 53.5647 53.5033 53.4419 533M5 53.31X9 53.2573 53.1957 
0.57 53.1339 53.0721 53.0W2 52.94X2 52.m2 52.X24I 52.7619 52.61J1J7 52.6373 52.5741J 
0.5!! 52.5124 52.44W 52.31173 52.3246 52.261X 52. I 9X9 52.1360 52.07:10 52.'X)<J<) 51.946X 
0.51J 51.8835 51.X202 51.756X 51.6934 51.629X 51.5662 51.5025 51.4:lX7 51.3741J 51.3109 

O.OtI 51.2469 51.1X2X 51.11X6 51.0544 50.9<)'MI 50.9256 50.X611 50.7965 50.n1X 50.6671 
0.61 5().6023 50.5373 50.4723 50.4073 50.3421 50.276!1 50.2115 50.1461 50.O!I06 5'W150 
0.62 49.9493 49.11835 49.XI77 49.7517 49.6X57 49.6196 49.5534 49.4X71 49.4207 41J.3542 
0.63 49.2X77 49.2210 49.1543 41J.0!I75 41J.0205 4!I.1J535 4!1.l\X64 4RXI1J2 4R7511J 4X.6X46 
0.64 4!I.6171 4X.5495 4!I.4XIX 4R4141 4X.3462 4X.27X3 4R2102 4RI421 4X.C17:W 4KIXI55 

0.65 47.9371 47.X6X5 47.71J99 47.n12 47.6624 47.51J34 47.5244 47.4553 473X61 47.3167 
0.66 47.2473 47.177X 47.IOXI 47.03!14 46.96X6 46.1I1JX6 46.X2X6 46.75X4 46.6XX2 46.617X 
0.67 46.5473 46.4767 46.4060 463353 46.264:1 46.11J33 46.1222 46.05W 45.1J7% 45.IJOX2 
0.6R 45.11366 45.7541J 45.6932 45.6213 45.541J2 45.4771 45.4041J 45.3:125 45.2OtXI 45.IX75 
0.69 45.1147 45.0411J 44.%1)() 44.X951J 44.X227 44.741J4 44.6760 44.6025 44.52M 44.4550 

0.70 4431111 44.3071 44.2321J 44.15X6 44.1)!I42 44.'X)1)7 43.1J35I 43.X6tH 43.7X54 43.7103 
0.71 43.6352 43.55W 43.4X44 43.40XIJ 43.3332 43.2574 43.11114 43.1053 43.021J1 42.1J527 
0.72 42.11762 42.7lJ<)6 42.722X 42.6451J 4256X1J 42.41J17 42.4144 423369 42.2593 42.11115 
0.73 42.1036 42.0256 41.9474 41.11691 41.71)(ltl 41.7120 41.6332 41.55·[l 41.4752 41.31J6t) 
0.74 41.3166 41.2370 41.1573 41.11775 40.W75 40.1J174 40xm 4(1.7566 40.6760 4(1.5952 

0.75 40.5142 40.4331 40.3511J 40.2704 4t1.IAAX 411.1070 4t)J)25 I 39.1J43O 39.Xl1l17 39.77X3 
0.76 39.6957 39.6129 39.52lJ<) :l1J.44611 39.3635 39.21«XI 39.1963 :W.1125 3\1.0285 3RIJ443 
0.77 3RII5W 3K7753 3K(1)(ltl 3ROt)56 311.5205 311.4352 3K3497 311.2640 311.17111 311.0920 
O.7S 3!!.OO57 37.9192 37.X326 37.7457 37.65116 37.5714 37.4X39 37.3962 37.30!13 37.2202 
0.71J 37.1319 37.11434 36.1J547 36.11657 36.7766 3f1.61172 36.51J76 36.50711 36.41711 36.3275 

0.80 36.2370 36.1463 36.0554 35.9642 35.1\72X 35.71112 35.6X93 35.5972 35.5049 35.412.'\ 
O.RI 35.3195 35.2264 35.1331 35.0396 34.9457 34.11517 34.7573 34.66211 34.5679 34.47211 
0.X2 34.3775 34.211IX .'\4.lll'i9 34.IllNX .H.9933 :13.X966 :"':'.7997 33.71124 33.6tl4X 33.50711 
0.R3 33.401N 33.311l5 33.21 IX 33.112X 33.11135 32.9139 32.X14t1 32.71311 32.6133 32.512.'\ 
0.!14 32.4114 32.3099 32.20112 32.Hltll 32.(XI37 31.1)(X)9 31.7979 31.6945 :11.5907 31.4l«ltl 

0.R5 31.3X22 31.2774 31.1723 31.1ltl6X 30.96t19 311.X547 30.74111 30.6412 30.5:131J 30.4262 
0.86 30.31111 30.20% 30.IIX)7 21J.99 I 5 29.MIII 29.77 IX 29.6613 29.5504 29.4:11J1 293274 
0.R7 29.2152 29. ]()26 2X.IJX96 2X.X762 2ll.7623 2K6479 21\.5331 2K417X 2X.3020 2X-IX5X 
0.88 2ll.'ltllJl 27.9519 27.11342 27.716t1 275973 27.47XI 27.35!14 27.2:1XI 27.1173 26.lJ<)6() 
0.R9 26.X741 26.7517 26.62X7 265051 26.3X](I 26.2562 26.1309 26.0050 25.X7!14 25.7513 

0.1)() 25.62.'\4 25.4950 25.3659 25.2362 25. ](I5X 24.9746 24.!I42X 24.7Hl4 24.5771 24.44:12 
n.91 24.:lOX5 24.1731 24.0369 23.I)(XXI 23.7622 23.6237 23.41143 23.3441 23.20J() 2:1.0611 
n.n 22.9183 22.7746 22.6J(X) 22.4!145 22.331«) 22.11)(ltl 22.'1421 21.X927 21.7422 21.51)(17 
0.93 21.43S1 21.2X44 21.12% 20.1J737 20.8166 2n.65113 20.4IJM 21l.33XO 20.1759 2'1.0126 
0.94 19.!I47S 19.6X17 195142 19.3453 19.17411 19.'XI29 IX.X293 IK6542 111.4773 IR29M 

0.95 lX-lIX5 17.9364 17.7524 175666 17.37X7 17.IM7 16.1J967 16.X024 16.6059 16.4n70 
0.96 16.2057 16.001 X 15.7954 15.5X61 15.3741 15.151)(1 14.9409 14.7196 14.494X 14.2666 
0.97 14.0345 13.79X7 13.55117 13.3144 13.(1655 12.l!117 12.5529 12.2AA6 12.01X5 11.7422 
0.911 11.4592 11.1(1)() Hl.8711 I0564X lU.2494 9.92.19 9.5X74 9.23117 X-X76:1 X.49X4 
0.99 X.1029 7.6X71 7.2474 6.7794 ().2765 5.7296 5.1247 4.4:lX2 :I.623X 2.5625 

1.00 U.OIXXI 

Values of .\' are given in degrees. hy Equation 26.20. 
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TABLE B.33: Circular Standard Deviation. so. as a Function of Vector Length. r 
r 0 1 2 3 4 5 6 7 8 9 

00 212.9639 201.9968 195.2961 190.3990 186.5119 183.2748 11lO.4925 178.0473 175.8622 
173.8843 172.0755 170.4075 168.8585 167.4115 166.0531 164.7723 163.5600 162.4087 1613121 
160.2649 159.2623 158.3005 157.3760 156.4857 155.6270 154.7974 153.9950 153.2178 152.4640 
151.7323 151.0212 150.3295 149.6560 148.9998 148.3597 147.7351 147.1250 146.5287 145.9456 
145.3750 144.8163 144.2690 143.7326 143.2066 142.6905 142.1839 141.6865 141.1979 140.7177 

140.2456 139.7813 139.3245 138.8749 138.4324 137.9966 137.5672 137.1442 136.7273 1363162 
135.9109 135.5110 135.1165 134.7272 134.3430 133.9636 133.5AA9 133.2189 132.8533 132.4290 
132.1350 131.7R22 131.4333 131.0883 130.7472 130.4097 130.0759 129.7455 129.4186 129.0951 
128.7748 128.4578 128.1438 127.8329 127.5250 127.2200 126.9178 126.61R4 126.3218 126.0278 
125.7364 125.4476 125.1612 124.8774 124.5959 124.3167 124.0399 123.7654 123.4930 123.2228 

122.9548 122.6888 122.4249 122.1630 121.<J031 121.6452 121.3891 121.1349 120.8825 120.6320 
120.3832 120.1361 119.8908 119.6472 119.4052 119.1648 118.9261 118.68R9 118.4533 118.2192 
117.9R66 117.7554 117.5258 117.2975 117.0707 116.R452 116.6211 116.3984 116.1770 115.9569 
115.7381 115.5205 115.3042 115.0891 114.8753 114.6626 114.4511 114.2408 114.0316 113.8236 
113.6166 113.4108 113.2060 113.0023 112.7997 112.59Rl 112.3976 112.1980 111.9995 111.8019 

111.6054 111.4097 111.2151 111.0213 110.8285 110.6367 110.4457 110.2556 110.0664 109.8780 
109.6906 109.5039 109.3182 109.1332 108.9491 108.7657 108.5832 108.4015 108.2205 108.0404 
107.8609 107.6R23 107.5044 107.3272 107.1508 106.9751 106.8000 106.6258 106.4522 106.2793 
106.1070 105.9355 105.7646 105.5944 105.4248 105.2559 105.0877 104.9200 104.7530 104.5866 
104.4209 104.2557 104.0911 103.9272 103.7638 103.6010 103.4388 103.2772 103.1161 102.9556 

102.7957 102.6362 102.4774 102.3191 102.1613 102.0040 101.R473 101.6911 101.5354 101.3802 
101.2255 101.0714 100.9177 100.7645 100.6118 IIX1.4595 100.3078 100.1565 100.0057 99.8553 
99.7054 99.5560 99.4070 99.2585 99.1104 98.9628 98.8155 9R.66AA 9R.5224 983765 
98.2310 98.0859 97.9412 97.7969 97.6531 97.5096 97.3665 97.2239 97.0816 96.9397 
96.79R2 96.6571 96.5164 96.3760 96.2360 96.0964 95.9571 95.8182 95.6797 95.5415 

95.4037 95.2663 95.1292 94.9924 94.8560 94.7199 94.SR41 94.4487 94.3136 94.1789 
94.0445 93.9104 93.7766 93.6432 93.5100 93.3772 93.2447 93.1125 92.9806 92.8490 
92.7177 92.5867 92.4560 92.3257 92.1956 92.0657 91.9362 91.8070 91.6781 91.5494 
91.4210 91.2929 91.1651 91.0375 90.9102 90.7832 90.6565 90.5300 90.4038 90.2778 
90.1521 90.0267 89.9015 89.7766 89.6519 89.5275 89.4033 89.2794 89.1557 89.0322 

AA.9090 88.7861 88.6634 88.5409 88.4186 88.2966 88.1748 88.0533 87.9320 87.8109 
87.6900 87.5693 87.4489 87.3287 87.2087 87.0AA9 86.9694 86.8500 86.7309 R6.6120 
86.4933 86.3748 86.2565 86.1384 86.0205 85.9028 85.7853 85.6680 85.5S09 85.4340 
85.3173 85.2008 85.0845 84.96R4 84.8525 84.7367 84.6212 R4.5058 84.3906 84.2757 
R4.1608 84.0462 83.9317 83.8175 83.7034 83.5895 83.4757 83.3621 83.2487 83.1355 

83.0224 R2.9095 82.7968 82.6843 82.5719 82.4597 82.3476 82.2357 82.1240 82.0124 
81.9010 81.7897 81.6786 81.5676 81.4568 81.3462 81.2357 81.1254 81.0152 80.9052 
80.7953 80.6855 1lO.5759 80.4665 1lO.3572 80.2480 SO.1390 SO.0301 79.9214 79.8128 
79.7043 79.5960 79.4878 79.3798 79.2719 79.1641 79.0565 78.9490 78.8416 78.7343 
78.6272 78.5202 78.4.)33 78.3066 78.2000 78.0935 77.9872 77.8llO9 77.7748 77.6688 

77.5629 77.4572 77.3516 77.2460 77.1470 77.0354 76.9302 76.8252 76.7202 76.6154 
76.5107 76.4061 76.3016 76.1973 76.0930 75.9R88 75.8848 75.7809 75.6770 75.5733 
75.4697 75.3662 75.2628 75.1594 75.0562 74.9531 74.8501 74.7472 74.6444 74.5417 
74.4391 74.3366 74.2342 74.1319 74.0296 73.9275 73.8255 73.7235 73.6217 73.5199 
73.4183 73.3167 73.2152 73.1138 73.0125 72.9113 72.8101 72.7091 72.6081 72.5072 

72.4064 72.3057 72.2051 72.1046 72.0041 71.9037 71.S034 71.7032 71.6030 71.5030 
71.4030 71.3031 71.2033 71.1035 71.0038 70.9042 70.llO47 70.7052 70.6058 70.5065 
70.4073 70.3081 70.2090 70.1100 70.0110 69.9121 69.8133 69.7146 69.6159 69.5173 
69.4187 69.3202 69.2218 69.1234 69.0251 68.9269 68.8287 68.7306 68.6326 68.5346 
68.4367 68.3388 68.2410 68.1433 68.0456 67.9479 67.8504 67.7528 67.6554 67.5580 
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TABLE B.33 (cont.): Circular Standard Deviation. SO. as a Function of Vector Length. , 
r 0 I 2 3 4 5 6 7 II 9 

67.4606 67.3633 67.2661 67.16!!9 67.07111 66.9747 (i(i.8776 66.7806 66.007 66.51!68 
66.4900 66.3932 66.2965 66.1991! (i(i. J03 I (i(i.0065 65.9100 65.8135 65.7170 65.6206 
65.5243 65.4279 65.3316 65.2354 65.1392 65.0431 64.9469 64.11509 64.7548 64.6588 
64.5629 64.4670 64.3711 64.2752 64.1794 64.0837 63.9879 63.8922 63.7966 63.7(Kl9 
63.6053 63.5098 63.4143 63.3188 63.2233 63.1279 63.0325 62.9371 62./W17 62.7464 

62.6511 62.5559 62.4607 62.3655 62.2703 62.1751 62.0800 61.91149 61.1!899 61.7948 
61.6998 61.6048 61.5098 61.4149 61.3199 61.22511 61.1301 61.0353 60.9404 60.11456 
60.7508 60.6560 60.5612 60.4664 60.3717 60.2770 611.1823 611.111176 59.9929 59.8982 
59.8036 59.7089 59.6143 59.5197 59.42.'i1 59.33115 59.2359 59.1414 59.()468 511.9523 
58.8577 58.7632 58.66!!7 58.5742 511.4797 511.3852 58.2907 58.1962 58.11117 58.(KI72 

57.9127 57.8182 57.72.l8 57.6293 57.534H 57.4404 57.3459 57.2514 57.1570 57.0625 
56.9680 56.8736 56.7791 56.6!!46 56.5902 56.4957 56.4012 56.31167 56.2122 56.1177 
56.0232 55.921!7 55.8342 55.7396 55.6451 55.55115 55.45611 55.3614 55.2668 55.1722 
55.0776 54.91!30 54.88H4 54.7931! 54.6991 54.6044 54.5097 54.4150 54.3203 54.22.'i6 
54.1308 54.0361 53.9413 53.8465 53.7517 53.6S6!! 53.5619 53.4671 53.3722 53.2772 

53.1823 53.(1873 52.9923 52.8973 52.8022 52.7071 52.6120 52.5169 524217 52.32(i(i 
52.2313 52.1361 52.(144111 51.9455 51.85112 51.7S4l! 51.6594 51.56411 51.46!!5 51.3730 
51.2775 51.11119 51.11863 50.99117 50.8950 50.7993 50.7035 50.61177 50.5119 50.41611 
511.3201 50.2241 50.12I!1 SO.032 I 49.93611 49.83911 49.7437 49.6474 49.5512 49.4549 
49.3585 49.2621 49.1656 49.11691 411.9725 411.11759 411.7792 411.6!!25 48.51158 48.4I!K9 

411.3920 48.2951 48.1 91! I 48.11111 411.01139 47.9068 47.8095 47.7123 47.6149 47.5175 
47.4200 47.3225 47.2249 47.1272 47.0295 46.9317 46.11338 46.7359 46.6.l79 46.53911 
46.4417 46.3435 46.2452 46.146!! 46.041!4 45.9499 45.8513 45.7527 45.6539 45.5551 
45.4562 45.3573 45.25112 45.1591 45.0599 44.9606 44.11612 44.7617 44.(i(i22 44.5625 
44.4628 44.3630 44.2631 44.1631 44.06311 43.96211 43.!1625 43.7621 43.(i(i17 43.5611 

43.4604 43.3597 43.251!8 43.15711 43.056!! 42.9556 42.11543 42.7529 42.6515 42.5499 
42.4482 42.3463 42.2444 42.1424 42.0402 41.9380 41.11356 41.7331 41.6305 41.5277 
41.4249 41.3219 41.21l1l! 41.1156 41.0122 40.9OI!7 40.l!O51 40.7014 40.5975 40.4935 
40.3894 4O.21!S1 40.111117 40.0761 39.9715 39.8666 39.7617 39.6565 395513 39.4459 
39.3403 39.2346 39.12l!l! 39.02211 3I!.9166 3I!.8103 3I!.7038 38.5972 38.4904 38.31134 

38.2763 38.1690 38.0615 37.9539 37.8461 37.7381 37.6300 37.5217 37.4132 37.31145 
37.1956 37.(1865 36.9773 36.8679 36.7583 36.64H4 36.5384 36.4282 36.3178 36.2072 
36.()964 35.98.'i4 35.8742 35.7628 35.6511 35.5393 35.4272 35.3149 35.2()24 35.0896 
34.9767 34.8635 34.7501 34.6364 34.5225 34.4084 34.2940 34.1793 34.0645 33.9493 
33.11340 33.71113 33.61124 33.4863 33.36911 33.2531 33.1362 33.01119 32.9014 32.71136 

32.(i(i55 32.5471 32.428.'i 32.3095 32.1902 32.0707 31.9508 31.83116 31.7101 31.51!93 
31.46!!2 31.3467 31.2249 31.10211 311.9I!03 311.11575 30.7343 311.61118 30.4869 30.3627 
3O.2.llll 30.1131 29.91177 29.116211 29.7359 29.6094 29.4825 29.3552 29.2274 29.(1993 
28.9708 28.114111 28.7124 2I!.5825 2I!.4522 28.3215 28.19113 28.115!16 27.9265 27.7931! 
27.66117 27.5271 27.39311 27.2.'i/w 27.1233 26.9877 26.8515 26.71411 26.5775 26.4397 

26.31113 26.1623 26.(1227 25.lIl!26 25.74111 25.60114 25.4584 25.3158 25.1725 25.0285 
24.009 24.73116 24.5925 24.44511 24.29/W 24.1502 24.01112 23.8515 23.7()1I 23.5498 
23.3977 23.2448 23.(19111 22.9364 22.78118 22.6244 22.4671 22.31)88 22.1496 21.91194 
21.8282 21.6660 21.51127 21.33/W 21.1729 21.01162 20.11286 20.(i(i97 20.4996 20.3283 
20.1556 I 9.9I!1 7 19.81164 19.62911 19.4517 19.2722 1911912 18.91187 18.7246 18.5.3l1l! 

18.3513 18.1622 17.9712 17.77/w 17.5837 17.3870 17.1882 16.9874 16.7/W3 16.5790 
16.3714 16.1612 15.9486 15.7333 15.5152 15.2943 15.0703 14./W32 14.6128 14.37911 
14.1415 13.9()O3 13.6550 13.4055 13.1516 12.1!929 12.6292 12.3601 12.08.<;4 11.8045 
11.5171 11.2226 10.9205 10.6101 10.2907 99614 9.6212 9.26!!9 8.9030 8.52111 
8.1232 7.7044 7.262() 6.7912 6.2I!S9 5.7368 5.1298 4.4414 3.6255 2.5630 

0.0000 

Values of So are given in degrees. by Equation 211.21. 
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TABLE B34: Circular Values of z for Rayleigh's Test for Circular Uniformity 
n a: 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

6 0.734 1.639 2.274 2.86.'1 3.576 4.058 4.491 4.985 5197 
7 0.727 1.634 2.278 2.885 3.627 4.143 4.617 5.181 5.556 
8 0.723 1.631 2.281 2.899 3.665 4.205 4.710 5.322 5.743 
9 0.719 1.628 2.283 2.910 3.694 4.252 4.780 5.430 5.885 

\0 0.717 1.626 2.285 2.919 3.716 4.289 4.835 5.514 5.996 

II 0.715 1.625 2.287 2.926 3.735 4.319 4.879 5.W- 6.085 
12 0.713 1.623 2.288 2.932 3.750 4.344 4.916 5.638 6.158 
13 0.711 1.622 2.289 2.937 3.763 4.265 4.947 5.685 6.219 
14 0.710 1.621 2.290 2.941 3.774 4.383 4.973 5.725 6.271 
15 0.709 1.620 2.291 2.945 3.784 4.398 4.996 5.759 6.316 

16 0.708 1.620 2.292 2.948 3.792 4.412 5.015 5.789 6.354 
17 0.707 1.619 2.292 2.95\ 3.799 4.423 5.033 5.815 6.388 
18 0.706 1.619 2.293 2.954 3.806 4.434 5.04S 5.83R 6.418 
19 0.705 1.618 2.293 2.956 3.811 4.443 5.061 5.858 6.445 
20 0.705 1.618 2.294 2.958 3.816 4.451 5.074 5.877 6.469 

21 0.704 1.617 2.294 2.960 3.821 4.459 5.085 5.893 6.491 
22 0.704 1.617 2.295 2.961 3.825 4.466 5.095 5.908 6.510 
23 0.703 1.616 2.295 2.963 3.829 4.472 5.104 5.922 6.528 
24 0.703 1.616 2.295 2.964 3.833 4.478 5.112 5.935 6.544 
25 0.702 1.616 2.296 2.966 3.836 4.483 5.120 5.946 6.559 

26 0.702 1.616 2.296 2.967 3.839 4.488 5.127 5.957 6.573 
27 0.702 1.615 2.296 2.968 3.842 4.492 5.133 5.966 6.586 
28 0.701 1.615 2.296 2.969 3.844 4.496 5.139 5.975 6.598 
29 0.701 1.615 2.297 2.970 3.847 4.500 5.145 5.984 6.609 
30 0.701 1.615 2.297 2.971 3.849 4.504 5.150 5.992 6.619 

32 0.700 1.614 2.297 2.972 3.853 4.510 5.159 6.006 6.637 
34 0.7lX) 1.614 2.297 2.974 3.856 4.516 5.168 6.018 6.654 
36 0.700 1.614 2.298 2.975 3.859 4.521 5.175 6.030 6.668 
38 0.699 1.614 2.298 2.976 3.862 4.525 5.182 6.039 6.681 
40 0.699 1.613 2.298 2.977 3.865 4.529 5.188 6.048 6.692 

42 0.699 1.613 2.298 2.978 3.867 4.533 5.193 6.056 6.703 
44 0.698 1.613 2.299 2.979 3.869 4.536 5.198 6.064 6.712 
46 0.698 1.613 2.299 2.979 3.871 4.539 5.202 6.070 6.n! 
48 0.698 1.613 2.299 2.980 3.873 4.542 5.206 6.076 6.n9 
50 0.698 1.613 2.299 2.981 3.874 4.545 5.210 6.082 6.736 

55 0.697 1.612 2.299 2.982 3.878 4.550 5.21!! 6.094 6.752 
60 0.697 1.612 2.300 2.983 3.881 4.555 5.225 6.104 6.765 
65 0.697 1.612 2.300 2.984 3.883 4.559 5.231 6.113 6.776 
70 0.696 1.612 2.300 2.985 3.885 4.562 5.235 6.120 6.786 
75 0.696 1.612 2.300 2.986 3.887 4.565 5.240 6.127 6.794 

80 0.696 1.611 2.300 2.986 3.889 4.567 5.243 6.132 6.801 
90 0.696 1.611 2.301 2.987 3.891 4.572 5.249 6.141 6.813 
100 0.695 1.611 2.301 2.988 3.!!93 4.575 5.254 6.149 6.822 
120 0.695 1.611 2.301 2.990 3.896 4.580 5.262 6.160 6.837 
140 0.695 1.611 2.301 2.990 3.899 4.584 5.267 6.168 6.847 

160 0.695 1.610 2.301 2.991 3.900 4.586 5.271 6.174 6.855 
180 0.694 1.610 2.302 2.992 3.902 4.588 5.274 6.178 6.861 
200 0.694 1.610 2.302 2.992 3.903 4.590 5.276 6.182 6.865 
300 0.694 1.610 2.302 2.993 3.906 4.595 5.284 6.193 6.879 
500 0.694 1.610 2.302 2.994 3.908 4.599 5.290 6.201 6.891 

00 0.6931 1.6094 2.3026 2.9957 3.9120 4.6052 5.2983 6.2146 6.9078 
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The values in Appendix Table B.34 were computed using Durand and Greenwood's Equation 6 (1958). 
This procedure was found to give slightly more accurate results than Durand and Greenwood's Equation 4, 
distinctly better results than the Pearson curve approximation, and very much better results than the chi-square 
approximation (Stephens, 1969a). By examining the exact critical values of Greenwood and Durand (1955), we 
see that the preceding tabled values for a = 0.05 are accurate to the third decimal place for" as small as 8, and 
for a = 0.01 for II as small as 10. For II as small as 6, none of the tabled values for a = 0.05 or 0.01 has a relative 
error greater than 0.3%. 

Ex(/mples: 

ZO.05,M = 2.986 and ZO.fJI.32 = 4.510 

As" increases, the critical values become closer to X~.2/2. 
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TABLE B.35: Critical Values of u for the V Test of Circular Uniformity 
n a: 0.25 0.10 11.(15 (1.025 (1.111 U.U05 0.11025 (Will O.OOOS 

8 lI.t\I!R 1.296 1.649 1.947 2.2X11 2.498 2.691 2.916 3.066 
9 0.687 1.294 1.649 1.948 2.2116 2.5n7 2.705 2.937 3.094 

to 11.685 1.293 I.MK 1.950 2.290 2.514 2.716 2.954 3.115 

II 0.684 1.292 I.MK 1.950 2.293 2.520 2.72..'1 2.967 3.133 
12 0.684 \.291 I.MK 1.951 2.296 2.52..'1 2.732 2.978 3.147 
13 11.683 1.290 1.647 1.952 2.299 2.529 2.738 2.987 3.159 
14 11.682 1.290 1.647 1.953 2.301 2.532 2.743 2.995 3.169 
15 0.682 1.2119 1.647 1.953 2.3112 2.535 2.7411 3.1IU2 3.m 

16 0.681 1.289 1.647 1.953 2.3114 2.53X 2.751 3.IKIK 3.185 
17 11.681 1.21<K 1.647 1.954 2.31'5 2.540 2.755 3.013 3.191 
18 0.681 1.2M 1.647 1.954 2.3116 2.542 2.751< 3.1117 3.197 
19 U.6KI) 1.21<7 1.647 1.954 2.3I1K 2.544 2.761 3.021 3.202 
20 11.6811 1.287 1.646 1.955 2.3(11< 2.546 2.763 3.112..'1 3.207 

21 1I.6S0 1.21<7 1.646 1.955 2.3119 2.547 2.765 3.112K 3.211 
22 11.679 1.287 1.646 1.955 2.310 2.549 2.767 3.1131 3.215 
23 11.679 1.2K6 1.646 1.955 2.311 2.5511 2.769 3.1134 3.218 
24 0.679 1.2Kll 1.646 1.956 2.311 2.551 2.7711 3.113/i 3.221 
25 0.679 1.286 1.646 1.956 2.312 2.552 2.772 3.03B 3.224 

26 0.679 1.286 1.646 1.956 2.313 2.553 2.773 3.(140 3.227 
27 0.678 1.286 1.646 1.956 2.313 2.554 2.775 3.042 3.229 
28 11.678 1.2K5 1.646 1.956 2.314 2.555 2.776 3.044 3.231 
29 0.678 1.2K5 1.646 1.956 2.314 2.555 2.777 3.()46 3.233 
30 0.678 1.285 1.646 1.957 2.315 2.556 2.778 3.047 3.235 

32 0.678 1.285 1.646 1.957 2.315 2.557 2.7X11 3.05n 3.2..~9 

34 0.671! 1.21!5 1.646 1.957 2.316 2.55K 2.71<1 3.052 3.242 
36 0.677 1.21<5 1.646 1.957 2.316 2.559 2.7113 3.054 3.245 
38 0.677 1.284 1.646 1.957 2.317 2.561. 2.784 .1056 3.247 
40 0.677 1.284 1.646 1.957 2.317 2.561 2.7115 3.n511 3.249 

42 0.677 1.284 1.646 1.95X 2.31X 2.562 2.7M 3.(160 3.251 
44 0.677 1.284 1.646 1.9511 2.3111 2.562 2.787 3.061 3.253 
46 0.677 1.284 1.646 1.951< 2.319 2.563 2.7M 3.(162 3.255 
48 0.677 1.284 1.645 1.951< 2.319 2.564 2.789 3.(163 3.256 
50 11.677 1.284 1.645 1.95X 2.319 2.564 2.790 3.1165 3.258 

55 0.676 1.284 1.645 1.95X 2.3211 2.565 2.791 3.067 3.261 
60 0.676 1.21<3 1.645 1.95X 2.320 2.566 2.793 3.1169 3.263 
65 U.676 1.21!3 1.645 1.951! 2.321 2.567 2.794 3.1.71 3.265 
70 0.676 1.283 1.645 1.951! 2.321 2.567 2.795 3.072 3.267 
75 0.676 1.283 1.645 1.959 2.322 2.568 2.796 3.073 3.269 

XI) 11.676 1.283 1.645 1.959 2.322 2.568 2.796 3.074 3.270 
90 11.676 1.283 1.645 1.959 2.322 2.569 2.797 3.U76 :U72 
100 0.676 1.283 1.645 1.959 2.323 2.570 2.791! 3.077 3.274 
1211 U.675 1.21!2 1.645 1.959 2.323 2.571 2.8IK' 3.III!U 3.m 
1411 0.675 1.21!2 1.645 1.959 2.324 2.572 2.l~1II 3.081 3.279 

160 0.675 1.282 1.645 1.t)5t) 2.324 2.572 2.XI'2 3.1IK2 3.280 
180 n.675 1.282 1.645 1.959 2.324 2.573 2.8112 3.083 3.282 
200 0.675 1.21!2 1.645 1.959 2.325 2.573 2.81'3 3.(1K4 3.282 
3IKI n.675 1.2112 1.645 1.9611 2.325 2.574 2.8114 3.1IK6 3.285 

00 0.6747 1.281 I! 1.6449 1.9591! 2.325(, 2.5747 2.1«'53 3.1'tm 3.2873 

The values in Appendix Table 8.35 were computed using Durand and Greenwood's Equation 7 (1958). 
Examples: 

"\1.U~.2~ = 1.646 llnd "1I.U1.2U = 2.3()8 
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TABLE 1.36: Critical Values of m for the Hodges-Ajne Test for Circular Uniformity 

n a:S o.so 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

4 0 
5 0 

6 0 0 
7 0 0 
8 1 0 0 
9 I 0 0 0 

10 1 1 0 0 0 

11 2 1 1 0 0 
12 2 1 I 0 0 0 
13 3 2 1 1 0 0 0 
14 3 2 I I 0 0 0 0 
IS 3 2 2 1 I 0 0 0 0 

16 4 3 2 2 1 I 0 0 0 
17 4 3 2 2 1 1 I 0 0 
18 4 3 3 2 2 I 1 0 0 
19 5 4 3 3 2 2 1 1 0 
20 5 4 3 3 2 2 I I 1 

21 6 4 4 3 3 2 2 1 I 
22 6 5 4 4 3 2 2 2 I 
23 6 5 4 4 3 3 2 2 1 
24 7 6 5 4 3 3 3 2 2 
25 7 6 5 5 4 3 3 2 2 

26 8 6 6 5 4 4 3 3 2 
27 8 7 6 5 4 4 4 3 3 
28 8 7 6 6 5 4 4 3 3 
29 9 7 7 6 5 5 4 4 3 
30 9 8 7 6 6 5 4 4 3 

31 10 8 7 7 6 5 5 4 4 
32 10 9 8 7 6 6 5 4 4 
33 11 9 8 7 7 6 5 5 4 
34 11 9 9 8 7 6 6 5 5 
35 11 10 9 8 7 7 6 5 5 

36 12 10 9 9 8 7 6 6 5 
37 12 11 10 9 8 7 7 6 6 
38 13 11 10 9 8 8 7 6 6 
39 13 11 10 10 9 8 7 7 6 
40 13 12 11 10 9 8 8 7 7 

41 14 12 11 10 9 9 8 7 7 
42 14 13 12 \l 10 9 9 8 7 
43 15 13 12 11 10 9 9 8 8 
44 15 13 12 12 11 10 9 8 8 
45 16 14 13 12 11 10 10 9 8 

46 16 14 13 12 11 11 10 9 9 
47 16 15 14 13 12 II 10 10 9 
48 17 15 14 13 12 11 11 10 9 
49 17 15 14 13 12 12 11 10 10 
SO 18 16 15 14 13 12 11 11 10 
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The critical values in Appendix Table 8.36 are the values of m for which P S a, where P is calculated 
by Equation 27.7, which is from Hodges (1955). To determine P for n > 50, we may use the approximation 
shown as Equation 27.8, which is from Ajne (1968). The accuracy of the approximation is shown below. as true 
probability-approximate probability for the largest true probability S a: 

n a: 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

30 0.0026 -0.0029 -0.0047 -0.0038 -0.0038 -0.0021 -0.00089 -0.00089 -0.0IXI29 

40 0.0016 -0.0020 -0.0034 -0.0032 -0.0021 -0.0030 -0.00095 -0.00052 -0.00052 

50 0.0039 -0.0017 -0.0027 -0.0026 -0.0019 -0.0012 -0.00063 -0.00063 -0.0IXI29 
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TABLE B.37: Correction Factor, K for the Watson and Williams Test , 
, 0 I 2 3 4 5 6 7 8 9 

0.00 188.4989 94.7472 63.5015 47.R749 JR.4992 32.2498 27.7851 24.4367 21.8325 
0.01 19.74R9 lR.0444 16.6239 15.4219 14.3916 13.49H6 12.7173 12.0278 11.4150 10.8667 
0.02 10.3731 9.9266 9.5206 9.1500 R.8103 8.4976 8.2091 7.9419 7.6938 7.4628 
0.03 7.2472 7.0455 6.8564 6.6787 6.5115 6.3539 6.2050 6.0641 5.9306 5.8040 
0.04 5.6837 5.5693 5.4603 5.3564 5.2572 5.1625 5.0718 4.9850 4.9017 4.8219 
0.05 4.7453 4.6717 4.60()9 4.5328 4.4672 4.4039 4.3430 4.2841 4.2273 4.1724 
0.06 4.1194 4.0680 4.0184 3.9703 3.9237 3.R785 3.8347 3.7922 3.7510 3.7109 
0.07 3.6720 3.6342 3.5974 3.5616 35268 3.4930 3.460() 3.4278 3.3965 3.3666 
0.08 3.3362 3.3072 3.2789 3.2512 3.2243 3.1979 3.1722 3.1470 3.1224 3.0984 
0.09 3.0749 3.0519 3.0294 3.0074 2.9858 2.9648 2.9441 2.9239 2.9041 2.8846 
0.10 2.8656 2.8469 2.8286 2.8107 2.7931 2.7758 2.7589 2.7423 2.7259 2.7099 
0.11 2.6942 2.6787 2.6636 2.6487 2.6340 2.6196 2.6055 2.5915 2.5TI9 2.5644 
0.12 2.5512 2.53R2 2.5254 2.5128 2.5004 2.4&;2 2.4762 2.4644 2.4528 2.4413 
0.13 2.4301 2.4189 2.4080 2.3972 2.3R66 2.3762 2.3658 2.3557 2.3457 2.3358 
0.14 2.3261 2.3165 2.307() 2.29TI 2.21185 2.2794 2.2705 2.2616 2.2529 2.2443 
0.15 2.2358 2.2275 2.2192 2.2110 2.2030 2.19.50 2.1R72 2.1794 2.1718 2.1642 
0.16 2.1567 2.1494 2.1421 2.1349 2.1278 2.1208 2.l1JR 2.1070 2.J(X)2 2.0935 
0.17 2.0868 2.0803 2.0738 2.0674 2.0611 2.0549 2.0487 2.0426 2.0365 2.0305 
0.18 2.0246 2.0188 2.0130 2.0072 2.0016 1.9960 1.9904 1.9849 1.9795 1.9741 
0.19 1.9688 1.9635 1.9583 1.9532 1.9481 1.9430 1.9380 1.9331 1.9282 1.9233 
0.20 1.9185 1.9137 1.9090 1.9043 1.8997 1.8951 1.8906 1.8861 !.l!SI7 1.8772 
0.21 1.8729 1.8685 1.8643 1.1!6OO 1.8558 1.8516 1.8475 1.8434 1.8393 1.8353 
0.22 1.8313 1.8274 1.8234 1.8195 1.8157 1.8119 1.1«181 1.8043 1.8006 1.7969 
0.23 1.7933 1.7896 1.7860 1.7825 I.TI89 I.TI54 1.7719 1.7685 1.7651 1.7617 
0.24 1.7583 1.7550 1.7516 1.7484 1.7451 1.7419 1.7386 1.7355 1.7323 1.7292 
0.25 1.7261 1.7230 1.7199 1.7169 1.7138 1.7108 1.7079 1.7049 1.7020 1.6991 
0.26 1.6962 1.6933 1.6905 l.68n 1.6849 1.6821 1.6793 1.6766 1.6739 1.6712 
0.27 1.6685 1.6658 1.6632 1.6606 1.6579 1.6554 1.6528 1.6502 1.64TI 1.6452 
0.28 1.6427 1.6402 1.63TI 1.6353 1.1;328 1.6304 1.6280 1.6256 1.6233 1.6209 
0.29 1.6186 1.6162 1.6139 1.6116 1.6094 1.6071 1.6048 1.6026 1.6004 1.5982 
0.30 1.5960 1.5938 1.5916 1.5895 1.5873 1.5852 1.5831 1.5810 1.5789 1.5768 
0.31 1.5748 1.5727 I 57()7 1.500 15667 1.5647 1.5627 1.5607 1.5587 1.5568 
0.32 1.5548 1.5529 15510 1.5491 1.5472 1.5453 1.5434 1.5416 1.5397 1.5379 
0.33 1.5360 1.5342 1.5324 1.5306 1.5288 1.5270 1.5253 15235 1.5217 1.5200 
0.34 1.5183 1.5165 1.5148 1.5131 1.5114 1.5097 1.5081 1.5064 1.5047 1.5031 
0.35 1.5014 1.4998 1.4982 1.4966 1.495() 1.4934 1.4918 1.4902 1.4886 1.4871 
0.36 1.4855 1.4839 1.4824 1.4809 1.4793 1.4TI8 1.4763 1.4748 1.4733 1.4718 
0.37 1.4703 1.4689 1.4674 1.4659 1.4645 1.4630 1.4616 1.4602 1.45R7 1.4573 
0.38 1.4559 1.4545 1.4531 1.4517 1.4503 1.4490 1.4476 1.4462 1.4449 1.4435 
0.39 1.4422 1.4408 1.4395 1.4382 1.4368 1.4355 1.4342 1.4329 1.4316 1.4303 
0.40 1.4290 1.4277 1.4265 1.4252 1.4239 1.4227 1.4214 1.4202 1.4189 1.4177 
0.41 1.4165 1.4152 1.4140 1.4128 1.4116 1.4104 1.4092 1.4(1I!O 1.406l! 1.4056 
0.42 1.4044 1.4033 1.4021 1.4009 1.3998 1.3986 1.3975 1.3963 1.3952 1.3940 
0.43 1.3929 1.3918 1.3907 1.3895 1.3884 1.3R73 1.3862 1.3851 1.3R40 1.3829 
0.44 1.3818 1.3808 1.3797 1.3786 1.3775 1.3765 1.3754 1.3744 1.3733 1.3723 
0.45 1.3712 1.3702 1.3691 1.3681 1.3671 1.3660 1.3650 1.3640 1.3630 1.3620 
0.46 1.3610 1.3600 1.3590 1.3580 1.3570 1.3560 1.3550 1.3540 1.3530 1.3521 
0.47 1.3511 1.3501 1.3492 1.3482 1.3472 1.3463 1.3453 1.3444 1.3434 1.3425 
0.48 1.3416 1.34()6 1.3397 1.33R8 1.33711 1.3369 1.3360 1.3351 1.3342 1.3333 
0.49 1.3324 1.3315 1.3306 1.3297 1.321!8 1.3279 1.3270 1.3261 1.3252 1.3243 

0.50 1.3235 1.3226 1.3217 1.3209 1.3200 1.3191 1.3183 1.3174 1.3166 1.3157 
0.51 J.31411 1.3140 1.3132 1.3123 1.3115 1.3106 1.3098 1.3090 1.3081 1.3073 
0.52 1.3065 1.3057 1.3049 1.3040 1.3032 1.3024 1.3016 1.3008 1.3000 1.2992 
0.53 1.2984 1.2976 1.2968 1.2960 1.2952 1.2944 1.2936 1.2929 1.2921 1.2913 
054 1.2905 1.2897 1.2890 1.21182 1.21174 1.2867 1.2859 1.2851 1.2844 1.2836 
0.55 1.2829 1.2821 1.2814 1.2806 1.2799 1.2791 1.2784 1.2776 1.2769 1.2762 
0.56 1.2754 1.2747 1.2740 1.2732 1.2725 1.2718 1.2710 1.2703 1.2696 1.2689 
0.57 1.2682 1.2674 1.2667 1.2660 1.2653 1.2646 1.2639 1.2632 1.2625 1.2618 
0.58 1.2611 1.2604 1.2597 1.2590 1.2583 1.2576 1.2569 1.2.~62 1.2555 1.2.~ 

0.59 1.2542 1.2535 1.2528 1.2.<;21 1.2514 1.25OI! 1.2501 1.2494 12487 1.24111 
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TABLE B.37 (cont.): Correction Factor, K, for the Watson and Williams Test 
r 0 1 2 3 4 5 6 7 8 9 

0.60 1.2474 1.2467 1.2461 1.2454 1.2447 1.2441 1.2434 1.2428 1.2421 1.2414 
0.61 1.2408 1.2401 1.2395 1.2388 1.2382 1.2375 1.2369 1.2362 1.2356 1.2350 
0.62 1.2343 1.2337 1.2330 1.2324 1.2318 1.2311 1.2305 1.2298 1.2292 1.2286 
0.63 1.2280 1.2273 1.2267 1.2261 1.2254 1.2248 1.2242 1.2236 1.2230 1.2223 
0.64 1.2217 1.2211 1.2205 1.2199 1.2193 1.2186 1.2HlO 1.2174 1.2168 1.2162 
0.65 1.2156 1.2150 1.2144 1.2138 1.2132 1.2126 1.2120 1.2114 1.2108 1.2102 
0.66 1.2096 1.2090 1.2084 1.2078 1.20n 1.2066 1.2060 1.2054 1.2048 1.2042 
0.67 1.2036 1.2030 1.2024 1.2018 1.2013 1.2007 1.2001 1.1995 1.t989 1.1983 
0.68 1.t977 1.1972 1.1966 1.1960 1.1954 1.1948 1.1943 1.1937 1.\931 1.1925 
0.69 1.1920 1.1914 1.1908 1.1902 1.1897 1.1891 1.11l85 1.1879 I.\R74 1.1868 
0.70 1.1862 l.lR57 1.1851 1.t845 1.1840 1.1834 1.1828 1.1823 1.\817 1.1811 
0.71 1.1806 1.1800 1.1794 1.1789 1.1783 1.17n 1.17n 1.1766 1.1761 1.1755 
o.n 1.1749 \.1744 1.1738 1.1733 1.1n7 1.1721 1.1716 1.17\0 1.1705 1.1699 
0.73 1.1694 1.I61l8 1.1&2 1.1677 1.1671 1.1666 1.1660 1.1655 1.1649 1.1644 
0.74 1.1638 1.1633 U627 1.1621 1.1616 1.16\0 1.1605 1.\599 1.1594 1.1588 
0.75 1.1583 1.15n 1.I5n 1.1566 1.1561 1.1555 1.1550 1.\544 1.1539 1.1533 
0.76 1.1528 1.\522 U517 1.1511 1.1505 1.1500 1.\494 1.\4R9 1.1483 1.1478 
0.77 1.\4n 1.1467 1.1461 1.1456 1.\450 1.1445 1.1439 1.1434 1.1428 1.1423 
0.78 1.1417 1.1412 1.\406 1.\401 1.1395 1.1389 1.1384 1.\378 1.1373 1.1367 
0.79 1.\362 1. 1356 1.1351 1.\345 1.1340 1.1334 1.1328 1.\323 1.1317 1.1312 
0.80 1.1306 1.1300 1.1295 1.1289 1.1284 1.127R 1.12n 1.\267 1.1261 1.1256 
0.81 1.1250 1.\244 1.1239 1.1233 1.1227 1.1222 1.1216 1.1210 1.1205 1.1199 
0.82 1.1193 1.1188 1.1182 1.1176 1.1170 1.1165 1.1159 1.1153 1.1147 1.1142 
0.83 1.1136 1.1130 1.1124 1.1119 \.l113 1.1107 1.1101 1.!095 1.\090 1.1084 
0.84 1.1078 1.\ on 1.1066 1.\060 1.\054 1.1049 1.1043 1.1037 1.1031 1.1025 
0.85 1.1019 1.1013 1.1007 1.1001 1.0995 1.0989 1.0983 1.0977 1.0971 1.0965 
0.86 1.0959 1.0953 1.0947 1.0941 1.0935 1.0928 1.0922 1.0916 1.0910 1.0904 
0.87 1.0898 1.0892 1.0AA5 1.0879 1.0873 1.0867 1.0861 1.0854 1.0848 1.0842 
0.88 1.0835 1.0829 1.0823 1.0816 1.0810 1.0804 1.0797 1.0791 1.0785 1.0m 
0.89 l.07n 1.0765 1.0759 1.0752 1.0746 1.0740 1.0733 1.0n7 1.0no 1.0713 
0.90 1.0707 1.0700 1.0694 1.0687 1.0681 1.0674 1.0667 1.0661 1.0654 1.0647 
0.91 1.0641 1.0634 1.0627 1.0621 1.0614 1.0607 1.0601 1.0594 1.0587 1.0580 
0.92 1.0573 1.0567 1.0560 1.0553 1.0546 1.0539 1.0533 1.0526 1.11519 1.0512 
0.93 1.0505 1.0498 1.0491 1.0484 l.{wn 1.0470 1.0463 1.0456 1.0449 1.0443 
0.94 1.0436 1.0429 1.0422 1.0414 1.0407 1.0400 1.0393 1.0386 1.0379 1.0372 
0.95 1.0365 1.0358 1.0351 1.0344 1.0337 1.0330 1.0322 1.0315 1.030R 1.0301 
0.96 1.0294 1.0287 1.0279 l.02n 1.0265 1.0258 1.0251 J.0243 1.0236 1.0229 
0.97 1.0222 1.0214 1.0207 1.0200 1.0192 1.0185 1.0178 1.0170 1.0163 1.0156 
0.98 1.0148 1.0141 1.0134 1.0126 1.0119 1.0112 1.0104 1.0097 1.0089 1.0082 
0.99 1.0075 1.0067 1.0060 1.0052 1.0045 1.0037 \.0030 1.0022 1.000' 1.000· 

*No correction is needed for r ~ 0.998. 

Values of K were determined as 1 + 3/8k. where k was obtained using Equation 6.3.14 of Mardia (1972: 
155), and Equations 9.8.1-9.8.4 of Olver (1964). 

Examples: 
r = 0.743, K = 1.1621 and r = 0.814. K = 1.227 
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TABLE B.38a: Critical Values of Watson's Two-Sample U2 

01 02 a: 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

4 4 0.1172 0.1875 
4 5 0.0815 0.2037 0.2037 
4 6 0.0875 0.1333 0.2167 0.2167 
4 7 0.0844 0.1299 0.1688 0.2273 
4 8 0.0903 0.1319 0.1632 0.2361 

4 9 0.0855 0.1282 0.1752 0.2436 0.2436 
4 10 0.0804 0.1232 0.1571 0.2018 0.2500 
4 11 0.0828 0.1253 0.1556 0.1949 0.2556 
4 12 0.0781 0.1302 0.1563 0.2031 0.2604 0.2604 
4 13 0.0792 0.1244 0.1538 0.1855 0.2647 0.2647 

4 14 0.0780 0.1227 0.1534 0.1931 0.2298 0.2685 
4 15 0.0789 0.1228 0.1561 0.1807 0.2228 0.2719 0.2719 
4 16 0.0781 0.1250 0.1531 0.1836 0.2281 0.2750 0.2750 
4 17 0.On5 0.1223 0.1531 0.1839 0.2330 0.2n8 0.2778 
4 18 0.0764 0.1212 0.1490 0.1818 0.2197 0.2481 0.2803 

4 19 0.0755 0.1213 0.1533 0.1796 0.2220 0.2517 0.2826 
4 20 0.0764 0.1201 0.1535 0.1842 0.2264 0.2451 0.2847 
4 21 0.0752 0.1200 0.1514 0.1819 0.2143 0.2486 0.2867 0.2867 
4 22 0.0756 0.1211 0.1508 0.1823 0.2185 0.2517 0.2885 0.2885 
4 23 0.0751 0.1194 0.1508 0.1814 0.21n 0.2394 0.2636 0.2901 

4 24 0.0755 0.1202 0.1499 0.1797 0.2184 0.2411 0.2660 0.2917 
4 25 0.0752 0.1200 0.1497 0.1814 0.2152 0.2441 0.2600 0.2931 
4 26 0.0752 0.1191 0.1486 0.1816 0.2175 0.2396 0.2624 0.2944 
4 27 0.0753 0.1189 0.1505 0.1786 0.2151 0.2360 0.2646 0.2957 0.2957 
4 28 0.0748 0.1203 0.1496 0.ln5 0.2165 0.2388 0.2667 0.2969 0.2969 

4 29 0.0749 0.1198 0.1491 0.1794 0.2165 0.2369 0.2557 0.2980 0.2980 
4 30 0.0745 0.1196 0.1493 0.1797 0.2140 0.2395 0.2578 0.2990 0.2990 
5 5 0.0890 0.1610 0.2250 0.2250 
5 6 0.0848 0.1333 0.1818 0.2424 
5 7 0.0855 0.1284 0.1712 0.1998 0.2569 

5 8 0.0846 0.1308 0.1654 0.2154 0.2692 
5 9 0.0798 0.1242 0.1591 0.1909 0.2798 0.2798 
5 10 0.0836 0.1236 0.1609 0.1956 0.2409 0.2889 0.2889 
5 11 0.0810 0.1241 0.1560 0.1901 0.2287 0.2969 0.2969 
5 12 0.0784 0.1235 0.1549 0.1863 0.2255 0.2608 0.3039 

5 13 o.om 0.1256 0.1563 0.1837 0.2298 0.2692 0.3102 
5 14 0.0782 0.1218 0.1534 0.1820 0.2211 0.2571 0.2767 0.3158 
5 15 0.0782 0.1235 0.1515 0.1835 0.2248 0.2515 0.2835 0.3208 
5 16 0.0766 0.1206 0.1552 0.1825 0.2230 0.2552 0.2897 0.3254 
5 17 0.0761 0.1199 0.1520 0.1820 0.2205 0.2472 0.2782 0.3295 0.3295 

5 18 0.0763 0.1208 0.1536 0.1797 0.2164 0.2464 0.2715 0.3333 0.3333 
5 19 0.0754 0.1201 0.1517 0.1824 0.2193 0.2526 0.2745 0.3052 0.3368 
5 20 0.0760 0.1216 0.1520 0.1824 0.2200 0.2416 0.2664 0.3096 0.3400 
5 21 0.0755 0.1195 0.1510 0.1810 0.2206 0.2448 0.2712 0.2990 0.3429 
5 22 0.0756 0.1201 0.1524 0.1820 0.2191 0.2426 0.2689 0.3033 0.3457 

5 23 0.0755 0.1196 0.1513 0.1811 0.2178 0.2451 0.2737 0.2960 0.3209 
5 24 0.0747 0.1195 0.1511 0.1810 0.2190 0.2437 0.2736 0.2983 0.3241 
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TABLE B.38a (cont.): Critical Values of Watson's Two-Sample U2 

". "2 a:1I511 0.211 (1.1 0 0.115 11.02 lUll 0.0115 0.11112 11.1101 

5 25 0.0754 11.111)7 0.1517 II.IXIO 0.2 IllS 0.2401 0.2674 IU021 113272 
5 26 (>.0741) 1I.IIXfl 11.1514 O.IXII6 0.2 I XI) 0.2447 0.2675 11.21)43 113176 
5 27 (W74X 0.111)3 II. I 50X 1I.IX04 0.2165 0.244.' 0.2674 0.21)75 0.3207 

5 21! (W746 II.IIXX 11.1512 0.IX1I2 11.2170 0.2417 0.2(1)4 0.21)37 03136 
5 21) 0.0743 O. II XI) 0.1510 0.IX02 0.2171 11.2443 0.2M6 0.21)70 0.3153 
5 30 0.0743 II.IIXIJ 0.1512 O.IX02 0.21611 0.2411) 0.2671! 0.21)71) 0.31 X I 
6 6 O.OXXO 0.1311) 0.1713 0.2060 0.2(31) 
6 7 0.OX06 11.1209 O.153X (I.I~I 0.2X21 0.2X21 

6 X 0.01\33 0.1265 0.16m 0.1%4 0.2455 0.21)76 0.21)76 
6 9 OJIKI5 0.1259 0.1556 0.1926 0.2321 0.2617 0.3111 
6 III 0.0771 0.1260 0.1563 (I.IX% 0.2313 11.2471) 0.3221) 0.3221) 
6 II 0.07X4 0.1212 0.1561) O.IX72 0.2246 0.2620 O.2XXX 0.3333 
6 12 0.OX02 11.1242 11.1551 II. I X21) 0.2261 0.2593 0.2747 0.3426 0.3421\ 

6 13 0.0769 0.1215 0.153X 0.1X41) 0.2213 0.2497 0.27XO 0350" 0.35()<) 
6 14 0.071lS 0.1220 0.1536 0.IX39 0.2250 0.2506 0.21!21 (13196 035X3 
6 15 0.0762 U.1217 0.1524 0.IX52 0.2201 0.24R7 0.2730 0.305X 03651 
6 16 0.075X 0.1212 0.1534 0.IX23 0.2D5 0.25()0 0.27XI) 0.3mx 03357 
6 17 (1.0750 0.1211 U.1521\ 0.IX33 0.2199 0.2472 0.2745 (J.3121) 0.3427 

6 II! 0.0760 0.1211 0.1535 O.IMU 0.21l)l) 0.2461 0.2731) O.2l)l)X 03295 
II 19 IUl75 I 1l.12m 1l.152~ 1l.IH32 1l.221l4 O.249H 0.2744 11.3060 OJ29H 
6 20 11.0747 (1.11% 0.1526 0.IX24 0.21% 0.2490 0.2734 03077 o.:n.n 
6 21 lI.075X 0.1205 0.1523 0.IX34 U.2205 0.2475 0.2734 03057 0331\9 
6 22 0.0741) 0.1204 n.151X 0.IX24 0.2202 11.2473 0.2752 03036 03260 

6 23 (1.0745 0.1194 0.1514 0.IX24 0.2194 0.2409 0.2721) 03073 03273 
6 24 0.0743 0.1194 11.1511) 0.lx26 0.22116 1I.24X4 0.2715 0.:\056 032X9 
6 25 (1.0744 n.1 191 0.1514 O.IXII) 0.2202 0.2473 0.2731 03015 03277 
6 26 0.0739 O.IIXX 0.1510 O.IXI5 O.2191! O.24tl4 0.2710 03047 0.3265 
6 27 0.11741 O. Il 93 0.1515 O.IX22 0.2200 0.24(1) n.273 I 0.3053 032XI 

6 2X 0.U737 0.1190 0.1507 O.IX21 0.2201 0.2467 0.2731 113039 0327n 
6 29 0.U736 O.1l XI) 0.151l 0.11'116 0.22(MI 0.2473 0.2719 0.3OJX 0.325X 
6 311 0.0736 0.111)3 O.150l) O.IX23 0.21"4 0.2471 0.2725 03()45 (U262 
7 7 (1.0791 0.1.'45 0.157X II. I l)Xfl 11.2511 0.31)36 11.31)36 
7 X 0.0794 0.119X 0.1556 O.lXI7 0.2246 0.2722 0.3222 

7 9 0.1l7X6 0.1223 0.15611 O.IXIX 0.2215 0.2552 0.2909 n.33X5 
7 10 0.0773 0.1227 n.1546 O.IXM 0.2269 0.2622 0.2773 11.3521) O.352lJ 
7 II 0.0771 0.1219 n.IS51 O.lX39 0.2214 0.2532 0.21«16 03225 0.3657 
7 12 (>.0764 0.1216 0.1541 0.IX55 0.2256 0.2519 U.2757 1I.3(IK3 0.3772 
7 13 11.0765 0.1216 0.1545 0.IM2 0.2227 0.2523 0.2776 031511 0.3479 

7 14 0.0761 1I.122X 0.156X O.IMII 1I.224X 0.2530 0.2744 03210 0.3337 
7 15 IJ.0754 U.121J 0.1,525 O.IX45 0.2235 0.25()3 0.271«1 0311X O.337X 
7 16 0.0753 1l.1203 0.1,530 O.IX4X 0.2236 O.25()X 0.2772 0.3113 IU432 
7 17 0.(741) 0.1204 0.1526 O.lx27 0.2227 0.25()0 0.2752 031O<J 0.3340 
7 IX (1.074<J 0.12m 0.1524 0.1X41 0.2235 0.25()2 0.276X (U117 0.3346 

7 20 0.0743 0.1 I \IX 0.1,526 0.IX32 0.2211) 0.2499 0.271«) 030/l1 0.333(1 
7 21 OJ)751 0.1203 0.1534 (1.IX40 0.2224 0.24% O.27X2 0.3123 0.3336 
7 22 O.1l743 0.11% n.151X O.IX32 0.2221 0.2512 0.2763 0.3(1)0 0.3341 
7 23 O.1l73<J 0.111)4 0.1522 0.IX32 0.2226 0.2499 O.27XO 1l3103 03327 
x X o.mxl 0.1250 O.15f13 0.IX36 0.225fl O.2,5()O 0.21)59 0343X 
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TABLE B •• (cont.): Critical Values of Watson's Two-Sample tfl 
01 02 a e O.SO 0.20 0.\0 0.05 0.112 0.01 0.005 0.002 0.1101 

8 9 0.07!!4 0.1225 0.1552 0.1863 0.2255 0.2582 0.2827 0.3627 0.3627 
8 \0 0.0775 0.1220 0.1546 0.1852 0.2220 0.2491 0.2796 0.3359 0.3796 
8 11 0.0766 0.1220 0.1543 0.1842 0.2249 0.2524 0.2799 0.3194 0.3529 
8 12 0.0766 0.1208 n.1557 0.11\54 0.2229 0.2521 0.2807 0.3167 0.3396 
8 13 0.0754 0.1212 0.1532 0.1853 0.2237 0.2531 0.2778 0.3135 0.3446 

8 14 0.0751 n.1205 0.1530 0.1855 0.2224 0.2516 0.2796 0.3137 0.3381 
8 15 0.0746 0.1210 0.1536 0.1855 0.2232 0.2507 0.2783 0.3130 0.3341 
8 16 0.0761 0.1220 n.I542 0.1854 0.2222 0.2531 0.2795 0.3156 0.3417 
8 17 0.0747 0.1200 0.1529 0.1841 0.2241 0.2524 0.2782 0.3124 0.3388 
8 18 0.0748 0.1199 0.1528 0.1840 0.2244 0.2513 0.2813 0.3152 0.3397 

8 19 0.0742 0.1196 0.1527 0.1839 0.2243 0.2526 0.2799 0.3145 0.3384 
8 20 0.0741 0.1196 0.1527 0.1839 0.2239 0.2527 0.2795 0.3134 0.3393 
9 9 O.077n 0.1250 0.1552 0.1867 0.2251 0.2663 0.2855 0.3404 0.3M3 
9 10 0.0760 0.1216 0.1544 0.1860 0.22.'i7 0.2538 0.2865 0.3205 0.3614 
9 11 0.0764 0.12!l!! 0.1542 0.1!!45 0.2249 n.2552 0.2814 0.316!! 0.3410 

9 12 0.0767 0.1217 0.1543 O.I8..'i2 0.2257 O.2.'i40 O.2H04 0.3157 0.3395 
9 13 0.0755 0.1205 0.1532 O.I8..'iO 0.2247 0.2526 0.27911 0.31H7 0.3389 
9 14 0.0752 0.1201 0.1532 0.1843 0.2243 0.2526 11.2009 0.3168 0.3409 
9 15 0.0757 0.1201 0.1535 0.1850 0.2245 0.2541 0.2831 0.3152 0.3393 
9 16 0.0744 1I.121Xl 0.1533 0.1850 0.2244 0.2539 0.2822 0.3172 0.3439 

10 10 0.07511 0.1225 0.1545 0.1850 0.2250 0.2.'i45 0.2825 0.3170 0.3450 
10 II 0.11756 0.1215 0.1544 0.1856 0.2237 O.2.'i48 0.2791 0.3172 0.3405 
10 12 0.0758 0.1212 0.1534 0.1848 0.2246 0.2.'i45 0.2818 0.3155 0.3409 
10 13 0.0749 0.1204 0.1532 0.1853 0.2254 0.2542 0.2816 0.3 I !!4 0.3452 
10 14 0.0749 0.1201 0.1535 0.1!!47 0.2252 0.2550 0.2823 0.3181 0.3439 

10 15 0.0747 0.1211 0.1536 0.1856 0.2256 0.2549 0.2837 0.3189 0.3440 
II II 0.0760 0.1211 0.1541 0.1857 0.2262 0.2540 0.2826 0.3194 0.3442 
11 12 0.0751 0.1206 0.1535 0.1851 0.2253 0.2543 02839 0.3182 0.3439 
II 13 0.0746 0.1206 0.1532 0.1853 0.22.'i5 0.2546 0.2838 0.3193 0.3461 
12 12 0.0752 0.1215 0.1528 0.1863 0.2266 0.2558 0.2844 0.3192 0.3438 

13 13 0.070 0.117 0.150 0.183 0.22.'i 0.257 0.288 0.329 0.360 
14 14 0.070 11.117 11.151 0.183 0.226 0.258 11.289 0.330 0.361 
16 16 0.070 0.117 11.151 0.184 0.227 0.2.'i9 0.291 0.332 0.364 
18 18 11.070 0.117 0.151 0.184 0.228 0.260 0.292 0.334 0.366 
20 20 0.069 0.117 0.151 0.185 0.228 0.261 0.293 0.335 0.367 

25 25 0.1169 0.117 n.152 0.185 0.229 0.262 0.295 0.338 0.370 
30 30 0.069 0.117 0.152 0.186 0.230 0.263 0.296 0.339 0.372 
35 35 0.(169 0.117 0.152 0.186 0.231 0.264 0.297 0.340 0.373 
40 40 0.069 0.117 0.152 0.186 0.2.11 0.264 0.298 0.341 0.374 
50 50 0.069 0.117 0.152 0.187 0.2.11 0.265 11.299 0.343 0.376 

60 60 11.(169 0.117 0.152 0.187 0.232 0.266 0.299 0.343 0.377 
80 80 0.069 0.117 0.152 0.187 0.232 0.266 0.300 0.344 0.378 
100 1110 0.069 0.117 0.152 0.187 0.233 0.267 0.300 0.345 1I.37S 
00 00 0.07111 0.1167 0.1518 0.1869 0.2333 0.2684 0.3035 0.3500 0.3851 
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The four-decimal-place critical values in Table B.38a (except for sample sizes of infinity) were obtained 
from distributions of U2 calculated using the method described by Burr (1964). The three-decimal-place critical 
values shown were computed by the approximation of Tiku (1965). using the computer algorithms of Best 
and Roberts (1975). Bhauacharjee (1970). International Business Machines (1968: 362). and Odeh and Evans 
(1974). The critical values for sample sizes of infinity were computed as 

(Watson 1962) and should be used if sample sizes are greater than 100. 
Examples: 

U6.05.6.8 = 0.1964 and U6.01.10.12 = 0.2545 
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TABLE B.38b: Critical Values of Watson's One-Sample t.f2 

" a: 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

4 0.074 0.116 0.144 0.171 0.205 0.230 0.254 0.286 0.310 
5 0.073 0.116 0.146 0.175 0.211 0.238 0.264 0.299 0.324 
6 0.072 0.117 0.147 o.m 0.215 0.243 0.271 0.307 0.334 
7 0.071 0.117 0.148 0.179 0.218 0.247 0.275 0.313 0.341 
8 0.071 0.117 0.149 0.180 0.220 0.250 0.279 0.317 0.346 

9 0.071 0.117 0.149 0.181 0.221 0.252 0.281 0.321 0.350 
10 0.070 0.117 0.150 0.182 0.223 0.253 (1.284 0.323 0.353 
II 0.070 0.117 O.ISO 0.182 0.224 0.255 0.285 0.325 0.356 
12 0.070 0.117 0.150 0.183 0.225 0.256 0.287 0.327 0.358 
13 0.070 0.117 0.150 0.183 0.225 (1.257 0.288 0.329 0.360 

The values of U~ in Appendix Table B.38b were obtained with the approximation of Tiku (1965). For 
" > 13. Table B.38a may be employed using U~ = u1,.n. 

Examples: 

U~.OS.9 = 0.181 and U5.01.25 = 0.262 

TABLE B.39: Critical Val1les of R' for the Moore Test for Circular Uniformity 
n a: 0.50 0.10 O.OS 0.025 0.01 0.005 0.001 

2 0.791 1.049 1.0S3 1.060 1.061 1061 1.061 
3 0.693 1.039 1.095 1.124 1.143 1.149 1.154 
4 0.620 1.008 1.090 1.146 1.192 1.212 1.238 
5 0.5118 0.988 1.1)84 1.152 1.216 1.250 1.298 

6 0.568 0.972 1.074 1.152 1.230 1.275 1.345 
7 0.5S6 0.959 1.055 1.150 1.238 1.291 1.373 
8 0.546 0.949 1.059 1.148 1.242 1.300 1.397 
9 0.538 0.940 1.053 1.145 1.245 1.307 1.416 

10 n.532 0.934 1.048 1.144 1.248 1.313 1.432 

12 0.523 0.926 1.042 1.140 1.252 1.322 1.456 
14 0.518 0.920 1.037 1.136 1.252 1.325 1.470 
16 0.514 0.914 1.031 1.132 1.250 1.327 1.480 
18 0.510 0.910 1.027 1.129 1.248 1.328 1.487 
20 0.507 0.906 1.024 1.127 1.247 1.329 1.492 

22 0.505 0.903 1.022 1.126 1.246 1.330 1.496 
24 0.503 0.901 1.021 1.125 1.246 1.331 1.499 
26 0.502 0.899 1.019 1.124 1.246 1.332 1.501 
28 0.500 0.897 1.018 1.124 1.246 1.333 1.502 
30 0.499 0.896 1.016 1.123 1.245 1.334 1.502 

40 0.494 0.891 \.012 1.119 1.243 1.332 1.504 
50 0.489 0.887 1.007 1.115 1.241 l.329 1.506 
80 0.487 0.883 1.005 1.113 1.240 1.329 1.508 

100 0.495 O.SSI 1.004 1.112 1.240 1.329 \.509 
00 0.481 0.876 0.999 1.109 1.239 U29 1.517 

Values in Appendix Table 8.39 were taken. with permission of the publisher. from Table 1 of Moore (1980. 
Biomelriko 67: 175-180). 

Example.~: 

RO.05.24 = 1.021 and Ro.lO.30 = 0.896 
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856 Appendix B Statistical Tables and Graphs 

TABLE BA1: Ten Thousand Random Digits 
00-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

00 22808 04391 45529 53968 57136 98228 85485 13801 68194 56382 
01 49305 36965 44849 64987 59501 35141 50159 57369 76913 75739 
02 81934 19920 73316 69243 69605 17022 53264 83417 55193 92929 
03 10840 13508 48120 22467 54505 70536 91206 81038 22418 34800 
04 99555 73289 59605 37105 24621 44100 72832 12268 97089 68112 

05 32677 45709 62337 35132 45128 96761 08745 53388 98353 46724 
06 09401 75407 27704 11569 52842 83543 44750 03177 50511 15301 
07 73424 31711 65519 74869 56744 40864 75315 89866 96563 75142 
08 37075 81378 59472 71858 86903 66860 03757 32723 54273 45477 
09 02060 37158 55244 44812 45369 78939 08048 28036 40946 03898 

10 94719 43565 40028 79866 43137 28063 52513 66405 71511 66135 
11 70234 48272 59621 88778 16536 36505 41724 24776 63971 01685 
12 07972 71752 92745 86465 01845 27416 50519 48458 68460 63113 
13 58521 64882 26993 48104 61307 73933 17214 44827 88306 78177 
14 32580 45202 21148 09684 39411 04892 02055 75276 51831 85686 

15 88796 30829 35009 22695 23694 11220 7HK)6 26720 39476 60538 
16 3152.'; 82746 78935 82980 61236 28940 96341 13790 66247 33R39 
17 02747 35989 70387 1:19571 34570 17002 79223 96817 31681 15207 
18 46651 28987 20625 61347 63981 41085 67412 29053 00724 14841 
19 43598 14436 33521 55637 39789 26560 66404 71802 18763 80560 

20 30596 92319 11474 64546 60030 73795 60809 24016 29166 36059 
21 56198 64370 85771 62633 78240 05766 32419 35769 14057 80674 
22 68266 67544 06464 84956 18431 04015 89049 15098 12018 89338 
2.1 31107 28597 65102 75599 17496 87590 6!1848 33021 691:\55 54015 
24 37555 05069 38680 87274 55152 21792 77219 48732 03377 01160 

25 90463 27249 43845 94391 12145 36882 48906 52336 00780 74407 
26 99189 88731 93531 52638 54989 04237 32978 59902 05463 09245 
27 37631 74016 89072 59598 55356 27346 80856 80875 52850 36548 
28 73829 21651 50141 76142 72303 ()6694 61697 76662 23745 96282 
29 15634 89428 47090 12094 42134 62381 87236 90118 53463 46969 

30 00571 45172 78532 63863 98597 15742 41967 11821 91389 07476 
31 83374 10184 56384 27050 77700 13875 96607 76479 80535 17454 
32 78666 85645 13181 08700 08289 62956 64439 39150 95690 18555 
33 47890 88197 21368 65254 35917 54035 83028 84636 38186 50581 
34 56238 13559 79344 83198 94642 35165 40188 21456 67024 62771 

35 36369 32234 38129 59963 99237 72648 66504 99065 61161 16186 
36 42934 34578 28968 74028 42164 56647 76806 61023 33099 48293 
37 09010 15226 43474 30174 26727 39317 48508 55438 85336 40762 
38 83897 90073 72941 85613 85569 24183 08247 15946 02957 68504 
39 82206 01230 93252 89045 25141 91943 75531 87420 99012 80751 

40 14175 32992 49046 41272 94040 44929 98531 27712 05106 35242 
41 58968 88367 70927 74765 18635 85122 27722 95388 61523 91745 
42 62601 04595 76926 11007 67631 64641 07994 04639 39314 83126 
43 97030 71165 47032 85021 65554 66774 21560 04121 57297 85415 
44 89074 31587 21360 41673 71192 85795 82757 52928 62586 02179 

45 07806 81312 81215 99858 26762 28993 74951 64680 50934 32011 
46 91540 86466 13229 76624 44092 96604 08590 89705 03424 48033 
47 99279 27334 33804 77988 93592 90708 56780 7rnJ7 39907 51006 
48 63224 05074 83941 25034 43516 22840 35230 66048 80754 46302 
49 98361 97513 27529 66419 35328 19738 82366 38573 50967 72754 
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TABLE B.41 (cont.): Ten Thousand Random Digits 
00-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

50 27791 82504 33523 27623 16597 32089 81596 78429 14111 68245 
51 33147 46058 923!!8 10150 63224 26003 56427 29945 44546 50233 
52 67243 10454 40269 44324 46013 00061 21622 68213 47749 76398 
53 78176 70368 95523 09134 31178 33857 26171 07063 41984 99310 
54 70199 70547 94431 45423 48695 01370 68065 61982 20200 27066 

55 19840 01143 18606 01622 77282 68422 70767 33026 15135 91212 
56 32970 28267 17695 20571 50227 69447 45535 16845 68283 15919 
57 43233 53872 68520 70013 31395 60361 39034 59444 17066 01418 
58 08514 23921 16685 89184 71512 82239 72947 69523 75618 79826 
59 28595 51196 96108 84384 80359 02346 60581 01488 63177 47496 

60 83334 81552 88223 29934 68663 23726 18429 84855 26897 94782 
61 66112 95787 84997 91207 67576 27496 01603 22395 41546 68178 
62 25245 14749 30653 42355 88625 37412 87384 09392 11273 28116 
63 21861 22185 41576 15238 92294 50643 69848 48020 19785 41518 
64 74506 40569 90770 40812 57730 84150 91500 53850 52104 37988 

65 23271 39549 33042 10661 37312 50914 73027 21010 76788 64037 
66 08S48 16021 64715 08275 50987 67327 11431 31492 86970 47335 
67 14236 80869 90798 85659 10079 28535 35938 10110 67046 74021 
68 55270 49583 86467 40633 27952 27187 35058 66628 94372 75665 
69 02301 05524 911101 23647 51330 35677 05972 90129 26650 81684 

70 n843 03767 62590 92077 91552 76853 45812 15503 93138 87788 
71 49248 43346 29503 22494 08051 09035 75802 63967 74257 00046 
72 62598 99092 87806 42727 30659 10118 83000 96198 47155 00361 
73 27510 69457 98616 62172 07056 61015 22159 65590 51082 34912 
74 84167 66640 69100 22944 19833 23961 80834 37418 42284 12951 

75 14722 1!8488 54999 55244 03301 37344 01053 79305 94771 95215 
76 46696 05477 32442 18738 43021 72933 14995 30408 64043 67834 
77 139311 09867 28949 94761 38419 38695 90165 82841 75399 09932 
78 48778 56434 42495 07050 35250 09660 56192 34793 36146 96806 
79 00571 71281 01563 66448 94560 55920 31580 26640 91262 30863 

80 96050 57641 21798 14917 21836 15053 33566 51177 91786 12610 
81 30870 81575 14019 07831 81840 25506 29358 88668 42742 62048 
82 59153 29135 00712 73025 14263 17253 95662 75535 26170 95240 
83 78283 70379 54969 05821 26485 28990 40207 00434 38863 61892 
84 12175 95800 41106 93962 06245 00883 65337 75506 66294 62241 

85 14192 39242 17961 29448 84018 14545 39417 83649 26495 41672 
86 6906() 38669 00849 24991 84252 41611 62773 63024 57019 59283 
87 46154 11705 29355 71523 21377 36745 00766 21549 51796 81340 
88 93419 54353 41269 07014 28352 77594 57293 59219 26098 63041 
89 13201 04017 68889 81388 60829 46231 46161 01360 25839 52380 

90 62264 99963 98226 29972 95169 01546 01574 94986 06123 52804 
91 511030 30054 27479 70354 12351 33761 94357 81081 74418 74297 
92 81242 26739 92304 81425 29052 37708 49370 46749 59613 50749 
93 16..172 70531 92036 54496 50521 83872 30064 67555 40354 23671 
94 54191 04574 58634 91370 40041 77649 42030 42547 47593 07435 

95 15933 92602 19496 18703 63380 58017 14665 88867 84807 44672 
96 21518 nno 53826 97114 82062 34592 87400 64938 75540 54751 
97 34524 64627 92997 211911 14976 07071 91566 44335 83237 24335 
98 46557 67780 59432 23250 63352 43890 07109 07911 85956 62699 
99 31929 13996 05126 83561 03244 33635 26952 01638 22788 26393 
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TABLE 1.41 (cont.): Ten Thousand Random Digits 
SO-54 55-59 60-64 65-69 70-74 75-79 80-84 85-R9 90-94 95-99 

00 53330 26487 85005 06384 13822 83736 95876 71355 31226 56063 
01 96990 62825 97110 73006 32661 63408 03893 10333 41902 69175 
02 30385 16588 63609 09132 53081 14478 50813 22887 03746 10289 
03 75252 66905 60536 13408 25158 35825 10447 47375 89249 91238 
04 52615 66504 78496 90443 84414 31981 AA768 49629 15174 99795 

05 39992 51082 74547 31022 71980 40900 84729 34286 96944 49502 
06 51788 87155 13272 92461 06466 25392 22330 17336 42528 78628 
07 88569 35645 50602 94043 35316 66344 78064 89651 89025 12722 
08 14513 34794 44976 71244 60548 03041 03300 463R9 25340 23804 
09 50257 53477 24546 01377 20292 85097 00660 39561 62367 61424 

10 35170 69025 46214 27085 83416 48.'197 19494 49380 28469 77549 
11 22225 83437 43912 30337 75784 77689 60425 8$588 93438 61343 
12 90103 12542 9782l! 85859 85859 64101 00924 89012 17889 01154 
13 68240 89649 85705 18937 30114 89827 89460 01998 81745 31281 
14 01589 18335 24024 39498 82052 07868 49486 25155 61730 08946 

15 36375 61694 90654 16475 92703 59561 45517 90922 93357 00207 
16 11237 60921 51162 74153 94774 84150 39274 10089 45020 09624 
17 48667 68353 40567 79819 48551 26789 07281 14669 00576 17435 
18 99286 42806 02956 73762 04419 21676 67533 50553 21115 26742 
19 44651 48.149 13003 39656 99757 74964 00141 21387 66777 68533 

20 83251 70164 05732 66842 77717 25305 36218 85600 23736 06629 
21 41551 54630 88759 l(lOI!5 48806 08724 50685 95638 20829 37264 
22 68990 51280 51368 73661 21764 71552 69654 17776 51935 53169 
23 63393 76820 33106 23322 16783 35630 50938 90047 97577 27699 
24 93317 87564 32371 04190 27608 40658 11517 19646 82335 60088 

25 48546 41090 69890 58014 04093 39286 12253 55859 838..'13 15023 
26 31435 57566 99741 77250 43165 31150 20735 57406 85891 04806 
27 56405 29392 76998 66849 29175 11641 85284 89978 73169 62140 
28 70102 50882 85960 85955 03828 69417 55854 63173 604R5 00327 
29 92746 32004 52242 94763 32955 39848 09724 31Xl29 45196 67606 

30 67737 34389 57920 47081 60714 04935 48278 906&7 99290 18554 
31 35606 76646 14813 51114 52492 46778 08156 22372 59999 43938 
32 64836 28649 45759 45788 43183 25275 25300 21548 33941 66314 
33 86319 92367 37873 48993 71443 22768 69124 65611 79267 49709 
34 90632 32314 24446 60301 31376 13575 99663 81929 39343 17648 

35 83752 51966 43895 03129 37539 72989 52393 45542 70344 96712 
36 56755 21142 86355 33569 63096 66780 97539 75150 25718 33724 
37 14100 28857 60648 86304 97397 97210 74842 87483 51558 52883 
38 69227 24872 48057 29318 74385 02097 63266 26950 73173 53025 
39 77718 56967 36560 87155 26021 70903 32086 11722 32053 63723 

40 09550 38799 88929 80877 87779 99905 17122 25985 16R66 76005 
41 12404 42453 88609 89148 85892 96045 10310 45021 62023 70061 
42 07985 27418 92734 80000 58969 99011 73815 49705 68076 69605 
43 58124 53830 08705 20916 46<)48 30342 86530 72608 93074 80937 
44 46173 77223 75661 57691 24055 27568 41227 58542 73196 44886 

45 13476 72301 85793 80516 59479 66985 24801 84009 71317 87321 
46 82472 98647 17053 94591 36790 42275 51154 77765 01115 09331 
47 55370 63433 80653 30739 6&821 46854 41939 38962 20703 69424 
48 89274 74795 82231 69384 53605 67860 01309 27273 76316 54253 
49 55242 74511 62992 17981 17323 79325 35238 21393 13114 70084 

Many computer programs can generate random numbers (actually pseudorandom numbers, for the sequence 
of digits will repeat-but commonly only after about two billion uses of the random-number generator; 
McCullough,I998). 
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Power = I - J3 
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APPENDIX C 

The Effects of Coding Data 

The concept of coding. as an aid to compuullion with very large or very small data. was introduced in Section 3.5. 
The following tllble indicates the sections in this oook where various stlltistics receive their first major discussion. 
The coded value of each statistic is indicated oy orackets (where. for example. IX] is the sample mean calculated 
from coded data. where coding is done by multiplying each datum oy M and then adding A. The second column 
of the table show~ how to ootain the statistic thlll would have heen calculated from the original. noncoded data: 
and the third column shows how a statistic from noncoded data c.m bc converted to the statistic th.1l would bc 
ootained oy coding the data. 

For example. if each datum. X. in a sllmplc with an arithmetic mean ofU.15 is multiplied oy 10 (i.e .• M = III) 
and then 2 is added til the result (i.e .. " = 2). the cuded arithmetic mean would be IXI = MX + " = 

( 111)( 0.15) + 2 = 3.5. Conversely. if it is found thllt the me.1I1 of the coded data is 3.5. then the mean of the 
uncoded data would oe X = <lXI - A)I M = {.'.5 - 2)1 IU = I !.I 5. If there is no multiplical.ive coding. then 
M = I: amI. if there is no additive coding. then" = II. 

For simple regression statistics (Chapter 17). M X .. nd Ax pertain to the independent variahle. X. and My 
and A t· apply to the dependent variaole. Y. 

Coding for confidence limits or prediction limits for a statistic employs the ~ame M and" as used for that 
statistic. 

Text 
Section Statistic 

3.1 Arithmetic mean. X 

3.2 Median 

33 Mode 

3.4a Geometric mean. Xc; 

3.40 Harmunic me'lI1. X" 

3.5c Runge millpoint 

4.1 Range 

4.2 Interquartile range 

4.3 Mean deviiltion 

4.4 Sum of squares. SS 

4.4 Variance .. ~2 

4.5 Standilrd deviation. s 

h.2 Standard error of mean. Sx 

Value 
lifter Coding 

IXI = MX + A 

Same as 

Smne as 

IX(;I = MXc; 

IX"I = MX" 
Same as 

Same liS 

Same as 

Same as 

ISSI = M2 SS 

I.~!J = M2s2 

III = Ms 

I'~xl = Msx 

Value 
before Coding 

v = pq-A 
,\ M 

X (aoove) 

X (ahove) 

Xc; = lruJ 
M 

lKuJ X" = M 

X (ahove) 

s (helow) 

S (OdlIW) 

s (below) 

SS= ~ 
, 

.. s2 = ~ 

s = e.t 
M 

'- - b:J ·~x - M 
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868 Appendix C The Effects of Coding Data 

Text Value Value 
Section Statistic after Coding before Coding 

7.3 Confidence limits. L\ and Lz deal- [Lil = MLi + A L. - [Lil- A 

ing with means 
' - M 

17.2a Regression coefficient! b [b) = ~ 
Mx 

b = [bJMx 
My 

17.2b Y -intercept! a [a) = a= 

aMy - IbJAx - Ay lal+lbIA~-A~ 
My 

17.3a Standard error of estimate [sy.x) = My[sy.x J syx=~ . My 

17.3b Standard error of b: sb [Sb) = ~ 
Mx 

Sb=~ My 

17.5b Standard error of a: Sa [so) = soMy So = .!JL My 

The following quantites. in the book sections indicated. are not changed by coding the data from which 
they are calculated: SectiOD 4.6: Coefficient of variation. tV: 4.7: Shannon diversity index.t H': 4.7: Shannon 
evenness index.t J'; 6.1: Normal deviate. Z; 6.5a: Symmetry • .fbi; 6.Sb: Kurtosis, h2; 7.1: Student's I; 7.11: 

Chi-square. X2; 7.1S: Confidence limits. Li. dealing with variances; 8.1c: Behrens-FisherIWelch I'; 8.5: 
Variance ratio. F; 8.11: Mann-Whitney V and V': 8.11d: Sum of ranks, R: Mean of V; Standard error of V; 
Number of tied data in a group of ties: Ii 9.5: Wilcoxon T + and T _ ; 9.5b: Mean of T; Standard error of T; 
10.18: Correlation ratio . .,,2: 10.1f: Welch's F/: 10.11: Brown and Forsythe's F"; 10.38: Power function.1/>; 
10.3c: Mimimum detectable difference. 6: 10.4: Kruskal-Wallis H and He; 10.6: Bartlett's 8; 11.1: Tukey-test 
studentized range, q: 11.3: Dunnett's multiple-comparison statistic. q'; 11.4: Schefftfs multiple-contrast 
statistic. S: U.5: Dunn's multiple-comparison statistic. Q: 12.7: Friedman's X~ and (~)e: 16.2: Wilks' A (V) 
and Tl2; Pillai's trace. V: Lawley-Hotelling lace. U: Roy's maximum root. 8: 16.2c: Hotelling's T2: 17.3a: 
Coefficient of determination. ,2; Chapter 19: All correlation coefficients (e.g., r), except those in Sections 
19.1la.t 19.11 b. 19.12t and their standard errors (e.g .• s,); also. all Fisher z transformations of correlation 
coefficient and standard errors of z: 20.1: Element of inverse correlation matrix. dik; 20.3: Multiple coefficient 
of determination, R2; Adjusted multiple coefficient of determination, R~; Multiple correlation coefficient. 
R: 20.5: Standardized partial regression coefficient. bi; Standard error of Sb;: 20.16: Kendall coefficient of 
concordance. W. We and Cr; 25.7: mean square successive difference statistic. C; 25.8: nonparametric runs 
test statistic. u. 

In general. nominal-scale variables (most of Chapters 22-25) and circular variables (Chapters 26-27) 
should not be submitted to data coding. 

• For regression through the origin (Section 17.9). both Ax and Ay "ust be zero; that is. coding by an 
addition constant may not be used. 
t In these cases. coding may only be performed with A = O. 



APPENDIX 0 

Analysis-of-Variance Hypothesis Testing 

0.1 DETERMINATION OF APPROPRIATE Fs AND DEGREES OF FREEDOM 
0.2 TWO-FACTOR ANALYSIS OF VARIANCE 
0.3 THREE-FACTOR ANALYSIS OF VARIANCE 
0.4 NESTED ANALYSIS OF VARIANCE 

When ,111 analysis.of,vlIrhlllee (ANOV 1\) experimental desi~n has more than one [aclOr. then the lIppmpriah: 
F "ulues (and degrees of freedom) depend upon which of the factors arc lixed and which ,Ire rundom effects (sec 
Section 12.1). and which factms (if any) arc ncsted within which (sec Chapter 15). Shuwn hdow in Sectiun D.I 
is a procedure that enahle~ liS to determine lhc appropriate Fs and DF, for a given expcrimental design. 1\ is 
u simplification of the procedures outlined hy Rennell and Franklin (1954: 413-415). Hicks (19~2: 214-2231. 
Kirk (1995: 402-4(6). Schcf"f': (1IIS9: 2:-<4-2:-(9). and Wincr. Brown. and Michels (IWI: 30')-377) and is the 
method used to produce the contents of Sections D.2 through D5. If we have line of the experimental designs 
of Sections D.2-1>.4. the hand DFs ,Ire given therein: if the design is not found in those pages. then the 
procedures uf Section 0.1 may he used tu determine the Fs and DFs t:pproprilile 10 Ihe ANOVA. 

0.1 DETERMINATION OF APPROPRIATE Fs AND DEGREES OF FREEDOM 

The cX/lmple given here is ,111 analysis,"f-v,lriance design with three t'lICtors. A. B. and C. wllere factor A is a 
fixed effect. factor B is ,I random effect. ilOd C is a random effect that i~ nested within combimllions of fllctors A 
lind B. This is the I\NOV A that is the fourth eX'lInp!.! in Section DAd. The following steps lire followed. and a 
tahle is prepared liS indicllted. 

I. As.sign tu each factor a uni4ue leller lind suhscript. If il fllctor is nested (or is a hlock in a split·plot design 
ur is a subject in a mixcd within·suhjects desi!?n) within one or more other factms. place the suhscripl{s) 
of the laller filctm(s) in parentheses. for the present example. we woulll write Ai. 81, CI(i;)' 

2. Prcpare a tahle as fullows: 

A. Row Illheis are the factors. with their suhscripts (.lIld the fllctor interactions. if ,IllY. with their 
suhscripts). and ,I row fur error (i.e .. within cells) laheled ",,". with all fuctor subscripts in 
parentheses. Factors. illleniction~. ilnd error will he referred 10 culleetivcly as "crl"ects." 

H. ('ollll1ln headings arc the filctur suhscripts. with illl indication of whether ellch is associated with II 
fixed·effects Iilctor or a random-effects fuctor. 

For our example. 

A Fixc'" 8 Ral/dom C l~tII/(f(/m 
1~l.kc( j f 

II; 

II, 

,Anlil 

("IIi/) 

('Ii;I, 

3. The body 01" the tahle i~ (illed in iI~ follows: 

A. Exmnine each culumn corresponding tll" lixed·effects factor. (Inllur eXilmple_ only column i i~ 
so examincd.) !-"ur each such column. enter a "0" in cilch row thm the column slIhscript appears 
outside parentheses in the row suhseript. (In our example. entcr --(I" in rows II, and lAB];; of 
column i.) 

869 



870 Appendix 0 Analysis-of-Variance Hypothesis Testing 

B. Enter "I" in every other position of the table. 

For our example, 

A Fixed B Random 
Effect j 

Ai 0 

Bj I 

[AB);j 0 

C/(;j) 

e(ijl) 

C Random 
I 

4. For each row, list all effects that contain all the subscripts of the row label. In our example. 

A Fixed B Random C Rantlom 
Effect j I Effect list 

Ai 0 A + AB + C + e 

Bj 1 B + AB + C + e 

[ABJij 0 AB + C + e 

C/(ij) C+e.-

e(ijl) e 

5. For each effect. locate the row corresponding to each effect in the effect list and do the following for each 
such row: 

A. Ignore a zero in a column headed by a subscript in the row label. and if there is a zero in that row. 
then delete that effect from the effect list. 

B. Locate the table row corresponding to each factor or interaction in the effect list. If there is a zero 
in that row. other then in the columns headed by the subscripts in the row label. then delete that 
factor or interaction from the list. 

In our example. we examine row Ai by ignoring column i. Our factor and interaction list consists of 
B. C, AB, and e. None of these rows contain zeros, so we retain the entire list. 

We examine row Bj by ignoring column j. Our list of factors and interactions consists of B, C. AB. and 
e. Rows Bj. C/(ij)' and eijl contain no zeros, but row [ABJij has a zero. Therefore. we delete A B from our 
list for row Bj. 

We similarly examine row [ABJij by ignoring columns i and j; row C/(ij) by ignoring columns i.j. and 
I: and rowe(ijl) by ignoring columns i,j. and I. No items are deleted from the factor and interaction lists 
for these rows. 

As a result. we have the following: 

Effect 

Ai 

Bj 

[ABJij 

CI(ij) 

e(ij/) 

6. The appropriate F is determined as follows: 

Effect list 

A + AB + C + e 

B + C + e 

AB + C + e 

C + e 

e 

A. The numerator for F is the mean square (MS) for the effect (factor or interaction) in question. 
The numerator degrees of freedom (OF) are the OF associated with the numerator MS. 

B. The denominator for F is the mean square for the effect having the same effect list as does the 
numerator effect. with the exception of not having the numerator effect in the effect list. The 
denominator degrees of freedom are the OF associated with the denominator MS. 

To test for the significance of factor A in our example. MSA would be the numerator. As factor A has an 
effect list of A, AB, C, e. we desire in the denominator the mean square for the effect having an effect list 
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of AB. C. e; therefore. the denominator is MSAH and 

To test for the significance of factor B. place MSB in the numerator of F. Because factor B has an 
effect list of B. C. e. the denominator of F needs to be the mean square for the effect having an effect list 
of C. e. meaning that the denominator is to be MSc. and 

F = MSB. 
MSc 

To test for the significance of factor interaction AB. we place MSAB in the numerator of F; and. as AB 
has an effect list of AB. C. e. we need in the denominator the MS for the effect with an effect list of C, e; 
so we use MSc in the denominator. and 

F '" MSAB. 
MSc 

To test for the significance of factor C, we place MSC in the numerator of F. As factor C has an 
effect list of C, e. the denominator should be the MS for the effect containing only e in its effect list. 
Therefore. 

F = MSc. 
MSe • 

Occasionally. as in examples (c) and (d) in Section D.3. there is no single effect that has the effect list 
required in step 6.B above. If this is the case. then a combination of effect lists may be considered as an 
approximate procedure (Satterthwaite. 1946). 

For the example in Section D.3c. steps 1-5 above yield the following effect list: 

Effect Effect list 

A; A + AB + AC + ABC + e 

Bj B+ BC + e 

C, C+ BC + e 

[A B);; AB + ABC + e 

[AC)ij AC + ABC + e 

[BC)jI BC + e 

[ABC)ijl ABC + e 

e(ijl) e 

To test for the significance of factor A in that example. we place MSA in the numerator of F and observe 
that the associated effect list is A. AB. AC, ABC. e. and we require a denominator MS associated with 
an effect list of AB. AC, ABC, e. We note that if we add the effect lists for effect AB (namely AB. 
ABC. e) and effect AC (i.e., AC,ABC.e) and then subtract the list for effect ABC (namely. ABC,e), 
we have the desired list (AB.AC.ABC,e). Thus. we place in the denominator of F the combination of 
mean squares associated with the combination of effect lists used. namely MSAB + MSAC - MSABC. 
Therefore. 

(This statistic is sometimes referred to as a "quasi-F" and may-albeit rarely-be negative. In that 
case. treat it as if it were zero.) 

If a combination of mean squares is used as the denominator of F. then the denominator degrees of 
freedom are 

(denominator of F)2 

L[( MSi )2jDF;\ 
; 

where the summation takes place over all the mean squares in the denominator of F. 
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D.2 

D.3 

For our example. the numerator OF for testing the significance of factor A is OF A. and the denominator 
OFis 

(MSAB)2 + (MSAc>2 + (MSABc>2' 

OF AB OF AC OF ABC 

In the following series of tables. mean squares for factors are denoted as MSA. MSB. and so on; mean 
squares for interaction among factors are indicated as MSAB. MSAC. MSABC. and so on; and the error 
mean square is denoted by MS ... Degrees of freedom (OF) are indicated with the same subscripts as the 
mean squares. 

If an analysis of variance has only one replicate per cell. the calculation of MSe is not possible. the 
quantity calculated as the "remainder" MS being the MS for the highest-order interaction. If we assume 
that the highcst-order interaction MS is insignificant. the remainder MS may be used in place of the error 
MS in the F calculation and other procedures where MSe is called for. 

TWO-FACTOR ANALYSIS OF VARIANCE 

(a) Factors A and B Both FIXed (Sec Example 12.1.) 

Sourceo! 
variation F PI P2 

A MSA'MS ... OFA OF .. 

B MSBIMS .. OFB OF .. • 
AB MSAHIMSe OFAB OF .. 

(b) Factor A Fixed; Factor B Random (See Example 12.4.) 

Sourceo! 
variation F VI P2 

A MSA'MSAB OFA OFAB 

B MSBIMS .. OFB OFt' 

AB MSABIMS .. OFAB OFt' 

(e) Factors A and B Both Random 

Sourceo! 
variatioll F "I "2 

A MSAIMSAB OFA OFAB 

B MSBIMSAB OFB OFAB 

AB MSAB'MS .. OFAB OF .. 

THREE-FACTOR ANALYSIS OF VARIANCE 

(a) FactorsA,Band C AU Fixed (See Example 14.1.) 

Sourceo! 
variation F v\ "2 

A MSAIMS .. OFA OFe 

B MSBIMS .. OFB OF,. 

C MScIMS .. OFc OFe 

AB MSABIMSe OFAB OF .. 

AC MSAc/MS .. OFAC OF .. 

BC MSBC/MS .. OFBC OF .. 

ABC MSABC'MS .. OFABC OF" 



Cb) Factors A and B fixed; Factor C Random 

SOllrel! of 
vl/ril/ticm P 

A MSA/MSAC 

B MSBIMSBC 

C MSc/MS .. 

AB MSABIMSAHC 

AC MSAc/MS .. 

BC MSBC/MS" 

ABC MSABC/MS .. 

Cc) Factor A fixed; Factors B and C Random 

SOllrer of 
vl/riaticm 

A 

B 

C 

AB 

AC 

BC 

ABC 

p 

MSA/(MSAH + MSAC - MS"BC) 

MSB/MSBC 

MSclMSHC 

MSAB/MSAHC 

MS"clMSAlIC 

MSlJdMS,. 

MSAHdMS .. 

Cd) Factors A. B. C All Random 

Scmr£"(! of 
I'OriaticlI/ F 

A MSA/(MSAH + MSAC - MSABC) 

B MSB/(MS"H + MSBC - MSABC) 

C MSc/(MSAC + MSSC - MSABcl 

AB MSAB/MSABC 

AC MS"clMSABC 

BC MSBclMSAl1C 

ABC MSA BcI MS,. 

0.4 NESTED ANALYSIS OF VARIANCE 

"I 

OFA 

OFII 

OFc 

OFAH 

OFAC 

OFBC 

OFABC 

"I 

OFA 

OFII 

OFc 

OF"B 

OF"c 

OFnc 

OF"HC 

"1 

OFIJ 

OFC 

OFAH 

OF"c 

OFBC 

OF"BC 

Section 0.4 Nested Analysis of Variance 873 

"2 

OFAC 

OFBC 

OF .. 

OFAHC 

OF .. 

OF .. 

OF .. 

"2 

(MS,," )2/DF AB+(MS,IC' )-/OF AC+ (MSAHC' )2/DF ABC" 

OFBC 

• OFBC 

OFAHC 

OFAHC' 

OF .. 

OF,. 

(MSA(' )2/I)F IIC + (MSBC ' )/DFHC+ (MSA8C )2/DF ABC 

OFABC 

OFABC 

OFABC 

OF .. 

Ca) Factor A either fixed or Random; Factor B Random and Nested 
within Factor A (See Example 15.1.) 
SOllr£"(! of 
variation F "1 "2 

A MS"/MSII OF" OFs 

B MSIIIMS,. OFH OF .. 
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(b) Factor A Either FIXed or Random; Factor B Random and Nested 
within Factor A; Factor C Random and Nested within Factor B 
Sourceo! 
variation F 1/1 1/2 

A MSAIMSB DFA DF8 

B MSB1MSC DFS DFC 

C MSclMSe DFC DF .. 

(c) Factors A and B FIXed; Factor C Random and Nested within Fadors 
A and B (See Example 15.2.) 

(d) 

(e) 

Sourceo! 
variation F VI 1/2 

A MSA1MSc 

B MSBIMSc 

AB MSAB1MSc 

C MSc/MSe 

DFA 

DF8 

DFA8 

DFc 

DFC 

DFc 

DFC 

DF ... 

Factor A fixed; Factor B Random; Factor C Random and Nested 
within Factors A and B 
Sourceo! 
variation F 1/1 1/2 

A MSA/MSAB DFA DFAB 

B MSB1MSC DFB DFC 

AB MSAB1MSC DFAB DFC 

C MSclMSe DFc DF .. 

Factors A and B Random; Factor C Random and Nested within 
Factors A and B 
Sourceo! 
variation F VI v2 

A MSAIMSAB DFA DFAB 

B MS81MSA8 DF8 DFAS 

AB MSAB1MSC DFA8 DFC 

C MSc/MSt' DFC OFt' 



Answers to Exercises 

Chapter 3 
3.1. (8) 13.8 kg; (b) 10.7 kg; (c) 17.R kg; 

(d) 17.8 kg. 

3.2. (8) 3.56 kg; (b) 3.6 kg. 

3.3. (a) 46.63 yr; (b) 46.3 yr; (c) 44.58 yr; 
(d) 46.3 yr. 

3.4. (8) 2.33 g; (b) 2.33 g; (c) 2.4 g; (d) 2.35R g; 
(e) 2.4 g. 

3.5. 0.89 gil 00 g. 

Chapter 4 
4.1. (a) SS = 156'(l2R g2. 52 = 39.007 g2; (b) same 

as (a). 
4.2. (a) Range = 236.4 mg/100 ml to 

244.8 mg/l00 ml = 8.4mg/l00ml; 
(b) SS = 46.1886 (mg/IOO ml)2; (c) 52 = 7.6981 
(mglloo ml)2; (d) s = 2.77 mgll00 ml: 
(e) V = 0.0115 = 1.15%. 

4.3. k = 6. n = 97; (a) H' = 0.595; 
(b) H:nax = O.77R; (c) J' = 0.76. 

4.4. k = 6. n = 97; (a) H = 0.554; (b) c = 16. 
d = 0.1667. Hmax = 0.741; (c) J = 0.75. 

Chapter 5 
5.1. (a) (3)(2) = 6; (b) H,G H,P M.G M,P L.G 

L.P. 
5.2. (3)(4)(2) = 24. 

5.3. 223 = 8,388,608. 

5.4. sPs = 5! = 120. 

5.5. 12PS = 12!/7! = 95.040. 
5.6. p,P4.2.2 = R!/[4!2!2!] = 420. 

5.7. ':Ies = 9!/(5!4!) = 126. 
S.S. 0: 0.49; A: 0.38; B: 0.09; AB: 0.04. 

5.9. n = 29; 0.38.0.21,0.14,0.07,0.07,0.07,0.07. 

S.10. (a) P = 0.38; (b) P = 0.3R + 0.04 = 0.42. 

S.11. (a) P = 4/29 = 0.14; 
(b) P = 4/29 + 2/29 + 2/29 = 0.28. 

S.12. (a) P = G) (I) = (D = 0.5; (b) P = (D (I) = 

(D = 0.5; (c) P = (D(O) = O. 

S.13. (a) P = (J...)(!) = J... = 0.019; (b) P = 
I.l 4 52 

(! + !)(J...) = J... = 0038' 4 4 13 21l . • 

(c) P = (!)(1.) = 1. = 012 2 13 21l •• 

5.14. (a) Peart 3 white) = [P( W)][P( W)][P( W)I = 

(D(DG) = /220 = 0.10; (b) P(2 white) = 

[PC W)][P( W)][P( B)I + [PC W)][P( B)J 

[PC W)] + [P(B)][P( W)][P( W)] = 

O)(DO) + O)(DG) + G)(DG) = 
~ + E.. + 24 = ~ = 0 37 
120 12() 120 120 .•• 

(c) P(2 or 3 white) = 0.10 + 0.37 = 0.47. 

5.15. (8) P = 3/22 = 0.14; (b) P = 2/5 = 0.40; 
(c) P = 3/10 = 0.30. 

Chapter 6 
6.1. '2/i = n = 37, X = 4.6514. '2(Xi - X)2 = 

2.2922. '2(Xi - X)J = -0.4049. 
'2(Xi - X)4 = 0.5110. (a) vOl = -0.71. 
(b) b2 = 3.60. (c) QI = XIJ.s = 4.5 km. 
Q2 = M = XI\) = 4.7 kg. Q3 = X2l\5 = 4.8 kg; 
skewness = -0.100 (d)OI = X5 = 4.3 kg. 
(j2 = QI = 4.5 kg, (;3 = XI2 = 4.6 kg; 
Os = X 21l = 4.8 kg, Oil = Q3 = 4.8 kg. 
(;7 = X33 = 4.9 kg; kurtosis = 1.333. 

6.2. (a)Z = (78.0g - 63.5g)/12.2g = 1.19. 
P( X ~ 78.0 g) = P( Z ~ 1.19) = 0.1170; 
(b) P(X s; 7R.0 g) = 1.0000 - P(X ~ 78.0 g) = 
1.000 - 0.1170 = 0.8830; (c) (0.1170)( 1(00) = 
117; (d)Z= (41.0g - 63.5g)/12.2g= -1.84. 
P( X s; 41.0 g) = P( 7. s; -1.84) = 0.0329 

6.3. (a) P(X s; 60.0 g) = P(Z s; -0.29) = 0.3859. 
P(X ~ 70.0 g) = P(Z ~ 0.53) = 0.2981. 
P( 60.0 g s; X s; 70.0 g) = 1.0000 - 0.3859 -
O.29Rl = 0.3160; (b) P(X s; 60.0 g) = 
P(Z s; -0.29) = 0.3859,P(X s; 50.0 g) = 
P( Z s; - 1.11 ) = 0.1335. P( 50.0 g s; X s; 
60.0 g) = P( -1.11 s; Z s; -0.29) = 0.3859 -
0.1335 = 0.2524. 

6.4. (a) Ux = u/../ii = 12.2 g/JiO = 3.R6 g; 
(b) 7. = (65.0 g - 63.5 )/3.86 g = 0.39. P( X ~ 
65.0 g) = P(Z ~ 0.39) = 0.3483; (c) P(X s; 
62.0 g) = P(Z s; -0.39) = 0.3483, 
P(X s; 60.0 g) = P(Z s; -0.91) = 0.1814, 
P(60.0 g s; X s; 62.0 g) = 0.3483 - 0.1814 = 
0.1669. 

6.5. (a) X = 10.43 giL; Z = (10.43 mg/L -
10.00 mg/L)/0.24 mg/L = 1.79; P(Z ~ 
10.00 mg/L) = 0.0367; as 0.0367 < 0.05, reject 
Ho. (b) Zo.OS( I) = 1.645, LI = 10.43 mg/L -

875 
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(1.645)(0.24 mg/L) = 10.04 mg/L, L2 = 00; 
ILO = 10.00 mg/L. 10.00 mg/L < 10.04 mg/L so 
Ho is rejected. 

6.6. (7'x = ~r-89-.06-d-a-ys"""'2-/2-4 = 3.71 days; (a)for 99% 
confidence. ZO.OIO(2) = 2.575. LI = 61.4 days -
(2.575)(1.93 days) = 6t.4days - 4.9 days = 
56.5 days. L2 = 61.4 days + 4.9 days = 
66.3 days: (b) for 95% confidence. ZO.05(2) = 
J .960, LI = 57.6 days, L2 = 65.2 days: (c) for 
90% confidence, ZO.IO(2) = 1.645. LI = 58.2 days. 
L2 = 64.6 days. 

Chapter 7 

7.1. Ho: IL = 29.5 days, HA: IL =F 29.5 days, X = 
27.7 days, SX = 0.708 days. n = 15.1 = 
2.542.lI = 15 - 1 = 14, 10.05(2).14 = 2.145. 
0.02 < P(lll ~ 2.542) < 0.05 [P = 0.023]; 
therefore. reject Ho and conclude that the sample 
came from a population with a mean that is not 
29.5 days. 

7.2. Ho: IL ~ 32 mmole/kg. HA : IL < 32 mmole/kg. 
X = 29.77 mmole/kg . .'Ix = 0.5 mmole/kg. 
n = 13, 1 = -4.46,lI = 12,lo.oS{I).12 = 1.782. 
P(I < -4.46) < 0.0005 [P = 0.00039]; 
therefore, reject Ho and conclude thallhe sample 
came from a popUlation with a mean less than 
32 mmolelkg. 

73. Graph, which includes three 95% confidence 
intervals: 0.458 ± 0.057 kcaUg; 0.413 ± 
0.059 kcal/g; 0.327 ± 0.038 kcal/g. 

7.4. (a) 13.55 ± 1.26 cm; (b) n = 28; (c) n = 9; 
(d) n = 15. (e) For X of second !.iample, 
m = 10: LI = 13.55 em - 2.11 cm = 11.44 cm, 
L2 = 13.55 em + 2.11 cm = 15.66 em. 

7.5. (8) n = 30; (b) n = 41; (c) n = 42; 
(d) d = 2.2 cm; (e) ',B( I ).24 = 1.378. 
0.05 < /3 < 0.10. so 0.90 < power < 0.95; or. 
by normal approximation. /3 = 0.08 and 
power = 0.92 (/3 = 0.09 and power = 0.91]. 

7.6. (a) N = 200, n = 50,..,2 = 97.8121 yil. 
to.05(2).49 = 2.010; Sx = 1.2113 yr. 95% 
confidence interval = 53.87 ± 2.43 yr: 
(b) IO.05(2).99 = 1.984;sx = 0.6993 yr. 95% 
confidence interval = 53.87 ± 1.39 yr. 

7.7. (a) s2 = 6.4512, n = 18. SS = 109.6704 cm2; 

X~.025.17 = 30.191, X~.975.17 = 7.564: 
Ll = 3.6326cm2• Lz = 14.499Ocm2. 
(b) s = 2.54 cm; LI = 1.91 cm. L2 = 3.81 cm. 
(c) r = 24.925. X5.05.17 = 27.587; 24.925 is not 
> 27.587. so do not reject Ho: 0.05 < P < 0.10 

[P = 0.096]. (d) (7'2 = 9.000 cm2• X2 = 12.186. 
X5.95.17 = 8.672; 12.186 is not < 8.672. so do not 
reject Ho: 0.10 < P < 0.25 [P = 0.21]. 
(e) (7'5/s2 = 0.682: by trial and error: n = 71. 

II = 70. Xfi.75. 7'/ X5.05. 70 = 61.698/90.531 = 
0.9682. (f) For s2 of new sample, m = 20: 
FO.05(2).19.17 = 2.63. FO•05(2).17.19 = 2.57. 
LI = 6.4512 cm2/2.57 = 2.51 cm2• 
L2 = (6.4512 cm2)( 2.63) = 16.97 cm2; for s: 
LI = 1.58 em. L2 = 4.12 em). 

7.8. (8) Do not reject Ho; P > 0.10 (b) Reject Ho; 
0.02 < P < 0.05. 

ChapterS 
8.1. Ho: f.L1 = f.L2, HA: f.L1 =F f.L2. nt = 7. SSt = 

108.6171 (mg/l00 ml)2. XI = 224.24 mg/loo mI. 
VI = 6. n2 = 6. SS2 = 74.7533 (m~l1oo ml)2. 
X2 = 225.67 mg/lOOml. V2 = 5,sp = 

16.6700 (mg/l00 ml)2. Sx -X2 = 2.27 mg/100 mI. 
t = -0.630./0.05(2).1\ = ~.201; therefore, do not 
reject Ho: P > 0.50 [P = 0.54]. 

8.2. Ho: f.L1 ~ f.L2, HA: f.L1 < f.LZ. nl = 7. SSI = 
98.86 mm2, VI = 6. XI = 117.9 mm. n2 = 8. 
SS2 = 62.88mm2.v2 = 7,X2 = 118.1 mm, 
.~ = 12.44 mm2• Sx -X2 = 1.82 mm.1 = -0.11. 
IO.05( I ).13 = 1.771; therefore. do not reject Ho: 
P > 0.25 [P = 0.46]. 

83. Ho: f.L1 ~ IL2. Ho: f.L1 < IL2. X I = 4.6 kg, 
;. = 11.02kgz.nt = 18;Vl = 17.X2 = 6.0kg2• 

.s1 = 4.35 kg2, 112 = 26, lI2 = 25. sx, -X2 = 
0.88 kg. I = - 1 .59. lo.oS{ I ).42 = 1.682; 
therefore. do not reject Ho, 0.05 < P < 0.10 
[P = 0.060]. 

8.4. Ho: f.L2 - f.L1 !SO 10 g. HA: IL2 - ILl > 10 g, 
XI = 334.6 g. SSI = 364.34 g2. nl = 19, VI = 18, 
X2 = 349.8~, SS2 = 286.78 i. n2 = 24, lI2 = 23. 
s~ = 15.88g .SX,-X2 = 1.22g,/ = 4.26. 
lo.05( I ).41 = 1.683 therefore, reject Ho and 
conclude that f.L2 is at least 10 g greater than 
ILl: P < 0.0005 [P = 0.00015]. 

8.5. (8) Ho is not rejected; Xp = 224.90 mg/loo ml; 
10.05(2).11 == 2.201; s~ = 16.6700 (mg/l00 ml)2; 
95% confidence interval = 22.490 ± 
~t6.5700/13 = 224.90 ± 1.13; LI = 223.77 mg/ 
l00ml.L2 = 226.03mg/looml. (b)X1 - X2 = 
-3.43 mg/lOO ml; ~ = 6.6601 (mg/tOO ml)2; 95% 
prediction interval = -3.43 ± 2.201 J6.6601 = 
-3.43 ± 5.68; LI == -9.29 mg/l00 ml, L2 = 2.25 
mg/too ml. 

8.6. s;, = (244.66 + 289.18)/(13 + 13) = 
20.53( kmlhr )2; d = 2.0 km/hr. If we guess 



n = 50, then" = 2( 50 - I) = 98, 10.05(2).911 = 
1.984, and n = 40.4. Then. guess n = 41;" = BO. 
10.05(2).110 = 1.990. and n = 40.6. So, the desired 
II = 41. 

8.7. (a) If we guess n = 25, then" = 2(24) = 48. 
10.05(2).48 = 2.011. 10.10( I ).48 = 1.299, and 
n = 18.0. Then. guess n = 18;" = 34. 
10.05( 2).34 = 2.032. 10.1O( I ).34 = 1.307, and 
n = 18.3. So. the desired sample size is n = 19. 
(b) n = 20.95. 11= 40.10.05(2).40 = 2.021, 
10.1O( 1).40 = 1.303. and l) = 4.65 kmlhr. 
(c) n = 50, II = 98.10.05(2).911 = 1.984. and 
I P( I ).98 = 0.223: f3 > 0.25. so power < 0.75 (or. 
by the normal approximation. f3 = 0.41, so 
power = 0.59). 

8.8. nl = 7,"1 = 6.sI = 18.1029 (mg/l00 ml)2. 
112 = 6. "2 = 5, ~ = 14.9507 (mgl 100 ml )2; 
F = 1.21, FO.05(2).f>,5 = 6.98; do not reject 
Ho: P > 0.50 [P = 0.85]. 

8.9. III = 7.111 = 6,sT = 16.48mm2,n2 = 8."2 = 7. 
s~ = 8.98 mm2; F = 1.83. FO.05(2).6.7 = 3.87; 
do not reject Ho: 0.10 < P < 0.25 
[P = 0.22]. 

8.10. "l = 21,"1 = 20,.~ = 38.71 g2. 112 = 20. "2 = 19, 

s~ = 21.35 g2'sT/~ = 1.81. (a) FO.05(2).20.19 = 
2.51, FO.05(2).1920 = 2.48; LI = 0.72 g2, 

L2 = 4.49 g2. (b) ZO.05(1) = 1.6449. ZO.IO(I) = 
1.2816.1l = 26.3 (so a sample of at least 27 should 
be taken from each population). (c) 
ZP( I) = 0.87, f3( 1) = 0.19. power = 

0.81. 

8.11. Ho: uJ! J-LI = u21 J-L2. HA: uII J-LI ;;J:. u21 J-L2: 
Sl = 3.82 em, VI = 0.356. S2 = 2.91 cm, 
V2 = 0.203: Vp = 0.285; Z = 2.533, 
ZO.05(2) = 1.960; reject Ho: 0.01 < P < 0.02 
[P = 0.013]. 

8.12. Ho: Male and female turtles have the same serum 
cholesterol concentrations; H A: Male and female 
turtles do not have the same serum cholesterol 
concentrations. 

Male ranks Female ranks 

2 5 
1 3 

11 12 
10 8 
4 6 
7 13 
9 
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RI = 44.nl = 7,R2 = 47.112 = 6; V = 26: 
V' = (7)(6) - 26 = 16: Vn.oS(2).7.6 = 
VO.05(2).6.7 = 36; therefore. do not reject Ho: 
P > 0.20 [P = 0.53]. 

8.13. Ho: Northern birds do not have shorter wings than 
southern birds: H A: Northern birds have shorter 
wings than southern birds. 

Norlhern rallks SOlllhern rallks 

11.5 5 
1 7 

15 13 
8.5 2.5 
5 5 
2.5 8.5 

10 14 
11.5 

RI = 53.5, nl = 7. n2 = 8; V = 30.5; V' = 25.5: 
Vo.OS( 1).7.8 = 43; therefore. do not reject Ho: 
P > 0.10 [P ::::: 0.41]. 

8.14. Ho: Intersex cells have 1.5 times the volume of 
normal cells: H A: Intersex cells do not have 1.5 
times the volume of normal cells. 

Normal X 1.5 Rank Intersex Rank 

372 4 380 9 
354 1 391 13 
403.5 16 377 8 
381 10 392 14 
373.5 5 398 15 
376.5 7 374 6 
390 12 
367.5 3 
358.5 2 
382.5 11 

RI = 71,nl = 10.112 = 6; V = 44, V' = 16; 
VO.05(2).1O.6 = 49; therefore, do not reject Ho; 
0.10 < P < 0.20. 

Chapter 9 

9.1. HO:J-Ltf = O,HA:J-Ltl '* O;d = -2.09J-Lg/m3• 

S(j = 1.29 J-Lg/ m3. (a) I = - 1.62. II = 11. II = 10. 
10.05(2).10 = 2.228; therefore. do not reject 
Ho: 0.10 < P < 0.20 [P = 0.14]. (b) 95% 
confidence interval for J-Ltl = - 2.09 ± 
(2.228)(1.29) = -2.09 ± 2.87;LI = -4.96J-Ly} 
m3• L2 = 0.78 J-Lg/m3. 



878 Answers to Exercises 

9.2. 
d; Signed rank 

-4 -5.5 
-2 -3 
-5 -7.5 

6 9 
-5 -7.5 

1 1.5 
-7 -10.5 
-4 -5.5 
-7 - 10.5 

1 1.5 
3 4 

T = 9 + 1.5 + 1.5 + 4 = 16; TO.05(2).11 = 10; 
since T is not ~ 10. do not reject Ho; 0.10 < 
P < 0.20. 

9.3. s1 = 285.21 (J.Lgjm3)2,s~ = 270.36 (J.Lgl 
m3)2: F = 1.055: r = 0.9674: t = 0.317; 
10.0,(2).9 = 2.262; do not reject Ho: 0'1 = O'~: 
P > 0.50 [P = O.76j. 

Chapter 10 
10.1. Ho: J.LI = J.L2 = J.L3 = J.L4; HA: The mean food 

consumption is not the same for all four months: 
F = 0.7688/0.0348 = 22.1; FO.05(1).3.IR = 3.16: 
reject Ho: P < 0.0005 [P = 0.0000029]. 

10.2. k = 5, "I = 4.11 = 12. "2 = 55.0'2 = l.54(cC)2. 
/) = 2.0"C: 4J = 1.77: from Appendix 
Figure B.l d we find that the power is about 0.88. 

10.3. n = 16. for which "2 = 75 and 4J = 2.04. (The 
power is a little greater than 0.95: for n = 15 the 
power is about 0.94.) 

10.4. "2 = 45. power = 0.95,4J = 2.05: minimum 
detectable difference is about 2.5°C. 

10.5. Ho: The amount of food consumed is the same 
during all four months: HA: The amount of food 
consumed is not the same during all four months; 
III = 5,1l2 = 6.1l) = 6,1l4 = 5; RI = 69.5. 
R2 = 23.5, R3 = 61.5, R4 = 98.5; N = 22; 
H = 17.08: Xl.053 = 7.815; reject Ho: P« 
0.001. H,. (i.e .. H corrected for ties) would be 
obtained as LI = 120. C = 0.9887, He = 17.28. 
F = 27.9. FO.05( 1)3.17 = 3.20; reject HI); P« 
0.0005 [P = 0.00000086]. 

10.6. Ho: 0'1 = O'~ = O'~: HA: The three population 
variances are not all equal; B = 5.94517. 
C = 1.0889, B,- = B/C = 5.460: X~.05.2 = 5.991; 
do not reject Ho: 0.05 < P < 0.10 [P = 0.065]. 

10.7. Ho: J.LtI 0'1 = J.L2I"2 = J.L3/O'3 = J.L4/ 0'4: SI = 
0.699, VI = 0.329, S2 = 0.528, V2 = 0.302. S3 = 
0.377, V3 = 0.279 .. V4 = 0.451. V4 = 0.324: 

Vp = 0.304: X2 = 1.320. X~.053 = 7.815: do not 
reject Ho: 0.50 < P < 0.75 [P = 0.72]. 

Chapter 11 
11.1. (8, b) Ranked sample means: 14.8 16.2 20.2: 

k = 3. Il = 8. a = 0.05, s2 = 8.46. " = 21 (which 
is not in Appendix Table B.5, so use" = 20. 
which is in the table); reject Ho: J.L2 = J.LI; reject 
Ho: J.L2 = J.L3: do not reject Ho: J.L3 = J.LI· 
Therefore, the overall conclusion is J.LI = J.L3 * J.L2· 
(c) Xp = Xu = 15.5. /0.0,(2)21 = 2.080. 
"l + 112 = 16.95% CI for J.L1.3 = 15.5 ± 1.5; 
95% CI for J.L2 = 20.2 ± 2.1: Xu - X2 = -4.7, 
SE = 1.03.95% CI for J.L1.3 - J.L2 = -4.7 ± 3.2. 

11.2. X I = 4.82, III = 5; X 2 = 4.33.112 = 6: X 3 = 4.67. 
113 = 6; X 4 = 5.24, 114 = 5: s2 = 0.0348; " = 18; 
QO.05.18.4 = 3.997; conclusion: J.L2 * J.L3 = 
J.LI * J.L4· 

11.3. Means. sample sizes. and QO.U5.1!!.I4 as in Exercise 
11.2:si = 0.0170 •. ~ = 0.0307.55 = 0.0227. 
~ = 0.0730. conclusion: J.L2 * J.L3 = J.LI * J.L4· 

11.4. Ranked sample means: 60.62. 69.30, 86.24. 100.35; 
sample sizes of 5. 5. 5, and 4, respectively; k = 4. 
" = 15. a = 0.05, s2 = 8.557; control group is 
group 1; Q:,.OS(2).IS.4 = 2.61: reject Hu: J.L4 = J.LI. 

reject Ho: J.L3 = J.LI. reject Ho: M2 = J.LI. Overall 
conclusion: The mean of the control population is 
different from the mean of each other population. 

11.5. Ranked sample means: 60.62. 69.30. 86.24. 100.35: 
sample sizes of 5. 5. 5, and 4. respectively: k = 4. 
" = 15. a = 0.05. s2 = 8.557; critical value of S is 
3.14; for Ho: (J.LI + /J-4)/2 - (J.L2 + J.L3)/2 = O. 
S = 8.4, reject Ho; for Ho: (J.L2 + J.L4 )/2 - J.L3 = 
O. S = 13.05, reject Ho. 

11.6. RI = 21. R2 = 38. R3 = 61. Overall conclusion: 
The variable being measured is the same 
magnitude in populations 1 and 2. The variable is 
of different magnitude in popUlation 3. 

Chapter 12 
U.l. (a) Ho: There is no difference in mean hemo­

lymph alanine among the three species: HA: 
There is difference in mean hemolymph alanine 
among the three species; F = 27.6304/2.1121 = 
13.08; Fu.uS( I ).2.18 = 3.55; reject Ho: P < 0.0005 
[P = 0.00031]. (b) Ho: There is no difference in 
mean hemolymph alanine between males and 
females; HA: There is difference in mean 
hemolymph alanine between males and females; 
F = 138.7204/2.1121 = 65.68; Fo.oS( 1 ).1.18 = 4.41 
reject Ho; P« 0.0005 [P = 0.ooOOO020j. 
(c) Ho: There is no species X sex interaction in 
mean hemolymph alanine; HA: There is species x 
sex interaction in mean hemolymph alanine; 
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F = 3.4454/2.1121 = 1.63; FU.05( 1 ).2.18 = 3.55; do 
not reject Ho; 0.10 < P < 0.25 [P = 0.22]. 
(d) See graph below; the wide vertical distance 
between the open circles indicates difference 
between sexes; the vertical distances among the 
plus signs indicates difference among the three 
species; 
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the parallelism of the male and female lines 
indicates no interaction effect. (e) Ranked 
sample means: 14.43 16.1318.14 (means 2, 3, 
and 1, respectively); k = 3; n = 8; a = 0.05; 
s2 = 2.1121; v = 18; reject Ho: J-tl = J-t2, reject 
Ho: J.LI = J.L3, do not reject Ho: 
J-t3 = J-t2· 

12.:Z. Ho: All four plant varieties reach thc same mean 
hcight (i.e., Ho: J-tl = J-t2 = J-t3 = J-t4); HA: All 
four plant varieties do not reach the same mean 
height; F = 62.8461/0.4351 = 144; FO.05( 1}.3.15 = 
3.29; reject flo; P« 0.0005 [P < 10- 10]. 

1:z.3. flo: All four plant varieties reach the same height: 
HA: All four plant varieties do not reach thc same 
height; RI = 18, R2 = 24, R3 = 12. R4 = 6; 
Xij.05.3 = 7.815; reject Ho: P < 0.001. 

12.4. Ho: There is no difference in potential acceptance 
among the three textbooks; HA: The three 
textbooks do not have the same potential 
acceptance: a = 4, b = 13 (blocks 4 and 11 are 
deleted from the analysis); Q = 5.53; v = 3; 
Xfi.05.3 = 7.815; do not reject Ho; 0.10 < P < 
0.25 (P = 0.141. 

Chapter 13 
13.1. X' = 0.68339. Sx = 0.00363; L; = 0.67481, 

L2 = 0.69197: LI = 3.73 mi. L2 = 3.92 ml. 

13.2. X' : 61.48, sj. : 0.76; L; = 59.53, Li = 63.43; 
LI - 0.742. L2 - 0.800. 

13.3. X' = 2.4280, Sx = 0.2329; Lj = 1.8292, 
Li = 3.0268; LI = 2.85, L2 = 8.66. 
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Chapter 14 

14.1. Ho: No effect offactor A; flA: Factor A has an 
effect; F = 10.2901/0.0805 = 127.8; as 
FO.05( 1 ).3.72 == 2.74. Hil is rejected: P« 0.0005 
[P < 10- 12]. Ho: No effect of factor B; F = 
3.8295/0.0805 = 47.6; as fi1.05( 1 ).2.72 == 3.13, flo 
is rejected; P« 0.0005 [P < 10- 13]. Ho: No 
effect of factor C; F = 4.2926/0.0805 = 53.3; as 
Fo.os(, ).1.72 == 3.98. Ho is rejected; P« 0.0005 
[P < 10-9]. Ho: No interaction between factors 
A and B; HA: Thcre is A x B interaction; F = 

0.1182/0.0805 = 1.47; as Fo.os( 1 ).6.72 == 2.23, Ho is 
not rejected; P > 0.25 [P = 0.20]. H(): No 
interaction between factors A and C: F = 
0.6159/0.0805 = 7.65; as FU.05(' ).3.72 == 2.74, Ho is 
rejected; P < 0.0005 [P = 0.00017]. Ho: No 
interaction between factors Band C; F = 
0.0039/0.0805 = 0.()48: as fi,.05( I ).2.72 == 1.41. Ho 
is not rejected: P > 0.25 [P = 0.95]. 110: No 
interaction between factors A. B, and C; F = 
0.1459/0.0805 = 1.81: as fil.05{ 1 ).6.72 == 2.23. Ho 
is not rejected; 0.10 < P < 0.25 
[P = 0.1 tJ, 

14.:z. flo: No effect of factor A; HA: Factor A has an 
effcct: F = 56.00347/0.03198 = 1751; reject Ho; 
P« 0.0005 [P < 10- 14]. Ho: No effect of factor 
B; F = 4.65125/0.03198 = 145.4: reject Ho: P« 
0.0005 [P < 10- 13]. Ho: No effect of factor C; 
F = 8.6125/0.03198 = 269.3; reject Ho: P« 
0.0005 [P < 10- 13]. Ho: No effect of factor D: 
F = 2.17056/0.03198 = 67.9: reject Ho; P« 
0.0005 [P < 10- 14]. flo: No interaction between 
factors A and B; F = 2.45681/0.03198 = 76.8; 
reject Ho; P « 0.0005 [P < 10- 11 ]. Ho: No 
interaction between factors A and C; F = 
0.05014/0.03198 = 1.57; do not reject Ho; 
0.10 < P < 0.25 [P = 0.22]. Ho: No interaction 
between factors A and D; F = 0.06889/ 
0.03198 = 2.15; do not reject Ho; 0.10 < P < 
0.25 [P = 0.13]. Ho: No interaction between 
factors Band C; F = 0.01681/0.03198 = 0.53; do 
not reject Ho; P > 0.25 [P = 0.47]. Ho: No 
interaction between factors Band D; F = 
0.15167/0.03198 = 4.74; reject Ho: 0.01 < P < 
0.025. Ho: No interaction between factor C and 
D; F = 0.26000/0.03198 = 8.13: reject Ho; 
0.0005 < P < 0.001 [P = 0.00091]. Ho: No 
interaction among factors A. B. and C; F = 
0.00125/0.03198 = 0.039; do not reject Ho; P > 
0.25 [P = 0.84]. Ho: No interaction among factors 
A. B. and D; F = 0.14222/0.03198 = 2.11; do not 
reject Ho; 0.10 < P < 0.25 (P = 0.13]. Ho: No 
interaction among factors B. C. and D: F = 
0.00222/0.03198 = 0.069; do not reject Ho: P > 
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0.25 [P = 0.093]. H[): No interaction among 
factors A, B. C, and D: F = 0.01167/0.03198 
= 0.36: do not reject HIl: P > 0.25 
[P = 0.70]. 

14.3. Ho: No effect of factor A; H A: There is an effect 
offactor A; F = 239.39048/2.10954 = 113.5; as 
FO.05( 1 ),1.22 = 4.30, reject Ho; P« 0.0005 
[P < 1O-9J. Ho: No effect of factor B: F = 
8.59013/2.10954 = 4.07; as Fo.05(1).1.22 = 4.30: 
do not reject No: 0.05 < P < 0.10 [P = 0.056 J. 
Ho: No interaction between factors A and B; 
F = 0.1 0440/2.10954 = 0.05; as FiI.05( 1 ).1.22 = 
4.30. do not reject Hu: P > 0.25 [P = 0.83]. 

14.4. For Factor A: SS = 37.4719. DF = 3. MS = 
12.4906; for remainder: SS = 3.5287, 
MS = 0.5881. DF = 6; F = 21.2; 
FO.05( I ).3.6 = 4.76; 0.01 < P < 0.0025: 
P = 0.0014; reject Hu. 

Chapter 15 
15.1. (a) qa,v,k = qO.1I53.3 = 5.910; s2 = 0.50; SE = 

0.3536; reject HI): 1L2 = ILJ, q = 15.56 [0.001 < 
P < 0.005}; reject Ho : 1L2 = 1L3, q = 9.19 [0.0 I < 
P < 0.025]. reject Ho: 1L3 = ILl, q = 6.35 
[0.025 < P < 0.05J. (b)/u.05(2).3 = 3.182;95% 
CI = Xi ± 1.13 mgll00 mt. 

15.2. (a) Ho: The mean fluoride concentrations are the 
same for all three samples at a given location: H A : 

The mean fluoride concentrations are not the 
same for all three samples at a given location: 
F = 0.008333/0.01778 = 0.469; as F < 1.0. so do 
not reject Ho: P > 0.25 [P = 0.82]. (b) Ho: 
The mean fluoride concentration is the same at all 
three locations; HA: The mean fluoride 
concentration is not the same at all three 
locations: F = 1.1850/0.008333 = 142: 
FO.05( 1).2.6 = 5.14: reject Ho: P« 0.0005 [P = 
0.0000086]. (e) qOt.J •• k = qO.U5.h.3 = 4.339: 
s2 = 0.08333; SE = 0.0373; XI = 1.15. 
X 2 = 1.35. X 3 = 2.00: reject Ho: 1L3 = IL I. 
q = 22.79 [P < O'()()I]; reject Hu: 1L3 = 1L2, 
q = 17.43 [P < 0.001]. reject Ho: 1L2 = ILl. 
q = 5.36 [0.01 < P < 0.025]. 
(d) 10.05(2).6 = 2.447; 95% confidence interval 
(mglL): Xi ± 0.09. 

Chapter 16 
16.1. Ho: ILl I = 1L12 = ILI3 and 1L21 = 1L22 = 1L23; 

Wilks' A = 0.0872. PilIai's trace = 0.9128, 
Lawley-Hotelling trace = 10.4691, Roy's 
maximum root = 10.4681: for each. F = 41.8723, 
P « 0.0001; reject Ho. 

16.2. For species, HIl: ILl I = 1L12 and 1L21 = 1L22: Wilks' 
A = 0.1820, PiIlai's trace = 0.8180. 

Lawley-Hotelling trace = 4.4956. Roy's 
maximum root = 4.4956; for each. F = 33.7167, 
P« 0.0001: reject Ho. For sex, Ho: ILl I = 1L12 and 
1L21 = 1L22: Wilks' A = 0.8295. PilIai's trace = 
0.1705. Lawley-Hotelling trace = 0.2055. Roy's 
maximum root = 0.2055; for each. F = 1.5415. 
P = 0.2461: do not reject Ho. For species x sex 
interaction, Ho: There is no interaction; Wilks' 
A = 0.8527. Pill ai's trace = 0.1473. 
Lawley-Hotelling trace = 0.1727, Roy's 
maximum root = 0.1727; for each. F = 1.2954, 
P = 0.3027; do not reject Ho. 

Chapter 17 
17.1. (a) b = -0.0878 mlJg/hr/"C. a = 3.78 ml/g/hr. 

(b) H,,: P = 0, HA: P :F 0: F = 309; reject Ho; 
P« 0.0005 [P = 0.0000022]. (c) Ho: P = 0, 
HA : P :F 0; 1 = -17.6; reject Ho: P« 0.001 
[P = 0.0000022]. (d) Sy.x = 0.17 ml/g/hr; 
(e) ,.z = 0.98; (f) 95% confidence interval for 
P = -0.0878 ± 0.0122; L) = -0.1000 ml/g/hr/ 
°C.L2 = -0.0756 ml/g/hrrC. 

~ 

17.2. (8) Y = 3.47 - (0.0878)( 15) = 2.15 mllg/hr. 
(b) Sy = 0.1021 ml/g/hr: LI = 1.90 mJlg/hr. 

L2 = 2.40 mllg/hr. (e) Y = 2.15 mllg/hr. 
(d) Sy = 0.1960 ml/g/hr; LI = 1.67 mt/g/hr, 
L2 = 2.63 mllg/hr. 

17.3. (a) b = 9.73 impulses/sec/cC, a = 44.2 
impulses/sec. (b) Ho: P = O. HA : P "# 0; 
F = 311; reject Ho; P« 0.0005 [P < 10- 13]. 
(c) sy.x = 8.33 impulses/sec. (d),.z = 0.94. 
(e) Ho: The population regression is linear; HA: 
The population regression is not linear; F = 1.78, 
do not reject Ho: 0.10 < P < 0.25 
[P = 0.18]. 

Chapter 18 
18.1. (a) Ho: PI = P2: b l = 0.488, b2 = 0.537; 

Sbl-b2 = 0.202: I = -0.243; as 10.05(2).54 = 2.005, 
do not reject Ho: P > 0.50 [P = 0.81]. (b) Ho: 
The elevations of the two population regressions 
are the same; HA: The elevations of the two 
popUlation regressions are not the same: 
be = 0.516; I = 10.7; as 10.05(2).55 == 2.004, reject 
H(): P« 0.001 [P = 2 X 10- 14]. 

18.2. (8) Ho: PI = P2 = P3: HA : All three p's are not 
equal: F = 0.84; as Fo.os( I )2,90 = 3.10. do not 
reject Ho: P > 0.25 [P = 0.44]; be = 3.16. 
(b) Ho: The three population regression lines 
have the same elevation; HA: The three lines do 
not all have the same elevation; F = 4.61; as 
FO.05( I ).2.90 = 3.10, reject Ho: om < P < 0.025 
[P = 0.012]. 



Chapter 19 
19.1. (a) r = 0.86. (b),2 = 0.73. (c) Ho: P = 0; HA: P * 

0; Sr = 0.16; 1 = 5.38; as 10.05(2).10 = 2.228; reject 
Ho; P < 0.001 [P = 0.00032]. Or: r = 0.86, 
rO.05(2).1O = 0.576; reject Ho; P < 0.001. Or: 
F = 13.29, FO•05(2).I0.111 = 3.72; reject Hn: P < 
O.Oot. (d) LI = 0.56, L2 = 0.96. 

19.2. (a) Ho: P :s 0; HA : P > 0; r = 0.86; I = 5.38; 
lo.oS( 1 ).10 = 1.812; reject Hn; P < 0.0005 
[P = 0.00016]. Or: rO.DS( I ).10 = 0.497; reject Ho; 
P < 0.0005. Or: F = 13.29; FO.05(1).IO.lo = 2.98; 
reject Ho: P < 0.0005. (b) Ho: P = 0.50; 
HA : P * 0.50; r = 0.86; Z = 1.2933; Co = 0.5493; 
u: = 0.3333; Z = 2.232; ZO.05(2) = 1.960; reject 
Ho: 0.02 < P < 0.05 [P = 0.026]. 

19.3. (8) Ho: PI = P2; HA: PI ::;. P2: ZI = -0.4722. 
Z2 = -0.4236; U Z1 -:2 = 0.2910: Z = -0.167; 
ZO.05(2) = 1.960; do not reject Ho; P > 0.50 
[P = 0.87]. (b) z'" = -0.4449; rw = -0.42. 

19.4. Ho: PI ~ P2; HA: PI < P2: ZI = 0.4847, Z2 = 
0.6328: "ZI-:2 = 0.3789; Z = -0.3909: 
ZO.05( I) = 1.645; do not reject Ho: P > 
0.25 [P = 0.35J. 

19.5. (a) Ho: PI = P2 = P3; H A: The three population 
correlation coefficients are not all the same; 
K- = 111.6607 - (92.9071 )2/78 = 0.998: 
ro.OS.2 = 5.991; do not reject Ho: 0.50 < P < 
0.75 [P = 0.61)' x~ = 1.095,0.50 < P < 0.75 
[P = 0.58). (b) Zw = 92.9071/78 = 1.1911: 
r", = 0.83. 

19.6. <a) ~ dJ = 88.00, r.t = 0.69; (b) Ho: Ps = 0: 
HA: Ps * 0; as (rs )0.05(2).12 = 0.587, reject Ho; 
0.01 < P < 0.02. 

19.7. (a) rr = 0.914; (b) reject Ho: 0.005 < 
P < 0.01. 

19.8. (a) r" = (16 - 7)/( 16 + 7) = 0.39. (b) Ho: 
There is no correlation between the type of 
institution a college president heads and the type 
of institution he or she attended as a 
undergraduate; HA: There is a correlation 
between the type of school headed and the type 
attended. By Fisher exact test (using Appendix 
Table B.28): n = 23, ml = 9, m2 = 11,1 = 2, 
critical/o.05(2) = 1 and 7; as 1 is not:S 1 and is not 
~ 7, do not reject Ho. 

19.9. (a) rl = (0.000946 - 0.00213)/(0.000946 + 
0.001213) = -0.12. (b) Hu: There is no 
correlation between corticosterone 
determinations from the same laboratory (i.e., 
PI = 0); HA : There is no correlation between 
corticosterone determinations from the same 
laboratory (i.e., PI ::;. 0); F = 0.000946/ 
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0.001213 = 0.78: since fiU)5( I ).3.4 = 6.59, do not 
reject Hu; P > 0.25 [P = 0.56]. 

19.10. (a) r .. = 0.9672. (b) Zc = 2.0470. r = 0.9991, 
U = 0.2502. "l, = 0.2135; for lc: LI = 1.6285. 
L2 = 2.4655; for Pc: LI = 0.926, L2 = 0.986. 

Chapter2~ 

20.1. (a) Y = -30.14 + 2.07XI + 2.58X2 + 0.64X3 + 
1.1 IX4. (b) Ho: No population regression; Htt: 
There is a population regression; F = 90.2. 
fiW5( I ).4.9 = 3.63, reject Ho. P « 0.0005 
[P = 0.00000031]. (c) Ho: ~I = 0, HA : ~1 ::;. 0; 
10.05(2).9 = 2.262: "*,, below denotes 
significance: 

i hi Sb; 1= hi Conclusion 
Sbi 

I 2.07 0.46 4.50* Reject Ho. 
2 2.58 0.74 3.49* Reject Ho. 
3 0.64 0.46 1.39 Do not reject Ho. 
4 1.11 0.76 1.46 Do not reject Ho. 

(d) SY.I.2.3.4 = 3.11 g; R2 = 0.9757. (e) Y = 
61.73 g. (f) S Y = 2.9549 g. LI = 55.0 g. 
L2 = 68.4 g. (g) Hu: ILY :s 50.0 g. HA: ILY > 
50.0 g. I = 3.970; IO.05( I ).9 = 1.833. reject 
Ho; 0.001 < P < 0.0025 [P = 0.0016]. 

20.2. (1) With XJ, X2, X3, and X4 in the model, see 
Exercise 20.1 c. (2) Delete X3. With XI, X2, and 
X4 in the model. IU.U5(2).1O = 2.228 and: 

i hi 

1 1.48 9.15* 
2 1.73 4.02* 
4 0.21 0.50 

Q = 16.83 

(3) Delete X4. With XI and X2 in the model, 
10.05(2).11 = 2.201 and: 

hi 

1 1.48 9.47* 
2 1.53 13.19* 

Q = 24.96 

(4) Therefore, the final equation is Y = 24.% + 
1.48XI + 1.53X2. 
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20.3. (8) R = 0.9878. (b) F = 90.2. FO.05( I ).4.9 = 3.63, 
reject Ho: There is no population correlation 
among the five variables; P « 0.0005 
[P = 0.00000031]. (c) Partial correlation 
coefficients: 

2 3 

1 1.0000 
2 -0.9092* 1.0000 
3 -0.8203* -0.8089* 1.0000 
4 -0.7578* -0.9094* -0.8724* 

4 5 

5 0.8342* 0.7583* 0.4183 
1.0000 
0.4342 1.0000 

(d) From Appendix Table B.17, rO.05(2).9 = 0.602, 
and the significant partial correlation coefficients 
are indicated with asterisks in part (c). 

20.4. Ho: Each of the three sample regressions 
estimates the same population regression; HA : 

Each of the three sample regressions does not 
estimate the same population regression; 
F = 0.915; as FO.05( I J.R.n = 2.07, do not reject 
Ho: P > 0.25 IP = 0.51]. 

20.5. (8) W = 0.675. (b) Ho: There is no agreement 
among the four faculty reviewers; HA : There is 
a~r:.ement a~onf the fou~ facult~ re~iewe,:; 
Xr - 10.800, (Xr )0.05.4.5 - 7.800, reject Ho, 
0.005 < P < 0.01. 

Chapter 21 
21.1. In each step, Ho: {3i = 0 versus H A: (3i :;:. 0 is 

tested, where j is the highest term in the 
polynomial expression. An asterisk indicates Ho is 
r:jected. (I) Linear regression: 
Y = 8.8074 - 0.18646X; 1=7.136*; 
1~.05(2J.13 = 2.160. (2) Quadratic regression: 

Y = -14.495 + 1.6595X -
0.036133X2; I = 5~298*: to.OS(2).12 = 2.179. (3) 

Cubic regression: Y = -33.810 + 3.9550X -
0.12649X2 + O.001l78IX3; t = 0.374; A 

lo.os( 2).11 = 2.20 I. (4) Quartic regression: Y = 
525.30 - 84.708X + 5.1223X2 - 0.13630X3 + 
O.0013443X4; I = 0.911; 10.05(2).10 = 2.28. 
Therefore, the quadratic expression is concluded 
to be the "best." 

21.2. (8) Y = 1.00 + 0.851X - 0.0259X2• (b) Ho: 
(32 = O;HA :{3z:;:' O;F = 69.4; FO.05(1).1.4 = 7.71; 
reject Ho; 0.001 < P < 0.0025 [P = 0.0011]. 
(c) Y = 6.92 eggs/cm2; Sy = 0.26 eggs/cm2; 95% 

confidence interval = 6.92 ± 0.72 eggs/cm2. 

(~) Xo = 16.43°C; Yo = 7.99 eggs/ cm2• (e) For 
Xo: 95% confidence interval = 16.47 ± 0.65°C; 

for Yo: 95% confidence interval = 7.99 ± 
0.86 eggs/cm2. 

Chapter 22 
22.1. (8) For v = 2, P(x2 ;::: 3.452) is between 0.10 and 

0.25 IP = 0.18]; (b) For v = 5,0.10 < (X2 ;::: 
8.668) < 0.25 [P = 0.12]; (c) X5054 = 9.488; 
(d) xfi.01.R = 20.090. . . 

22.2. (8) X2 = 16.000, v = 5,0.005 < P < 0.01 
[P = 0.0068]. As P < 0.05, reject Ho of equal 
food item preference. (b) By grouping food 
items N, G, and C; n = 41, and for Ho: Equal 
food preference, X2 = 0.049, v = 2, 
0.975 < P < 0.99 IP = 0.98]; as P > 0.05, Ho is 
not rejected. By grouping food items A, W, and 
M; n = 85, and for Ho: Equal food preference, 
X2 = 0.447, v = 2,0.75 < P < 0.90 IP = 0.80]; 
as P > 0.05, Ho is not rejected. By considering 
food items N, G, and C as one group and items A. 
W, and M as a second group, and Ho: Equal 
preference for the two groups, X~ = 14.675, 
v = I, P < 0.001 [P = 0.00013]; Ho is rejected. 

22.3. if: = 0.827, v = 1,0.25 < P < 0.50 IP = 0.36]. 

22.4. 

As P > n.05. do not reject Hn: The population 
consists in equal numbers of males and females. 

Localion Males Females X2 

1 44 54 1.020 
2 31 40 1.141 
3 12 18 1.200 
4 15 16 0.032 

Total of chi-squares 3.393 
Pooled chi-square 102 128 2.939 
Heterogeneity chi-square 0.454 

0.90 < P < 0.95 

v 

1 
1 
1 
1 

4 
1 
3 

Because P(heterogeneity X2) > 0.05, the four 
samples may be pooled with the following results: 
Xz. = 2.717, v = 1,0.05 < P < 0.10 IP = 0.099]; 
P > 0.05, so do not reject Ho: Equal numbers of 
males and females in the popUlation. 

22.5. G = 16.188. v = 5.0.005 < P < 0.D1 IP = 
0.0063J; P < 0.05, so reject Ho of no difference in 
food preference. 

22.6. Ho: There is a uniform distribution of the animals 
from the water's edge to a distance of 10 meters 
upland; max Dj = 0.24333. max Dj = 0.2033, 
D = 0.2433; DO.05(2).31 = 0.23788; reject Ho. 
0.02 < P < 0.05. 

22.7. DO.OS.27 = 0.25438 and Do.oS.28 = 0.24993. so a 
sample size of at least 28 is called for. 



22.8. dmax = 1; (dmax )U.OS,6.11I = 6; do not reject Ho: 
The feeders are equally desirable to the birds; 
P> 0.50. 

Chapter 23 
23.1. (a) ill = 157.1 026.it2 = 133.7580.t13 = 70.0337. 

il4 = 51.1057,izl = 91.8974.t22 = 78.2420, 
i23 = 4O.%63.t24 = 29.8943. R, = 412. Rz = 241. 
CI = 249.C2 = 212.C3 = 111.C" = 81. n = 653; 
xl = 0.2214 + 0.0115 + n.0133 + 1.2856 + 
0.3785 + 0.0197 + O.ll228 + 2.1978 = 4.151; 
p=(2 - 1)(4 - 1) =3;X5.oS.3 =7.815,0.10< 
P( xl 2= 4.156) < 0.25 [P = 0.246J; P > 0.05, do 
not reject Ho. (b) G = 4.032, P = 3. X5.U5.3 = 
7.815.0.25 < p(xl ~ 4.032) < 0.50 [P = 0.26]; 
P > 0.05. do not reject Ho. 

23.2. (a)/1l = 14./12 = 29.121 = 12.122 = 38, RI = 43. 
Rz = 50, C, = 26, Cz = 67, n = 93; xl = 0.8407. 
v = 1; .ro.OS.1 = 3.841. 0.25 < P( X2 ~ 0.8407) 
< 0.50: as P > 0.05. do not reject Ho [P = 0.36J. 
(b) G = 0.8395. P = 1; X5,OS.1 = 3.841,0.25 < 
P(X2 2= 0.8395) < 0.50; as P > 0.05, do not 
reject Ho [P = 0.36]. 

23.3. Ho: Sex. area. and occurrence of rabies are 
mutually independent: xl = 33.959: v = 4: 
.ro.OS.4 = 9.488; reject Ho; P < 0.001 [P = 
0.00000076J. Ho: Area is independent of sex and 
rabies; r = 23.515; II = 3; ro.05.3 = 7.815; reject 
Ho: P < 0.001 [P = 0.000032]. Ho: Sex is 
independent of area and rabies; X2 = 1 1.130; 
v = 3; reject Hu: 0.01 < P < 0.25 [P = 0.011]. 
Ho: Rabies is independent of area and sex; r = 
32.170; P = 3; reject Hu; P < 0.001 
[P = 0.00000048]. 

23.4. (8) RI = Rz = R3 = 150. C, = 203. C2 = 182. 
C] = 45. C4 = 20. n = 450; ill = .121 = j'l = 

67.6667J2 = i22 = jlZ = 6O.6667.t13 = i23 = 
A A A _A _ .2_ 

1:\3 = 15.0000./14 = h4 - [14 - 6.6667, X -
4.141; P = (2)(3) = 6; XO.US.6 = 12.592: 0.50 < 
P < 0.75 [P = 0.66]; do not reject Ho. 
(b) G = 4.141, same probability and conclusion as 
part (a). 

Chapter 24 
24.1. P(X = 2) = 0.32413. 
24.2. P(X = 4) = 0.00914. 
24.3. Ho: The sampled population is binomial with 

P = 0.25: HA: The sampled population is not 
binomial with P = 0.25: '2./; = 126: FI = 
(0.31641)(126) = 39.868,F2 = 53.157.F3 = 
26.578. F4 = 5.907, Fs = 0.493; combine F4 and 
Fs and combine 14 and Is: r = 1 1.524. P = 
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k - 1 = 3. ro.OS.3 = 7.815: reject HI): O'(X)5 < 
P < 0.01 [P = 0.0092]. 

24.4. HI): The sampled population is binomial; HA: 
The sampled population is not binomial; p = 
156 /4 = 0.3578: r = 3.186. P = k - 2 = 3. 
109 
x5.05.3 = 7.815; do not reject Ho: 0.25 < P < 
0.50 [P = 0.36]. 

24.5. Ho: p = 0.5; HA: P 1: 0.5: n = 20; P(X s 6 or 
X ~ 14) = 0.11532; since this probability is 
greater than 0.05, do not reject Ho. 

24.6. Ho: P = 0.5; H A: P 1: 0.5:;; = ! ~~ = 0.4782: 
Z = -0.888: Z(. = 0.838: ZO.05(2) = 10.oS(2).oo = 
1.960; therefore, do nol reject Ho: p::::: 0.37 
[P = 0.40]. 

24.7. Ho: P = 0.5: HA: P 1: 0.5; X = 44: Z = 
-1.0102: Zn.u'(2) = 10.05(2).00 = 1.960; do not 
reject Ho: n.20 < P < 0.50 [P = 0.30J. 

24.S. Ho:p = 0.5: HA:P 1: 0.5: numberofpositive 
differences = 7; for Il = 10 and p = 0.5; 
P(X s 3 or X ~ 7) = 0.34378; since this 
prohability is greater than 0.05. do not reject 
Ho. 

24.9. n = 20. P = 0.50; critical values are 5 and 15; 
;; = 6/20 = 0.30, power = 0.00080 + 0.00684+ 
0.02785 + 0.07160 + 0.13042 + 0.17886 + 
0.00004 + 0.00001 = 0.42. 

24.10. Po = O.50.p = 0.4782.n = 412: power = P(Z < 
-1.08) + P(Z > 2.84) = 0.1401 + 0.0023 = 0.14. 

24.11. X = 18, Il = 30.;; = 0.600 (a) FO.05(2).26.36::::: 

FU.05(2).26.35 = 2.04. LJ = 0.404: FO.OS(2).311.24::::: 
FO.05(2).311.24 = 2.21. L2 = 0.778. Using exact 
probabilities of F: fil.llS(2).26.36 = 2.025. L I = 
0.406: FO.OS(2).2II.34 = 2.156, L2 = 0.773. 
(b) ZO.OS(2) = 1.9600. confidence interval is 
0.600 ± (1.9600)(0.0894). LI = 0.425. L2 = 
0.775. (c) X = 19.92. Ii = 33.84. P = 0.589. 
confidence interval is 0.589 ± (1.9600)(0.0846). 
L, = 0.423, L2 = 0.755. 

24.12. X = 62,11 = 1215.;; = 0.051 (.) fiI.l15(2).2308.124::::: 
fiI.05(2).oo.IZO = 1.31. LI = 0.039: 
Fn.05(2).'26.2.106::::: FO.OS(2).J20.oo = 1.27.L2 = 
0.065. Using exact probabilities of F: 
fiI.ll5(2).230!!.I24 = 1.312. LI = 0.039: 
FO•05(2}.126.2306 = 1.271. L2 = 0.061. (b) ZO.()S(2) = 
1.9600. confidence interval is 0.051 ± (1.9600) 
(0.0631). LJ = 0.039. L2 = 0.063. (c) X = 63.92. 
Ii = 1218.84.p = 0.052. confidence interval is 
0.052 ± (1.9600)(OJXl638), LI = 0.039. 
L2 = 0.065. 

24.13. sample median = 32.5 kmlhr. i = 4,j = 1, 
P(29.5 kmfhr s population median s 
33.6 km/hr) = 0.90. 
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24.14. PI = 0.7500. P2 = 0.4000. P = 0.5714. q = 0.4286. 
SE = 0.1414. Z = 2.475.0.01 < P < 0.02. reject 
Hu IP = 0.013]. 

24.15. XI = I8.96.n\ = 25.92. PI = O.7315.X2 = 10.96. 
n2 = 26.92.P2 = 0.4071. SE = 0.1286.95% 
confidence interval = 32.444 ± 0.2521. LI = 
0.372. L2 = 0.576. 

24.16. Ho: PI = P2 = P3 = P4. HA: All four population 
proportions are not equal; XI = 163. X2 = 135. 
X3 = 71. X4 = 43.111 = 249.112 = 212.113 = Ill. 
114 = 81; PI = 0.6546.P2 = 0.6368.P3 = 0.6396. 
P4 = 0.5309;p = 412/653 = 0.6309. X2 = 
0.6015 + 0.0316 + 0.0364 + 3.4804 = 4.150. 
Xij.OS.3 = 7.815; do not reject Ho; 0.10 < P< 
0.25 [P = 0.246J. 

24.17. Ho: PI = P2 = P3 = P4 is not rejected. So 
multiple-comparison testing is not done. 

24.18. (a) P of original table = 0.02965; P of next more 
extreme table (i.e .• where III = 21) = 0.01037; 
P of next more extreme table (i.e .• where 
III = 22) = 0.00284; and so on with total P for 
that tail = 0.0435; 110 is rejected. (b) X~ = 2.892. 
0.05 < P < 0.10 [P = 0.089].110 is not rejected. 
(c) x~ = 2.892.0.05 < P < 0.10 [P = 0.089]. 
Hu is not rejected. (d) Since RI = R2. the 
two-tailed Pis 2 times the one-tailed P; two-tailed 
P = 2(0.0435) = 0.087. Hu is not 
rejected. 

24.19. (a) P of original table = 0.02034: P of next most 
extreme table (i.e .. where III = 2) = 0.00332; P of 
next most extreme table (i.e .• where /11 = I) = 
O,(X>02I: and so on. with a total P for that tail = 
0.02787. Ho is rejected. (b) x~ = 3.593.0.05 < 
P < 0.10 [P = 0.057]. 110 is not rejected. 
(c) X11 = 4.909.0.025 < P < 0.05 [P = 0.027]. 
and Ho is not rejected. (d) For the most extreme 
table in the tail opposite from that in part 
(a)./II = 13 and 112 = 1. P = 0.00000; for next 
more extreme table. /11 = 12. P = 0.00001; for the 
next more extreme table. III = II. P = 0.00027; 
and so on through each of the tables in this tail 
with a probability less than 0.02034; sum of the 
tables' probabilities in the second tail = 0.00505; 
sum of the probabilities of the two tails 
= 0.02787 + 0.00505 = 0.03292: Ho is 
rejected. 

24.20. Ho: There is no difference in frequency of 
occurrence of varicose veins between overweight 
and normal weight men; HA: There is a 
difference in frequency of occurrence of varicose 
veins between overweight men and normal weight 
men; III = 19./12 = 5.121 = 12./22 = 86. 
II = 122; ~ = 2.118: X~.OS.I = 3.841; donot 
reject Ho; 0.10 < P < 0.25 [P = 0.15]. 

Chapter 25 
25.1. If IL = 1.5. P(X = 0) = 0.2231 and P(X = 5) = 

0.0141. 
25.2. IL = ~ = 2.5 viruses per bacterium. 

(8) P(X = 0) = 0.0821. (b) P(X > 0) = 
1.0000 - P(X = 0) = 1.0000 - 0.0821 = 0.9197. 
(c) P(X ?: 2) = 1.0000 - P(X = 0) -
P(X = 1) = 1.0000 - 0.0821 - 0.2052 = 0.7127. 
(d) P(X = 3) = 0.2138. 

25.3. Ho: Biting mosquitoes select the men randomly; 
HA: Biting mosquitoes do not select the mean 
randomly. X = 'i,f;X; = 98/57 = 1.7193; 
X2 = 3.060." = 6 - 2 = 4. xl,.OS.4 = 7.815; do 
not reject H: 0.50 < P < 0.75 lP = 0.55] 

25.4. Hu: P :::; 0.00010; H A: P > 0.00010; Po = 0.00010; 
n = 25.000; PUll = 2.5; X = 5; P(X ?: 5) = 
0.1087; do not reject Ho; do not include this 
disease on the list. 

25.5. Ho: ILl = IL2; IIA : ILl =F- IL2; XI = 112. X2 = 134; 
Z = 1.40; ZO.OS(2} = 1.9600; do not reject 
Ho: 0.10 < P < 0.20 [P = 0.16]. 

25.6. H(): The incidence of heavy damage is random 
over the years; H A: The incidence of heavy 
damage is not random over the years; nl = 14. 
"2 = 13. /I = 12. UO.OS.14.13 = 9 and 20. As 12 is 
neither :::; 9 nor ?: 20; do not reject Ho: P = 0.50. 

25.7. Ho: The magnitude of fish kills is randomly 
distributed over time; H A: The magnitude of fish 
kills is not randomly distributed over time; Il = 16. 
SZ = 4OO.25.s; = 3126.77/30 = 104.22: C = 
0.740. CO.OS. 16 = 0.386; reject Ho: P < 0.0005. 

25.8. Ho: The data are sequentially random; H A : The 
data are not sequentially random; II = 16. /I = 7; 
critical values = 6 and 14: do not reject 
Ho; 0.05 < P :::; 0.10. 

Chapter 26 
26.1. n = 12. Y = 0.48570. X = 0.201l8., = 0.52572 

(c = 1.02617., .. = 0.53948). (a)a = 68c • 

(b) s = 56° (using correction for grouping. 
s = 55"). s' = 65° (using correction for grouping. 
s' = 64°). (c) 68" ± 47° (using correction for 
grouping. 68" ± 46°). (d) median = 67.5°. 

26.2. n = 15. Y = 0.76319. X = 0.12614., = 0.77354. 
(a) a = 5:22 A.M. (b).'i = 2:34 hr. (c) 5:22 hr ± 
1:38 hr. (d) median = 5:10 A.M. 

Chapter 27 
27.L Ho: P = 0: H A: p =F- 0: , = 0.526: R = 6.309; 

Z = 3.317. ZO.OS.l2 = 2.932; reject Ho; 0.02 < 
P < 0.05. 

27.2. Ho: p = O. HA: P * 0; , = 0.774: R = 11.603; 
Z = 8.975. ZO.OS.IS = 2.945: reject Ho: P < 0.001. 



Z7.3. Ho: P = 0; HA: P '¢ 0; n = II, Y = -0.88268, 
X = 0.17138, r = 0.89917, a = 281 c, R = 9.891, 
J.l{) = 270°. (a) V = 9.709, U = 4.140, UO.OS.II = 
1.648; reject H,,; P < 0.0005. (b) Ho: 1£/1 = 270°, 
HA: 1£0 '¢ 270",95% confidence interval for 
1£1/ = 281 0 ± 19°. so do not reject Ho. 

Z7.4. " = 12, m = 2, mO.05.12 = 0, do not reject 
Ho; 0.20 < P ~ 0.50. 

Z7.5. ,,= 11,m' = O,C = Il,CO.OS(2).1I = l,reject 
Ho; P < 0.001. 

Z7.6. Ho: Mean Hight direction is the same under the 
two sky conditions; HA : Mean flight direction is 
not the same under the two sky conditions; 
"1 = 8,"2 = 7, RI = 7.5916, R2 = 6.1130, 
al = 352", a2 = 305", N = 15, rll/ = 0.914, 
R = 12.5774; F = 12.01.FO.05( I ).1. \3 = 4.67: 
reject Ho: 0.0025 < P < 0.005 [P = 0.004]. 

Z7.7. Ho: The flight direction is the same under the two 
sky conditions; H A: The flight direction is not the 
same under the two sky conditions; III = 8, 
"2 = 7,N = 15; '.l,dk = -2.96429.'.l,d~ = 
1.40243, U2 = 0.2032, Ufi.05.8.7 = 0.1817: do not 
reject Ho: 0.02 < P < 0.05. 

Z7.S. Ho: Members of all three hummingbird species 
have the same mean time of feeding at the feeding 
station; HA: Members of all three species do not 
have the same mean time of feeding at the feeding 
station; "1 = 6,112 = 9,"3 = 7, N = 22; RI = 
2.965, R2 = 3.938, R3 = 3.868; al = 10:30 hr, 
a2 = 11:45 hr. a3 = 11:10 hr; rw = 0.490, F = 
0.206, FO.05( I ).2.19 = 3.54; do not reject Ho; P> 
0.25 [P = 0.82]. Therefore, all three ai'S estimate 

Answers to Exercises 885 

the same 1£0, the best estimate of which is 
11:25 hr. 

27.9. Ho: Birds do not orient better when skies are 
sunny than when cloudy: H A: Birds do orient 
better when skies are sunny than when cloudy. 
Angular distances for group 1 (sunny): 10,20,45, 
10,20,5, IS, and 0°; for group 2 (cloudy): 20,55, 
105,90,55,40, and 25". For the one-tailed Mann­
Whitney test: nl = 8, n2 = 7, Rl = 40, U = 52, 
Uo.OS( I ).8.7 = 43; reject Ho: P = 0.0025. 

27.10. Ho: Variability in flight direction is the same 
under both sky conditions: HA : Variability in 
flight direction is not the same under both sky 
conditions; al = 352°, U2 = 305°: angular 
distances for group 1 (sunny): 2, 12,37, 18,28,3,7, 
and 8°, and for group 2 (cloudy): 35, 0,50,35,0, 
15, and 30"; for the two-tailed Mann-Whitney 
test: RI = 58, U = 34, U' = 22, UO.05 (2).1!.7 = 46; 
reject Ho; P < 0.001. 

27.11. (a) Ho: Paa = 0; HA: Paa '¢ 0; raa = 0.9244: 
raa = 0.9236: s; = 0.0004312: LI = 0.9169, 
L2 = 0.9440; rerect Ho. (b) Ho: (Paa )~. = 0, 
HA: (Paa) '¢ 0: r' = 0.453,r" = 0.009, (ruu}s = 
0.365; (n - 1 )(rau)s = 2.92, for a(2) = 0.05 the 
critical value is 3.23: do not reject Ho; for a( 2} = 
0.10, the critical value is 2.52, so 0.05 < P < 0.10. 

27.12. Ho: Pal = 0; HA: Pal '¢ 0; ral = 0.833, n';l = 6.24, 
X~.052 = 5.991, reject Ho. 

27.13. Ho: The distribution is not contagious: HA : The 
distribution is contagious: nl = 8, n2 = 8. U = 6, 
u' = 3; using Appendix Table 8.28: ml = 7, 
m2 = 7.f = 2. /l = 15. critical values are 1 and 6, 
so do not reject Ho; P 2: 0.50. 
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mean. 612-615, 621 (See also Mean angle) 
median & mode. 617-6/8 (See also Median 

angle) 
multisample hyp .• 634-626. 644-645 

nonparametric. 642 
I-sample hyp .• 624-632, 645-647 
paired-sample hyp .• 652-654 
phase. 660 
randomness testing. 665-667 
regr .. 659-660 
SD.617 
2-sample hyp .• 632-634.644-645,647-649 

non parametric. 637-642. 649-652 
variance. 615 
weighted. 647 
hyp .• 644-645 

ANOVA, ANOV. AOV (See Analysis of 
variance) 

Antilogarithm. 28. 290 
Arbogast. Louis Fran~ois Antoine. 45 
Arbuthnot. John. 74. 537 
Arcsine (arcsin). 291. 293 
Arcsine transformation. 291 -294. 357 
Arctangent (atan).6JJ 
Archimedes of Syracuse. 67 
Association (See Contingency table; Correlation) 
Assumptions (See individual tests) 
•• .. (asterisk) statistical significance. 80 
Attribute. 4 
Average. 18. 21 
Axis (See Coordinates) 
Azimuth 605 

B (Bartlett stat.). 220; B; (block sum).283; Be 
(sum of crossproducts for common 
regr.). 367. 373; B; (sum of 
crossproducts for regr. i).373; B/ (sum 
of crossproducts for total regr.).373; 
B (int. calc.). 203. 661 

h (number of levels). 250; b (number of blocks). 
283; b. b; (s. regr. coef.). 332. 365 be 
(common or weighted regr. coef.). 366, 
374; b; (s. partial regr. coef.). 424. 
et al.: b: (standardized s. partial regr. 
coef.).433: b X (5. coef. of regr. of X 
on Y).380: by (5. coef. of regr. of Y 
on X). 380; .fbi; (5. symmetry). 88; 

(JbI)a .•. (c.v. of JbI).126: .fbi C.v. 
table. 776: b2 (s. kurtosis). 88-89; 
(b2 )a ... (c.v. of b2). 126; b2 C.v. table. 
m: b. b; (int. calc.). 205. 671 

Babbage. Charles. 21 
Bartlett. Maurice Stevenson. 220 
Bartlett test. 220-221 
Batschelet. Edward. xiii. fJJ7 

Batschelet test. 630-631 
Beaufort. Francis. 380 
Behrens-Fisher testing. 137- 142 

for ANOVA. 202-205. 214 
Bernoulli. Jacques. 49. 51. 519 
Bernoulli. Nicholas. 519 
Bernou iii trial. 519 
Bertin. Jacques. 494 
Bessel. Friedrich Wilhelm. llO 
Best linear unbiased estimate. 425 
/3 (beta). 669; /3 (probability ofType II error). 

79-80: /3. /3;. /31 (p. regr. coef.). 330. 
332.372. et al.: /3; (p. partial regr. coef.; 
beta coefficient). 423; /3: 
(standardized p. partial regr. coef.). 
433: f30 (p. Y intercept). 332; ./Ifi (p. 
symmetry).88; 132 (p. kurtosis). 88 

Bias. 18 
Bickel. P. J .• 37 
Bimodality. 27 
Biometrics & Biometrics Bulletin. I 
Biometrika. I. 466 
Binomial. 291. 498 (See also Dichotomous) 

coefficient. 520-521.567-569 
table. 782ff 

c.I..543-548 
dist .• 291. 498. 5/9-524 
goodness of tit. 529-532 
negative. 195 
probability. 519-524 
proportions table. 785 
sampling. 526-528 

Binomial test. 532-537 
with angles. 630 
C.v. table. 786ff 
power. detectable difference. & sample size. 

539-542 
and Poisson dist.. 592-595 
and sign test. 537-538 
power. detectable difference. & sample size • 

539-542 
Biometry & biostatistics. I 
Bishop. Y. M. M .• 510 
Bliss. C. I .• 69 
Block. 270-274. 277-283 
BLUE (best linear unbiased estimate). 425 
Bonferroni test. 232 
Boscovich. Roger Joseph (Ruggiero Giuseppe). 

332 
Bougere. Pierre. 28 
Box. O. E. P .• 102 
Box plot. 112-1 /4 
Briggs. Henry. 158 
Brillouin index. 45-46 

C ("correction" factor). 215.221.258-259,279; C 
(mean square successive difference 
stat.).601; CaJl (c.v. of C). 601: C C.v. 
table.835ff: C (cosine). 613: CaJl 
(sign test c.v.). 538; sign test C.v. table. 
786ff: C" (SS for common regr .. 367, 
373; Cj (SS for regr. i). 373: C/ (SS for 
total regr.). 373: C; (sum of cosines). 
640; q (sum of column frequencies). 
407.492,510; C, .• Cp (estimated c.v.). 
671; Cp (Mallows stat.). 437; CT 
(top-down concordance stat.). 455: 
nCX. q. ncx. nCX (binomial 



coef.) table. 782ff; (7). ( ; ) 
(combinations). 55-57. 520. 562; 
C. Cn• Cb (int. calc.). 203. 660. 671 

Ci (coef. for Scheff~ test). 237. et al.; Cjj (element 
in inverted corrected SS & 
crossproducts matrix). 423: c (inverse 
of x). 423; Cj (int. calc.). 203 

Cardano. Giralamo. 49 
Carryover. 273. 302 
Cartesian. 329 
Cartesius. Renato. 329 
Cavalieri. Bonaventura. 158 
Cayley. A .• 300 
Celsius. Anders. 3 
Center of gravity. 24.615 
Centile.36 
Central limit theorem. 72. 324 
Central tendency. 18. 21-30 
Chi square (See. e.g .. Contingency table; 

Goodness of tit) X (chi). 669; r (chi 
square). 121. 366; Ai .•. (c.v. of X2). 

122.468. et al.; r C.v. table & 
approx .• 672ft; .,a (x2 corrected for 
continuity). 469. et al.; X~ (X2 for 

departure from trend). 561; xJ, 
(bias-corrected x2).395-396; x; 
(Friedman's r).277. 452; (X;) . 

o,p,h 

(c.v. of xh278; r, c.v. table. 763; 

(x;t; (corrected r,). 279; x1 
(Cochran-Haber r). SOl; xl Cr for 
trend). 560 

Chrystal. G .. 55 
Chuquet. Nicolas. 37 
CI (confidence interval). 86 
Circle. unit 6l0-61J 
Circular distr .• 605-607ff, 624ft (See also Angular 

data) 
descriptive stat.. 605-623 
hypo testing. 624-667 
normal. 618 
graphing. 607-610 

Circular rank. 64() 
Circularity. 274 
Clavi us. Christopher. 31 
Clopper-Pearson interval, 543. 546 
Cochran. William Gemmell. 281 
Cochran's Q. 281-283 
Coding data. 30-32.46-48. 176.224,36/. 

867-868 
Coefficient: 

of association (See Correlation coef.) 
~.433 
binomial (See Binomial coefficient) 
of concordance. 279-280. 400 
of correl. (See Correlation coef.) 
of determination. 340. 428 

adjusted. 428 
"shrunken." 429 

of nondetermination (or alienation). 34Q. 
381,428 

for regression (See Regression coef.) 
of variation (or of variability). 42 

Coins. 50 
Combinations. 55-57 
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Comparative trial. 498 
Concentration (See Disperson) 
Concordance. 

coef. of. 279-280. 449-456 
multivariate correl.. 449-456 

top-down.455-456 
Confidence 

interval. 86. 342 (See also Confidence limit) 
level. coef .• probability. 86. 106 
limit, 85-87 (See also Coef. of variation; 

Correlation: Correlation. angular: 
Logistic regr.: Median; Mean: Mean 
difference: Proportion: Regression: 
Variance) 

Conservative test. /36. 172. et al. 
Consistency of statistic. 19 
Constant. 239 
Contagious distribution. 591 
Contamination of sample. 19 
Contingency coer .. 4Q5-407 
Contingency table. 405-408. 490-517 

chi-square. 492-494 
continuity correction. 5(}()-502 
heterogeneity. 504-506 
multidimensional. 510-516 
log-likelihood ratio (G test). 508-5/0, 

516 
with small frequencies. 503-504 
subdividing. 506-508 
2 X 2.405-407.497-503.504-506. 510 (See 

also Fisher exact test; McNemar test) 
visualizing. 494-496 

Continuity correction. 469-470. 480. 500-502. 
510. et aI. 

Control (See Multiple comparisons) 
Coordinates. 329. 6/0-611 
Correction term. 196, 215, 221 
Correlation. 379-418 

angular. 654-660 
nonparametric.660-663 

biserial.4Q9-411 
coef .. 379-382ff 
coded data. 417 
common. 391-392. 393-395 
concordance. 449-456 
c.l .• 386. 388-390 

angular. 656 
Cramer "'. 407. 
cylindrical. 654 
gross. 438 
hypo testing. 

I-sample. 383-386. 388 
2-sample.390-391 
multisamp1e.393-398 
nonparametric.398-4Q5 

intraclass.411-414 
Kendall tau (T). 4{)()-4Q2 
matrix. 422 
multiple. 419-423. 438-440 

non parametric. 449-456 
multiple comparisons. 396-398. 400 
nelt.438 
with nominal-scale data. 4Q5-41 I 
non parametric. 398-4Q5. 453 

c.l .• 400 
weighted.4Q2-405 

part. 440 
partial. 438-440 
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Correlation. (continued) 
Pearson product-moment. 379 
point-biserial. 408-410 
point-polyserial.409 
polychoic. 408 
power. 386-388, 392-393, 400 
ratio. 198 .. 449 
sample size. 387-388,392-393, 

400 
semi partial. 440 
simple. 379-418 
Spearman. 398-400. 453 
spherical. 543 
tetrachoic. 408 
top-down. 404 
total. 438 
versus regr .• 328-330 
weighted. 391-392 

nonparametric.402-405 
Cosine (cos). 610-61 Iff 

cos- 1 (arccosine). 613 
Cotangent (cot). 611 
Cournot. A .• 24 
Covariance. analysis of. 284, 372ff 

multivariate. 327 
Coxcomb. 608 
Cramer. Harald. 407 
Cramer coefficient. 407 
Critical 

region. 101 
value. 78ff, et al. 

Cross classification. cross tabulation (See 
Contingency table) 

Crossover. 302 
Crossproducts. sum of. 332. et al. 
V (cube root). 28 

Cubic regression. 459 
Curve (See Distribution; Graph) 
Cycle (See Regression. periodic) 

D. Dj. Dj (Kolmogorov-Smirnov stat.). 482; 
Dan (D c.v.). 482; D C.v. table & 
approx .• 741ff; Ds,i (modified 
Kolmogorov-Smirnov stat.). 484; Ds 
C.v. table. 745ff; D (Cochran-Haber 
calculation). 501 

d. d; (difference), 38,398-399, 485. 486; d (s. 
. mean of differences ). 179; dmax 

(maximum dj), 486; (dmax )a,/en 
(dmax c.v.). 486; dmax c.v. table. 736ff; 
d (half width of CI).114. et al.; djj 
(element in inverted correl. matrix). 
423; d (inverse of r). 423; dk 
(difference between frequency dist.). 
637; d (circular rank). 640; 

daJ -a2' daji-14j' daji -1ij (angular 
distance). 642, 643, 644 

Daniel. Cuthbert. 437 
Darwin. Charles. 380 
Data. datum. 1 

accommodated. 20 
axial. 619-621 
centering. 458 
circular. 3. 605-607ff 
coding. 30-32. 46-48. 176.224.361. 

867-868 
dichotomous (See Dichotomous data) 

discrete. discontinuous, meristic. 4 
interval-scale. 3 
nominal. categorical. 4 (See also 

Dichotomous data) 
multisample testing, 224 
2-sample testing. 174 

ordinal-scale. 3-4 
outlier. discordant. 19 
paired. 132 
prop .. 291 (See also Proportion) 
ranked. 162, 163. et al. 
runs, 597ff 

centrifugal & centripetal. 599 
ratio-scale. 2-3 
transformation. 286-295 
types of. 2-5 

Davenport, C. B., xi 
I (diagonal). 22 
Decile. 36 
Decimal places (See Significant figures) 
o (degrees). 3 
Decimal point. 31 
Degree.605ff 
Degrees of freedom. 39, 99, 468, 471. 494. et al. 

(See also specific tests) 
cells (among cells), 252 
in contingency table. 494 
deviations for linearity. 350-354 
error (within groups). 195. et aI. 
factor. 252 
in goodness-of-fit test. 468 
groups (among groups). 195. 350-354 
within groups, 350-354 (See also error) 
interaction, 253 
regr., 339, 351-354. 427. et aI. 
remainder (error. residual). 268 
residual. 339. 427. et al. 

pooled. 373 
among subgroups. subgroups. within 

subgroups. 312 
total. 194. 252. 351-354. et al. 
within-celIs.252 
within-groups. 195 

11 (Delta) (detectable difference). 485 
8 (delta). 669; 8 (detectable difference). 116-118. 

147-150,209.276; 8 (regr. parameter) 
447; 8 (Kolmogorov-Smirnov test 
correction). 484-485 

de Moivre. Abraham. 46, 49. 66. 543. 585. 855 
de Montmort. Pierre Remond. 49 
De Morgan. Augustus, 22. 37, 45 
Density. normal. 66 
Dependence. 424 
Descartes. Rene. 28. 37. 41. 329 
Design. experimental. 250 (See also Experimental 

design) 
Determination. coef. of. 340. 428 

adjusted. 428 
Deuchler. Gustav, 163 
Deviance measure. 479 
Deviate. normal. 68 
Deviation, 

from linearity. 350-354 
least absolute. 332. 425 
mean. mean absolute. 37 
quartile. 36 
root mean square. 41 
standard (See Standard deviation) 



OF (degrees of freedom). 39; DFc (residual OF 
for common regr.). 368. 446; OF; (OF 
for regr. i). 373; DFp (residual OF for 
pooled regr.).373. 444; OF, (residual 
OF for total regr.).373; 

Diagram. 
Euler. 58 
rose (coxcomb). 607-609 
Venn. 58 

Dice. 50 
Dichotomous data. 281. 4051f, 518-584. et aI. (See 

also Binomial 
double dichotomy, 497 
logistic regr .• 577-582 

Difference. mean. 179 
Difference, detectable (See Analysis of variance; 

Binomial test; Correlation. McNemar 
test; Mean. Proportion; Regression; 
Sign test; Variance) 

Direction. compass (See Data. circular) 
Discriminant analysis. 577 
Dispersion (See also Variability): 

angular. 615-617 
measure. 18, 33-48 

relative. 42 
over- and under-.591 

Distance. angular (See Angular distance) 
Distribution. 

bell-shaped.66,317 
binomial. 291. 498. 519-524 

negative. 591 
circular (See Orcular dist.) 
negative. 591 
contagious. 591 
Gaussian. 66 (See also normal) 
hypergeometric.524-526 
lognormal. 291 
of means. 72-74 
multinomial. 494 
negative binomial. 591 
normal, 66-68ft 

bivariate. 317-319 
circular. 618 
multivariate. 3/6-319 
standard. 67 
table. 676 

Poisson. 585 -587 (See also Poisson dist.) 
sampling, 72 
sigmoid. 92 
uniform. 591 
von Mises. 618 

Diversity. 41-46 
relative. 43 
2-sample testing. 174-176 

I. + (divide by). 22 
Dominance. 43 
"Dummy" variable. 443-444. 577 
Duncan. D. E .• 226 
Duncan test. 232 
Dunn test. 232 
Dunnett test. 234-237. 275. 376, 377.396-397 

c.v. table. 733.735 
nonparametric.243. 280 

c.v. table. 764.765 

E (Y - predicted Y). 360 
e (a mathematical constant). 67 
Effect (See Factor) 
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Efficiency of statistic. 18 
Edgeworth. Francis Ysidro. 380 
Eisenhart. C., 286. 438 
Ellipsis ( ... ), 5 
Enumeration methods (See Nominal-scale data) 
(i (epsilon). 669; (i (error or residua!). 330, 424. 

447-448 
Error, 

comparisonwise & familywise. 226 
probable (See Probable error) 
in regr. (See Regression) 
standard (See Standard error) 
Type I & Type II. 79-80 

Effects. fixed & random, 199-200, 261-262. 337 
1} (eta). 669; .,r (variability measure), 322; 1}2 

(correl. ratio). /98. 449 
Ettingshausen. Andreas von, 57 
Euler. Leonhard. 22. 58. 67. 300 
Euler diagram. 58 
Evenness. 43 
Event. 57ft 
Exp (exponent on e). 578. 625 
Experimental design (See also Analysis of 

variance) 
balanced. orthogonal, 190 
completely randomized. 192 

Exponentiation. 37, 329 
Extrapolation. 335 

F (variance ratio). 130. 153. 197, et al. (partial. 
431); Fa'''I.'':! (c.v. of F), 198; F C.v. 
table, 680ft; F'. Fit (ANOVA stat.). 
203-205; F/: (Friedman test stat.), 
279; F (cumulative observed 
frequency dist.), 483; Fj (cumulative 
observed frequency). 482; F. 
(cumulative expected frequency dist.), 
482; Fj, (cumulative expected 
frequency, 482; :F, :F' (modified 
cumulative observed frequency), 484 

f, /;. /;j. /;jI (observed frequency), 23, 467. 492. 

510. et al.; ii. iij. iij / (expected 
frequency), 467. 493. 512. et al.; f 
(formerly for /I). 99 

Factor, 191 
crossed,250 
fixed- & random-effects. 199-200, 261-262. 

337 
niusance, 272 

! (factorial). 45, 53. et al. 
logarithm of, table. 854ft 

Fahrenheit. Gabriel Daniel. 3 
Fechner. Gustav Theodor. 24. 26. 402 
Feltz. Carol J .• xiii 
!f (female). 264 
Fence (in box plot). /13 
Fermat, Pierre. 49 
Fiducial interval. 86. 106 
Fienberg. S. E .• 510 
Fit (See Regression; Goodness of fit) 
Figures. significant, 5-6.73-74 
Fisher. Ronald Aylmer. 38. 39. 72. 74. 78. 79. 99. 

103.130,152.190.249.270.284.296. 
304.429,431.469.471.494.56/.676 

Fisher exact test (Fisher-Yates test; Fisher-Irwin 
test). 561-569 

c.v. table. 795ft 
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Fisher z transfonnation. 384. 386, 395-396 
Fonnula. machine (working). 39. 195-197. 

256-259. 269, et al. 
Fourier analysis, 660 
Frank. Walter. 466 
Frequency. 

cumulative. 14-15 
expected & observed. 482 

dis!..6ff 
expected & observed. 467 
graph. /3 
relative. 13. 59 
table.6ff 

Friedman. Milton, 277 
Friedman tes!. 277-281 
FWE (familywise error). 226 

G. G2 (log-likelihood sta!.), Gj (group sum). 283. 
531,478-481.508-5/~516.53I-532 

Gaddam. J. H., 291 
Galilei. Galileo, 49 
Galton. Francis, 24, 33. 36. 66. 68. 328, 379, 466 
Galton function, 380. 398 
'Y (gamma), 669; 
'Y (regr. parameter), 447 

Gauss. (Johann] Karl Friedrich, 24. 72, 331 
General linear model. 424. 577 
Ghent. Arthur W., xiii 
Girard, Albert. 28 
Goodness of fit, 466-489 

angular data. 662-665 
binomial. 529-532 
chi-square, 467-481 

>2 categories, 470-481 
for Poisson dis!.. 589-592 
2 categories. 467-470 

continuity correction, 469-470. 480 
heterogeneity, 474-478 
Kolmogorov-Smirnov test. 481 -488. 

531-532 
Kuiper test. 664 

&.corrected. 483-485 
discrete or grouped data. 485-488 
for Poisson dist .. 589-592 
sample size. 485 

log-likelihood ratio (G test). 478-481 
for Poisson dis!.. 589 
2 categories. 480 

for Poisson dis!.. 589-592 
with small frequencies. 473-474 
subdividing, 472-473 
Watson test. 483. 664-665 

Goodwin. Harvey. 53 
Gosset. William Sealy ("Student"). 79.99,431. 585 
Grad. 605 
Graph, 

ANOV A power & sample size. 859ff 
bar.6ff 
box plot, 1/2-114 
circular data, 607-610 
contingency-table data, 494-496 
frequency. 13 

cumulative. 14-15 
histogram. 12, 607-610 
mosaic. 494-496 
scatter plot. 329-330, 607-608 
sigmoid (S-shaped),579-58O 

> (greater than). 28, 69ff; 2: (greater than or 
equal to). 28: » (much greater 
than),83 

Greco-Latin square. 303 
Greek alphabet. 669-670 (See also individual 

Greek leiters) 
Greenwood, M .• 591 
G test (See Log·likelihood test) 

H. He (Kruskal-Wallis stat.), 215ff; HaJltJl2 ..... 
(c.v. of H). 216; H c.v. table, 761ff; H 
(diversity index), 45: Hmax (maximum 
H). 46; H'. Hi (diversity index), 43: 
H;"ax (maximum H'). 43: Ho: (null 
hyp.). 74; HA. HI (alternate hyp.). 75 

Halley. Edmond. 494 
Hampel. F. R.. 37 
HaTriot. Thomas, 23, 28 
Hartley. H. 0 .. 229 
Herschel. John Frederick William. 293 
Heterogeneity. 43 
Hierarchy in ANOV A (See Analysis of variance. 

nested) 
Hinge (in box plot). 113 
Hipparchus. 33 
Histogram.l2,607-6/O 
Homogeneity, 43 

of coef. of variation. 221 -224 
in contingency table. 498 
of variance. 220-221 

Heteroscedasticity.220 
Hodges-Ajne test, 629-630 

c.v. table, 845 
Homoscedasticity, 220 
Honestly significant difference test, 227 
Hotelling. Harold, 645 
Hotelling test, 645-646.652-654 
Hotelling r2. 325-326 
HSD (honestly significant different test). 227 
Huber. P. J .• 37 
Huygens, Christiaan (Christianus). 49 
Hypergeometric, 499. 524-526 
Hypothesis: 

alternate, 74, 75ff 
null.74ff 

Hypothesis testing (intoduction): 
conservative & liberal. /36, 172. et al. 
errors in, 78-80 
introduction. 74-85 
I-tailed (I-sided) vs. 2-tailed (2·sided). 

80-82. et al. 
power (See Power) 

i. datum or group number. 21. et aI. 
Imputation, 266 
Independence (See Contingency table. 

multidimensional) 
Independence trial. 499 
00 (infinity), 100 
Infonnation theory, 43 
Intercorrelation.432 
Interpolation. 671 
Intersection ofsets. n. 58, 61-63 
Interval. 

Qopper-Pearson.543,546 
confidence (See Confidence interval) 
fiducial. 86. 106 
prediction.t07 



10Ierance.l08 
Wald.543-547.551 

Isok urtosis. 89 
Iteration. 115. 448.579. et al. 

J.J' (evenness. homogeneity. relative diversity). 
43.46 

j. datum or group number. 191. et al. 
Jackknife. 656 
Jeuffret. E .. 317 
Jones. William. 67 

K (Watson-Williams test correction factor). 632; 
K table. 848ft: K (int. calc.). 347 

k.ki (number of categories). 43. 467; k. k' 
(number of groups).I90. 275 

Kelly, T. L.. 381 
Kelvin. Lord. 605 
Kendall. Maurice George. 36. 99. 398. 449 
Kendallcoe(ofconcordance.279-280.400 
Kendall rank correl. (tau). 400-402 
Kendeigh. S. Charles. xiii 
Kepler. Johann. 158 
Kolmogorov. Andrei Nikolaevich. 482 
Kolmogorov-Smirnov test. 

I-sample (See Goodness of fit) 
2-sample. 482. 487 

Kramp. Christian. 45. 69 
Kruskal. William Henry, 214 
Kruskal-Wallis test. 214-218 
Kuiper test. 664 
Kurtosis. 87. 88-91 

I-sample hyp .. 126-127 

L1 & L2 (lower & upper c.l.). 86. et al.; (L1 )(' & 
(L2)( (adjusted L1 & L2). 547 (See 
also Confidence limit) 

I (datum or group number). 250. et al. 
LAD (least absolute deviations). 332 
A (Lambda). 669; A (Wilks staLl. 321 
Laplace. Pierre-Simon. 49. 66 
Lawley-Hotelling trace. 322-323 
LCso.36 
LDso.27.36 
Least absolute deviation. 332. 425 
Least significant difference test. 232 
Least squares. 38. _Ul 
Legendre. Adrien Marie. 331 
Leibniz. GOllfried Wilhelm. 23. 41 
< (less than). 28.69; S (less than or equal to). 28: 

« (much less than). 83 
Leptokurtosis.89 
Level. 190 
Levene test. 154-157. 221 
Lexis. William. 66 
Liberal test. 136. 172. et al. 
Likelihood: 

maximum. 332 
ratio. 231. 478 

Limit. 
confidence_ 86-87 (See also Confidence 

limit) 
Linnaeus. Carolus. 3 
Lloyd. H .. 33 
Location measure. 18. 21 
Logarithm. 

bases. 43-44 
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common (Briggsian) (log.loglO). 28. 43.158. 
287-291 

natural (Naperian) (In.lo[!lo).158 
Logistic regression. 577-582 

multiple. 581 
Logit.579 
Log.likelihood ratio (See Contingenty table; 

Goodness of fit) 
Logarithm. 28.43.158.287-291 

of factorial. table. 854ft 
Logarithmic transformation. 287-291.358-359 
Lognormality.291 
Lord. F. M .• 428 
LSD (least significant difference test). 232 

M(SeeaisoMu); M. Mx. My (coding constant). 
31.47.361.867; M(numberof 
variables).420; M (sum of mil. 642 

m (level number). 276: m (number of independent 
variables). 319, 424: nI. m;(number of 
data in specified location). 629.642; m 
(Hodges-Ajne stat.): 629; m c.v. table. 
845; mij (cumulative number of data). 
640; m3 (symmetry) 88: m4 (kurtosis). 
89; nlk (standarized moment). 88 

M-regression. 332. 425 
Machine formula (See Formula. machine) 
d'(male).264 
Mallows. C. L .• 437 
Mallows Cp' 437 
Mann-WhItney test. 163-/72 
MANACOV A (multivariate analysis of 

covariance). 327 
MANOVA (See Analysis of variance) 
MatriX. 420ft 

inverse. 422-423. 446 
Maximum likelihood estimation. 332. 579 
McNemar test. 569-576 
MCP (multiple comparison procedure). 226-

248 
Mean(s).21-24 

angle. 612-615. 621-623 
hypo testing. 624-628. 645-652 
mean of means. 645 -652 

arithmetic. 21-24 
confidence limits & intervals. 105-107. 

142-145. 2()6-207. 233-234. 263-264. 
et al. 

for angles. 618-619 
graphing. 110-112 

detectable difference: 
for multiple comparisons. 233. 235-236 
for multisample hyp .• 207. 212. 270. 276 
for I-sample hyp .• 117 
for paired-sample hyp .• 182 
for 2-sample hyp .• 149-150 

difference. 179 
c.I .. 182 

dist. of. 72-74 
geometric. 28 
grand. 250 
graphing. 1 10-112 
harmonic. 29 
multiple comparisons. 226-248. 274-275 

c.I..232-234. 236-237 
multi sample hyp .. I89-218 (See also 

A nalysis of variance) 
for angles. 634-636 
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Mean(s). (continued) 
I-sample hyp .. 97-105.115-118 

for angles. 624-628 
paired-sample hyp .• I79-182 
power: 

for multisample hyp.,207-211, 213-214. 
276 

for MANOV A. 325 
for I-sample hyp .• 117-118 
for paired-sample hyp .• 182 
for 2-sample hyp .. 150-151 

prediction limits & interval.107-IOB. 
145-146 

sample size: 
for estimating. 114-115 
for multiple comparisons. 233, 235-236 
for multisample hyp .. 207. 211-212.214, 

275-276.305 
for I-sample testing, 115-116.119 
tor paired-sample hyp .• 182 
for 2-sample testing. 146-149 

standard error of, standard deviation of. 72 
tolerance interval, lOB 
trimmed, truncated. 142 
2-sample hyp .. 130-142 

tor angles. 632-634,637-643,647-649, 
649-652 

variance of. 72 
weighted. 23 

Mean deviation. mean absolute deviation, 37 
Mean error, 41 
Mean square. mean squared deviation. 38 

cells (within cclls). 255-256 
contingency. 407 
deviations from linearity. 351 -354 
error (within groups), 197, et al. (See also 

residual) 
factor, 255-256 
groups (among groups). 197. 350-354. et al. 
within groups. 350-354 (See also error) 
interaction. 255-256 
regr., 339, 351-354. 427. et al. 
remainder. 268 
residual. 339-340. 346. 427. et al. 
among subgroups. 312; subgroups. 311-312; 

within subgroups. 312 
Mean square successive difference test. 600 
Measures. repeated (See Repeated measures) 
Median. 24-27 

angle. 617-618 
c.I..619 
hypo testing. 629-631 

c.l.. 120.548-549 
difference. 188 
graphing. III 
multiple comparisons. 244 
multisample hyp .. 219-220 
for angles. 642 
I-sample hyp .. 120 

for angles. 629-631 
test. 172-174 
2-sample hyp .• 172-174 

for angles, 642 
variability around. 112-114 

Mendel. Johann (Gregor), 474 
Mesokurtosis. 89 
Midrange. 30 
Miller. R. G., 656 

- (minus. negative). 22 
Minard. Charles Joseph. 494 
Mode. 27 

angle. 618 
Molitorus. Johannes. 22 
Moment. 88 
Mood. A. M .. 262 
Moore test, 646-647 
MSE (mean squared error). 197 
M (Mu) (p. median). 120 
/-L (mu). 669; /-L. /-Li. /-Lij' /-Lm (p. mean). 21. 189. 

254.632. et al.; 1'0 (specified p. mean). 
97.628. et al.; /-La (p. mean angle). 612. 
524; /-Ld (p. mean of differences). 179; 
/-LT (mean of T), 186; /-LV (mean of 
U).I66; Ilu (mean for runs-test 
normal aproximation). 598, 602; Il 
(Poisson parameter). 587 

MUlier. Johannes. 22 
Multicolinearity.431-432 
Multinomial, 497 
Multiple comparisons, 226-248 

confidence intervals. 232-233 
in correl.. 396-398. 400 
with dichotomous data. 283 
with control. 234-237 
in factorial ANOV A. 305 
for means. 227-239.234-237 
for medians. 244 
in nested ANOVA. 313.315 
nonparametric. 239-244,280-281 

with control. 243 
in I-way ANOVA.226-244 
for prop., 557-559 

with control, 558 
in regression, 375-378 
in 2-tactor ANOV A. 263, 270. 

274-275 
nonparametric.280-281 

for variances. 244-247 
with control. 247 

Multiple contrasts 
in correl.. 397-398 
with dichotomous data. 283 
in factorial ANOV A. 305 
nonparametric, 243-244. 281 
in I-way ANOVA.237-239 
for prop .. 558 

Multiple correl. & regr .• 419-457 
Multiple-range test. 2~2 

Duncan new. 232 
Multiple regr. & correl., 419-457 

logistic. 581 
X, " • (multiply by). 23 
Multisample testing (See also Analysis of 

variance; Angular data; Coefficient of 
variation: Correlation: Mean: Median: 
Nominal-scale data: Proportion: 
Variance) 

N (p. size). 21; N (sum of s. sizes). 193; N (5. size). 
425 

n, ni (5. size), 22. et al.; n' (number of data in a 
level),275; ii. "iii (adjusted n). 546, 
551; n (formerly for JI), 99; '!j (nth 

root). 28. 37. 546; ( ; ). 

(combinations). 57.520 



Napier. John. 31.158 
Nesting (See Analysis of variance. nested) 
Newman-Keuls test. 232 
Newton. Isaac. 37. 519 
Neyman. Jerzy. 74. 78. 79.86.101.106 
Nicholson. G. E .• 428 
Nightingale. Florence. 608 
Nominal-scale data (See also Goodness of fit; 

Contingency table) 
blocks or repeated measures. 281-283 
correl..405-411 
dichotomous (See Binomial; Dichotomous 

data) 
multisample testing. 224 
paired samples. 569-576 

Noncentral F.207 
Noncentrality parameter. 207 
Nondetermination. coef. of,34() 
Nonorthogonality.432 
Normality (See Distribution) 

circular. 618 
testing. 91-95 

Normalizing. 68 
Notation. scientific, 6, 425 
v (nu). 669; v. Vi (OF). 99, et al.: v' (modified /' 

test OF). /38, 239 
Nuisance factor (variable), 272 
Number. 

irrational. 67 
pseudo-.858 
random, table. 856ff 
triangular, 437 

Oi (octile). 36.91 
Octile. 36. 91 
Odds. 60, 578-579 
OLS (ordinary least squares). 331 
One-sample testing (See Angular data; 

Correlation; Kolmogorov-Smirnov 
test; Kurtosis; Mean; Median; 
Proportion; Symmetry; Variance 

Ordinate, 329 
Oresme. Nicole (Nicolaus). 37 
Oughtred. William. 23. 71 
Outlier. /9-20. 26. 113,206.337 

P(probability).60, 77, etal.;"P". "P,r. P'1-. "P,r 
(permutations).52; "P;,; "P',r. "P': 
(circular permutations). 52-54 

P (number of independent variables). 437; P (p. 
prop .. 5/8; p. p': Pi (s. prop .• 43. 291: 
Ii (s. mean prop., 293: P. Pi (s. prop .• 
526,549: p. P (adjusted pl. 546, 55/; Ii 
(mean prop .• 549: Po (specificd p. 
prop.), 533: pi (transformed prop.). 
537ff: p' tables for arcsine 
transformation. 778ft, 780ff; p (int. 
calc.). 671 

Paired-sample testing, 179-188 
nominal-scale data. 569-576 
with ranks (Wilcoxon test). /83-/88 

Parabola. 463 
Parameter. 18 
Pascal. Blaise. 49. 55. 520 
Pascal language. 521 
Pascal's triangle, 520 
Peano. Guiseppe. 58 
Pearson. Egon Sharpe. 74. 78. 79.101. 229 
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Pearson, Karl. I. 16.26.27.37.41.42.66.88.89. 
220.379.398.407.409.419.438.466. 
492.494 

% (percent). 291 
Percentage. 467-468 
Percentile. 36 
Period of cycle, 660 
Permutations. 51-55. 57 
q, (phi). 669: q,. q,2 (s. Cramer coe!.). 4(}7; q,max 

(maximum q,). 407; (power into calc.). 
150.208-209,276 

IT (Pi). 669: 
IT (take product). 28, 46, 54 
1T (pi). 669: 1T (mathematical constant). 66 
Pillai's trace (Pillai-Bartlett trace or V),322-

323 
Pitman. Edwin James George, 170 
Pitman efficiency. 170 
Platykurtosis.89 
Piol (See Graph) 
+ (plus). 22; ± (plus or minus). 71, 105 
Poisson. Simeon Denis. 585 
Poisson, 

c.I. for parameter, 587-589 
2-sample test. 595-597 
disl..585-587 

and binomial test, 592-595 
goodness of fit. 589-592 

Polya. G .. 591 
Polynomial regression. 458-465 
Population.16ff 

finile. 118fr. et al. 
Power, 79, 82-85 (See also Analysis of variance; 

Binomial test; Correlation. McNemar 
test; Mean. Proportions; Regrcssion; 
Sign test; Variance) 

Precision: 
of measurement. 5 
of stal.,18. 114 

Prediction (See Regression) 
Prediction limit & interval. 107 
PRESS (predicted error sum of squares), 437 
, (prime) (transformation or other modification). 

286ff. et al. 
Probability. probabilities. 49ff. 6O-64ff. 

98 
adding. 60-63 
conditional. 63 -64.77 
multiplying. 63 

Probable error, I JO 
Probit, 69. 579 
Proportion: 

c.l., 543-548, 551-552 
data. 291. 494 
multisample test. 555-556 

multiple comparisons. 557-559 
I-sample test. 532-537 

power. detectable difference. and sample 
size. 539-542 

trends. 559-561 
2-sample test. 549-550 

power. detectable difference. and sample 
size. 552-555 

Pseudo-R2 .. 581 
Pseudoreplication. 142 
'" (psi). 670; '" (p. ratio),570 
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Q. (Cochran's stat.), 282-283; Q (Yule coef.). 
408; Q. Q' (nonparametric 
multiple-comparison stat.). 240,243; 
QaJc (c.v. of Q). 241; Q c.v. table. 764; 
Q~Jc (c.v. of Q'). 243; Q' c.v. table. 
765; Qj (quartile). 33. 90 

q (p. prop., 518; q (s. prop., 526; q (Tukey stat.). 
229; q c.v. table. 717ff; qa.vJc (c.v. of 
q). 229. et al. q' (Dunnett stat.). 235; 
q~.vJc (c.v. of q').235; q' C.v. table. 733, 
735; q (mean prop., 549; q (adjusted 
q).546 

Quadratic regression. 459-464 
Quantile, 35-36 
Quartic & quintic regression, 460, 462 
Quartile: 35. 90 

deviation, 36 
Quetelet.lambert Adolphe Jacques .. 36, 

408 
Quintile,36 

R (5. correl coef.), 425; R (5. multiple correl. 
coef.),429; R, Rj (Rayleigh's R), 625, 
632; Rj (sum of ranks), 163, 215; 
R, Rj (mean rank). 215, 277; Rj (sum 
of row frequencies), 407,492,510; R' 
(Moore test). 646; Rail (R' c.v.), 647; 
R' c.v. table, 853; R2 (5. coef. of 
determination),340, 428; R~ (5. 
adjusted R2), 428; R~L (5. adjusted 

R2,428; (7 ).(COmbinationS),562 

r, rj (s. correl. coef.), 380ff; ra.II (critical value of 
r),384: r c.v. table, 766ff; rc 
(corrected r), 614-615; rf (s. 
Spearman footrule), 399; rl (5. 
intraclass correl. coer.), 411; r, (5. 
tetrachoic correl. coef.), 408; 
rjk.l. rjk-/p (lst- & 2nd-order s. partial 
correl. coef.), 438; rjk ... , ry; (5. partial 
correl. coef.), 438; rj(j/)' rj(k"') 
(5. semipartial correl. coer.), 440; rn 
(s.lves & Gibbons coer.), 408; rpb 
(5. point-biserial correl. coef.), 409; rs 
(5. Spearman correl. coer.), 398; (rs)c 
(corrected rs). 400; rs (mean rs), 454; 
rr (5. top-down correl. coer.), 404; rT 
c.v. table, 775; rw (weighted mean 
vector length), 632: ,2 (5. coef. of 
determination, correl. index), 340,381; 
rl-. (s. simple correl. coef.), 432; r 

(c~rrel. matrix). 423; r- 1 (inverse or 
r).423; r. rj (length of mean vector). 
612,632; raa (s. angular-angular 
correl. coer.), 656; r aa (mean of r aa), 
656; ral. rxc:, rxs (5. angular-linear 
correl. coef.), 658; r', r" (r aa )s 
(5. angular-angular correl. coef.), 
660-661 

Radian, 293, 605 
Rahn, Johann Heinhirsh. 22. 23 
Random: 

digits, table, 856ff 
dist .• 585, 590-591 
numbers. 17 

pseudo-.858 
sampling, 17-18. 130 

Randomness testing, 585-604 (See also Runs test) 
serial. 

nominal-scale data. 597-599 
nominal-scale on circle. 665-667 
nonparametric, 601-603 
parametric. 599-601 

Range, 33-35 
circular. 615 
graphing. 110-112 
interquartile, semiquartile. 35 

graphing, 111 
midpoint. 30 
semi-interquartile,36 
studentized.229 

Rank. 162. 163, et al. 
correl. (See Correlation. nonparametric) 
transformation, 169, 279 

Rao spacing test, 626 
Ratio. 570 
Rayleigh, Lord. 624 
Rayleigh R & z, 625 
Rayleigh test. 624-628 

c.v. table, 842 
Reciprocal, 195, 546 
Recorde, Robert. 22 
Regiomontanus. 22 
Regression 

with angles. 66 
asumptotic, 447 
coded data. 361 
coef .• 332. et al. (See also multiple; partial; 

slope) 
beta, 433 
common or weighted, 366 

comparing, 363-378 
concordance, 449-456 
c.l., 342-346; 356 
cubic. 459. 461-462 
descriptive, 448-449 
double, 419 
"dummy" variables. 443-444, 577 
elevation. 367-371 

comparing, 367-371, 375. 3776-377 
exponential. 447 
equation. 330-334ff 

comparing, 363-378 
fit (See linearity testing) 
fixed & random effects 337 
hypo testing. 337-341 

multiple. 430-433, 442-443, 444-446 
interaction. 444 
interpretation. 341 
line. 330-334ff 

comparing, 363-378, 371-372 
linearity testing. 349-355 
logistiC, 329, 577-582 

multinomial, polytomous. 581 
multiple, 581 

logistic growth. 447 
M-. 332, 425 
multicolinearity (intercorrelation. 

nonorthogonality).431-432 
multiple. 419-438 
through origin. 446-447 

variable selection. 433-437 
net. 419 



nonlinear. 447-448 
non parametric. 332 

concordance. 449-456 
through origin. 446-447 

through origin. 355 -357 
multiple. 446-447 

partial 424ft 
hyp .• 430-433 
logistic. 581 
standardized. 433 

polynomial. 458-465 
power. 355, 367. 431 
prediction. 335-336, 343. 346, 440-442 

inverse. 347-349, 356-357 
predictive. 448-449 
quadratic. 459-464 
quartic & quintic, 460. 462 
rhythmometry.660 
with replication. 349-355 
residuals examination. 359-360 
sample size. 355, 367 
simple linear. 328-362 
slope. 332. et al. 

comparing. 363-367.372-375.375-
376 

spherical. 660 
transformed data. 257-360 
versus correl.. 328-330 
weighted. 337 
Y intercept. 333. et al. 

comparing. 367-371, 375 
Rejection region. 78, 101 
Reliability of statistic. 18 
Repeated measures. 270-274. 281-283 
Replication. 103. 142 
Residual. 330, 424. 447-448 
P (rho). 669 P (p. correl. coef; p. multiple correl. 

coef.).383, 429; PO (specified pl. 385. 
439; Ps (p. Spearman correl. coef.). 
399-400; PT (p. top-down correl. 
coeff.). 404; p2 (p. coe!. of 
determination).429; P (p. mean 
vector length). 624; Paa (p. 
angular-angular correl. coef.). 
654: 

Rhythmometry (circadian. et al.). 660 
Robustness. 102 
Rogers. W. H .• 37 
Root mean square deviation. 41 
Rose diagram. 607-609 
Roy's maximum root (8).322-323 
Rudolff. Christoff. 41 
Run. 597 
Runs test. 597-599 

C.v. table. 826ft 
runs up & down. 601-603 

c.v. table. 837 
runs above & below median. 603 

S (Scheffe stat.). 237; Sa (c.v. of S). 237: Sj 
(Savage score). 403.455: S (sine). 613; 
Sj (sum of sines). 640: S2 (circular 
variance). 615 

S (sample SO). 41. (formerly for SE).I38; SX (s. 
SE of mean). 73: So (SE of a). 442; 
so, -02 (5. SE of at - ~), 371; s 
(angular deviation), 617; stable, 
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838ft; sb. Sbj (s. SE of regr. coef.). 
341; Sb,-b2 (SE of bl - b2). 365ft; 
Sbj-bk (SE of bj - bk). 442; sp (5. 
estimate of up)' 528; Sq (s. estimate of 
uq).528; s, (SE of r. 381; s'lk .. ' (s. SE 

of partial correl. coef.). 439 s2X (s. 
variance of mean), 72; SX,-X2 (s. SE 

of X, - X2). 132: s-x' v 
'-"2 

(SX -X for Welch's approximation). 
'2 •• 

138: Sy' y' (SEof Y! - Y2).371; 
,- 2 

SY·X. SY·X.!,2oo'm (5. SE of estimate). 

340,431; Sy (SE of Y>. 440:. s* (5. 
estimate of u). 600: So (circular SO). 
617; So table. 840ft; s2. sJ (s. 
variance). 38, 152: s2 (5. error MS). 
206: sf, (s. variance of regr. coef.). 341; 

~ (variance for prediction limits). 145. 
38; sfog.161; sf, (5. pooled variance). 

133.198; (sf,)' (sf, for X'). 155; 1, (s. 

estimate of IT~). 528: ~ (s. estimate of p q 
~ ). 528;.~ -X (s. variance of 

q "1- 2 
X, - X2). 132; st.x (residual MS). 

340: (st. X )c (residual MS for 

common regr.). 368; s2 (angular 
variance).615; ?'aa (variance of roo). 
656 

SI. Andrew's cross. 23 
Sample. 16ft 

from finite populations. 118-119 
fraction. 119 
size needed (See Analysis of variance; 

Binomial Test; Correlation; McNemar 
test: Mean: Proportion: Regression; 
Sign test: Variance) 

space. 57 
contaminated. 19 
random. 17-18, 130 
with replacement. 59, 519, 524-525 

Savage score. 403, 455 
Scheffe. Henry. 237 
Scheffe test (See Multiple contrasts) 
SO (standard deviation). 41 

circular. 617 
SE (standard error). 72. et al. (See also s) 

of mean. 72ft 
SEM (standard error of the mean). 

72 
Set. 57-59 

sub-. 57 
outcome. 55 

Sexagesimal.605 
Shannon-Weaver. or Shannon-Wiener. 

index. 43 
Shapiro. F .• 277 
Sheppard. W. F .• 68 
~ (Sigma). 669: ~ (summation). 22, et al.: 

l:t. l:tx. l:t)<· (sum of ties). 169, 400. 
et al. (~ is often used with 
X. x, XY. xy. Y. and y. which are 
defined later in this index.) 
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U (sigma), 669: (p. SO), 41; ub (s. SE of b), 341; 
U d (SO of differences). 179; uti (SE of 
differences); UH! (SE of Hi>, 174; 

I 

UHj -Hi (SE of HI - H2).174; up 
(SE of all possible p's). 528; uq (SE of 

all possible q's), 528; UT (SE of T). 
186; uu (SE of U), 166; Uu (SO for 
runs-test normal aproximation), 598, 
602; U X (p. SO of X). 
524; ux (p. SE of X). 72; 4 
(p. variance ofX'). 72; ux -x (p. SE _ _ I 2 

of XI - X2).132; uy.x (p. SE of 
estimate),340; Uz (p. SE of z). 385; 
(u,)e (corrected uz), 400; u'I-<2 
(p. SE of ZI - '2),390,417; ul/ (SE 
of '/),413; (uz)s (p. SE of z), 385; 
u2. u7 (p. variance),38, 152; u2 
(p. error MS), 187; ~ (p. variance of 
differences). 179; ~ (variance of all 

p 
possible p's). 527-528; u~ (variance 

A q 
of all possible q's), 527-528; UT 

(p. top-down correl. coef.). 405; uk 
(p. variance of X). 524; ~X X-

I- 2 
(p. variance of X'I - X 2). 132; 
u}.x (p. residual MS).346 

Sign test. 537-538 (See also Binomial test) 
c.v. table. 786ff 
power. detectable difference. & sample size. 

539-542 
Significance level. 78ff 
Significant figures. 5-6.73-74 
Sine (sin). 291. 6/0-6/ 1; sin2 (square of sine). 

656 
sin - I (arcsine. inverse sine). 293. 613 

Sinclair. John, 1 
Singularity. 432 
Skewness. 25. 26, 89 (See also Symmetry) 
I (slash). 22 
Slope. 332. et al. (See also Regression coef.) 
Smimov. Nikolai Vasil'evich, 482 
Snedecor, George W .• 190 
I (solidus), 22 
Soper. H. E., 585 
Spearman. Charles Edward. 398 
Spearman rank correl .. 398-400 
Spearman footrule, 399 
Sphericity. 274 
,j, r, (square root). 28, 41,329 
Square-root transformation. 291 -292.357 
Squares. sum of (See Sum of squares) 
SS (sum of squares). 37; SS; (sum of squares of 

X').155; SSj (residual SS for regr. i). 
373: SSe (residual SS for common 
regr.).367,446; SSp (residual SS for 
pooled regr.). 373, 444; SS, (residual 
SS for total regr.). 444 

Standard deviation. 41 -42 
circular. 617 

table. 840ff 
graphing. 110-112 
of mean. 72. 73 (See also Standard error) 
of mean difference. 179 
relative. 42 

Standard error. 72ff 
of estimate (of regr.). 340 
graphing. 110-112 
of mean. 72 
of mean difference. 179 

Standard score. 68 
Standardizing. 68 
Statistic. 18-19 

test. 76 
Statistics. I 

college courses historically. xi 
descriptive & inferential, 2 
distribution-free. 162. 174 
nonparametric vs. parametric, 162-163 
robust. 20 

Stigler's Law of Eponymy, 66 
Stirling, James. 46. 8S5 
Stirling's approximation, 46. 855 
"Student" (See Gosset, William Sealy) 
Strut!, John William, 624 
Student-Newman-Keuls test, 232 
Student's t lesl (See t test) 
Studentized range. 229 
Subset. 57 
Sum of cross products. 332, et al. 

corrected, 422 
Sum of squares [of deviations from mean). 37, 193 

(See also Analysis of variance) 
cells (among cells). 252 
corrected. 422 
deviations from linearity. 350-354 
error, within groups, 197. et al. 
factor, 252. et al. 
groups (among groups), 194, 350-354, et al.; 
within groups, 350-354 (See also error) 
interaction, 253 
matrix. 420. 422. 423 
predicted error. 437 
raw. 420 
remainder (error; residual). 268 
regr., 338, 351 -354, 427. et al. 
residual,332, 339, 427, 446, et al. 

pooled. 373 
subgroups, among subgroups, within 

subgroups, 310-312 
total, 193, 251, 338. 351-354, 427, et al. 
within-cells.252 
within-groups, 195 

Symmetry, 25, 97-89.90-91 
for angle data, 631 -632 
of binomial dist .• 514 
compound,274 
I-sample hyp., 126-128 

T (studentized range). 229; T (s. Kendall correl. 
coef.),402; T (Student's t). 425; T_ 
(sum of negative ranks, 184, T + (sum 
of positive ranks), 184. Ta(2)JI (c.v. of 
Wilcoxon T).I84; Tc.v.table. 758ff; 
T, (sum of tier frequencies). 510: T2 
(Hotelling's T2). 325-326 

t. Ij (Student's t). 99,440. et al.; ta .., (c.v. of 1),101; 
t C.v. table. 678ff; t' (Behrens-Fisher 
test stat .• WeIch approximate t). 
138-139; ,(s. Kendall correl. coef.). 
402; ti, Iii (number of ties), 169, 400, 
639.et al. 



I test: 
comparing means. 130-142 
in general. 341 
for paired data. 179-182 
for regr .• 341 
for a single mean, 97-105 

Table. 
contingency (See Contingency table) 
frequency.6ff 
statistical. 671-858 

Tangent (tan). 610-611 
tan-I (arctangent. arctan). 613 

Tanh (hyperbolic tangent), tanh- t (inverse 
hyperbolic tangent. 384 

T (tau). 669; T (s. Kendall correl. coef.), 402 
(J (theta), 669; (J (Roy's maximum root). 323 
Theorem. central limit. 72.324 
Thomson. James & William. 605 
Thompson. Eilliam R .• 548 
Ties. 166, et al. 
Time (of day. et al.) (See Data. circular) 
Time series. 660 
Tolerance interval, lOB 
Trace. 323 
Transformation of data. 286-295 

arcsine. angular. inverse sine. 291-294. 
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table. 778ff. 780ff 
linear. 30 
logarithmic. 287-291. 358-359 
logit.579 
rank. 169, 279 
reciprocal. 195 
square. 195 
square-root. 291-292, 357 
in Watson test. 664 

Trigonometric function. 610-612 
Tukey. John Wilder. 37. 98. 112. 114 
Tukey test. 227-232.274 (See also Multiple 

comparisions) 
nonparametric. 239-243. 280 

Tukey-Kramer test. 230-232 
Two-sample testing (See Angular data; Coef. of 

variation; Correlation; Diversity; 
Kolmogorov-Smirnov test; Mean; 
Median; Poisson; Proportion; 
Variance) 

for angles. 637-642 
with ranks. 163-172 

V. V' (Mann-Whitney stat.). 163; Valli "2' (c. v. 
of V). 163; V c.v. table. 747ff; V 
(Wilks' V). 321; V (Lawley-Hotelling 
trace. 323: V2 (2-sample Watson 
stat.),637; V 2 C.v. table, 849ff V2 
(I-sample Watson stat.), 664 V2 C.v. 
table. 853; V (int. calc.). 414 

II (number of runs). 597.601; Ua ll 1112 (runs-test 
c.v.), 591.602; II c.v. table. 826ft, 837; 
It. (modified Rayleigh statistic). 626; u 
c.v. table. 844; It; (transformed angle). 
664; ii (mean ,,;).664; u' (u/2). 665 

Uncertainty. 43 
Uniform distribution. 591 
Uniform score. 640 
Uniformity of angular data. 624-628 (See also 

Goodness of fit, angular) 

Union of sets, U,58 
Universe. 16 
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V. Vi (coefficient ofvariation), 42; Vp • (pooled or 
common V). 161; V (Pillai's trace). 
323; V. (modified Rayleigh statistic). 
626 

Van der Vaart. H. R .• 170 
Variability (See also Dispersion: Variance): 

around mean. UJ8-1/2 
around median. 112-114 
coef. of; relative (See Coef. of Variation) 
measure. 18. 33-48 

Variable. variate. 2 (See also Data) 
criterion. 316. 328 
dependent & independent, 190. 316.328. 

et al. 
"dummy." 443-444 
notation. 329 
nuisance, 292 
predictor. regressor. explanatory. 

exogenous. 328.424 
response. criterion. endogenous. 328. 

424 
Variance. 37-40 

analysis of (See Analysis of variance) 
angular. circular. 615 
c.l •• 122-123. 157-158 

for variance ratio, 157-158 
homogeneity. 220-221 
inftation factor. 432 
multiple comparisons, 244-247 
I-sample hyp .. 121-122. 124-125 
multisample hyp .• 220-221 
paired-sample hyp .. 182 
pooled. 133. 152 
power: 

for I-sample hyp .• 124-125 
for 2·sample hyp.159 

prediction limits. 123 
sample size: 

for I-sample hyp .. 124 
for 2-sample hyp., 158-159 

2-sample hyp .• 151 -157 
Variance-ratio: 

c.l .. 157-158 
test. 152-152 

Variation. coef. of (See Coef. of variation) 
Venn. John. 5 
Venn diagram. 58. 62 
VIF (variance inftation factor). 

432 
- (vinculum). 41,329 
I (virgule). 22 
von Mayr. Georg, 494 
von Mises. Richard. 618 
von Mises distribution. 618 

W (Shapiro & Wilk stat.), 95; W (Wilcoxon stat.). 
163: Wilcoxon paired stat. c.v., 759; W 
(Wheeler-Watson stat.). 640; W 
(Kendall coef. of concordance). 279. 
451 

w (int. calc.) 386 
Wald. Abraham. 580 
Wald interval, 543-547. 55/ 
Wald test. 580 
Wallis. John, I()() 



Watson. Geoffrey Stuart. 637 
Watson test. 165.637-640,664-665 

I-sample. 664-665 
C.v. table. 853 

2-sample.637-64O 
c.v.table,849ff 

Watson U2,637 
C.v. table, 849ff 

Watson-Williams test, 632-636 
table. 847ff 

Weierstrass, Karl. 37 
Weighting: 

for mean. 23 
Welch. Bernard Lewis. 138 
Welch's approximation. 138-139. 239 
Weldon. Walter Frank Raphael. 380 
Wheeler-Watson test 640-642 
Whisker (in box plot). 112-114 
Wholly significant difference test. 227, 232 
Widman, Johann. 22 
Wilcoxon. Frank. 183 
Wilcoxon-Mann-Whitney test (Wilcoxon 

rank-sum test). 163 
Wilks lambda (likelihood ratio or U). 321-323ff 
Willis. John. 521 
Wirth. Niklaus. 521 
WolfowilZ. Jacob. 162 
WSD (wholly significant difference test). 227. 232 

X. Xi. Xij. Xijl; XCi). Xi. (datum). 21,191.193, 
250, 425, 520 et al.; X (variable). 423; 
X. Xi. Xij (s. mean of X. Xi. Xij).22, 
131-132. 191.254,621, et al.; X G (s. 
geometric mean). 28; X H. (s. 
harmonic mean), 29; Xp (s. pooled or 
weighted mean). 143. 233; X' 
(transformed X). 286; X' (I X - X I). 
155; xi (s. mean of X'). 155; Xp 
(pooled s. mean of X). 370; X. Xi 
(independent variable, graph 
coordinate). 320. 329, 423, 610, 621. 

et al.: X. Xi (predicted X).347; XO 
(independent variable at curve 
maximum or minimum). 463; X. Xi 
(adjusted X) 546,551: X (matrix of 
raw sums & crossproducts). 423; X2 
(r),466 

x, Xi (X - X). 332. 645. et al.: x (inverse of raw 
sum of squares & crossproduclS 
matrix). 423 

Y (datum), 526: Y. Yi, Yij' Yj (dependent 
variable: graph coordinate). 329.349. 
423,610.621. el al.: Y (5. mean of Y). 
334. 6~/; Y (eooled s. mean of Y). 
370: Y. Yi, Y(Yonregr.line; 
predicled Y). 331.369, 435. et aI.; Yo 
(dependent variable at maximum or 
minimum of curve). 463-464 

y (Y - V). 332. 645. et al. 
CI.346 

Y intercept. 333. et al. 
Yates. Frank, 469 
Yates continuity correction. 469 
Yule. George Udny. 72. 408, 419. 429.438.519. 

591 
Yule coefficient of association. 408 

Z (normal deviate). 68: Z .. (c.v. of Z). 168, et al.; 
Z table. 69. 676; Zt: (Z corrected for 
continuity). 168. et al.; Zc (Z for runs 
test). 598 

z. Zi (Fisher transformation). 384; , to z 
transformation table. 768ff: z to , 
transformation table. 770ff: z (Cormer 
for t), 99; l c.v. table.842; Zw (l for 
common correl. coer.), 391-392.394: 
Z (Rayleigh slat). 625: z; (int. calc. for 
lw).392 

C (zeta). 669; C (p. parameter in correl.). 384: Co 
(hypothesized C). 385. 390 
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