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Preface

This is a book of ecology in transition from a ‘‘soft” science, synecology,
to a “‘hard” science, systems ecology, in which the lens of H. T. Odum’s
“macroscope” ! on the world of big patterns is the machinery of mathe-
matical modeling, simulation and systems analysis. The book is sub-
stantially the creation of young people at a time when youth in America
is experimenting with, if not revising and reorganizing, the ethical
and moral basis of contemporary civilized life. The systems theme is
central in this exploration in its two salient aspects, change and relation-
ship, and its current pervasiveness in science as well as in society seems
no accident as the world presses closer together in the last third of the
Twentieth Century.

Soft ecology of the past? has identified in nature a hierarchy of organism/
environment units, each maintaining structural and functional identity
while evolving in the large and fluxing constituents in the small. Such
a conception is quintessentially an organismic one, with philosophical
overtones that have led recently to an eruption of public concern
about the fate and well-being of the planetary ‘“‘organism’ in the face
of human extravagance. This book is an enthusiastic and optimistic
statement about the fundamental adaptability of the scientific mechanism
to newly appreciated truths of existence. It documents, in ecological
science, a move away from the explanatory or cognitive criterion of
truth, a soft criterion which heuristically lends intellectual points of
leverage for seeking understanding, and toward the predictive criterion,
a hard one with the potential of leading ultimately to optimal design
and control of ecosystems.

1 Odum, H. T. (1971). “Environment, Power and Society.” Wiley (Interscience),
New York.
2 The terminology is that of Rapoport, A, (1970). Genl. Syst. Yrbk. 15, 15.
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X1V PREFACE

Systems ecology, in its infancy, is a “‘bisociation”3, a hybrid intersection
of two branches of science, biology and engineering, previously discon-
nected. Such a juxtaposition is not new to biology, recalling earlier asso-
ciations with exact sciences like chemistry and physics that proved so
potent in the microscopic concerns about organisms, and indeed, that
became the dominant biology of recent years. This new bond comes
fortuitously, or perhaps providentially, at a time of winding down of
technology in the human appreciative system, with concommitant release
from productive work of skilled engineers trained in the hard aspects of
systems. Ecologists need only open the door ever so slightly and one can
easily forecast a shotgun marriage in only a few years, and an explosive
development of the predictive potential. Indeed, it has already begun to
happen. Take, as a single example from many indications, the statement
last April by Frank C. Rieman, President of SCi (Simulation Councils,
Inc.), redirecting the purposes of that entire engineering society:

... SCi has its roots in analog computation in the aerospace
industry, from which it grew naturally into the field of hybrid
computation. This history dominates the society’s image
today. The Executive Committee feels that it is now time to
change that image. ... We would like to direct the effort of
the Society toward mathematical modeling and specific
applications, independent of computational technique, rather
than the analog/hybrid hardware orientation we now seem to
have. ... The Executive Committee is recommending that
the attention of SCij, as a society, be directed toward solution
of problems in the environmental and ecological areas.

This book, written in the language of systems scientists, should help
accelerate development of an inevitable kinship between them and
ecologists by demonstrating multifariously how ecology can be cast in
their terms.

I take particular pleasure in having the work of a number of my
students on exhibit here. Students have been the mainspring of my
development as a systems ecologist, and they continue to challenge and
question the many tentative and half-baked notions that seem to be
integral in the learning process. All my students, including those not
represented in these pages, deserve special recognition for the unique
and significant role they have played and continue to play in this chal-
lenging enterprise.

3 Kestin, J. (1970). Am. Scient. 58, 250.



PREFACE XV

There are also debts to the past and I discharge, in a small way on
the dedication page, the two of profoundest meaning to me. These two
men taught and practiced ecology that was of a kind whose kernel
should be conserved wherever this field leads from here. It was an
ecology of interrelationships that did not fail to look closely and inti-
mately at the players. It was a field ecology, a natural history ecology,
but profoundly an ecology of systems,

Throughout this project my wife, Marie, encouraged and prodded and
absorbed externalities at home. Thelma Richardson aided in various
programming and editorial chores, particularly in the final stages. And
Bill Cosgrove, my department chairman, provided an outstanding climate
for unencumbered academic pursuits at the University of Georgia. For
these assistances, I am grateful. But the book belongs to the authors,
and I would like especially to aknowledge and congratulate them all for
their roles in bringing it to fruition.

Athens, Georgia BerNARD C. PATTEN
January, 1971
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INTRODUCTION TO MODELING

A science is known by its methods, and ecology as ““ the painful elaboration of the obvious”
has for a long time followed the questionable path of seeking insights by pushing numbers
around. ‘“Quantify and clarify” has been the paradigm of much contemporary study, and
the illusion of synecology as a ‘‘hard” science has been provided by widespread use and
misuse of statistical methods, which have enormous predictive appeal if little explanatory
power.

Systems ecology does not lean heavily upon numbers untif the latter stages of an investiga-
tion. It differs from statistical ecology in its greater emphasis on the explanatory criterion
of truth as applied to holistic behavior. It accepts as an operating principle that no complex
system can be fully known in all of its interactive details, and accordingly seeks to elucidate
global properties that characterize ‘‘core” dynamics, the broad set of possibilities from
which actual behavior is generated according to environmental inputs. The current method
of systems ecology is mathematical modeling, for the dual and distinct purposes of simulation
and systems analysis. This section provides an overview of some of the methods and rationales
for ecological systems modeling in relation to these purposes.

Chapter 1 is an elementary introduction to the use of analog and digital computers for
simulation. The presentation is tutorial, designed to bring the reader with modest mathe-
matical preparation quickly to the point of being able to use modern computing machines
effectively. In a sense the treatment is selective and superficial, sparing many details, but
it offers the proven advantage of giving a fast return in satisfaction to the new student of
simulation. The methods selected, and how they are presented, are the result of a number
of years of classroom sifting and sorting. The treatment centers on compartment models
and their expression by means of ordinary differential equations.

Analog computation is covered first, as the surest way to captivate a new audience.With
a variety of graphic outputs available, and instantaneous turnaround time, there is no better
approach to developing a subjective appreciation for what holism is all about in connection
with system dynamics. At the turn of a potentiometer dial an individual can alter system
inputs, outputs, or internal connections, and observe immediately the behavioral conse-
quences, or lack of them, of his act. Fortran programming, only as much as necessary, is
introduced next and, with a presentation of numerical approximation methods, the reader
is encouraged by examples and exercises to retrace the same ground on the digital computer
that he has just covered with the analog. Thus gaining familiarity with some of the undesirable
as well as desirable features of simulation by Fortran, the instruction loop is closed by
introducing one of the modern simulation languages, $/360 CSMP. This language essentially
makes an analog computer of the digital machine, except for turnaround, and so simple is
its use that it could well have been introduced first were it not for the pedagogical ad-
vantages of the preceding analog and Fortran struggles. A reader who masters this chapter
is well on his way to effective computer use as a basis for his further progress in systems
ecology.

Chapter 2 presents a rationale for ecological model-building in the context of a particular
system of interest to the author, the pine-mor food web. Stages in model formulation are

1 .



INTRODUCTION TO MODELING 2

divided into five steps, each one being discussed in detail. A Fortran program for the resultant
model is presented, with description and analysis of its main features. Then, a distinction
between non-dynamic and dynamic state variables is made, and a procedure for eliminating
the former (represented by algebraic equations) to obtain a differential equations model
for systems analysis (as opposed to simulation) is described. At this point, the mathematics
becomes scaled up as Dr. Kowal begins a treatment of the main outlines of linear and non-
linear systems analysis. Transient and frequency response are briefly described, followed by
a consideration of stability as approached in classical dynamic analysis. The Lyapunov stability
theorems are stated, and the methods associated with them outlined and evaluated for
their ecological significance. Finally, the subject of system optimization is reviewed in terms
of the possibilities for eventual optimal control of ecosystems.

The distinction between simulation and systems analysis, implied by this book’s title,
should be clearer for the reading of these two chapters. It is further clarified in subsequent
sections, particularly in the chapters of Part lll—and Part IV (in Vol. II).
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I. Dynamic Modeling of Ecological Systems

A. STATE OF A SYSTEM

The word system is so overused in everyday language that there is a
tendency to forget what it means. A system is an assemblage of objects
united by some form of interaction or interdependence in such a manner
as to form an entirety or whole. This is essentially a dictionary definition
which can be made slightly less abstract in relation to physical or
biological systems: A system is a group of physical components connected

Numerical Methods for Solving Differential Equatxons .
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The concept of system state is intuitive. The state of a system is its
mode or condition of being. In systems science, the state usually is
given an operational definition in terms of state variables: The state of a
system is the condition of its state variables. The state variables of a
system are its component parts or observable attributes, or arbitrary
groupings of parts or attributes for particular purposes.

Thus, operationally the definition of a system is a matter of choice,
a function of the observer more than of the thing observed. Specification
of the state of a system must be in terms of arbitrarily defined state
variables.

B. CHANGE OF STATE
Let
X(t) = {xl(t)) xz(t))m’ xn(t)}

represent the state of a system with 7 state variables x,(t), 7 = 1, 2,..., n.
Each state variable is a function of time ¢ as indicated by the use of
functional notation from mathematics: x,(¢). If the variables are under-
stood to be functions of time, it is not necessary to write this argument
explicitly every time the variable is written. Thus, the state set given
above can be written equally well as

X = {x;, %y 50y Xy}
without any loss of meaning. Later we will be working with state vectors

Xy
x
X = (%,%,.,%) and x=]"2
x'n

in which the variables are arrayed in a definite order, unlike sets which
merely represent a collection of variables.

If X(¢) is the state (set) of a system at time ¢, then its state after a unit
of time has passed can be represented as X(¢ + 1). If at least one of
the 7 state variables has changed in this time interval, X(¢t) # X(¢t + 1),
the system has undergone a change of state, definable as the difference
between the old state and the new state. If x,(t) is the old state of variable i
and x4t + 1) the new state, then the variable change in the unit time
interval can be denoted by 4dx; = x(t + 1) — x,(t). More generally,
if after a time interval 4t the variable has changed from x,(2) to x,(t + 4¢),
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then the amount of change which has occurred can be expressed as
Ax; = (xft + 4t) — x4t)), and the rate of change by

Ax, _ x;(t + Aty — x,(t)

At At

Change, or lack of it, constitutes system behavior. The behavior of a
system is its mode of acting or, more operationally, a sequence of state
changes in time. The sequence may be discrete or continuous.

C. DETERMINISTIC AND STOCHASTIC SYSTEMS

Consider an abstract system with 16 possible states: 4, B,..., P (the

letters denote state-variable sets). Suppose the behavior of the system is
defined as

ABCDEFGHI JKLMNOP

v
DHDIPGPHAEENBANE

That is, if the system is in state A4 it changes to D, if in B to H, and so on.
This is a deterministic system because prior states determine succeeding
ones with unit probability. If, for example, 4 — D with a probability
p = .8, and to some other states with p = .2, the system would be
termed stochastic. Its behavior is probabilistic.

D. Static AND DYNAMIC SYSTEMS

Behavior of the above system can be represented by a “‘graph” of its
sequences of state changes. That is, if the system is in state M, then the
subsequent sequence will be M — B — HD. The graph of the entire
system behavior is shown in Fig. 1. This behavior graph shows at a

M—— 55— Ht)

A4

N A= D—=C

0 J\
K

Fic. 1

EZ Pa—G~a—F

glance that, depending on the initial state, the system will advance
through a sequence of states to one of three sets of states where it will
remain. These sets are the self-loop HD, and the cycles E— P — E — -+,
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and A—>D—~>1—>A— - The states contained in these sets,
{H, A, D, I, E, P}, are system steady states, and the remaining states,
{B,C,F, G, J,K,L, M, N, O}, are termed transient states.

Example 1

Ellison (1954) recognized distinctive vegetation states (communities)
in a phytosociological study of the high-mountain Wasatch Plateau
in Utah

X, = talus vegetation, X = grassland,

X, = ephemerals, X, = low shrubs,

X, = spruce-fir, X = forbs,

X, = tall shrubs, X, = erosion pavement community,
X, = mixed herbs, X, = rock crevice plants.

The natural behavior of this system (succession) is altered if sheep or
cattle are grazed, either separately or together. Five classes of grazing
influence were distinguished

1 = no grazing,
2 = sheep only,
3 = cattle only,
4 = sheep and cattle simultaneously,

5 = sheep and cattle alternately.

The behavior of this system can be summarized by means of a “trans-
formation matrix”

\LXI X2 XB X4 X5 X6 X7 XB X9 X10
11X, X3 X, X5 Xy X3 X Xy X, X,
2 — X, — — X, X, — — X, —
3= X — — X, — — X X, —
4| — — — — X, — X, — — —
50— X, — — — — — — X, —

Dashes indicate only that the particular grazing combination of that row
does not act on the system state in whose column a dash appears. The
behavior graph of the system is shown in Fig. 2. The bold arrows indicate
the sequence of state changes in absence of any grazing; this is the normal
successional behavior leading to the climax state X which is indicated
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3

)
X
3

X
X, <2235 l © |
S P 7

2,35 Xy e Xy Ny

g O
Xo )[ 4£?1

4

Fic. 2

by a self-loop. Note that any form of grazing disturbance causes the
system to retrogress to an earlier state in the developmental sequence.

Systems which do not change are static or constant; they are represented
by the self-loop form of steady state. All other systems are dynamic.

Both static and dynamic systems are important in biology. In fact it
gives some concept of the “state” of biological science at the present
time to indicate that animals preserved in formalin, dried herbarium
specimens, and freeze-dried tissues or cells all are examples of interesting
(useful) static systems. Science still largely studies life through death.
To study life as living will mean ultimately to develop an orientation to
dynamic behavior and change, i.e., a systems orientation. Modeling and
computer simulation will become indispensable to serious advances in
this effort.

E. MODELS OF SYSTEMS

There is some vagueness about what a model actually is, and hence,
about what kinds of information can be obtained from models. Many
biologists think of models as miniature versions of some real system
which will do everything the real system will. This is not only naive and
unrealistic, it is wrong.

Any real system can be looked at from many different points of view,
and each one gives a different perspective on the system. All the per-
spectives do not equal the real system, because it will always be possible
to find an additional one. But each view gives some information about the
system, and a collection of views permits a system concept to be formed.
This concept is a function of the observer only. The real system exists
very well without it, and irrespective of whether it is “right” or “wrong.”

All models, therefore, are abstractions. The degree of abstraction
permissible is a value judgement to be made in context of the purpose
at hand. The key to effective modeling is to strike a proper balance
between realism and abstraction. Technically, a model i1s a ‘“homo-
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morphism” (Ashby, 1956) of some real system which it represents.
That is, in modeling a many—one correspondence exists between the parts
and state transformations of the real system and those of the model,
with a corresponding sacrifice in behavior alternatives of the latter.

Example 2

Consider the two systems X = {X,, X, ,f;,f,;and Y ={Y,, Y,,
Y3 ’ Y4 ’ Y5 s 81,825 83 ’g4}' The Xl ’ X2 ’ Yl yeeey Ar€ states, andfl ’fz H
g1 »---, are influences such as the five grazing influences of Example 1.
Let the behavior of these systems be defined by the following transforma-
tion matrices

¥ | Y, Y, ¥V, ¥V, Y,

V| X X
— a|Y. Y Y, Y3 Y,
H| X X, &|Y, Y, Y3 ¥, ¥,
ol Xo X &Y, Y, Y, Y, ¥,
g | Y, Y, Y, Y3 Y5

The behavior graphs are shown in Fig. 3. There is little in either the
transformation tables or the graphs to suggest that system X could serve

ﬁ@ 5 @fué

(a)

Fic. 3. (a) System X. (b) System Y.

as a model for Y. The two systems in fact appear quite unrelated.
However, the following correspondences establish a homomorphism:

Substitute
A for Y,, Y,, or Y,,
B for Y, or Y;,

for gy or g,

for g or g,.

Q

™
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Then, define the correspondences
X, B, fieora
X, A4, e B

Under these relations, a new transformation table for system Y is

1|4 4 4 B B
114 B
Bl4a 4 4 4 4 —_
BiA A A A A orjut «|Ad B
«{4 A A B B gla 4
«|4 A4 A4 B B

This new matrix becomes, upon interchanging columns, identical to the
one given above for system X. The behavior graph is given in Fig. 4
which is identical also under the established correspondences. Thus X is
homomorphic to Y and therefore a valid model of Y.

ac‘gi AD a, B3
Fic. 4

The above example illustrates the important feature of models that
they represent only limited aspects of the behavior of real systems,
System X is only a partial representation of ¥ when Y is viewed in a
certain way. This way is established arbitrarily—by the correspondences
which define the homomorphism between the two systems. How
usefully system X represents Y depends upon the needs of the
investigator, and utility, not correctness, is the criterion by which models
should be judged.

It was stated above, and it is repeated here for emphasis, that the key
to effective modeling is the striking of an appropriate balance between
realism and abstraction for the purpose at hand. If X is too abstract
a representation of Y, then (in effect) another set of correspondences
must be sought to establish a more realistic homomorph of the real
system. It is well remembered that the only ‘“‘complete” model of a
natural system is the system itself, and to attempt exact one-to-one
duplication in another medium, e.g., a computer program, is to fail to
recognize the inherent limitations on modeling. More importantly, it
betrays a lack of understanding of basic modeling rationale, which would
seem a priori to foredoom the effort,
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Example 3

King and Paulik (1967) presented three different models of rotifer
populations.

a. Model I. This model abstracts the life cycle of monogonant
rotifers (Class Monogononta: females with paired ovaries, mastax
specialized for grinding plankton, detritus, etc. (i.e., ramate), and no
secreted tube or lorica), which comprise 909, of known species. The
state variables are different stages of the life cycle

X, = immature amictic females (2n, diploid),
X, = mature amictic females (2n),

X, = amictic eggs (2n),

X, = mictic females (2n),

X, = mictic eggs (n, haploid),

Xy = resting eggs (2n),

X, = males (n).

The behavior graph is shown in Fig. 5. Both parthenogenetic and
sexual cycles occur. In the first case mature amictic females (X,) lay

/g s’ < X5 N X4
P ¢ N
-7 S Diploid

~—

Hapioid

Fic. 5. Model I.

amictic eggs (X;) which hatch into immature amictic females (X,).
In the bisexual mode the amictic eggs (X;) hatch to produce mictic
females (X,). Presumably the environment regulates the production of
amictic versus mictic females, but whether the influence is exerted on X ,
X,, or X, is not, apparently, known. The mictic female meiotically
produces haploid mictic eggs (X;) that hatch into males (X;) if
unfertilized. If fertilized, the mictic eggs become resting eggs (Xj), and
after some time delay these hatch into immature amictic females (Xj).
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b. Model II. This model is a different view of the same system.
The state variables are age categories of animals and eggs

Y; = population density of rotifers in ith age category (i = 1, 2,..., 5),
Y; = density of eggs in (j — 5)th age category (j = 6, 7,..., 9).

The behavior graph is shown in Fig. 6a. The sequence of states
Y, — Y, > Yy — Y,serves to lag an egg for the period of time between
laying and hatching.

e

(a)
Fic. 6. (a) Model IL.

c. Model ITI. A third concept of the rotifer system is given by the
following model. Instead of dividing the life-span of the animal into days,
it is divided into reproductive periods. The state variables are repro-
ductive periods

Z, = immature rotifers,

Z, = mature rotifers,

Z, = postreproductive animals,

Z, = eggs.
This model is more practical for field studies because of difficulties in
distinguishing X, and X,,and X;, X; and X;in model I, and of aging
animals and eggs in model II. The behavior graph is given in Fig. 6b.

LTI Rotifers = )X, X X Kokt 0 K06
/4——__-____—__;——__-_7_. ______________
tz Eges= 14, X Xt = 1%L %R
(b}

F1c. 6. (b) Model III.

These three models each give a different concept of rotifer popu-
lations and, because of the way they are structured, have different data
requirements for implementation and yield different forms of information
about rotifers. The animals themselves never differ, only the models.
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F. PoruLaTiON GROWTH: EXPONENTIAL

None of the models of Example 3 is yet complete enough to permit
quantitative study of its dynamic behavior. Working toward this end,
consider the traditional models of population growth.

Let density N(f) of a plant or animal population be the only charac-
teristic of that system of interest. The state of the system is then defined
by the single state variable N(¢), a function of time. If the birth and
death rates, b and d, are constant (do not change as a function of the
argument time), then the rate of change of population size dN/dt is
given by the difference between population gains and losses

dN/dt = bN — dN = (b — d)N = 7N.

The difference between birth and death rate constants r is termed the
“biotic potential,” “specific growth rate,” or “intrinsic rate of natural
increase’” of the population.

This is a differential equation because it contains a derivative of the
state variable. Dynamic systems frequently are modeled by means of
differential equations. An analytical solution of a differential equation
is an algebraic equation, free of derivatives of the dependent (state)
variable with respect to the independent variable(s), which relates values
of the independent variable to those of the dependent variable. With an
analytical solution, it is possible to substitute values of the independent
variable and calculate corresponding values of the state variable.

Example 4

The analytical solution of the population growth equation,

dN(t)/dt = rN(t),
1S
N(t) = N(0) er.

Knowing the initial population density N(0) the density at any time
t = 0 can be computed.

In analog computation, a program for obtaining the solution is shown
in Fig. 7a. In digital computation, a Fortran segment for obtaining the
same solution is

REAL N
10 DN = DT * (R * N)
N = N 4 DN

Go 1o 10
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q N(t)

<50

r

(a)

Fic. 7. (a) Analog computer program for solving population growth equation

An analytical solution is obtained in the following manner:

(1) Begin with the differential equation

dN/dt = rN.
(2) Separate the variables
dN|N = r dt.

Then N appears on the left-hand side and everything else on the right.
(3) Integrate both sides

de/N:frdt
InN 4 C, =rt+C,.

Since differentiation and integration are inverse operations, the derivative

is integrated away. Let C, and C, be arbitrary constants of integration;
they can be combined into a single constant, C = C, — C,

InN =rt 4 C.
(4) Exponentiate both sides

elDN — prt4C
N = et - € = C'e/rt’
where C' = ¢€.

(5) Evaluate C"att = 0

N(0) = C'e® = C".
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(6) Substituting
N(t) = N(0) e,
the desired result.
A graph of this solution for three possible cases is shown in Fig. 7b.

(1) If the birth rate exceeds the death rate (» > 0), the population grows
exponentially at a rate determined by the value of ». The system never

nit) r>0
e 720
r<0

(0,0) 7

{(b)

Fic. 7. (b) Three cases of exponential growth equation solutions.

has a steady state when r > 0 since the population continues to grow as
t gets larger. (2) If birth and death rates are equal (» = 0), N(t) = N(0)
always, and the population is in perpetual equilibrium, with a behavior
graph which is a self-loop. (3) Finally, if the death rate is greater (» < 0),
then the population declines exponentially to zero size as £ — <0 in the
limit. The steady state of N(¢#) = 0 is never actually reached; it is said
to be approached asymptotically.

The remainder of this chapter will not be concerned with analytical
solutions of differential equations, but rather with development of
programs, such as the two illustrated in the above example, which
permit obtaining solutions by analog and digital computers.

G. PopuLaTION GROWTH: LOGISTIC

Populations in nature do not, of course, grow without bound. As
populations get large, they become either self-inhibited or environment-
limited—internally or externally controlled. Early stages of growth may
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be exponential, but increased density leads to greater and greater
departure from the exponential growth form, producing the well-known
s-shaped curve of growth shown in Fig. 8. This sigmoid pattern is
accounted for by, among others, the logistic model, which can be

Nt Exponential Growth

Logistic Growth

(00 ’
Fic. 8

formulated in terms of either self-inhibition by the population, or in
terms of environmental limitation.
The first form is

dNjdt = (r — cN)N,

which displays the growth rate (the terms in parentheses) as a decreasing
function of population size. The constant ¢ represents reduction of the
growth rate per unit of N. The product ¢N is the total reduction, often
termed “environmental resistance.” The logistic differential equation is
nonlinear because the state variable N appears raised to a power higher
than one. The exponential equation was linear.

The environmental-resistance aspect of this theory is brought out
explicity by defining a parameter K, the maximum supportable popula-
tion density in a given environment. In Fig. 8, K is the asymptote of the
sigmoid curve and is termed the ‘““carrying capacity’ of the environment.
Letting ¢ = /K, the logistic equation can be rewritten in the following
forms

G~ = (RN = (1) =¥ (),
These forms display the product rN from the exponential model dimin-
ished by the expressions within parentheses.

Note in the figure that logistic population behavior involves only
dynamic states, technically, since the steady state N = K is approached
only in the limit as £ — oo.
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II. Elements of Analog Computation

A. INTRODUCTION

Analog computers essentially are single purpose devices: they solve
differential equations. Consequently, they can be used to simulate and
analyze the behavior of models which are expressed as systems of
differential equations. There is only one independent variable available—
time—and one dependent variable—voltage. Different computers have
different reference voltages, usually 10 V or 100 V. This chapter will
assume a 10-V machine, so that all the behavior of a simulated system
must take place within the voltage range —10 <{ E < 10. For ecological
systems this becomes in practice 0 < E < 10 since negative quantities
generally are inappropriate.

The computer consists of a set of basic components which can be
interconnected so that they are governed by the same differential
equations as those which represent the model of the real system. These
components are capable of (1) summation, (2) integration, (3) multi-
plication, and (4) arbitrary function generation.

B. OPERATIONAL AMPLIFIERS

High gain, operational amplifiers are the basic functional units in
modern, electronic analog computers. A linear amplifier is a device which
augments a signal by a factor u termed the open-loop gain. Gains can be of
magnitudes 10® or higher. A common reference level or ground (0-25 V)
exists between the amplifier input and output. All voltages are measured
relative to this reference level (see Fig. 9). The symbol for a high-gain
linear amplifier is, as shown, a triangle with a curved back representing
the input side. Note that a characteristic of the amplifier is that on output
it reverses the polarity of the input signal.

Input Terminal

} fp-\ o Output Terminal
L \/ £, -pky
ST

L

Fic. 9

C. Crosep-Loopr GAIN

If input and feedback impedances, Z; and Z; , respectively, are intro-
duced into the circuit of a high-gain amplifier, the configuration shown
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in Fig. 10 results. Here Eg is the voltage at the amplifier grid; I; is the
input current, I; the feedback current, and I, the grid current, I; 4 I; .

Fundamental Gain Theorem

The gain of an amplifier containing an input and a feedback impedance

is approximately equal to the ratio of the feedback impedance to the
input impedance.

Proof:
(1) The open-loop gain is E, = —ukE, .

(2) From Kirchhoff’s first law (the algebraic sum of currents
flowing into any point in a circuit is zero) the grid current is zero

Ig=1I +1I; = 0.
(3) From Ohm’s law,

_ Ei—E

_ Ey—Eq
I —Z and L = ——""*

Zy
which, substituted into the previous result, gives

Ey — E,

Eo— Eg
7

Zs

Ei | E 1 1y
ztz EBlatz) o

(4) Substitute E, = (1/p)E,

El Eo 1 1 1 -



1. ECOLOGY SIMULATION PRIMER 19

(5) Since p (open-loop gain) is very large, the third term virtually
vanishes, leaving

the desired result.

For multiple inputs it can be shown in the same manner that

. (L Z L L
E, = (ZEl—f—“Z—z—Ez-i— +Z—nE")

These results lead to the definition of the closed-loop gains of a linear
amplifier as the ratios of the feedback impedance to the input impedance
associated with each input voltage. Note that the output voltage of an
amplifier with input and feedback impedances is dependent only upon
the closed-loop gains, and not on the intrinsic open-loop gain of the
amplifier itself. The open-loop gain is so large that small input voltages
(a few microvolts) could produce several volts of output. Also electronic
noise could distort considerably the output signal. Noise-free, undistorted
gains of 1 to 20 are achieved by introducing the negative feedback
loop, and this feedback essentially trades quantity of gain for quality
(accuracy and stability). The term feedback signifies that a portion of
the ouput voltage is returned to the input. It is “negative’” because the
returned voltage is opposite in polarity to the input voltage.

D. THE SUMMING AMPLIFIER

When both input and feedback impedances are resistances R, the
resulting device—a summer—is capable of adding voltages. A general
schematic for a summing amplifier is given in Fig. 11. In analog computer
programs, this same unit is represented by the symbol shown in Fig. 12,
where the G’s are closed-loop gains. The output voltage is thus

E, = —(G,E, + G,E, + - + G,E,).
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If there is a single input signal with a gain of one, the unit is called
an tnverter because its only function is to change polarity: E, = —E;.
The symbol for an inverter is given in Fig. 13a.
o] .

L~

(a)

Fic. 13. (a) Inverter.

10K

AN
, 10K

N (™ | g
£, 100K A

—AA—

(b)

Fic. 13. (b)
Exercise 1

(1) The circuit in Fig. 13b shows a high gain amplifier with two

input resistances R, and R, of 10,000 Q and 100,000 Q, and a feedback
resistance R, of 10,000 Q.

(a) Draw an analog computer symbol to represent this circuit.
(b) Write an expression for the output voltage.
(i)

(ii)
&t |

e
£, £_10 | [ o.4>_zs'o
l/ 7z —

Fic. 14
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(2) (@) Draw schematic circuits with appropriate combinations of
resistances to represent the summers given in Fig. 14,

(b) Write expressions for the output voltages in each case.

E. THE INTEGRATING AMPLIFIER

When the feedback impedance is a capacitance C, and the input
impedance still a resistance, the amplifier unit becomes an integrator
The configuration in Fig. 15 1s represented by the symbol shown in
Fig. 16, where E, — E(0) — [o (G,E; + G,E, + -+ + G,E,) dt. Note that

C
1
4

1
L

F1c. 15
£ (0)
-
& 6‘2 £,
£, n
F1c. 16

the unit sums as well as integrates. The term E(0) represents initial
condition voltage on the integrator at t = 0. Each of the gains G, is
given by the relation

G, = 1/R,C

because Z; = 1/C.

Considering the single input case, we have as in the proof of the
fundamental gain theorem

I=5L+1=0

El' _
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The capacitance is C = Q/E, coulombs per volt, or farads, so that
0 = CE, . The feedback current is

dE,
dt -’

40 dpy
=" = () =C

Therefore, the expression for the grid current becomes

E, dE, _
R; tC da 0.
Solving for E,
dE, 1
i ~  RC E:
1

fE(O) dEo = _f(tsz—'CEi at

£l
Eo — E(0) = —foﬁEidt

and finally

E fl E. d
E, — (0)—f0Rl—C L dt.
In the case of multiple inputs, this expression becomes

EO:E(O)—ff

0i=1

1
RO E, dt.

Exercise 2

(1) A microfarad (uf) is 10% farads (coulombs per volt), a kilohm
(kQ) is 10% Q, and a megohm (MQ) is 10¢ Q. What integrator gains are
represented by the following RC' combinations ?

(2) =1 MQ () R=1 kQ
C = 10 uf C=1 uf

() R=10kQ  (d) R =100kQ
C=1 uf C = 10 uf
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10Lf
£ o—A— L
100K
L20—AN— Lo
100K
£30—AMA—
Fic. 17
-X(0) +X(0)
_aX 4 ax(t) 1 _
27 X(t) o + 7 X0t
Fic. 18

(2) Draw an analog computer symbol to represent the circuit in
Fig. 17, and write an expression for the output voltage.

(3) Because integration is the inverse operation of differentiation,
integrators can be used to obtain state variables from their derivatives
(see Fig. 18). In fact, this is the most common usage of the integrator
in analog computation and the basis for solving differential equations.
Draw appropriate integrators or combinations of integrators to solve the
following differential equations:

(a) dx/dt =y + 10z,

(b) %= —0.1x + 10y + 3,

() 2 =10x + y 4 100z,

(d) @+ 10w = u + 10v 4 0.1w.

(The dot notation refers to time derivatives: ¥ = dx/dt, ¥ = d%x/dt? etc.)

F. POTENTIOMETERS

The potentiometer is a variable resistance by means of which it is
possible to multiply voltages or voltage differences by constants £ which
lie in the interval 0 <{ & <{ 1. A schematic for grounded ‘“‘pots” is
shown in Fig. 19. This configuration permits multiplication of a voltage
by a constant and its corresponding analog computer symbol is given in
Fig. 20(a).

Potentiometers also can be used to divide voltages by constants.
Consider the configuration of a high-gain amplifier shown in Fig. 20b.
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iper Arm
k=0 ._L
F1c. 19
/‘?f K
Lt R,
/ U / \/
(a) (b)

Fic. 20. (a) Multiplication of voltage by a constant. (b) Division of voltage by a
constant.

The output voltage from the pot is kE, . Summing the input and feedback
currents at the grid, we obtain as before

I + It :Ig =0
E; kE,

o j—
R TR
and solving for E
Rf El
Eo = — (Ri) k
For multiple inputs,
&R\ E
Bo= =3 (7)) %

The analog computer symbol for the above circuit is shown in Fig. 21.

R/ R,

g ‘
A >—T"
)

o/

' 1

Fic. 21
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Exercise 3

(1) Write expressions for the output voltages E, of each of the
following circuits:

(a) Fig. 22 (g) Fig. 28
(b) Fig. 23 (h) Fig. 29
(c) Fig. 24 (i) Fig. 30
(d) Fig. 25 (j) Fig. 31
(¢) Fig. 26 (k) Fig. 32
(f) Fig. 27 (1) Fig. 33
_5_17
0.43 X
‘O__l1 > 10
X ( )
% =70
Fic. 22 Fic. 23
2 10 04 10
-5x —O— ?g"—'om—b
3000y —o—‘—> 100 _o__ig>
oX} a/100
Fic. 24 Fic. 25
02 X 10
- 10, 10
5x 5 O54] > y 1
y =0
-257 —(O—
04 3
F1c. 26 Fic. 27
b
X ‘? -50x 1
y 1 50}/ 1
106 5/a
Fic. 28 Fic. 29
/5 2 10
a _
—50x—O—J—: 40; 1(1)
50y —Q— 6
a/5

Fi1c. 30
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(2) Draw simplest possible analog computer programs to solve or
represent the following equations for the state variable x(t), given +-x,
+7v, and + =z as available voltages.

(a) x =y + 10z, (d) x=az— by,
(b) %= —(y + 10z 4 ax), () %+ax =0,
(c) % =ay — bz — ex, (fy #+ax=0.

G. THE MULTIPLIER

Multipliers are components of the analog computer which permit
multiplication (or division) of two variable voltages. This is a nonlinear
operation and, consequently, the multiplier makes it possible for analog
computers to solve nonlinear differential equations.

The multiplier circuitry is designed to implement the identity

xy = H(x + 5 — (x — )]
For this reason these devices frequently are referred to as “quarter-
square’”’ multipliers.

The symbol for a multiplier is given in Fig. 34, or more succinctly
in Fig. 35. Note that although it is desired to obtain the product

1
+x:_ £, E.
Eo_"_ﬁ
+ y:—
+&,

&
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e
+£,

N\ EyEp
‘></ £o* =15

Fic. 35

+E,-E,, —E, - E,/10 is actually generated. This is due to the internal
circuitry of the multiplier and the usual sign-inverting property of the
amplifier. The sign inversion can be avoided by interchanging the +X
and — Y inputs, or the +Y and —Y inputs. The lost gain of 10 must be
picked up elsewhere in the circuit.

The configuration for division, E,/E,, is given in Fig. 36, and the
simplified symbol is shown in Fig. 37. The additional gain of 10 which
is picked up must be reduced at some other point in the circuit.

-l x |+
+E 0 >< S 1 D | £,=10 £/,
—10¢,

+H V(- £,
+£, 1
Fic. 36
+ £,
! . Es=10£, /&,
+£, .
Fic. 37

H. OTHER COMPONENTS

Diode function generators (DFG’s) are used to generate arbitrary
functions which are approximated by a number of straight line segments.
The segments may be for fixed or variable time intervals, depending
upon the particular unit which is being used. Some DFG’s in common
use are X%, LOG, SIN—COS, and VDFG (variable). The vDFG is particularly
useful in making it possible to approximate experimental data of any
curve form for use in system simulation without writing equations to
describe the curves.

Function switches are single-pole, double-throw, mechanical binary
switches which permit different program segments to be switched in
or out manually. Their symbol is given in Fig. 38.
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Comparators are program-actuated switches which operate two sets of
contacts, permitting computed problem voltages to determine connec-
tions or conditions applying in a patched circuit. As the name implies,
the comparator accepts two input voltages, compares their sum to zero,
and positions two switches up or down depending on whether the sum is
greater than or less than zero.

Altogether, these components make it possible to obtain exact
solutions to differential equations, and to simulate with considerable
flexibility the time behavior of dynamic systems.

Exercise 4

With reference voltages of +10 and —10 available, write analog
computer programs to solve the following differential equations:

1) “ramp” function % = &,
2) sine-cosine generator ¥ = —w?x,
3) exponential population growth N = rN,

(
(
(
(4) logistic population growth N = rN(1 — N/K).

III. Population and Ecosystem Models

A. CouPLED SYSTEMS

In Section I.A a system was defined to consist of a group of components
interconnected in such a way as to form a conceptual or functional entity.
We wish now to extend this system concept further. A control system is an
arrangement of physical components connected or related in such a
manner as to command, direct, or regulate itself or another system. By
this definition, populations which grow either exponentially or logistically
are control systems: Their current states are determined by previous
states, and they are examples of state-determined systems.

State-determinancy is the loosest possible concept of control since few
systems lack this quality. To develop a stronger meaning, concepts of
coupling and feedback are needed. An input to a system is a stimulus,
excitation or force (a signal) applied from an external energy or informa-
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tion source. A system output, on the other hand, is the response or
behavior which results from applying an input. Two systems are said
to be coupled, joined, or connected, etc. in interaction, if communication
(energy, matter, or “information” transfer) can take place such that one
can influence the other.

Coupling of systems, subsystems, or system components means
connecting an output from one so that it becomes an input to another

B. EcorocicaL CouprLING: PoruLATION COMPETITION

The Lotka—Volterra theory of competitive interaction between two
logistic populations is a good example of coupled ecological systems.
The state set is {N{(f), Ny(t)}, the population sizes as functions of time.
The “rules” of coupling are expressed as interaction coefficients, « and 8,
in the system equations

dN,/dt = r\N{[1 — (1/K;) Ny — (¢/K}) N,]

dN,jdt = r,Ny[1 — (1/K,) Ny — (B/K,) Ny,

where (1/K,) and (1/K,) are self-inhibition coeflicients, as in the logistic
formula

dNJdt = rN[1 — (1/K) N1.

Since (1/K]) is the self-inhibition of population 1 by one individual of
itself, total self-inhibition is the second term in brackets, (1/K;)N, .
Similarly, (1/K,) is the unit self-inhibition of population 2, and (1/K,)N,
the total. Also, («/K]) is the inhibition of species 1 by one individual of
species 2, and total inhibition by the competitor is (a/K;)N,y; (B/K,) 1s
the unit inhibition of population 2 by I, with (8/K,)N; the total inhibition.
Since both total self-inhibition and total competitive inhibition depend
on the population sizes, these are said to be density-dependent attributes
of the populations; in systems terms they are state-determined attributes.

It may not be obvious from the Lotka-Volterra equations that the
only manner of coupling between the two populations is through the
competition coefficients « and B. However, this feature of the system
shows to good advantage in the analog computer program illustrated
in Fig. 39. The upper part of the diagram represents the equation for
species 1 and the lower part that for species 2. Note that the only
connections between upper and lower halves are through potentiometers
representing («/K,) and (8/K,).
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C. FEEDBACK

Control systems are classified into two general categories, open-loop
and closed-loop. The distinction is determined by the mechanism of
control action—how the system is activated to produce an output. An
open-loop control system is one in which the control action is independent
of the output. A closed-loop control system is one in which the control
action is dependent on the output. Closed-loop control systems more
commonly are referred to as feedback control systems. Feedback is that
property of a closed-loop system which permits the output representing
some controlled system variable to regulate specific inputs. Feedback can
be defined as the coupling of system output to input in such a way that
the input is related to and controlled by the output. Feedback is positive
if increased output results in increased input, as in the case of expo-
nentially growing populations. Control is achieved through negative
Jfeedback, in which output and input are inversely related. The logistic
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population model incorporates both positive and negative feedback,
respectively, in the two components of population change rate, rN

and —N?/K.
D. BLock DiaGRAMS

A block diagram is a pictorial way of representing cause-and-effect
relations between inputs and outputs of a physical system. The simplest
form of block diagram is a single ‘“‘block” with one input and one output
as in Fig. 40. The interior of the rectangle usually represents either (1)
some system component (state variable) or (2) some mathematical
operation (e.g., transfer function) to be performed on the input to yield
the output (see Fig. 41). Convention (1) will be used in this chapter
exclusively.

It was noted in Section I.LE that definition of a system is arbitrary.
Once it is made, however, what is part of the system and what is external
to it becomes fixed. Input signals to the system which originate in energy
or information sources outside the system will be termed forcings. Such
systems are forced dynamic systems, in contrast to unforced, as in Figs.

Block
tnput Outeut
Fic. 40
a dz
— Xi(’ } F———— Z——> a7 F——y = dT
(a) (b)

Fic. 41. (a) System component. (b) Mathematical operator.
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Fic. 42. Systems of definition: (a) forced, (b) unforced.
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42a and b, respectively. In these diagrams, x represents the state vector,
the notation x,(x, t) signifies that state variable 7 may be a function both
of the system state and of time, and F,(t) signifies a forcing on the jth
block, a function of time only.

E. SignaL-FLow GRAPHS

A signal-flow graph is another pictorial device used to display transmis-
sion of signals through a system. Consider the algebraic equation

xX; = A”xl .

The corresponding signal-flow graph is given in Fig. 43. The variables
x; and x; are represented by a small dot called a node, and the transmission

Node Ais Node
X; Branch X
Fic. 43

(signal-flow) function A, is depicted by a line with an arrow, called a
branch or arc. In representing systems by signal-flow graphs, every
state variable is designated by a node, and every transmission function
by a branch. Branches are always unidirectional, the arrow signifying the
direction of signal flow. Outputting nodes are source or donor nodes
while nodes which receive inputs are called terminal or receptor nodes.
A path is an uninterrupted, unidirectional sequence of branches along
which no node is passed more than once.

Signal-flow graphs and block diagrams are used extensively in control
theory and operations research, with many mathematically sophisticated
variations. Signal-flow graphs are formal models of systems, with
well-developed algebras and other mathematical theories (such as
transfer function and network flow theories) which make them powerful
tools when implemented by computers. In biology and ecology, the
particular kind of graphic system representation most used has been the
compartment model. This form of model incorporates aspects of both
block diagrams and signal-flow graphs.

F. COMPARTMENT MODELS

In compartment models, state variables of a system are denoted by
blocks, and signal flows between these ‘‘compartments” by unidirectional
branches. There 1s little difference between this and a block diagram.



1. ECOLOGY SIMULATION PRIMER 33

The real difference lies in the mathematical system description implied by
the diagram: In compartment models relations between the state
variables are expressed as a system of differential equations. For example,
a compartment model of the forced system block-diagrammed in
Section IIL.D is given in Fig. 44. The system equations are based on an

J

Foalt)

%

™
oyl
()"‘

om| X

n ~a

N =

~

Fic. 44

income-and-loss rationale dictated by the conservation principle. All
energy or substance transmitted must be accounted for

dxy[dt = Fyp — Fy; — Fyy
dxyfdt = Fyy + Fgy — Fyy — Fyy
dxgfdt = Fog + Fy3 + Fyy — Fyy — Fy, .

The system behavior is obtained by solving the equations simultaneously.
Note how intrasystem coupling is represented by shared variables, i.e.,
F,, in the first and second equations, Fi; in the first and third, and F,,
and Fy, in the second and third.

G. DrriNITION OF FLows IN COMPARTMENT MODELS

The compartment model is particularly well suited to ecology because
abstract “‘signal” flows readily can be converted to energy or material
transfers between compartments. These are, in principle at least,
measurable, although with differing degrees of difficulty for different
ecological systems. Having quantified a flow empirically, it then must be
given a mathematical representation to be of use in a compartment
model.

An elementary unit of a compartmentalized ecological system is
shown in Fig. 45, where F;(x, t) is the flux of energy or matter from
compartment 7 to j, and x(x, t) and x,(x, t) are concentrations in the
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donor and recipient compartments, respectively. If the concentration
units are, e.g., kilocalories per square meter or milligrams per liter,
then corresponding flux units might be, e.g., kilocalories per square
meter per year and milligrams per liter per day.

The flux or flow over a branch in a compartment model is the amount of
energy or material delivered to the terminal compartment in a unit
interval of time. This usage will be in contradistinction to the rate of flow.
The rate of transfer, or flow rate, is the fractional quantity of some
function of source or terminal materials delivered over a branch per
unit time. The distinction between flux and rate is made best in terms of
units. If a flux F; i1s in kilocalories per square meter per year, then the
corresponding rate of flow ¢;; is expressed per year. Similarly, if Fy;
is in milligrams per liter per day, then ¢;; is given per day.

A hierarchy of useful mathematical expressions for flows in ecological
compartment models and their corresponding rationales is:

(1) F;; = k (constant). Flow from compartment 7 to j does not change
with time or system state.

(2) F;; = ¢x; . Flow to j is proportional to the content of 7. The
donor compartment only is controlling.

(3) F,; = ¢,%; . Flow is regulated by the receiving compartment only,
as in the case of herbivores or detritivores when plants (detritus) are in
abundant supply.

These first three functions represent linear flows; those which follow
denote nonlinear flows:

(4). F,; = ¢yxx; . Flow 1s regulated jointly by both source and
terminal compartments.

(5) Fy; = ¢yx(1 — ay;x;). The flow has two components: a positive,
linear one regulated by the donor compartment and a negative, nonlinear
one controlled by interaction of both compartments.

(6) Fyj = ¢y(1 — oyx;). A positive, linear component is controlled
by the terminal compartment and a negative, nonlinear one by inter-
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compartmental interaction. The constant o;; corresponds here and in the
above flow to the coupling coeflicients, («/K;) and (8/K,), in the Lotka—
Volterra model of population competition (Section III.B).

(7) Fy = ¢yx;i(1 — Byx;). The flow is regulated by a positive feedback,
linear term and a negative feedback, nonlinear term. This latter is the
same “‘self-inhibition” rationale which appears in the logistic model of
population growth (Section I.G) and also in the Lotka—Volterra equations.

(8) Fyj = dyxi(1 — ayyx; — Byyx;). This flow corresponds to the full
Lotka—Volterra system, with two negative feedback loops to represent
both interactive (—ay;;x;x;) and intrinsic (—f;;x;%) flow control by the
terminal compartment.

These flow expressions comprise a significant, though by no means
exhaustive, set for description of energy and material transmissions in
compartment models of ecological systems.

Example 5

In Section I.E three models of rotifer populations were described as
examples of different ways to view a given real system (Example 3).
A compartmental representation of model I viewed as an energy-
transferring system is shown in Fig. 46. Here a number of forcings
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F,; have been introduced to all the nonegg compartments to allow energy
to enter the system (e.g., by feeding). Acceptable units for the state
variables would be, e.g., numbers per liter or milligrams per liter, and
the corresponding fluxes might be in numbers per liter per day or
milligrams per liter per day. In every case, an appropriate transmission
function would be the linear flow Fy; = ¢;;x; because creation of units
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in the terminal compartments depends only on concentrations of units
in donor compartments.

The foregoing model is not very complete because it ignores the
conservation law: production of amictic eggs (x;) by mature amictic
females (x,), for example, is not the only source of (energy) loss from x, .
The model can be improved by adding transmission branches to represent
predation, natural mortality, and other losses (see Fig. 47). In this
completed diagram, all the nonforcing flows are defined mathematically.
The rate notations aid in recalling the different biological processes:
A is the losses due to mortality, predation, emigration, etc.; 8 is the
developmental maturation; ¢ is the egg production; ¢ is the fertilization.
The differential equations for this system are

&y = Fy 4 0525 + 8g1xg — S19% — Aoy ,

&y = Fyg + 819 — €gg%y — A%y,

X3
X4
X5

Xg

= €gu¥y — ByXy — B4y — Agg¥y ,

= Foy + Ba4%3 — €q5%y — Mgy s

= €458 T Ppg¥y

— 056305 — B5o¥5 — AgXs s

= O5e%5 — dg1%s — AgoXe »

%y = Fog 4 85585 — hagits — Aggy -

An analog computer program to solve these equations is shown in Fig. 48.
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Exercise 5

For the model II and III rotifer systems of Example 3:
(1) Prepare compartment models in block diagram form.
(2) Write system differential equations.

(3) Prepare analog computer programs that represent each of the
systems.

H. A MobEeL Foop CHAIN: SILVER SPRINGS, FLORIDA

Odum (1957) abstracted the details of energy flow in the Silver
Springs ecosystem into Fig. 49. The data obtained in this study are
sufficient to implement compartment models for the system.

The state variables, in kilocalories per square meter, are

x,(X, t) = producers, x4(X, t) = top carnivores,

%y(X, t) = herbivores, x5(X, t) = decomposers.

x4(X, t) = carnivores,
The caloric contents of these compartments (annual averages) can be
taken as initial conditions

x,(x, 0) = 3421.26, x4(x,0) = 8.87,
xy(x, 0) = 213.44, x25(x, 0) = 24.38.
x(x,0) = 62.06,
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F1c. 49. Values are given in kilocalories per square meter per year. Reproduced
from H. T. Odum (1957). Ecol. Mono. 21, 61. Reprinted by permission of Duke University
Press, Durham, North Carolina.

Two of the state variables are forced—primary producers by photo-
synthesis, and herbivores by bread added to the spring daily to make
animals conspicuous for tourists. The values of these inputs, in kilo-
calories per square meter per year, are

Fult) = 20,810  and  Fyt) = 486.

The measured values of energy fluxes within the system, also in kilo-
calories per square meter per year are shown in Table I. A com-
partmental diagram of this system is shown in Fig. 50.

TABLE 1
SiLVER SPRINGS NONFORCING ENERGY FrLows

Feeding Mortality Respiration Export
F, = 2874 Fyy = 3455 Fo = 11974 F,, = 2498
Fyy = 382 Fys = 1095 Fyy = 1891
F, = 21 Fgo = 46 Fy = 317

F45 - 6 F40 = 13

Fy = 4598
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Two models will be examined for purposes of illustration:(1) a linear
system in which all flows are functions of the source compartment only
(Fs; = ¢4%;), and (2) a nonlinear system in which all nonfeeding flows
are linear as in the first model, but feeding transfers are functions of
both donor and recipient compartments (F;; = ¢;xx;). Using 7 to
represent trophic level feeding rates, p for respiration, p for natural
mortality, and A for losses downstream, system equations for the first
model are

&y = Fyy — Tia% — past — Awg® — Pro¥a
By = Fop + T19%; — Tog¥p — pasXs — Pao¥a
Xy = Tog¥y — TgeXg — Mgs¥3 — Pgo¥s »

Xy = TgqX3 — HgsXq — Pao¥s >

Xy = pys¥y + pesXa + Mas¥s T+ Mas¥y — PsoXs -
The nonlinear system equations are

%y = Foy — 719%9%; — pyg¥ — App¥y — P1o¥y

%y = Fop - T1pXgiy — ToaXgXs — HosXy — Pao¥a

By = TopXgXs — T34X4X3 — [gs¥3 — PgoXs

%y == TyaXgXy — HasXy — Pao¥s

Xy = [ys¥y + Mos®s + Pgs¥3 - Mas¥y — P5oXs -

I. SorLutioN COMPONENTS OF DIFFERENTIAL EQUATIONS

In Section 1.D transient and steady-state system behavior were
distinguished, and in Section III.D the distinction between forced and
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unforced behavior was introduced. These classes of system response have
their nominal counterparts in the solution components of differential
equations.

The solution of a differential equation can be divided into two parts,
a free response and a forced response. The sum of these two responses
constitues the total response or total solution. The free or unforced response
of a differential equation is the solution when the input forcing is
identically zero. Differential equations which are unforced are termed
homogeneous differential equations. The forced response of a differential
equation is the solution when the initial conditions are identically zero.

The total solution can also be partitioned into transient and steady
state solutions. The transient response of a differential equation is that
part of the total response which approaches zero as time approaches
infinity. The steady-state response is that part of the total solution which
does not approach zero as time approaches infinity.

IV. Analog Computer Programming

A. VOLTAGE SCALING

In Section II.A it was stated that only two variables are available on
the analog computer: an independent variable, time, and a dependent
variable, voltage. It was indicated also that all behavior of systems to be
simulated by an analog computer must be compressed into the voltage
range (e.g., 0-10 V) of the particular machine being used.

For the Silver Springs system (Section III.H), producers contain
almost 4 x 10 kcal m~2 of energy while top carnivores have less than
1 x 10 If 4 x 10° were equated to 10 V, then the top carnivores would
be represented only by around .0025 V and their behavior would not be
discernible. T'o avoid this problem, each state variable is scaled inde-
pendently so that its behavior can be observed conveniently within the
full voltage range available. This is done through a process termed
voltage scaling by equating an estimated maximum value of each
compartment to 10 V, determining voltage scale factors, doing the same
for forcing functions, and then rewriting the system equations in terms of
voltage-scaled computer variables and forcings.

Example 6

Determine voltage-scaled system equations for the Silver Springs
linear model.
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(1) Set up tables to determine computer variables and computer
forcings as shown in Table II.

TABLE 11

PROCEDURE FOR DETERMINING VOLTAGE-SCALED COMPUTER VARIABLES AND FORCINGS

State Estimated Computer
variables, x; maxima Scale factors, o variables, [«;x,]
(kcal m—2) (kcal m—2) (V/(kcal m~2)) )
xy 5 x 10® 10/(5 x 10%) = 2 x 10~ [2 x 1072 &)
Xy 5 x 102 10/(5 x 10%) = 2 x 1072 [2 x 1072 x,)
X3 2 x 107 10/(2 x 10%) = 5 x 1072 [5 x 1072 x3)
X, 2 x 10! 10/(2 x 10Y) = 5 x 10! [5 x 107! x,)
X5 5 x 10! 10/(5 x 10Y) = 2 x 10 [2 x 107! x4)
Forcing Estimated Computer
functions, Fy; maxima Scale factors, o; forcings, [o;F;]
(kcalm=2yr~!) (kcal m=%yr1) (V yr~Y/(kcal m=2 yr~1)) (Vyr )

Fo 2.5 x 10t
Fy, 5 x 102

10/(2.5 x 10% = 4 x 104
10/(5 x 10%) = 2 x 10

[4 x 107* Fy)
[2 x 1072 Fy,)

(2) Rewrite the system equations in terms of the voltage-scaled
computer variables and forcings. This means converting equations in
which every term on the left- and right-hand sides has units of kilo-
calories per square meter per year

n n
% =Fo; + ) dux; — ) b5,
i=1 i=1

to equations whose terms have the units volts per year

[o;] = O‘i[UJ‘IF‘OJ'] + i “i¢i;[:¢ixi] o i °‘j¢j;[?ixi]

0 i=1 i=1

- % [o;Fy] + ). %‘ﬁﬁ[“ixi] — ), biiloyxs].
; i1 % =1

The ratios oj/o; and oj/a; turn out to be gains on integrators, the ¢,; are
rate constants which are set on potentiometers, and the terms in brackets,
[0;Fo;], [x%), and [a;x;], are computer forcings and variables. It is the
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latter which will appear as outputs from integrators. The unscaled linear
system of Section III.H becomes

[2 X 107%,] = 5[4 x 10-%Fy] — (r13 - pias & Arg + pro)[2 X 10-3x,]
= 5[4 X 10%Fy;] + (a)[2 X 10-3x,]

[2 X 1072%,] = [2 x 1072F,] 4+ 10(742)[2 X 1073x,]
— (723 + pos + p20)[2 X 1072x,]
= [2 X 1072F,] + 10(r,)[2 X 1073%,] 4 (ap0)[2 X 1072x,]

[5 X 107%%5] = 2.5(73)[2 X 1072%,] — (734 + 35 + p3o)[5 X 107%x]
= 2.5(793)[2 X 1072x,] + (@33)[5 x 1072x5]

[5 X 107%%,] = 10(75,)[S X 107%x5] — (pas + pao)[S X 1071%]
= 10(730)[5 X 107%x5] + (a4)[5 X 107'x,]

[2 % 107] = 100(ks)[2 X 10-%,] + 10(us)[2 X 10728,] + 4(uy)
X [5 X 107%x5] + 04(ugs)[S X 1071x,] — (pso2 X 107%x]

= 100(u35)[2 X 10-%] + 100232 X 10-2x5] + 4(yag5)
X [5 X 1072x5] + 0.4(ug5)[5 % 1071%,] + (@55)[2 X 10a,]

In these equations the numbers without parentheses represent gains on
integrators, the expressions within parentheses are rate constants, and the
bracketed expressions are computer variables or forcings. Note that, for
reasons to be explained later, the negative of the sums of loss coefficients
for each compartment have been combined into a single loss-rate constant
(a;;)- These coefficients represent negatives of the turnover rates of each
compartment. The equations comprise a system of voltage-scaled
differential equations for the Silver Springs linear model.

B. TiME SCALING

The terms of the voltage-scaled equations in Example 6 have the
units volts per year. This means that to simulate a year of Silver Springs
behavior would take a year on the machine, and to simulate 10 or 100 years
would take that long. This difficulty is averted by time scaling—
introducing a time-scale factor into the system equations. The scale
factor is

computer time

B:_y

real time
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where “computer time ” is in seconds and “real time’’ is the unit of time
in which the system has been measured. For the Silver Springs models,
real time is years because the original data were reported in years.
So B is in seconds per year, expressing how many seconds of computer
time correspond to a year of Silver Springs’ operation.

To convert each system equation in volts per year

[o%;] = % [oFo] + Y. i:i:‘ﬁia'[aixi] — Y biiloyx;]
J i=1 ¢ i=1

to a corresponding equation in volts per second, it is necessary only to
divide each term by 8 (i.e., volts per year/seconds per year = volts per
second)

Bat] = % o) + Y 580 o) — Y P [,

As indicated, this means dividing pot settings by 8 for all nonforcing
inputs to each integrator, and also dividing gains for the forcing inputs by
the value of .

When a system of equations is voltage-scaled and time-scaled, and
numerical values are available for its rate parameters, it is ready for con-
version to an operational analog computer program. The step yet
remaining for Silver Springs is to calculate rates.

C. DETERMINATION OF RATE PARAMETERS

Average annual flows were measured for the Silver Springs system
(Section III.H). In the linear model these take the mathematical form
F;; = 4%, , and in the nonlinear model they have the form F;; = $4;x;x; .
The values of x; and ¥; also are known as annual averages, and thus the
rate constant component of each flow can be determined from the
relations

¢i; = Fylx;  (per year)
and
di; = Fylxx; (square meters per year per kilocalorie)

The ¢;; values for Silver Springs are shown in Table III. In the
nonlinear model, 7(3 = .0039, 733 = .0272, and 75 = .0382.
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TABLE III

RATE CONSTANTS FOR THE SILVER SPRINGS LINEAR SYSTEM

Feeding Mortality Respiration Export Summed loss rates
T, = .84 s = 1.01 po = 3.50 A = .73 a,; = —6.08
Ty = 1.79 pos = 5.13 peo =  8.86 a,, = —15.78
T3 = .339 nyy = .14 pso = 5.10 az;, = —6.179

pys = 676 pa =  1.466 a,, = —2.142
pso = 188.6 a;; = —188.6

D. ANALOG PROGRAM FOR SILVER SPRINGS LINEAR MODEL

Substituting the rate constant values into the scaled equations of
Example 6, the following final system equations are obtained.

[2 x 10-3%,] = 5[(4 x 10-9)(2.0810 x 10%)] — 6.08[2 x 10-3x,]
= 10(.4162)[10] — 10(.608)[2 x 10-3x,]

[2 % 10-2%,] = [(2 X 10-2)(4.86 x 102)] + 10(.84)[2 x 10-3x,]
— 15.78[2 x 1072,
= (.972)[10] + 10(.84)[2 x 10-3x,] — 100(.1578)[2 x 10-2x,]

[5 X 10725] = 2.5(1.79)[2 X 10-2x,] — 6.179[5 x 10-2x,]
10(.4475)[2 x 10-2x,] — 10(.6179)[5 X 10~2xy]
[5 x 10-1%,] = 10(.339)[5 x 10-2x,] — 2.142[5 X 10-1x,]
10(.339)[5 x 10-2x5] — 10(.2142)[5 x 10-1x,]
[2 x 10725) = 100(1.01)[2 x 10-3x,] + 10(5.13)[2 x 10-2x,] + 4(.74)
X [5 x 10-2x,] + 0.4(.676)[5 x 10-1x,] — 188.6[2 x 10~1x;]
= 10%101)[2 x 10-3x,] + 100(.513)[2 x 10-2x,] + 10(.296)
X [5 x 102x5] + (.2704)[5 x 10-1x,] - 103(.1886)[2 x 10-1x,]

[
[

The voltage-scaled variables (or reference voltages in the case of
forcings) are in brackets, pot settings in parentheses, and integrator
gains unenclosed in the final form of each equation.

A program to represent this system is given in Fig. 51.

Exercise 6

(1) Prepare a scaled analog computer program for the Silver Springs
linear system in which rate constants retain their identities by being
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FiG. 51

represented individually on separate potentiometers. Contrast the
virtues and limitations of this type of program with those of the program
above.

(2) Prepare a scaled analog computer program for the Silver Springs
nonlinear model.

V. Introduction to Digital Computers

A. CoMPARISON OF DIGITAL AND ANALOG COMPUTERS

There is very little similarity between analog and digital computers,
either in principles of operation or in suitability for different tasks. The
analog computer is essentially a one-purpose machine (solving differential
equations), although in the hands of an expert its versatility can be made
to appear impressive. The digital computer, as its name implies, processes
numerical information. It is best suited for implementing discrete data
and producing numerical output, whereas the analog computer deals
with continuous signals both on input and output. Since most of the
quantitative data of science, business, industry, and government is
numerical, it is no surprise that digital computers have found a wider
range of applicability in human enterprises than analog devices.



46 BERNARD C. PATTEN

In using analog computers for dynamic systems modeling, one trades
numerical accuracy for immediacy: The solution of an entire system of
equations is virtually instantaneous, and simulation experiments with
changing parameters take as long as reaching out and turning a
potentiometer dial. The operator is coupled very closely to the machine,
and hence to his model, and this leads to great insight about behavior of
dynamic systems.

With digital computers this intimacy and short turnaround time are
sacrificed in favor of numerical accuracy and a greater variety and size
of mathematical models, particularly algebraic and statistical, which can
be handled. The digital computer is largely a production machine; it
grinds out numbers impersonally and, by the intricate programming
languages through which access 1s afforded, imposes this by-the-numbers
rigidity on its users.

An analog machine, once-programmed, is “played” more like a
musical instrument, perhaps, and 1s capable of translating quickly
subjective insights of an investigator into electronic realities. The
cartoon in Fig. 52 overstates the difference. Efforts to gain the best

"Fundamertally, Ceabshawe, this illustrales the
difference between DIGIML and ANRLO G

FiG. 52. Reproduced by permission of Analog Computer Educational User’s Group.

advantages of both types of computers take the form of development of
“hybrid” computers in the analog field and programming languages for
continuous system simulation in the digital field.

B. FunctioNnaL UnNits oF DiciTAL COMPUTERS

It may not always be possible to associate particular physical com-
ponents in a modern digital computer installation with specific functions,
but basically there are always five functions represented: input, memory,
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arithmetic-logic, control, and output, as shown in the block diagram

of Fig. 53.
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The input unit permits information to be entered into memory by
means of codes acceptable to the computer. This coded information may
be on cards, paper tape, magnetic tape, or paper imprinted with special
characters (such as those commonly used on bank checks). In scientific
applications IBM (or Hollerith) cards and magnetic tape are used most
frequently.

An IBM card consists of 12 rows and 80 columns. A combination of
punches in each column represents a specific alphabetic, numeric, or
special character (see Fig. 54). Cards are punched on a keypunch, and
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read into memory by a card reader. Cards may be ‘“read” photo-
electrically, or by brushes which make an electrical contact when they
drop through a hole. Magnetic tape is a plastic ribbon coated with a
metallic oxide which will accept and hold magnetism permanently.
On 7-track tape there are seven lengthwise rows (channels) and many
crosswise columns forming positions which can be magnetized or not



48 BERNARD C. PATTEN

according to a code. Characters can be entered with great density
serially along the length of the tape. Densities vary from about
200-1500/in., and data can be read in at rates of about 340,000
characters/sec.

Memory 1s accomplished by either drum, disk or core storage units.
These are composed of binary cells capable of being magnetized or not,
and thereby representing the binary digits 0 and I. Such one-bit cells
are used together to represent larger binary numbers. A consecutive
number of binary cells is a byte. All information used by the machine is
binary-coded, e.g.,

Character 6-Cell binary code
0 000O0O0O
1 00O0O0O1
2 000010
3 0000O0T11
4 000100
8 001000
A 010001
z 111001
* 101100

Characters stored in cells in memory are manipulated in groups of
consecutive cells, called words. Different computers manipulate different
word lengths. Each word location is identified by a number which can be
used as an address to retrieve the word stored there. Some machines have
fixed word lengths, others have variable word lengths. The capacity of
a computer’s memory refers to how much information can be stored.
A “32K” capacity means that a computer can store 32,000 words.

The arithmetic—logic performs arithmetic operations (addition, sub-
traction, multiplication, and division) and simple numerical and logical
operations on words brought over from memory.

The control unit is the functional part of a computing system. One
instruction at a time is taken from the program stored in memory,
interpreted, and then executed. What the instruction means and how it
is carried out is implicit in the control unit’s circuitry. The operations
occur in two basic machine cycles called the instruction cycle (I-time)
and the execution cycle (E-time). During I-time the control unit receives
the next instruction in the stored program and prepares it for execution.
The instruction is performed during E-time. In receiving, interpreting,
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and executing instructions, the control unit coordinates the operations of
input, memory, arithmetic-logic, and output portions of the computer.

The output serves to present results to the user, either on cards, paper
or magnetic tape, paper, or by cathode ray display, etc. The most
common method is a print-out on large sheets of paper, performed very
rapidly (1100 lines/min) by a printer.

C. ELEMENTS OF PROGRAMMING

The physical machinery that comprises the functional units of a
digital computer—the hardware—is of little direct concern to the user.
Modern computer facilities generally are operated on a closed-shop basis
in which jobs are submitted, run, and results returned without the
individual user ever entering the computer room. The user is concerned
more directly with programs and programming systems, collectively
referred to as software.

A computer program is a set of instructions coded in such a way that the
machine can perform each one in an indicated order. The basic code that
a machine can accept, interpret, and execute is called machine language.
This differs for different computers, but in general consists of long
strings of decimal or binary numbers. These are too tedious and detailed
for people to handle readily and, consequently, other languages are used
in programming which are converted to machine language within the
computer. These other languages basically are of two kinds—those for
assembly systems and those for translating systems. An assembly system
language is a symbolic language which is machine-oriented; it is used to
specify how hardware components are to be used. A translating system
language is more human-oriented, and bears a greater relation to the
language in which a problem is normally written than to machine
language.

A translating system consists of (1) a processing program called a
compiler, and (2) a language. The programmer writes instructions in
accordance with rules of the language; these are then read into the
computer where the compiler converts them to machine language.
Examples of modern translating systems are Algol, Cobol, and Fortran.
In science, probably 909, of existing programs are written in Fortran,
so this is a good language to learn.

D. FoRTRAN IV: INTRODUCTION

Fortran IV is the version of this language currently in use with IBM
equipment, such as 7090/7094 and 360 systems. Like other translating
systems it consists of two phases—compilation and execution.
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For compilation, the compiler program in machine language is entered
into memory through an input unit. A source program, written in
Fortran IV and keypunched on cards, is entered into memory through
a card reader. The compiler translates each card from the source deck
into machine language instructions. Depending upon what operations
are to be performed, a number of subprograms will be called from the
compiler. These are determined by monztor control cards included with
the source deck and also by statements within the source program. The
machine language program produced by translation of the source
program is called an object program. This can be stored in memory, or
outputted as an object deck or printed listing as the source program.
Generally, a listing becomes the primary documentation of a program.

During execution the object program takes command of the machine.
It calls for data from a data deck entered into memory, usually with the
source program, and processes these in accordance with instructions of
the original source program. Results are furnished through an appropriate
output unit.

A schematic representation of a typical entire process of compiling and
executing a Fortran program is shown in Fig. 55. In some systems the
object deck is by-passed completely.

Compiiation E xecution

Written
program
P

Compiler Object Object
deck program
Program
listing Results

A typical card input package consists of the source deck followed by
the data deck, and appropriate control cards as in Fig. 56. The job-control
cards identify the user and an account number to which the job is to be
charged, and they also determine what subprograms are to be called for
entry into the object program. The data-control card signals that the



1. ECOLOGY SIMULATION PRIMER 51

End-of-job cards

Data deck

Data-control
card

Source deck

Job -controf
cards

data deck follows, and the end-of-job cards specify the end of the data
deck and termination of the job. The control cards are specific for each
type of computer, and sometimes there may be local variations introduced
at different installations.

Fic. 56

VI. Digital Computer Programming with Fortran IV
A. FORTRAN STATEMENTS

A Fortran IV program consists of five kinds of statements: (1) input and
output, (2) assignment, (3) control, (4) specification, and (5) subprogram.
The first three kinds are termed “‘executable.” The compiler translates
them into equivalent machine language during I-time and they are
executed during E-time. Input and output statements direct the flow of
information between memory and an input or output unit. Assignment
statements direct arithmetic and logical computations. Control statements
determine the order in which statements are executed.

Specification and subprogram statements are ‘‘non-executable,” being
descriptive in nature. Specification statements indicate to the compiler
types of variables used in the program, arrangements of input and output
data, and storage allocations. Subprogram statements permit subprograms
to be identified and used in a main program.

In Fortran IV there are available 53 source program statements, but
no compiler uses all of them. The IBM-7090 uses 45, and the 360
(H level) uses 47.

When data cards are punched, use of the 80 columns of an IBM card
is as stated by specification statements in the source program. However,
in punching the source deck itself there are restrictions on how statements
are to be entered.
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CoLUMNS CONTENT

1-5 The first five columns are for statement numbers,
which may be omitted except when they are
needed. A ¢ punched in column 1 signifies that
card to be a comment card. These are strictly for
clarification or other purposes of the programmer.
Comment cards are not processed by the Fortran
compiler,

6 This column is reserved for continuation cards,
necessary when a statement exceeds a card’s
capacity. On continuation cards, columns 1-5 are
blank, column 6 contains any character except 0 or
blank (typically numbers 1-9 are used sequen-
tially), and the remaining columns are as for other

cards.
7-72 The statement begins in column 7 and may
extend through 72.
73-80 These columns are not processed by the compiler.

They are left blank or may contain sequence
numbers which can be used to preserve the order
of cards in the deck.

Unless control statements specify otherwise, executable statements
are performed in the same order as that in which the cards on which they
are keypunched enter the computer.

B. CONSTANTS AND VARIABLES

Two kinds of constants are used in Fortran. An integer is a whole
number, positive, zero, or negative. A real number is denoted by a
decimal point. The numbers 3.1416, —.314, 3.0, 2., and 0. are real,
while 3, 2, —2, and 0 are integers. Within the computer real numbers
are represented in floating point form: some fraction between 0.1 and 1.0
and a power of 10. The following are floating point representations of the
numbers 3.1416 and 0.0031416: 0.31416 x 10' and 0.31416 x 102

There also are two kinds of Fortran variables. Integer variables take
on integral values, and are named by 1 to 6 letters or digits, the first of
which is 1, J, K, L, M, or N. Real variables assume real values, and they
also are named by 1 to 6 letters or digits, the first of which is not 1, J, K,
L, M, or N. The compiler uses the first letter of the variable name to
determine if it is real or integer. Special characters are not permitted
in constants or variables.
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C. OPERATIONS AND EXPRESSIONS

Five arithmetic operations are provided in Fortran, each represented
by a distinct character:

Addition -+
Subtraction —
Multiplication
Division /
Exponentiation %%

An expression is a rule for computing a numerical value. For example,

a*b
c+d

__a2

is represented by the Fortran expression
(A*B)/(c +D) —Aa*x2
The following rules must be obeyed in writing such expressions:

(1) Two operation symbols must never be adjacent. Thus Axx —B
is not valid, but A *x (—B) is.

(2) Parentheses are used for grouping as in ordinary mathematical
notation. In complex expressions there must always be the same number
of left parentheses as right parentheses: (A * (B — € *x 2)) * (X -+ B).
Parentheses cause inner operations to be performed first; (X + B) must
be computed before its product with (A x (B — € x* 2)) can be obtained.

(3) If the order of operations is not completely specified by
parentheses, the order is: exponentiation first, multiplication and
division next, and addition and subtraction last. Thus, the expression
X *Y + U/V — W *x A is equivalent to (X * Y) + (U/v) — (W xx A).

(4) In a sequence of multiplications and divisions, or additions and
subtractions, where the order of operations is unspecified by parentheses,
the evaluation is left-to-right. Thus X[y *Zz means (x/y) - z and not
x/(y - 2); also, A — B + ¢ means (@ — b) + ¢ rather than a — (b 4 ¢).

(5) Mixed-mode expressions are forbidden technically (actually
they are allowable on most modern Fortran compilers). That is, integer
and real quantities cannot be mixed, except that a real quantity can be
raised to an integer power: A + I * J, EMU/IBIS, and K *x A are incorrect,
but EX ** IJAY and WHY *x* AIJAY are both correct.
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The mixed-mode restriction comes about because it is possible in
Fortran to perform two kinds of arithmetic, integer and real. Integer
arithmetic is calculated in the integer mode. In integer division, fractional
parts of the quotient are ignored; the quotient is rounded down or
truncated to the next lowest whole number. Thus, 5/3 = 1, (7 * 2)/3 = 4,
and 7 % (2/3) = 0. Real arithmetic also has its problems. For example,
thesum 1./3. + 1./3. 4+ 1./3. to eight digits is .33333333 + .33333333 +
33333333, or .99999999. If a program were written to compare this
result with 1.00000000, the result would be ‘“‘not equal.” Yet clearly,
1/3 + 1/3 + 1/3 = 1 in ordinary arithmetic.

D. MATHEMATICAL FUNCTIONS

Fortran functions include the following:

Mathematical function Fortan name
Exponential EXP

Natural logarithm ALOG
Common logarithm ALOG10
Sine (radians) SIN

Cosine (radians) cos

Square root SQRT
Absolute value ABS

These are external functions normally supplied with the Fortran IV
compiler. To use them they are followed by a constant, variable, or an
expression in parentheses, called the argument of the function; the
function of the named argument is computed, e.g., e*! is EXP (a * T), sin
wt is SIN (OMEGA * T), and /3% — 4ac is SQRT (B ** 2 — 4. x A x C).
Note that all variables and constants of the arguments are real. There also
are functions for complex and double precision variables, neither of which
will be discussed here.

E. ARITHMETIC ASSIGNMENT STATEMENTS

Computation of a new value of a variable is accomplished with an
arithmetic assignment statement. The general form is

a==>

where a is a variable name, written without a sign, and b is any expression.
This type of statement is an order to compute the value of the expression
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on the right and assign that value to the variable on the left. Thus, in
Y=A-+BxX

A 4+ B x X is calculated and the value given to v. If v had a previous
value, it is lost since the variable v is allocated a specific position in
memory. The result of the following two Fortran statements in the given
sequence in a program

Y = 25. %.043 + 2.

Yy =0.

is to assign a value of 3.075 to Y and then assign a value of 0.0. The
first value is lost when the second statement is executed.

Note that the “="" sign has a different meaning in Fortran than in
mathematics, and statements like

x=x+ 1.

are not only valid, but they also are very useful.
Exercise 7

(1) Write the following as Fortran real constants:
(2) 784 (d) —0.0000784
(b) 7.84 () 10°
(c) 7.84 x 10 (f) —7.84 x 10°

(2) Which of the following are unacceptable integer constants ?

@) —256 (d) 256,000,000,000
(b) +256. (¢) 256000000000.
() 2,560 (f) 256000000000

(3) Indicate integer, real, and unacceptable variables in the following
list:

MAX POPSIZ XSQ
AMAX x1 X kk 2
EMU N1 A

ROTIFER SILSPR IA
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(4) Write real-mode Fortran expressions for each of the following
mathematical expressions:

(a) * 45 (8) ——— (4n* + 1)
(b) (x + ) (1) a

(c) x+2 (@) @+ b + a(c + dx)]
@ 22 () tan}
@1+xt Ty 00—

) 2E2 @+ @) 1+ sind (cos 297

(5) Write arithmetic assignment statements to compute values of the
following variables:

(a) a

(b) —y = k sin(wt)

(c) j = gp/t (What is the value of j if ¢ = 5, p = 20, and t = 37?)
(d) x = —b-+ Vb —dac

© K—N

0 N (T)

(8) Fij = bimsx;

(h) %, = Fog -+ 719X, — TogXy — HosXe — Pog¥s

1 1 4+ sinx
og ———
] —sinx

F. InpuT AND OUTPUT

In this section FORMAT, READ, WRITE, STOP, and END statements of the
Fortran I'V language are discussed.

The rormaT statement is a nonexecutable specification statement which
defines how input data will appear in the data deck or other input
media, and what the arrangement of results will be on output media.
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In other words, the FORMAT statement specifies input and output data
fields, and it is always used in conjunction with a READ or WRITE statement.
The form of the FORMAT statement is

71 FORMAT ($; 5 Sg 5eevs Sin)

where 7z is the statement number and s, s, ,..., 5,, are any number of
field specifications. Each field specification describes the kind and
arrangement of one data field:

Specification Type of field
I Integer
Fuw.d Real without exponent
Ew.d Real with exponent

where 1, F, and E denote the type of field, @ the width of the field (number
of characters), and d the number of digits to the right of the decimal
point (not including any part of the exponent).

Example 7

Consider a card with the following data punched in columns 1-28
(the notation @ will be used to signify » blanks):

@—3570(2)28656—0.095D)8.76 ED026D

It is impossible to judge what the data are without field specifications.
The following FORMAT statement provides the necessary information:

(3)13(1)ForRMAT(1)(16, 17, F6.3, E9.2)

The first field (16) contains an integer constant (—3570), the second
(17) another integer constant (28656), the third (F6.3) a real constant
with three digits to the right of the decimal (—0.095), and the last
field (£9.2) contains a real number expressed as an exponent, with two
digits to the right of the decimal (8.76 x 10%). The blank space after
the E is reserved for a + or — sign. The remaining 52 spaces of the data
card are unspecified in the FORMAT statement and therefore unused.

The RE4p statement is used to read input data into the computer’s
memory, and the wriTE statement is used to transfer results to an output
medium.
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The general form is

READ (Z, n) variables

WRITE (i, n) variables

where 7 is the number code of an input or output device, 7 is the number
of the corresponding FORMAT statement, and “‘variables” is an ordered
sequence of variable names separated by commas. A card-reader input
unit usually is designated by 7 = 5, a printer for output by i = 6, and a
card punch for output by i = 7. Magnetic tapes, disks, etc., for both
input and output are designated generally by numbers 0, 1,..., 4.

Example 8

To solve the exponential growth equation
N(#) = N(0) e,

values of the birth- and death-rate parameters and the independent
variable ¢ must be read in as data and the computed value of N(#) printed
out. Assume that b and d are to be entered in an r10.0 field specification,
N(0) in an 18 field, and ¢ in an ¥6.3 field, and that r is to be printed out
in an El12.4 field, and N(#) in an 110 field. A program segment to
accomplish this is would be

READ (5, 20) B, D, NZERO, T
20 FORMAT (2F10.0, 18, F6.3)
R=B—D
ENZERO = NZERO
NT = ENZERO * EXP(R * T)
WRITE (6, 30) R, NT
30  rFormat (1H(D), E12.4, 110)

In this program b, d, 7, and ¢ are real variables; N(0) and N(¢) are
integer variables because they represent numbers of individuals, for
which there can be no fractions. In computing N(t), however, this
variable must be real to avoid NZERO * EXP(R * T), a mixed-mode expres-
sion. Conversion to a real variable is accomplished by the assignment
statement ENZERO = NZERO. Note that N(f) is automatically computed
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as an integer variable, however, in the statement NT == ENZERO * EXP(R * T).

In the first FORMAT statement the notation 2F10.0 means that there are
two adjacent F10.0 field specifications. This convention, also valid with
I and E specifications, saves writing each field specification explicitly
when there are a number of identical fields in sequence. The second
FORMAT statement contains the notation 1H(Q) which advances the paper
in the printer one line. Other common printer controls are 180 for
advancing two lines, and 1H] for advancing to a new page.

The stop statement terminates execution of the object program and
returns control to the monitor. The znp statement signifies the end
of a source program, and must be the last card of every Fortran IV
source deck. These statements are written as

STOP

END

Exercise 8

(1) The logistic model of population growth is, from Section I.G,
N = (r — c¢N)N.

Write a Fortran I'V program which (1) receives data on population birth
rate, death rate, the environmental resistance parameter ¢, and population
size; (2) computes the rate of change of the population at the specified
size; (3) computes the carrying capacity of the environment; and (4)
prints the results.

G. TRANSFER OF CONTROL

Sometimes it is necessary to execute statements in a different order
from that in which they appear in the program. This so-called branching
is accomplished by statements described in this section: Go To, logical IF,
arithmetic 17, and computed Go To.

The co to statement directs a one-way branch. It takes the form

GOTOn

where 7 is the number of another executable statement in the program.
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Statement n thereupon is executed next, no matter where it appears in the
program.

The logical i statement provides a two-way branch in the Fortran IV
language. Its form is

1F (€) s

where e is any expression involving one of the relational operators
described below and s is any statement except another logical IF or a po
statement (described later in Section VI.]). The six relational operators are:

Relational operator Meaning
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GE. Greater than or equal to
.GT. Greater than

The periods are part of the notation. If the logical expression e is true,
statement S is executed; otherwise s is not executed and the program
moves in normal sequence to the next statement.

Example 9
Suppose a linear relation between y and x varies with the value of x
y=a-+ bx if x<p,
y=c+dx if x>=p.

A program sequence which would select the proper equation for a
particular computation would be

IF (X.LT.P) Y = A + B *X
IF (X.GEP) Y = C + D * X

The usefulness of the logical 1F is extended considerably by using
relational expressions in combination with logical operators:

Logical operator Meaning
.AND. And
.OR. Inclusive or (a or b or both)

.NOT. Not
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For example, it is possible to write
IF (X.LT.P.AND.P.NE.Q) GO TO 137

or equivalently:

IF (.NOT.(X.GE.P).AND.P.NE.Q) GO TO 137

A three-way branch is provided by the arithmetic 17 statement. The
form is

IF (&) g, 7y, 1y

where e is any expression and #;, 7, , and 7, are statement numbers. If
e < 0, ny1s executed; if e = 0, n, is executed; and if e > 0, #, is executed.

Finally, multiple branching is made possible by the computed co 10
statement. This statement has the form

GO TO (11y , My yeery M), 1§

where n, , n, ,..., n,, are statement numbers, and 7 is an integer variable
such that7 = 1, 2,..., m. If the value of the variable 7 is 1, then control is
transferred to statement #;; if the value is 2, then the program branches
to statement 7, , and so forth. For example, in

co 1o (7, 14, 3, 72, 100), karra

if KAPPA = 4 from elsewhere in the program the next statement to be
executed will be that numbered 72.

Example 10

Suppose it is desired to write a Fortran IV program to (1) accept a
biotic potential r and an initial population size N(0); (2) solve the expo-
nential growth differential equation (Section I.F) sequentially over a
specified time interval, 0 < ¢ <C t,,,; and (3) print the results for each
computation time so that, in effect, the print-out will be a discrete,
numerical representation of the system’s dynamic behavior.
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Such a program is

C NZERO — INITIAL POPULATION SIZE, R == BIOTIC

C POTENTIAL, TMAX = COMPUTATION TIME, DT = TIME
C INTERVAL BETWEEN COMPUTATIONS.

C READ IN DATA.

READ (5, 100) NZERO, R, TMAX, DT
100 Formar (110, 3710.4)

c INITIALIZE TIME (T).
T =0.
C PRINT INITIAL CONDITIONS.

WRITE (6,101) T, NZERO

c INITIALIZE POPULATION SIZE (EN).
EN = NZERO

c COMPUTE DIFFERENTIAL OF POPULATION SIZE.
20 DN = DT * (R * EN)

[ COMPUTE NEW POPULATION SIZE.
EN == EN + DN

c CONVERT EN TO INTEGER VARIABLE.
N =EN + .5

c INCREMENT TIME.
T =T -4 DT

PRINT RESULTS
WRITE (6, 101) T, N
101 rormar (16(1), ¥10.0, 110)

c REPEAT COMPUTATION FOR NEXT TIME INTERVAL.
IF (T.LT.TMAX) GO TO 20
STOP
END

Exercise 9

(1) Write a Fortran IV program to solve the coupled system of
differential equations which represents Lotka—Volterra population
interaction (Section III.B). The program should be able to receive input
data forr,,7,, K, , K,, o, 8, and the initial population sizes N,(0) and
N,(0), and should print out system behavior, N;(¢) and N,(?), as a
function of time. (This program essentially corresponds to the analog
computer program for the same system given in Fig. 39.)
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H. FLOWCHARTS

A great aid in digital computer programming is the flowchart, which
essentially is a special block-diagram representation of the program
logic. Flowcharts help the programmer keep track of where he is in
developing the program, and they serve also as a visual documentation
of the completed program. The symbols shown in Fig. 57 typically
are used.

An oval indicates the beginning or end of a program,

A trapezoid indicates an input or output operation.

A rectangle signifies any processing operation, except
a decision.

A diamond indicates a decision (branching) process.
The lines leaving the box are labeted with the decision
result that causes each path to be.followed.

— Arrows indicate the direction of flow through the
flowchart.
Fic. 57

Example 11
A flowchart for the program of Example 10 is given in Fig. 58.
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Fic. 58
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Exercise 10

(1) Prepare a flowchart for the program written in Exercise 9.

I. SUBSCRIPTED VARIABLES

Use of subscripted variables makes it possible to denote many variables
with one variable name. The set of variables is termed the variable array,
and the individual members of the array are called elements. In Fortran,
subscripted variables can have one, two, or three subscripts, representing
1-, 2- or 3-dimensional arrays. The state sets and vectors of Section I.B
are examples of [-dimensional arrays, and the combined loss coeflicients
a;; of the scaled system equations in Example 6 are elements of a
2-dimensional array which will be formed later in order to represent the
Silver Springs system in vector-matrix notation.

One-dimensional array elements such as x,, x,,..., X, are written
in Fortran subscript notation as x(1), x(2), ..., x{n), or x(1), where
1 = 1, 2,..,, nis an integer variable. Similarly, the elements of the matrix

[au a3 a13]

dg; Qg gy

are written a(l, 1), A(1, 2), etc., or using integer variables, A(1, J), where
1= 1,2and] = 1,2, 3.

When subscripted variables are used in a program, (1) which variables
are subscripted, (2) how many subscripts for each variable, and (3) the
maximum size of each subscript are items of information that must be
supplied to the compiler. This is done with a pmEension statement,
which must appear before the first occurrence of the dimensioned
variable in the program. The form of the dimension statement is

DIMENSION V, V, V,...

where the v’s stand for variable names followed by parentheses enclosing
one, two, or three unsigned integer constants which denote the maximum
size of each subscript. For example, a one-dimensional array x with eight
elements, a 2 X 3 two-dimensional array v, and a 3 X 5 x 4 three-dimen-
sional array z would be indicated by the following statement:

DIMENSION x(8), Y(2, 3), z(3, 5, 4)

The compiler then assigns eight memory locations to variable x, six (2 x 3)
to v, and 60 (3 X 5 X 4) to z. The DIMENSION statement is non-
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executable since its only function in the program is to provide information
to the compiler; it does not generate any instructions in the object
program.

When subscripted variables appear in READ statements, as

READ (5, 25) %, Y, z

where X, v, and z are the subscripted variables x(8), (2, 3), and Z(3 5,4),
the elements of each array are entered in column order, i.e., in such
a manner that the first subscript varies most rapidly and the last least
rapidly. For v, the sequence of entering elements would be ¥(1, 1),
v(2, 1), ¥(1, 2), ¥(2, 2), ¥(1, 3), ¥(2, 3). Of course, array elements can be
read in any order by specifying the elements in explicit form in the
READ statement, for example,

DIMENSION Y(2, 3)
READ (5, 35) ¥(1, 1), ¥(1, 2), ¥(1, 3), ¥(2, 1), ¥(2, 2), ¥(2, 3)

Note that in the DIMENSION statement ‘“v(2, 3)” refers to a 2 X 3 variable
array, whereas in the READ statement “‘Y(2, 3)” specifies the element in
the second row, third column of the same array.

Example 12

The differential equations of Example 5 representing the model I
rotifer system can be written as follows by combining loss coefficients:

% = Fyy + 84125 + 1% + (@qq) %1,
%y = Fop + 819%, + (ay) %, ,

Xy = €59%y + (ag3) X5,

%y = Foq + 85425 + (a44) %4,

X = €qs%y + (@g55) %5,

Xg = B56%5 + (@gp) % »

% = Fpy + 855 + (az7) %5 .
In vector-matrix notation, this system is written more succinctly as

x = f + A4x,
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where:
EN [ For ] EY
®y Fo, Xy
X 0 x5
x=|%| f=|Fy,l x = | %,
X 0 X
Xg 0 Xg
[ %7_] LF07_ [ %7_]
and
rau A1y Gy3 A1y G5 Gy a171 —au 0 8; 0 0 &,
gy Ggp Qgg Qyy Qg5 Qg doy 82 a2 0 0 0 O
d3 Ggp dgz A3y Q35 Qg gy 0 €3 a3 0 0 O
A=|ay ap ay ay ay ay ap|=|0 0 8y a, 0 O
451 G5y Q53 G5y G55 G5 s 0 0 0 5 a5 O
g1 dgy Qg3 Qgq Qgs Ggs o7 0 0 0 O 38 ag
| O Gpa Qg3 Gyq Qg5 Gpg Aoy ] | 0 0 0 O o, O

0]
0
0
0

€75

0

ar_|

In the coefficient matrix 4 note that the subscripts of the coefficients
are the reverse of those of the corresponding matrix-element names:
a3 = 8, , g = 8¢, Ay = 8y, , etc. This is due to the naming conven-
tion for signal flows from source to terminal compartments established

in Section IIL.E.

A Fortran IV program to solve this system, comparable to the analog

computer program of Example 5, is

c DIMENSION THE VARIABLES.
DIMENSION X(7), ¥(7), a(7, 7), px(7)

c READ F, A, AND INITIAL X, ALSO TMAX (COMPUTATION TIME)

c AND DT (COMPUTATION TIME INTERVAL).

READ (5, 10) X, F, A, TMAX, DT

10 Formar (7710.3/ 776.2/ 7£10.2/ 7£10.2/ 7£10.2/ 7£10.2/

1 710.2/ 7£10.2/ 7£10.2/ 2F10.4)

c COMPUTE SOLUTIONS OF SYSTEM EQUATIONS.
T =0.
c PRINT INITIAL CONDITIONS.

WRITE (6, 13) T, X
141=1
12 sum = 0.

j=1
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11 suMm = A(L, J) * X(J) + sum
J=1+1
IF (j.LE.7) Go TO 11
DX(1) == DT * (F(1) + sum)
X(1) = x(1) 4 px(1)
I=1+1

1F (I.LE.7) Go TO 12

c INCREMENT TIME.
T=T -+ DT
c PRINT SOLUTIONS.

WRITE (6, 13) T, X

13 rorMAT (1H(1), F5.3, 7r10.3)
IF (T.LT.TMAX) GO To 14
STOP
END

Note, in format statement 10, that additional cards are indicated by /.
The use of subscripted variables in this program facilitates greatly the
bookkeeping requirements of solving this many equations simultaneously.
With very large systems, the advantages of dimensioning become particu-
larly significant.

Exercise 11

(1) Write a Fortran I'V program to solve the model III rotifer system
of differential equations formulated for Exercise 5. Prepare a flowchart,
and use subscripted variables.

J. THE DO STATEMENT

As with dimensioning of variables, the so-called po loop permits
very complex computations to be performed rather easily. This feature
of Fortran is one that contributes, probably more than any other, to
the power and versatility of the language. The po statement can be
written in either of two forms

DOmi=my,m,m

Domi=my,m
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The first form states “‘Do (i.e., execute) down through statement n from
i = my through i = m, in i-increments of m3.” It means to execute all
statements within the range of the loop for every value of i specified by
my , my, , and my . The action 1s that the program cycles through the loop
repeatedly for each value of 7, executing each of the indicated statements
each time. In the second form of the Do statement, m; = 1 is implied by
convention.

Certain rules must be adhered to in using the Do statement: (1) The
first statement following the DO statement must be executable (i.e.,
DIMENSION and FORMAT statements are prohibited). (2) Other Do
statements are permitted within the range of a Do; in fact, DO statements
can be nested sometimes with great complexity. An inner Do loop must
terminate before an outer one which contains it, or both can terminate
with the same statement. (3) The last statement (numbered #) cannot be
a GO TO, arithmetic IF, STOP, or another DO, nor a logical 1r which contains
any of these. (4) No statement within the Do loop may alter or redefine the
index ¢ of the loop, or its range or increment (m;, m,, and m;). (5)
Control should not be transferred to a statement within the range of a Do,
except from the range of an inner loop into that of an outer loop.

Rule (3) prohibits the last statement of a po loop from transferring
control. This can be achieved, however, by use of the statement

CONTINUE

The contiNue statement is a dummy statement used frequently to
terminate DO loops. It causes no action when the object program is
executed, and merely provides an innocuous executable statement to
which the number 7 can be attached.

Example 13

A Fortran IV program, employing Do statements, which solves the
7-compartment, model I rotifer system of Example 12 is

DIMENSION x(7), F(7), (7, 7), DX(7)
READ (5, 10) X, F, A, TMAX, DT
10 FormaT (7710.3/ 7r6.2/ 7£10.2/ 7£10.2/ 7£10.2/
1 7e10.2/ 7£10.2/ 7e10.2/ 7e10.2/ 2r10.4)
T=0.
wrITE (6, 13) T, X
13 Format (18(D),F5.3, 7710.3)
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C OUTER DO WITH INDEX I FOLLOWS.
14 p01001 =1,7
suM = 0.
C INNER DO WITH INDEX ] FOLLOWS.
pol0lj=1,7

101 sum = A(1, J) * X(J) + suM
DX(I) = DT * (F(I) + suM)
100 x(1) = x(1) + Dx(1)
T=T+ DT
WRITE (6, 13) T, X
IF (T.LT.TMAX) GO TO 14
STOP
END

In this program, exit from both po loops is automatic and the CONTINUE
statement is not needed to obtain a transfer of control.

2. Exercise 12

(1) Prepare Fortran IV programs employing Do statements and
subscripted variables to solve the system differential equations of:
(a) Lotka—Volterra population competition (Section III.B); com-
pare this program with that of Exercise 9.
(b) The model III rotifer system based on equations developed
in Exercise 5; compare with the program produced for Exercise 4.

K. DiciTaL AND ANALOG COMPUTERS: SUMMARY COMMENTS

If there is a philosophy emergent in the preceding notes on the uses
of modern computing systems in ecological modeling, it is perhaps
related to how much Fortran has been left out. This has had to be a
succinct and cursory treatment, and many important topics such as
FUNCTION and SUBROUTINE subprograms, type statements for other than
real and integer variables and constants, and useful field specifications
such as A (alphameric) and H (Hollerith) have gone undiscussed. The
same is true of analog computer technique as an expert would view it.
(These notes are intended only to be introductory in nature, and the
interested reader will want to consult standard references and users’
manuals, a sampling of which is provided in Appendix B). Still, within
the framework of these notes is a sufficient treatment of programming
elements to permit ecological models of no small significance (systems of
coupled differential equations) to be implemented effectively for simula-
tion or systems analysis studies on both digital and analog computers.
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The philosophy here is identical to one we all subscribe to in our
use of the automobile and scores of other mechanical and electrical
devices in our daily lives. It is to learn enough to become a user, not an
expert. If we are apprehensive about a particular machine, such as a car
or airplane, we avoid its use, but the alternative is to move more slowly
and inconveniently. As some machines serve to make our personal lives
both more facile and effective, computers hold the potential for accom-
plishing the same in our scientific lives. A small investment of time and
effort puts us, as ecologists, within communicating reach of the technical
specialist. Is there really a sensible alternative ?

VII. Digital Simulation

A. INTRODUCTION

Many of the chapters in this book are concerned with simulation—
mimicking or reproducing the time behavior of dynamic systems—using
digital computers to solve differential or difference equations. In the
former case where the models are continuous, this means using a machine
which operates in discrete, finite time-steps to approxXimate systems
whose state transformations occur in infinitesimal increments of time.
Thus, the subject of numerical approximation is relevant, and in this
section we consider it briefly along with discussions of special- versus
general-purpose programs, and the topic of simulation languages.

B. A SPECIAL-PURPOSE PROGRAM: SILVER SPRINGS

In Examples 10, 12, and 13 differential equations were solved
numerically by the “brute force” technique of computing differentials
over small intervals of time and adding these to the state-variable values
at the beginning of each interval. This method is straightforward and
effective so long as the time intervals between calculations are very small.
The special-purpose program of this section, SILVER SPRINGS, implements
this method for both the linear and nonlinear models of Section III.H
as options, and provides for multiple runs. A flowchart of the program
appears in I'ig. 59, and Table I'V is a listing.

In Table IV the first statement after statement 104 is a type statement.
It overrides the naming convention and makes LAMDIO and the
MU-variables, normally integers, real throughout the program. In the
next statement NCASE is an integer variable specifying the number of
cases (experiments) in a particular computer run; x01, x02,..., x05 are
initial values of the compartments. In statement 20, JFLAG is a variable
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TABLE IV
PROGRAM SILVER SPRINGS LISTING

REx e s NaEaNal]

[aXnla)

5

C

PRNGIAM STLVFR SPRINGS
L INFAR N2 NCNLINEAR FEENDING TRANSFFRS, L INFAR NON-FEEDING LDSSES

FIVE COMPARTMFNTS,

THE F1@PST AND SECOND FORCEN

COAMPARTMENTS -~ X)=FNVIRCNMENT, X1=PRODUCERS, X2=HERBIVORES,
X3=CARNIVIOES ,X4=TNP CARNIVORES,,X5=DECOMPOSFRS

FARCINGS-~ FO1=PHNTNSYNTHFSIS,

FO2=PR

FLOW PATF CONSTAMTS-— TAUTJ=FFEDING,
NOWNSTRFAM, MUIS=MORTALITY

LAMPLY=L0NSS
Qa ENRMAT(IHLY
107 FORMAT (45H
}
1M1 FORMATIAFIN 4

T x1

)

1C2 FORMATITY F3,0,%F8,C)
102 FORMAT(RFIA A/5F]|N,0)
1M4 FNRMATIT2,5F10, N}

DFAL LAMNDID JMUTS MUK ,MUIS,MULS

X?

READ(S4134) NCASE X1 4XC2,X03, X044 X5

T=n,
Tr=n,
1=9
2 00 19 1=1,NCA

SE

EAD INPUT
RHDIN=RESPIRATION,

X3 X4 X5

FNTFR JFLAG (2 NR 1), NUMBER NF YFARS FNR COMPUTATION (Yi,COMPUTATION

INTEQYAL (NT), PRINTING INTERVAL

AND CAONST AN

FNTFR RATE CN

T FOPCLINGS (KCAp/M%%2%y)
20 RFAN(ISLIN2) JFLAG Y NToPRNT 4 X1 4X2 X3 4X44XS4FO1,FO?

NSTANTS

(PRNT), INITIAL CONDITIONS(KCAL/M%*%2},

21 RFAT(S,113) TAUL2,TAU23 ,TAU34,RHN1D4RHD20,RHD30 ,RHN4N,
TRHI50 41 AMI1 0, MUL G, MU2 5, M35, MYSS

CAMPYTF NONLINFAR FAFFFICTFNTS

TTAUL2=TAUL1 2/
TTAU23=YAy21/
TTAU34=TAUI 4/
WRITF (4,29}
WRITE(As107)
WPITE(A, 10T
MAXT=Y/NTe+, &
N0 9 J=1,MAXT
fl=J

T=NT«ny

xr?
xXra
Xn4

$X1 X2y X3y X4 X5

CrYPUTE CNMPARTMEMT DIFFERENTIUALS

TFUJFLAGLEN Y

R0 TN S50

OX =07 (FOL=X 1% (RHNIO+LAMDIC+MULS+TAUL2) )

nx7=

TE(FO24TAGI28X 1 =X2 % {RHN2D+MU254TAUZY))

OX3=0T#(TAU2I#X2-X2 = (RHOIC+MUIS+TAlIZ4))
OX4=0T# (TAU3LAXAI-X4 %[ RHCA( $MULS5 )}
NXS=NT&(MII]5%X] ¢MUPSXXD +MUISEXI4MYL5EX4—RHDS50*X5)

6o T 40

SN NX] =DT*{FO1=-X1%(RHN1Ne LAMDIOSMULS+TTAULZ2%*X2))

DY2=0TH{FAD$TTA) 2% X]1%#X 2-X2* (RHOZ0+MU254TTAU23%X3 )}
TH(TTAY?3%X X 3-X3R(RHN3O+MUIS+TTAU3LEXG) )
=DT*(TTAULRXTIEXL—X4 % (RHOLO4MUSLS) )

NYS=NTAMULS* X1 +MUDSEX2 +MUIS*X34MUL5* X4-RHDS0*X5 )

COMPYTE SOLUT
67 X1=X1+DX1

X2z X24NX?

X3=XT47¥Y2

X4z X4 4N X4

X5=X549X5

TC=1C+1,

PRINT PFSULTS NNLY AFTER FVFRY

NELT=PRNT/RT
IFITC, LT PFLT
1 WOITE(4,101)
TC=r,
9 CONTINGF
T=0,
17 CONTINUF
<TND
Fan

IONS

Kot ol alC]
Te X124 X3 Xby XS

DELT?

COMPUTATIONS
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Real A and 11 RJ=J
variables T:=0T¥RJ

Read NCASE , X0, no yes
X02,X03,X04,
X05
T:0,7C=0,, M Compute Compute
I=0 L inear Nonlinear
Differentials Differentiols

Increment X's
TC:TCH.
DELT=PRNT/DT

Read JFLAG,Y, 0T,
PRNT,CASE TC's,
F's,Linear
Rate Constants,

yes
Compute
Nonlinear
Coetticients |

no
TC=0.

that directs for each case whether the linear or nonlinear model is to be
used; Y is a real variable denoting the number of years for which the
solution is to be computed, e.g., Y = 10 yr; DT is the computation time
interval, e.g., pT = .001 yr. This means that in 0. <y < 10. yr,
MAXT = 10* calculations of each state variable will be performed. The
variable PRNT (printing interval) specifies which of these will be printed on
output. For PRNT = 0.1 yr, there will be 10 lines of output per year, or
100 lines for a 10-yr total period (plus one line for initial values). FORMAT
statement 99 is a special carriage control statement which instructs the
printer to start a new page for each new case. FORMAT statement 100
specifies column headings and their positions on the printout.

There are two po loops in the program. Statement 8 is an outer Do with
index I = 1,NcAsE. The program loops through the sequenceof statements
through statement 10 as many times as there are cases. The inner
loop, p0 9 J = 1, MAXT, specifies the number of iterative computations
of each state variable to be performed. MAXT is an integer variable
computed by the program from input data provided for Y and pT; the

Print headings,
initial T,
and X's

Compute
MAXT

Fic. 59
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statement MAXT = Y/DT -+ .5 adjusts for rounding error in conversion
from real to integer variables by adding 0.5 to each result before it is
rounded down. In the inner po loop, it is necessary to “float”” the index j,
i.e., to convert it to a real variable, R], to avoid mixed mode in the state-
ment T = DT * RJ. In order to print the results, a variable DELT = PRNT/DT
is defined which specifies the printing interval in terms of number of
computations (every 100 computations in the present cases). After
every computation a counter TC is advanced one unit. When TC = DELT
the results are printed (statement 1), the counter is reset, Tc = 0., and
the program cycles again through the inner loop. When j = Maxr, and
after statement | is executed a final time, control is transferred to the
outer loop and a new case is begun. Exit from the outer loop occurs
automatically after the computations for 1 = NCASE, and the program
terminates.

Three types of data cards are required for this program as shown in the
Type 1, 2, and 3 tabulations below. Each type of card is repeated Ncase
times, one set for each case.

TYPE 1
Case Control, and Initial Conditions for Computing Nonlinear Rate Constants
Column: 1-2 3-12 13-22 23-32 33-42 43-52
Format: 12 r10.0 r10.0 r10.0 r10.0 r10.0
Input: NCASE x01 x02 x03 x04 x05
TYPE 2

Linear or Nonlinear Decision Card, Initial States and Forcings®

Column: 1 2-4 5-12 13-20 21-28 29-36 37-44 45-52 53-60 61-68 69-76
Format: 11 r3.0 8.0 r8.0 r8.0 Fr80 r80 8.0 r8.0 8.0 TF8.0
Input: JFLAG Y DT  PRNT XI x2 X3 x4 b &) FO1 r02

4 JFLAG (linear—nonlinear control flag) is 0 for linear model and 1 for nonlinear model.

TYPE 3
Linear Rate Constants®

Column: 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80
Format: r10.0 r10.0 r10.0 r10.0 r10.0 r10.0 r10.0 r10.0

Input: TAUI2 TAU23 TAU34 RrRHO10 RHO20 RrRHO30 RHO40 RHOS50
Column: 1-10 11-20 21-30 31-40 41-50
Format: r10.0 r10.0 r10.0 r10.0 r10.0
Input: Lampl0 muls MuU25 mu3s Mu45

% Nonlinear rate constants are computed in the nonlinear portion of the program.
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Table V presents sample output from the program: 2.5 yr of the free
response of the linear model.

TABLE V

Free RESPONSE OF SILVER SPRINGS LINEAR SYSTEM
BY PROGRAM SILVER SPRINGS (EULER METHOD)

T X1 X2 X3 Xa X5
0.0 3421.2598 213.4400 62.0600 8.8700 24.3800
0.1010 1859.2056 144.1214 57.0822 9, 0002 14,5704
0.2000 1010.3384 84.06527 453400 B.8315 B.1602
0.3000 549.0391 464 B446 32.7007 843109 4e 5146
0.4000 29R8.3557 256943 22.1805 7.5339 2. 4891
0.5000 16?2.1333 14,0112 14,4410 606292 1.3729
0. 6000 88.1074 7. 6240 98,1354 547023 0.7592
0.7000 47.8796 4e 1451 £46579 4. 8224 0.4217
0.8000 2640187 2. 2529 3.,46479 4.0272 0.2358
0.9000 1441390 1. 2244 2.0745 3. 3321 0.1331
1.0000 7.6835 Ne 6654 1.2354 2. 7381 0.0761
1.1000 4.1754 0.3416 € 7295 2.2388 0.0443
1.2000 242690 N 1965 Caa277 1.8238 0.0264
1.3000 1.2330 0.1068 Ce 26493 1.4818 0.0162
1.4000 0.6700 0. 0580 Cala45 1.2016 0.0103
15000 0e3641 N 0315 0.0834 0.9730 0.0068
1.6000 0.1979 0.0171 0a0479 0.7872 0.0046
1. 7000 0.1075 0.,0091% 0.0275 0.6364 0.,0033
1.8000 0.0584 0. 0051 0.0157 0e 5142 0.0024
1.9000 0.0318 0.0027 0.0089 0.4153 0.0018
2.0000 00173 0.0015 0.0051 0.3354 0.0014
2.1000 0.0094 0.0008 0.0029 0.2708 0,0011
242000 0.0051 0.0004 0.0016 042186 0.0008
2.13000 0.0028 0. 0002 0.0009 0.1764 €. 0007
2.4000 2.9015 0.0001 0.0005 Oe 1424 0,0005
2.5900 0.0008 0.0001 0.0003 0.1149 C.0004

C. NUMERICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS

The material of this section, except that on the matrix exponential
method, 1s drawn largely from Benyon (1968) and IBM Application
Program Manual H20-0367-3. Benyon’s article, in particular, should be
consulted for further details and entries into the literature.

1. Euler (Rectangular) Method
The technique employed in Examples 10, 12, 13, and in program

SILVER SPRINGS preceding is the Euler or rectangular method. Consider
the system of differential equations

x = f(x, 1)
any one of which at an arbitrary time n can be represented as

X, = f Xy, ty).

A solution in the interval (¢, , t,,,) is depicted graphically in Fig. 60.
The objective of numerical approximation is to estimate this solution,
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x(1)
(/nH anH)
%‘nH
%) 7" :Ax,,=A/(i,,)
";n
At
s ’
4! ,nﬂ
Fic. 60

i.e., to determine a new value of x, x,,,, after some time interval of
choice, 4t = t,,; — t, , given an initial value x, and the amount 4dx,
that it changes in the interval. That is,

Xpp1 = % + dx,

is to be approximated because the only information available is x, and
its instantaneous rate of change %, = f(x,, , t,). The approximation is

Xppp = Xp + At(f(xn ) tn))

and reference to Fig. 60 indicates that the error ¢,,,, which
results from assuming a constant slope %, for the function over the
computation interval, is proportional to the length At of this interval.
In other words the error can be controlled by making A4t appropriately
small.

Once x,,, is approximated

Xpp1 = %, + At("‘cn)’ (la)

the new value is used to compute a derivative to serve as a slope over the
next computation interval (¢,,, , £,.s)

Xpp1 = f(xn+1 ’ tn+l)- (lb)

A sequence of calculations beginning at any arbitrary time ¢, would then
be
Xy = f(Xn » 1)
Xpp1 = Xp + At(%,)
Snp1 = [(Rnsa s tnva)

Xnpa = Xnyy + Ab(n1)
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The errors € at each calculation accumulate, limiting the period of time
over which a response can be calculated with usable accuracy.

This method was implemented in Examples 10, 12, 13, and program
SILVER SPRINGS in the following way, as illustrated by the SILVER SPRINGS
linear model herbivore compartment (Table IV):

Procedure Example
p = f(Xp tn) Herbivore equation:

Xy = Fop(t) + m19%1 — %opo + pas + Ta3)
dx, = At(x,) px2 = DT * (F02 4 TAUI2 % X1

— X2 * (RHO20 -+ MU2S5 + TAU23))
1 = %, + dx, X2 = x2 4+ px2

Enp1 = [(Xni1s tn+1)

X

2. Adams—Bashforth (Predictor) Methods

In the Euler method inaccuracy results from assuming a constant
slope in each solution interval. The problem then is to estimate how the
slope of the solution equation actually changes in each interval A4z.
The general approach of “predictor” methods is to use past values of
x and % to estimate an average slope over the next computation interval by
fitting a polynomial to the past and present values. The one-step method
uses one past value.

Fic. 61

Referring to Fig. 61, and letting = be a relative time variable with
origin at ¢, (i.e., 7 = 0 when ¢ = ¢,), the approach is to define a poly-
nomial (quadratic) with slope #,_, at ¢,_; , and which passes through the
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point (¢, , x,,) with slope %, . The polynomial is then to be extended to
t,., to approximate x,_, .

(1) Define a quadratic: x = a + br + ¢
(2) The slope at any point is: & = b + 2¢r.

(3) The coefficients a, b, and ¢ must satisfy the following conditions:
(a) Att = t,, 7 = 0 and from the quadratic equation
a=x,.

(b) Similarly, at ¢ = ¢, the second equation gives

b=az,.
(c) At t =1t, ;, = = —At, and substituting into the second
equation
_ — S
b — 2¢(dt) = %, and c o

(d) At t = t,.,, = = At; substituting the above-derived values
of a, b, and ¢ into the quadratic equation

Xny1 = X + (xn) T + (x—";-AfJi) 7'2
3 1
= sy 4 7 (5 0 — 5 %0
At
Xpi1 = Xy + 7 (3xn - xn—l)' (23)

This is the same basic form as in the Euler method, but (x,) in the latter
is now replaced by a weighted mean of the current and past slopes,
(3%, — 3%,_,). Using the new value x,,;, the derivative is updated as
before for use in the next calculation

Enpr = f(Xni1s tnsa)- (2b)

In this “second-order” version of the Adams—Bashforth predictor
approach, errors are proportional to (4¢)? instead of 4¢, a reduction since
0 < 4t < 1 always in applications. The fourth-order method based on
the use of three past slopes and a fourth-degree polynomial is

Xppy = Xp + %(553&,, — 593,y + 374, — 9%,_5) (3a)

Xpyy = f(xn+1 ’ tn+1)- (3b)
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The error in this method is even further reduced to being proportional
to (dz)*.

3. Predictor—Corrector Methods

a. Constant Step-Size (Adams—Moulton). In predictor—corrector
methods, x,,, and %,, are calculated by a predictor method, but these
are then regarded only as preliminary estimates, £,,, and £, ,. The
estimate of the next slope is then included in the fitted polynomial and,
for example, the fourth-order equations become

4t .
Xy = %o + EZ (9xn+l + 19%, — an—l + xn—z) (43)
Insr = f(Xnp1 s tnsa)s (4b)

where £, , is as yielded by Eq. (3b).

In iterated variants of the predictor—corrector rationale, the last-
computed slope in Eq. (4b) is still regarded as an estimate %,,,—a very
refined estimate—to be cycled back through Eq. (4a) in an iterative loop

At , =
Xppy = X, + 24 (9% + 192, — 5%,y + %) (52)
Epia :f(xn+l ’ tn+1)' (Sb)

b. Variable Step-Size ( Milne). Methods which vary the length of the
integration interval 4t do so in response to an estimate of the error at
each step of the calculation. If estimated error exceeds a specified bound,
At is reduced until the error remains in bounds. The Milne fifth-order
predictor—corrector method is

Fppq = Xpy + 43—t (8%, — S5,y + 4%,y — %,_3) (6a)
Epiy =fRnirs tnia) (6b)
Koy = é(xn + Txny) + 1‘;—; (658, + 2436, + Slk,y + &,_p)  (6€)
Xy = 0.961164,,, + 0.038844, ., (6d)
Xy = [(Rnsr > tnia)- (6e)

Note how this method, unlike preceding ones, makes use of information
about the past state x,_, of the system.
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4. Simpson’s Rule Method

With methods that look at the past history (states and/or derivatives)
of a system’s behavior, the first few points must be computed by some
other means (e.g., Euler method) since there is no history to look back to.
Simpson’s rule and Runge-Kutta methods (below) search forward.
With t,,/, signifying 4t/2, and «x,,/, the state a half-step forward, the
Simpson’s rule method can be summarized as

At
Xnt1/2 = Xnp + 7 (xn) (73)
Zni12 = (Xns1/z s tusr2) (7b)
., at
Rpi1 = Xppye + 3 (%nt1/2) (7¢)
"/‘én+1 :f(ﬁn+l ’ tn+1) (7d)
a4t . .
xn+1 = Xn + ? (xn + 4xn+1/2 + xn+1) (78)
xn+1 = f(xn+1 y tn+1)' (7f)

The procedure of this method, which is basically a predictor—corrector
method, will become clear in the discussion of Runge-Kutta methods

below.

5. Runge—Kutta Methods

Following is a description of the fourth-order Runge-Kutta method.
Referring to Fig. 62:

x(1)

(FasnXaes)

Bl
NS
+
~
~
NS
+
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(1) Go halfway (4¢/2) through the step to point P using %,
at .
x£+1/2 = X, + 7 (xn) (Sa)

niise = f(Xnaz » tuirse)- (8b)
(2) Repeat the same half-step through the interval (¢, , t,,,/,), this
time using the slope just computed
at .
XDiysy = %n + 3 (Fns1/2) (8c)
xg+1/2 = f(x7?+1/2 » tnva/e)- (8d)

(3) Take a whole step Az with this new slope to reach the point xf_;

xﬁ+1 =%, + At(’égﬂ/z) (8e)
xﬁﬂ :f(xﬁ+1 » Ena)- (8f)

(4) The field forward has now been well explored, and a weighted
mean of the various slopes is used to carry out the final, accurate step
forward

at . . . .
Xppy = %p + r3 (%, + 2x5+1/2 + 2x,?+1/2 + xﬁ+1) (8g)
Fn1 = f(Kny1 s tagr)- (8h)

A one-parameter family of second-order Runge-Kutta methods in
which the step-length forward is arbitrary (0 << o < 1)is

Xppg = X, + o Ab(,) (9a)
Fpio = f(Xnia» Inta) (9b)
St = %+ A1 (1 o) 0 5 ) (9¢)
Fpyr = f(Xns1 s tnir)- (9d)

6. Trapezoidal Method

When « = 1, the second-order Runge—Kutta method collapses to the
trapezoidal or improved Euler method

£ppy = 2 + At(xn) (loa)

£n+1 :f(inﬂ ’ tn+1) (IOb)
At .

Xnyp = Xy + _2‘ (.72'" + xn+1) (IOC)

Eny1 = f(Xni1s tnia)- (10d)
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7. Matrix Exponential ( Paynter’s) Method

Consider an unforced (homogeneous) system of linear differential
equations written, as in Example 12, in vector—matrix notation

x = Ax,

where x is the solution vector and A the coefficient matrix. Just as in
Example 4 where the solution of N = N was shown to be N(¢) = N(0)e",
so the matrix equation above has the solution

x(t) = e2x(0).

Over a computational time interval (¢, ,¢?,.;) this solution can be
expressed as
Xpyq = e44tx,

or, letting = be a variable representing step-length,

x(t, + ) = e47x(t,).

The matrix exponential e4” is defined operationally by a truncated Taylor
series

A A A
I+A+(T)+(;)+ +(T),
where I is the identity matrix (diagonal elements = 1, off-diagonal

elements = 0) with the same number of rows and columns as 4.
For forced systems the corresponding differential equations are

X = Ax + z,

where z is the forcing vector as in Example 12. The general incremental
solution is

X(t 4 -r) _ eAfx(t A(t,,+r)f —Afz(_r

whose exact solution in the case where z is constant over the step-length is
x(t, + 1) = e17x(t,) + (ed” — I) A-1z(t,). (11

This is the basic equation of the method. The symbol A~ is the inverse
of matrix 4 (i.e., A=A = AA-! =I), but it does not have to be calculated
since it can be shown that

. 1 . A-r (A-r)2 (A-r)k_1
(47 = D) A1 = 7 (14 57 4 S50 e ),
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Because this series is so similar to that which represents e47, it becomes
very economical to compute both matrices (i.e., e4” and (e4” — I)4~1) in
a single computer program, and to use these to solve the system by
applying Eq. (11). Such a program is described below.

D. A GENERAL-PURPOSE PROGRAM: MATEXP

MATEXP (Ball and Adams, 1967) is a general purpose Fortran IV
program for solving large systems of differential equations by the matrix
exponential method. The program is highly efficient, and is said to yield
virtually exact solutions. It is available for both nonlinear and linear
equations, with constant or time-varying coefficients and forcings.
Discussion here will be restricted to linear constant-coefhicient systems,
with the Silver Springs linear model (Section III.H) taken as an illustrative
example.

In the program the ¢4 matrix is termed the “c” matrix and the
(e” — I)A~! matrix is called the “HP” matrix. These matrices are
computed to nearly any desired accuracy (specified in the data input).
Solution proceeds in the following manner

x(t, + 7) = cx(t,) + HP z(t,).

Just one time increment + = A4t is required, and therefore the ¢ and
HP matrices need to be evaluated only once.

The basic parts of the MATEXP program are the main program MATEXP,
a utility subprogram ouTPUT called as a subroutine for outputting, and
DISTRB, a subroutine for calculating nonconstant forcing functions and
also coefficient sensitivities 9x/0a;; . Sensitivity analysis is an important
subject in systems analysis, and the MATEXP program permits ready
implementation of the sensitivity concept (see Volume II, Chapters 1
and 2). There are many options available within the context of the basic
program, e.g., time-varying coefficients, nonlinear differential equations,
arbitrary function generation (comparable to the vDFG capabilities of
analog computers), variable transport lags, etc. In general, it is a good
program to have in one’s library for implementing dynamic models of
ecological systems. Following is a brief description of the basic informa-
tion required to use it.

The data to be read in include the initial X vector, the coefficient
matrix A, and the constant forcing vector z. Additional information
required for each run includes the number of equations, initial time,
computation time interval, final time, and printing interval—much as
for program SILVER SPRINGS. Since -many elements of the coefficient
matrix often are zero, only nonzero elements need to be read in. This
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makes it necessary to enter also the row and column index numbers of the
corresponding coefficients. Similarly, only nonzero initial conditions
and forcings are read in with their row numbers. Since successive cases
in a run may require only one or a few changes, options are available so
that only altered data need to be entered.

For each case in a MATExP run, four types of data input cards are
necessary as shown in the Type 1-4 tabulations below.

TYPE 1
MATEXP Control Card®

Column: 1-2 3-5 6-7 8-10 11-20 21-30 31-40 41-50 51-60 61-62

Format: 12 12 rl0.0 rl10.0 Fr10.0 Fl10.0 F10.0 12
Input: NE @ 1w @ P TZERO T TMAX  PLTINC MATYES
Type 1 (cont.)

Column: 63-64 65—-66 67-69 70 71-72 73-74 75-80
Format: 12 12 13 11 12 12 F6.0
Input: 1CSS JFLAG ITMAX LASTCC 11z ICONTR VAR

¢ Key to control card variables: NE is number of equations; LL is coefficient matrix tag
number; P is precision of ¢ and HP (recommend 10~° or less); TZERO is zero time; T is
computation time interval; TMAX is maximum time; PLTINC is printing time interval;
MATYES is coefficient matrix (A) control flag: 1 is use previous A and T, 2 is read new
coeflicients to alter A, 3 is read entire new A (nonzero values), 4 is DISTRB to calculate
entire new A, 5 is read some, DISTRB to calculate others, 6 is DISTRB to alter some A elements.
Icss is initial condition vector (x1c) flag: 1 is read in all new nonzero values, 2 is read
new values to alter previous vector, 3 is use previous vector, 4 is vector = 0, 5 is use
last value of X vector from previous run. JFLAG is forcing function (z) flag: 1-4 is same
as for 1css for constant z, S is call DISTRB at each time step for variable z. ITMAX is maximum
number of terms in series approximation of exp(AT). LASTCC is nonzero for last case
(blank otherwise); 11z is row of z if only one nonzero, otherwise = 0; ICONTR for internal
control options: 0 is read new control card for next case, 1 is go to 212 call pIsTRB for
new A or T, —1 is go to 215 call DISTRB for new initial conditions. VAR is maximum
allowable value of largest coefficient matrix element times T (Recommend varR = 1.0).

TYPE 2
Coefficient Matrix a%?

Column: 1-3 4-6 7-18
Format: 13 13 E12.3 Repeat, 4 per card
Input: Row No. Column No. Coeflicient

¢ Include if MATYES = 2, 3, or S.
® Notes: (1) All row and column number entries on a card must be nonzero. (2) Insert
blank card after last A-matrix card. (3) Format option: data can be entered in F format.
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TYPE 3
Initial Conditions Vector x1c®?

Column: 1-2 3-5 6-17 Repeat columns 3-17,
Format: 12 13 El2.3 5 per card
Input: MM* Row No. 1.C. value

% Include if 1css = 1 or 2.

® Notes: (1) All row number entries on a card must be nonzero. (2) Insert blank
card after last XI1C card. (3) Format option: data can be entered in F format.

° MM is initial state vector tag number.

TYPE 4

Forcing Vector z*?

Column: 1-2 3-5 6-17 Repeat columns 3-17,
Format: 12 13 E12.3 S per card
Input: KK¢ Row No. z Value

¢ Include if jrLAG = 1 or 2.

® Notes: same as for T'ype 3 cards.
¢ KK is forcing vector tag number.

For further details on the use of DISTRB and other subprograms, Ball
and Adams’ report should be consulted directly. A listing of the MATEXP
main program, and the two subroutines DISTRB and a version of OUTPUT
appears in Appendix A. Table VI is a sample of output for the linear
Silver Springs model: its free response which can be compared to that
computed by the Euler method in Table V. The MATEXP output is the
more accurate.

E. DicrraL SimuLaTiON LANGUAGES: s/360 csMP

1. Introduction

Simulation languages essentially attempt to provide access to digital
computers for purposes of studying time-behavior of dynamic systems
without programming in a complex general purpose language such as
Fortran. They are special purpose languages based on the common
features of all simulation problems, and as such they are relatively simple
and easy to use. The latest entries into the field, one of which is described
below, incorporate virtually every feature of analog computers—except
instantaneous turnaround. There is little question that simulation langu-
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ages, because of their great power, versatility, and simplicity, will become
of leading significance to ecological modeling in the years ahead.

Some of these languages, without translating their acronyms or
discussing their characteristics or interrelationships, are: Gpss, DYNAMO,
MIDAS, PACTOLUS, MIMIC, DSL/90, cssL, 1130 csmp, and s/360 csmp.
The last one, IBM’s System/360 Continuous System Modeling Program,
is introduced below. Benyon (1968, Table 4) summarizes the numerical
integration methods used with most of these languages.

TABLE VI
Free RESPONSE OF SILVER SPRINGS LINEAR SYSTEM BY PROGRAM MATEXP?

MATEXP CASE 1

NO. OF EQUATIONS 5

SPECIFIED PRECISION 0.00000010
TIME INTERVAL 02,01000000
PLOT INCREMENY 0.09999996

CONTRM FLAGS -
MATYFS 3
1CSsS 1
JFLAG 4
ICONTR 0

MAX, TERMS IN EXPONENTIAL APPRNX. 30
SINGLF 27 ROW

MAX. ALLOWABLE A*DT 1.300

MAY, ALLOWARLE QPT FLFEMENT 10.000

MAX.COEFFs MATRIX ELEMENY = A( 5, 5} = -0+14886F 03
MAXe AXNT = 0094299936 WITH DELTA T = 0400500000
MINIMUM NON-ZERN ELFMENT = Al 4, 3) = 0« 3390E 00
QATION AMAX/AMIN = 2.5563F 03

NOe. OF TERMS IN SERIES APPROX, OF MATEXP = 11

TOTAL NO, OF T HALVINGS = 1

Al
-6.C080F 0C 0.0 %0 s 0 N0
8.400F-01 -1.578F C1 9.2 N0 0.0
0. C 1. 790F 00 -6.179F DO Q40 0.0
0.0 %0 1.390F-01 -24142F 00 9.0
1+C10E OC 5.137F 00 T.410F-01 6,760F-01 -1.,886E N2

[
9.,410F-01 0.9 Je 0 0.C De 0
T«533E-03 R,560F-01 2J,7 0.0C f.C
6.840FE-06 14604F-N2 9,401E-01 2,0 2.0

Te8ROE~-CR  2,R71E-05 3.252F-N3 O9,78RF-01 1.0
Ge 4RGF-03  2,0RRF-02 3,209F-03 2,999F-13 1,517F-01

up
1.994E=79 =T,721F 40 2,013F 55 6.644F 12 -1.013F-39
1,994€~79  A443LE-C1 3,141F=61 0,336FE-66 =5,173 E-67

2.0 —4a17SF 27 1.106E 21 =2,911F-78 6.350F-02

0.0 -1e253F 77 3.841F 033 -2,670F-20 1.0RRE-T8

2.0 Te569E-01 14 153F 19 1«4CRSE N9 5,94T7F-78
T = 0.0 =

X =
2,4212597T7F 03 2,134300RTF €2 6,20590076F 01 9,75999923EF (0 2+43999930F 01

T = 1.C00E-N1 X =
1e86246387E 03 1444736410F 02 S5,704T63TOF 01 9.TITIIOSNF 0O 1,45943232F 01

T = 2.C00F-71 X =
1.01610449F 03 Re4290T25TE 01 4.52344260F 0] %, 40733405F N0 8,189R7601F 20

T = 3.CCOF-01 X =
5e52116455F 02 44 TORITTORE C1 3.2735778RF (1 B.77515RRRE N0 4.54N1N868F 00

T = 4,CO0E-N1 X =
3.00502529E 02 ?7.58903101F N1 2.22382953F 01 7.90933418F 00 2.50835991F €9

T = 5,CN0E-01 X =

a — 1 1 i
MATEXP = matrix exponential method. Table continued
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TABLE VI (continued)

"

1.63653924F
6. CONE-N1 X =
849799334 7F
7.090E-01 X =
4,A5CQ0637F
ReD00E-I1 X =
2.64101410F
9.CCCE-"1 X =
1.43786440F 0]
1.C00F N0 X =
7.872828149€
1.1C0F 00 ¥ =
4.26201249F
1.200F 00 % =
2.3213992RE
1.200F ") X =
1.26331043F
1.4CNF 73 X =
6487794030F-01
1,500F 19 X =
2, 74461234F-01
1.600F 90 X =
2,03P70933F-01
1.700F 00 X =
1.169948756-01
1. ROOF 00 X =
6404296299F~02
1.900F 20 X =
2,290C1918F-C2
2.000F 00 X =
1.79121122€-02
2.100F N0 X =
9,76273142F-073
?.2C0F Q0 X =
5.30936196F-03
2.300F N0 X =
2.R90615469E€-03
2.4C0F 00 X =
1.57376099E-03
?2.500F 90 X =
R.56B814906F-04

02
o1
01

o1

co
00
co

ekl

14414090941F N

T. 7093R587€ 00
44 19944572F €O
2. 294 TAN36F 0N
1.24509811F 00
fe TTIQR1OIF-71
3. 690 TTH23F-N1
?7.2N340420E-01
1.793994 9RE-01
Ge 984 111R5E-C2
3. 24274153F-02
1, 765471 70F=02
9,611R7854F=03
Se 23305312E-03
2 B4ONTIALF-03
1.56114522E-03
Re 445016 5TE-04
4, 597T7TR123E-04
245331971 7F-04
14362833375-04

7.41981203E-05

1.45029402F C1

9.19054031E €O
5. 702204615 NO
3.4R11R591F 00
2.99837723F 0P
1.25191784F OC
T+ 40613163F-01
4438035765F-01
2.54001916F-01
1.47534251F-C1
R.53073597FE-02
4.91313423E-02
2,81974711F-02
1.61326006F-02
9,20410082F-03
5423794R815E-03
2.97404919£-03
le 6R5125755-03
9,52992123F-04
5.38005959F-04

3.03239562F-C4

6.933860 20F
5.9501N567F
5.02429581F
4,19183840F
3.46627331F

2.84751225€
2.32792960E
1.R9643478E 0D
1.54094315F
1. 249 74346F
1.01220036F 00
3.19015920F-01
6.62237644E-01
5.38201907£-01
443238N438E-01
3,49223733F-01
2.8200A046E-01
2.27701843F-01
1.A38362A1£-01
1.484115126-01

1le 19807841F=-01

1.38639069F €O
7.6B8251181F-01
4,276327495-01
2.3964N176E-01

1.35587990F-01

0 T4 77454972F-02

4453RK4075F-02
24 71196254F-N2
la 5677871 3F-02
1. N606RA50E-N2
649979121 2F-03
4,79221717F-03
3.39925452E-n3
244R705433E-03
1.86693249€~03
1.42999R78F-03
1.11214397£-03
BeT4645T75E-DN4
6.93380134F- 04
5.52778132F-N4%

4,42413148E-04

2. s/360 csmp

This simulation language is described by Brennan and Silberberg
(1968), and in IBM Application Program Manuals H20-0240-1 and
H20-0367-3, the last being a user’s manual with full details.

a. Elements of the Language. Numeric constants are either integer or
real, and represented essentially as in Fortran. Symbolic names of one to
six alphameric (alphabetic A through z, numeric 0 through 9) characters
are used to represent real variables. Certain words reserved by the
language are exluded as symbolic names. Integer variables are specified
with a FIXED translation control statement (one of the kinds of control
statements used to specify operations associated with translation,
execution, and output segments of a program). Symbolic names can be
subscripted according to the normal rules of Fortran. Operators [+, —,
*, [, **, =, ()] are as in Fortran, including the order in which they are
performed.



1. ECOLOGY SIMULATION PRIMER 87

Functions are operators which perform complex mathematical or other
simulation-relevant operations. The basic $/360 csmp library includes all
the standard functions found in analog computers, plus a number of
special purpose functions often encountered in simulation problems.
Additional functions can also be supplied by the user. Examples from the
standard library include those listed in Table VII.

TABLE VII
Name of function General form Operation
Integrator Y = INTGRL(IC, X) Y=1c+ f:) X dt
where: 1c = v(0)
Derivative Y = DERIV(IC, X) Y = dX/dt
where: 1c = x(0)
Time delay Y = DELAY(N, P, X) Y(t) = X(t — P) when t > P
where: N = number Y(t) = 0 when ¢t < P

of points in interval p;
p = delay time
Function switch Y = FCNSW(X; ,X,,X3,%Xs) Y =X, when X, <0
Y=X; when X, =0
Y=X, when X; >0

Comparator Y = COMPAR(X, , X,) Y=0 when X, < X,
Y=1 when X, > X,
Arbitrary function Y = AFGEN(FUNCT, X) Y = FuncT(X)
generator (linear
interpolation)
Arbitrary function Y = NLFGEN(FUNCT, X) Y = runcT(X)
generator
(quadratic
interpolation)
Step function Y = STEP(P) Y=0 when t <P
Y=1 when t > P
Ramp function Y = RAMP(P) Y=0 when t < P
Y=t—P when t>P
Sine wave with Y = SINE(P, , P2, Py) Y=0 when t < Py
delay, frequency, where: P; = delay, Y = SIN(Py(t—P,)+P;) when t > P,
and phase P, = radian
parameters frequency,
P = phase shift
Largest value (real) vy = amaxl(x;,X,,...,X;) Y = Max(X,, Xs,..., X,)

The first word of s/360 csmP data and control statements is a label.
It identifies the statement as of a particular type. Examples include
TITLE, INITIAL, INCON, CONSTANT, DYNAMIC, FIXED, MACRO, PARAMETER,
PRINT, PRTPLOT, LABEL, TERMINAL, TIMER, END, STOP, ENDJOB. Some of
these labels will be explained in an example later.
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b. Program Structure. 'Thes/360csMP formulation of a model consists
of three program segments, identified by statements containing the labels
INITIAL, DYNAMIC, and TERMINAL. Computations preliminary to solving
the system differential equations are performed in the INITIAL segment,
and subsequent ones in the TERMINAL segment. The equations are solved
numerically in the DyNaMIC segment. The INITIAL and TERMINAL
segments are optional in a program, but the DYNaMIC segment is
mandatory. An END statement is used to complete specification of the
model’s structure.

Structure statements define the model to be simulated. They have the
general form Y = f(X,, X,,..,P;,P,,..), where X’s are inputs,
P’s parameters, and Y the output from the “device’” (e.g., a function)
represented by the structure statement. Examples of structure statements
include

NDOT = R * N
FIJ = PHIIJ * XI * X]

x2pot = FO2 4 TAUI2 * X1 — X2 * (RHO20 +4 MU25 4 TAU23)
X2 = INTGRL (Ic2, X2DOT)

In general, rules for structure statements follow those for Fortran
statements. Some particular points are: (1) If an INTGRL function is
included in an expression, it must be the rightmost part of the expression
(e.g., z = INTGRL (IC, X) + Y is Incorrect, but z = Y + INTGRL (IC, X)
is correct). (2) Continuation cards are identified by ‘“---” as the last entry
on cards which precede them. There may be up to nine cards in a
statement. Cards should not be continued in the middle of variable
names or constants. (3) Comment cards are denoted by an asterisk in
column 1. (4) As in Fortran, columns 73-80 are not processed by the
compiler.

c. Data Statements. Data statements are used to assign numerical
values to constants, parameters, initial conditions, and variables with
fixed values during a run. Referring to data for the Silver Springs linear
model (Section III.H and I'V.C), some sample data statements are

PARAMETER All = —6.08, A22 = —15.78, A33 = —6.179,...
Ad4 = —2.142, A55 = —188.6

consTANT FOl = 20810., Taul2 = .84, mulS = 1.01,...
RHOI0 = 3.5, LAMDIO = .73,...
FO2 = 486., TAU23 = 1.79, mu25 = 5.13, rHO20 = 8.86,...
TAU34 = .339, mu35 = .74, rRHO30 = 5.1, mu45 = .676,...
RHO40 = 1.466, rRHOS0 = 188.6

INCON 1cl = 3421.26, 1c2 = 213.44, 1c3 = 62.06,...
1c4 = 8.87, 1c5 = 24.38
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Some rules for data statements include: (1) Each data type is identified by
an appropriate label, such as PARAMETER, CONSTANT, and INCON, among
others. The label does not have to start in column 1, but it must be
followed by at least one blank before data is entered. (2) Data statements
may be continued on an indefinite number of cards. (3) Data may appear
anywhere on a card following the card label. (4) Unlike Fortran, data-

ECOLOGY SIMULATION PRIMER

card columns 73-80 are not processed by s/360 csmp.

d. Control Statements.

statements.

TRANSLATION CONTROL STATEMENTS

ExaMPLE LABELS

FIXED

MACRO

ENDMAC

INITIAL
DYNAMIC
TERMINAL

END

CONTINUE

SORT
NOSORT

sTOP

ENDJOB

PurproSE

Converts real variables to integer variables.

These labels identify a group of statements
defining a ‘““™macro,” a large functional
block constructed by the user.

These three labels identify the major
segments of the program.

This statement marks completion of the
model’s structural description.

Replaces the END card when a run is to
continue from some arbitrary point where
a preceding run terminates. Neither time
nor IC’s are initialized. This statement
allows a control statement to be changed
during a simulation.

These cards determine whether a sequence
of cards is to be machine-sorted into
correct order or not.

This card follows the last END statement in
the program.

This card denotes the end of a job and
must follow the sToP card (or otherwise
any Fortran subroutine used). The label
ENDJOB must be punched in columns 1-6.

Certain operations related to translation,
execution, and output segments of a program are specified by control
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TIMER

FINISH

RELERR

ABSERR

METHOD

BERNARD C. PATTEN

EXECUTION CONTROL STATEMENTS

This label is used (e.g., TIMER FINTIM =
10., pELT = .001) with the following
csMmp-specified variables:

PRDEL Output print increment
OUTDEL Print—plot output print increment
FINTIM Maximum time for simulation

DELT Integration step-size, 4¢. If DELT
is not specified, it is automatically
set equal to the smaller of PRDEL
and oUTDEL. If neither of these is
specified, DELT is adjusted to be a
submultiple of FiNTIM/100

DELMIN Minimum allowable integration
interval for variable-step integra-
tion methods.

Used to specify run-terminating condi-
tions other than FINTIM.

Used to specify relative error when
variable-step integration methods are used.

Controls absolute error when the Runge—
Kutta variable-step method is used.

Used (e.g., METHOD MILNE) to specify the
integration routine used. If none specified,
the Rks method is used. Integration-
method labels are:

ApaMs Egs. (2)

CENTRL A dummy routine to be replaced
by a user-supplied method

MILNE Eqgs. (6), variable-step

rRecT  Egs. (1)

RKS Eqgs. (8), variable-step, Simpson’s
Rule to estimate error

RKSFX Egs. (8), fixed integration interval

ssmp Egs. (7)

TRAPZ Egs. (10).
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OUTPUT CONTROL STATEMENTS

PRINT Specifies variables whose values are to be
printed at each PRDEL interval.

TITLE For naming the program, etc.

PRTPLOT Specifies variables whose values are to be
print-plotted (e.g., Table VIII) at each oUTDEL
interval.

LABEL Used to specify headings for each page of
print-plot output. Up to 10 per run
permitted.

RANGE Used to obtain maximum and minimum

values of specified variables (done auto-
matically for PRTPLOT variables).

Example 14

A 8/360 csMP program to obtain the free response of the Silver Springs
linear model (Sections III.LH and IV.C) by the Milne method is as
follows:

TITLE SILVER SPRINGS LINEAR SYSTEM

* INITIAL PROGRAM SEGMENT.
INITIAL

* ENTER DATA,
INCON ICl = 3421.26, 1c2 = 213.44, 1c3 = 62.06, 1c4 = 8.87, 1c5 = 24.38
coNsTANT FOl = 0., F02 = 0., Taul2 = .84, Tavu23 = 1.79, Tau34 = .339,...
mulS = 1.01, mu25 = 5.13, mu35 = .74, mu45 = .676,...
LamMpl0 = .73, rRHO10 = 3.5, rRH020 = 8.86, RHO30 = 5.1,...
RHO40 = 1.466, RHO50 = 188.6

* COMPUTE MINUS TURNOVER RATES (A-MATRIX ELEMENTS).
All = —(raul2 4+ mulS 4 Lampl0 + rRHO10)
aA22 = —(tav23 + mu25 + rHO20)
A33 = —(tau34 4 mu35 + rHO30)
a44 = —(Mu45 4 rRHO40)

A55 = —RHO50
* DYNAMIC PROGRAM SEGMENT.
DYNAMIC

x1 = INTGRL (Icl, FO1 + all * x1)



92 BERNARD C. PATTEN

X2 = INTGRL (12, FO2 + TAU12 * x1 + A22 x X2)
x3 = INTGRL (Ic3, TAU23 * X2 + A33 % x3)
x4 = INTGRL (1c4, TAU34 * X3 4 a44 x x4)
x5 = INTGRL (1¢5, MU1S * x1 + mMU25 x x2...

+ Mu35 x x3 4+ mMu45 x x4 + A55 x x5)
suMxX = x] + x2 + x3 + x4 + x5

* NO TERMINAL PROGRAM SEGMENT REQUIRED.

* SPECIFY INTEGRATION METHOD.
METHOD MILNE

* SPECIFY OUTPUT {PRINT-PLOT EACH X AND PRINT SUMX ALONGSIDE),
PRTPLOT X] (SUMX)
LABEL X]

PRTPLOT X2 (SUMX)
LABEL X2
PRTPLOT X3 (SUMX)
LABEL X3
PRTPLOT X4 (SUMX)
LABEL X4
PRTPLOT X5 (SUMX)
LABEL X5

* SPECIFY RUN TIME AND PRINT-PLOT INCREMENT (DELT ADJUSTS
* AUTOMATICALLY).

TIMER FINTIM = 2.5, OUTDEL == 0.1
END

STOP

ENDJOB

The free response of the Silver Springs system, as computed by this
program, is print-plotted in Table VIII, along with a printed output of
suMx. These results should be compared with behavior computed by the
Euler method (Table V) and by the matrix exponential method
(Table VI).

Exercise 13

(1) Write a s/360 csmP program to solve the Silver Springs nonlinear
system (Sections III.LH and IV.C) by the fourth-order Runge-Kutta
fixed step-length routine. Generate system behavior for 10yr, and print
the results out at intervals of 0.2 yr.
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TABLE VIII

FReEE RESPONSE OF SILVER SPRINGS LINEAR SySTEM BY s/360 csmp?

93

X1

T IME

0.0
1.0200F-01
2,0000E-01
3.0300r-01
440002€-01
5.0000E-01
64 COCOF-01
7.0000E-01
8400C0E-C1
9+ 000 0E=~01
1.07G0E 00
1.10C0F 02
1.27CCE 00
1.3000E 02
1.400CF. CO
1.5000E 9
1+6000F 00
1. 70C0E 09
1.800CE €O
1.9000F 09
2.00C0E CN
241000k 03
24200CE 0)
2.30C0E GO
244)09E GO
2.50CCE G

X2

TIMF

0.0

1.00170F-01
2.0009E-01
3.0000E-01
4.,0009F-01
5¢09CCE-C1
6.0IC0F-01
7+0000E-01
Re03CHE-O1
9.0000E-C1
1.0000F GN
1. 1200F 00
1.2000F 0N
1.3000F ND
1. 4000F CO
1450CJE 0N
1. 6000E 07
1, 70008 09
1.8000F 03
1.9000F ¢0
2.0001%€ (1)
2.12(CF 02
2,230 09
2+33CIF €0
2440GCE 0O
2.50C0E 09

3

8
X1
344213F 23
1. 8627F 03
1a0lalE 03
5.5211€ 32
3. 0059F 02
la6365E 32
8. 9098F 01
4e8508F 01
2.6410E 21
la4378F 01
7.R281E 07
4.2619F )
2+ 3203F 090
1.2633E 09
6. RTTTE-D]
3, 7445E-01
2,0386E-01
1. 1099€-01
6. C4276-02
3.2898E-02
1la 7911F=-22
9. 7T5156-013
5.3090E-23
2. 8904E-03
1.57376-03
8.5676F-04

6+ 7T7T8RE-O01
3. 6907E-01
2.0094E-01
1.0940E-21
5. 9559E-07
3.2426E-02
1a 7654E-02
9,6115F-03
5.2324F-03
2. 8489E-013
1la5511€-03
8e 444HE-D4
4o 5975€-04
24 5030E-04
le 3628E-04
7+ 4193E-05

MINT™MUIM X1 VER SUS TIME MAXTMUM
«5AT6F-04 3.4213F 03
1 1

R R R N R

MINTMUM X2 VERSUS TIME MAX TMUM

Te 4193F-05 2.1344E 02
1

1
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

SumMx
3, 7300€ 03
2.,0875€E 03
1.1608E 03
64 4478E 02
3,5875€E 02
2.0031€ 02
1.1247€E 02
6.3663E 01
3, 6448E 01
2.1193€ 01
1.2578E 01
7. 6603E 00
4.8115E 00
3.1290€ 00
2.1106E 00
1.4755€E 00
1.0652€ 00
T.9110€-01
640071E-01
4+6389E-01
3.6293E-01
2.8675€E-01
2.2806E-01
1.8195€E-01
1.4605€~01
1.1736€E-01

SUMX
3.7300€E 03
2.0875€E 03
1.,16C8E 03
644478E 02
3.5875E€ 02
2.0031E 02
141247E 02
6¢3663E 01
34 6448E 01
2.1193E 01
1.2578€ 01
T« 6603E 00
4.8115€ 00
3.1290€ 00
2.1106€ 00
1.4755€E 00
14 0652E 00
T7.9110E-01
6. 0071E-01
44 6389E-01
3,6293E-01
2. 8675€E-01
2.2806E-01
1.8195E-01
1+ 4605€E-01
1.1736E-01

¢ Results obtained by the Milne method.
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TABLE VIII (continued)

X3

TIME
9.0

1.0000F-01

240000F-
3.0000€-
4e 000 CE~
5.03CAF-

el
1
(<D
n

6.CICJE-C1

7.0000F-

¢l

8.0000F-"1
9.0000F-01

1.7000F
1. 1000F
1. 23C o€
1.3700¢
1.4000F
1. 52COF
1.600Q€
1.7000F
1.89C0¢
1.9000€
2.0000F
2.1000F
2420C0F
2. 3000F
2.4000F
2,5000¢

X4

TIME
0.0

1.0000E-
2.0300F-
3. 0JCOE-
4.07G0E-~
5.00C0E-
6.0000E-

on

el
Cl
¢l
01
01
01

7+0)COF-01

Be 0JCOE-
9.0000E-

1.0009F
1.100CF
1.2303€
1.3J0CE
1. 4JGCF
1.50COF
1.60C3E
1. 7200F
1«8700E
1. 9209F
2¢0JC0OF
2.10C2€E
2. 2700€
2.30COE
2. 490CE
2.5000¢F

1
01
Q20

3

5.704RE D1
4e 5335F 01
3.273kE 01
2.2238E 01
1.4503€ 01
9.1905€ 00
S« 7022 00
3.4B812F 09
2.0984F 02
1l 2519€ 09
T.406CE-01
4 3503€-01
24 5400£-01
1.4753F-01
8. 5306£-02
4.9130E-02
2.8197€-02
1le 6132€-02
9.2039€-03
5.2378€-03
2. 9740E-03
1.6851F-03
9. 5297€-04
543799€-04
3.0323¢-04

X
8. B700F 00
8+9986F 0N
848279F 00
8.3071% 00
7.5315 00
6.62B88F 09D
S5« 7039€ 00
4 B256F 00
4e 0314 0N
3. 3363 00
2,7430€E 09
242435€E 09
1.8283¢ 00
1.48595 02
1. 2053€ N2
9. 7636E-01
7.9008€-01
6. 3883E-01
5¢1635F-01
4e 1716E-01
3, 3694E-01
2.7209E-01
2.1970F-01
1,77388-01
1e 4320£-01
1. 1560E-01

MINTMUM X3 VERSUS TIME MAX I MUM
«0323E-04 6. 2060E 01
1 1

_— -~

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

MINTMUM X4 VERSUS TIME MA XTMUM
1. 15€0F-01 B.99B6E 00
1 1

—-—— +

—-——

——— +

————

————— +

————— -+

SUMX
3.7300€ 03
2.0875F 03
1. 1608€ 03
6.447BE 02
3.5875€ 02
240031€ 02
1.1247€ 02
% 3663E 01
146448E 01
2,1193€ 01
1.2578€ 01
T+6603E 00
4. 8115 00
3.1290€ 00
2. 1106E 00
1.4755€ 00
1.0652€ 00
7.9110€-01
6.0071€-01
4.6389E-01
3.6293€-01
2.8675E-01
2.2806E-01
1,8195€-01
le4605€E-01
1.1736E-01

SUMX
3.7300€ 03
2.0875€ 03
1. 1608E 03
6.447BE 02
3.5B75€ 02
2.0031€ 02
1.1247€ 02
6e3663E 01
3.6448E 01
2.1193E 01
1.2578E 01
T.6603E 00
4«8115€ 00
3,1290€ 00
2.1106E 00
1.4755€ 00
1.0652€ 00
7.9110€-01
6.0071E-01
4o 6389E-01
3.6293E-01
2.8675E-01
2.2806E-01
1+48195€E-01
1. 4605€E-01
1.1736€E-01
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TABLE VIII (continued)
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xS

TIMF
040

1.09 ¢ =01
2.00C2E-C1

3.0700F
44 NOC OF

-C1
-n1

5.072NE-C1
6.09C 0F~21

7. GICOF

-01

R.CNOOE-01
9.03CNE-N1

1. CNOOFE
1.10700€
1.20C"E
1.30CCF
1.4007F
1leS70CF
1.69C QF
1.7700F
1. 8909JE
1. 90CQF
2.01C9F
2410CJF
2.27C0F
2.3000E
244000F
2.52( IF

20
02
(gl
(o)
1o
cn
[¢)
[1D]
29
39
0n
[834]
o
c3
ny
o]

MINIMUM

PAGE

XS VFRSUS TIME

3.44T3E-04 2a

X5
2.4380F 21
1.4591F 91
Ae 1962E 20
425382F 09
2.5070F 39
1e 3B4RE N9
Te6716E-01
4e2707E-01
2,3916£-01
1.3493€-01
Te 74372F 02
4e5241E-02
2.6856€-27
1le 6374F =07
1aC434E-02
60 9276E-013
4e 43139E~013
3.4230F-N3
2.56T0F-03
1.7733F-013
1.2887E-013
1. 0A156F=-03
9eNS511F-D4
4eR343FE-04
6. DICOE~N4
Se2700E-04

+
*
+
*
+
+
*
+
+
*
+
*
*
+
*
+
+
*
+

1

MAX I MUM
4380E 01
I SUMX

=t 3,7300€
2,CHTSE
1.1608E
6e44T8E
3. 5875€
2.0031€
1.1247€
6e3663E
3.6448E
2.1193E
142578E
T.6603E
44 B11SE
341290€
2.1106E
le 4755E
1.0652E

T+9110€-
640071~
446389E-
3. 6293E-
24 8675E-
2.2806E-
leB19SE-
1lo4605E-
1e1736E-

00
01
ol
ol
o1
01
01
01
01
01

VIII. Answers to Exercises

Exercise 1

(a) See Fig. 63
(2) (a) See Figs. 64-66

(1)

___121

(b)y () E,=
(i) E, =
A 4 £,
Ez 04
Fic. 63
. 100K
(i)
10 K
£,

Fic. 65

(b) E, = —(E, + 0.1E,)

(iii) E, = —(10x + 0.1y + 2)
—10E,
K
(0 100
100K
£
Fic. 64
(iii) 10K 100K
ol "M
d 100K
—AMN—
Fic. 66
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Exercise 2
(1) (a) 1/(10% - 10-%) = 1/10 (¢) 1/(10% - 10—%) = 1000
(b) 1/(10* - 10-%) = 100 (d) 1/(10° - 10%) =1
(2) See Fig. 67
(3) (a) See Fig. 68 (¢) See Fig. 70
(b) See Fig. 69 (d) See Fig. 71
£y __ 107
£, 1 1OE+EZ+E)
£ 1
Fic. 67
-0y :
o) :]> —
-10z |> o4
Frc. 68 Fic. 69
-10x U._L
- 0 z 1OV——}]>_—41:D_—W
l e
Y
Fic. 70 Fic. 71
Exercise 3
(1) (a) Eg = —0.43x (g) E, = —(10bx 4 y)/10b
(b) By — —(ax + 2by) (h) E, = 10a(x — )
(c) Ey = —(—50ax + 300y) (1) Ey = 10a(x — )
(d) Ey = —(—50x—50by—10a) (j) E, = 10bx — (b%/a)y
(e) Eg = —(10x-+0.1y-102) k) E, = —j"; (8x—5y+-akE,) dt
(f) E, = —(10x + 10y)/a () Ey = (E; — 10ax)/b
(2) (a) See Fig. 72 (d) See Fig. 75
(b) See Fig. 73 (e) See Fig. 76

(c) See Fig. 74

BERNARD C. PATTEN

(f) See Fig. 77
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Fic. 72 Fic. 73
y a q L]
z 7 | — X 2 a 1 q
(3 Y b !
Fic. 74 Fic. 75
D D>
a <]1 Oa
Fic. 76 Fic. 77
Exercise 4
(1) See Fig. 78 (3) See Fig. 80
(2) See Fig. 79 (4) See Fig. 81
k/10 1
Fic. 78
A/N0 -10
! ! — x=Asin Vw/
pdt I
\‘ W
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-10
1 N(t)=N(O)e"!
r
1
Fi1c. 80
ol TNV () 1[ +N(2)
+rN
~_ N |
Y
+10 v A=
r-\—/V//(4 +1-
ik ,
N (-
+10 Ay (*=-NrK)
Fic. 81

Exercise 5
(1) Model II: Fig. 82; Model III: Fig. 83

+rN(-N/K)
-rN 1= N/K)
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(2) Model II:

91 = Gut) + 85175 — (312 + M) 71

Vo = Goo(t) + 819¥1 — (825 + €26 + Ag) 72
V3 = Gos(t) + 8372 — (834 + €35 + A30) ¥3
Ya = Gos(t) + 8345 — (Ba5 + €46 + As0) Vs
Vs = Gos(t) + 845¥s — Aso¥s

Je = €262 + €36Ys + €16Ya — (867 + Ag0) Yo

Y7 = 8756 — (825 + Aro) ¥7
Vs = 8z5¥7 — (Jg9 + Ago) s

Yo = Bg9¥5 — (891 + Ago) s
Model III:

2 = Hy(t) + 85124 — (812 + A1o) 51
Zy = Hop(t) + 81071 — (B25 + €21 + Agp) 22
Zy = Hy(t) + 82332 — Ago%s
2y = €47 — (81 + Ago) 24
(3) Model II (initial conditions omitted): Fig. 84
Model III (initial conditions omitted): Fig. 85

Exercise 6

(1) The original program (Section IV.D) has more than one
rate constant lumped on a potentiometer in many cases, e.g., @;, =
—(71a + 15 + Ao + pro)y @ep = —(7os + Has + pao)s etc. To represent
these individually by separate potentiometers in effect removes con-
straints on the potentiometers. For example, in the program of Section
IV.D the potentiometer labeled “.608” represents —(0.l1a,,), where
a1, = — (715 + pas + A0 + p1o)- The coefficient 7,, also is represented
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_603“)

Fic. 85

by the potentiometer labeled ““.84.” In simulation, any change in value
of the “.608” pot may or may not imply a change in 7, . If it does, then
the “.84” pot must be altered accordingly. If 7,, is ever changed for a
simulation run, then the a;; pot must always be adjusted. Mutual
dependency of potentiometers in a program creates operational problems,
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and consequently is to be discouraged. In this example, only p;o and Ay,
can be lumped onto one potentiometer without impairing operational
convenience. The disadvantage of not lumping parameters is, of course,
that more potentiometers are required in a program, which may cause
computer capacity to be exceeded.

The scaled equations for Section IV.A can be rewritten as follows.

[o#y] = S[orFy] — (ri2)lo®r] — (uas)lea®r] — (Asp + pao)[ey4]
= 10(.5)[01F ;] — (.84)[o;2,] — 10(.101)[oy¢,] — 10(.423)[ty2,]
= 10(.5)[o1F 1] — (Ty2)[o1%1] — 10(pa5/10)[cry2x,]
— 10((As0 + p10)/10)[eyx4]
[ogxs] = [0aF0e] + 10(Tyg)[oyx1] — (7as)[atgs] — (mas)[ce¥s] — (pz0)[cta)]
= [02Fs] + 10(.84)[0y%,] — 10(.179)[0xp,]
—10(.513)[erp205] — 10(.886)[0xx;]
= [03F ] + 10(7y2)[0121] — 10(7g3/10)[cxzix5]
— 10(p5/10)[otge] — 10(p20/10)[cxz¢,]
[og3] = 2.5(7as)[0ta%5] — (73a)loa¥s] — (mas)otaxs] — (pso)otss]
= 25(.179)oy¥s] — (:339)[orgrs] — (.74)[atgts] — 10(-51){agxs]
= 25(793/10)[cxgxs] — (73q)[ot3%3] — (e3s)[o53] — 10(p3e/10)[cx5xs]

[og%y] = 10(735)[ot3%5] — (as)ta¥a] — (pygo)[ota%s]
= 10(.339)[gx3] — (.676)[xg2c,] — 10(.1466)[0ty%,]

= 10(7gq)[t3%5] — (reas)[ta%s] — 10(p40/10)[ctyx,]

[oss] = 100(e5)[c%] + 10pegs)[ctgxa] + Hpsgs)[cxg¥s]
+ 0.4(pg5)[g%y] — (pso)[ctss]
= 1000(.101)[oty2¢;] + 100(.513)[cxpxc5] + 4(.74)[oz5)
+ 0.4(.676)[oyxs] — 1000(.1886)[ozx5]

= 1000(u5/10)[oy2,] + 100(pe5/10)[ctzxz] + A{pass)[cxgxs]
+ 0.4(pq5)[tgxa] — 1000(p50/1000) 505 ].

The corresponding program (initial conditions omitted) is shown in
Fig. 86. This diagram does not show how unusual gains (0.4, 4, 25, 100,
1000) can be obtained. The program has to be modified (e.g., as in
Section IV.D) to achieve this.

(2) Scaled equations from the nonlinear system equations (Section
II1.H) are as follows.
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[oa#] = (afor)[01F 0] — (riafaz)[op®e][0a%1] — (pas)an®s] — (Asp + pro)[ry]
= 5[o1Fn] — 50(ri2)[oa®e][on1] — (pas)[oas] — (Ao + pro)[oni]
= 5[oFy] — 50(.0039)[ocgx,][0tg7] — 10(pe15/10) oty ]
— 10((A10 + p10)/10)[oy2¢,]

= 5[0 Fp] — 10(571)[oxs][q%q] — 10(pa45/10)[oty,]
—10((A10 + p10)/10)[y%,]

[aa®s] = (o/05)[02F00] + (Tiafon)[a¥a][n21] — (72a/tg)[ctgg] [pp]

— (pa5)[g] — (pao)[otas]

= 1[o,F 5] + 500(735) [cpx5] [0y, ] — 20(755)[ctgs] [cxa]
— (pas)[az%a] — (pao)[orgvs]

= [0,F 5] + 500(.0039)[orpxp] [0y 2,] — 20(-0288)[ oty ] [cxp5]
— 10(ptg5/10)[ctgxy] — 10(pgo/10)[ctgxs]

= [05F4e] + 100(5715)[agxs] [0 %1] — 10(2755)[ctg0s][g]
— 10(125/10)[agx5] — 10(pgo/10)[cxgx,)
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[ogs] = (7/0)[otaws][cxaie] — (aafoeg)[exga)[cvgs] — (pras)eta¥s] — (pgo)[ota¥s]
= 50(73s)[cegxs][nxa] — 2(75a)[og¥al[ogs] — (pras)[oas] — (pao)[ta¥a]
= 50(.0288)[agxs][0s%5] — 2(.0382)[cxgy] [5%5]
— (pa5)[@a%3] — 10(p3e/10)[crgx5]
= 25(2735)[og%s][ap%a] — (2754)[ctas][0t%s]
— (m35)[oa%s] — 10(psg/10) 53]

[oa®s] = (maa/os)[oea®a][oa%5] — (ptas)[ctaa] — (pao)[aa]
= 20(734)[g%q][0g%5] — (rtas)[ctaa] — (pao)[otas]
= 20(.0382)[ay4][x%5] — (r245)[ta%s] — 10(pg0/10)[exg,]
= 10(2754)[4x4] (53] — (ra5)[xa%a] — 10(p49/10)[cxg4]

[os%5] = 1000(puy5/10)[ay%;,] + 100(pep5/1 O)oegxs] + A(pas)[03%3]
+ 0.4(p45)[ 4] — 1000(p5/1000)[cr5x5]

The program (without initial conditions) corresponding to these
equations is shown in Fig. 87.

5T, 2733
N\
Ay

+[a, le [a2 XZ] ‘["‘2’2][“3’3

]
aly

Ea?
T {a]

373

Fic. 87
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Exercise 7
(1) (a) 7.84 (c) 7.84e — 03 (e) 1.4 09
(b) 7.84 (d) —7.84 — 05 (f) —7.84e 4+ 09
(2) Unacceptable: (b) period (d) commas
(c) comma (e) period
(3) Columnwise: ¢, 7, r, u (too many characters); 7, r, i, 7; 7, u (special
characters), 7, {
4) (a) X+ Y *x2 (g) B=N
(b) (x 4 Y) *x 2 A/(B—1.)x(4. *B*x2+1.)
(c) x + Y/z (h) (1./a *%x 2)x(r/10.) x A
(d) (x + v)/z (1) A+Xx * (B4+X * (C+D * X))
(e) L.4-x+x%x2/2.4+x%x 3/3. (j) sIN(x/2.)/cos(x/2.)
() (aA+B)/(c—3.))*(3.xc+2.) (k) 1. — EXP(—A * T)
(I) 1. + sIN(THETA) * COS(2. * PHI) %% 2
(5 (@) a=31416%RrR*x2
(b) c=x
Y = —C * SIN(OMEGA * T)

() 1= (Qx*P)1;5 = (5-20)/3 = 100/3 = 33.333... = 33
(d) X = —B + SQRT(B ** 2 — 4. x A % C)
() ENDOT = R * EN
(fy c=x
ENDOT = R * EN * ((C — EN)/C)
(g) ¥(1,71) = PHI(L, J) * X(1) * X(J) (see Subscripted Variables,
Section VLI)
(h) x2poT = 02 4 TAUL2 % X1 — TAU23 % X2
— AMU25 * X2 — RHO20 * X2

(1) Y =.5x%vroc((l. 4+ siN(x))/(1.—sIN(X)))

Exercise 8

C

MAKE THE VARIABLES N, NDOT, AND MU REAL.
REAL N, NDOT, MU
READ (5, 100) BETA, MU, ¢, N
100 rormAT (4r10.0)
COMPUTE GROWTH RATE CONSTANT.
R = BETA — MU
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Exercise 9

20

21

100
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COMPUTE POPULATION RATE OF CHANGE.
NDOT = (R — C % N) *N

CARRYING CAPACITY K IS MAX N, DENOTED WHEN FIRST AND
SECOND DERIVATIVES VANISH: K = R/(2 * C).

COMPUTE K AS AN INTEGER VARIABLE.

K =R/2.%xC)+ .5

WRITE (6,101) NDOT, K

FORMAT (11(2), F10.4, 110)

STOP
END

MAKE THE VARIABLES N1, N2, k1, K2, Nicl, N1c2 REAL (Nicl AND

NIC2 ARE THE INITIAL POPULATION SIZES).

REAL N1, N2, k1, K2, Nicl, N1C2

READ (5,20) Rrl, R2, K1, K2, ALPHA, BETA, NICl, NIC2, DT, TMAX
FORMAT (10r8.0)

INITIALIZE TIME (T) AND POPULATION SIZES.

T=0.
Nl = Nicl
N2 = NIC2

PRINT INITIAL POPULATION SIZES.
WRITE (6, 21) T, N1, N2
FORMAT (11(D), 3F12.4)

COMPUTE POPULATION DIFFERENTIALS.
DNl = DT * (Rl * N1 = (1. — N1/K] — (ALPHA % N2)/K1))
DN2 = DT * (R2 * N2 * (1. — N2/k2 — (BETA * N1)/K2))

INCREMENT POPULATION SIZES.
Nl = NI + bpNl
N2 = N2 4 DN2

INCREMENT TIME.
T=T-+ DT

PRINT NEW POPULATION SIZES.
WRITE (6, 21) T, N1, N2

REPEAT COMPUTATION FOR NEXT TIME INTERVAL.
IF (T.LT.TMAX) GO TO 100

STOP

END
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Exercise 10

(1) See Fig. 88.
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Real Ni,N2,K1, > F,'SSL?J??E%
K2,NIC4,NIC2 Sizes

{

Read
Data

Initialize
Variables

Print Initial
Values

Compute
Population
Differentials

Print
New
Values

Fic. 88

Exercise 11

(1) The model III rotifer system differential equations are given in
the answers to Exercise 5 above. The equivalent system in matrix notation

1S
%z =h + Az,
where
% Hy,
o 22 H02
Z = - ) h = ’
23 Hy,
2, 0
and
—(B1z + M) 0
A= d1p —(By3 + €24 + Ay)
0 82

0 €34

21
z = %],
23
Ry
0 S
0 0
—dg0 0

0 —(By + Ap)
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A program to solve this system, using subscripted variables, is as follows.

c DIMENSION THE VARIABLES.
DIMENSION z(4), H(4), a(4, 4), pz(4)

C READ H, A AND INITIAL Z, ALSO TMAX AND DT,
READ (5, 50) z, H, A, TMAX, DT
50 rormaT (8F10.0/ 8¢10.0/ 8r10.0/ 2¢10.0)

C IN STATEMENT 50, SLASHES INDICATE NEW DATA CARDS. THE FIRST
C CARD CONTAINS THE Z AND H VECTORS; THE SECOND AND THIRD
C CARDS CONTAIN THE A MATRIX (ELEMENTS MUST BE READ IN
C COLUMNWISE, All, a21, A31, a41, Al2, ETC., TO BE SUBSCRIPTED
C CORRECTLY); AND THE FOURTH CARD CONTAINS TMAX AND DT.
C COMPUTE SOLUTIONS OF SYSTEM EQUATIONS.
T =0.
WRITE (6,51) T, z
601 =1
61 sum = 0.
] =1
62 sum = A(1, J) * z(J) + sum
1=13+1

IF (J.LE.4) GO TO 62

DZ(1) = DT * (H(1} 4 sum)
z(1) = z(1) + pz(1)
1=1+41

IF (1.LE.4) GO TO 61

c INCREMENT TIME.,
T =T+ DT
c PRINT SOLUTIONS.

WRITE (6,51) T, z
51 rormat (1H(D), F5.3, 4710.4)

IF (T.LT.TMAX) GO TO 60
STOP
END

A flowchart is shown in Fig. 89.



108

BERNARD C, PATTEN

( Start )

\
Dimension D'Cfl:mpmte' |
=1 Differentials
Z,M,4,02 Tizet
/
Read z,H,4
TMAX, oT
\
T=0. -
- Print
Solutions
[
SuM = O.
J=
T=T+0T
/
o« | Compute Sum
= |
J VJ+ A Yes
Yes y=d No
?

Exercise 12
(1) (a)

C

Fic. 89

Program for the Lotka—Volterra system,

IN THIS PROBLEM IT IS NOT EFFICIENT TO DIMENSION THE
STATE VARIABLES. HOWEVER, TIME ITERATIONS CAN BE

ACHIEVED BY A DO LOOP,
REAL N1, N2, K1, K2, NIC], NIC2
READ (5,100) rl, R2, K1, K2, ALPHA, BETA, NICI, NIC2, DT, TMAX

100 FormaT (10£8.0)
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INITIALIZE TIME (T) AND POPULATION SIZES.

T =0.
Nl = Nicl
N2 = NIC2

PRINT INITIAL CONDITIONS.
WRITE (6, 101) T, N1, N2
FORMAT (1H(T), 3r12.4)

CALCULATE NUMBER OF COMPUTATIONS.
NCOMP = TMAX/DT + .5
po 20 ) = 1, NcomP

REAL THE DO LOOP INDEX.

R] =]

T = DT % RJ

POPULATION DIFFERENTIALS.

DNl = DT * (Rl N1 % (1. — NI/Kl — (ALPHA * N2)/K1))
DN2 = DT * (R2 * N2 * (1. — N2/K2 — (BETA * N1)/K2))

INCREMENT.
Nl = NI + bN1
N2 = N2 -+ DN2

PRINT RESULTS.
WRITE (6, 101) T, N1, N2
CONTINUE

STOP

END

Program for the model III rotifer system.

DIMENSION z(4), H(4), A(4, 4), pz(4)
READ (5, 40) z, B, A, TMAX, DT

roRMAT (8r10.0/ 8r10.0/ 8r10.0/ 2r10.0)
T=0.

PRINT INITIAL CONDITIONS.
WRITE (6,41) T, z
FORMAT (1H(1), 710.4, 4r12.4)

OUTER DO LOOP TO INCREMENT TIME.
NCOMP == TMAX/DT + .5

po 50 k = |, NcompP

RK = K

T = DT * RK
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C NESTED DO WITH INDEX I (NUMBER OF EQUATIONS).
poSli1=1,4
suM = 0.

c NESTED DO WITH INDEX ] (NUMBER OF TERMS IN EACH EQUATION).
po52] =14

52 sum = A(1L,]) * Z(J) + sum
DZ(1) = DT * (H(I) + SUM)
51 z(1) = z(1) + pz(1)
C PRINT RESULTS.
WRITE (6, 41) T, Z
50 CONTINUE
STOP
END

Exercise 13

(1) s/360 csmp program for Silver Springs nonlinear model.

TITLE SILVER SPRINGS NONLINEAR SYSTEM
INCON 1c]l = 3421.26, 1c2 = 213.44, 1c3 = 62.06, 1c4 = 8.87, 1c5 = 24.38

coNSTANT FOl = 20810., F02 = 486., Taul2 = .84, Tau23 = 1.79,...
TAU34 = .339, mul5 = 1.01, mu25 = 5.13, mu35 = .74,...
mu4S = .676, LAMDIO = .73, RHO10 = 3.5, RHO20 = 8.86,...
RHO30 = 5.1, rHO40 = 1.466, rRHOS0 = 188.6

* COMPUTE NONLINEAR RATE CONSTANTS
TTAUI2 = TAUL2/X2
TTAU23 = TAU23/x3
TTAU34 = TAU34/x4
DYNAMIC
x] = INTGRL (icl, FO1 — X1 = (TTAUI2 % X2 4 mUlS...
+ Lampl0 + rRHO10))

X2 = INTGRL (1€2, F02 4 TTAUI2 * X2 * X1...
— X2 % (TTAU23 % X3 + mMu25 + rRHO20))

X3 = INTGRL (1€3, TTAU23 * X3 * X2...
— X3 «x (TTAU34 * X4 4+ MU35 + RHO30))
x4 = INTGRL (1c4, TTAU34 x x4 x X3 — x4 * (Mu45 4 RHO40))

X5 = INTGRL (Ic5, MU1S * X1 4+ MU25 * X2 4+ Mu35 * x3...
+ MudS x x4 — rRHOS0 * X5))

METHOD RKSFX

PRINT x1, x2, x3, x4, x5



LABEL
TIMER
*

END
STOP

ENDJOB

1. ECOLOGY SIMULATION PRIMER

x1, x2, x3, x4, x5
FINTIM = 10., outpeEL = 0.2

NOTE: PRDEL WILL AUTOMATICALLY EQUAL OUTDEL.

111
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Appendix A. wmatexp Program Listing
MATN

PROGRAM MATEXP FOR TIME RESPONSE OF LINEAR SYSTEMS

T4IS PROGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRSY
ORDER, SIMUL TANEOUS DIFFERENTIAL EQUATIONS W/ CONSTANT COEFFICIENTS
OF THE FORM DX/DT = AX ¢ Z.

THE METHOD IS PAYNTER-S MATRIX EXPONENTIAL METHND

THE SDLUTION IS GIVEN FOR INCREMENTS OF TME INDEPENDENT
VARIABLE (T) FROM TZEN THROUGH TMAX

COMPUTES MATRICES C = EXP(A®T) AND
HP = (C-T)*A INVERSE
SOLUTINN X{N*T) = CHRXUIN-1)*T ) ¢+HP*7 {{N-1)%T)
SERIES CALCULATION NF C AND HP MONITORED TO
ASSURE SPECIFIED SIGNIFICANCE.
IF T IS RENDUCED FNR C AND HP CALCS.,
NRIGINAL ARGUMENTS ARE RESTORED BY-
C2*T)=C(TI*CIT)
HP (24T ) =HPITI+CLTI*HP(T)

NUTPHT FRNM THF PROGRAM IS PRINTED AT INTERVALS PLTINC.
T4E PROGRAM USES SUBROUTINES DISTRB AND OUTPUT

INPUT FOR THE PROGRAM CONSISTS OF
NNE CONTRNL CARD
THE COEFFICIENT MATRIX A (UP TN 60 X 60)
THE INITIAL CONDITION VECTOR X
A FIXED DISTURBANCE VECTNR 7

A VARYING Z CAN BE GENFRATED BY DISTRB
VARTABLE COEFFICIENT FQUATIANS MAY BRE SOLVFD BY APPROPRIATE
FUNGING OF THE NISTURBRANGE FUNCTIIN SUBRNUTINE.

CONTRAOL CARD INPUT INFORMATINN
NE=NO. OF EQUATIONS (12)
tL=CNEFF, MATRIX TAG NO. (12)
P=PRECISION OF € AND HP (F10.0) - RECOMMEND 1.0E-6 OR LESS
TZERO=ZFRC TIME (F1N,.0)
T=COMPUTATION TIME INTERVAL (F10.0)
TMAX=MAXIMUM TIME (F1l0.0)
PLTINC=PRINTING TIME INTERVAL (F10.0)
MATYES=COEFF, MATRIX (A) CONTROL FLAG (12)
1=USE PREVINUS A AND T
2=RFAN NFW CNEFF,S TN ALTER A
3=RFAD ENTIRE NFW A (NON=-ZERD VALUES)
4=DISTRA TN CALC. FNTIRE NFWd A
S=READ SOMF, DISTRB TO CALC. OTHERS

6=DISTRE TN ALTER SDME A ELEMENTS
ICSS=INITTAL CONDITION VECTOR (XIC) FLAG (12)
1=READ IN ALL NFW NDN-ZERO VALUES
2=RFAN NEW VALUES TO ALTER PREVIOUS VECTOR
3=USE PREVINUS VECTNR
4=VEC TNR=0
S5=USE LAST VALUE NF X VECTOR FROM PRFVIOUS RUN
JFLAG=FORCING FUNCTINN (Z) FLAG (12)
1 THRY 4=SAME AS FOR ICSS FOR CONSTANT 2
5=CALL CISTRB AT FACH TIME STEP FNR VARIABLF 7
ITMAX = MAX. NCQe. NF TERMS IN SERIES APPRNX,
OF EXPLAT). (13)
LASTCC = NON-ZEROD FOR LAST CASE (11}
11Z = ROW NN, OF I IF ONLY ONE NON-ZERN,
OTHERWISE =0 (12)
ICONTR - FNR INTERNAL CONTROL OPTINNS tr2)
0=READ NEW CNNTROL CARD FOR NEXT CASE
1=60 Tn 212 CALL NISTRB FOR NFW A NR T
=1=6N TO 215 CALL DISTRA FOR NEW 1.C.-$S

RN N R e N R N I N R e R N N e R W R N o N N Y e N N Y R N e P Xa N Y Ra ks Falala la kol laka latakata kaka RakakaXatate takaia Rala e Xa R ta Ra R Na)
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VAR = MAXe ALLOWABLE VALUE OF LARGESY COEFFe MATRIX ELEMENT * T
(RECOMMEND V AR=1,0) (F6,0)

DIMENSINN AL 6N,460),4,CL60,60) ,HP{6D,69),QPT{60,60),
1Xt60)+ Y601y ZUKO0)y XICL60),TQPL 60, ANIRM{60),PX(60)

OCOMMON C 4HPy A4QPT 4 Xy 2, Yo I TMAX, KK, LL MM,
1JJFLAGXICyNI,TIME, TMAX, TZERO,NE,TQP, T,
211Z+1CONTRyPLTINCyMATYES,ICSSyJFLAG,PLT,NFLAG,ANORM

K=CASE NUMBER

NI =0 ON 1-ST PASS. SET TO 1 NN 1-ST CALL OF OUTPUT.
K=1

NI =0

READ (5,100) NFsLLyPy TZERGyToTMAX,PLTINC MATYES, ICSS,
1JFLAG, ITMAX, LASTCC,y I1Zy ICONTR, VAR
FORMAT(2(12,3X)+5F10s04312,1341142124F640})

COEFFICIENT MATRIX INPUT
GO TN (3,99,242+2+3),MATYES

N0 90 I=1,4NE

D0 90 J=1,4NE

Al1,3)=20.0

IF(MATYES-4199+3,99

0l 91 I=1,1379

MATRIX ELEMENTS S(ROWs COLUMN, VALUE)

ALL T AND J ENTRIES ON CARD MJST BE NDN-~ZERO,

A BLANK CARD IS REQUIREN AFTER ALL ELFMENTS ARE READ IN,
READ (S,101) 114J1401412+4J2402,13,33403,14,J4,04
FORMAT (4(273,F12.3))

IF{I133,3,92
ACILl,4J1)=P1
Al124J2)=D2
Al 13,J3)1=D3
AllT4,J4)=D4

INITIAL CONDITION VECTYOR XIC INPUT
GO TN(44+120,6495+6),41ICSS

DO 93 I=14NF

XIC{I)=n,0

N 94 I=1.15

ALL ROW (1) ENTRIFS MUST BE NON-ZFRO

A BLANK CARD IS RFOUIREND AFTER ALL ELFMENTS ARE REAN IN.
READ(S,95) MM,I11,011,112,D12,113,D13,114,014,115,D15
FORMAT (12450 13+E12.3))

IF (1111646496

XIC(I11)=nll

XIC(I12)=012

XIC(I13)=n13

XIC(T14)=nl4

XIC{I15)=DlS

MM=0

N0 7 I=14NE

X1C{I)=0.0

IFLICSS-5)814214481

nn 82 1=14NE

XC1)=x1C(1)

1F(MATYES-3)213,213,212

CALL DISTRB

JIFLAG=D

QPTMP = MAX, PFRMISSIBLE ELEMENY NF QPT FOR 8 DECIMAL COMPUTER

MATRIX CALCe LOSFS SISNIFICANCE IF LARGEST
FLEMENT IN SERIFS APPROX. MATRIX OPT IS
GRFATER THAN px]l.0ER
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QPTMP=P%],0ER

WRITE(64211) LL,NE,P,T,
1PLTINC,MATYE S, TCSS,JFLAG, ICONTR, ITMAX,T17,VAR,QPTMP

10FNAMAT (1 2HOMATEXP CASE,I3/17H NO, NF FQUATIONS,
113/20H SPFCTIFIFD PRECISION,F12,R/6H TIME
23HINTERVAL,F1R,8/15H PLOT INCREMENT,F17.,8//

316H CNNTROL FLAGS =/1H ,5X,6HMATYES,I14/1H ,

45X G 4HTICSSyT6/1H 45X 4SHIFLAG,IS/1H 45X ,6HICONTR, 14/
S34HIMAX, TERMS [N EXPNNENTIAL APPRIX.,I15/

613H SINGLE 7 ROW,T4/20H MAX, ALLOJABLE A%DT,FQ,3/
T27TH MAX, ALLOWABLFE QPT ELEMENT,F1l,3)

PLTINC=PLTINC*0,9999

JFK=)

IF (MATYFS-1)20,20,R06

SCAN MATRIX FN2 MAX, AND MIN, NON-ZERN FLEMENTS,
TMax =1

IMAX=]

AMAX=ARS (A(1,1))

DN 401 T=1,NE

pY 401 J=1,NE

TF (AMAX-ABS (A(1,J)11402,401,401

AMAX=ARS (A([,J}]

MAX=1]

JMAX =)

CONTTNUE

IM IN= TMA X

JMIN=JMAX

AMIN=AMAX

NN 409 T=1,NE

N 409 J=1,NE

IF(ACT,J)) 407,409,407

TE(ABS (A(T,J))-AMIN} 408,409,409

AMIN=ABS (A(1,J))

IMIN=T

JMIN=Y

CONTINUE

RATIT=AMAX/AMIN

AMIN = MINIMUM NON-ZERN ELEMENT

ISTOR=0

ADT=AMAX %T

no 433 T=1,11

IF(VAR—ADT) 413,406,404

3 1STOR=ISTOR]

ADT=ADT*0,5

T=ADT/AMAX

COMPUTATION INTERVAL T IS HALVED ISTOR

TIMES (10=MAXe) SO MAX. ELEMENT [N AxT
1S LESS THAN VAR,

WRITE (5,405) IMAX, JMAX, ALTMAX, JMAX) ,ADT,T,
1 IMIN,JMIN,ACTMIN, JMIN} ,RATIO

FIRMAT (31HOMAX.COEFF, MATRIX ELEMENT = A(,12,1Hs,12,3H) =,
1 E1544/13H MAX, AXDT = ,F12,8,2X,14HWITH DELTA T =,F15,8/

230HOMINTMUM NON-ZERO ELEMENT = AleT1241He e 12434) =,E15. 4/
3184 RATIO AMAX/AMIN =,E15,4)

IF(ISTOR-10)84410+410
0 WRITE (6,411)
10FORMAT (34HOA®DT STILL GREATER THAN ALLOWABLE,
119H AFTER 10 HALVINGS,)

GO 11 37

CALCULATINN OF MATRIX EXPONENTIALS C AND HP
8 N0 9 I=]1,NE

00 9 J=1,NE
9 Cl1,J)=0.
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C
N0 10 I=1,NE
10 C(Iy1)=1,
C
C SK 1P HP CALCS. FOR HOMOGENEOUS EQUATIONS
IF (JFLAG-4)48,51,48
48 DO 49 T=1,NE
DO 49 J=14NE
49 HP(T1,J)=0,
C
DD S0 T=14NE
50 HP(T,1)=T
C
51 PE=0,0
C

DO 11 I=1sNE
N0 11 J=1,NE
11 QPT(I, N=C(I,I)

C
C NOW FORM THE MATRIX EXPONENTIALS C=EXP{A®T) AND HP=((C~I)}*A INVERSE)
C
AL=1.0
C
12 DO 16 KL=1,ITMAX
C
KL M=K{
ALL=T/AL
AL=AL+1.0
TALLL=T/AL
C
N0 18 I=1,NE
C
C

0N 13 J=14NE
TQRP(JIY=0.0
NN 13 Kx=1,NE

13 TOP(JII=TQP(JII+QPT( I ,KX)I*A(KX,J)

N 18 J=1,NE
18 QPTIL,J)=TAP(JI*ALL

C
C QPT=MATRIX TERM IN SERTES APPROX, =((A*T)%%K)/K FACTORIAL
C
DO 44 T=1,4NE
DO 44 J=14NE
46 C(T4JV=ClI,0)¢QPTII,4J)
C
IF (JFLAG=4) 45447445
C

45 IF(ITMAX-KL)4T 4474145
145 D) 46 [=1,NE
DN 46 J=1,NE
46 HP(T 4 J)=HPIT ,J)+0PT(T, JI*TALLL

FIND MAX ABS ELEMENT IN QPT AND CALL IT PMK

[sXaXsKsXKse]

LARGEST QPT ELEMENT USUALLY IN ROW IMAX, COLUMN JMAX
47 PMK=ABRS (QPT{IMAX,JMAX))

TF(QPTMP-PMK ) 83,83,502

502 IF(PMK-P) 4064406416

C SCAN OTHER OPT ELEMENTS ONLY WHEN QPT(IMAX+ JMAX) IS LESS THAN P

406 DD 14 I=1,NE
DO 14 J=1+NE

14 PMK=AMAX1(PMK,ABS (QPT(I,J}))
[F(PMK~P 117417416

C

C PRESENT MAX, QPT ELEMENT SHOULD BE LESS THAN

C HALF PREVIODUS MAX. TO INSURE CONVERGENCE
17 TF(PE-2,%PMK116,21,21
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16 PE=PMK
¢ 21 WRITE (64200) KLM
¢ 200 FORMAT (44HONO. OF TERMS IN SERIES APPROXe OF MATEXP = ,12)
¢ IF(ITMAX-1)20,20,538
538 IF(KLM-TTMAX) 414,83,83

C
83 T=T#0,5
JEK=JFK+1
IF(JFK=71303+304+304
304 WRITE (64305) P MK
305 OFORMAT{32HOT TRIES AT HALVING T NeGe, PMK=,F12,6)
C ALL 27W (1) ENTRIFS MUST BF NON=7FRN
c A BLANK CARN IS REQUIRED AFTFR ALL FI FMFENTS ARF READ IN.
READN {5,°%) KKe1214D21 412240224123 4023 4124,4D244125,D25

TF(121127,27,78
78 7(121)=021

7(1221=02>
7{123)1=n22
70(124)=N24
98 7(125)=N?%
c
25 ¥K=0
Ny 23 I=1,NF
28 7(1)=).
c
C ON 1-ST CALL NF OQUTONT NI SET 70O 1
27 CALL NuTPyT
c
C NMW CNMES THF EQUATINAN SNLYTINN BASED ON
c XANT)=MAEXINT =1 )4 ((M=T)A INV,}RZ(NT-1)
c

24 1F (JFLAG=4)27,54,56
£4 NN 53 1=14NF
Y{UI=C(TI.1)%Xx(1}
NN 53 J=2,NF
62 Y{Th=Y (TDeCC ToJb2N(Y)
TF(I17152,52,772
56 IF(JIFLAG)3C929,32D
3N CALL NISTRA
29 TF(1171700,70N,54
C ONLY ONF Z-TERM CALCe IF I1Z IS GREATFR THAN 7EROQ
702 N0 773 I=1,NE
TOA YOI)=YOT D eHP (T ,T122)%7(112)
60 TN 52
700 DO 32 I=1,NE
YOII=COTol D *X(1)eHP (T4 1) %2( 1)
nn 32 J=2,NF
32 YU =Y (I 1eCTU Lo IV EX(IVEHPLT w )22
52 NN 31 I=14NF
31 Xt1)=v(1)

ONE TIME INCRFMENT NDF THE SOLUTION HAS JUST REEN FOUND

NOW PLOT AND PRINT IF PLTINC INTERVAL HAS ELAPSED

[alsNelakel

JIFLAG=1
TIME=TIMF+T
PLY=PLT+T
TF(PLY-PLTINC)35,33,33
G0 vn 37

303 WRITE (64210) KLMyPMK, T

216  FORMAT {21HOMAX, ELEMENT IN TERM,I3,8H0F QPT =,F11.3/
1 354 TRY HALVEC TIME INTFRVAL DELYA T =,F15.8)
Gl 77 R

414 ISTNR=ISTNR+JFK

C NRIGINAL ARGUMFNTS 0OF C AND HP MATRICES RESTORED IF ISTOR GREATER THAN 0O
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TF(ISTAR)Y 20,720,416

WRITF (6,415) I1STOR
FIRMAT(26HCTOTAL NDO, NF T HALVINGS =,13)
03 417 KR=1,ISTOR

TF{JFLAG-4) 419,418,419

SKIP HP CALCS., FOR HOMOGENENOUS FQUATIONS
Nl 425 I=1,NF

nn 421 J=1,NE

TQR(J)=N,0

NN 421 KX=1,NE
TOBLIN=TOP{JI+HP (T, KX *C (KX, J)

N 420 J=1,NF

HP (T, JV¥=TQP{ JI+HP{T,))

NN 4310 [=1,NE
NN 430 J=1,NF
OPT(1,J)=0,0

N0 431 I=1,NF
no 431 J=1,NF
N1 431 Kx=1,NF
OPT{T,J)=0PT (1, 0T, KXI*C(KX,J)
NN 432 1=1,NF
DN 432 J=1,NF
CL1,J)=QPT{1,J}
T=24%T

CUT,0) IS THF MATRIX FXPONENTTAL C=EXP{A%T)
AND HP(T,J) TS THF ((C-T1)%A TNVERSF) MATRIX
WF RFAD (0R CAtL SUBPOUTINE FOR) NDISTURBANCF VECTNR

TIME=TZFRN
PLT=",

G0 TO (264121,27,25,55),J5LAG
TF (MATYES-3) 215,215,27

CALL NISTRR

117=117

60 T 27

D 97 T=1,NF
7(1)=0,0
nn 93 1=1,15

112=1S(IST)
CNLe 112 NF HP MATRIX MULT, BY Z
WRITF(A,101) TSCISTY L JSEIST)

FORMAT (1BHASENSETIVITY TN A(,13,14,,13,1H))

TIME=TZERN

NDT=1

N0 41 I=1,NE
X{(1)=n, 0

Z{1)=0.0

JIFLAG=D

DYRING FACH SENSITIVITY RUN -
Z(117)=XT(IST,NDT)
NDT=NDT ¢1

RE TURN

END

117
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NISTRAR

SUBRJUTINE DISTRB

c NISTRB FOR T IME RESPONSE SENSITIVITIES JF LINEAR SYSTEMS
NDIMENSION A( 60,600 ,C(63,60),HP(60,601,QPT (60,6010,
1X(60),Y(601s7(60),XIC(600),TQP(60)
OCOMMAON C 4yHP, A, QPT o X, 7, ¥y ITMAX KK LL MM,
1JJFLAG,XIC,NT, TIME,TMAX,TZERO, NE,TQP, T,
2112, ICONTR, PLTINC ,MATYFS,1CSS, JFLAG,PLT
ODIMENSION TR(5),1S(15),35(15}),1Q(30),%XT(5,10001,
1XSEN(15,30),XPSI(30)

IF(NT)1,1,2

IF(ICONTR#2)5,4,3

TFCICONTR#2)7,6,6
c INITIAL INPUTS AND CALCS.

3 READ(S5,200)(IS(T),0S(1),1=1,5),NTT,NSENS

100 FORMAT (6(213,4X))

N -

NDT=1
ICONTR==-2
NT IMO=NT I -1

nn 8 1=1,NF

8 1(11=0,0
READ(5,10301(72{1),I=1,NE}

103 FNRMAT(AFLN,0)

C DR ING SNLUTION NF SYSTEM EQUATIONS
6 NN 23 1=1,NSENS

1Cn=3s{1)

20 XT(I,NDTI=x(ICO)
NDT=NDOT+1
6N 7Y an

QO

JUST AFTFR SYSTEM SOLUTION IS COMPLETED
4 1ST=9

TCONTR=-3

N 21 I1=1,NSENS

0N 21 J=1,NTIMD
21 XT(1,31=0,5%(XT{1,J)exT(1,0¢1)})

C XT = AVG VALUES OF SENSITIVITY EQN INPUTS
WRITE(6,102) CUXT{TodVy0=2yNTI},I=1,NSENS)
102 FORMAT(IHOXT/ULH ,10€E11.30)
C
c AFTER CAMPLETING FACH SENSTITIVITY RUN -
5 1ST=IST+1
IF(IST-NSENS 131,31,32
C AN TO NEXT CASE

32 TCONTR=D
PLTINC=TMAX
TMAX =2 4O
NI =1
50 TN 30
33 CALL OUTPUT
PLT=7,
35 IF{TIME-TMAX 124,437,137
37 IF(LASTCCI4N 34,40

34 K=K¢1
NT =0
PLT=0N, 0
IF(ICONTRY215,1,212
4C  STnP

END
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oyveyT
SYBRNUTINE QUITAUT

DIMENSION AL ED,601,C(61,60),HP(60,60),0PT(60,6C),
1X{63),Y160),21601,XICL60),TOP(60), ANORMI6O), PXL6D)

CCOMMON CoHP o A4QPT o XoZ, Y I TMAX KK, LL MM,
1JJFLAGXICoNT,TIMF, TMAX, TIFRO,NE,TQP, T,
2112,1CONTR,PLTINC,MATYES,1CSS,JFLAG,PLTNFLAG, ANCRM

TFINT)2,1,?

NI=1

NC =10

N1 11 NCM=1,51,10

WRITE(6,200) LL,((ACT,d),I=NCM,NC),T=1,NE)
FORMAT (2HOA,12/(1H ,1P10F11.3))

IFANF=NC) 10,10,11

NC=NC +10

NC =10

N) 21 NCM=1,51,19

WRITE(A,2N01) ({C(T4J)yJ=NCMNCI,1=1,NE)
FORMAT {2HOC/({1H ,1P1)E11,3))

TFINE=-NC) 20,20,21

NC =NC +10

NC=10

NO 31 NCM=1,51,10

WRITE(6,272) ((HP(1,J),J=NCM,NC),T=1,NF)
FORMAT (3HOHP/ (1H ,1P1NEL1l.3))

IFINE-NC) 2,2,31

NC=NC+10

WRITE(64203) TIME,IX(T),1=1,NE)
FORMATUI4H T =,1PF104,3,4H X =, /UIH 45X 410F15.8))
TF(IFLAGWNE,S) GO TO 30

WRITE(6,204) (7(1),1=1,NE)

FORMAT(6HNZ = L1P10E11,3/(1H ,5X,10F11,3))
RF TURN

END
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1. Mathematical Models

A. INTRODUCTION

Scientific hypotheses and theories never deal directly with the real
world, only with arbitraryvariables and other concepts, such as statements
of relationships among variables. There may be many levels of concepts,
all somehow connected to the real world through the operations of

measurements.
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An excellent example of relationships among different levels of con-
cepts, and between concepts and the real world comes from the field
of thermodynamics. Dixon and Emery (1965) view all concepts of
“operational thermodynamics” as being defined in terms of seven
directly measured variables: pressure, volume, mass, time, length, force,
and temperature. All concepts in successive levels of abstraction are
defined in terms of these variables, from concentration and velocity to
Gibbs free energy and chemical potentials. This is the basic structure of
theory throughout empirical science.

These concepts and the expressed relationships among them are the
models. I am dealing here with mathematical models, but in certain
situations one might use physical models as well, e.g., graphs, springs,
rubber balls, and miniature replicas.

Although the intelligent use of models requires explicit connection
of measurements with concepts, ecologists in the past have been prone to
remain satisfied with one or the other alone. Thus plant ecologists have
accumulated measurements, yielding endless statistics and descriptions,
with few connections to concepts. On the other hand, some ecologists
have constructed elaborate models, never satisfactorily connecting them
to the real world, e.g., some models of ecological succession or of the
niche concept.

Ideally the scientist should work both ends simultaneously—the man
who formulates the model should also make the measurements. I do not
think that this is an unreasonable suggestion. The current problems
ecology is called upon to solve demand it, and the current mathematical
training received by young ecologists facilitates it.

B. NATURE OF MATHEMATICAL MODELS

In order to understand the nature of mathematical models one must
understand the nature of mathematical theory, i.e., a body of knowledge
constructed by the axiomatic method.

One begins with certain undefined concepts. One then makes certain statements
about the properties possessed by, and the relations between, these concepts. These
statements are called the axioms of the theory. Then, by means of logical deduction,
without any appeal to experience, various propositions (called theorems) are obtained
from the axioms. Although the propositions do not refer directly to the real world,
but are merely logical consequences of the axioms, they do represent conclusions
about real phenomena, namely those real phenomena one is willing to assume possess
the properties postulated in the axioms.

The theory is used as the mathematical model. Continuing:

We are thus led to the notion of a mathematical model of a real phenomenon. A
mathematical theory constructed by the axiomatic method is said to be a model of
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a real phenomenon, if one gives a rule for translating propositions of the mathe-
matical theory into propositions about the real phenomenon. This definition is vague,
for it does not state the character of the rules of translation one must employ. . . .
Generally speaking, to use a mathematical theory as a model for a real phenomenon,
one needs only to give a rule for identifying the abstract objects about which the
axioms of the mathematical theory speak with aspects of the real phenomenon.
It is then expected that the theorems of the theory will depict the phenomenon
to the same extent that the axioms do, for the theorems are merely logical con-
sequences of the axioms (quoted with permission from Parzen, 1960).

The abstract objects of the mathematical theory are variables of the
mathematical model; the axioms are statements of relationships among
the variables. Henceforth the ‘“mathematical theory” used as a mathe-
matical model will be called the ‘“mathematical structure,” since the
former term is usually used in a more restricted sense.

The mathematical models then lead to “new” conclusions, i.e., ideas
and predictions. But the conclusions to which this technique leads assert
nothing that is theoretically new in the sense of not being implicit in the
mathematical model. But they may well be psychologically new; in fact,
they usually are (Hempel, 1945). An apparent requirement for this
method to work is that the real world operates with the same logic that
human beings think in. The fact that mathematical arguments do lead
to practical results suggests that this may be true, but, of course, man
will never know.

In the acts of identifying variables of the mathematical model with
aspects of the real world lie many of ithe problems in formulating
mathematical models. These acts of identification must be operational
definitions (Bridgman, 1927) of the variables, i.e., specific instructions
on how to make measurements which evaluate the variables. If the
variables are not operationally defined, predictions generated by the
model do not correspond to any real-world measurements, and thus the
model cannot be tested. Such a model may be intellectually stimulating,
but is not useful in applications to the real world.

Each variable used in the model is an abstract concept, connected to
the real world directly or indirectly through specific physical measure-
ments (Fig. 1). Thus the same real-world phenomenon might underly (in a
metaphysical sense) many different variables, e.g., NaCl concentration
and osmotic pressure. Moreover, the way a variable is defined is often
determined by convenience, e.g., availability of certain kinds of data,
instruments, or talent, and different definitions lead to different variables
(Bridgman, 1927), e.g., the various concepts of productivity.

If a model is to be tested by comparing its predictions with data from
the real world, the model then becomes a hypothesis, although often a
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Variable 4
Variable | /Variable 2 ?ble 3
Measurement A Measurement B
Underlying
Real-World
Phenomenon

Fi1c. 1. Relationships between different variables and same real-world phenomenon.

very complex one, consisting of numerous ‘“‘subhypotheses.” Since the
predictions and real-world data must usually be compared statistically
(chi-square, t-test, etc.) using an arbitrary confidence level, it is often the
case that several different models may be accepted as *“‘explaining” the
same set of real-world data. There is no philosophical conflict here,
since a model is an abstract concept arbitrarily identified with the
real world.

The predictions themselves are often regarded as the hypotheses,
rather than the model which generated them. Since the predictions are
necessary consequences of the model, one can view the model as including
the predictions (Hempel, 1945), and thus it seems more reasonable to
consider the model as the hypothesis. Moreover, in hypothesis-testing
one does not accept or reject predictions; one compares predictions of
a model with real-world observations, and then accepts or rejects (usually
later to modify) the model.

The formulation of mathematical models of complex real-world
phenomena thus requires one to (1) operationally define the important
real-world variables, and (2) precisely state the hypothetical relationships
among these variables. The model then represents a complex hypothesis
which can generate predictions about the real world. The predictions
can then be tested against real-world measurements, and the model then
either accepted as it is or modified in some way. If the model is modified,
the cycle must be repeated until predictions agree with measurements
at some satisfactory level of statistical significance. In engineering terms,
the whole process is called “system identification”; in more general
terms, this is nothing more than the traditional method of empirical
science.
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C. Typres oF MATHEMATICAL MODELS

1. Introduction

Since such a large number of different types of mathematical structures
exists for use as mathematical models, one should have some set of
guidelines in making a choice. Probably as good a set as any is the
following: (1) Naturalness with which the mathematical theory represents
the real-world phenomenon, e.g., continuous versus discrete functions,
one versus several variables, (2) ability to generate predictions, (3)
comprehensiveness and esthetics, (4) tractability of mathematics, and
(5) consistency with other existing models.

At this point it is advantageous to comment on the word “‘system.”
Mathematically, a “system’ is a mapping (Sell, 1967). We shall, in this
chapter, concern ourselves only with the special type of system defined
by the first-order ordinary differential equation

% = f(x, t), 1

where the vector-valued function f maps the real 1-space (whose elements
are time t) and the real n-space (vector space) (whose elements are the
vectors x) into the same real #-space. In other words, our system will be
defined by a set of coupled first-order ordinary differential equations,
one for each of the “state variables” x; (to be defined later).

Notice that the definition of a system refers to concepts—coupled
equations in this case—and not directly to the real world. This indicates
that the identification of and the limits on a system are arbitrary; they
are a matter of definition. Of course, one always tries to identify the idea
of a system with some set of real-world phenomena (the “real-world
system’’) in such a way that is psychologically satisfying, but arguments
about what is or is not a system in the real world, or what the limits
“really’ are on a particular system, are largely futile. It should be obvious
that, mathematically, the system is the mathematical model; in this
paper the word will usually be used in its real-world intuitive sense.

At this point it is also advantageous to comment on vector and matrix
notation. Boldface symbols like x will be used to represent vectors
(usually column vectors). Capital letters like 4 will represent matrices.
Thus, x = f(x, t) is shorthand for

561 = fl(xl ] xz yerey Xy s t)’

.72,‘2 = f2(x1 y Xg geeey Xy y t)s

Ry = fn(xl » Xg geeey Xy t))
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and X = Ax is shorthand for

&y = apX, + apx, + o agx,,

%y = An¥%y + ApXy + 0+ Gen¥y,

xn = Xy + ApaXy + + ApnXn -

The question often arises whether one should use determimistic or
probabilistic models. The question really involves two problems—one
philosophical, one practical.

The philosophical problem is nicely put to rest by the following
quotation:

The controversy of determinism and causality versus randomness and probability
has been the topic of extensive discussions. In our opinion, the difference lies not
in the nature of this or that phenomenon, but in the quantities in which the observer
is interested. If he is interested in the outcome of one experiment, then his statement
is deterministic; if he is interested in certain averages of a large number » of experi-
ments, then his statement is probabilistic. In either case no categorical assertion
is possible. In the first case, the uncertainty of his conclusions takes the form within
certain errors and in certain ranges of the relevant parameters; in the second case,
with a high degree of certainty if n is large enough.

But, it is often objected, the universe really is deterministic, and

--+ The phenomenon is thus inherently deterministic, and probabilistic considera-
tions are necessary only because of our ignorance. Qur answer is that the physicist
is not concerned with what 7s true, but only with what he can measure. Such explana-
tions are therefore outside the sphere of his scientific interests (Papoulis, 1965).
(From ‘“Probability, Random Variables, and Stochastic Processes,” pp. 15-16, by
A. Papoulis. Copyright © 1965, McGraw-Hill. Used with permission of McGraw-
Hill Book Company.)

The practical problem 1s that the theory of probability has, up to now,
produced only rather simple models limited to one or only a few variables
changing in time. If one wishes to formulate probabilistic models of
complex phenomena, it is probably best to use an essentially deter-
ministic model, and introduce randomness into this model in some
fashion; then multiple digital computer solutions are obtained (Monte
Carlo techniques). The randomness can be introduced either in the input
or somewhere in the system itself, depending on the nature of the
physical problem.

In the three brief sections which follow are indicated those mathe-
matical structures which, in my opinion, are the most useful as models of
ecological phenomena. Ecological phenomena are grouped into three
categories: changes in time, changes in space or in space and time, and
classification.
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2. Changes in Time

This category includes those phenomena in which the values of
dependent variables change with the passage of time, but not in space.
Thus it includes only those phenomena which may be considered to be
spatially homogeneous (in engineering: “lumped”), i.e., without space
effects. Although for some purposes such a restriction may be too
unrealistic, the gain in tractability of the mathematical model is usually
great. Ecological examples are: energy and material flow in food webs,
ecological succession within small areas (so that spatial variation is not
relevant), and population changes.

There is but one independent variable, time, and the state of the
system at any point in time is affected by the state of the system at a
previous point in time, i.e., the system has a finite memory, or is state-
determined. Thus the system is dynamic, and may be represented by
the methods of classical physics. Probably the most useful mathematical
structures to use as the models of such systems are ordinary differential
equations. Where the variables are measured, or have meaning, only at
regular discrete points in time, the corresponding ordinary difference
equations can be used. Integral equations might be used as an alternative
to the differential equations, but their theory has not been well developed
(Hart, 1967).

For probabilistic models with only one dependent variable, one can use
Markov chains, birth-and-death processes, and queueing.

3. Changes in Space, or in Space and Time

This category includes those phenomena in which values of dependent
variables change in physical space (surface or volume), and, perhaps,
time as well. Thus it includes those phenomena which are considered to
be spatially heterogeneous (in engineering: ‘‘distributed”). Ecological
examples are: (1) time not an independent variable: distribution of
organisms, ecological gradients, niches, and distribution of genotypes,
(2) time an independent variable: energy and material flow in food webs
in spatially heterogeneous systems, and ecological succession over broad
areas.

Since there is more than one independent variable (two or three for
space, and, perhaps, one for time), the required mathematical theory
becomes very complex and difficult to work with analytically. The most
useful mathematical structures to use as models of such systems are
partial differential equations, or the corresponding partial difference
equations. Since analytical solutions (predictions) to systems of partial
differential equations are very difficult to find, these models will probably
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always be solved by numerical approximation on digital computers.
Probability density functions may also be used.

4. Classification

Schemes of classification differ from other models in that they are
not testable, and thus are not hypotheses. Ecological examples are:
classification of vegetation types, of communities, and of species
(taxonomy). Useful mathematical structures are: sets (Rosen, 1967),
mappings (Rashevsky, 1959), and information (IHairston et al., 1968).

II. Formulation of Models of Dynamic Ecological Systems

A. FORMULATION AS SETS OF ALGEBRAIC
AND ORDINARY DIFFERENTIAL EQUATIONS

1. Formulation

a. Introduction. Through the remainder of this chapter, it is assumed
that one is interested in making a mathematical model of a continuous,
dynamic system (using the term, “system,” loosely) which is spatially
homogeneous, or in which space effects are negligible, i.e., a lumped
system. The mathematical disadvantages of trying to account for the
space effects, i.e., dealing with a distributed system, are tremendous
(Schwarz and Friedland, 1965).

The objective of this section is to suggest a procedure for formulating
a model as a set of coupled first-order ordinary differential equations.
This is best done in two steps, first by formulating the model with both
algebraic and differential equations, and second by eliminating the
algebraic equations. A simple procedure for numerical approximation
of solutions is also given.

The formulation of a mathematical model as a set of coupled algebraic
and ordinary differential equations is divided into five steps:

(1) specification of variables of interest,

(2) construction of control diagram,

(3) classification of variables, operational definition of variables, and
specification of variable units,

(4) specification of forms of equations,
(5) evaluation of constants.

Each of these steps will be considered in turn, together with an example
from the pine-mor food web.
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b. Specification of Variables of Interest. A mathematical model may
be constructed for a number of reasons, such as for the experience, for
pleasure, or for a publication, but usually the objective will be the solut-
ion of some specific problem. The problem will usually be the causal
explanation of the values or changes in the values of some particular
variables as functions of other particular variables. The values must
be in either numerical or logical, e.g., true—false or present-absent, terms.
In ecology, the variables of interest will often be biomasses (total or of
some component), fluxes, rates, or characteristics of the physical environ-
ment.

As one formulates the model, new variables will probably need to be
recognized and defined, and old ones omitted. In any case the choice of
variables must be explicitly stated. Which particular variables are chosen
depends upon the nature of the problem, knowledge and personal
interests of the researcher, and ability to measure the variables.

In the case of the pine-mor food web, I am interested in explaining
the changes in time of biomass of the major components of pine mor (the
forest floor of a pine forest). These components consist of decomposing
plant material (with contained fungi and bacteria, since not operationally
separable) of several types, frass, materials from throughfall, numerous
animal taxa, feces (with contained fungi and bacteria), and exuviae (with
contained fungi and bacteria). These biomasses are considered to be
controlled by each other, several litterfall types and other inputs, air
temperature, and precipitation.

In order to keep the model relatively simple, I have chosen as the
variables of the model only what I consider to be the most important of
all the possibilities.

A fairly complete list of decomposing plant material types would
include: Pine—leaves, branches, bark, cones and seeds, bud scales, male
strobili, and pollen; Understory species—Ileaves, etc.; Groundcover
species—leaves, etc. Of these, only pine litter, taken as a whole, is
chosen as a variable.

Frass, materials from throughfall, feces, and exuviae are ignored in
the present model, partly because of the difficulty of measuring them.

A fairly complete list of the animal taxa in pine mor would be quite
extensive. Of these, nine arthropod taxa are chosen as variables: Litho-
biomorpha (Chilopoda), Symphypleona (Collembola), Entomobryo-
morpha (Collembola), Poduromorpha (Collembola), Formicidae
(Hymenoptera), Araneae, Mesostigmata (Acarina), Trombidiformes
(Acarina), and Oribatei (Acarina).

The litterfall types (the input fluxes), of course, are the same as the
decomposing plant material types, and thus only pine litterfall is chosen
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as a variable. The characteristics of the physical environment, air
temperature and precipitation, are also chosen as variables.

c. Construction of Control Diagram. Once the variables of interest
have been chosen, it is then necessary to indicate paths in which
immediate cause-and-effect relationships (‘“‘controls,” “‘signals,” “‘com-
munications,” “flows of information,” etc.) operate among the variables.
To do this it is almost always necessary to add new variables, gradually
building up a “control diagram,” until all “first causes” are variables
outside the system of interest (Fig. 2). These latter variables have causes
not expressed in the mathematical model, and may be regarded as
inputs to the system. The extent of the diagram, i.e., the number of
variables to be used and how far back one should go for first causes,
depends upon objectives of the model, availability of information, degree
of accuracy required, etc.

The number of variables used between first causes and the other
variables of interest depends upon the level at which one wishes to
explain the variables’ behavior. For example, suppose one wishes to
explain variations in a mouse population as a function of weather
variations. One could attempt an explanation on a coarse level by
introducing no new variables, and set up an equation expressing mouse
population directly as a function of weather variables. One could
attempt an explanation on a finer level by introducing food supply,
natality, and mortality as new variables. Or one could go still further by
adding plant photosynthesis and respiration, ingestion, mouse respiration,
and various mouse behavior variables. The process could be continued
almost indefinitely, each time attempting an explanation on a finer
level, or “‘higher magnification.” Each shift to a finer level might be
regarded as substituting an ‘“‘explanation’ for a “‘description” (Bradley,
1968), but, of course, all explanations are descriptions.

The procedure of starting with variables which have no or few effects
on the other variables (i.e., are at the bottom of the effects chain),
and working backwards to immediate causes is to be strongly recom-
mended. This procedure helps to overcome preconceived notions of what
affects what. Where a variable, e.g., biomass, changes due to a rate, e.g.,
respiration, making that rate into a separate variable will greatly simplify
formulation of the mathematical model.

Each arrow on the control diagram indicates only that a cause-and-
effect relationship exists from one variable to the other; the exact nature
of the relationship will be stated later in the formulation. The diagram
represents an outline of a complex hypothesis concerning the time
behavior of the variables of interest.
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Fic. 2. Control diagram for pine-mor model.

(The control diagram is obviously a type of block diagram, but it must
be kept in mind that the blocks are variables, rather than operators. The
latter is the most comman usage in engineering literature. The
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arrows signify mappings or functions. Thus the control diagram is
similar to “signal-flow graphs” in engineering literature, with the
important distinction that the units of the ‘“signals’ impinging on a
variable are nonuniform.)

The control diagram for the pine-mor food web model is presented in
Fig. 2. Where an effect is indicated from a variable back to itself, this
means that at any point in time the value of that variable depends upon
its previous value. This would be true of any variable representing mass
or stored energy, changing in time. (Only three of the nine arthropod
taxa have been included, to avoid confusion.)

d. Classification of Variables, Operational Definitions of Variables, and
Spectfication of Variable Units. Once the control diagram is completed,
the variables can be classified into three types: “input variables” (v;),
“nondynamic state variables” (n;), and “dynamic state variables”(x;).
(This formulation is leading up to the analysis of dynamic ecological
systems using the ‘‘state variable approach” of differential equations
theory (DeRusso et al. 1965). This approach utilizes only the input
variables and the dynamic state variables. The nondynamic state
variables are used here to simplify formulation of the mathematical
model; they will later be eliminated.)

The input variables are the “first causes” of the control diagram,
and lie outside of the system being represented by the mathematical
model. In ecological systems they will usually represent input fluxes
(e.g., litterfall, immigration, fallout, and input current) or environmental
controls (e.g., temperature and humidity).

The state variables represent the system, i.e., at any point in time the
set of values of the state variables is the state of the system. The non-
dynamic state variables are those considered to be zero-memory,
instantaneous, or, in the language of the engineer, non-energy-storing,
e.g., rates. Thus, at any point in time the value of a nondynamic state
variable does not depend upon its previous value, and the variable may
be defined by an algebraic equation. The dynamic state variables are
those considered to be finite-memory or energy-storing, e.g., biomass.
Thus, at any point in time the value of a dynamic state variable depends
upon its previous value, and the variable must be defined by a differential
equation. The existence of dynamic state variables in a system results in
the system itself being state-determined.

Since the model must later be tested by comparing measured values of
state variables with predicted values of state variables (as functions of
themselves and measured values of input variables), operational defini-
tions must be given for each input variable and state variable. These
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definitions are often implicit, since many ecological measuring techniques
are standardized, but it is better to make definitions explicit, since
different definitions yield different variables. For example, the term,
“plankton biomass,” has been used as a label for several essentially
different variables, including in their operational definitions different net
meshes or filter grades, different drying temperatures, etc.; certainly
these variables are based upon the same real-world phenomenon, but
they cannot be used interchangeably in a mathematical model. In many
cases it will be necessary for the researcher to compromise his ideal
operational definition of a variable because of the availability of data
based on other definitions. In some cases it may be necessary to omit
certain variables entirely, because of the difficulty or expense of
measuring them.

One particular problem, which has led to a great deal of confusion in
ecological modeling, is the use of trophic levels, saprophage levels,
biophage levels, etc. as variables. It is practically impossible to measure,
thus to operationally define, such functional groups of organisms in a
psychologically satisfying manner. Thus it is better to use easily recog-
nizable taxonomic groups as the variables of the model, and, perhaps,
later construct a new model by partitioning the taxonomic variables
among the functional variables. In this way an indefinite number of new
models may be constructed, using different definitions of the functional
variables.

Since the statements of relationships among model variables are
mathematical equations, the units of each variable must be explicitly
stated. As with the operational definitions, the best units to be used
depend upon the objective of the model and availability of data. Where
relevant, most variable dimensions will contain three types of units:
(1) a measure of amount, e.g., weight, length, or number of individuals;
(2) a measure of distribution in space, e.g., inverse area or inverse
volume; and (3) a measure of distribution in time, i.e., inverse time.
Where possible, identical units should be used to simplify computation,
e.g., all weights in grams.

Input, nondynamic state variables, and dynamic state variables used in
the pine—mor model, together with their units, are listed in Table I. The
system is defined as a pure pine forest with no undergrowth.

Mean air temperature (v,) and precipitation (v,) are defined in the
same way as does the US Weather Bureau, in order to utilize Weather
Bureau records. Pine litterfall (v;) is defined as ash-free, oven-dry
(105 C) weight of litter collected in litter baskets at two-week intervals.

Mor (x,) is defined as ash-free, oven-dry (105 C) weight of the total
forest floor. The arthropod taxa (x;-x,;) are defined as total oven-dry
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TABLE I

PiNEe-MoOR MODEL VARIABLES

Symbol Description Units®

Input variables (v;)

vy Mean air temperature C

v Precipitation g water m~2 day™!

v, Pine litterfall g PL m~2 day™!
Nondynamic state variables (n;)

n Mor temperature C

ny Throughfall g water m~2 day™!

n, Stemflow g water m~2 day™!

n, Net precipitation g water m~% day~!

n; Potential evaporation from mor g water m~% day~!

ng Actual evaporation from mor g water m~2 day~!

n, Precipitation retention g water m~2 day~!

ng Mor moisture fraction (pure number)

7y Mor respiration rate g M respired g M~! day™!
Dynamic state variables (x;)

xy Mor moisture g water m~2

Xy Mor (decomposing pine litter and fungi) g Mm2

x4 Araneae g Am2

x4 Mesostigmata (Acarina) g Me m—2

x5 Trombidiformes (Acarina) g Tm2

Xg Oribatei (Acarina) gOm?

x; Symphypleona (Collembola) gSm?

Xg Poduromorpha (Collembola: Arthropleona) gP m-?

Xg Entomobryomorpha (Collembola: Arthropleona) g E m~2

X1 Formicidae (Hymenoptera) g Fm™2

Xy Lithobiomorpha (Chilopoda) gL m2

¢ PL = pine litterfall, M = mor, A = Araneae, Me = Mesostigmata, T = Trombidi-
formes, O = Oribatei, S = Symphypleona, P = Poduromorpha, E = Entomobryo-
morpha, F = Formicidae, and L. = Lithobiomorpha.

(65 C) weights of the respective taxa, extracted in a micro-Tullgren
funnel (Auerbach and Crossley, 1960).

The unit of time used for all rates and fluxes in the model is the
(inverse) day; the unit of area, the (inverse) square meter. There are
several possible choices for the unit representing biomass, e.g., grams
oven-dry weight, number of individuals, joules, grams carbon, grams
calcium, grams nitrogen, and grams of other elements. The choice among
these possible units is very important since this is the unit with which
most of the model will operate. All data used in calculation of equation
constants will have to be in this unit; all predictions from the model will
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be in this unit,and must be compared with similar data from othersources.

I have chosen grams of oven-dry weight (square meters per day) as the
unit since this 1s most easily, most accurately, and most often measured.
In most experimental work this is the unit actually measured, and then
used to calculate one or more other units by means of a conversion factor.
If predictions in some other unit are desired, it i1s easy to convert from
grams of oven-dry weight, using conversion factors which are empirically
determined. These factors would vary among variables and, perhaps,
with time, e.g., joules per gram varies among arthropod taxa and among
life stages within any given taxon.

e. Specification of Forms of Equations. Specifying the equation forms
represents the filling in of details of the control diagram. Each equation
expresses a state variable as a function of both input and other state
variables which have effects on the variable. The arguments of each
function are the causes or controls of variable behavior, or the sources
of signals, communication, or information flowing to the variable; the
reader may choose the most satisfying phrase. The equations are the
axioms of the mathematical structure which is the model.

The set of equations is a complex hypothesis, in which each equation
can be regarded as an independent subhypothesis, subject to being
independently tested and modified. The terms of each equation, and even
the constants, may be so regarded. Thus, the forms of the equations
should be based upon mathematical, physical, chemical, and biological
principles, as well as the literature, personal knowledge, and intelligent
guesses.

The equation forms should not be purely empirical, and probably
cannot be, since an empirical equation 1s really a hypothesis that the
future behavior of a variable will be the same as a sample of its past
behavior was. Some empirical equations might be resorted to in order to
calculate variable behavior necessary for the model to operate, but in
whose genesis one is not particularly interested, e.g., the temperature of
a biological system. The forms of such equations will often be statistical
regressions or power series.

Each nondynamic state variable 1s expressed as a function of other
variables by an algebraic equation; each dynamic state variable, by a
first-order ordinary differential equation. The differential equations are
of the form

&, = gain fluxes — loss fluxes, 2)

where %, = dx;/dt. The algebraic equations could be condensed into the
differential equations, and the nondynamic state variables eliminated,
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but they are best retained for the present to ease formulation of the model
and the digital computer program. They will later be eliminated to put
the model into a form amenable to analysis.

Each equation will contain a number of constants k, . (These are often
called “parameters,” a word which leads to confusion because it is
sometimes used, although not here, for the independent variables.)
They will remain in an unevaluated form until the equations are fully
specified. While I prefer to use a single letter, such as “k,” to denote the
constants, one might choose to use several letters (as in Chapter 1) so
as to clearly identify several classes of constants, e.g., temperatures,
ingestion rates, and respiration rates. The advantage of the single-letter
approach is that the variables and the constants are immediately
distinguishable by the reader, and the equation forms made obvious.

Since both sides of each equation must have the same units, the
constants will often have unusual ones, e.g., inverse degrees Celsius. In
the case of the differential equations, all of the right-hand terms must be
fluxes, often rate times mass (or density).

Each term on the right-hand side of each equation (of course, some
equations might have but one term) is a function of one or several
variables. These arguments of the function are the sources of control. The
question arises whether time should be considered as a possible
argument. The question is an important one, since when one is dealing
with a linear differential equation the inclusion of time as an argument
produces an equation with variable coefficients (leading to ‘‘time-
varying,” ‘“‘variable,” or “nonstationary’’ systems), while the exclusion
of time as an argument produces an equation with constant coeflicients
(leading to ‘“time-invariant,” “fixed,” or ‘“‘stationary” systems). While
the solution of the latter is routine, the solution of the former usually
cannot be obtained in exact literal form (Coddington, 1961).

Since in this type of mathematical model time is the only independent
variable, all dependent variables (input and state) are functions of time.
The state variables (the only variables for which equations are written),
however, are only indirectly functions of time, so that time does not
appear as an argument, and the system described by the model is time-
invariant. Where time is included explicitly as an argument of a variable,
one is just describing the behavior of that variable in time without
attempting to hypothesize the cause of that behavior. Such a variable
would lie outside the system. This is the case with the input variables,
which are just described as functions of time, and are sometimes merely
constants (‘“‘constant forcing function”). Thus, in my opinion, all models
of dynamic ecological systems should be so formulated as to be time-
invariant, except for the existence of input variables, which are defined
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as functions of time. Such models might be considered to be
“explanatory’’ or “cause-and-effect” models.

As an example of the two different approaches described above—
time-invariant versus time-varying models—consider the pine—-mor
system which is affected by temperature, precipitation, and litterfall.
The ecologist would consider all three of these to be input variables,
with the resulting model being nonlinear, but time-invariant. In this
case the concept of an ‘“‘unforced system” would not be meaningful.
On the other hand, the engineer or physicist would probably consider
litterfall to be the only input variable, with the resulting model being,
perhaps, linear, but time-varying (the variable coeflicients would
include the effects of temperature and precipitation as functions of time).
In this case the concept of an “unforced system” would be meaningful.

In ecological models, many dynamic state variables will often be
biomasses (or biomass densities) of some taxon of organisms. Terms on
the right-hand sides of the differential equations for these variables
represent fluxes. (These fluxes are identical to the flows between
compartments of “compartment models,” special cases of general
dynamic models discussed here.) The question arises of what variables,
besides physical environmental controls, are the sources of control for
each flux, i.e.,, whether the source taxon (or other foodstuff) or the
receiver taxon or both exert control. (Other taxa might be hypothesized
as exerting control, e.g., through competition, to further complicate the
question.)

Where the flux represents a physiological process, such as respiration
or excretion, the assumption of total control by the source taxon is
probably reasonable. The answer is more difficult when the flux
represents a flow of food from the source to the receiver.

It is sometimes assumed that feeding fluxes are completely controlled
by the food source compartment. The biological interpretation of this
assumption is that feeders are controlled by competition for a limited
food supply or, perhaps, niches; the biomass of feeder has no effect on
the amount eaten. A more realistic assumption would be that each
feeding flux is controlled by both the source and the receiver. Thus, the
more feeder present the more there is eaten, as well as the more food
the more there is eaten. A biological interpretation of this assumption is
that food supply and feeders mutually control each other.

One might choose the ‘“Hairston-Smith-Slobodkin” alternative
(Hairston et al., 1960) for the sources of control of feeding fluxes. In
this case feeding fluxes from plants (or detritus) to herbivores (or
saprovores) would be controlled solely by the receivers; feeding fluxes
from herbivores (or saprovores) to predators would be controlled by
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both sources and receivers. The biological interpretation of this assump-
tion is that competition for a limited food supply does not control
herbivores; herbivores are controlled by predators, and predators are
controlled by competition for supply of herbivores. Increased herbivores
decrease the amount of plant material, but the amount of plant material
has no effect on the feeding flux to herbivores. This last consequence
seems somewhat unrealistic, unless there are unlimited supplies of
plant material, or the model is only used when the plant material supply
is high, i.e., for a certain range of conditions.

In the case of the predator—prey feeding flux, it is common to assume
that flux is expressed by a function of the form: constant times prey
density times predator density. This is the Lotka—Volterra assumption
that the rate of interaction of two species is directly proportional to the
product of their populations—the mass action law of chemistry and
physics. Watt (1962) has criticized this assumption (or hypothesis), but
very rarely is enough information available to justify a better one.

The above example is one of the simplest types of nonlinear functions
(see Chapter 1 for a hierarchy), and serves to bring up the extremely
important question of whether one should use linear or nonlinear
functions in the equations. Certainly almost all real-world relationships
are more accurately represented by nonlinear mathematical models than
linear ones (I hestitate to say “are nonlinear”), but there is a great
advantage in using linear models since most of the techniques developed
by engineers and mathematicians for the analysis of dynamic systems are
based upon linear mathematical models (DeRusso et al., 1965, Schwarz
and Friedland, 1965). The disadvantage of a linear formulation is that
it is usually a cruder approximation than the nonlinear, and, moreover,
is usually valid for only a limited range of the model variables, including
time.

If it is felt necessary to use a nonlinear model, the analysis must
usually be done by (1) the time-consuming process of digital (or analog)
computer simulation (numerical approximation), or (2) linearizing the
model about an equilibrium state and then using conventional linear
techniques. The latter method is valid only for small deviations (or
“perturbations”) from equilibrium (Schwarz and Friedland, 1965).

Time lags are sometimes thought desirable in ecological models. For a
spatially homogeneous continuous dynamic system, time lags should not
be necessary in the model equations. If they appear to be necessary, this
is an indication that the state of the system has not been properly defined;
in particular, more state variables are probably needed. This makes
sense—a dynamic system is a state-determined system. Thus, the state
of the system at any given instant of time is a function of the state of the
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system and the inputs at the immediately previous instant of time. Any
effect from a distant time must act through the immediately previous
instant of time. For example, growth of an animal may be considered to
be a function of food intake at some previous time, since an obvious time
lag exists. But if one increases the reality of the model by adding new
state variables such as gut content and stored food, the necessity of
time lags largely disappears. However, in some complex models, e.g.,
population models, it might not be feasible to redefine state in this way
(Wangersky and Cunningham, 1957). If time lags are deemed necessary,
a good introduction to the literature on the resulting differential—
difference equations and functional-differential equations may be found
in the book by Hale and LaSalle (1967).

If the system is spatially heterogeneous, then pure time delays
(“transport lags”) may be necessary. This is the simplest space effect,
and may often be used in formally spatially homogeneous models
(Ball and Adams, 1967), and does not violate the system’s property of
being state-determined.

Tables II and III contain the forms of the equations used for the
nondynamic state variables (algebraic equations) and the dynamic state
variables (differential equations), respectively, of the pine-mor model.

The mean daily temperature within the mor (»,) has been made equal
to the mean daily air temperature (v,). Some preliminary measurements
in an Oak Ridge, Tennessee, shortleaf pine forest indicate this to be
approximately true. In a future version of the model it might be wise to
make mor temperature a function of a dynamic state variable, soil heat;
in this way the temperature time lag could be accounted for.

Throughfall (n,) and stemflow (n;) have each been made equal to
constant fractions of open-air precipitation (v,), and net precipitation
(n,) equal to their sum. This is, in general, consistent with the assump-
tions of foresters (Helvey, 1967, Hoover, 1953). A nonlinear relationship
would be more realistic because of the initial period of saturation of
branches and leaves during a storm.

Potential evaporation from mor (#;) is assumed to be a function solely
of mor temperature (n,). This is a tremendous oversimplification
compared with other extant models, e.g., those of Thornthwaite,
Penman, Budyko, and others, but is used here as a first approximation.
The form of the potential evaporation curve (against temperature)
is assumed to be the same as that of vapor pressure deficit (vPD) (milli-
meters of mercury, 0% relative humidity), which is assumed to be
of the form: vpD = ae®™. Values of a = 4.58 and & = 0.065 closely
approximate the original veD curve. (“b” is k, in the actual model
equation.)
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TABLE I1

EQUATIONS FOR NONDYNAMIC STATE VARIABLES
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TABLE II1

EqQuaTIONS FOR DyYNAMIC STATE VARIABLES
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TABLE III (continued)
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The ratio of actual evaporation (ng) to potential evaporation (ng) is
assumed to be equal to the ratio of actual available moisture to maximum
possible available moisture. The latter term is equal to maximum mor
moisture content minus minimum mor moisture content. This assump-
tion is commonly made in physical climatology (Sellers, 1965). That
there is, indeed, a linear relationship between evaporation and available
moisture is indicated by observed negative exponential drying curves of
both pine and hardwood forest floors (Helvey, 1964, 1967).

Similarly, the ratio of precipitation retention (7;) to net precipitation
(mg), 1.e., the fraction of net precipitation retained by the forest floor
(the rest becoming runoff or soil seepage) is assumed to be equal to the
ratio of actual moisture deficit to maximum possible moisture deficit
(which equals maximum possible available moisture). That there is
a linear relationship between precipitation retention and moisture deficit
is indicated by observed asymptotic moisture buildup curves of hardwood
forest floors (Helvey, 1964).

The moisture fraction (ng) is simply the ratio of mor moisture (x,) to
mor (,), and is included solely for convenience.

The mor respiration rate (ny) is assumed to be a function of both mor
temperature (n,) and moisture fraction (ng), when kg is the measured mor
respiration rate, and Ry and k,, are the temperature and moisture
fraction, respectively, at which the measurement was made. Respiration
is assumed to be an exponential function of temperature within the range
of the model, allowing the use of a simple Q,, value with &, , the tem-
perature sensitivity of mor respiration, determined by the value of the
010, and “n; — Ry is the difference in temperature of the mor from the
original measurement. Data on the effect of moisture on the rate of mor
respiration are very scarce. Those of Parkinson and Coups (1963)
indicate that a linear relationship exists within the range they studied.
A linear relationship is assumed here, although certainly a nonlinear one
would be more realistic.

The assumption of a single respiration rate (or decomposition rate) for
mor is a gross approximation, and a closer approximation could probably
be obtained by using several respiration rates based on the mor
components of sugars, hemicelluloses, cellulose, lignin, waxes, and
phenols (Minderman, 1968). To do so would greatly complicate the
model, since the dynamic state variable, “mor,” would have to be broken
down into at least six different dynamic state variables.

The dynamic state variable, mor moisture (x;), is defined by a
differential equation in which the change in mor moisture per unit time
(a “flux”) is made equal to the gain flux, precipitation retention (n,),
minus the loss flux, actual evaporation (n5). Any transfer of moisture to



2. MODELING DYNAMIC ECOLOGICAL SYSTEMS 145

or from the mineral soil, not accounted for by the precipitation retention
calculation, is ignored.

In the case of the mor (x,), i.e., the decomposing pine litter with
contained fungi, there is but one gain flux, pine litterfall (»;), and several
loss fluxes, respiration (nyx,), and ingestion by the arthropods, Oribatei
(x6), Symphyleona (x,), Poduromorpha (x3), Entomobryomorpha (x,), and
Formicidae (x,).

Temperature is assumed to affect ingestion fluxes in the same
fashion as it affects mor respiration rate, allowing, of course, each
arthropod taxon to possess its own Q;, value, expressed as its temperature
sensitivity. Moisture is assumed to have no effect on ingestion or
respiration by arthropods; this is based on the observation (Kendrick and
Burges, 1962) that the arthropods tend to concentrate in the rather uni-
formly moist F, layer. The insignificance of moisture is a questionable
assumption, but sufficient information does not exist to make a different
one.

Fluxes representing ingestion of mor by saprovore arthropods are
assumed to be controlled solely by temperature and the saprovore
biomass, the mor biomass (x,) not having any effect. Predation fluxes,
on the other hand, are assumed to be controlled by both prey and
predator biomasses, as well as the temperature. Thus, I have adopted the
‘““Hairston-Smith-Slobodkin’’ hypothesis.

The differential equation defining the biomass of an arthropod taxon,
in order to be complete, would have to include as gain fluxes: the inges-
tion of each prey taxon (or plant material) and immigration; and as
loss fluxes: egestion of each prey taxon (or plant material), excretion,
respiration, production of exuviae, production of nonviable eggs,
nonpredatory death, predatory death (including parts not ingested by the
predator), and emigration. (This assumes that water intake contributes
nothing to dry weight.) In this model ingestions minus egestions for
each prey (or mor) are used as the gain fluxes, and respirations and
predatory deaths for each predator are used as the loss fluxes.

The gain fluxes to each arthropod taxon (x;—x,;;) represent ingestion
minus egestion, i.e., assimilation, of each food material, and thus
are of the form: ingestion rate - assimilation fraction - temperature
effect - feeding arthropod biomass - food arthropod biomass (for
predators only). Assimilation fraction is assumed to be a constant. The
predatory loss fluxes are similarly formulated, with ingestion rates based
on the predator, and with the assimilation fraction absent since all
ingested material is lost from the food compartment. (It should be noted
that the predation ingestion rates do not have the usual units: grams of
food ingested per grams feeder per day or, simply, inverse days, but,



146 NORMAN E. KOWAL

grams of food ingested per grams feeder per grams food per day or,
inverse grams food per day.)

f. Evaluation of Constants. The equations specified in the previous
step contain a large number of unevaluated constants &; . These constants
must be evaluated if the mathematical model is to be tested and later
(probably after modification) used for practical purposes. Of course,
one might prefer to leave the constants in an unevaluated form, but I feel
that this leads to rather empty models. Moreover, in nonlinear systems
the qualitative behavior of the variables is often a function of the values
of the constants.

In general, there are three possible sources of values for the constants.
In some cases the value of one or more constants may be suggested as
hypothesis, perhaps a major hypothesis of the model. More often, values
will come from the literature, but one must be careful that equation
forms and the operational definitions of variables associated with the
constants are the same in both models (one’s own and that in the
literature). Since this requirement is seldom satisfied, values of constants
obtained in this way should probably also be regarded as hypotheses.
The last, perhaps ideal, source of constant values is, of course, actual
measurement.

The actual measurement of constants, i.e., ‘“‘parameter estimation,”
is where statistics makes its first major contribution to modeling. This
is the area of least squares, regression, etc. In the case of fitting nonlinear
curves (hypotheses) to sets of data, a very useful tool is the Taylor series
gradient method developed by Marquardt (1963).

It is important to manage one’s resources so that constants most
influential in determining solution behavior are the constants most
accurately measured. It is often possible to calculate their influences,
i.e., the partial derivatives of solution behavior with respect to particular
constants, in a sensitivity analysis (Tomovié, 1963).

It 1s in the evaluation of model constants that mathematical modeling
has great value in guiding activities of the researcher. The model
indicates what kinds of measurements are important, and what kinds are
not. It provides a definite goal for the researcher, leading him toward the
most useful observations to be made in order to accomplish his objectives.

Table IV contains the evaluated constants of the pine—mor model. The
sources of most of the values are indicated in the table. Ideally, all the
constants should be measured in the same pine forest (the one on which
the model is to be tested), since they are dependent upon local climate
and topography, pine species, and species composition of arthropod taxa.
Unfortunately, this has not been done.
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Here k; 1s the scale factor for potential evaporation ny=*k, exp(0.065n,).
To calculate the value of &3, I have used the data of Metz (1958). Metz
measured a water loss from pine litter of 438 g m~2 day—! immediately
following rainstorms, during a period when the mean daily air tempera-
ture was 22.5 C. Using this data in the equation, and solving, k; = 101.6.
Derivation of k£, was explained in the previous section.

The standard mor respiration rate kg was calculated from a measure-
ment (Kowal, 1969b) of Pinus echinata L-layer respiration rate (0.00275
day™') corrected for relative weights of layers and relative respiration
rates of layers (Parkinson and Coups, 1963).

Predator ingestion “‘rates” were calculated from the assumptions that,
at equilibrium, at 15 C all predator taxa ingest i of their biomass
per day, and ingestion of the various prey taxa is proportional to prey
taxa biomass. The values used for equilibrium biomass come from some
preliminary P. echinata mor data.

I recognize that many of the values used for constants are based upon
crude data and unrealistic assumptions, but believe these to be the best
available at the present time. Research is currently in progress to obtain
better estimates of many of them, particularly the ingestion ‘‘rates.”

2. Digital Computer Programming ( Numerical Approximation)

Once the model has been formulated, it is necessary to obtain numerical
solutions for use in system identification (testing of predictions and
alteration of model) and, perhaps eventually, system analysis. this is
most efficiently done (on the digital computer) by numerical approxi-
mation.

By a “‘numerical solution” is meant a set of numerical values of the
state variables at one or more points in time, usually starting with the
initial state. Exact (analytical, closed form) solutions might be feasible
for some very simple models, but for most practical models an approxi-
mation will be necessary. If they are feasible, exact solutions, of course,
should be used rather than approximations. Numerical solutions are
calculated indirectly from the exact or approximate literal solution, or
may be calculated directly by a computer algorithm (the digital computer
program).

The model consists of a system of coupled algebraic and differential
equations, and must be converted into a digital computer program.
In formulating this program, algebraic equations pose no problems;
they can be solved exactly. But, since the digital computer operates in
discrete time steps, while differential equations are continuous, the
differential equations must be approximated. This is most easily done by
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TABLE IV

PiNE-Mor MoDEL CONSTANTS

Symbol Physical description Units Value Reference

ky Fraction of precipitation (pure number) 0.80 Helvey (1967)
appearing as throughfall

ky Fraction of precipitation (pure number) 0.04 Helvey (1967)
appearing as stemflow

ky Scale factor for potential g H,O m~—* day~! 101.6
evaporation

IR Temperature sensitivity of C~! 0.065
potential evaporation

ks Maximum mor moisture (pure number) 2.30 Helvey (1967)
fraction (max ng)

ke Minimum mor moisture (pure number) 0.40 Helvey (1967)
fraction (min #)

k, Temperature sensitivity c! 0.069 Q10 =2
of kg (Drobnik, 1962)

kg Standard mor respiration g M g M~! day—* 0.00119
rate

kq Temperature at which k3, C 20
determined

k1o Mor moisture fraction at (pure number) 1.00
which kg determined

Ry Standard Oribatei g M g O day! 0.25 Kowal (1969a)
ingestion rate of mor

Ryy Temperature sensitivity of C! 0.139 Berthet (1967)
Oribatei

ks Temperature at which k;,; C 20 Kowal (1969a)
determined

k4 Standard Symphypleona g Mg S~ day! 0.14 Assumed same as
ingestion rate of mor Poduromorpha

ks Temperature sensitivity of C-! 0.139 Assumed same as
Symphypleona Poduromorpha

kig Temperature at which k,, C 15 Assumed same as
determined Poduromorpha

kyy Standard Poduromorpha g M g P~ day? 0.14 Healey (1967)
ingestion rate of mor

Rig Temperature sensitivity of C! 0.139 Q=4
Poduromorpha (Healey, 1967)

kio Temperature at which k,;, C 15 Healey (1967)
determined

Rag Standard Entomobryomor- g M g E-! day—! 0.14 Assumed same as
pha ingestion rate of mor Poduromorpha

kyy Temperature sensitivity of C™! 0.139 Assumed same as
Entomobryomorpha Poduromorpha

Table continued
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TABLE IV (continued)

Symbol Physical description Units Value Reference

ko Temperature at which k,y C 15 Assumed same as
determined Poduromorpha

ko Temperature sensitivity of C—! 0.139 Assumed same as
Araneae Poduromorpha

Rgq Temperature sensitivity of C—! 0.139 Assumed same as
Mesostigmata Poduromorpha

Rgs Temperature sensitivity of C-! 0.139 Assumed same as
Trombidiformes Poduromorpha

kys  Standard Araneae g A g A1 day™! 0.0047 MacFadyen (1963)
respiration rate

kyy Temperature at which k,y C 16 MacFadyen (1963)
determined

kys  Standard Mesostigmata g M g M-! day—! 0.0500 MacFadyen (1963)
respiration rate

ksg Temperature at which &,y C 16 MacFadyen (1963)
determined

39 Standard Trombidiformes g T g T-! day—? 0.0500 Assumed same as
respiration rate Mesostigmata

kay Temperature at which k3, C 16 Assumed same as
determined Mesostigmata

kso Standard Oribatei g O g O day? 0.00185 Berthet (1963)
respiration rate

kyy Temperature at which k3, C 16 Berthet (1963)
determined

Ry Standard Symphypleona gS g S!day? 0.0282  Assumed same as
respiration rate Poduromorpha

kg Temperature at which k3, C 15 Assumed same as
determined Poduromorpha

k3 Standard Poduromorpha gP g P! day? 0.0282  Healey (1967)
respiration rate

ka7 Temperature at which k3 C 15 Healey (1967)
determined

kys  Standard Entomobryomor- g E g E~! day—?! 0.0282  Assumed same as
pha respiration rate Poduromorpha

kgq Temperature at which k33 C 15 Assumed same as
determined Poduromorpha

ky  Standard Formicidae g F g F~t day—?! 0.0500 Assumed same as
respiration rate Mesostigmata

kg1 Temperature at which &, C 16 Assumed same as
determined Mesostigmata

kys  Standard Lithobiomorpha g L g L' day—? 0.0103  MacFadyen (1963)
respiration rate

Rys Temperature at which &, C 16 MacFadyen (1963)

determined

Table continued
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TABLE IV (continued)

Symbol Physical description Units Value Reference

Rys Oribatei assimilation (pure number) 0.14 Berthet (1967)
fraction of mor

Rys Symphypleona assimilation (pure number) 0.55 Assumed same as
fraction of mor Poduromorpha

k4 Poduromorpha assimilation (pure number) 0.55 Healey (1967)
fraction of mor

kgy Entomobryomorpha assim- (pure number) 0.55 Assumed same as
ilation fraction of mor Poduromorpha

k45

ks

ksy

kyz Araneae ingestion g P ingested 0.359

keo rate of prey g A~ g P! day—!

kﬁ.’i

keg

ks

kgy

ks

ky;  Temperature at C 15

ks which Araneae

kg1 ingestion rates

Res determined

kg

ko

kso

kss

kse

kso Araneae assimilation (pure number) 0.93 Crossley and

keo fraction of prey Shanks (1966)

kgs

kﬁﬁ

k71

kas

kas

kag

kg, Mesostigmata ingestion g P ingested 0.364

Rgq rate of prey g M~ g P! day?

ke

kQO

kg3

Table continued
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TABLE 1V (continued)

Symbel

Physical description Units Value Reference

S w
e &

© ® ®
= ® o

k*k*k*bfh*k*k*
]

©
-

T I A o[ X I [ A
& S & o & % 3 =
&8 8 3 8 3 3R

[ A
© ©
© &

k102

[ A A A
S
= 2 o o
= ® o

k117

kg

kl(](]
k103
k106
k109
k112
kll&
kus

kQB
klol
k104

k107
kuo
kux

kllﬁ
k119

Temperature at C 15
which Mesostigmata
ingestion rates
determined

Mesostigmata assimilation (pure number) 0.47 Assumed same as
fraction of prey Opiliones
(Phillipson,
1960)

Trombidiformes ingestion g P ingested 0.368
rate of prey g T~ g P! day™!

Temperature at C 15
which Trombidiformes
ingestion rates
determined

Trombidiformes assimila- (pure number) 0.47 Assumed same as
tion fraction of prey Opiliones
(Phillipson,
1960)

Table continued



152

NORMAN E. KOWAL

TABLE IV (continued)

Symbol Physical description Units Value Reference

kiso  Standard Formicidae g Mg F-1day! 0 Arbitrary
ingestion rate of mor

ki;1  Temperature at which &y, C 15 Arbitrary
determined

ks Formicidae assimilation (pure number) 0.55 Arbitrary
fraction of mor

k123

kisg

ks

k133 Formicidae ingestion g P ingested 0.417

Ryss rate of prey g F-1 g P! day™!

k138

ki

kldd

kiaa

k127

kiso  Temperature at C 15

Ris3 which Formicidae

Rys6 ingestion rates

Ry3p determined

kle

kygs

kiss

kiss

ka1

ki34 Formicidae assimilation (pure number) 0.93 Assumed same as

Rise fraction of prey Araneae

ko

ke

kg

k1437 Temperature sensitivity of C-! 0.139 Assumed same as
Formicidae Poduromorpha

ks

kisy

kysq

k153 Lithobiomorpha ingestion g P ingested 0.417

k160 rate of prey g L-1g P~1 day!

kies

kies

kygo

Table continued
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TABLE IV (continued)

Symbol Physical description Units Value Reference

kiss

kyso

k55  Temperature at C 15

kiss which Lithobiomorpha

ka1 ingestion rates

Ei6a determined

kyer

kyizo

kyso

k153

kyse

k5o Lithobiomorpha assimila-  (pure number) 1.00 Crossley and

kyg2 tion fraction of prey Shanks (1966)

kygs

kyes

kin

ky;2  Temperature sensitivity of C-1 0.139 Assumed same as
Lithobiomorpha Poduromorpha

converting them into their corresponding difference equations using
Euler’s method:

dx|dt = f(n, x,v) (3)
Ax/At = f(n, %, v) “
Ax = Aif(n, x, V), (3

where f(n, x, v) is the vector-valued function of the nondynamic state
vector, the dynamic state vector, and the input vector, 4t is the time
increment of the algorithm, and A4x is the resulting dynamic state vector
increment. In the computer program, each dynamic state-variable
increment is thus approximated by the product of the right side of the
corresponding differential equation and a suitable time increment. At
each step in the computation, state-variable increments are calculated
from previous values of the dynamic state variables and current values of
the others, and then added to the previous values of the dynamic state
variables to approximate their next values

x(1) = x(t — 4t) + Af(n(z), x(t — A1), v(2)). (6)

This process is repeated for the total time period over which a solution is
desired.
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Euler’s method is very appealing tc the mathematical neophyte because
of its simplicity, but it is also very inaccurate. The error usually grows
as the solution proceeds from the initial time, and is proportional to the
time increment (Nielsen, 1964). The error can be reduced by using small
time increments, but solutions at times distant from the initial time will
still always be considerably in error. One alternative approach would be
to use an analog rather than a digital computer to obtain solutions.
In this case the solution is exact (within the errors introduced by the
electronic components) since the analog computer operates in continuous
time; however, it may by difficult to program the computer for some
types of models. Another alternative is to use finite (based on the chosen
time increment) rather than instantaneous rates in the formulation of the
model. This would convert the differential equations into difference
equations, and then a digital computer program could produce an exact
solution to the model. However, the model would be more approximate.
(If the computer program time increment were equal to the time
increment used in the real-world measurements, then the calculation of
rates would be greatly simplified. The finite rates could be calculated
directly from the measurements. Otherwise, from the measurements
based on one time increment must be calculated the instantaneous rates,
and from these must be calculated the finite rates based on the other
time increment.) An important drawback of this last alternative is that
the theory of difference equations has been developed to a lesser degree
than has the theory of differential equations.

The most practical alternative to the Euler method is to use one of the
other standard methods of numerically approximating the solutions to
differential equations (Nielsen, 1964; Scheid, 1968; Benyon, 1968), e.g.,
Taylor series, Runge-Kutta method, Milne method, Adams—Bashforth
method, or Adams—Moulton method (see Chapter 1, Section VII.C). Of
these, the fourth-order Runge—Kutta method is probably most practical
for large systems, and is discussed later; the Milne method should be
avoided because of its instability (Scheid, 1968). The Runge-Kutta
method has been used for the pine-mor system, but discussion here
is limited to the Euler method for the sake of simplicity.

In North America digital computer programs usually are written in
Fortran, and thus I am assuming its use here. (Elements of Fortran are
given in Chapter 1.) The first step is the dimensioning of variables.
(Table V, card 042 as numbered at the extreme right.) The constants are
treated as subscripted variables in the program, but, once read in, are
never changed. One must also define a new set of variables, Dx(1),
which represents approximate increments of the dynamic state variables,
i.e., dx;. (In transferring between a computer language and ordinary
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mathematical terminology, one should be careful in the use of paren-
theses. They may signify subscripts, arguments of a function, multiplica-
tion, sets, explanatory statements, or nothing, depending on context.)

Next, any variable names implicitly typed incorrectly must be
explicitly typed correctly. Thus, if one is using the v, 7, x, &, dx notation,
n and & must be explicitly typed “real’” (card 043). The po loop index,
DAY, (see below) must be typed “integer” (044).

The constants must now be evaluated, and the initial state of the
dynamic state variables fixed. This is accomplished by two pairs of
READ and FORMAT statements, (046—7, 049-50). The evaluated constants
and the initial state form the first and second types of data required by
the program, and are placed after the program itself.

Before the Do loop, which calculates predicted states on the basis of the
constants and initial state (and the input variables and equations), one
must make certain preparations for the printout (predicted states) of
the po loop. The printout will normally consist of a column for the time
variable, and several columns for selected state variables. These columns
can be provided with headings by a pair of nonlist WrRITE and Hollerith
FORMAT statements (053-6). One must be careful that spacing of the
headings matches that of the columns; either symbols or descriptive
names could be used for column headings, but symbols will usually
save space. At this point it is also useful to print the initial state, since the
Do loop will not do this. Again, one must use the same format as that of
the columns of predicted values of the selected state variables, plus print
a zero in the time column by means of a Hollerith “field” (059-60).

The Do statement (064) is now written. The systems we are dealing
with are continuous, state-determined systems, characterized by the
state equation (DeRusso et al., 1965, p. 328)

x(2) = £(x(t), v(to , 1)), ™

where x(#) is the state vector, including both dynamic and nondynamic
state variables. (For the analysis of the model, the nondynamic state
variables are eliminated, so that the inconsistency disappears.) Equation
(7) means that the state x at the end of the time interval, ¢, to ¢, is a
function of the state at the beginning of the interval and the input v over
this time interval. The equation represents conceptually the literal
solution to our system of coupled (algebraic and) differential equations,
i.e., our model. Since the literal solution is usually impossible or
impractical to obtain, we obtain a numerical solution. This is done by the
Do loop, by reading the input variables (066-7), calculating the non-
dynamic state variables (069-76), calculating the dynamic state-variable
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TABLE V

A SampLE ForTrRaN CoMPUTER ProGRAM FOrR THE PINE-Mor Foop WEB MobEL

4PILER CPTIUNS ~ NAME=  MALN,0PT=00,LINFCNT=50,SOURCE, ERCNIC/NOLT ST ,NODECK s LOAD,NOMAP
"C PINE-MOR. FODD WFR MOTEL, ool .
€ No €. KUWALy INSTITUTE OF ECOLNGY, U. GA. B 002
—C 003
C _MODEL CONTAINS 3 INPUT, 9 NONRYNAMIC STATE, AND 1) OYNAMIC STATE 004
€ VARTABLES, PLUS 172 CONSTANTS. - 005
[ INPUT VAP TARLFS e 006
C V1)  MEAN ATR TEWPERATCTL 007
[ vi2)  PRECIPITATION s 00n,
[ vi3)  PINF LITTERFALL 009
_c NONOYNAMIC STATE VARTABLES - 010
[ N{L}  MOR TEMPERATURE 011
c SN{2)  THROUGHFAL. . 012
€ NT3)  STEMFLDW 013
c N(4)  NET PRECIPITATINN 014
- N{5)  POTFNTIAL EVAPORATION FROMSMOR 015
c NE6)  ACTUAL EVAPORATION FROM MOR_ 016
C - N(T) PRECIPITATION RETENTION - 017
[ N{B)  MOR MOISTURE FRACTION 018
C N(S)  MOR RESPIRATION RATF 019
C_ DYNAMIC STATE VARTABLES 020
[ X{1)  MOR MOISTURE ) 021
[ _X(2)  wMge 022
[4 TTUX(3)  ARANEAE T 023 |
[ x{4} MESOSTIGMATA 026 |
[ XT%)  TRCPAIDIFORNES 075 |
c _____X{6)  ORIBATE! 026
C XT7)  SYMPHYPLFONA - 027
[ _ X{8)  PODUROMORPHA 028
4 T XT{9)  FNTOMOHR YOMORPHA -0 T T 029
_t X(10) FORMICIDAE 030
C x{T1) LiTHORTOMORPHA 031
C _PROGRAM DATA REQUIREMENTSS _ 032
rC 1) EVALUATFD CONSTANTS? K(1D=-KI172) T - CEE]
€ CAROS 1-22(COLUMN 40) 034 |
T C FARMAT 8F10.0 T T 035
. C 2) INITIAL STATE: x{1)-X{l1) AT TIME ZFR0 036
T CARDS 23-74 (COLUNN 3D} 07‘7
[ FORMAT 8F10.0
€ 3) VALUES OF INPUT VARJABLES FOR PERIAD OF CALCULATIONs VITI-V(3) 65
L ¢ . __CARDS ?5~(24EMAX DAY) L ‘040
C “FARMAT 3F10.0 0aF
DIMENSION VI3)y N9y XULID, K(172)y DXLIV) 042
REAL N, K - - 043
INTEGER DAY . 044
€ EVALUATION TiF CONSTANTS, - 045
. READ (S410) K o 046
10 FORMAT (AF10.0) 047
C SETTING OF INITTAL STATE NF OYNAMIC STATF VaIABLES. 048
( READ (5,20) X . 049
20 FNRMAT (BF10.M) " 050
_c PR-I% COLUMN HEADINGS FOR PROGRAM NyTPUT, 4UST CARPESPOND. WITH SE— 051,
LECTEN VARTABLES PRINTED OUT Av N Lo9e, B 052
WRITE (64300 053
30 FORMAT (121H1 DAY Xt x(?) 3) ] 054
X __X{s) Xte) x€7) . xis) xt9) x{19) x(11 as5
X1 ) 056
€ PRINT INITIAL STATES OF SELECTED DYNA“IL STATE VA?IARLFS. THESF MUST 057
3 ESPOND WITH COLUMN HEADINGS. ) T 548
WRITE (6435) X } 05°
35 FORMAT (1TH 6, 1Pi1€10.3} 060
C CALCULATION OF STATE VARIABLES FRDM INITIAL STATE ANC INPUT VARTABLES. 061

3 00 LOOP PERFORNS NUMFR ICAL APPROXIMATINN NF NYNAMIC STATF VARTABLFS 062

C__ BY EYLER'S METHND, R 063
DO 60 DAY=1Yy 73041 064
C VALUES DF INPUT VARIARLES FOR DAY "pay", _ . 065
READ (5440) V 066
40 FORMAT (3F10.0) 067
€ EQUAT[ONS F R NONDYNA | STATE VARIABLES, DURING DAV wHAY W, 548
NEL) = viD) R - 069 |
N2V = K(11#v(2) ° 970
NE3) = K(2)%V(2) _ 71
N{4) = NT2) + NI3) o 072
NIS) = K{3)V*EXPIK(4LIONITD) - 073

Table continued
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TABLE V (continued)

NUEY = XAV /RT2) . [ XL
N(6) = (NGG)-K(Gl)'Nli)l(K(5)-K(6il 075
GIZTKISI<RGBN ~—— * L
C NEXT TwWO srlteneuts PREVENT ACTUAL EVAPCTRATION (MU6)) FROM EXCEEDING 07?7
D PRECIPTITATION RETENTITON THTTYY FANN € XTEET j
C__ MOISTURE DEFICIT (K(5l‘X(2l-X(I’). ruess MAY NCCUR BECAUSE MR THE 079
- ~g5=TY v B3 -
C ___MHEN WOR Ix(zty 1S LOW. R 081
lF(N(7l.GT (KE5)#X02)=X (11D} NETI=KIS)*X(2)=X (1} 083
TTVRTNTT ISR U TV o IN (A T-K(6)) /LR TOT=RUEYT ~
C_EQUATIONS FOR OYNAMIC STATE VARIABLE INCREMENTS, NURING \DAY *"DAY™, 085
DXUIV = NUTY = NU&T —OWE
c 087
= TENUIIFXTZY = K11 FXPIKE12)+(NTT )= K(l!l)tixtzz‘=*‘—“‘*vtu—‘
XK(I#)'EXP(K([5)'|N(li-((lb)ll‘x(7l - KLITheFXPLRCIRISINGL) KT 191)) 089
EEXPUR (2 ITEINIL )=k (22 )) 1*x(a) — RU12GTHEXPTRVIATI 030
XN(l)-K(lZl)))‘x(lol 091
DX(3) = K{4B)*K(SOI*EXP{KI2IN®INIII-K{49)))*X (2)#X(4) ¢ K{51)#K(53 093
TI-KTIS210 X3 #X(5) ¢ K(54) *K (SEFXEXPUR(2IVFINIYY
X = KUS501EXA3)%X{6) ¢ K(S5T)*K(59)#F XOIK{23)FLNC1)1—K(58) ) ) *XU 3box{ 095
LA KIFOW(S?F‘EXNKIHD‘N(H KEATIDI=X () #x(8) ¢ KIEXTERTESTF 096
KEXP{K (23 ) #{NT1)-K(566) })$X{3)¢X(9) ¢ K(66) *K(68)*EXPIK(23V$(N(1)= 097
3 *X(3)eX(10) ¢ K(6I)*K(TLI*EXP (K23 1% (NTLI-KITO ) )} #X{ 3)oxT 1
X). = K{26)*EXPIK{23)*({N(1)=K{2T7)))*X{3) — K(T2)%EXP(K(24}%(N(]1)~ 099
XKTE3 I IoX (31X (8) - K(96)*EXPIK(25I*INIII-KIOTI 1 1#X(3T*XT5) ~ 100
MXK(123)SEXPIKI14TI*INIL)=KI124) D) ex(3)OX(10) - KE14B)*EXPLK(1T2)*¢( 101
XN(ITKTT&9) N * XT3 *X( 11} h 102
[ 4 103
DXTAT = K(T2)VSK{T4I*EXPIRIZAICINCL)-K( T3 1)1 #X(4)I*X(3) + KUTSI™( 104
XTTV*EXPAK (263 *(NT1}=K{T6)))eX(4)%*X(S5) & K(T78)*K (BO)*EXP{K(24} (N 105
[ XOIT=ROTINNIox(a) X (6] ¢ KiBII$KIBIVSEXPIK (24 *IN(LIK (8211 ToXT &I ¥ 106
XKOT) ¢ K(84)#K(B6)SEXPIRE24)#(N(L1)-KIB5))I4X{4)¥X(B) ¢ KIRTI*K(BI) 107
| XSEXPIKI24 TS (N(1)V-KTBA V) ISK(4 ) 6X(9)% K(90VOK(92) SEXP(K( 241 # (NT1).~K( 108
X9LIDBOX(4)*X(10) ¢ K{93)SKI95)$EXPIK (24 )8 (N(11=-K(D4)))oX(4)ox (11} 109
~ K(2BY*EXP (KT 24V #INT1I-K(29) )1 *X(4) - K(AB)*EXP(K(23)# (N(1 49 110
X)) F#X{4)9X13) = K(99)*EXP(K{25)#(N{1)-K{100)))*X(4) *X{5) - K{126}%. 111
“REXPURKCI& TV ®INCT)-KTTZT1 1) 8XT4 )9 T10) = KTISIVEEXPIK(172) #TN (1)K 112
X(1520)Dexeadexirn) - 113
114
DX(5) = Kl96)‘K(98)‘EXP((IZ5)‘(N([)-K(91)))'X(5)'X(JD ¢ K(99)#K (10 115
XP{K *(NT11-K *X(a} + k{102 AYFEXPIK
XON(LI=K(103) 1) exXE51¢X(6) ¢ K(lO5)‘K(107)‘EXPIK(25)‘(N(ll—K(lﬂel)l’ 117
— XX(5PeXT 7Y * KE10R) sK{ 110V EXP(KRI25) > INITI-K (T OO PV XTSVEXTRY" s
X+ KO111)*KE113DSFXPIK(25I#INCII=KI112)118X(5)*xX(S) ¢ K{114)*K{116), 119
YPEXPIKI25V*INT LI=-K( 11511 1#XT5)ex(10) ¢ K(11TV®K(TIOV*EXP (K(Z5 18 (N 120
XEI=KCIL8 I I®X(5)*X(11) = RE3DISEXPIK(25) *(N(1)~K(31)) Dox(5) — 121
XK(S1IREX (221 #(N(17-K 1 ax{518x {3 - KITFST*EXPIK (24 J*(N
XKOT763) I*X(5)%X(4) — K(lzsttsxvcxtla1)nlN(ll—x(l!o)llnxtsltxtlol . 123
‘“"“'k- KTIS4TSEXPIR (172) #(INT )=k (155) § bex (BIFX{1 0¥ 124

25 -

DX(6) = KCTIT#K( 44) *EXPIR(12) * (NI D)=k (T TV TOXTRY = ROSZTHFxp (k{127 T26

XS(NCED=K (331D D8X(6) ~ K{S4)MEXPIK (23 VSINL1I=K{55))) ¢X(6) *X(3) — .
. 3 EXPIRI751

XK XP(K
X(103)))*X (618X (5) = KO132)SEXPAK(14T)SUN(1)-K{1D3D))#XA6I*X(10) - 129
XK XP K(l12)t(u(1ls&(lsalplnxle)ii(lli
13) .
XUTY = KA1V oK (4SISEXPIR{15) o INC 1)=KiT6) VI ¥X(T) — RKOIAVFFXPIKR(TS) ™
XE(N(L) =K (350 D) ex{T) = KUSTI*EXPEKE2IISINCII=K(58)))x(T)*xX(3) — 133 &
KR XPIKTZa)*IN{ 11K ® X - XPIK * = -
XKIlObI))‘X(1)‘XI5) - K(lJ5l‘EXP(((!#1)'(N(l)—'(l36|)|‘X(7"X(lOI - 135
EXPTKITT2) # INLLI-KTT6 1IN FXT N #x (11) 3%
[4 o o .13
’ DXIB) = KCLTISK(46)sEXPIKCTAISINI1)=K(19) ) )*X(A) - K{36) $EXPIKI1R) 138
X$(N{1)-K{37)))®x(8) - KlbOl‘EXP(K(Z!I‘lN(ll—K(él)ll*X(si'X(Jl - 139
K8 XPIK {24 T*INCT)-K T (4 1081 #EX 2RY*INTLT= Tan.
xx(lool))ix(e»nxtsi - K(lasbnExptxtlavltlutll-x(lxo)l)'x(ettxthl - 141
3 KELTPISONCL =K 18 41) ) XTRTEXTIT) 147
142
OXIST = KI20T#KI4TIFEXP (K(21 ) # (N(1)-KT2PTVD#x (o) .- kL3R sEXPIK(2T) T Ta&
y x‘(N(ll-&lJ?l))tx’9) < KE63)*EXP(K(23 1% INI1)—K(641))eX (9} #X(3) - }is
XK{8 TI-ki8a1 ) oxl9teX (&) - K(111V#EXPIK (N
L - XOLI2DD)#X{9D8X(5) = K{241)SEXPIKCLIATISINILI-KI142)) )0 X098 X110} ~ ,.V:L‘!

Table continued
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TABLE V (continued)

XKTT6619EXP (K1 T2 1% INTTI=K(167) NI *X T 1$x(1 1) 148 |
\ 149
AXCIOY = KUI20VsK (122 )4EXPIK(T4TV*(NCLI=KIT2T ) VX107 ¢ K(123)%K( 150
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xx(n)ntxun - x(bqnfxnx(zntmut—x(m)ntxnutx(zl - K(93)* 169
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€ EQUATTONS FOR OYNAMIC STATE JARTABLES, AT EWB OF DAY. SDAYY, 172
X(1) = x{1) ¢ Ox{1) 173
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X{(3) = X(3) ¢ 0X{3) 175
XT4) = X(4) ¢ Dx{4)
X{5) = x{(s) ¢ Dx{5) . 177
- XT&Y = XU{67 & DXTAY T T 178
x(7) = xt7) « Dx{(7) 179
XT8) = x{8) + ox(8y T80
X{9) = X{9) + DX{9} 181
{157 = X(I07 + CX(10} Y®R”
XE11) = x(11) + Dx{i1) 183
TABLES. THESE WUST WITH COLUSN WEADINGS. EL
WRITE (6+50) DAY, X 185
50 FORMAT (1H » 110, IPITELO.D) TB&
60 CONTINUE 187
T C PRINT V, N, AND K FOR CHECKING. TBE
| WRITE (6, 70) 189
190
WRITE (6+80) V 191
0 FORMAT (1H o 1PIOF12,3) . 192
WRITE 16,90) 193
90 FORMAT (17HILAST VALUES CF NI 19677
WRITE (6480) N 195
WRITE (641000 196 #
10C FORMAT (12HIVALUES QF K) 197 |
WRITE (64801 K 198 !
STNP 199 '
END, 700 .

'
i COMPILATION #*#%%%s -

increments (086-171), and calculating the dynamic state variables
(173-83), for a sequence of time increments. The length of the total
time interval of calculation is controlled by the DO statement.

(At this point, the reader may be wondering what happened to the
outputs of the system, usually symbolized by y. If any outputs are deemed
necessary in the model, e.g., precipitation runoff, they may usually be
made simple algebraic functions of the state variables and input variables,
and will present few problems. If they must be defined by differential
equations, they can be considered to be dynamic state variables, and the
problem disappears.)

The first act of the DO loop is to read the values of the input variables
for each time increment. This is accomplished by a pair of READ and
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FORMAT statements (066-7). These values form the third, and last,
type of data required by the program, and it is important to have one
set of values for each time increment. Each set of values, or input vector,
should begin on a new card.

The algebraic equations for nondynamic state variables follow
(069-76). Because of their nondynamic nature, these variables are not
functions of their previous values, and can be calculated directly from
the current values of the input variables and the dynamic state variables.
One must be careful to arrange these equations in a sequence required by
the manner of their coupling.

Equations for the dynamic state-variable increments are now written
(086~171). They follow those for the nondynamic state variables, and
are all written before the dynamic state variables themselves are evaluated.
This arrangement is necessary because the current dynamic state variable
increments are functions of the current values of the nondynamic state
variables and the previous values of the dynamic state variables, as well
as the current values of the input variables.

The dynamic state variables are then evaluated, simply by adding the
current dynamic state variable increments to the previous values of the
dynamic state variables (173-83). The results may be interpreted to be
values of the dynamic state variables at the end of the current time
interval, i.e., the x(¢) of Eq. (7).

The last act within the po loop is printing out the time variable
(usually the index of the DO statement) and the values of the selected
state variables. These must, of course, correspond to the column
headings, and printing is achieved by a pair of WRITE and FORMAT
statements (185-6). The use of an E format with a scale factor of one is
desirable, since the number of significant digits can be controlled, the
field lengths are uniform, and no space is wasted on long sequences
of zeros. The po loop is now completed, and may be closed by a CONTINUE
statement (187).

The program is essentially complete at this point. However, it may be
useful before ending to print out the last values of the input variables v,
the last values of the nondynamic state variables n, and the values of the
constants k; . This (189-98) will facilitate finding mistakes and checking
that input data has been properly read, as well as provide a convenient
table of the constants. The program is now ended (199-200).

In using the program, the source deck must be followed by three
types of data: the evaluated constants, the initial state, and values of the
input variables for the period of calculation. Formats of the data cards
must, of course, agree with those specified in the program, and each
input vector must start on a new card because it is read within the Do
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loop. If constant input is desired, there need be but one input vector, and
it must be read before the po loop.

The digital computer program is now complete, and can be used to
obtain numerical solutions, or “‘transient responses,” of the system, given
a particular initial state and set of inputs. These numerical solutions
are the states predicted by the hypothetical model, and may be tested
against real-world measurements, in the process of system identification.
Once a particularly formulated model has been accepted, the predicted
states may be used in the process of system analysis, for theoretical or
applied purposes.

The pine-mor program has been successfully run with both constant
and variable inputs. For the constant input, mean annual values from
Oak Ridge, Tennessee were used: 14.5 C mean air temperature (v,),
3642.6 ¢ m~2 day~! precipitation (v,), and 1.001 g m=2 day! ash-free
Pinus echinata pine litterfall (v;) (Bray and Gorham, 1964). Oak Ridge
data were also used for the variable input: daily air temperature from
a smoothed curve of monthly means, precipitation as randomly placed
rainy days based on total precipitation and number of rainy days within
each month, and pine litterfall based on uniform litterfall in all months
except October, which has twice as much as each of the other months
and whose litterfall follows a sinusoidal curve above the September—
November base. The variable input data used are much less variable
than real-world data would be, but give some idea of what a transient
response to real-world data would be like, nonetheless.

TABLE VI
INITIAL STATE

Dynamic state variable Initial value (g m~2)

x;  Mor moisture 2239.7

x, Mor 2239.7

x; Araneae 0.0033
x; Mesostigmata 0.0073
x; Trombidiformes 0.0103
xg Oribatet 0.0881
x; Symphypleona 0.0059
xg Poduromorpha 0.0189
xy Entomobryomorpha 0.0640
x;o Formicidae 0.0422

x;; Lithobiomorpha 0.0421
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The source of values used for the initial state (Table VI) was original
measurements made on Oak Ridge material. The mor moisture fraction
(ng) was assumed to be 1.00, a typical field value.

Operation of the computer program with a constant input yields
information on the system’s behavior, possible equilibria (or “steady-
states’’), and stability. (Determination of the system’s stability by
observation of its transient response with no input, i.e., the stability
of the unforced system in the engineering literature, is not valid here.
This is because some of the input variables, i.e., temperature and
precipitation, control fluxes of ‘‘energy” without entering the fluxes
themselves. The concept of an “unforced system’’ is essentially a linear-
system concept.)

When the pine-mor program was run (2 yr, daily calculations) with
constant input, the following behavior occurred: Mor (x,) decreased
asymptotically toward a nonzero steady state, with mor moisture (x,)
following it (mor moisture fraction (ng) remaining constant, near its
upper limit (k5)). Because of the structure of the equations, arthropod
variables (x3—xy,) are not affected by mor and mor moisture, and may be
regarded as an independent subsystem; these assumptions (hypotheses)
may have to be modified later in the process of system identification.
The Acarina (mites, x,-x4) and Formicidae (ants, x,y) approached zero
asymptotically. The Araneae (spiders, x3) decreased with oscillations. The
Collembola (x,—x,) displayed oscillations, but with no obvious trend.
Likewise, the Lithobiomorpha (centipedes, x;,) displayed oscillations
with no obvious trend, but of increasing amplitude and of the same
frequency as Collembola, but out of phase. This transient response
suggests that the system was developing into an oscillating predator—prey
system of Lithobiomorpha and Collembola. The results with variable
input were very similar, the major difference being in the periods of
oscillations—an effect of temperature.

In order to obtain some idea of the amount of error introduced by
using Euler’s approximation, where the time differential dt is approxi-
mated by a time increment 4¢ of 1 day, the program was modified and
rerun with the time increment equal to 0.1, 0.5, 2, and 10 days. The
resulting state vectors for days 50 and 350 (together with the Runge-
Kutta approximations, for comparison) are presented in Table VII.
It is evident that the error increases with a larger time increment,
and grows with time. For critical work a smaller time increment than one
day would have to be used, or a better numerical approximation method
used, e.g., the Runge-Kutta method (Chapter 1). The behavior described
above for the Euler approximation was not qualitatively different from
that for the Runge—Kutta approximation.
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3. System ldentification

The formulated mathematical model is a complex hypothesis, and the
numerical solutions it produces are predictions of the hypothesis. The
objective now is to produce a model whose predictions agree with
real-world measurements at some satisfactory (arbitrary) level of
statistical significance, by modifying the equation forms and constants.
This is called “system identification” or the “identification problem”
in engineering literature, but is simply the ‘‘scientific method” of
empirical science.

The method is simple in concept, being an application of the state
equation, Eq. (7), for dynamic (state-determined) systems. The predicted
state (x(#)) is calculated, using the digital computer program, from the
(real-world) measured initial state (x(#,)) and the (real-world) measured
inputs during the time interval of interest (v(z, , t)). The predicted state
is then compared with the (real-world) measured state. This is usually
done for a sequence of time points within the total time interval of
interest (¢, ,1,,..., t,). Data representing past measurements could be
used as well as future measurements, if the model was constructed
independently of the past measurements.

The predicted and measured states are compared with each other
using the standard “hypothesis-testing” techniques of statistics, e.g.,
t-test and chi-square. This is where statistics makes a second major
contribution to modeling (The first is “parameter estimation” in the
evaluation of constants).

If predicted states agree with measured states at some satisfactory level
of statistical significance, the real-world system may be considered
“identified,” and the model accepted, to be used in system analysis and
applications. If such an agreement does not occur, then the model must
be modified and predictions made until such agreement occurs. The
modification is done by changing (1) the equation forms, andjor (2)
values of the constants. Data used to test the model must always be
independent of the data used to modify the model; thus a new set of
measured states must usually be used in each cycle of modification and
testing.

The last-mentioned requirement, i.e., that the set of data used to test
a model be independent of the set of data used to formulate or modify
the model, is a rather overpowering one. The measurement of states of
dynamic ecological systems is usually extremely time- and energy-
consuming. The labor involved can be reduced by originally formulating
several alternative models, or multiple hypotheses (Platt, 1964), and
testing all of these against the same set of measured states. The value of
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this approach, of course, depends on the nature of the specific problem.
System identification has not yet been done for the pine—mor model.
Thus, the model presently has the status only of an untested hypothesis.

B. FORMULATION AS SETS OF ORDINARY DIFFERENTIAL EQUATIONS

1. Formulation

Once the mathematical model has been satisfactorily formulated as
a set of algebraic and ordinary differential equations, it is then ready to
be analyzed, i.e., used to obtain predicted solutions and stability
information. This can always be done by digital computer simulation
(numerical approximation). However, since approximation is time-
consuming and often very inaccurate, it is desirable to analyze the model
by means of the theory of ordinary differential equations, i.e., the
‘“‘qualitative theory” or ‘“geometric theory” of ordinary differential
equations. In order to make such an analysis, the algebraic equations
must, of course, be eliminated; in so doing the nondynamic state
variables are eliminated, leaving only the dynamic state variables.

Elimination of algebraic equations is extremely simple. It consists
merely of substituting algebraic expressions for nondynamic state
variables into differential equations for the dynamic state variables. This
will often require a series of substitutions, where nondynamic state
variables are functions of other nondynamic state variables; in some
cases it might require algebraic solution of a system of algebraic equa-
tions. The net result is a system of ordinary differential equations of the
form

x = f(x, v). (8)

Mathematically, the resulting systems of differential equations fall
into two important classes, ‘‘autonomous systems” and ‘‘nonautonomous
systems.” Autonomous systems are of the general form

% = f(x). )

The independent variable, time, does not appear as an argument of any
of the functions. These systems are often called ‘“‘dynamical systems”
(Birkoff, 1927; Nemytskii and Stepanov, 1960), and an extensive theory
exists concerning them in classical physics.

If an autonomous system is linear, it possesses the form (homogeneous
or unforced)

% = Ax, (10)
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or (nonhomogeneous or forced)
X = 4dx + k, (11)

where A 1s a constant # X 7n matrix (n the number of state variables).

Therefore, the linear differential equations have constant coefficients. If

there is an input to the system, the vector of input variables v is a vector

of constants k, i.e., there is a constant input (forcing, disturbance, etc.).

Many nonlinear and nonautonomous systems are approximated by this

linear autonomous system because of its mathematical tractability.
Nonautonomous systems are of the general form

x = f(x, ). (12)

The independent variable, time, appears as an argument of at least one of
the functions. In an explanatory (causal) model, all of the effects of time
would be through the vector of time-dependent input variables v so that
Eq. (12) could be expressed as

x = f(x, v). (13)

This is the general form of our formulated model, Eq. (8).
If a nonautonomous system is linear, and an explanatory model, it
has the form

x = Ax + £(z), (14)

or, equivalently, using our notation of v(t) for the input vector,
x = Ax + Bv(t), (15)

where B is a constant # X m matrix, where m is the number of input
variables. Therefore the linear differential equations have constant
coefficients. In a nonexplanatory model the linear differential equations
would have variable coefficients, i.e., the matrix 4 would be a function of
time, and the equations could be homogeneous or nonhomogeneous.
If the input is constant, Eq. (13) reduces to Eq. (9), an autonomous
system.

It is useful to have an understanding of the different types of dynamic
systems, since different methods are used in their analysis.

The system of ordinary differential equations representing the pine—
mor food web is presented in Table VIII. It is nonautonomous, nonlinear,
and “explanatory,” and thus is of the form of Eq. (13).
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TABLE VIII

EQuUATIONS FOR STATE VARIABLES

. ks — xy/x x1f%3 —k
X, = ﬁ (kyvy + kyv,y) — ﬁ (k3 exp(ky01))
%y[xy — Rg

%y = vy — kg exp(kqy(v; — ky)) ( ) %y — kyy exp(kya(v — Ry3)) X6

klﬂ - kG
— Ry exp(Ris(vy — ki) X7 — Ryq exp(Rug(vy — Ryp)) %5
— kyg exp(Ra1 (V1 — kas)) %9 — Rizg eXP(Rygr(v1 — Ri121)) X10

%y = Rygkso exp(Ras(v1 — Ras)) X3%s + Rsiksg exp(kag(vy — Rsa)) x3x5
+ ksskse explkog(vr — Rss)) X5%e + Rsrkse exp(Rag(vr — ksg)) X3,
+ ReoRez explkag(v1 ~— Re1)) X3xs 1 Reskes €XP(Rag(v1 — key)) X3%g
+ Rgekes eXP(Rag(vy ~ k7)) X3x10 + Regkay explhag(vy — kqg)) %5%1;
— kag exp(Rag(v1 — Rar)) x5 — Rop exp(Rag(v1 — Ri3)) %3%4
— kog exp(kas(v1 — Ry7)) X35 — Ryng €XP(Ryar(V1 — Rypg)) X3%1p

— Rysg €xp(Ryga(v1 — Rige)) X3%11

%y = Roskyy exp(Ras(v1 — Rz3)) o5 + Roskar exp(Rag(vy — Rz6)) Xa%s
+ kogkgy exp(kaa(V1 — R29)) X4X6 + Rygikey eXP(Rag(V1 — Re2)) X4%7
+ ksaksg exp(Rag(v1 — Rgs)) Xaxs + Rerkss €XP(Rag(v1 — Ras)) XaXo
+ kookey exp(kay(vy — Rgy)) %ax10 + Roskos eXp(has(v1 — key)) Xa4%1;
— kg exp(kas(v1 — kag)) X1 — Rag €XP(Rag(v1 — Ryg)) X4x5
~— kgg exp(Ras(v1 — Rig0)) XaXs — Rise €XP(R1ar(V1 — Ri)) XaX1o

~— ki1 exp(Riqga(vr — Ryse)) X4X1y

&y = Rogkos eXP(kas(v1 — Ry7)) X5%5 + Rogkior eXDP(Ras(01 — Rigo)) X5%4
+ RigaRi0s €xpkas(v1 — R1gs)) ®5Xe + Rigskigr €Xp(Ras(v) — Rigs)) X5%;
+ RigsRizo explkas(v1 — Rigg)) %55 + RiprRizs exp(Ras(V1 — kuya)) x5%
+ Ruiakiie explhas(vr — Ri1s)) ®5%10 + RirzRize eXp(Ras(v1 — kiis)) %%
— kgo exp(kas(vy — Rar)) x5 — K5y exp(Rag(v1 — kss)) 255
— ka5 exp(kaa(vy — kag)) X563 — Rizg €XP(Ryar(V1 — Ryz0)) %5%10

— kysq exp(Ry7a(v1 — Riss)) X5%1y

%g = Ry1Rys exp(Rip(vy — Rig)) x5 — Ry exp(Ria(vr — Rag)) %6
— kyq eXp(Ryy(v1 — Rs5)) XeXs — Rag €XP(Raa(V1 — kqg)) XeXa
~— Rygs exp(Ros(v1 — Ryg3)) Xex5 — Rizz exp(Rygr (V1 ~ Rig3)) XeX1o
— kysy exp(Ryqa(vy — Rise)) X1
&7 = Ryiskas eXp(R15(v1 — Rig)) X9 — Ry eXP(R15(v) — kys)) x4
— kg; exp(Rya(vy — ksg)) %9%5 — Rgy exp(Rag(v) — kga)) X7,
— kg5 exp(Ras(vy — Ryge)) %95 — Rygs xp(Rygr(vr — Rigg)) Xax19

— kygo €xp(Riza(vr — Ryg1)) X711

3
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TABLE VIII (continued)

Xy = Ryskyg exp(kig(vy — kyg)) xg — Ryg exp(kig(v, — kyi)) %
— kg exp(Rag(v1 — Re1)) xgxs — Rgq exp(kag(vy — kes)) XgXy
— Rygs €xP(Ras(vy — Rygg)) %55 — Rigs €xP(Rygr(v1 — kyse)) Xy

— kigs €xp(Ryza(v; — kygq)) X1y

By = hkyokyz exp(Rai(v; — kyp)) X9 — kyg exp(kay(vy — ki) %
— kgg exp(key(v) — Req)) X923 — kgy eXp(Rea(v1 — KRag)) Xoxy
— k11 explRas(v1 — Rypa)) XoXs — Rigy exp(Rigr(v; — Ryga)) Xex1o

— kygs €xp(Ry7a(v; — Rig7)) Xe¥11

®10 = Riz20R120 €XP(R147(V1 — Ry21)) 10 + RiasRiss €Xp(Rygr(2) — kisg)) %10%;
+ RisRias €XP(R1ar(Vy — Riz7)) X10%a + RizoRiz1 €XP(R1ar(V1 — Riso)) 1085
F Riaskizs €Xp(Ryar(vy — Ry33)) X106 T RrasRizs €XP(Ryar(V1 — Rize)) X102
+ Riaskiao €xP(R1a7(Vs — Rizs)) X10%s + RrarRias €XP(R1ar(v1 — Ruga)) X10%e
+ kiaaRias explkiavy — kygs)) X10%11 — Rag exp(Rias(vr — Rap)) 10
— ko exp(kas(vy — Rgg)) x10%5 — koo exp(Raa(vy ~— Ro1)) X10%4

— k14 explkay(vy — Ryp5)) %10%5 — Rige €xP(R192(v1 ~— Ri170)) X10%1:

%11 = RissRiso eXp(Ri7a(V1 — Rise)) %1185 + RisiRiss exp(Ryaa(vy — Riss)) X112
+ Risekiss exp(Rizalvy — kyi55)) X11xs + RrsrRise exp(Rua(vy — Rise)) %11%6
+ kigoRisz €Xp(Riz2(V1 — Rie1)) XXz + RieaRies €XP(Ri2(v1 — Rigq)) X112
+ kigeR1ss €XP(R172(01 — Rigr)) X11%e + RigoRiz1 €XP(R1z2(01 — Riz)) X11%10
— kyg exp(Ryza(vy — Res)) %11 — koo exp(Rya(v1 — kz9)) X11%;
— kg3 exp(ka(v; — Rgq)) %1164 — Rypr exp(kas(vr — kuig)) #1125

— kygq explRiga(vy — kigs)) 211210

2. Analog Computer Simulation

Once the model has been formulated as a set of ordinary differential
equations, numerical solutions can often be computed by the process of
analog computer simulation (e.g., Chapters 1 and 9). This is only
feasible with rather simple models, but in these cases is extremely useful
since the solutions are exact (within the errors introduced by electronic
components).

This concludes the discussion of formulating mathematical models
of dynamic ecological systems. A general view of the process of formula-
tion, or ‘‘system identification,” and the subsequent “system analysis”
is given in Fig. 3. The problem of system identification consists of
hypothesizing equations, measuring physical and biological constants,
and the cyclic testing and modification of the system of equations until
it is in an acceptable form. Thus, it is primarily a biological problem.
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Formulate Model as System of Algebraic
and First-Order Differential Equations
n=f(n,x,v)

x=gn,x,v),

Where: n = Nondynamic State Vector,

-t Measure or Hypothesize

x = Dynamic State Vector,
Y Constants k;

v = Input Vector

| 1

Compare Predicted States Accept or Modify
Original Model

Formulate Model
as Digital) or

X(y, tmax) with Measured
a4  States, Given Measured
Initial State x(ty) and

Analog) Computer

Pr
ogram Measured Inputs- v(¢;, fmax)
SYSTEM IDENTIFICATION
SYSTEM ANALYSIS
Formulate Model as System of
First-Order Differential Equations
x =f(x, v),
or (If Linear)
x = Ax + By
Solutions (Predictions) and Stability Optimal Control
Effect of Input:
Constant

Analytic Functions (e.g.,
Sinusoid)
Real-World
Probabilistic
Effect of Initial State

\ Applications to

Real World

Fic. 3. System identification and system analysis.

On the other hand, system analysis is primarily a mathematical problem.
It consists of starting with a mathematical model which has been accepted
on biological grounds, and obtaining solutions and stability information
from the model. These may be obtained analytically, but more commonly
are obtained by some technique of numerical approximation. The
information so obtained may then be used to make real-world predictions,
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given real-world inputs, or may be used to select particular controllable
input values which will produce an optimum behavior of the real-world
system, i.e., optimal control. These are extremely important practical
applications of the mathematical approach to biology, and perhaps its
main justification.

In the third section of this chapter is presented a brief survey of
mathematical techniques available for the analysis of continuous dynamic
systems.

III. Analysis of Models of Dynamic Ecological Systems

The previous discussion describes formulation of an acceptable
mathematical model in the form of a set of coupled first-order differential
equations which define relationships among input variables and state
variables. This is done by a process of system identification, in particular
by cycles of hypothesis formation, direct measurement, and testing. This
process lies in the realm of biology; it is the traditional method of
empirical science.

Once the model has been accepted on biological grounds, it can be used
for theoretical or applied purposes, in particular, for prediction and
optimal control. This constitutes the subject of analysis of mathematical
models, and lies primarily in the realm of mathematics. Of course,
applications of mathematical conclusions to the real world lie again in the
realm of biology.

We consider first the predictions, i.e., obtaining of solutions and
solution behavior, especially stability, from the differential equations. In
advanced works this is often called the “qualitative theory” or “‘geometric
theory” of differential equations. Most of the material in such works is
not useful to ecologists, who are usually concerned with complex
multivariable systems; only material which seems immediately practical
will be discussed here. We then will consider the subjects of optimal
control and system optimization. These are of extreme practical
importance, but because of their mathematical difficulty are treated very
superficially.

This chapter is concerned only with continuous dynamic systems,
and treats them with sets of coupled, first-order, ordinary differential
equations in the state-variable form. (Any n-order ordinary differential
equation can be reduced to a set of n first-order ordinary differential
equations (Coddington, 1961).) Other approaches to such systems are
possible, and this one should be justified. As an alternative to the state
variable approach (i.e., the use of input and state variables or input,
state, and output variables, the last algebraically defined on the input
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and state variables), one could use the input—output approach. In the
latter approach one uses only input and output variables. The system
itself is viewed as a ‘“‘black box,” which converts inputs into outputs;
no hypotheses are made on the structure of the system. For extremely
simple systems this approach works quite well, but for most practical
ecological systems, which are nonlinear and multivariable (multiple
inputs and multiple outputs), this approach can only yield mathematically
intractable and intellectually unsatisfying models. Indeed, most of the
time we are primarily interested in the structure of the system, e.g.,
feeding rates and competition, rather than just the inputs, e.g., solar
energy and precipitation, and the outputs, e.g., runoff and nutrient loss.

As an alternative to the differential equation approach, one could use
the transfer function approach (e.g., Chapter 4). In the latter approach
one expresses the relationship between an output (or state variable)
and an input by a transfer function rather than a differential equation.
A transfer function is the Laplace transform of the deviation of a
system output (or state variable) from equilibrium divided by the
Laplace transform of the deviation of a system input from equilibrium.
In multivariable systems a matrix of transfer functions is used to express
the relationships between individual outputs (or state variables) and
each input. The advantage of the transfer function approach is that it
substitutes algebraic equations for linear differential equations, greatly
facilitating their solution. However, the transfer function approach is
practical only for linear systems, and, even then, when the system is
multivariable the use of transfer functions is cumbersome. Since most
practical ecological models will turn out to be nonlinear, it may be unwise
to place much emphasis on the transfer function approach.

Traditional engineering has placed great emphasis on the combination
of input-output and transfer function approaches, and physiologically
oriented biologists have eagerly adopted this combination in the last
decade (Grodins, 1963; Milsum, 1966; Milhorn, 1966). It seems unlikely,
however, that these approaches will prove very useful in solving ecological
problems, for reasons cited above. Moreover, almost all modern literature
on ordinary differential equations and optimal control is based on sets of
first-order ordinary differential equations.

A. SOLUTIONS AND SOLUTION BEHAVIOR

1. Deterministic Systems and Inputs

a. Linear Systems. Linear systems are those which are defined by
linear differential equations. Since analytical solutions are often easily
found for these systems, and an extensive literature exists on the subject,
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they are very attactive when the real-world problem can be satisfactorily
represented linearly. However most practical ecological problems cannot
satisfactorily be so represented, and doing so can lead to large differences
between predicted solutions and stability, and real-world measurements.
Gumowski and Mira (1968, pp. 3-7) have brought attention to the ill
effects of the excessive concentration on linear systems in the field
of engineering; their argument is valid for ecology as well. Nevertheless,
linear system theory is useful in many cases, has been well developed
(Zadeh and Desoer, 1963), and is a prerequisite to the understanding of
nonlinear theory.

(1) Solutions. Linear systems are defined by equations of five basic
types: the autonomous systems represented by Egs. (10) and (11), non-
autonomous systems as represented by Eq. (14), and

x = A@t)x, (16)
x = A@) x + £(2). (17)

As before, x is an n-dimensional state vector, 4 is an # X 7 constant
matrix, k is an z#-dimensional constant vector, f(¢) is an z-dimensional
vector-valued function of time, and A(t)isan # X # time-varying matrix.
Equation (17) 1s the general case from which the others may be derived;
(11) and (14) are the equations in which we are usually interested.
Input to the system is represented by k or £(¢); the former is used when
input is constant and thé latter when input is time varying. Both are the
equivalents of Bv(¢) in Eq. (15). The latter formulation is necessitated by
the fact that in ecological problems we usually must deal with several
different input variables. When the input variables are constant,
Bv(t) = k; when at least one input variable is time varying, Bv(t) = f(¢).

Note that the difference between autonomous and nonautonomous
systems is not whether they have an input, but whether the time-
derivative of the state vector is an explicit function of time. Practical
nonautonomous systems are extremely difficult to solve, and are usually
approximated by Eq. (11). Equations (16) and (17) are linear equations
with time-varying (or ‘‘variable,” as opposed to “constant’’) coeflicients.
They represent what I have been calling “nonexplanatory” or
“noncausal”’ models, and thus do not properly concern us here. Their
solutions are almost always obtained by numerical approximation, and
they are discussed by DeRusso et al. (1965, pp. 362-394) and Schwarz
and Friedland (1965, pp. 114-118). Thus, for most ecological problems
the linear mathematical model is of the form of Eq. (15).

The solution, or “‘transient response” (so called because the system
responds to an input, as the system approaches steady state), of the
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first-order vector differential equation (15) is analogous to solution of the
corresponding first-order scalar differential equation

% = ax + bo(t). (18)
The solution to (18) is

t
x(t) = eatx(0) + eot f e~abo(r) dr. (19)
0
Of course, in the differential equations literature {e.g., Coddington, 1961)

f(#) is used rather than bo(t). Similarly, the solution to the vector equation
(15)1s

x(2) = e1tx(0) + e4! f : e~4"Bv(7) dr. (20)

The second right-hand term of (20), with the first exponential moved
into the integral,

t
f e4=1 By(r) dr, (21)
]

represents the effect of the input on the solution. In engineering literature
this expression is called the “convolution integral.” (When the matrix 4
is time varying, thus A(t), it is the more general “superposition integral.”’)
The first right-hand term of (20) represents the effect of the initial
state, x(0).

When the input is time varying, evaluation of the convolution integral
is usually extremely difficult, and thus exact solutions are rather rare.
On the other hand, when the input is constant, the convolution integral
simplifies nicely, yielding the solution

x(t) = e4tx(0) + (et — I) A1k, (22)

where I is the n-dimensional unit (or identity) matrix, and k = Byv.
(This is done by integrating the infinite series expression for the matrix
exponential in (20) and substituting (cf. DeRusso et al., 1965, p. 287).)
A convenient digital computer program, MATEXP, for obtaining numerical
solutions to the constant input form of (15) using (22) (Ball and Adams,
1967) was discussed in Chapter 1.

When the input is time varying, an approximate numerical solution
to (15) can be obtained by using (22) in short time-steps, during each of
which the input is made constant. This also can be done with the Ball and
Adams (1967) program.
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While the above discussion covers the most straightforward method of
obtaining the solution, or transient response, of the mathematical model
(15), the engineering literature abounds with other methods and concepts.
Figure 4 represents an attempt to bring these together to indicate their
relationships with one another. In particular, the figure shows the intimate
relationship between the differential equation (to the left) and the transfer
function (to the right) approaches.

Linear
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First-Order Vector
Ditferential Equation
X=Ax+ Bv(t)

Transfer
Function

Matrix
| 6w-
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Input
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(
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t
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[

Fic. 4. Linear system transient analysis.
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Note that the effect of the input is calculated by means of the convolu-
tion integral whether one uses the basic differential equation approach
or the more specialized transfer function approach. An important
difference between these two approaches is that the transfer function
approach does not take into account the initial state (or “initial
conditions”). This is because the transfer function approach derives
from electrical engineering experience, where the initial state is usually
either zero or equilibrium (in which case deviations from equilibrium
are of interest, and equilibrium is defined to be zero). Since the initial
state in most ecological systems rarely is zero (actually, the zero vector)
or known to be equilibrium, and in view of earlier arguments, this
approach is not to be recommended.

Note also that there are at least four different methods of obtaining the
fundamental matrix (state transition matrix) e’ (a matrix exponential).
The infinite series (Taylor series) expansion is best suited to the digital
computer, and is the method used by Ball and Adams (1967). If one is
interested in questions of stability, then he will want to use Sylvester’s
theorem after calculating the eigenvalues (characteristic values, charac-
teristic roots, latent roots) A; of the system matrix 4. The eigenvalues of
the differential equation approach are equal to the “‘poles” s; of the
transfer function approach.

The analogy between solutions to vector and scalar differential
equations has been made. Perhaps a comment on the analogy between the
vector and scalar transfer function is in order. The transfer function of
the scalar differential equation (18) is b/(s — a), or (s — a)'b. The
transfer function matrix of the vector differential equation (15) is the
comparable (s/ — A)7'B. Further discussion of the concepts appearing
in Fig. 4 may be found in the texts by De Russo et al., (1965) and
Schwarz and Friedland (1965), among others.

A particular type of solution, of some potential in ecology, is the
“frequency response.”’ In frequency analysis the system is assumed to be
in a stable equilibrium, with a constant equilibrium input vector and
a constant equilibrium state vector. (Thus it is sometimes called *“‘steady-
state analysis.””) The frequency response describes the deviations of the
state vector from equilibrium in response to a sinusoidal deviation of one
input variable from equilibrium. The response of the state vector is
a sinusoidal deviation from its equilibrium, with a particular gain (in
general different for each state variable) and phase angle (also in general
different for each variable). (The gain is the ratio of the amplitude of the
response to the amplitude of the input; the phase angle is the phase shift.)
In linear systems (to which frequency analysis is usually limited), the
frequency of the response is the same as the frequency of the input
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signal. The input sinusoidal deviation is completely characterized by its
frequency.

Actual calculation of the frequency response involves the transfer
function and elementary complex algebra. Further explanation of the
method, and a digital computer program for calculating the frequency
response of multivariable systems may be found in Kerlin and Lucius
(1966). A frequency-response analysis of magnesium cycling in a
tropical moist forest is presented in Volume II, Chapter 3 of this work.

(1) Stability. (a) Definitions of stability (linear and nonlinear).
The situation often arises that we are interested not in particular
numerical solutions to a mathematical model, but in qualitative behavior
of the model, and in particular whether the system will “blow up” in
time. Thus, we become interested in system stability. The stability
concept, particularly concerning ecological systems, means many
different things to different people. However since we are dealing with
differential equations in the state-variable form, our options are con-
siderably limited.

To obtain a convenient intuitive feel for stability, we introduce a
geometric interpretation of the state of a system. At any given time the
state of a system is represented by the value of its #-dimensional state
vector x. Thus, at any given time the state can be represented as a point
in the n-dimensional vector space, ‘‘state space’’ or ‘“phase space,”
each of whose axes represents the scale of values for one of the n state
variables x; . A solution to the system describes the ‘“trajectory” (or
“motion”’) in state space of the state vector with passage of time,
from a particular initial state (where the state vector is at “time zero’’).
An “equilibrium state” (“steady state,” “equilibrium point,” “critical
point,” “‘singular point”) x, is any state in which the system remains
indefinitely with the passage of time, i.e., at which % = 0. Stability is
usually defined with reference to the equilibrium states.

In autonomous linear systems the equilibrium state is unique, l.e.,
there is but one. For systems without an input, Eq. (10), it is the origin or
zero vector 0; for systems with a constant input, Eq. (11), it is the vector
— A'k. Nonautonomous linear systems, Eqs. (14), (16), and (17), in
general do not have equilibrium states (as defined above). Nonlinear
systems may have no, one, or several equilibrium states.

The distance between two points (X, , X,) 1n state space is measured by
the Euclidean “norm,” | x, — %, |. Thus, one may consider the concept
of a “neighborhood” (or “open ball”) of an equilibrium state x,. A
neighborhood is the set of all points which lie less than a fixed distance
e from x,, i.e., all points for which | x — x,| < e.

We are now in a position to define stability, as it is usually treated
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in engineering and differential equations, i.e., in the “Lyapunov sense.”
An equilibrium state is “stable” if an initial state within a small neigh-
borhood of the equilibrium state results in a trajectory which remains
within another small neighborhood of that equilibrium state. The
initial state is thus a perturbation from the equilibrium state, e.g., the
result of some sudden disturbance to an ecological system in equilibrium.
An equilibrium state is “asymptotically stable” if (1) it is stable, and (2)
the initial state within a small neighborhood of the equilibrium state
results in a trajectory which approaches the equilibrium state as time
approaches infinity (De Russo et al., 1965, pp. 503-504). Obviously the
latter is a much stronger type of stability.

This concept of stability is a local one, i.e., applicable only within
a small neighborhood of each equilibrium state. This restriction leads to
problems in nonlinear systems. But in linear systems things work out
nicely, since the ‘“neighborhood” constitutes the whole state space!
Thus, stability of a linear system is a property of the system itself,
rather than of any particular equilibrium state (DeRusso et al., 1965,
p. 501). Moreover, if a linear system is autonomous it has only one
equilibrium state.

(b) Ecological significance of stability (linear and nonlinear). It is
clear from the previous definitions that stability is a property of the
model, stability being operationally defined (on the model) in a particular
way. This indicates that stability is a variable, in this case with only
two values, + and —. The same is true of asymptotic stability; likewise
with real-world ecological systems. Stability is a variable which, in order
to have any practical meaning, must be operationally defined, i.e.,
must be associated with a set of instructions on how to measure it. There
are infinitely many possible measures of stability, each of them defining
a different variable, or concept; there is no such thing as “real” or “‘true”
stability any more than there is a ‘“‘real green” or “true short”. One
defines stability to suit one’s purposes, e.g., the definitions of MacArthur
(1955) and of Hairston et al. (1968).

Once one has a satisfactory definition of the variable, “stability,”” then
he may hypothesize and test relationships between this stability and
other operationally defined variables, e.g., diversity or species number.
This is fair game, and may prove to be useful in ecology. Hairston et al.
have tested a hypothesized relationship between their “stability” and a
variable which is MacArthur’s “stability.” Their negative results say
nothing about the validity of MacArthur’s definition, since definitions
are not testable, no matter how psychologically unsatisfying they are.
Their results do question the relationship between stability and diversity,
however. (This discussion is not to lead to the conclusion that I feel
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that one operational definition of a variable is as good as another. I am
only discussing the logical status of the definitions. On grounds of
practical utility and esthetics, different definitions of variables are not
equally good.) [The subject of stability in ecological systems has been
recently discussed in a Brookhaven Symposium in Biology (1969).]

Getting back to the mathematical model and Lyapunov stability (a
special type of stability), the claim might be made that testing of a
system (or individual equilibria) for stability may well not be relevant.
This 1s because the process of system identification earlier would have
resulted in a model which yielded acceptable state variable behavior
for the time period of interest (the domain of the model). Whether the
system blew up beyond this time period might not be of concern.
However, it might be feasible to analyze hypothetical models before
system identification, and use only those models proved stable for
infinite time. These models would be more appealing in some ways, but
the selection process might inhibit flexibility in choosing biologically
meaningful and realistic hypotheses. For example, some ecological
phenomena might be described by models not stable over a long period
of time, such as the dynamics of a plankton bloom described by a model
with a short time domain.

Perhaps the major potential of stability analysis is in the design of,
or modification of, ecosystems for practical purposes, e.g., agriculture and
silviculture, pollution control, and satellites. Given an acceptable (on
the basis of past experience) form for a mathematical model, one could
select values of its parameters (constants) which would result in the
model possessing stability of a desired type.

(c) Stability criteria. For linear systems the question of whether
a system possesses Lyapunov stability is answered in a straightforward
manner. The analysis centers on the autonomous system without any
mput,

% = Ax. (23)

From the # X 7 system matrix 4 can be calculated 7 eigenvalues; these
are equivalent to the poles which derive from the transfer function
approach (they are calculated the same way, and used for the same
purposes). The calculation is most easily done by one of the existing
digital computer packaged programs (IBM Share Program 1578;
Parlett, 1962). In general the eigenvalues are complex, i.e., they have a
real part and an imaginary part. If all of the eigenvalues have negative
real parts, the system (23) is asymptotically stable. If some of the eigen-
values have zero real parts (and are not repeated, i.e., are distinct,
which is the usual case), and the rest have negative real parts, the
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system (23) is stable. Otherwise, the system (23) is unstable. These
criteria are intuitively reasonable when one realizes that the solution to
Eq. (23) consists of exponential terms, in which the eigenvalues are the
exponents. The nature of the imaginary parts of the eigenvalues does not
affect the stability criteria; their presence, i.e., their nonzero values, only
means that the solution is periodic.

Before the widespread use of large digital computers, numerous
alternatives to the difficult calculation of eigenvalues were used by
engineers in stability analysis of linear systems. None of these furnishes
any more stability information than does the calculation of eigenvalues.
Among the more important of these methods are the Routh—-Hurwitz
method and its Lienard—Chipart simplification, and several graphical
methods, e.g., the Nyquist method, the root-locus method, and the
Mikhailov method (Schwarz and Friedland, 1965, pp. 399433).

When one wishes to compare the relative stability of several systems,
the concept of “degree of stability” is very useful. This is defined as the
absolute value of the least negative real part of the eigenvalues, of an
asymptotically stable system. It is a measure of the speed at which the
state vector returns to equilibrium after a perturbation. The degree of
stability is to be used with caution, however, since the speed of return to
equilibrium is affected by the eigenvectors, as well as the eigenvalues.

So far, the discussion has been limited to the autonomous system
without any input, Eq. (23). This is because the stability of the fixed
system with input, i.e.,

x = Ax + Bv(?), (24)

depends upon the stability of the system without input. In other words,
the stability depends upon the nature of the constant system matrix 4.
If the input is constant, we have the autonomous system (11); if the input
is time-varying, we have the nonautonomous system (14). In either case,
if the input is bounded (never becomes infinite), the system with input
is stable if the system without input is asymptotically stable (Schwarz
and Frizdland, 1965, pp. 382-384).

When one is dealing with time-varying systems, i.e., Eqs. (16) and
(17), the situation is much more difficult. In this case, stability must be
tested for by Lyapunov’s “direct” (or ‘‘second’’) method (Schwarz and
Friedland, 1965, pp. 390-394). This method is used primarily in testing
nonlinear systems for stability, and is discussed below.

b. Nonlinear Systems. (i) Solutions. Nonlinear systems are of two
basic types, autonomous systems,

% = f(x), (25)
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which would include those without any input (and rarely of ecological
interest) and those with constant input, and nonautonomous systems,

% = f(x, 1), (26)

which would include those with time-varying input. When we are dealing
with “explanatory” or *“causal”’ models, all effects of time are through the
input vector v. Thus, our mathematical model is usually of the form

x = f(x, v), 27

but can be converted to the form of Eq. (26) for purposes of analysis,
since v is a function of time. (Where v is in the form of a table of
numerical values or of noncontinuous functions, this conversion will
probably not be fruitful. This is the situation with most practical
ecological models.)

Although exact literal solutions of Eq. (26) are usually not possible
to obtain, the theory of differential equations provides us with an
extremely important existence and uniqueness theorem (Sanchez, 1968,
p. 8-10). (Much of mathematics is concerned with the subject of
“existence and uniqueness,” which is simply proving that a mathematical
structure having a particular property exists, and that it is unique, even
if the form of that structure is not known.) The theorem states that given
Eq. (26) and that f; and the partial derivatives, of;/0x;, 1,7 = 1, 2,..., n,
are continuous, then for every initial state, x(t,), and initial time ¢,
there exists a unique solution x(t) to Eq. (26).

In most continuous dynamic systems, the hypotheses of the theorems
are satisfied. If in a model the partial derivatives are not continuous,
a solution would still exist, but it might not be unique.

The theorem justifies analysis of the behavior, particularly stability,
of a solution, given particular initial conditions, even though we are
unable to obtain the exact solution. Perhaps more important, uniqueness
justifies our obtaining the approximate solution by numerical approxima-
tion, which would lead to trouble if two or more solutions existed (since
we would calculate only one of them).

Since most ecological models are of high order and rather complex,
exact literal solutions are usually not possible to obtain, and numerical
approximation must be resorted to. As stated previously, a particularly
convenient numerical approximation technique for systems of first-order
ordinary differential equations is the fourth-order Runge-Kutta method.

The Runge-Kutta method approximates solutions by time increments,
as does the Euler method. The fourth-order Runge-Kutta approximation
for the scalar differential equation

& = f(x, 1), (28)
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with the initial values x; and ¢; , and time increment 4%, is obtained in the
following manner (see also Chapter 1):

(
ky = At f(xy + Shy, 2y + 5 42) (29)
ky = At f(xy + ko, 1y + 5 A1)
ky = At f(xg + ky, 1y + A1)
Ax = Lk, + 2ky + 2k + k) (30)

x = xy + dx, (31)

where x is the approximated value of the dependent variable at the end
of the time increment A4¢.

We wish to make use of the approximation in the vector case, and
where all effects of time are through the input vector, i.e.,

x = f(x, v). (32)

The values of the input variables are assumed to remain constant
during each calculation increment; this assumption is usually matched by
the restricted availability of input data. To obtain the numerical
approximation by use of a Fortran program, it is convenient to use a
subroutine to calculate values of the function f, since this is done four
times within each calculation increment (each time with a different
argument). Each calculation increment is done by one run through
a large po loop, just as with the Euler method described previously.

One possible Fortran implementation within the large po loop is the
following (each equation actually represents a series of statements
performed by a po loop or subroutine as indicated):

rX = X (Do Loop)
k0 = f(x, v) (Subroutine)
kl = kO (po Loop)
x = rx + ikl (Do Loop)
k0 = f(x, v) (Subroutine)
k2 = kO (po Loop)
x = rx + 3}k2 (po Loop)
k0 = f(x, v) (Subroutine)
k3 = k0 (po Loop)
x = rx + k3 (po Loop)
k0 = f(x, v) (Subroutine)
k4 = kO (po Loop)
dx = } (k1 + 2k2 4+ 2k3 + k4) (po Loop)
x = rx + dx (po Loop),
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where rx, k0, k1, k2, k3 k4, and dx are vectors of the same dimension as x.
('The ““k variables” should be typed “real.”) If the time increment is not
unity, then f(x, v) in the subroutine must be multiplied by it. There may
be more efficient implementations of the Runge-Kutta method to obtain
approximate numerical solutions of Eq. (32) but the structure of this one
is particularly clear.

(1) Stability. (a) Linear versus nonlinear systems (DeRusso et al.,
1965, pp. 501-502). As was mentioned previously, the stability of
fixed nonautonomous linear systems depends upon the stability of the
corresponding autonomous linear systems. Autonomous linear systems
have but one equilibrium state, and the neighborhood of this equilibrium
state, for which stability 1s defined, includes the whole state space. Thus,
for fixed linear systems stability i1s a property of the system itself, and
not just of a particular equilibrium state. The perturbation (or new
initial state) may lie anywhere in the state space.

Stability in nonlinear systems 1s a different matter. Nonlinear systems
may have several equilibrium states, each with its own stability properties
within its own neighborhood. Some equilibrium states may be asympto-
tically stable, some stable, and some unstable. Thus, behavior of the
solution depends upon the location of the perturbation in the state
space, i.e., the initial state vector value. This is why the behavior of
nonlinear systems depends upon their initial states. From a particular
initial state the trajectory may move through state space to one equi-
librium state, to another equilibrium state, to infinity, or even into a
“cycle” (which is the trajectory of a periodic or oscillating solution),
depending upon the value of the initial state.

(b) Autonomous systems. We are concerned here with the stability
of systems of the form of Eq. (25), i.e., systems with no input or with
constant input. As is true (to a lesser extent) in linear systems, the theory
of nonautonomous systems has been developed to a much lower degree
than that of autonomous systems. Consequently, most available tools deal
with autonomous systems. This is unfortunate, since most practical
ecological problems are formulated as nonautonomous systems.

Phase plane analysis. When the system consits of only two state
variables, the behavior of the system may be graphically analyzed by
direct observation of the trajectories (after they have been calculated and
plotted) in state space (or “phase space”). In this case, the state space
is 2-dimensional, and thus a state plane (or ‘“phase plane”), and the
analysis termed ‘“‘phase plane analysis.” (The term “phase” comes from
the phase angle of the polar coordinate analysis of second-order systems
in engineering.)

The distinction between a “trajectory” and a ‘“‘solution” should be
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kept in mind. A solution of an z-dimensional system is an integral curve
in (n -+ 1)-space, a space with #n axes for the 7 state variables and one
axis for time. The exact position of the integral curve depends upon the
position of the fixed point, usually the initial state and initial time,
through which the curve passes. A trajectory (or “motion”) of an
n-dimensional system is a curve in zm-space, state space. The exact
position of the trajectory, likewise, depends upon the position of the
fixed point, usually the initial state (LaSalle and Lefschetz, 1961, p. 24).
Each trajectory is a parametric curve that may represent several solu-
tions, depending upon the time associated with each point of the
trajectory (Sanchez, 1968, p. 70).

The behavior of trajectories near each equilibrium state determines the
stability near that equilibrium state. If trajectories continuously approach
an equilibrium state, that equilibrium is asymptotically stable. If they
continuously diverge, the equilibrium is unstable. And if they remain
within a small neighborhood, but do not approach the equilibrium, it is
just stable.

Trajectory behavior near equilibrium states can be classified into
several basic types. A “center” is a set of concentric cycles (closed
curves) around the equilibrium, and indicates that the equilibrium
possesses stability, but not asymptotic stability. A “stable focus” is
a set of converging spirals, indicating asymptotic stability. (Note: the
direction of a trajectory is always that of increasing time.) An “unstable
focus” is a set of diverging spirals. A “‘stable node” is a set of converging
radii, indicating asymptotic stability. An “‘unstable node” is a set of
diverging radii. A “saddle point” is a set of radii converging in
some areas and diverging in others, indicating instability. Finally, a
“limit cycle” is an isolated cycle around an equilibrium. By “isolated”
is meant that trajectory behavior inside and outside of the limit
cycle is not in the form of other cycles. If the trajectories on both
sides of the limit cycle converge to the limit cycle, the limit cycle is
stable (and the enclosed equilibrium is an unstable focus or node). If the
trajectories on both sides of the limit cycle diverge from the limit cycle,
the limit cycle is unstable (and the enclosed equilibrium is a stable
focus or node). If the trajectories are convergent on one side and diver-
gent on the other (two possibilities), the limit cycle is “‘semistable.”

Interesting as it is, phase plane analysis is practically limited to
autonomous 2-dimensional systems, and thus will probably find little
use in the analysis of complex ecological systems. The reader may find
more details on the subject (including methods for the calculation of the
trajectories) in the text by DeRusso et al. (1965, pp. 470-498).

The traditional graphical analysis of predator-prey and competition
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models is an ecological example of phase plane analysis (e.g., Slobodkin,
1961). Another example comes from the pine-mor food web model.
The solutions for Collembola and Lithobiomorpha are periodic
(oscillating) curves of increasing amplitude; the Lithobiomorpha
maxima follow the Collembola maxima. This behavior could be inter-
preted in the phase plane, defined by a horizontal Collembola axis and
a vertical Lithobiomorpha axis, as a trajectory forming an unstable
counterclockwise focus around an unstable equilibrium. (Of course in
the complete state space of the model this trajectory would be rather
difficult to visualize.) This is an example of the common unstable
predator—prey cycle.

Variational equations (perturbation equations, linearization). Within
a small neighborhood of an equilibrium state, a nonlinear system
behaves similarly to a corresponding linear system. Thus, stability
within the neighborhood of equilibrium for the nonlinear system
can be estimated from stability of the corresponding linear system
(a different one for each equilibrium). The sth linear system corre-
sponding to the ith equilibrium state of the nonlinear system (25) is
calculated by expanding the components of f(x) in a Taylor series about
the 7th equilibrium state, and ignoring the high-order terms of the
expansion. This results in the homogeneous, constant-coeflicient, linear
system,

&k —xe) = Jlxe)lx — xe), (33

where J(x,) is the Jacobian matrix of f(x), evaluated at the ith equi-
librium state x, (DeRusso et al., 1965, pp. 479-488).

The Jacobian matrix is a constant # X 7 matrix. Thus its eigenvalues
may be computed, and used for stability judgements. A simpler alter-
native to the calculation of the eigenvalues of the Jacobian matrix has
been developed by Krasovskii (Kalman and Bertram, 1960). Krasovskii
proved that if the matrix —(J -+ J7), where JT is the transpose of J,
is positive definite (see below), then the linear approximation is
asymptotically stable.

The analysis of stability based on the linear approximation is valid
only within an infinitesimal neighborhood about an equilibrium state. If
the perturbation is outside this neighborhood, the resulting trajectory
may be stable or unstable, but the linear analysis tells us nothing, not
even the size of the neighborhood. Thus, stability analysis by the
variational equations is often not practical (LaSalle and Lefschetz,

1961, p. 57, Gumowski and Mira, 1968, pp. 10-11).
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Lyapunov’s direct (second) method (DeRusso et al., 1965, pp. 498-527;
LaSalle and Lefschetz, 1961). Most nonlinear stability analyses in
engineering are based upon the methods originally published by
Lyapunov in 1892 (Lyapunov, 1907). An intuitive understanding of the
ideas underlying the method can be gained by considering a function
defined on the state variables of the system, and physically representing
the energy of the system (in ecological systems the function might be
thought to represent biomass). If the time rate of change of energy is
negative for every possible state except for one equilibrium state, then
the energy will continually decrease until it reaches its minimum at the
equilibrium state. The system, in this case, is intuitively felt to be stable
(in particular, asymptotically stable).

Usually there is no simple physical interpretation for the function,
“energy,” and an arbitrary mathematical scalar function of the state
variables is used in the analysis. This function is a “Lyapunov V-func-
tion” or, simply, a “Lyapunov function.” Unfortunately, there are no
general methods for defining Lyapunov functions, and this is a major
limitation of the method.

In stability analysis it is much more convenient to deal with stability
of the state space origin than with other equilibrium points (states).
Thus, in the analysis it is usually understood that the state space origin
has been translocated to the point representing the equilibrium state
under consideration. This amounts to replacing the state variables with
their corresponding perturbation variables, and all states henceforth
represent perturbations from a particular equilibrium state. This is
exactly what was done in the previous section on the variational equations.
This entails no special assumptions; it is simply a shift of axes for the
sake of simplification.

Before stating Lyapunov’s theorems it is necessary to make a few
definitions. The function V(x) is ‘“‘semidefinite” in a neighborhood
about the origin if it is continuous and has continuous first partial
derivatives, and if it has the same sign throughout the neighborhood,
except where it is zero. Thus V(x) can be positive semidefinite or
negative semidefinite. The function V(x) is ‘“definite’” in a neighborhood
about the origin if it is continuous and has continuous first partial
derivatives, and if it has the same sign throughout the neighborhood,
and is nowhere zero, except possibly at the origin. Therefore, V(x) can
be positive definite or negative definite. The time derivative of V(x),
V(x), is defined in the normal fashion for scalar functions of vectors

. ov . ol | ov .
V(x)—%xlﬂ"a;xz-i" +5x—nx"’ (34)
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I s

or, in terms of the inner (“dot,

of V(x)

scalar”’) product with the gradient

V(x) = grad V(x) - x = grad V(x) - f(x), (35)

assuming the system to be described by Eq. (25). Then V(x) can be
evaluated directly from V(x) and Eq. (25), without obtaining solutions of
Eq. (25).

We are now in a position to state the Lyapunov theorems. It must be
kept in mind that the state variables now represent perturbations from
a particular equilibrium, and that the stability is with reference to that
equilibrium.

Given the system described by Eq. (25), the equilibrium is stable
if it is possible to determine a definite I(x), such that V(0) = 0 and
V(x) is semidefinite of sign opposite to V(x). Such a V/(x) is a Lyapunov
function. The Lyapunov theorem for asymptotic stability is similar.
Given the system described by Eq. (25), the equilibrium is asymptotically
stable if it is possible to determine a definite V(x), such that V(0) = 0
and V(x) is definite of sign opposite to V(x). The Lyapunov function is
usually defined so that it is positive; thus V(x) is negative or zero.
Thinking of the Lyapunov function as ‘“‘energy’ again, the theorems
state that for the trajectory resulting from a perturbation within a
neighborhood of an equilibrium, if the “energy” does not exceed its
original finite value then the equilibrium is stable, and if the “energy”
approaches zero then the equilibrium is asymptotically stable.

As with the variational equations, conclusions about stability from the
Lyapunov theorems are valid only when the perturbation lies within a
small neighborhood of the equilibrium, i.e., the stability is local. What
one usually wants in practical problems is asymptotic stability “in the
large,” i.e., asymptotic stability no matter where in state space the initial
perturbation lies. This often is true of linear systems, and occurs in non-
linear systems if the following condition is satisfied. If the system
described by Eq. (25) is asymptotically stable, and if V(x) approaches
infinity as the norm of x, | x |, approaches infinity, then the equilibrium is
asymptotically stable in the large.

As mentioned previously, there are no general methods for defining
Lyapunov functions; it is partly a matter of experience. Several specific
methods have been developed, however, and an introduction to the
literature may be found in DeRusso et al. (1965, pp. 524-527).

First canonic form of Lur’e and Popov’s method (DeRusso et al.,
1965, pp. 513-517; LaSalle and Lefschetz, 1961, pp. 75-105). These

are methods useful where the nonlinear system can be manipulated into
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an almost linear form, and thus apply only to a narrow class of nonlinear
systems.

Practical stability (total stability). Up to now we have been dealing
with the stability of trajectories resulting from a single perturbation, i.e.,
an impulse shifting the state away from equilibrium. The system
has been assumed to be undisturbed following the initial perturbation.
In real-world systems this situation is extremely unlikely; perturbations
are likely to be acting constantly. A number of theorems have been
developed to deal with constantly acting perturbations (DeRusso et al.,
1965, pp. 518-519; LaSalle and Lefschetz, 1961, pp. 121-126). They
conclude that the trajectory remains near the equilibrium if it is not too
far away intially, and if the perturbations are not too large.

Since the perturbations are acting constantly on these autonomous
systems, it is possible that they might be reformulated and considered as
nonautonomous systems, and handled as such. However, this would
require knowledge of the mathematical form of the perturbation.

(¢) Nonautonomous systems. We are concerned here with the stability
of systems of the form of Eq. (26), i.e., systems with time-varying input.
As was mentioned previously, the theory of nonautonomous systems has
been developed to a much lower degree than that of autonomous systems,
and most practical ecological problems are formulated as nonautonomous
systems.

Lyapunov’s direct (second) method. With a slight modification of the
requirements of the Lyapunov function (now JV(x,t)), and of the
asymptotic stability theorem, Lyapunov’s method may be used for non-
autonomous systems (DeRusso et al., 1965, pp. 527-529). Unfortunately,
the definition of Lyapunov functions for nonautonomous systems is
even more difficult than for autonomous systems, and thus the method
has proved to be of limited usefulness.

Eventual stability (DeRusso et al., 1965, pp. 529-531). The concepts
of stability used in the discussion heretofore were in the Lyapunov
sense, i.e., they were concerned with the system trajectory following a
perturbation from a particular equilibrium state. However, in many
(perhaps most) ecological systems the input is time-varying in such a way
that no equilibrium state exists, and thus the Lyapunov concepts cannot
be used. (This also puts into question much discussion in the ecological
literature which assumes the existence of an equilibrium or steady
state, e.g., 1n the calculation of many rates.)

Lyapunov’s direct method has been extended to such systems by
LaSalle and Rath (1963) to produce the concept of “eventual stability,”
which, 1n general, states that if a system behaves properly for a sufficiently
long time, it can be expected to behave properly in the future.
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In conclusion, it should be obvious that for most complex, nonlinear,
practical, ecological systems, stability analysis will probably not prove to
be very useful. This is partly because in empirical ecology we shall often
be dealing with systems satisfactorily identified and thus stability may be
irrelevant [see (b) Ecological significance of stability, p. 176], and partly
because thetools are not available. The major useof stability analysis might
be in ecological design problems, where it finds its major use in engi-
neering.

The reader seeking further discussion of the analysis of deterministic
systems is referred to the excellent text by DeRusso et al. (1965),
from which I have here drawn heavily.

2. Probabilistic (Stochastic, Random) Systems or Inputs

Heretofore we have been concerned with deterministic mathematical
models, i.e., the values of input variables, of initial state variables, and
of constants were assumed to be known exactly. Thus, predictions
generated by the model were exact, or deterministic. These assumptions
are wildly unrealistic if one is using the model to help solve practical
problems.

Since the values used for input variables, initial state variables, and
constants of the model arc derived from physical measurements, each
value is actually an element of a probability distribution. This is because
of the nature of measurement, and not necessarily because of the nature
of the real world (whose nature we cannot know anyway). Therefore, in
generating predictions from the model, instead of entering specific values
for variables and constants we should be entering probability distribu-
tions. The predictions generated by the model in this case will be
probability distributions, rather than exact values.

This would be realistic, but unfortunately it is extremely difficult to do.
In many practical systems it will probably be impossible to do without
resorting to Monte Carlo techniques, which are very time-consuming
on the computer.

The special case of probabilistic inputs (“random signals,” “noise”)
to linear deterministic systems has been particularly well analyzed
because of its applications in electrical engineering and other areas
(Schwarz and Friedland, 1965). For the probability theory background
to this work, see the excellent text by Papoulis (1965).

The case of probabilistic systems (probabilistic operators) has been
developed for linear systems by Adomian (1963, 1970), and has great
potential for dynamic ecological systems. The model allows a “stochastic
filter”” whose parameters are randomly varying in time, or a differential

Iy L¢
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equation with randomly time-varying constants, as well as the simpler
cases of probabilistic inputs or boundary conditions (e.g., initial state)
(Syski, 1967). Both cases can be represented by a ‘“‘stochastic operator,”
and “‘stochastic Green’s functions” can be found for the various statistics
of interest, e.g., the covariance function of the output or solution process.
Sibul (1968) has extended Adomian’s formulation into a state space
formulation particularly adaptable to control applications.

The general probabilistic operator model opens a fertile new field for
consideration of sophisticated modeling of randomly varying phenomena,
for statistical optimization of stochastic systems, and for a new approach
to nonlinear stochastic systems. This field, the combination of nonlinear
differential equations and stochastic processes, is a very active area of
modern research in optimization theory (Bellman and Kalaba, 1964).

B. OptiMAL CONTROL AND SYSTEM OPTIMIZATION

In the analysis of models of dynamic ecological systems we are
interested in two essentially different objectives: (1) prediction of
system behavior (solutions and solution behavior, e.g., stability), and
(2) control of system behavior. For example, given a fish pond with
known inputs and an acceptable mathematical model, we might wish
not only to predict fish production, but also to maximize fish production
by controlling the inputs. Or, given an agricultural pest common on
field crops, and several possible predators and competitors, we might
wish to select that combination of organisms which would minimize the
pest or maximize crop production. (The first example would be an
“optimal control” problem; the second, a ‘‘system optimization”
problem.) Since the control of system behavior requires use of the
calculus of variations, or some derivative of it, this is a much more
difficult problem than just prediction.

We are dealing here with optimization, or “extremal,” problems, i.e.,
finding maxima or minima of functions or functionals (functions of
functions). “Optimal control” is the optimization of system input to the
desired system behavior; ‘“‘system optimization” is the optimization of
system structure (equation forms and parameters) and, perhaps, input
to the desired system behavior. Stated in this way, system optimization
is the “‘design problem” of engineering, i.e., how to construct the best
system from components with known properties. If the “desired system
behavior’ actually represents real-world data, measured from an existing
real-world system, then system optimization is equivalent to what we
have been calling “system identification,” i.e., the mathematical empirical
description of a phenomenon based on measurements and (usually)
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hypothetical equation forms. Curve-fitting or parameter-estimation
(“measurement’) of statistics is a special case of system identification,
when the systems are very simple.

Stated in the mathematical notation developed previously, optimization
consists of minimizing a functional of the general form

t

[RECSCYE? (36)

where (t,, t;) is the total time interval of interest. The functional (36)
is called the “optimization criterion,” “error index,” ‘“performance
criterion,” etc. Ecological examples might be pest productivity, produc-
tion of pollutant, food production (in which case the functional would be
formulated with a minus sign, resulting in a maximization), or a function
of some desired final state, in which case it would be of the general
form A(x(#)). In most real control problems only some of the
input variables are controllable, and the rest are uncontrollable (the
“disturbances”). For example, in a model of an agricultural field one
might consider as input variables only fertilizer, temperature, and
precipitation (assuming no irrigation); the first would be controllable,
and the others not. In the standard formulation of the optimization
criterion the input vector v(¢) includes only the controllable input
variables.

Along with a particular formulation of the optimization criterion,
several types of constraints exist, their type and formulation depending
upon the particular problem. These constraints may be on the input
variables (both controllable and uncontrollable), the system itself (the
mathematical model of coupled differential equations), or the state
variables.

In the optimal control problem, the optimization criterion is minimized
by finding the optimal control (optimum controllable input, “optimum
control signal’’) v(¢,, ¢,) subject to the constraints represented by the
previously accepted mathematical model of the system,

X(8) = f(x(®), v(2), 1), (37

the initial state x(¢,), and the values of the uncontrollable input variables
for the time interval (¢, , £,). As in the formulation of (36), v(¢) represents
only controllable input variables, the uncontrollable input variables
being incorporated into Eq. (37) as time-dependent disturbance
functions.

The system optimization problem, as mentioned above, really takes on
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two forms, system design and system identification. In the design
problem, the optimization criterion is minimized by finding the optimum
mathematical model (theoretical design) and, perhaps, optimal control,
subject to constraints represented by the values of uncontrollable input
variables for the time interval (¢, , #,) and, often, the forms of the model
equations. In the identification problem, the optimization criterion is
minimized by finding the optimum mathematical model, subject to
constraints represented by values of the controllable and uncontrollable
input variables for the time interval (t;,t,), the values of the state
variables x(Z, , ), and, usually, the equation forms of the model.

In any of these optimization problems additional constraints are
usually made in the form of upper and lower limits on values of the
controllable input variables and the state variables. The lower limits
for most of these variables in ecological systems, for example, would be
Zero.

The system optimization problem is most commonly encountered in
ecology as a parameter optimization problem in system identification.
This is simply fitting of the hypothetical model equations to observed
behavior. When the optimization criterion is a quadratic functional (as it
usually 1s), parameter optimization is equivalent to parameter estimation
by least squares in statistics. Given several complete sets of data [i.e., for
the period (¢, , t;)] for the input and state variables, one may attempt to
estimate values of all the parameters, or constants, simultaneously
(that is, those parameters which are not, together with the equation
forms, part of the hypothesis). This is really an elaborate form of curve
fitting and, as with curve fitting, one of the main problems with parameter
identification is that of uniqueness. When one is trying simultaneously
to estimate more than a certain maximum number of constants (and the
number may be very small), several widely different combinations of
estimates will yield local minimum sums of squares of deviations
(Kerlin, 1968). In this case, the only practical alternative is parameter
identification from simpler systems, perhaps so simple that the process is
called ““direct measurement.” (It should be kept in mind that measure-
ment is a form of estimation, and estimation is an optimization procedure,
usually done by minimizing a sum-of-squares function.)

Other common types of system optimization problems are impulse—
response or transfer-function optimization for linear systems, and
equation-form optimization for nonlinear systems (Harris and Lapidus,
1967).

The actual solution of optimal control and system optimization
problems requires the digital computer application of some rather
elaborate mathematical techniques. These techniques are all closely
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related to the classical calculus of variations; they are Bellman's “‘dynamic
programming,” Pontryagin’s “maximum principle,” and the “direct
methods” (Gumowski and Mira, 1968; Gelfand and Fomin, 1963;
Elsgolc, 1962) of the calculus of variations.

Although the mathematical theory of optimal control and system
optimization is only in its infancy and already very difficult, it is destined
to play an extremely important role in ecology in the future, because of
the pressing needs to control and design real-world ecological systems.
However, the theory of optimal control and system optimization is
concerned with optimization only of mathematical models. In very few
areas of ecology has formulation and testing of mathematical models
resulted in models whose correspondence with the real world is satis-
factory enough to be used in optimization applications. To attempt
to do so prematurely could result in disaster.

Before closing, something should be said about the subject of
“sensitivity analysis” (Tomovié, 1963). The sensitivity of system
solutions to small changes in components of the system (mathematical
model) is usually expressed as partial derivatives of state variables
with respect to system components, the partials being either absolute
or normalized. When formulating a model for design purposes, it is
very important to keep these values as small as possible, i.e., a successful
practical design must be relatively insensitive to small variations in its
components (Gumowski and Mira, 1968, pp. 11-12). This is because
values of a model’s components are not known exactly, nor is the
range of the input or the initial state. Sensitivities to the following
have proved important in design problems (Gumowski and Mira, 1968,
pp. 11-35): parameter variations, equation forms (leading into the
fascinating subject of “‘structural stability” or “inertness” (Peixoto, 1967;
Thom, 1968)), time delays, discretization (the representation of the
differential equations by difference equations), noise (probabilistic input),
and initial state. When formulating a model for identification purposes,
the sensitivities, of course, depend upon the observed behavior. The
mathematical expressions for sensitivities find great use in the techniques
of optimai control and system optimization, particularly for linear
systems.

For serious study of the theory of optimal control and system optimiza-
tion the reader is referred to texts by Merriam (1964), Fel’dbaum (1965),
and Pontryagin et al. (1962), and to the series of three volumes by
Bellman (1967). The subject of optimal control and system optimization
of general (not restricted to linear) stochastic systems is an extremely
difficult one; an introduction to the subject, as well as a treatment of the
linear case, may be found in the text of Pugachev (1965).
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PART ”

ONE-SPECIES MODELS

Population dynamics has always been as important concern in ecology. It may be said
fairly that, if there now exist natural affinities between mathematics and ecological science
generally, this is the clear result of both early and continuing efforts to mathematize popula-
tions. The chapters of this section illustrate three different approaches to population
modeling. But perhaps their main significance in the context of this book is in representing
experimental systems ecology. This is a side of the subject that is hardly underway beyond
the stage of simple two-species interactions, except in rudimentary (from the systems
standpoint) manipulations of artificial ecosystems like microcosms, agriculture plots, or
experimental ponds and streams, and a few natural units such as old fields and watersheds.
Outside the framework of one or two species, connections between experimental results
and systems models have so far been tenuous and tentative indeed.

Chapter 3 presents a thoroughgoing mathematical analysis of microbial (Chlorella,
Selenastrum) dynamics in both continuous and batch cultures. The modeling is mechanistic,
seeking to reconstruct whole-system dynamics from detailed understanding of the parts,
with impressive success. The experimental work has a definite systems analysis component,
particularly in the use of step and pulse inputs into the cultures. This comes very close, at
least in principle, to the engineers’ use of ‘‘singularity functions” (impulses, steps, ramps,
etc.) in transient analysis, or sinusoids in frequency analysis. Dr.Williams develops two types
of complementary models, dealing with what he terms “ extensive” and ‘‘intensive” popula-
tion properties. He seeks to interact these models heuristically in a process of theory
construction referred to as ‘‘anacalypsis.” In his closing discussion of Hutchinson’s (1961.
Am. Nat. 95, 137) “‘paradox of the plankton,” he makes a convincing argument for the
importance of instantaneous dynamics of competitive advantage in the partitioning of
biotopes that leads to stable, multispecies equilibria.

Chapter 4 is a bioenergetics study of the terrestrial isopod Armadillidium, utilizing concepts
from control theory and the transfer function technique of classical dynamic analysis.
Dr. Hubbell’s perspective is a hierarchical view of the natural world in which lower-level
laws account for properties of systems at lower levels of organization. These properties
constrain what is possible at higher levels, and the more restricted set of the actual is
generated by higher-level laws. The widespread notion of organisms as passive energy
partitioners is criticized, and from the contrary view a focus upon control aspects of energy
processing is developed. Biological control systems and characteristics of the cybernetic
control model are contrasted, illustrating little general comparability of components.
Since *‘control” inevitably presumes—in some sense—objectives to be met or optimized,
two methods of estimating set points experimentally are identified: an **optimum environ-
ment” method, and a *‘ perturbation” method.

Three models of energy regulation by Armadillidium are formulated, two linear and one
nonlinear. ‘‘Linearity” is restricted to mean the additivity component of the superposition
principle (additivity and homogeneity) by which linear dynamic systems are usually defined,
and it is pointed out that the algebraic equation for a line defines a nonlinear input—output
relation. This is useful because ecologists usually confuse what is meant by a*‘linear system.”
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Chapter 9 of this volume, and the chapters in Part IV, of Volume li, all of which deal with
linear dynamics, will serve further to clarify the definition. In the context of Laplace trans-
form transfer functions, Dr. Hubbell develops his models, incorporating such standard
transient analysis techniques as step, impulse, and pulse testing, and of opening feedback
loops to determine whole-system transfer functions.

This sort of work, along with other attempts of ecologists to employ classical systems
analysis methods, has been criticized by some on the frontiers of systems science as archaic
and obsolete. So it may be in engineering, but not in ecology. It seems quite reasonable that
ecologists should explore “old” territory for new insights. It is not old to them, and what
better systematic entries into modern approaches are there than paths already well-worn
by predecessors? Dr. Hubbell’s chapter, in this instance, stands as an important contribution
to the orderly development of new perspectives and new progress in systems ecology.

Chapter 5 presents an analysis, based on interaction of laboratory experiments and the
digital computer, of factors pertinent in predator-prey relations of a freshwater fish,
Micropterus. The emphasis is on habitat complexity and its implications for predator efficiency
viewed in terms of energetics. The work is patterned after Holling’s (1963. Mem. Entomol.
Soc. Can. 32, 22) experimental components analysis approach, in which detailed mechanistic
submodels are combined to produce a static representation of factors accounting for the
overall predation process.

Both ‘‘routine” and ‘“‘active” aspects of the fish’s respiratory metabolism are modeled,
and a computerized sensitivity analysis of the routine metabolism performed to identify
parameters of greatest significance. An energy model is then constructed, incorporating both
routine and active aspects, and used to investigate consequences of cover density in the
predator’s environment. Movie films of feeding experiments, analyzed by computer, provide
the basis for conclusions about the stabilizing effect of cover upon the prey—predator inter-
action.
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I. Introduction

A. RATIONALE FOR MICROBIAL POPULATION STUDIES

Detailed studies of single-species microbial population dynamics are
important to ecology both to gain understanding of population behavior
as an end in itself, and also as a means of approaching the analysis of
large, complex ecosystems. In the latter context, there seem to be three
main reasons for the importance of microbial dynamics to ecological
systems research:

(1) Microorganisms comprise a major fraction of the earth’s biomass.
To the extent that this is true for any ecological system, the dynamics of
that system must be largely microbial dynamics. Also, the turnover rate
of microorganisms is generally greater than that of higher organisms.
Since the flux through a system equals the product of its mass times
its turnover rate, it should be clear that microorganisms, with high
biomass and high turnover rates, must be overwhelmingly important to
energy or material fluxes in an ecological system. Energetically, at least,
higher animals are little more than a minority ghetto in the total
community.

(2) The relative simplicity of microbial systems allows us to approach
most closely the ideal of a complete quantitative description of population
behavior. As implied above, it is scientifically satisfying to understand
microbial dynamics for its own sake. But also, being aware of the
remarkable conceptual advances made in genetics and molecular biology
via the use of microbial “‘model” systems, it behooves us as ecologists to
explore the extent to which the study of microbial systems can provide
us with a basic, fundamental dynamics, to which we can add the
complicating factors present in higher organisms. The basic question
I am raising is whether, say, territoriality is the fundamental population
control mechanism of higher animals, or whether it is a secondary
factor modifying the action of some more universal and fundamental
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dynamic principles. The elucidation of such principles, if they exist,
may be easiest through study of simple microbial systems. Perhaps we
ecologists should begin a search for our own ““Escherichia coli.”

(3) Detailed knowledge of single-species dynamics is essential for
optimal modeling of complex ecosystems. However, in an ecosystem
model we clearly cannot include all possible detailed information for
every species; as Levins (1966) points out, such a “naive, brute force
approach” leads to both computational and conceptual intractability.
What, then, 1s the value of single-species details? Even though the
species will be represented in a highly simplified fashion in a large model
system, only by having prior knowledge of the details can we ensure
that the simplifications we choose will be most appropriate. Our task
in simplifying is to obtain a maximum of realistic prediction with a
minimum of complexity. Beginning with the detailed model, we can
consciously and rationally eliminate the minor second-order effects
while preserving the important first-order effects. Otherwise, simplifying
would be mere guesswork.

Further, it is not necessarily true that theory complexity increases in
proportion to the quantity of empirical information accounted for.
A great wealth of empirically relevant detail may be predicted, if we
are fortunate, by a very simple theory. Such is, of course, the goal of
all theory construction. We usually obtain the greatest predictive power
by proposing new entities or relationships between entities, an aspect
of theory construction we can call anacalypsis (owaxodwfus: discovery,
invention). In this chapter I hope to show that, by addition of a single
new variable to standard population equations, we can predict many
more general properties of microbial populations than we could before.
By opening up a wider variety of empirical phenomena against which
to test the model, not only is the anacalyptic model potentially more
fruitful, but also more vulnerable to rejection. The vulnerability of
the anacalyptic model is a property to be cherished.

B. AN APPROACH TO MICROBIAL POPULATIONS

The first section of this chapter will describe the results of experi-
mental studies on the population dynamics of unicellular green algae,
both in continuous (chemostat) culture and unrenewed (batch) culture.
Included will be observations on oscillations, lags, and synchronous
growth. Measured variables include cell number, biomass, chlorophyll,
limiting nutrient concentration, and cell size distributions. Environ-
mental variables studied include turnover rate, temperature, carbon
dioxide concentration, and photoperiod.
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In subsequent sections I shall describe an approach to microbial
population theory. The models thus generated seem to have general
applicability to most microbial populations. As an overall philosophy of
population modeling, I shall take the approach that an understanding
of the control of single cell growth and division will entail a prediction
of the population dynamics of the organisms. If we know the behavior
of individuals, we can deduce the behavior of the population.

Two complementary models are developed. The first entails the
prediction of time-dependent behavior of extensive population variables:
total biomass, numbers, nutrient, etc. The second entails the prediction
of time-independent properties of intensive population variables:
distributions of age, size, etc., within the population. (An example of an
extensive model is the time-honored logistic equation, while an example
of an intensive model is a life table.) Ultimately any complete theory
must combine both intensive and extensive properties within a single
framework. At present, however, any such amalgamation of the two
approaches seems to me unmanageable without an immense ‘‘brute force”
computer program. Such a computer program I believe would be
premature and nonanacalyptic.

II. Experimental Studies on Algal Populations

I report here the results of population studies of algae grown under
very precise conditions of batch and chemostat culture. The experiments
have been designed such that both steady state and transient population
behavior could be studied. The approach is along lines used in control
systems analysis (e.g., Harris, 1961), in the hope that insight might
be gained by recognizing the feedback nature of population control.
Most of the interesting processes occurring, however, are almost
certainly nonlinear, such that analysis in terms of linear control systems
does not seem to be the simplest or most straightforward method.
However, the experimental design is quite adaptable to a variety of
theoretical approaches.

I believe the chemostat (Novick and Szilard, 1950) is the best laboratory
idealization of nature for population studies. It is a dynamic system
with continuous energy and material inputs and outputs, thus modeling
the open system character and temporal continuity of nature. The input
and removal of nutrient analogs the continuous turnover of nutrients
in nature. The washout of organisms is formally equivalent to non-
age specific death, predation, or emigration which always occur in
nature.
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A. METHODS

A much more detailed description of methods will be found in

Williams (1965).
1. General Culture Procedures

Two green algae of the order Chlorococcales were used: Selenastrum
gracile Reinsch and Chlorella pyrenoidosa Chick. Both were purchased
from the Indiana University Culture Collection of Algae (Starr, 1960).
Both were grown on a modification of Chu No. 10 culture medium
(Chu, 1942). The Chu medium was used because its composition and
concentrations are more ecologically realistic than many frequently used,
highly concentrated media. The composition of Chu No. 10, as modified,
is given in Table I. Nitrate is the limiting nutrient. All media were

TABLE 1
Mobiriep CHU No. 10 CuLTURE MEDIUM

Compound Concentration (mg/liter)
Ca(NOy), - 4H,0 ¢ 59.2 (500 uM NO;™)
K,HPO, 10.0
Na,COy4 20.0
MgSO, - TH,O 25.0
Na,Si0; + 9H,0 58.0
FeCl, @ 0.5
Disodium versenate® 10.0
Trelease trace element solution® 0.5 cc

¢ Denotes change from formulation of Chu (1942).

sterilized by filtration through a Selas 03 Filter Candle or a Millipore
GS Filter.

Chlorella was purchased axenic, and was maintained thus. Selenastrum
was purchased contaminated. It was rid of its contamination by approxi-
mately three weeks’ growth in a chemostat using the inorganic medium
described above. The chemostat may be potentially useful to axenize
many autotrophs which have proved refractory to other methods.

2. The Chemostat

The chemostat system developed was capable of highly precise,
reliable, long-term use. The culture vessel was approximately a standard
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design (Novick and Szilard, 1950), but containing 130 cc of culture.
It was illuminated by a 22-W-circular fluorescent bulb, providing almost
uniform illumination over the entire cylindrical surface of the vessel.
Incident intensity was approximately 6.5klx, saturating but not
inhibitory to growth.

Temperature was controlled to +0.05 C. Mixing and gas exchange
were accomplished by bubbling humidified air (or air 4 1% CO,)
through each culture at 500 cc/min.

Flow rate in early experiments was controlled by the method of
Kubitschek (1954), impeding flow from a constant head Mariotte bottle
with a capillary tube. This was accurate to 4-1.5%,. Most experiments
had more precise flow control (+4-0.59%) by use of a peristaltic pump
(Harvard Apparatus).

3. Assay Techniques

A maximum sample of 2 to 3 cc could be removed without perturbing
the culture. In early experiments, cell number was estimated by
hamacytometer counts. High accuracy (+29%,) was possible with a
modified filling technique (Williams, 1965). In most experiments, a
Coulter Counter Model B was used with a 50 u aperture. Routine
accuracy was +0.59%.

Size distributions were made with the Coulter Size Plotter, graphing
between 30 and 50 size classes for a total of about 30,000 cells/distribu-
tion. At least three replicates were run per sample.

Grown in essentially fresh water osmotic concentrations, the cells
plasmolyzed when added to the 0.9 %, NaCl normally used for counting
and sizing in the Coulter Counter. This was solved by an empirically

TABLE II

ImpPROVED CoULTER COUNTER FLUID

Compound g/liter
NaCl 5.0
PVPe 35.0
Na,HPO, 0.32
NaH,PO, 0.04
NaOH 0.08

¢ PVP is Polyvinylpyrollidone (‘‘Plasdone
C,” MW = 40,000, Antara Chemicals,
Gracelli, N.J.).
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developed counting fluid (Table II) containing polyvinylpyrollidone.
In addition to preventing plasmolysis, the fluid’s high density and
viscosity improve counting accuracy by (i) impeding the settling out of
cells and (i1) slowing passage of cells through the aperture, thereby
preventing the pulse truncation and size distortions resulting from
normal counter methods (Kubitschek, 1964).

Dry weights were determined from 2 cc of culture filtered onto a
tared 13-mm Ultrathin Millipore Filter, washed, desiccated, and weighed
on a quartz cantilever microbalance. There was a linear correlation
coefficient of 0.982 (DF = 28; t = 743.2, P < 0.001) between dry
weight and total cell volume over a variety of experimental conditions
involving mean cell dry weights of 4 to 40 pug/cell. This is shown in
Fig. 1. Since there is thus no evidence for density differences between
cells, cell volume data (from the Coulter Counter) and cell mass are
equivalent, and will be used interchangeably.

Selenastrum pigments were extracted in 809, acetone, while the more
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Fic. 1. Total cell volume from Coulter Counter data versus dry weight: Coulter
Counter volume is a good measure of biomass.
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refractory Chlorella pigments were extracted in absolute methanol.
Chlorophyll was estimated at 670 nm, and carotenoids at 480 nm.
Accuracy was 419,

A semi-micro modification of the phenoldisulfonic acid method was
developed (Williams, 1965) for nitrate assay. Sensitivity was 41 mu mole
nitrate/sample.

4. Data Presentation

Each experimental population furnishes information on a variety of
subjects; hence subject matter and not the individual experiment will be
the unit of organization. More complete presentation of the data is in

Williams (1965).

B. PRECISION OF STEADY STATE REGULATION

When studying causes of natural population fluctuations it is important
to know whether populations will fluctuate in the absence of environ-
mental fluctuations. In this section we examine the organisms’ ability
to maintain a steady state under constant environmental conditions.
The results relating to steady state precision fall empirically into two
classes: short-term and long-term precision. The two questions are not
logically disjunct, but they must be so treated at present by virtue of
the experimental design. I will show that regulation i1s quite precise
over periods up to 15 generations, but that over longer periods of time
there are occasional unexplained and very gradual trends in the popula-
tion parameters.

1. Short-Term Precision

I choose a maximum of 14 generations as an arbitrary but convenient
time limit, during which enough measurement can be made to assure a
steady state, but during which any long-term trends will be insignificant.

Note that the question concerns capability of population regulatory
mechanisms; hence only those populations are treated for which it
was clear that no significant environmental fluctuations occurred.

Three measures are used. First is the coefficient of variation (Sy/X).
Although intuitively comprehensible, the coeflicient of variation does
not take account of the time-sequential nature of the data.

The second measure I shall call the coefficient of sequential variation.
It is derived (Williams, 1965) from the mean square successive difference
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(2,2) of von Neumann et al. (1941). The coefficient of sequential variation
(8,/X) I define as

1/2

, (1)

~ Xz i+12
@A(i;()?_XX’))
X (n—1)

X
where 7 enumerates the variates X chronologically.

The third measure is a measure of randomness in sequential variation
based on the above: Since 9,2 = 25,2 for random sequences, and since
the two functions are statistically independent, 4, =1 — 8,%/2S,2
should be normally distributed about a mean of zero when the sequence
is random. Deviations of 4, from zero are thus a test of nonrandomness
(Young, 1941).

Table III presents the results from seven steady state populations.
The variability of steady states is quite small, ranging from a coefficient
of variation of 0.0174 to one of 0.0593; most fall on the low side of this
range. The variability is, however, greater than that of any environmental
or sampling parameter. There is zero correlation between the three
variables (Williams, 1965).

While most of the biomass and chlorophyll measurements appear
random, most of the cell number measurements appear nonrandom.
Since the chemostat is nutrient (i.e., biomass) limited, and since cell
division is much more of a discrete (or ‘“‘digital”’) process than cell
growth, the results presage a general character of cell populations, that
cell division is only loosely coupled to cell growth. Cell number may be
thought of as an oscillator (cf. “cell cycle”) set in motion by small
random fluctuations in biomass growth. The loosely coupled nature of
the division process will be discussed at length later on.

2. Long-Term Precision

There is little systematically collected data on long-term changes
in supposedly steady state populations. No experiments were specifically
designed to study such changes. Nevertheless, there is evidence for
their occasional occurrence.

Two simple measures are adequate here. The first is R, the ratio of
the averages of the last few values in the time sequence to the average
of the first few values. Thus R, > 1 shows an increase with time;
R, <1 shows a decrease. The second measure is r, = 100R, 7,/t,
where 7, is the doubling time interval studied; 7, measures the average
percentage change per generation. The results are shown in Table IV.

Of the few significant long-term trends, it is difficult to see any



TABLE 111

COEFFICIENTS OF VARIATION (S,/X), COEFFICIENTS OF SUCCESSIVE VARIATION (&,/X),
AND A MEASURE OF NONRANDOMNESs (4,) FOR SEVERAL PopuLaTIONS

90T

Dura- Number Cell number (N) Biomass (M) Total chlorophyll (¢)
Culture tion of -
designation (hr)  samples Sn/N 8,/N 4, Sp/M  0./M 4, S,/é Oy 4,
Selenastrum
v 190 10 .0373 .0373 0.50° — — — — — —
v, 293 12 .0296 .0406 0.16 — — — — — —
v, 240 12 .0593 .103 —0.49¢ .0246 .0347 0.01 .0480 .0738 —0.173
Chlorella
VI, (a) 239 11 0175 .0271 —0.19° .0384 .0516 0.096 .0354 .0458 0.354
VI, (a) 239 11 .0174 .0172 0.49¢ .0298 .0386 0.164 .0384 .0504 0.270
VI, (b) 252 14 .0225 .0142 0.83° .0353 .0309 0.614° .0226 .0346 —0.170
VI, (b) 252 14 .0230 .0216 0.56° .0313 .0210 0.665° .0249 .0357 —0.012

¢ Nonrandom, 0.05 > P > 0.01.
® Nonrandom, P < 0.01.
¢ If one possibly (but unprovably) erroneous measurement is removed, 4, = 0.545, 0.05 > P > 0.01.

SINVITIIM "W “d
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pattern: the presence or absence of trends, their direction, and their
magnitudes, seem to be at best sporadic. No instrumental changes can be
invoked to explain the trends (Williams, 1965).

Mutation accumulation should be minimal in an autotrophic organism
on inorganic medium, but it is possible that the trends result from

TABLE IV

LoNG-TErRM PorULATION CHANGES, EXPRESSED As THE RATIO OF FINAL TO
INITIAL VALUES (R,;) AND THE PERCENT CHANGE PER GENERATION (7,)

Popula- Inter-
tion val t Ty R, Tu R, Tm Ry 74
(hr) (hr) (%) (%) (%)

Selenastrum

1V, 1033 20.0 1.211° 0.41 — —

1V, 938 20.6 1.024 0.75° —0.55 0.87° —0.29
Chlorella

VI, 252 18.0 0.946 1.046 0.912 —0.63

VI, 198 18.0 1.030 0.995 0.945

VI, (a) 322 18.0 1.015 1.114° 0.64 —

VI, (a) 322 18.1 0.987 1.078 —

VI, (b) 308 36.6 0.990 0.982 0.975

VI, (b) 308 36.6 0942 —0.69 0.924>° —0.90 0.965* —0.42

2 Results of z-test between initial and final means show value to be significantly different,

P < 0.05.

b Results of z-test between initial and final means show value to be significantly different,
P < 0.01.

accumulation of a number of small polygenic changes. Since these
organisms are almost certainly asexual, such polygene accumulation
would be quite slow to achieve equilibrium. This slowness is in distinc-
tion to the normally discussed major gene situation in the chemostat,
where selection is accelerated (Moser, 1958). However, since the trends
are so sporadic and slight, it would be difficult to study them system-
atically.

C. STeADY STATE DEPENDENCE ON TURNOVER RATE

In order for a steady state to occur in a chemostat, the specific growth
rate (dX/X dt) must exactly equal the turnover (dilution) rate of the
instrument. Consequently, as the turnover rate increases, we expect a
greater nutrient requirement per cell in order to achieve faster growth.
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Hence we expect a smaller population at higher turnover rates. The
theory predicting these relationships is well known (Herbert ez al., 1956).
However, that theory utilizes only one measure of population density,
thus making the implicit assumption that organisms are chemically or
physiologically identical, regardless of growth rate. I shall show that
this assumption is incorrect; the model (for extensive properties)
developed later in this chapter is designed explicitly to handle changes in
physiological state of organisms.

Figure 2 shows the relationship to steady state turnover rate of three
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Fi1G. 2. Steady state specific growth rate versus total numbers (N), biomass (M),
and chlorophyll (¢) for Chlorella. Ordinate scaled for cell number. Biomass and chlorophyll
in arbitrary units. (Note different slopes as discussed in text.)

extensive properties of Chlorella: cell number (N), biomass (M), and
total chlorophyll (¢). Both cell number and biomass decline with
increasing turnover rate, but they do so with different slopes. Total
chlorophyll, on the other hand, actually increases as the biomass and
number decline. The corresponding measures of average cell mass (M/N),
chlorophyll per cell (¢/N), and chlorophyll per unit mass (¢/M) are
shown in Fig. 3. A few data points are added from batch culture, to show
the great range over which cell mass (and volume) may vary.

We shall see that increased cell mass with higher growth rate is a
generalization for most microorganisms; it is a result of increases
primarily in the cell’s synthetic machinery. Note the strong increase in
total chlorophyll, an important part of this synthetic machinery.
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Frc. 3. Average cell size (M/N), average chlorophyll per cell (¢/N) and per unit
mass (¢/M) versus specific growth rate (turnover rate). ®: batch culture, O: chemostat.

Note also in Fig. 2 that the slope of cell number is steeper than that
of biomass; if we extrapolate to the right, cell number will be expected
to reach zero before biomass. The washout or extinction point of course
occurs when cell division cannot keep up, regardless of the potential
for biomass growth. We shall see in other contexts also that cell division
is a critical rate-limiting and lag-producing step. There is further
discussion of this in Section III on the extensive model.

The relation of chlorophyll to productivity is of the form

aM 77

rqr = K& =4, e
where &, is the intercept value of total chlorophyll (¢) at zero growth rate.
Since chlorophyll is part of that synthetic machinery which increases at
high growth rates, extrapolation to zero growth should define that
amount of chlorophyll required for maintenance metabolism. If this
is so, maintenance chlorophyll is anywhere from 30 to 709, of the
chlorophyll measured in the experiments reported.
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D. ErrecTs oF TEMPERATURE AND CO,

In addition to the effects of turnover rate (and hence nutrient limita-
tion), it is of interest to investigate the effects of nonlimiting factors on
steady state behavior. Although not directly involved in the regulation
of the organisms’ biomass, nonlimiting factors may interact in a manner
profoundly affecting the character of the population. Two such non-
limiting factors, temperature and CO,, will be discussed briefly here.
I shall show, in the model section, that temperature effects can be
adequately explained by effects on the kinetics of nutrient uptake and
incorporation. The CO, effects are more problematical.

1. Temperature Effects

The chemostat provides a unique method for studying temperature
effects, in that the same steady state growth rate may be maintained
independent of temperature. We shall see that this provides a unique
analytical tool for the analysis of temperature effects: If two mutually
dependent processes have different temperature optima, we should be
able to dissociate the processes by maintaining a constant specific growth
rate in the chemostat.

Figure 4 shows the steady state values of cell number, biomass, and
chlorophyll over a very narrow temperature range, 22-25 C. (These
preliminary experiments were hampered by the limited range of a
homemade contact thermometer controller.) Even over this three-degree

25

22 23 24 25

Temperature (C)

F1G. 4. Steady state cell number (N), biomass (M), and chlorophyll (¢) over a three-
degree temperature range. Cells at 22 C are twice as large as those at 25 C.
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range, the results are striking. Very small changes in total chlorophyll
and biomass are accompanied by very large changes in cell number;
cells at 25 C are approximately one-half the size of cells at 22 C.

More recently in my laboratory, Maurice Blaug (1970) has extended
these measurements over a wider temperature range. His results are
shown schematically in Fig. 5, pending publication of his detailed

Temperature (C)

Fic. 5. Schematic representation of Maurice Blaug’s results on Chlorella, showing
steady state number, biomass, and average cell size versus temperature.

findings. There are distinct maxima for cell number and total biomass,
corresponding to a minimum in cell size. Thus, at the same growth rate,
large cells may occur either at high or low temperatures. Minimum cell
size presumably occurs at the temperature optimum. Similar results
have been reported for Tetrahymena cell size versus temperature in
batch culture (Zeuthen, 1964).

By changing cell size with temperature, we have again demonstrated
that there is only loose coupling between the growth and division
processes. The lack of significant change in total chlorophyll is inter-
preted to mean that the linear relationship of total chlorophyll to specific
production rate (dM|M dt) is relatively temperature independent. This
might be expected if the light reaction rate, which is relatively temper-
ature independent, were controlling the amount of chlorophyll present.
Further discussion of temperature occurs in the description of the
extensive model.

2. CO, Effects

With nitrogen as the growth limiting nutrient, one might expect the
addition of extra carbon to the nutrient supply to have no effect. On the
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other hand, if more photosynthesis occurs with added CO,, one might
expect excess carbohydrate to accumulate, causing an increase in total
biomass. Neither of these alternatives, however, occurs. The data are
shown in Table V. Total biomass is not significantly affected by added

TABLE V

Errects oF CO, ON THE STEADY STATE

Popu-
lation w CO, M N é M|N /M S/ N

VI, (a) 500 air+1% 1239 18,810  .0483  13.18 390  2.57
VI, (a) 498 air+1% 1260 19,170  .0492  13.14  3.90  2.57
VI, (2) 498  air 1113 22,920  .0750 9.75 674  3.27
VI, (a) 498  air 1222 23,760  .0752 1028 670  3.17

VI, (b) 246  air + 1% 1355 32,630  .0419 830 309  1.28
VI, (b) 246 air +1% 1360 33,040 .0417 824 307 1.26

VIL () 299  air 131.3 36,670 0572 716 436  1.56
VI () 298  air 136.3 35680  .0576 7.64 423 1.6l
VIL (d) 197  air 1322 36,640 0460 722 348  1.26
VI (d) 1.97  air 139.6 36,440  .0475 764 340  1.30

CO, ; this rules out carbohydrate accumulation. The added CO,,
nonetheless, causes a decided decrease both in cell number and total
chlorophyll; cells grown in high CO, are larger and contain less chloro-
phyll. Since the total population biomass is virtually unchanged by CO,,
and since nitrogen is rate-limiting, there has been no significant change
in carbon/nitrogen ratio, hence no carbohydrate accumulation.

This argument has more generality. For any condition where the
total biomass remains constant and cell size changes (temperature, CO, ,
and the transient cases to be discussed), it follows that the relative
proportions of all of the major elements (carbon, nitrogen, oxygen, etc.)
in the organism are the same for all cell sizes regardless of cell size
change. In this context, recall also that there was no evidence of any
specific gravity changes over a wide range of cell sizes (Fig. 1). In a
nitrogen limiting chemostat, cell composition seems very well controlled.
This is contrary to some previous reports (Fogg, 1965) based on experi-
ments done under very different conditions in batch culture.

In the presence of high CO,, it seems plausible that less chlorophyll
would be required to maintain the same rate of carbon fixation. Chlorella
thus seems to have a control mechanism that allows maintenance of
just enough chlorophyll to maintain the steady state photosynthetic rate.
Recall also that total population chlorophyll was a linearly increasing



3. DYNAMICS OF MICROBIAL POPULATIONS 213

function of steady state growth rate (Fig. 2). As a generality, we may
propose the controlled production of just the right amount of synthetic
machinery to maintain the environmentally appropriate growth rate.
This generalization is a theorem of the model presented for extensive
properties, and further illustrates the looseness of coupling between
cell growth and division.

E. Unusep LIMITING NUTRIENT

The amount of unused nutrient remaining in the culture container
during a steady state must be just that amount required in the medium
to maintain the steady state growth rate. If it were higher, the population
would increase; if it were lower, the population would decrease.

Using the original Monod or Novick and Szilard chemostat theories
(1950), we can predict from the biomass data that nitrate concentrations
in the steady state cultures should be of the order of 0.2 to 1.0 ug(N)/cc
(15-75 M) over all experiments {Williams, 1965).

Despite the fact that the assay technique was refined to a sensitivity of
4+0.014 pg(N)/cc (41 nM), actual nitrate levels were so low that it was
impossible to obtain good quantitative estimates. All samples measured
between 0.01 to 0.04 pg(N)/cc (0.75-3 M), right at the sensitivity
limits of the technique.

However, there is enough accuracy to warrant the following important
conclusion: The average steady state nutrient concentration is 20-100
times lower than that predicted by the basic theory of growth dynamics
(Herbert et al., 1956). Despite the uncertainty of the values, 20-100
fold is certainly a very real difference. Almost no growth is observed
in batch cultures with 3 M nitrate (Williams, unpublished).

I suggested earlier (Williams, 1965) that this discrepancy might be
accounted for by the existence of a nitrate pool within the cells. Other
experiments (Ketchum, 1939) have demonstrated a very rapid uptake of
nutrient following starvation, along with the ability to use that nutrient
for growth later when removed from the nutrient. Recent data by
Caperon (1968) provide similar indirect evidence for an internal nitrate
pool in Isochrysis, by showing a constancy of nitrate over a wide range of
growth rates.

Ideas similar to this have been invoked to explain high growth rates
in apparently nutrient-poor natural waters (Rhode, 1948). Thus, in an
open natural system, measurement of nutrient concentrations may not
provide an adequate predictor of growth potential.

The role of intracellular nutrient pools in population control is
explored in the extensive model developed in the next section.
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F. TransieENT PoruLaTIiION BEHAVIOR

In principle, the transient behavior of populations should provide
the most unambiguous reflection of operative control mechanisms
(Harris, 1961). It is here, for example, that we might expect the clearest
expression of looseness of coupling between cell growth and division.
But, for successful transient experiments environmental conditions must
be very well controlled and biological states must be precisely measurable.
Transient studies thus entail considerable technical difficulty. Chemostat
use can eliminate many of these difficulties: With clearly defined steady
states as initial conditions, the responses of populations to systematic
perturbations can be followed until new steady states are reached.
This is a powerful approach familiar to systems engineers.

Only a few of the clearer experimental results will be shown here.
The treatment of some aspects of the transients is frankly descriptive,
for no satisfactory model has been developed to predict observed
oscillatory behavior. Further results of these experiments can be seen
in Williams (1965).

We shall subdivide transient phenomena as follows:

(1) Batch culture: always transient
(2) New chemostat inocula: transients approaching a steady state
(3) Chemostat perturbations: steady state-transient-steady state
(a) step function perturbations
(1) nutrient concentration
(i) flow rate
(b) square wave perturbations
(i) flow rate
(i) temperature

These experiments have been done on both Chlorella and Selenastrum.

1. Batch Culture

Batch cultures are closed systems in which inocula are allowed to
grow, with no nutrient addition, until nutrient exhaustion causes growth
cessation. Figure 6 shows the usual cycle of events for Chlorella as it
passes from “lag” phase to “exponential” phase to “stationary’’ phase.
Cell numbers, total biomass, and average cell size are shown. Figure 7
shows a similar batch culture growth curve for Selenastrum showing cell
number, total chlorophyll, and chlorophyll per cell.

Note that the lag phase is a lag merely in cell division. While cell
number remains constant for a time following inoculation, both biomass
and chlorophyll show large increases, 4-fold and 8-fold, respectively.
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Certainly the cell synthetic machinery is not lagging. Following the lag
phase, cells divide and the population numbers increase exponentially
for a time, along with biomass and chlorophyll. When nitrate becomes
limiting, the biomass and chlorophyll stop increasing, but cell division
continues, producing smaller cells with less chlorophyll in stationary
phase. (Chlorophyll continues to decline continuously because of
photodecomposition.)

Referring to Fig. 3 for comparison, we see that the cycle of events
in batch culture is simply a particular transient reflection of the changes
in cell properties with turnover or growth rate which we have already
seen in steady state conditions. Thus, lag and stationary phases are
simply an antisymmetric pair of extremes on the continuum of cell
property changes with turnover rate. Therefore, a single explanation
will account for all of these, as will be shown with the extensive model.
Nowhere else is the complete uncoupling of growth and division more
clearly illustrated than in batch cultures.

2. New Chemostat Inocula

Because of lag phase, there is a tendency for new inocula to be washed
out of a chemostat before division begins. For this reason, the most
reliable method of starting up a chemostat is to establish a large, rapidly
growing batch culture population before turning on the nutrient flow-
through. This procedure makes transient analysis difficult, since condi-
tions are difficult to define precisely.

The sudden switching on of nutrient flow is likely to produce oscilla-
tions in cell number, while biomass and chlorophyll respond generally
without oscillation. This is illustrated for Selenastrum and Chlorella
in Figs. 8 and 9, respectively. By contrast, a nonoscillating approach
to the steady state is achieved when flow is turned on at the time of
inoculation with already rapidly growing Chlorella (Fig. 10).

Otherwise, the approach of a new inoculum to a steady state in the
chemostat shows strong similarities to the batch culture cycle, with
a decline in cell size and chlorophyll content as the steady state is
approached, illustrating further that the lag and stationary phases are
merely special cases of the physiological differences between organisms
at different growth rates.

3. Chemostat Perturbations

Several examples are shown here of steady state—transient—steady
state perturbation experiments. Other examples may be found in

Williams (1965).
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Fic. 8. New inoculum of Selenastrum in chemostat. Flow is turned on at arrow.
MJN: average cell volume (in this case measured optically), M: biomass, N: cell num-
ber. Note irregular (?) oscillations.
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Fic. 9. New inoculum of Chlorella in chemostat. Flow is turned on at arrow. Note
large, damped oscillations in cell number compared to uniform behavior of biomass.
N: cell number, ¢: chlorophyll, M: biomass.

a. Step Function Perturbations. A step function is defined as an
instantaneous change of a constant parameter to a new constant value.
I shall show one example of each for step function changes of limiting
nutrient concentration and of flow rate.

(1) Nutrient Concentration. A Selenastrum culture is shown in
Fig. 11 which has been stepped instantaneously from 100 pM nitrate
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Fic. 10. New inoculum of two replicate Chlorella populations in chemostat, starting
with already rapidly growing cells. Note smoothness of approach to steady state compared
to Fig. 9. N: cell number, M: biomass, M/N: average cell volume. Subscripts (1, 2) identify
the two populations.

6
L //o\o\
4+ [+
/. \0 :5_/°N 0,
D = SENINA e
IE 2" \'\./o\. T MNST T N,
"
|9 ’— n_D-D_D\DM—D\D—D—D—D’D“D—D—-n_n-ﬂ
< o
; 4 '3/'/ \./ N o. O ®
i [ A
/
2r o/c
- El.;;i°/o_o_'o\o'_o\ofo-o'-o—0—0-0—0—0—0--O—o-°
oo’ ] ] 1 1 1
o] 100 200 300 400 500
Hours

Fic. 11. Step function increase of nitrate concentration from 100 to 500 uM, for
Selenastrum in chemostat. Note decreases in cell size and chlorophyll per cell as higher
nutrient concentration is exhausted, and oscillatory behavior of cell number.
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to 500 wM. This is not an ideal example in that preshift variables other
than cell number were not measured. The initial and final cell sizes
and chlorophyll should be identical because the flow rate and hence
steady state growth rate remain constant throughout. Nevertheless,
we can follow the response after the cells have increased size and chloro-
phyll content because of higher nutrient level. All three variables increase
to new steady state standing crop values in response to the higher input
nutrient concentrations. As the growth rate decreases to the steady
state value, cell size and chlorophyll decline accordingly to values
which should be identical to the initial conditions.

(ii) Flow Rate. In contrast to the above, a step function change in
flow rate sets a new steady state growth rate, and hence leads to new
cell size and chlorophyll contents. Except for cell number, changes in
standing crop values are minimal. An example is shown in Fig. 12
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Fic. 12. Step function decrease to 50% flow rate for two replicate Chlorella popula-
tions. Notice large change in cell number compared to almost negligible change in
biomass, causing about a 459, decrease in cell size.

showing a Chlorella population responding to a halving of flow rate.
Since cell number increases significantly, and total biomass and chloro-
phyll change little, cell size and chlorophyll content decrease strikingly.
The increase in cell number is the result of a lag in cell division response;
cells continue to divide at the same rate as previously, but not being
washed out as fast, until the new steady state cell number is achieved.
This is a further example of the dissociation of growth and division



220 F. M. WILLIAMS

control processes. Oscillatory behavior, expecially in cell number,
is present in both of the above experiments.

Other examples are in work by Williams (1965); this type of experiment
corresponds to Caperon’s (1969) “first experiment,” measuring cell
number of Isochrysis.

b. Square Wave Perturbations. A square wave perturbation is defined
as an instantaneous shift of a parameter to a new constant value, held for
a defined period of time (usually short) and then returned to its original
value. I shall show one example each for square wave changes of flow
rate and of temperature.

(1) Flow Rate. An example of a square wave cessation of flow rate is
shown for Selenastrum in Fig. 13. Cells continue to divide at the same
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Fic. 13. Square wave cessation of flow rate for one day in a chemostat population
of Selenastrum. Note constancy of chlorophyll compared to cell number. Dashed line
is a damped sinusoid curve; discrepancies where maxima should be are the “notched
peaks’’; see text and Fig. 14.

rate, but since they are no longer washed out, increase in number.
Chlorophyll standing crop remains constant, drastically reducing the
chlorophyll content per cell. Although it is not shown quantitatively,
cell size became much smaller; there was almost certainly little or no
change in standing crop biomass.

When nutrient flow is turned on again, there is a sharp decline in
cell number, with a corresponding increase in cell size, but no significant
change in total chlorophyll (visually, this and other cultures look greenest
at cell number minima). There is an oscillatory return to the original
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cell number steady state value. This corresponds to Caperon’s (1969)
“second experiment’ with Isochrysis, where there are overshoots, but no
obvious oscillations.

The dashed line following the cell number trajectory is a damped
sinusoid; the fit is everywhere excellent except at the maxima which
show what I have called a “notched peak” (Williams, 1965). Selenastrum
populations have subpopulations of cells dividing into two and four
daughter cells (autospores) under the conditions used. Since oscillation of
cell number implies at least a partial synchrony of cell division, one can
show that a synchronization of the subpopulations will produce a
higher harmonic to the fundamental frequency illustrated by the
dashed line. The effect of this higher harmonic is to produce the “notched
peak” effect. An example is shown in Fig. 14, and further details of

Time

Fi1c. 14. The combination of two harmonics, representing division synchrony of
subpopulations producing two and four daughter cells, resulting in the “notched peak”
effect. Compare with Fig. 13.

the argument appear in my thesis (Williams, 1965). The argument
must be regarded as at best semi-quantitative.

(i1) Temperature. Because of the drastic effects of temperature on
cell size and other population measures, it is of interest to see the
effects of a temperature pulse on the population behavior. One example
is shown in Fig. 15 of a square wave temperature perturbation, admittedly
accidental, from 22 to 27 C. The unique aspect of this perturbation is
that, unlike other populations observed, cell number oscillations showed
no sign of damping out for the almost 300 hr observed after the perturba-
tion. Again qualitatively, cells were very small and very pale at the
maxima and very large and very green at the minima, indicating much
less, if any, response of biomass and total chlorophyll. Mr. Blaug is
just completing an extensive study of temperature effects (1970). In
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Fic. 15. Sustained oscillation following a square wave temperature shock to a
Selenastrum population.

general, it seems that the effects of temperature perturbation are much
more persistent than effects of nutrient and flow rate perturbation.

G. OSCILLATIONS

A generalization of the above studies is that oscillations occur primarily
if not exclusively in cell number; biomass and chlorophyll generally
approach a steady state monotonically. Observed amplitudes of oscillation
range up to 759, of the steady state cell numbers.

While we might expect a relationship between oscillation amplitude
and the rate of approach to a steady state, this is not very satisfactory.
Figure 16 shows the amplitude of initial over- (under) shoot as a function
of the difference between growth rate and washout rate, i.e., the rate of
approach. While there is some correlation, it is by no means a precise one.

On the other hand, there is an excellent and surprising relationship
between period of oscillation (expressed as fractions of a generation time)
and rate of approach, shown in Fig. 17. Except for population crashes
in which cell disintegration occurred (Williams, 1965), the relationship
is a remarkably precise straight line. This implies that the period of
oscillation is a constant, regardless of culture conditions, and more
remarkably, regardless of whether it is Selenastrum or Chlorella. Over all
experiments, the oscillation period is 62.3 4+ 7.1 hr. Also remarkable is
the fact that the period is greater than most generation times.

I shall attempt to explain this bit of numerology in the following way.
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Since I have shown cell division and growth to be loosely coupled,
and since I have shown growth or mass increase to be temporally prior
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to division response, this implies that there is a time lag in division
response.

Hutchinson (1948) and Wangersky and Cunningham (1956, 1957)
developed a general population model based on an abstract time lag
built into the logistic equation. Their most complete form of the model

is (1957)

dN(t) A
Nod K [K — N —7)], ©)
where K is the steady state number, N(t) and N(t — 7) are numbers of
organisms at times ¢ and ¢ — 7, respectively, and 4 is a specific rate of
approach to the steady state, which is a complicated form of another
lag and an age structure, including a density-independent mortality
term. Since the age structure in A is a linear transformation of the
microbial age density functions to be developed in the next section,
and since the washout from a chemostat is a density and age independent
“mortality,” we may accept the validity of the model for chemostat
purposes. Empirically, the value of A4 is just the rate of approach
calculated above (division rate minus washout rate).

The authors show that when oscillations occur in the above model,
the oscillation period will be approximately 4.4r. Thus the time lag
for these populations will be 62.3/4.4 = 7 = 14.1 hr. The minimum
generation time of both Chlorella and Selenastrum under the conditions
used is just about 14 hr (Williams, 1965). Thus we conclude tentatively
that the response lag of a cell #s its minimum generation time. Conversely,
the minimum generation time is a simple expression of the time
lag under steady state conditions. The response lag may be thus the
minimum time required for the genome to replicate (Donachie, 1968;

Donachie et al., 1968).

H. CeLL Size DISTRIBUTIONS

It is impossible to pick out a cell from a population and measure its
age. We can, however, measure age-dependent properties of cells: the
simplest of these is cell size (volume or dry mass). The overall behavior
of a population is the result of the distributions of ages and sizes of
cells comprising the population, since chemical composition and
physiological condition will be functions of age and size.

In this section I shall show the appearance of size distributions as
measured by the Coulter Counter (see Section II.A) from steady state
Chlorella cultures.

Figure 18 is an example of such distributions from two populations,
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Fic. 18. Frequency of cells versus cell size for two steady state Chlorella populations.
Note ‘“‘plateau’ on right of each, and note geometric similarity of the two.

one with large and the other with small cells. The distributions are
remarkable in that there is an extensive ‘“plateau’ region on the right of
each distribution. This plateau is absent from size distributions which
have been reported for other cells (e.g., Kubitschek, 1969; Bell and
Anderson, 1967; Scherbaum and Rasch, 1957).

The other feature of the two distributions shown in Fig. 18 is that they
are remarkably similar in shape, despite the absolute differences in cell
sizes. Figure 19 shows eight different size distributions from different
experimental conditions (flow rate, temperature, CO,), all scaled for
equal means and areas. The similarity of shape is obvious. From the
similarity of shape we can conclude that there are no differences in
interdivision cell growth (and hence growth control) under different
experimental conditions. When I develop the intensive model in a later
section, | shall show how the size distributions may be accurately
predicted, and how they allow us to deduce the growth curves of
individual cells.

I. PHOTOPERIOD SYNCHRONIZED POPULATION

Photosynthetic cells have been shown to be easily entrained into
repetitively synchronous divisions by growing them in a photoperiod
(Tamiya, 1964; James, 1964; Bernstein, 1960; Howell, et al., 1967).
I report growth of Selenastrum synchronized by photoperiod in a
chemostat.
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Fic. 19. Eight steady state size distributions from different conditions of growth
rate, temperature, and CO,, normalized for equal means and areas. Numbers at right
of each are mean cell sizes. Note geometric similarity of all.

Existence in an open system with a photoperiod is in fact the natural
state of existence for organisms. At any rate, when cells are synchronized,
they must be all approximately the same age at the same time, and the
sizes of cells should give us a direct measure of interdivision growth
patterns.

Figure 20 shows the approach of Selenastrum to a steady state of
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Fic. 20. Photoperiod entrained growth and division synchrony in a chemostat
culture of Selenastrum. Here V is modal cell volume for D = 2 cells; see Fig. 21.

synchronous oscillation. Illumination was on a 16-hr light: 8-hr dark
cycle. Unfortunately, this experiment was plagued by use of a highly
erratic piston pump rather than the usual precise peristaltic pump.
Hence the oscillations of cell number are not as uniform as might have
been otherwise. But cell growth and division, as represented by the
modal cell volumes in the size distributions, behaves in precisely periodic
fashion.

Figure 21 shows a typical sequence of cell size distributions from
neonatal to ripe to neonatal cells, and also shows a non-synchronous size
distribution for comparison. During division, we can resolve two modes,
representing the large ripe cells and the small neonatal cells just being
formed. Apparent growth of cells seems to vary between approximately
exponential and approximately linear, probably because of the erratic
pumping of nutrient. Under these conditions of light entrainment,
we can clearly confirm the existence of subpopulations of cells dividing
into two and four daughters, represented by the distribution peaks.

J. SUMMARY OF EXPERIMENTAL STUDIES

Methodology and results are reported from studies on the growth
dynamics of Chlorella and Selenastrum in (usually) precisely controlled
chemostat cultures. Populations were accurately assayed for cell number,
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Fic. 21. Partial sequence of Selenastrum size distributions over one cycle of syn-
chronous growth (bottom to top). Dashed lines follow modes of cells dividing into two
(D = 2) and four (D = 4) daughter cells. Steady state size distribution at top for com-

parison.

cell size and size distributions, chlorophyll, and (less accurately) unused
limiting nutrient (nitrate).

Steady state regulation of all population variables was quite precise
over periods of less than 15 generations (doubling times). Coefficients of
variation were as low as 0.0175. The small steady state fluctuations in
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cell number are nonrandom, probably reflecting the discrete nature of
the cell division cycle, and a loose coupling of cell division to the cell
growth process. Total biomass and chlorophyll variabilities were also
small, but generally random.

Over longer periods there were occasional upward or downward trends,
which remain unexplained. A trend in one population variable was
unrelated to the presence or absence of a trend in any other variable in
the same population. All trends were less than 19, per generation.

Not only population size but cellular characteristics are functions
of steady state turnover rates. Population numbers and biomass decline
with increasing flow rates, as predicted by the simple chemostat theory.
But they do so with very different slopes, contrary to the theory. Conse-
quently, average cell size is a positively accelerating, increasing function
of specific growth rate. Cell size changes represent the uncoupling
of cell growth and division processes, and larger cells are the result of
more synthetic machinery at higher growth rates.

Completely contrary to the basic theory is the increase of total popula-
tion chlorophyll with increasing growth rate; while numbers and
biomass decline, chlorophyll increases. Extrapolation to zero growth rate
partitions the chlorophyll into that required for maintenance and that
required for growth.

A temperature increase of 3 C causes a doubling of steady state cell
number, but no significant change in total biomass or chlorophyll.
Cell size is thus halved over only a 3 C range.

Elevated CO, causes more than a 309, decrease in cell number and
total chlorophyll but no change in total biomass. Larger cells are not
the result of accumulation of carbon compounds at high CO, levels.

The unused limiting nutrient concentration is 20-100 times lower
than that predicted by the simple chemostat theory. This is explained by
accumulation of cellular metabolite pools.

Transient population behavior was studied under conditions of batch
culture, new chemostat inocula, and perturbations of steady state
chemostats. Generally, biomass and chlorophyll appear critically damped,
approaching a steady state monotonically, while cell number can oscillate
violently under certain conditions. The transient data indicate a loose
coupling between growth and division, and a time lag between response
of mass growth and cell division. The oscillation period is a constant,
indicating a division time lag which is equal to the minimum generation
time.

Cell size distributions are presented which differ from most previous
observations in the presence of a large ‘“plateau” on the right side.
The distributions are geometrically similar, regardless of cell size or



230 F. M. WILLIAMS

environmental condition, indicating a constancy in the cell control and
growth processes.

Preliminary results of photoperiod synchronized populations are
presented for the open system chemostat, and its relevance to natural
systems emphasized.

ITI. The Model for Extensive Properties

In this section and the next I develop two model systems, one devoted
to a population’s extensive properties, the other to its intensive properties.
Although the terms ‘“‘extensive’” and ‘‘intensive” do not have here
exactly their usual physical definitions, the spirit is identical. Extensive
properties refer to overall measures of population size, such as numbers,
biomass, and amount of nutrient available, as well as derived measures
such as average mass per cell. Intensive properties refer to frequency
distributions of age, size, and chemical components within a given
population. Both approaches are based on my conviction that a knowledge
of physiological and reproductive behavior in the individual allows us
simply to deduce the behavior of the population.

Qualitatively, many of the experimental observations reported above
are not unique to green algae; most have been reported for at least one
other organism. I have argued elsewhere (Williams, 1967) that there are
a very large number of dynamical features universal to all cell popula-
tions, whether they be bacteria, algae, protozoa, or even mammalian
cells in culture. Through elucidation of these universal features, it is
my hope that we can approach the fundamental dynamical principles of
populations.

Thus the models are broadly based, and I have consciously attempted
to avoid reference to details concerning any particular taxonomic group.
I begin with the model for extensive properties.

Much of the extensive model is already published, but with a cell-
biological emphasis (Williams, 1967). I repeat it here for ecological
emphasis, and greater accessibility to ecologists. Some new predictions
have been derived, which are included here.

As a basis against which to test the population model, I list what I
believe is a minimal set of universal features of microbial population
behavior:

(1) “lag phase,” during which biomass increases, but numbers
do not;

(i1) an approximately “‘exponential phase,” during which all popu-
lation variables increase at about the same rate;
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(1) “‘stationary phase,” during which the population no longer
increases, but remains viable at a minimum cell size;

(iv) greater cell size at higher specific growth rates, i.e., at higher
nutrient levels;

(v) different chemical composition at different growth rates and
nutrient levels; especially, higher contents of synthetic machinery at
higher growth rates;

(vi) absence of lag phase when a population is started with already
rapidly growing cells;

(vii) ability of a population to increase in number after the removal
of all nutrients; ability of starved cells to absorb nutrient for use in
division at a later time;

(viil) differences in response lag of different population variables
following an environmental change; a temporal precedence of biomass
response over number response;

(ix) overall shapes of population growth and response curves,
measuring more than one variable, and under various conditions;

(x) positive sister—sister cell correlations in size and generation
time;

(xi) environmentally entrained population growth and reproductive
synchrony;

(xii) cell and population changes as a function of temperature.

I shall present partial documentation for the ubiquity of these
microbial population features as I proceed. I believe also that most
or all of these principles can be applied to populations of higher
organisms with little or no modification except changes in wording.

I begin with the notion of a cell, and derive the population behavior
from it.

A. GENERAL MoODEL oF A CELL

We start with the obvious functional differences between the growth
and replicative processes, to postulate the existence of two separately
measurable portions of the cell, one for each process. Hence there is
one fundamental assumption: The cell comprises two basic portions,
a synthetic portion (s) and a structural/genetic portion (n). Stipulative
assumptions are:

(i) The synthetic portion (s) increases by uptake of externally
available nutrient (c);

(i) The structural/genetic portion (n) increases in turn from
materials in the synthetic portion;

(ii1) The total cell mass m = 5 + n.
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An important stipulation is:

(iv) cell division into D equal daughter cells occurs if and only if
the n-portion has become D times its initial size.

For most cells, D = 2 and division will occur when the n-portion has
doubled; for algae such as studied above, D may be 2, 4, §,..., depending
on environmental conditions (Fritsch, 1961 ; Morimura, 1959).

Since the necessary and sufficient condition for cell division is a
D-fold increase of n, it follows that the size of the s-portion, and hence
the overall size of the cell at division, is not uniquely determined.
Size differences between cells are determined by variations in s which
will be a function of nutrient conditions through the cell cycle as well
as a function of its initial (neonatal) value s, . If a dividing cell apportions
each component systematically to its daughter cells, then s, 1s a function
of the state of a cell’s immediate ancestor. Therefore, the model provides
for cell size and composition being determined by both nutrient condi-
tions and ancestral history.

The synthetic portion may be interpreted as the raw materials and
synthetic machinery of the cell (soluble pools, precursor material,
synthetic enzymes, chlorophyll, ribosomes, and other RNA’s). The
structural/genetic portion may be interpreted as the genome along with
structures and materials necessary to maintain a minimal intact and
viable cell (cell wall and membranes, any self-replicating cytoplasmic
inclusions, and the genome (DNA) with its associated structures,
especially protein). This interpretation is more fully discussed in my
earlier paper (Williams, 1967).

It remains only to specify the exact functions by which the cell and
environmental components interact, consistent with the above assump-
tions. This is done simply by assuming that:

(v) reaction rates are proportional to quantities present, and are
bimolecular.

Hence,

ds{dt = kjem — kysn, 4)
and

dnldt = kysn. &)

Since m = s + n, the overall cell growth rate is
dmjdt = kem. (6)

Clearly, since cell growth is a function of an external nutrient dynamics
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yet to be specified, and since overall growth sheds no light on the s-n
interactions, empirical observation of individual cells will provide little
or no information with which to test this model. We thus create popula-
tions of such model cells, to provide testable consequences.

B. PoruLaTioNs oF MoDEL CELLS

To have a population we must have an environment, and consequently
we must specify a nutrient dynamics. For present purposes, I shall
make the simplest possible assumption of an open system environment,
namely:

(vi) there is a constant input to the environment of nutrient with

concentration Cj, at rate k, ; there is a constant output from the environ-
ment of unused nutrient (C) and organisms* at rate &, .
This assumption effectively defines a chemostat, but it is also nearly
true of a stable natural environment (e.g. Silver Springs: Odum, 1957).
Clearly, the definition of a particular environment is arbitrary, and may
be done in any manner conforming to experimental or field conditions.
We use the well-defined chemostat because its simplicity makes it easy
to study implications of the model.

To study the population behavior of these model cells, we sum over
the individual s and » components. Thus, if cell division is approximately
asynchronous, the extensive variables of the population may be
represented by the following equations, shown schematically in Fig. 22.

Co
ko

|

Fic. 22. Diagrammatic representation
of population constructed of model cells
in the assumed open system environment.
C, : input nutrient concentration; C: un-
used nutrient in environment; S: synthetic
portion of population; N: structural/genetic
portion of population equivalent to cell
number.
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=
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* Apgain, output of organisms may correspond to mortality, predation, or emigration.
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dCldt = ky(C, — C) — k,CM, @)
dS/dt = k,CM — k,SN — kS, (8)
and
dN/dt = kSN — kN, 9
where
M =S8 -+N, (10)

such that the total population’s biomass is
dM|dt = k,CM — kM, (11)

where C, S, N, and M are the total population values of ¢, s, #, and m
in Eqs. (4)(6). They are thus the extensive population properties.

Since cell division is asynchronous, and because of assumption (iv),
the number of cells in the population will be proportional to N; if N is
measured in average cell equivalents, then cell number equals N.
We shall also measure C and M in equivalent units, avoiding the need
for conversion factors.

Clearly the representation of the extensive properties of the population
in this manner is an (good) approximation based on the law of large
numbers. But it is important to note that, even if we had perfect
synchrony (an impossibility), we could never be more than 409 in error
(see model of intensive properties) when estimating cell number by
measuring the quantity of N. By contrast, much interesting population
behavior takes place over several orders of magnitude.

C. PROPERTIES OF THE MODEL

The steady state and transient behavior of the extensive population
has been studied by analog computer (see Williams, 1967, for program),
and confirmed by digital computer (M. J. Bazin, personal communica-
tion). All of the twelve universal features of microbial populations, and
most of the experimental results described above, are successfully
mimicked by the model.

D. PRECISION OF STEADY STATE

Questions concerning precision of steady state do not really apply
to this model. Since the model is asymptotically stable, any wobble
about a steady state would have been noise in the analog computer.
Perhaps the few percent variability observed in the experimental cultures
1s noise in the biological computer.
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E. STEADY STATE DEPENDENCE ON TURNOVER RATE

For steady state chemostat populations, Eqs. (7)—(11) yield

~ ko

c=b, (12)

_ k

5=t (13)

o ko

M = CO - ;— ’ (14)
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Most of these steady state relations are shown graphically (Fig. 23) as

100} iqs

75} M M/N;

Fic. 23. Steady state turnover rate versus numbers, biomass, synthetic material,
and average cell size for the model population. Compare with Figs. 2 and 3; compare

chlorophyll (¢) with S. (See text.)
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functions of turnover rate (equal to steady state growth rate k). Average
cell size (M/N) is a positively accelerating, increasing function of growth
rate. Biomass (/) and number (N) decline with &, ; number declines
more rapidly than biomass. The amount of synthetic portion (S) in the
population increases, despite the decline of biomass and numbers. The
higher the growth rate, the greater the fraction of biomass devoted to
synthetic functions.

Compare Fig. 23 with Figs. 2 and 3. The experimental results are
in good agreement with the theoretical. Let us interpret total chlorophyll
(#) as part of the synthetic portion (S); note that both show a linear
increase with growth rate. Though not shown graphically, S/M and S/N
are both positively accelerating, increasing functions of k, [Egs. (17)
and (18)], comparing favorably with ¢/M and ¢/N in Fig. 3.

The only discrepancy between theoretical and experimental is in the
curvature of the M and N lines. The discrepancy results from there
being in the model no hyperbolic saturation relation (Monod, 1942;
Hinshelwood, 1946; Novick and Szilard, 1950; Williams, 1965; Caperon,
1967, 1968) for nutrient uptake. I have fitted my own data with the
hyperbolic relation (Williams, 1965), but I have consciously avoided it
here, in order to visualize most clearly the S—N relationships proposed.
In a later paper I shall discuss the combined S-N model and hyperbolic
relation.

With the exception noted, agreement is good for the Chlorella popula-
tions. Agreement is just as good with bacterial populations (Herbert,
1959; Maalge and Kjeldgaard, 1966), where it has been shown that
increased cell size is due to increased numbers of ribosomes, certainly
a major part of the cells’ synthetic machinery (.S).

F. TEMPERATURE EFFECTS

The model also predicts cell and population changes as a function
of temperature. As is reasonable for chemical and biological rate
constants, we assume the uptake and division rates are functions of
temperature, each with a temperature optimum. Let k, = f(7T) and
k, = g(T') with optima at T, and T,, respectively. These are shown
schematically in Fig. 24. Then, for the chemostat steady states,

ko
M(T) = G, ~ ATy (19)
1V kg _ ko

NI == ey~ gty o
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and

ky

(M) =1+ I, — RJFT — o °

2

2l

These relations predict a dependence of cell size on temperature which
varies in intensity with turnover rate. Rapidly growing cells will change
size much more radically than slowly growing cells, as illustrated in
Fig. 25.

z1Z

Temperature Temperature

Fic. 24 Fic. 25

Fic. 24. Assumption of temperature dependence of biological rate constants in
model population, each with different optima T; and T, .

Fic. 25. Average cell size versus temperature at two different turnover rates (kq),
under assumption in Fig. 24. Compare with Figs. 4 and 5. Size minimum occurs at
optimum for cell division (7).

For numbers and biomass, the temperature dependence is identical to
that shown in Fig. 5, where I have schematically represented Blaug’s
results (1970) on Chlorella. Clearly my data in Fig. 4 can be segments of
such curves. The model predicts that the biomass maximum occurs at
the temperature optimum for uptake (7)), while the cell size minimum
occurs at the temperature optimum for division (7).

Since batch culture is always transient, simple predictions are not
as easy. But from Eq. (10), plus Egs. (25)-(27) in the next section,

dinM _f(T) Co+My,—M

dinN  g(T) M--N (22)




238 F. M. WILLIAMS

Let R = f(T)/g(T). If dR/dAT > 0, cells will be larger at higher temper-
atures. Thus dR/dT = 0 implies cell size independent of temperature,
while dR/dT < 0 implies smaller cells at higher temperatures. All the
examples I have found are of the last type, cells smaller at higher
temperatures (Jollos, 1913; Scherbaum and Loefer, 1964; Morimura,
1959). Maalge and Kjeldgaard (1966) claim temperature independence
for Salmonella cell size, but close examination of the data shows a slight
decrease at higher temperatures. Aside from Chlorella, Tetrahymena has
been investigated most extensively (Zeuthen, 1964), showing a curve
very similar to those in Fig. 25, with a cell size minimum at the division
optimum.

Then dR/dT < 0 is a formal statement of the generalization (Zeuthen,
1964) that cell division processes are more temperature sensitive than
uptake processes.

G. Batrcu CULTURE

By setting k, = 0 in Egs. (7)—(11), we simulate the unrenewed or
batch culture, a closed system

dCldt = —k,CM, (23)

dS|dt = k,CM — k,SN, (24)

dN|dt = kySN, (25)
and

dM|dt = k,CM. (26)

Consider for the moment only biomass and nutrient, and let M, and
C, be their initial values, respectively. Since this is a closed system,

C=My+Cy— M @7
at any later time, due to conservation of mass. Substituting into
Egs. (23) and (26),

dM|dt = — dCJdt = k,M(Cy + M) — k,M>. (28)
Integrating, *

Co + M,

M = T (Coy expl—RA(Cy T Mg’

(29)

and
Co + M,

C = T O4yICy) explhat(Cy & M) °

(30)

* This expression was printed incorrectly in my original paper, and has been quoted
in its incorrect form (Thrall et al., 1967).
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Equation (28) is formally identical to the logistic equation,
dNJdt = N — (r/K) N, 31)

where 7 is the so-called “intrinsic rate of increase,”” and K is the
stationary value, or “carrying capacity of the environment.” Here 7
corresponds to k,(C, 4+ M), while K corresponds to (C, + M,). Thus,
in this model the intrinsic rate of increase is neither a constant nor
intrinsic; it is a function of nutrient concentration and initial population
size. The “carrying capacity’ is also a function of initial population size.
I reemphasize a point made by Smith (1952): that the logistic equation
is conceptually restricted to closed system populations. Note that the
formal similarity to the logistic holds only for biomass.

Figure 26 shows the dynamic behavior of the model population in

100
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M
v 50 N
42

es

0 Time

Fic. 26. Batch culture growth cycle for model population, showing lag in numbers
but not biomass, exponential and stationary phases. Note cyclic cell size changes. Compare
with Figs. 6 and 7; compare chlorophyll (¢) with S.

batch culture, when inoculated with stationary cells. These are non-
growing cells which are the smallest possible cells still intact and viable
(set Egs. (23)+26) equal to zero with M, N > 0; then C = § = 0 and
M = N). The growth cycle clearly shows:

(i) alag phase with biomass increase, but little increase in numbers;
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(i) an approximately exponential phase with biomass and numbers
increasing;

(iii) cells largest during exponential phase;

(iv) since cell size changes as the result of changes in S, the cells’
“chemical composition” changes through the cycle;

(v) biomass becomes stationary before number;

(vi) a stationary phase as defined above.

Comparison with the experimental results in Figs. 6 and 7 shows strong
similarities. Again compare chlorophyll (¢) with S, where the exponential
decline in ¢ is simulated by the asymptotic approach of S to 0. These
features are typical of virtually all kinds of cells in batch culture (Hershey
and Bronfenbrenner, 1938; Maalge and Kjeldgaard, 1966; Scherbaum,
1956; Harris, 1964).

Again we lose exact detail in the shape of the curve because there is no
hyperbolic nutrient uptake term present (see discussion in Section III.E).

Inoculation of a culture with already rapidly growing cells (M/N large)
reduces or eliminates the lag phase. This is illustrated in Fig. 27, where

100 I
80
60

40

Log v
o

(a)

Time
Fic. 27. Semilog plot of initial growth of model populations started with (a) stationary

cells (My/Ny = 1), and (b) rapidly growing cells (M,/N, = 4). Curves spaced arbitrarily
on ordinate.

the initial phases of population growth are shown for a stationary and
a rapidly growing inoculum. Although the lag in the stationary inoculum
is not perfect (dN/dt = 0), neither is it experimentally in Fig. 6.
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It is a common observation that cells can continue to divide once
or twice after having been removed from all nutrient. This means
essentially that division can occur from utilization of nutrient absorbed
at an earlier time. Similar experiments have shown that starved cells
can rapidly absorb nutrient for use in division at a later time (Ketchum,
1939). Figure 28 shows a simulation of nutrient removal from a growing

100

44
75
43
M
5 ik
v 50 N
—H2
25 AN
\ - |
\
~
~
~
~
\\\
o ———————
Time

Fi1c. 28. Population’s nutrient removed at vertical broken line; note continued
increase in cell number.

population. In the absence of nutrient no further biomass increase
occurs, but cells continue to divide, yielding a final fourfold increase in
numbers. This may be thought of as an abrupt version of what happens
when organisms exhaust their nutrient (cf. Fig. 26): biomass no longer
increases but cell division continues, until internal synthetic pools are
exhausted.

H. CHEMOSTAT TRANSIENTS

The behavior of a new inoculum in the chemostat is simulated in
Fig. 29, starting from a stationary inoculum. Note the small but definite
initial decrease in cell number (this is confirmed by Bazin’s more precise
digital simulation). Recall the discussion in Section II.F.2 concerning
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100

Time

Fic. 29. Approach to chemostat steady state of new inoculum of a model population.
Compare with Fig. 10.

the difficulties of starting chemostat cultures with flow on. Minor
instabilities in the analog computer did in fact cause a few similar
computer runs to go to extinction during the initial phases.

Cell size becomes very large as the population increases toward its
steady state, then declines into its appropriate steady state value. Again
biomass reaches its steady state much sooner than cell number. Essen-
tially, the features shown here are similar to those shown for batch
culture, except that the population terminates in an open system steady
state. This simulation corresponds most closely to the experimental
results shown in Fig. 10, where similar features will be found.

Step function changes are illustrated in Fig. 30, where flow rate is
reduced to 259, of its original steady state value. Again we see a lag
in the response of population numbers: cell division continues at
essentially the previous rate until the new steady state cell size and
composition are reached. Again biomass responds more readily and
reaches a steady state sooner than number. Although this is a more
extreme shift than that shown in Fig. 12, the similarities are clear,
except for the oscillatory behavior of the experimental population
numbers.

An example of a square wave cessation of flow rate is shown in Fig. 31.
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100
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Fic. 30. Step function decrease to 259 turnover rate for model population in
chemostat. Corresponds to “shift down” experiment in batch culture. Note relatively
larger change in cell number than in biomass, causing decrease in cell size. Compare
with Fig. 12.
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Fic. 3l. Square wave cessation of flow rate for a model population in chemostat.
Compare with Fig. 13; note absence of oscillation in model population.
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Although the overall behavior is similar to that shown in Fig. 13, clearly
there 1s a large discrepancy in oscillatory behavior.

These transient experiments are the chemostat equivalents of the
bacterial batch culture “shift” and “double shift” experiments done by
Maalge and Kjeldgaard (1966). Translated to a batch culture condition,
the above transients correspond well to their results.

I. ENVIRONMENTALLY ENTRAINED SYNCHRONY

The extensive model was by no means designed to be concerned with
questions concerning synchronous growth and division, since synchrony
involves considerations of age structure not mentioned in the model.

It is of interest, therefore, that under certain conditions the model does
predict synchronous behavior somewhat resembling that observed
experimentally.

To simulate the photoperiod-induced synchrony described above,
we mimic the dark period by setting &, = 0 for about 409, of a generation
time. The population is otherwise identical to that shown in Fig. 29.
(Although nitrates and phosphates have been shown to be taken up in
the dark (Ketchum, 1939), overall growth effectively ceases in inorganic
medium, as shown by the above experiments (and, e.g., Cook, 1961);
hence we are justified to a first approximation in simulating darkness
by k, = 0.)

The results are shown in Fig. 32. (I am most grateful to M. J. Bazin

Time

Fic. 32. Simulation of photoperiod-induced growth and division synchrony in a
model population. Compare with Fig. 20.

for these digital computer results.) The biomass and cell size behavior
are reasonable approximations of those observed experimentally, but
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cell number behavior is inferior: although the phasing is approximately
correct (number maxima in dark period), the sharpness and amplitude of
oscillation are poor compared to those observed experimentally (Fig. 20;
Cook, 1961; Morimura, 1959). Since it has been shown that light
inhibits the process of cell division (Sorokin, 1960; Tamiya, 1964),
we could realistically improve the synchrony by depressing the value
of k, during the light period. This latter approach seems for now to be
forced and artificial, however.

Pulsing of nutrient gives similar results, resembling chemostat experi-
ments by Goodwin (1969) and Hansche (1969), pulsing phosphate to
bacteria, and glucose to yeast, respectively. Figure 32 is very similar to
Goodwin’s results.

Although the degree of realism achieved in simulating synchrony
is not good, it seems enticing that some of the basic dynamics of
synchronous populations can be mimicked without introducing an age
structure.

J. GENERATION TIME CORRELATIONS

Without developing a stochastic model to pursue cell generation time
correlations, we simply note in passing that the model predicts such
correlations.

Since the initial values of the synthetic portions of neonatal cells
(So.1» S0.2 v+ So,p) are by definition each (1/D) times the value of s
in the ripe mother cell, we see that a large mother cell will endow each of
its daughters with a large s-portion, while a small mother cell will
endow each of its daughters with a small s-portion.

The initial growth rates of the n-portion are functions of the initial
s-portion, dny/dt = kys,n, . Other things equal, larger s, will give the
n-portion a head start on its D-fold maturation growth. Hence n-portions
with larger s, will be D times larger in a shorter time, i.e., will have
shorter generation times. Thus there will be a positive sister—sister
correlation in generation times.

Positive sister—sister generation time correlations have been observed
several times (e.g., Powell, 1958; Kubitschek, 1966); generation time
correlation with initial size is partly confirming, partly not (Kubitschek,
1966).

There is no relation specified between mother and daughter cell
generation times, since we have not specified the time course by which
the ripe mother cell accumulated a large or small s-portion. Experi-
mentally, there is usually no mother—daughter correlation.
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K. DiscussioN anp CRITIQUE

I have attempted to show that a number of seemingly unconnected
but universal features of microbial population dynamics can be predicted,
and hence “explained,” by one new, simple but obvious, postulate
concerning the nutritive (s) and reproductive (n) functions of a cell.
I have tried to maximize simplicity throughout to gain breadth. Qualita-
tively, most of the features of the model are insensitive to the exact
way in which the s—# interaction kinetics are specified. The kinetics,
as well as the environmental postulate (chemostat), are the simplest I
can think of to explore the consequences of the model. There seem to be
a large number of testable consequences, such that experiments can be
done to provide future modification or rejection of the model. It has the
desirable property of anacalyptic theories: vulnerability. It is therefore
more important to explore what the model cannot do.

First, the model in its present form cannot account for any of the
oscillatory behavior I have observed in the chemostat (except under
photoperiod entrainment). The model does produce transient over-
shooting, but it is non-oscillatory. Finn and Wilson (1959) and Droop
(1966) have also reported some oscillatory behavior in the chemostat,
particularly following large, sudden, environmental changes. Since
oscillation in numbers in the chemostat implies a division synchrony,
it is likely that an age structure will have to be introduced in order to
simulate realistically the observed oscillations in cell number. I make
some attempts in this direction in the next section.

Second, as I have mentioned, the model does not take account of
saturation conditions leading to a maximum growth rate. I shall discuss
this in a later paper, where I shall show that the usual Michaelis—Menten
type rectangular hyperbola is inappropriate except for batch culture.

Third, I cannot account for the observed very low nutrient concentra-
tions with the model, although its explanation by intracellular pools 1s
consistent with the model’s fundamental assumption. It 1s not clear how
universal my very low nutrient concentrations, or Caperon’s (1969)
nitrate constancy at different growth rates, may be.

Fourth, the model cannot account for some of the anomalous results
obtained at very high or very low flow rates (e.g. Williams, 1965;
Jannasch, 1967; Herbert, 1959).

Fifth, the model cannot account for the observed CO, effects or
effects such as autoinhibition by exometabolites, simply because there
have been no extra variables introduced to cover such effects.

Other shortcomings, of more cell-biological than ecological relevance,
are discussed in the original paper.



3. DYNAMICS OF MICROBIAL POPULATIONS 247

Finally, I have not fitted the model statistically to the data; I feel it is
premature, and a good fit might be misleading. To quote A. J. Lotka:
It must be remembered that the mathematical method is concerned,
not only, and indeed not primarily, with the calculation of numbers,
but also, and more particularly, with the establishment of relations

between magnitudes (Lotka, 1925).

IV. The Model for Intensive Properties

I shall first explore some aspects of the age distributions within
microbial populations, and then explore the implications of age distribu-
tion with respect to age-dependent cell properties, such as size, chemical
composition, etc.

Although Lotka investigated age distributions of populations in
general in 1911 (see 1925), much of the recent activity has been in
microbiological research, some highly abstract (e.g., Fredrickson et al.,
1967; Trucco, 1965), and some devoted to experimental findings (Collins
and Richmond, 1962; Kubitschek, 1969; Scherbaum and Rasch, 1957,
Harvey et al., 1967). Lotka showed that the age distribution of a popula-
tion is stable in the face of perturbations, ¢f mortality and fecundity are
time independent. He thus tended to dismiss age structure as having
no profound effect on population growth.

Perhaps we are more accustomed today to think of rapidly changing
environments: daily changes in light, temperature, etc., for micro-
organisms, as well as medical and nutritional advances in longevity,
pollution, etc., for human populations. At any rate a population’s age
structure seems increasingly important for understanding its dynamics;
I want to emphasize that age structure cannot be dismissed in the study
of microbial populations. I hope the microbial populations may serve
as a model for higher organisms. Many of the results that I present
here are not new, but I want to present derivations which I have tried
to develop for their intuitive appeal in the classroom, as well as to
provide a framework for the new aspects to be presented. For now I
restrict myself to the steady state (equal to constant specific growth
rate), for that is currently where the best data occur for testing. The
most rigorous formulation, suitable for transient analysis, is in the
work by Fredrickson, et al. (1967); to my knowledge, it has not been
applied to experimental populations.

A. Ace Density FuncTtioN: NOTATION

I shall use the following notation (most of which will disappear in
the final formulation):
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(i) tis clock time;
(ii) s is cell age (in clock time units, 4s = 4¢; but s =0 for a
neonatal cell); 0 <<s << 7}
(iii) 7 is cell generation time (not doubling time);
(iv) D is number of daughter cells produced per cell per generation;
(v) p is population specific growth rate (u = lnDjr =
d 1n N(t)/dt);
(vi) N(t) is total number of cells at time ¢;
(vii) N(t, s/ds) is number of cells in the age interval s to s 4 ds at
time ¢;
(vili) n(s/ds) is fraction of cells in age interval s to s + ds;
(ix) 6(s) is death rate per cell at age s (or emigration or predation
rate);
(x) o(s) is fraction of neonatal cells surviving until age s;
(xi) n(s) is age density function, to be derived.

B. Barcu CULTURE

We make only one assumption: that we have an exponentially growing
population of ideal cells. By “ideal” cells I mean cells which divide
into D daughters at exactly age s = 7.

Then,

N(?) = N(0)e;  dN(1)ldt = pN(), (32)

where p is a constant, and g = In D/r.
Since cells divide into D daughters at age 7,

N(2,0/ds) = (1 — &(r) ds) DN(t — ds, T — ds/ds); (33)

there are D times as many neonatal cells (age interval 0 to ds) at time ¢,
as there were ripe cells (age interval + — ds to 7) at time ¢ — ds, minus
the fraction &() ds not surviving.

But since the mother cell ““ceases to exist’”’ at division, the net increase
to the population in that time interval ds has been D daughters minus
the one lost mother cell

N(t) — N(t — ds) = (1 — &(s) ds)(D — 1) N(t — ds, v — ds/ds),  (34)

The total population at ¢ has increased by (D — 1) times the number of
ripe cells at £ — ds, minus the fraction &(s) ds not surviving.
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Combining Egs. (33) and (34),
N(t) — N(t — ds) = [(D — 1)/D] N(t, 0/ds). (35)
But by definition,

N(t) — N(t — ds) = (dN(t)/ds) ds,
and
[N(t) — N(t — ds)]/N(t) = 1 — e = u ds; (36)

The fractional increase of the population in the time interval ds is simply
the specific growth rate, and is time independent. Thus, combining
Egs. (35) and (36) with definition (viii),

n(0/ds) = N(t, 0/ds)|N(t) = [D/(D — 1)] u ds; 37)

the fraction of neonatal cells in the population is a constant, independent
of time, and is [D/(D — 1)] times the specific growth rate. This defines
our essential boundary condition.

To derive the distribution curve, we return to the number of cells,
and note that

N(t + 5, slds) = o(s) N(t, 0/ds). (38)

The population of cells at time ¢ + s with age s to s 4 ds is exactly the
surviving portion of the population of neonatal cells at time ¢.
Since we have shown that n(0/ds) is time independent,

[N(t + 5, 5/ds)]/N(t) = o(s) n(0/ds) (39)
is also time independent. Since ¢ is also time independent for any
given s,

N (jv—(i_t)s,e i{ds) _N (It\lét_-slli/)dS) = o(s) n(0/ds) e+ (40)

is also time independent. That is, the fraction of cells in any age class
s to ds is a constant.
Thus we may write

n(s/ds) = o(s) n(0/ds) e~». 41)
Returning to Eq. (37),
n(s/ds) = o(s)[D(D — 1)] pe—+* ds, (42)
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for which the corresponding density function is
n(s) = o(s)[D|(D — 1)] pe~. (43)

Under conditions of exponential growth, mortality is usually negligible,
or at least unmeasurable by viable counts. Thus, unless demanded by
the experimental condition, we let o(s) = 1, and the final age density
Sfunction is

n(s) = [D/(D — 1)] pe=*5, 0<s<r (44)

C. CHEMOSTAT CULTURE

In a steady state chemostat culture, the population numbers do not
increase exponentially but remain constant. Thus p = 0 in Eq. (32).

But mortality is not negligible in the chemostat, in the form of
emigration (washout). If the turnover rate of the chemostat is k,, then
o(s) = kg, and is age independent. The fraction of cells surviving the
washout ‘“mortality” at age s is

ofs) — N](\t](;té} ;s/;i’) - N(t,_()l/ # [ 0 N(t + s, s/ds) o(s) ds,  (45)

and substituting k&, for o(s),
a(s) = exp(—kq), (46)

assuming no other sources of mortality. Since we have a steady state,
let N(t) = N be time independent. Again we have

N(t, 0/ds) = (1 — ko ds) DN(t — ds, v — ds|ds), (33)
by substituting &, for d(s) in Eq. (33).
Since cells are washed out at rate k,, the number of cells born in

the age interval ds to just replace those lost will be, in order to maintain
the steady state,

kN ds = (1 — ko ds)(D — 1) N(t — ds, 7 — ds/ds), (47)
similar to Eq. (34). Combining Eqs. (33') and (47), we have
n(0/ds) = [D|(D — 1)] k, ds. (48)
Substituting Eq. (46) into Eq. (38),
N(t + s, s/ds) = exp(—kqs) N(2, 0/ds). (49)
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Dividing by N, along with definition (viii),
N(t + s, s/ds)|N = n(0/ds) exp(—kqs), (50)

which because of time independence becomes

n(s/ds) — n(0/ds) exp(—kqs), (51)
and with Eq. (48) yields,
n(s/ds) = [D|(D — 1)] kg exp(—kqs) ds, (52)

whose density function is
n(s) = [D|(D — 1)] kg exp(—kgs), O0<s <, (53)

exactly corresponding to the batch culture density function in Eq. (44),
but with %, , the washout rate, replacing p, the batch culture growth rate.

D. VARIABLE GENERATION TIMES

Powell (1958) has shown that if there is a distribution of generation
times within the population, where the probability that a cell will have
a generation time 7 is governed by some function f(r), then the age
density function will be

n(s) = e [ : F(7) dr. (54)

To complicate things, this unknown distribution f(7) will be truncated
in a chemostat.

Since we rarely have information concerning the distribution of
generation times, and since the measurement of individual cell generation
times microscopically is of doubtful significance to an entire population,
I prefer the following to handle the variability in generation times.

Consider a chemostat in a steady state. Any distribution of generation
times must be independent of time. Otherwise, a fluctuation of the genera-
tion time distribution would produce a fluctuation in growth rate,
thus violating the steady state assumption.

This means that, for every interval of generation time = to = + dr,
there exists a stable subpopulation with that generation time. Let that
subpopulation be a fraction p(r) of the total population. Each subpopula-
tion will have an age distribution governed by Eq. (52). Remembering
that the birth rate of cells must equal the washout rate,

ky, = In D/,
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and
n,(s/ds)y = [(D ln D)/(D — 1)7] exp(—s In D/7), (55)

giving us explicit dependence on 7.

Let us introduce the variable representing relative age a. We define
a = s/r, such that 0 < @ < 1. That is, relative age is measured as a
fraction of a generation time, and a cell divides at relative age a = 1.
Since da = ds/r, we can transform Eq. (55) into the relative age distribu-
tion

n(ajda) = {(DIn D)/(D — 1)] &2 da. (56)

Equation (56) is an age distribution which is independent of generation
time; it is identical for all populations, regardless of growth rate, and
hence regardless of generation time.

Now returning to the chemostat population, the overall relative age
distribution will be

n(ajda) = | : (+) n.(a/da) dr. (57)

Since 7,(a/da) is independent of , and since [y p(r) dr = 1, n(a/da) =
n.(a/da), and thus

n(a/da) = [(DIn D)(D — 1)] e P da, O0<a<]1. (58)

Thus if we consider only relative ages, we do not have to consider the
distribution of generation times, for it will be eliminated in a steady state
population. This will be very useful in calculating the size distributions
in the next sections.

E. IpeAL Size DISTRIBUTIONS

Consider a population of cells, each of which has an interphase growth
law governed by some function of relative age f(4). Then, for an
individual cell,

m = f(a), my <m < Dy, (59)

where m, is the neonatal cell size and Dm, is the ripe cell size for cells
dividing into D daughters.

If the growth function is monotonically increasing throughout the
cell cycle, we may readily define the inverse function f-1,

a = f~Y(m). (60)
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(If f is not monotone, we may piece together monotone segments, giving
us a set of inverse functions over different age ranges; this does not
alter the argument.)

Given an age distribution n(a/da) as in Eq. (58), we want to derive
the distribution of sizes in a population whose cells grow according to
Eq. (59). Let h(m/dm) be the fraction of cells in the size interval m to
m + dm. Using the tautology da = (da/dm)dm, we transform the
coordinates of the age distribution to those of size

h(m|dm) = n(f~Ym)) (da/dm) dm, (61)
or

h(m]dm) — #Ma : g—lj—ll) . exp(—f~(m) In D) dm, (62)

whose corresponding density function is

h(m) = #Ma . g%llz - exp(—f () In D). (63)

Thus we see that the density function governing cell size distribution
within a population is exactly the age density function divided by the
individual cell’s growth rate (dm|da).

Associated with the steady state, there is the notion of balanced growth
(Maalge and Kjeldgaard, 1966) which occurs if all components of the
population increase at the same specific growth rate. That is, numbers,
biomass, protein, DNA, RNA, etc., all stay in constant proportions.
There are only two conditions under which balanced growth can obtain:

(i) a D-fold increase over the cell cycle, and
(ii) a start from zero in the neonatal cell, and a return to zero by
the time the cell divides.

Thus, the density function in Eq. (63) applies to every constituent of
the population, whether it be a particular chemical, an organelle, or
the overall cell size. [For case (ii), we will have to piece together at
least two monotone segments of m = f(a).]

As examples of ideal size density functions, we consider exponential,
linear, surface uptake, and half-sinusoid growth models.

Example 1

For exponential growth, the exponent must exactly equal the rate of
increase of the population in order to have steady state balanced growth.
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Thus

m = mye®™™P,  dm|da = mIn D, (64)
and
a = f~Ym) = In(m/m,)/In D. (65)
Substituting into Eq. (63),

he(m) = [Djm(D — 1)] exp(—In(mfm))
or
he(m) = Dmyf(D — 1) m, (66)

Example 2

For linear growth,

m = my(l + (D — 1)a), dm|da = my(D — 1),
and
a = f(m) = (m — my)[my(D — 1). (67)

Substituting into Eq. (63), we have*

h(m) =

D/(D-1)
D In D [ mlinD ] (68)

myD — 132 P |7 (D — 1)
Example 3

For surface limited uptake by a sphere (or other shape which remains
geometrically similar throughout its cell cycle), growth rate will be
proportional to surface area, which is in turn proportional to the £ power
of mass,

m = my[(D'? — 1)a + 1P,
dm|da = 3(DY3 — 1) m}/3m?*/3,
and

m’3 — mi/®

a = fm) = WA 1) (69)

* An approximation was used in my original derivation (1965) for linear growth.
The exact growth expression producing the approximate density function is
m = mg exp[(D In DY(1 — e~*1n2)(D — 1)}, which deviates nowhere from linear by more
than 0.3% over a cell doubling.
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The corresponding size density function is

D> 1n D
hm) = S5 1) — 1w <P [~ B

InD (mio)l/ii], (70)

which is a curve with intermediate slope between the linear and expo-
nential distributions.

Example 4

The last example is somewhat different, concerning a substance that
is synthesized de novo in the neonatal cell, then decays to zero before
the cell divides. The pulsed synthesis of a labile enzyme might behave
this way. We approximate this behavior by the top half of a sine curve.
Let

m = sin 7a, 0<ax,
dm|da = = cos ma,
a = (1/m) sin~Y(m),

and
da = +dm|m(l — m2)!/2 (71)

Note that the expression for @ is not single-valued, as shown by the
4 sign for da. We piece together the two monotonic segments of this
function to yield,

DInD
hom) = ST =

X 3exp [— lnTrD sin—l(m)] + exp [l_nw_D sin—}(m) — In D] % (72)

These growth curves are shown in Fig. 33 for D = 2 cells. The
corresponding size density functions are shown in Fig. 34. The sinusoidal
growth function is clearly very different from the others. Note (Fig. 33)
that the other three, linear, exponential, and surface uptake have nearly
identical growth curves over a cell doubling; the maximum difference
i1s 69, between exponential and linear over the growth cycle. Clearly
it would take very good data to resolve these differences. But in Fig. 34,
we note that there has been a process of amplification, such that there
is now approximately a 459, difference between the size density functions
for linear and exponential growth.

Thus the indirect method of observing good steady state size distributions
can provide us with more resolving power to test cell growth theories than
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Size (m}

Relative age (a)

Fic. 33. Growth curve examples used in deriving examples of cell size distributions.
I: exponential growth; II: linear growth; I1I: surface-limited uptake; I'V: pulsed synthesis
and decay of cell constituent. Note closeness of curves I-III.
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Fic. 34. Ideal size distributions based on growth models shown in Fig. 33. Note
greater separation and resolution of curves I-1II, compared with those in Fig. 33.



3. DYNAMICS OF MICROBIAL POPULATIONS 257

can direct observation of the cells as they grow. Conversely, knowledge of
details of individual growth can give us very precise predictions of population
distributions.

F. Size DISTRIBUTIONS WITH VARIABILITY

In order to apply the above size distributions, we must account for
the variabilities in size for cells of a given relative age. We do this
in the following way:

Given h(m), the ideal size density function, we assume that cells
with an expected size mg will be distributed over other values m according
to a probability distribution function p(mg , m) such that

Womg) [ plmg , m) dm — him), )

where admissible values of mg are 1 << mg < D.
Then the new density function with variability, 2*(m), is given by

w(m) = [ hong) pome , m) dm . (74)

Note that mg , the expected value, is the variable of integration; we are
integrating over the contributions to a particular size m by cells smeared
out from all possible expected values my .

G. Frrrince DaTa

In order to fit the data to be shown below, we have assumed that
p(mg ,m) is a normal density function with constant coefficient of
variation. We have assumed normality for want of a better hypothesis;
we have chosen a constant coefficient of variation because the experi-
mental size distribution data in Fig. 21 from a synchronous population
shows peaks with widths which are almost exactly proportional to the
modal size. Although confounded by the presence of two subpopulations
dividing into two and four daughter cells, the shapes of the distributions
are not inconsistent with approximate normality, although they may be
somewhat positively skewed.

Under this assumption, the size density function with variability in
Eq. (74) becomes

h*(m) = f P _Mmg) _ oxp [~ (’”—‘ﬂ)z] dmy , (75)

1 eme(2m)1/2
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where ¢ is the coefficient of variation. While some of these density
functions may be evaluated analytically, it is more prudent to let a
reliable computer do the job. As one example, Fig. 35 shows predicted

2,00+ [
1.80+
1,60
1.40-

1,204

1.00-

+804

Frequency (h* (m))

« 60

+ 40+

+ 204

b’
4.00-

Cell size (m)

Fic. 35. Theoretical size distributions of exponentially growing cells with seven
different coefficients of variation: 0, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30, top to bottom.

size distributions for exponentially growing cells with six different
coefficients of variation, plus the ideal distribution.

The data are fitted visually, after normalizing the theoretical and
experimental distributions for equal areas and equal means. Different
growth models and coefficients of variation may then be tried.

Results are shown for the steady state Chlorella populations, the
experimental results of which were given in Figs. 18 and 19. Recall
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that there were subpopulations of cells dividing into two and four
daughter cells. Consequently Fig. 36 has been fitted with a 259

Frequency

0 8 16 24 32 40 48
Cell volume (p3)

F1c. 36. Example of a fit of a theoretical to experimental size distribution for
Chlorella, under assumption of linear growth (Fig. 33, curve II), coefficient of variation
0.10, with 759% of population dividing into four, and 25% into two, daughter cells.
Line is theoretical; points experimental.

subpopulation with D = 2 daughter cells, plus a 75%, subpopulation
with D = 4 daughter cells. It was impossible to come anywhere near
the observed distribution with a hypothesis of exponential growth
(Williams, 1965). The model used in Fig. 36 is linear growth* and a
coefficient of variation ¢ = 0.10. Overall, theoretical and observed
results agree excellently.

Further, the similarity of the eight distributions shown in Fig. 19,
each from populations with different growth rates and different mean
sizes, allows the conclusions that:

(i) the cell growth function does not change appreciably under
very different conditions, and

(ii) there is thus a well-defined relative size (m/m,) for every cell of
relative age a, regardless of absolute sizes or growth rates.

Thus, pending further data, we conclude that for all experimental
conditions of nutrient, growth rate, CO,, and temperature, Chlorella
grows linearly between divisions.

To show a somewhat simpler example, I present data from the blue-

* Actually the fit shown is the approximation mentioned earlier (p. 254).
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green alga, Anacystis nidulans, grown in the chemostat by Dr. Bazin.
Anacystis divides into two daughter cells only. Figure 37 shows how
even the ideal size distributions may be used for approximate testing.
Clearly the exponential growth model is superior to the linear one.
Figure 38 shows the same experimental distribution compared to
linear and exponential growth models with a coeflicient of variation
¢ = 0.2. Again the best fit is clearly provided by the exponential growth
model.

H. DiscussioN

Thus, Chlorella populations comprise D = 2 and D = 4 cells, which
grow linearly with a coefficient of variation ¢ = 0.10. Anacystis popula-
tions comprise only D = 2 cells, which grow exponentially with a
coeflicient of variation ¢ = 0.20. These results seem less ambiguous
than we could have gotten by direct measurement of individual cells.

There is dissent on this last point, however. Koch (1966) and
Kubitschek (1969), each using derivations different from the one
presented above, and different from each other, feel that the general
approach of fitting size distributions is a highly ambiguous one. Their
derivations, both of which depend on differences between integrals of
neonatal and ripe cell size distributions, do not seem to provide the
resolution required to distinguish adequately theoretical distributions
based on linear versus exponential growth. While we seem to get a clear
distinction, our method is different [cf. Eqs. (74) and (75)]. Resolution
of these differences must await a better understanding of the causes
underlying variability in organisms.

Ecologically, the relevance of such cell growth studies may lie along
the following lines:

First, a knowledge of how an individual organism grows is a necessary
step in formulating the growth dynamics of a population; indeed,
that is the central thesis of the theoretical development I have undertaken
with both models.

Second, the form of cell growth will have obvious implications for
the dynamics of nutrient in the environment. We may take Chlorella and
Anacystis as examples. First, for Chlorella, linear growth implies a
constant rate of removal of nutrients from the environment over the
whole cell cycle. This means that the nutrient drain imposed upon the
environment will be a function of numbers of organisms present, regardless
of their ages (or sizes).

On the other hand, the exponential growth of Amnacystis implies a
doubling of the uptake rate over the cell cycle, such that the nutrient
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Frequency (h(m))

0 my 2m,
Cell volume (m)

Fic. 37. Example of rough hypothesis testing with ideal size distributions. Data
(solid line) is from Amnacystis chemostat population of Bazin. Dashed line represents
exponential; dotted line represents linear growth models. Cells divide into two only.

*

Frequency (h (m))

mo 2mg
Cell volume (m)

Fic. 38. Bazin’s Anacystis data (solid line) shown with linear (dotted line) and
exponential (dashed) growth models, with a coefficient of variation 0.20.
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drain on the environment may differ by a factor of two, depending on
ages (or sizes). Nutrient drain will be a function of biomass present, not
numbers.

In terms of intraspecific competition in the face of nutrient deficiency,
all ages of Chlorella cells are equally good competitors with each other.
On the other hand, older, and hence larger Amnacystis will have a
competitive advantage over younger cells. Everything else being equal,
we expect that the dynamics of these two populations will be different,
especially in transient phases.

I. ON THE PLANKTON PARADOX

Finally, and perhaps most important ecologically, is the insight that
these studies can provide into the question of interspecific competition.
I refer specifically above to what Hutchinson (1961) has so aptly called
“The Paradox of the Plankton.” The question is simply:

How do we reconcile the competitive exclusion principle with the
obvious long-term coexistence of very large numbers of species of
photoautotrophs in a homogeneously dispersed environment, when each
of these photoautotrophic species has almost exactly the same needs
in terms of inorganic carbon, nitrogen, phosphorous, and other elements ?

Hutchinson has suggested (i) the existence of symbiosis or commen-
salism, such as might occur if a vitamin requirer utilized vitamin
excreted by a synthesizer, (i) selective predation on the plankton can
establish stable, multispecies steady states, (iii) the plankton does not
exist, being simply the washout from stable chemostatic communities
in the heterogeneously diverse littoral benthos, and (iv) competition is
never brought to equilibrium because of rapidly and randomly changing
conditions.

I suggest here another mechanism for stable multispecies associations
in phytoplankton, which seems to me more universally applicable, and
independent of such details as vitamins and selective predators. The
mechanism relies on known temporal phasing of cyclic events in the
cell cycle.

I begin with a simple illustrative example. Assume:

(1) two autotrophic species with the same growth requirements
(nitrate, phosphate, carbon, etc.)
(i1) each starts the day with a unit biomass M, .
(111) each is just capable of doubling M, over the course of the
daylight hours. Thus each will consume exactly the same quantity of
nutrient over the period of daylight.
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As seems to be universally true of photoautotrophs (see above), cell
division is phased to the photoperiod. For this example we assume
simply that:

(iv) both species have divided during the night, beginning the
daylight hours as neonatal cells.
Finally we assume:

(v) one species (L) grows linearly over its cell cycle, while the
other species (E) grows exponentially.

Since growth is just uptake of nutrient from the environment, we define
the nutrient demand on the environment as

dM|dt = —dC/dt; (76)
evidently the total nutrient demand of the species E and L together is
—dCy,)dt = dMy|dt + dMg/dt. (17)

Since each species is just capable of a doubling over the daylight period
of length T,

dMy[dt = M,|T,
and
dMg/dt = (In2/T)Mg = (In2/T)M, exp(t In 2/T]. (78)

[We have seen above that there will be at most a 69, difference in these
curves over a doubling (Fig. 33).]

The result is a precise phasing of the nutrient demand on the environ-
ment over the course of the day length T'. In the early morning, at ¢t ~ 0
and M; = M, = M, the ratios of the nutrient demands are

dMy/dMyg = 1/In 2 ~ 1.44; (79)
Near midday, at ¢ &~ 0.537, the ratio will be
dMyjdMy = 1. (80)
In the evening the ratio will be reversed; at ¢t ~ T,
dMyJdMg = 1/21n2 ~ 0.72. 81)

Thus, we see that in the morning the linearly growing species (L) has a
449, competitive advantage over the exponentially growing species,
while in the evening the exponentially growing species (E) has a 399,
competitive advantage.
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The regular cyclic changes of nutrient demands, and hence competitive
advantages, over the course of one day, would seem to ensure a stable
two-species system.

We now ask: What would be the optimal strategy for an invader (F)
with similar nutrient requirements, given the impossibility of displacing
either E or L? The strategy is clearly for the invader F to maximize
his nutrient demand when the existing total nutrient demand is minimal.
Since the total nutrient demand of E and L 1s

(82)

dCg. dM, dMg M, In2 tIn2
B i :To+—f“_eXp( T )
it i1s clear that —dCpg_;/dt is a minimum at ¢t = 0.

Thus the invader F will maximize his ability to survive by growing
most rapidly in the early morning, when the combined nutrient demand
of the existing species is at a minimum.

With this simple example I hope I have demonstrated adequately
the principle involved, the substance of which is: that the one inescapable
periodic regularity in the environment, photoperiod, plus the demonstrated
phasing of cell cycles to this photoperiod, will allow subtle differences in cell
growth behavior to establish stable, multispecies equilibria by means of
regular, cyclic changes in competitive advantage.

Applying this principle over an evolutionary time course, we predict
that there will develop:

(1) differences in phasing to the photoperiod. [This has occurred
(Hastings and Sweeney, 1964).]
(1) more and more exotic differences in details of the cell cycle
for these otherwise “simple” cellular organisms. (Ask any algologist.)
(i) greater diversity in cell cycle details for organisms in the
homogeneously diverse planktonic environment than in a heterogeneous
environment such as soil. (I do not know if this is true.)

V. General Summary

I have tried to develop a rationale for the study of basic problems in
population dynamics via the use of microbial populations. I describe
both experimental and theoretical aspects of the study.

Experiments are reported on the chemostat culture of Chlorella and
Selenastrum. The state of a population cannot be characterized by
numbers or biomass alone. Differences in behavior of several population
measures, both in steady state and transient experiments, are emphasized.
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The looseness of coupling of the growth and replicative processes is
evidenced repeatedly in the results.

A cell model is developed, based on a separation of the growth (uptake)
and replicative properties of a cell. The population consequences of
this cell model are deduced. Most of the behavior of the experimental
populations can be predicted from the model. This behavior is not
restricted to green algae, but seems universally true of all cell populations
from bacterial to mammalian cell cultures.

Models are developed for the distribution of properties within popula-
tions: age structure, size distributions, etc. The models are fitted to
experimental size distribution data. The consequences of the conclusions
drawn are explored. A possible solution to the “paradox of the plankton”
is discussed.
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I. Introduction

During the past fifteen years there has been an explosive increase
of interest in measuring, understanding, and predicting energy flow
through ecological systems. This interest derives from the hope that
knowledge of energy flow will help us comprehend biological structure
and function at the levels of organism, population, and community.
We have come to recognize that all living organisms are energy trans-
ducers, and that a great many seemingly unlike biological processes
can be described and compared in terms of energetic yield and cost.
Moreover, important questions about the evolution of efficient use by
organisms of their potential energy supply have been raised by the fact
that the biosphere as a whole appears to be energy limited (Hairston
et al., 1960; Slobodkin et al., 1967). Yet, in spite of considerable effort

Present address: Department of Zoology, University of Michigan, Ann Arbor,
Michigan.

269



270 STEPHEN P. HUBBELL

to describe the caloric stores and flows associated with diverse biological
processes, our generalizations have been relatively few in number and
slow to accumulate. Certainly in large part the slow rate of advancement
is due to the enormous complexity of the systems with which we are
dealing. But perhaps some of the difficulty also stems from our approach.

A frequent problem is that we expect too much of energy considera-
tions: One fairly common view is that much if not all of biology will
someday be describable in thermodynamic terms. Attempts to reduce
ecology to thermodynamics have not been notably successful thus far,
but the usual reason given for their lack of success is the current
inadequacy of theory in nonequilibrium, steady state thermodynamics.
Aside from the fact that it is somewhat questionable whether biological
steady states are commonplace or even exist, it cannot be expected that
energy considerations alone will ultimately explain biological structure
and function. Morowitz (1968) concludes that energy flowing through
a system will tend to “organize” that system, but that the course of
development and the nature of this organization cannot be predicted.
Thus, for example, it is difficult to conclude much from thermodynamics
about the rates of entropy production by ecological systems, except
perhaps that the rates are not minimal because of the complex feedback
characteristics of such systems (Slobodkin, 1962). Yet conclusions about
entropy production in ecological systems are continuing to appear in
the literature. Note the comment by Margalef (1968, p. 29): “It is
probably justified to say that any system formed by reproducing and
interacting organisms must go on to develop a kind of assemblage in
which the production of entropy per unit of preserved and transmitted
information is at a minimum.” It is not clear from Margalef’s preceding
or following remarks why this statement is ‘‘probably justified.”

The laws of thermodynamics merely define a set of rather broad
“boundary conditions” within which all natural systems must operate;
they are necessary but not sufficient conditions for determining the
actual operation of natural systems. This is a restatement of Polanyi’s
argument (1968). In a natural world which can be viewed hierarchically,
laws governing events at one level must be consistent with all laws at
lower levels of organization. The lower-level laws establish bounds on
the possible for higher levels; but it is the higher-level laws which
restrict the possible to the ‘“‘actual,” a narrower set of possibilities.
Thus, it is unrealistic to expect the laws of thermodynamics ever to be
sufficient to explain the organization and function of biological systems.
At the same time, no correct law about biological systems may violate
thermodynamic principles.

A second problem with our approach to ecolpgical bioenergetics is
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that, for the most part, we have seriously underestimated the importance
of a basic characteristic of life: control. This concept is almost entirely
missing from the flow diagrams developed by the Odums (1959, 1960,
1963, 1968) and widely used by other ecologists to describe energy flow
through organisms, populations, and communities. The historical
importance of these diagrams is clear: they have been instrumental in
focusing the attention of ecologists on whole-ecosystem energy relation-
ships. Moreover, they continue to serve the useful purpose of conveni-
ently summarizing gross energy partitioning within different types of
ecosystems.

The value of such flow diagrams for research and predictive purposes,
however, seems quite limited. As Slobodkin (1962) put it, they violate
common sense. The dominant impression they give is of a series of
conveyor belts rushing along until they meet a set of strategically placed
knife edges, which then split each belt into a series of narrower belts of
varying widths. Odum (1960) reinforces this impression when he
intentionally eliminates the idea of control from his thinking. According
to Slobodkin (1962) he states, “The validity of this application may be
recognized when one breaks away from the habit of thinking that a fish,
or bear, etc., takes food and thinks instead that accumulated food by
its concentration practically forces food through the consumers.” If this
view is correct, then a consumer is nothing more than a passive, open-
loop, energy-partitioning device that is dealt an input of energy to
divide among a series of physiological processes.

But this is not what an animal or plant is doing. An organism is an
active agent which takes in, or attempts to take in, potential energy
to meet some internally defined ‘“‘need.” To us, animals are generally
more obvious than plants in their efforts to control energy intake and
expenditure. Yet plants, while unable to turn the sun on and off, have a
high degree of control over the rate at which they fix radiant energy
photosynthetically, exerted on a short-term basis through a variety of
biochemical mechanisms and phototropic responses, and on a long-term
basis through vegetative growth plasticity.

In my view the prevalent treatment of organisms as passive agents
has hindered further development in the field of ecological bioenergetics
by producing few significant questions about what living systems are
really doing with energy. Such a treatment ignores perhaps the most
fundamental characteristic of life: the capacity of living organisms to
regulate, within the bounds established by the laws of thermodynamics,
the rates at which they accumulate and dissipate energy. No other
naturally occurring set of physicochemical systems has this remarkable

property.
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Once this fact is seriously taken into account the approach to energy
flow in ecology is, as it were, turned inside out. One is no longer on
the outside of an organism, energy input in hand, looking in to see
how it will be partitioned physiologically. Instead, one is inside the
organism, aware of its energy requirements, and looking outside at
the varying potential energy supply. Now one can ask more than simply
how an organism partitions a given input of energy. The dominant
question is now how the organism, faced with a varying energy supply
and a fluctuating physical environment, regulates energy intake and
expenditure in an attempt to maintain emergetic and physiological
homeostasis. It should be emphasized that this change in approach to
ecological bioenergetics does not mean that we lose interest in how
organisms partition energy. Indeed, it is the newly reexamined dynamic
characteristics of energy partitioning, as organisms adapt physiologically
and behaviorally to a changing environment, which are so interesting.

It should not be inferred from this discussion that energy regulation
is the only important business of organisms. Certainly reproduction
is equally important. Moreover, it is not all clear that energy regulation
is even a small part of the business of populations and communities,
as distinct from the business of individuals. Nevertheless, the energy-
regulating abilities of individual organisms have a profound effect on,
and response to, the temporal and spatial patterns and nature of energy
flow through populations and communities. Consequently, energy regula-
tion cannot be safely ignored in any study of ecological bioenergetics,
particularly in studies of organisms or populations.

I shall be concerned here with how energy control is accomplished
dynamically in individual animals, and more particularly in the terrestrial
isopod, Armadillidium vulgare Latr. Before developing this topic,
however, I will briefly discuss systems analysis and a philosophy on
modeling.

II. Systems Analysis and Model Building

To understand and have the power to predict quantitatively the
energy dynamics of an animal’s response to its environment and to its
own nutritional condition, we need the conceptual framework and
mathematical tools of the systems analysis approach. Systems analysis
means many different things among ecologists. For some it simply means
any organized systematic research in ecology. In this discussion, however,
the term refers to the branch of applied mathematics and engineering
sciences of the same name. I shall only touch briefly on its logical
foundations and on my prejudices concerning methodology, since this
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is not the place for a lengthy discussion of systems analysis. For this,
the reader is referred to the introductory chapters of this book, especially
Chapter 2, and to texts such as Milsum (1966), Schwarz and Freidland
(1965), and Elgerd (1967).

Fundamental to systems analysis is the assumption that natural
processes are organized in a hierarchy of complexity, a notion familiar
to biologists in the ordered sequence: cell, organ, individual, population,
and community. Each process or system in the hierarchy is assumed
to be the combined result of the actions and interactions of a set of
simpler processes. No system is isolated, of course; every system interacts
with others, both on its own level of organization, and on higher and
lower levels as well. Thus, to an extent, system boundaries are arbitrary
and a matter of convenience. The interaction with other systems consti-
tutes the input and output of a particular system, as matter, energy,
or information.

The internal dynamics of a system are characterized mathematically
by the relationship between output and input; to understand the dynamic
behavior of a system, then, we must thoroughly analyze its input—output
relationships. Once these are known, it remains to determine the
dynamics of the intervening system component (‘‘system identification”).
This type of problem is more difficult than the “forward-analysis”
problem typically encountered in engineering, in which the output
must be calculated from the input and system dynamics, which are given.

As biologists, we commonly tend to think of input—output relationships
in terms of statistical correlation, and build regression models to explain
the organization of biological systems. We generally recognize the
problems associated with causal inference from regression models,
as well as the fact that physical and biological systems do not work on
the basis of relationship by correlation. It is less generally recognized,
however, that such systems operate on the basis of the relationships
between quantities (‘‘storages” or “levels”) and transfers (“flows’) of
matter and energy. In part we have relied upon regression models because
we have not known enough about most biological systems to build
storage-and-flows models, but also in part because we are used to
thinking in terms of relationship and not in terms of process.

The methodology of systems analysis embodies a close feedback
between theory and experiment, as Holling (1966a, b) has emphasized.
This feedback distinguishes it from the almost unguided empiricism and
also from the nearly “pure” deductive reasoning evident in some of
the ecological literature. The study of a biological system usually begins
with the construction of a block (flow) diagram, a graphic model in
which the storages and flows associated with known or suspected
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components of the system and their interactions are identified. Initially,
the object is to develop a qualitative or semiquantitative overview of
the system, often merely in terms of educated first guesses. This graphic
model provides the logical framework upon which to build experiments
designed to select one of several alternate model formulations. As
results from experiments become available, modifications can be made
in the flow diagram, and also in the design of future experiments.
Gradually a quantitative model is developed to replace the qualitative
one, as transfer functions (‘“operational’”’ output-input ratios) for each
system component are empirically determined.

At an intermediate point in the analysis, it becomes possible to begin
computer simulation of the model, using transfer functions already
identified plus guesses about those which remain to be determined.
In this way the performance of the model can be compared with that of
the real system, often hastening the discovery of the remaining transfer
functions in the system. Computer simulation can occasionally offer a
type of internal check on the accuracy and consistency of empirical
results: if a significant error exists, the model will probably not behave
like the real system. It must be established, however, that the fault
lies in measurement and not in the model, a task that is frequently
difficult. Thus, at each step in the development of the model, its
performance can be tested against the real system, until the model
simulates reality with acceptable accuracy.

The purpose of modeling, then, is twofold. First, a model is an
essential tool in on-going research: It is a conceptual structure of
hopefully testable guesses about how some natural system is organized.
As such it should help to determine relevant experiments to perform or
data to collect, or both, thereby increasing the efficiency of the research
effort. Second, a model can be put to predictive use once it exhibits a
satisfactory performance. ‘“What if”’ questions can be asked about the
consequences of different input conditions upon the behavior of the
system of interest. In addition, the model’s parameters, corresponding
to the system’s attributes, can be systematically changed to find out
more about the reasons for a particular biological system’s organization,
as well as to test its generality when applied to systems other than those
intensively studied. It is usually far more economical to conduct
“experiments” on the model than on the real system, especially in
ecology.

It is sometimes easy and always risky to forget that a model is not
the real system. Models hold only certain properties in common with
reality. As Levins (1968) has pointed out, there is no such thing as an
“all-purpose model,” which is simultaneously precise, realistic, and
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general. This is particularly obvious in constructing models of hierar-
chical systems: In moving from one level of organization to the next,
information is invariably lost. This results from the practical necessity of
approximating or lumping the dynamics of systems at one level before
they can be incorporated into systems models on the next higher level
of organization. There are few general rules about how to do this,
although the lumping procedure that is optimal has a minimal effect
upon the performance of the higher-level model while remaining
consistent with lower-level laws. There is always the danger of making
unwarranted assumptions that generate more fiction than fact about the
supposed performance of the modeled system. Unfortunately, it is
frequently not clear to what extent assumptions are unwarranted until
for some reason it is “too late”; thus, the anticipated cost of a model’s
inaccuracy may determine in part what approximations to make or
which lower-level detail to save. It would be disastrous, for example,
to have a model of a proposed chemical plant which simulated the plant
closely under normal conditions, but which failed to predict a destructive
explosion under some rare but eventual circumstances. Fortunately
for ecologists, the tight control characteristic of biological systems below
the organismal level makes assumptions about the mean performance of
physiological processes reasonably safe.

III. Models of Energy Regulation and Growth in Animals

There is a vast literature on the physiological and ethological control
mechanisms directly or indirectly ‘involved in energy intake and expen-
diture in mammals, particularly in man and the domestic animals
(Brody, 1945; Hamilton, 1965; Hardy, 1961, 1965; Kalmus and Wilkins,
1966; Kinne and Locker, 1966; Kleiber, 1961; Mayer and 'Thomas, 1967;
Tepperman, 1962; Tepperman and Brobeck, 1960). There is also a
rapidly growing body of information about energy regulation in other
groups of animals, especially fish (Gerking, 1967), birds, and insects.
Until quite recently this literature has had little effect upon the field of
ecology because of its diffuse and fragmented nature and because of its
rather strict physiological orientation. Although numerous models of
physiological systems “in isolation” have appeared, only a few of these
have been constructed with an eye to the possible ecological and adaptive
significance of the physiological processes for the organism as a whole.
Moreover, in general they contain far more detail than is necessary or
advisable in a model of the ecological bioenergetics of entire organisms.
Physiological and ethological processes that have been modeled include
thermoregulation (Benzinger, et al., 1961; Crosby, et al., 1961; Hardy,
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1961, 1965), respiration and circulation (Grodins, 1963; Priban and
Fincham, 1965), feeding and prey capture (DeRuiter, 1963; Holling,
1965, 19664, b; Mittelstzedt, 1957, 1962), drinking and water balance
(McFarland, 1965; Stevenson, 1965), embryological growth and develop-
ment (Weiss and Kavanau, 1957; Kavanau, 1960, 1961), endocrino-
logical systems (e.g., DiStefano and Stear, 1968; Brown-Grant, 1966),
and others. In the last few years there have been a few attempts at
synthesis. One notable attempt has been made by DeRuiter (1963),
who constructed flow diagrams depicting qualitatively the overall
nutritiona] control system of a mammal, bringing together data both of
a physiological and an ethological nature relating to nutrition and
the control of feeding.

In spite of this rather extensive modeling in physiology and ethology,
there has been relatively little effort to develop models of whole-animal
growth and energy regulation suitable for use in ecology, models which
are realistic and general, but which forfeit some physiological and
precision because of the essential lumping of lower-level systems’
dynamics. Several attempts have been made to fit simple descriptive
equations to observed or smoothed growth curves of animals, but usually
no effort was made to assess the biological significance of the equations.
Furthermore, most of these equations attempt to describe only idealized
growth under optimal conditions without providing for environmentally
imposed physical or biotic perturbations of growth processes.

Three of the most commonly used models of growth are the logistic,
Gompertz, and von Bertalanffy equations, all of which have a basically
sigmoid form with an asymptotic adult body weight (Ricklefs, 1967).
Brereton (1955) attempted to fit the logistic curve to his data on growth
of the terrestrial isopod, Porcellio scaber. Wieser (1965), working from
growth data on P. scaber collected by Matsakis (1955), showed that
von Bertalanffy’s equation gave a better fit. I have found, however,
that this model is inadequate to describe the growth of Armadillidium
vulgare.

Bertalanfty’s equation is derived from the model proposed by Piitter
in 1920 (Ursin, 1967), who appears to have been the first to recognize
that the instantaneous growth rate of an animal can be expressed
as the difference between the instantaneous rates of anabolism and
catabolism. Pltter assumed that the rate of assimilation of food is
surface-dependent, whereas the rate of dissipation of energy throughout
the body is dependent on body weight. He assumed further that the
area of the food-absorbing surface changed as the £ power of body weight,
giving

dw/dt = aw?/® — bw, €))]
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where w 1s weight and a and b are constants, with a > bw'/3 at time zero.
The final or asymptotic weight is approached as bw approaches aw?/3,

Since this model was proposed, knowledge of metabolic processes
has advanced greatly, although there still are significant gaps to be
filled before a general theory of growth can be constructed. We can now
be certain, however, that Piitter’s equation is based on incorrect assump-
tions. First, there is abundant evidence to show that the rate at which
animals expend energy is only rarely proportional to body weight;
rather it is proportional to some fractional power of body weight,
reflecting the fact that respiratory processes are also surface dependent.
This power varies from species to species (Zeuthen, 1953; von Bertalanfly,
1951) as a result of different surface-volume relationships and other
factors (Prosser and Brown, 1961). Second, the area of the absorbing
surface of the gut is highly variable between species, and even between
individuals; and it is rarely proportional to the % power of body weight
because of allometric growth of the intestine and food habits. Attempts
have been made, therefore, to generalize Piitter’s formulation by
specifying only that the exponents are species-specific constants between
zero and one (Zeuthen, 1953; von Bertalanffy, 1951). Parameter values
for this equation have been estimated for a diverse set of organisms,
notably fish (Ursin, 1967; Paloheimo and Dickie, 1965, 1966a, b;
Ricklefs, 1967; Taylor, 1958, 1962). The species-specific constancy of
these parameters, however, has been seriously questioned. Environ-
mental factors, particularly temperature, and nutritional condition have
been found to influence the slope of the log—log relationship between
oxygen consumption and weight in a number of animals (Armitage, 1962;
Clark, 1955; Norris et al., 1963; Vernberg, 1959).

The most serious weakness of Piitter’s equation is its overly simplistic
representation of the growth process. His model implies that growth
is entirely passive, because the rates of anabolism and catabolism are
viewed merely as passive functions of the current weight of the animal,
unable to make any compensation for perturbations. As with energy
regulation, treating growth as a passive process completely ignores the
adaptive and regulatory features of physiological processes. Unlike
nonliving physicochemical systems which exhibit growth (Oparin, 1953),
living organisms control their growth homeostatically. Such regulation
implies that organisms have built-in mechanisms for evaluating their
growth performance, and for modifying energy intake and expenditure
to compensate for performance “errors” resulting from environmental
or physiological disturbances. Compensatory modifications of this sort
are the result of stabilizing negative feedback, an almost universal
feature of energy-regulating control systems.
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The generic structure of such systems will be familiar to most readers.
The actual performance or output of the system is compared with some
criterion of “ideal” performance, known as the ‘“‘reference input.”
If the actual and ideal performance of the system differ, an ‘“‘error”
signal is used to compute the appropriate “‘control effort” to force the
output of the system closer to the desired level, thereby reducing the
performance error. Output rarely equals the reference input exactly,
however, primarily because the system must continually counteract
disturbance effects of exogenous factors over which the system has no
direct control, but which act upon the controlled process.

The importance of negative feedback in the regulation of growth
has been recognized for some time (Glinos, 1958; Mayer and Thomas,
1967; Weiss and Kavanau, 1957), but there have been few attempts to
develop control systems models of growth processes. Ursin (1967),
working from Piitter’s equation, introduced feedback into a model of fish
growth by making catabolism a function of the rate of food absorption,
although such feedback, by itself, produces no control. He also attempted
to describe the effects of temperature on rates of anabolism and
catabolism. Perhaps the most notable dynamic model of growth was
proposed by Weiss and Kavanau (1957) and developed mathematically
by Kavanau (1960, 1961). This model, however, is unsuited for studies
of ecological bioenergetics. It was intended as a model of the embryo-
logical growth and development of various tissues and organs within
the body, containing more detail about the hormonal and cellular
aspects of growth regulation than practical in an ecologically oriented
model. Moreover, it is not a caloric model, and no provision is made for
environmental disturbances of growth because time is the only inde-
pendent variable.

IV. Generalized Bioenergetics Model

Models of biological control systems are complicated because they
usually have variable, rather than constant, reference inputs. That is,
they are servomechanisms which have the task of tracking variable
signals. In addition, biological control systems contain nonlinear
elements, nested feedback loops, positive as well as negative feedback,
and parameters which change with time. Finally, the parameters them-
selves may be under the partial or complete control of the system, in
which case the system is said to be adaptive.

The most difficult problems in analyzing a biological control system,
however, are probably not in coping with its mathematical complexity.
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One major difficulty lies in isolating the system of interest sufficiently to
permit its study. What one would like is to open feedback loops and
manipulate some of the system’s internal variables that are otherwise
inaccessible, as if they were extrinsic in origin and independent of
the system. Unfortunately, opening loops in biological systems often
destroys the systems themselves. Instead, the biologist frequently is
left only with environmental disturbances that can be controlled.

A second major difficulty lies in determining just what feedback loops
do, in fact, exist in biological systems. This is the problem of determining
the performance criteria of the system. Technical problems of measure-
ment may be considerable, but these aside, the task is made harder by
the fact that the controlling variable or variables may bear little resem-
blance to the controlled variables. For example, the firing rate of
temperature-insensitive neurons in the hypothalamus may establish the
“set-point” for mammalian thermoregulation (Hardy, 1965). Neuron
firing rates are obviously rather different variables from body temper-
atures. Mammals do not have an actual set-point temperature, somehow
physically stored, with which actual body temperature is compared.
Moreover, conceptual difficulties may arise out of the difference between
the abstract mathematical representation of feedback and the actual
physical process for which it stands. Real biological control mechanisms
are almost bewildering in their variety, some involving actual reference
inputs, others not. Well-known examples of control systems without
reference inputs can be found in the mammalian neuroendocrine system
(Gorbman and Bern, 1962). Commonly they are composed of a system
of coupled elements, the first being excitatory of the second, and the
second being inhibitory of the first. In such a system the concept of
reference input has only an abstract and arbitrary meaning. Nevertheless,
in dealing with lumped models of such systems, it is useful to retain
this concept. Even if particular reference inputs of the model have no
exact physical counterpart, they can be made to mimic the behavior of
the controlling element in the real system as accurately as desired.
I shall make use of such reference inputs in the bioenergetics model
developed below.

Many subsystems contribute to the overall ecological and evolutionary
success of an organism. The performance criteria of these different
subsystems will be different and will depend on the selective forces
acting upon the species. That is, performance criteria are adaptive.
In considering the evolutionary success of an individual or species,
performance criteria are related to the production of the maximal
number of surviving offspring. However, with regard to how organisms
regulate the rate at which they accumulate and dissipate energy,
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reproductive success is not an issue. An immature animal must grow to
maturity if it is to reproduce successfully, and during this period of
growth it must control its daily maintenance. Even after it reaches
maturity, reproduction is frequently intermittent. Thus animals have
performance criteria relating to growth and energy balance; and in
addition they have reproductive criteria while they are reproducing.
These criteria need not be mutually exclusive if both energy regulation
and reproduction are under a higher level of control within the organism.
For present purposes, we shall assume that there is only one reference
input for growth and energy regulation, and one for reproduction,
although we recognize that this design is physiologically too simple.

My work to date on the isopod, Armadillidium wvulgare, has dealt
primarily with the regulation of energy balance and growth. Details
of reproduction and its performance criteria are currently being investi-
gated by L. Lawlor (personal communication). As a descriptive term
for the growth and energy balance criterion, I have chosen “‘desired”
growth rate; desired is put in quotation marks to indicate avoidance of
teleological implications. I view desired growth rate as some measure
of the optimal growth rate of an animal, but because of the difficulty of
assessing whether a given growth rate is, in fact, optimal, I have avoided
use of that word. I am using the word growth to mean an increment
in the caloric content of the body, rather than to mean an increment in
the proteinaceous components of the body, as is customary in physiology.
My object is to make the meaning of the term more consistent with the
ecological notion of productivity.

The concept of desired growth rate is incorporated into the bioener-
getics model whose generalized information flow diagram is illustrated
in Fig. 1. Each block in the diagram represents a subcomponent of
the system which computes an output storage or flow variabls “rom its
input variables. The circles are comparators, which produ.. a new
variable from the sum or difference of other variables. Solid lines with
arrows denote variables in units of calories or calories per time, and
dotted lines with arrows indicate environmental disturbance ariables,
l.e., physical factors whose units depend on the factor considered.

At the upper comparator the growth performance of the individual
is evaluated by subtracting current growth rate (net energy accumulation
rate) from the desired growth rate. The difference constitutes a measure
of how well the animal has been growing; if, according to this measure,
growth has been poor, then corrective action is taken to force the
actual growth rate closer to the desired growth rate. The block at the
lower left computes current gross rate of energy accumulation (calories
assimilated per unit time) as a function of the availability of energy
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Fic. 1. Generalized block diagram of bioenergetics model. (See text for explanation.)

resources, i.e., food. For a given food availability, an input to this block
of positive growth error would result in a greater rate of energy accumula-
tion.

The comparator at the lower center subtracts the rate of energy
dissipation (respiration rate) from the gross rate of energy accumulation.
The difference constitutes the net energy accumulation rate, or current
growth rate. Note that a positive growth error acts negatively upon
energy dissipation; this feature results from the fact that starving
animals show a reduced respiration rate. By summing (integrating)
the net rate of energy accumulation over the life of the animal, the
current net production (current total caloric content) of the animal is
obtained. This net production signal feeds back positively to the blocks
which determine the rates of energy accumulation and dissipation.
Thus, as the individual increases in body size, it eats and respires more.
Net production also acts positively on the desired growth rate of
immature individuals of any species, such as Armadillidium, which
has an accelerating growth rate.

Finally, all of the transfer functions are subject to disturbance by
physical factors (dotted lines with arrows) including desired growth rate
(which we assume to be a physiological process). The system must
continually counteract these disturbances as well as the effects of varying
levels of food availability. There are two additional ways that an
organism can counteract the effects of such disturbances besides using
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its “‘regular’” feedback control mechanisms. The animal can adapt
physiologically, and it can seek out preferred conditions in a hetero-
geneous environment. Under physiological adaptation we shall include
physiological responses both to short-term cyclic inputs that are predic-
table, such as the daily light regime, and to long-term acyclic, or
otherwise less predictable inputs, such as seasonal temperature and
moisture patterns. Mathematically, physiological adaptation 1s equivalent
to modifications of parameter values in the model’s transfer functions;
to the extent that these modifications are controlled by the system itself,
we are dealing with a so-called adaptive system, as defined earlier.
Physiological acclimation to temperature is already included in the model.
As yet, however, I have not included behavioral attributes. Armadillidium
is known to exhibit preferenda in gradients of certain physical factors,
particularly temperature and humidity (Barlow and Kuenen, 1957a,b;
Miller, 1938). Behavioral modification of disturbance inputs will be
incorporated into future versions of the model, after more is known
about the choice of conditions available to Armadillidium in the field,
relative to its preferenda.

The success of the individual bioenergetics model outlined above
depends to a large extent upon the adequacy of the concept of desired
growth rate as an approximation of the actual physiological subsystems
controlling growth and energy balance in an animal, and also upon our
ability to deal with the concept operationally. One of the first questions
to arise 1s whether the feedback controller should be modeled as a rate-
sensitive element. In models such as Piitter’s, the implicit “control”
is exerted by the difference between the current size of an animal and
its final body size. However, if we were to use the final body size as
the reference input for growth control, we would find it difficult to
account for the phenomenon of stunting, as well as for the response of
animals to starvation, appropriately scaled for their current body size.
Also, in many animals, particularly invertebrates and including
Armadillidium, there 1s no obvious asymptotic adult body size; growth
continues throughout life.

In choosing rate sensitivity for the growth controller, we should
recognize that the actual physiological controllers of growth and energy
balance are, in reality, responding to stores and levels. Stores such as
the quantity of glucose in the blood, or the concentration of hormones
are involved; and variables such as neuron firing rates are sensed as
levels of discharged acetylcholine. As we recall from calculus, however,
every store may be treated as a rate, and every rate a store, simply
depending upon the magnitude of the time scale on which we observe
a particular process, relative to the scale on which we observe other



4. ECOLOGICAL BIOENERGETICS 283

processes. For our purposes, milliseconds, even tens of minutes, is a very
short time; consequently, the dynamics of stores on this time scale can
be ignored or time-averaged, when necessary, to produce a rate.

For the ecologist interested primarily in the implications of energy-
regulating capacities of animals for population and community level
phenomena, it need not matter that desired growth rate has no actual
physical correlate in the animals, provided that the lumped model has
similar properties to that of the real system. There 1s certainly a neuro-
hormonal system whose function the comparator and desired growth
rate could mimic operationally. In mammals, for example, there is a
complex central regulatory system centered in the hypothalamus, which
closely matches energy intake with energy expenditure, as energy
demands and the nutritional value of the food vary (Mayer and Thomas,
1967). The feedback control is achieved through a glucostatic mechanism,
and feeding 1s imtiated or inhibited by the hypothalamic centers,
depending on information received from chemoreceptors detecting
the glucose concentration in the blood. Long-term energy regulation
may involve a separate lipostatic control mechanism. Growth regulation
appears to result from the interaction of these energy-regulating systems
and hormonal systems.

Less is known about the energy-regulating and hormonal control
systems of invertebrates. Information is most complete for arthropods,
but it concerns primarily the hormonal control of growth and molting
(Knowles and Carlisle, 1956; Waterman, 1960, 473 fI.; Wigglesworth,
1965, 175 ff.). The work of Dethier et al. (1956) on the sheep blowfly
provides some of the most relevant information on energy regulation in
an invertebrate. They found that feeding was initiated by oral chemo-
receptors and was terminated by unidentified receptors in the foregut.
Termination was independent of blood sugar level and of crop and
mid-gut contents.

We intend that the desired growth rate signal and the feedback
comparison of actual growth rate in the model should approximate the
combined action of physiological processes such as those known for
mammals and insects. Although energy regulation and growth control
represent separate physiological systems, they can be lumped into one
process in the model of individual bioenergetics. To illustrate, consider
an animal which reaches a constant adult body size; when this size 1s
reached, desired growth rate becomes zero, and the animal simply
balances energy intake against respiratory demand. On the other hand,
a growing animal must acquire energy in excess of the amount dissipated
in respiration; hence desired growth rate is positive. Thus, in the
model a single comparator of desired and actual growth rates simulates
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the action of at least two control systems in the body. For ecological
purposes, this analog should be adequate.

We turn now to operational considerations of desired growth rate.
Clearly growth rates can be measured; but can we, in fact, measure a
desired growth rate? The answer is probably no, at least in the usual
sense of the word measure, simply because the desired performance of
an unknown system may or may not be its actual performance, which is
all that we can observe. Nevertheless, there are at least two basic indirect
methods for assessing what the desired performance of a biological
system might be. The first might apply be called *“‘the optimal environ-
ment method.” In this approach one tries to provide the best possible
set of conditions to the system for its operation, based upon what is
already known about the system’s dynamics. This is the most straight-
forward approach, and it assumes that the actual and desired perfor-
mances will most nearly coincide if the system does not have to correct
errors caused by disturbance inputs. The weakness of the method,
of course, is that the environment provided for the system may not be
truly optimal. The second approach can be called “the perturbation
method,” in which no attempt is made to provide optimal conditions.
On the contrary, the object is to determine how the system reacts to
precisely controlled disturbance inputs. From the dynamics of recovery
from controlled disturbances, the nature of the system’s controller can
often be ascertained. This method is frequently more difficult, but is
also theoretically more sound than the optimal environment approach.
It should be noted that analyzing a system’s response to a controlled
disturbance input is different from the common engineering problem
of analyzing the system’s response to a transient change in a reference
input. In the bioenergetics model, the reference “input,” desired growth
rate, is an internally generated performance criterion, not subject to
manipulation because it is under the control of the system itself. This
characteristic is common to many biological control systems: Frequently
the differential equations that describe the system form a set of implicit
functions; that is, the separation of “independent’” and dependent
physiological variables is impossible.

Both methods have been used to establish desired growth rates for
Armadillidium wulgare. The details of this work will be published
elsewhere (Hubbell and Paris, in preparation), but a brief resumé of
the results of the optimal environment method is presented below:

Under a wide variety of constant conditions of temperature, moisture,
and food availability, Armadillidium vulgare exhibits two characteristic
growth phases: an exponential phase as a juvenile, and a linear phase,
gradually assumed as an adult. Superimposed upon this basic growth
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pattern are the effects of molting and, in females, of reproduction.
Molting causes the growth curve to take on the “staircase’ appearance
typical of arthropod growth, whereas the brooding of young by females
is accompanied by a temporary cessation of growth. Figure 2 illustrates
this growth pattern for a typical individual grown at 24.5 C at 1009,
relative humidity with unlimited food. Note the relatively constant
percentage increase in weight with each molt during the exponential

WET WEIGHT (MG)

0 20 40 60 80 100 120 140
DAYS

Fic. 2. Growth pattern in an individual of Armadillidium vulgare at 24.5 C and
100%, relative humidity with unlimited food. Asterisks denote premolt condition.
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growth phase. There is also a relatively constant percentage weight
gain with each adult molt; however, the intermolt stage lasts for succes-
sively longer periods, resulting in the arithmetic growth pattern. For
simplicity, the modifying effects of molting and reproduction upon
the rates of energy accumulation and dissipation will not be included
in the mathematical treatment of the bioenergetics model to follow.
The details of these effects will also be published elsewhere (Hubbell,
in preparation).

The coefficient of exponential growth is exponentially related to
temperature in the range between 5 and 31.5 C (Fig. 3), as described
by the equation

log K = —2.4761 -+ 0.03657 (C). )

Here K has a time base of one day, and is the coefficient in the growth
equation,

P = Poe‘K/°-43429"t, (3)
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F1c. 3. Relationship between the coefficient of exponential growth and constant tem-
perature with a time base of one day, expressed Eq. (2).
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where P is weight (expressed in the model in calories), P, is weight at
birth, ¢ is age in days, and 1/0.43429 is the factor converting K from
a power of 10 to a power of e. Equation (3) is adequate only until the
isopods reach sexual maturity. The linearity of adult growth is illustrated
in Fig. 4, which is a plot of the average growth of a cohort of animals.
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Fic. 4. Growth rate curve of adult isopods at 21.6 C. Scale of weight on left applies
to left-most portion of curves, and scale on right to right-most portions. @: males,
O: females.

The influence of molting is obscured because of a lack of precise molt
synchrony between individuals. Females grow at the same rate as males
except when they are carrying eggs, during which time their weight
remains constant. Note that two broods were produced in rapid succes-
sion. During the arithmetic growth phase, weight or caloric content
can be expressed as

P = Py + c(t — tsm), 4)

for P > P,,, and ¢t > t,, , where P, and ¢, are the weight and age at
sexual maturity, and ¢ is a temperature-dependent constant.

Desired growth rate is obtained by taking the derivatives of Egs. (3)
and (4). In the exponential phase of growth, desired growth rate is
proportional to the current weight or total caloric content (net produc-
tion) of the individual. If DG is desired growth rate, then

DG = KDG(P,)e'*?9 — KDG(P), (5)
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where KDG = K[0.43429. In the arithmetic phase of growth, desired
growth rate becomes independent of the size of the animal; hence

DG = . (6)

Age appears to have no effect on growth rate in Armadillidium.
Immature animals grow at a rate which is characteristic of their weight,
given a specific temperature. After reaching sexual maturity, and after
a period of switching from exponential to linear growth, the isopods
grow at a temperature-dependent, constant rate, whatever their age or
weight. Size- or weight-dependent growth rates have been described
in a variety of other animals (Larkin et al., 1956; Rasmussen, 1967).

Desired growth rates are apparently independent of soil moistures
above a soil water content of 129, by weight, except for exceedingly
wet conditions; below 129, however, growth rates are lowered as
the isopods attempt to conserve water by restricting their intake of
dry food. The effects of varying temperature and food availability will be
considered in a later section.

V. An Improbable Linear Bioenergetics Model

It 1s an often stated truism that nature is inherently nonlinear.
Biological systems particularly are full of threshold phenomena and
saturating nonlinearities (Holling, 1966a, b), synergisms (multiplicative
effects), hysteresis, and the like. In spite of these complications, it is
often possible to construct linear models of biological processes which
are reasonable approximations of the dynamics of the real system.
It should be noted that the linearity of a systems model does not mean
that it produces only straight lines. Unlike a regression model, the
time-domain solution of a system of linear differential equations consists
of a sum of exponential curves, not straight lines. Linearity as used here
means additivity; thus, if y; = f(x,) and y, = f(x,), then (y; - y,) =
f(x; + x,). Note that the equation y = a + bx is nonlinear by this
definition because (y; + y,) does not equal f(x; + x,).

The reason we go to the trouble of building linear models when we
are really interested in nonlinear systems is that we then acquire the
power to evaluate the dynamic performance of the system analytically,
not just numerically. In fact, we can analytically solve for the response of
a linear system to any conceivable input function, however complicated.
Even exceedingly complex linear systems can be simplified enormously
using the techniques of so-called “operational’”’ mathematics.

It should be emphasized that the linear models developed below
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are only exercises to acquaint us with some of the most basic properties
of energy-regulating biological control systems; they are by no means
intended as definitive models of such systems. Biological systems which
control energy have a number of essential nonlinearities which ultimately
cannot be ignored. At the end of this chapter in Section VII, we shall
consider progress that has been made toward developing a realistic and
hopefully somewhat general nonlinear model of growth and energy
regulation in animals.

Hence, once we thoroughly understand the linear approximation,
we can begin to introduce more realistic nonlinear elements into the
model one by one, to determine how they modify the behavior of the
linear system. There is, of course, no guarantee that the nonlinear
system will behave anything like the linear system. Generally, however,
the performance of the two systems will not differ so greatly as to make
the linear exercise worthless, especially when the linear system was
designed to approximate the behavior of the real system. Often, nonlinear
systems exhibit greater control accuracy, although they may be less
stable in the face of large perturbations than their linear counterparts.

In constructing a model of a hypothetical “linear” isopod, I shall
have two primary concerns: first, the adequacy of each system component
as an approximation of the actual physiological process; and second,
the capacity of the assembled model to regulate energy accumulation
and dissipation, as it is supposed to do. The first model we shall consider
is very simplistic and inadequate as a physiological model, but it will
serve to illustrate ideas about control and the differences in performance
of open- and closed-loop systems.

For simplicity, we shall be making use of Laplace transforms in the
following discussion, rather than differential equations, although a
completely parallel treatment of the material is possible using differential
equations. For those not familiar with this transform technique, the
Laplace transform of a function of time, F(t), is given by

F(s) = 2[F®)] = | :O F(t) e d1. 0

Clearly, one effect of this transformation is to eliminate time as the
independent variable, substituting for it a new variable s in the “complex
frequency” domain. Convergence of this integral is assured for only
certain s and F(¢), but the class of permissible F(¢) is broad. Moreover,
the transformation is linear; and when it is applied to a linear system,
it has the remarkable property of reducing the operations of differentia-
tion and integration essentially to simple algebraic multiplication and
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division by the complex variable s. Using this technique, we shall
obtain overall transfer functions for two linear bioenergetics models of
increasing complexity. In particular, we are interested in the transfer
function characterizing the dynamic relationship between actual growth
rate (the “output”) and desired growth rate (the “input”). Obtaining
this transfer function for a study of how accurately the model will
track a given desired growth rate signal requires that we open the
feedback loop of net production (body caloric content) P upon desired
growth rate DG (henceforth called the ‘“desired growth rate loop™).
This simplification will not alter the model’s growth control abilities,
and it eliminates the implicit nature of the model’s functions. In addition
to opening this feedback loop, we shall also be opening the loop in
which actual growth rate is compared with desired growth rate, to
compare the control abilities of the open- and closed-loop systems.
Consider the linear model illustrated in Fig. 5a, which is one of the
simplest that can be derived from the generalized bioenergetics model
of Fig. 1. To compute the output variable from each block, the expression
in the block is multiplied by the input variable. As mentioned above,
the desired growth rate loop has been broken, and is indicated by
the dotted line. In this model, the assimilation rate, A(s), is assumed
to be composed of a body size component RP(s), an error-correcting
signal AE(s), and a disturbance input DA(s). As is required of a linear
system, all of these signals are additive, not multiplicative, and they are
related to other variables as simple proportions. In the nonlinear model,
of course, some or all of these signals may be multiplicative and/or
nonlinear functions of other variables. For example, the body size
component of assimilation rate will become an exponential function of
body size, rather than a linear one. Also it will become apparent that all
environmental disturbance inputs, including food availability, enter the
model nonlinearly. Respiration rate R(s) likewise has three components
here: a body-size component RP(s), a growth rate error compensator,
RE(s), and a disturbance input DR(s). The difference (A(s) — R(s))
is the actual growth rate of the isopod AG(s); integrating this signal by
multiplying it with 1/s gives the current net production of the animal P(s).
The control of growth is assumed here to be of the “integral’ variety;
that is, the controller variables, AE(s) and RE(s), respond to E(s),
the integral of GE(s), rather than to the instantaneous growth rate error
itself. This is equivalent to the biological statement that the animal
has a “memory” of prior nutritional history, a fact that is amply docu-
mented in the literature (cf. Brody, 1945). Here we unrealistically assume,
however, that the animal has an indefinite memory of its past nutritional
states. In the second linear model we shall eliminate this unreal feature.
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DAls)

P(s)
(0} DGls) KAE+KRE AG(s)
s + (KAE+KRE+KRP-KAP)
(c) Dis)
DG(s) £/ KAE +KRE &N+ KAP —KRP AGls)
o s s
AG(s) AGS)

Fic. 5. (a) Block diagram for simple linear model. (b) “Open-loop” transfer
(c) Rewritten block diagram emphasizing the difference
in the locus of disturbance inputs and of the reference input.

function for model in (a).

To find the transfer function H(s) = AG(s)/DG(s), we ‘“‘solve” the
system for AG(s) as a function of DG(s), assuming for the moment that
there are no disturbance inputs. Formally this is the same as eliminating
intermediate variables from a set of simultaneous differential equations.

AG(s) = (d(s) — R(s)
= (KAP|s)(AG(s)) + (KAE/[s)(DG(s) — AG(s))
+ (KRE[$)(DG(s) — AG(s)) — (KRP/s)(4G(s)) ©

®)
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Separating the variables in Eq. (9) and cross-multiplying, we obtain

AG(s) KAE + KRE
DG(s) s + (KAE + KRE + KRP — KAP) "

H(s) = (10)

This is the transfer function relating AG(s) to DG(s) shown in Fig. 5b,
and it is equivalent to the block diagram in Fig. 5c. The effect of our
algebraic manipulation has been to “collapse” the three feedback loops
in the model, to give a much more straightforward, “open-loop” function.
When DG(s) 1s multiplied by H(s), we obtain AG(s). Suppose, for
example, that we are interested in the dynamic response of AG(s) to
one of the following three commonly used ‘‘transient” test inputs:
impulse (the Dirac delta function), step, or ramp (Fig. 6). Because we

x (1) x (1 h )

/0

0 Ng=0+ ! 0
(0) (b) (c)

T -

Fic. 6. Three commonly used transient ‘‘test” inputs: (a) impulse, x(s) = 1.
(b) step, x(s) = 1/s. (c) ramp, x(s) = 1/s%

are operating in the complex frequency domain, we need the Laplace
transform of their time functions, which are respectively: 1, 1/s, and 1/s2.
Multiplying any one of these by H(s) gives the Laplace transform of
the response of 4G(s) to that input.

The generalized transfer function of an arbitrary linear system is a
so-called rational algebraic fraction, consisting of numerator and
denominator polynomials in s

A(s)  ay + agst o A as™
F(S) B B(s) N by + byst + -+ + bys™ ’ (11)

where m <{n for a physically realizable system. The roots of the
numerator, called zeros, are concerned with the gdain (the ratio of output
and input amplitudes) and the phase of the response relative to the input,
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but not with the basic character of the response. The latter is determined
by the roots of the denominator polynomial, known as the system poles
or eigenvalues (Chapter 2). The number of eigenvalues determines
the order of the system. In general, eigenvalues are complex numbers,
and their position on the complex plane is critical for the control
capabilities of the system and its stability. All of the system’s eigenvalues
must have negative real parts; otherwise the system’s response in the
time domain will diverge exponentially to infinity. If the set of eigenvalues
contains one or more complex-conjugate pairs, the system will be
oscillatory; on the other hand, no oscillations will appear if the eigen-
values are real.

Equation (10) indicates that our simple bioenergetics model is a
first-order control system with its eigenvalue located at

s = KAP — KAE — KRE — KRP. (12)

The sum of KAE, KRE, and KRP must be greater than KAP for
the system to be stable. The system is incapable of oscillatory behavior
because it has only one pole, and imaginary poles occur only in pairs.

Once we have a transfer function for the system we are analyzing,
we usually want to determine the corresponding function in the time
domain. The inverse transformation of going from the complex frequency
domain to the time domain is commonly made by the method of partial
fractions. Any rational algebraic fraction such as Eq. (11) can be expressed
as a sum of the form

TG T T e T e 09
where the constants C, are equal to
Ci = [(s +7:) AG)/[B(s)), ~ where s = —7,. (14)
The éth member of this sum is then equivalent to
Cil(s + 7)) = Cyexp(—ryt) (15)

in the time domain. As an example, we solve for the time-domain
response of Eq. (10) exposed to a unit step input of DG(s). Letting
K, = KAE + KRE and K, = KAE + KRE + KRP — KAP, we
have

K, _KJK,  —(KJK) K .
e = e R = R —en(—Ka) (16)

h|‘_-
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Thus, the response of actual growth rate AG(f) to a hypothetical step
from O to | in DG(2) is an exponentially decelerating rise to a plateau
value of K,/K, (Fig. 7), with a time constant of 1/K, .

K g/ K — e e e
OPEN-LOOP, AG(1)
1 REFERENCE INPUT, DG(t)
Ki/KeT—f"— —= CLOSED-LOOP, AG(1)
0 I/K, 1/K3 TIME

Fig. 7. Comparison of step responses of open- and closed-loop simple linear
bioenergetics model.

By use of the step response, we can compare the ability of the open-
and closed-loop versions of the model to track a desired growth rate
input signal. If we eliminate the feedback comparison of AG(s) with
DG(s), the open-loop transfer function becomes

KAE + KRE

HG) = s krP — K4P) °

(17)

Letting K; = KRP — KAP, the time-domain step response of Eq. (17)
is

F(t) = (Ky/K)H{l — exp(—Kgt)}. (18)

Thus the open-loop system exhibits the same first-order type of response
to the reference input shown by the closed-loop system, but responds
more slowly than the closed-loop system and reaches a higher steady-
state level, resulting from the fact that K, > K,. The more rapid
response of the closed-loop system indicates an important and desirable
effect of negative feedback upon the system’s dynamics. The “loop gain”
(the amount by which the signal is multiplied by feedback on itself)
of the system is very important in setting this response time. Thus,
the more we amplify the error-correcting signal by increasing KAE
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and KRE, the more negative the eigenvalue becomes, and the smaller
the time constant becomes.

One undesirable but partially correctable feature of negative feedback
is that the steady-state level finally achieved, K,/K,, is below the
desired level, unity (if we input « unit step). This is a better situation,
however, than in the open-loop model, whose steady-state value K,/K,
need be nowhere near the desired level (Fig. 7). When the loop gain of
the system is known, the problem of undershooting the desired level
in the closed-loop system may be overcome by premultiplying the
reference input by a constant so that the desired level is achieved.
In our case, we can simply scale DG(s) by K,/K,. Note also that
increasing the loop gain by increasing the amplification of growth rate
error relative to the difference (KRP — KAP) will likewise tend to
bring the steady-state performance of the system closer to the desired
performance, as K, approaches K, . Yet another way that control could
be improved would be to make the model respond not only to the
integral of growth error, but to GE(s) as well. In none of these cases,
however, is it possible to achieve a steady-state error of zero for finite
loop gain.

Not only does the open-loop model respond slowly to changes in
reference inputs, and assume steady states frequently nowhere near the
desired states, but also the open-loop model is incapable of compensating
for disturbances. Thus, if we are interested in an animal’s ability to
correct growth errors due to environmental disturbances, including
variations in food availability, the closed-loop model is clearly far
superior to the open-loop one. To explore how these two versions of
the model respond to a disturbance input, the block diagram shown
in Fig. 5a has been modified as illustrated in Fig. 5c, combining for
convenience the disturbances of assimilation rate and respiration rate
into one input D(s). In this form the diagram emphasizes the difference
between the locus of disturbance inputs, which act directly upon the
controlled process, and the locus of the reference input, which does not.

In the model, with the desired and actual growth rate loops closed,
the transfer relations between AG(s) and DG(s) with D(s) included are

K pe — —°

AGE) = g s + K,

- D(s). (19)

For the model in which the actual growth rate loop is open, the transfer
relations are the same with K, substituted for K, . Since we are primarily
interested here in the responses of AG(s) to disturbances, we shall
set DG(s) equal to zero and consider only the second term of Eq. (19).
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Note that s/(s + K,) is a transfer function of the same order in the
numerator and denominator, so that the time-domain equivalent of
this equation will not remain finite with the input of an impulse transient.
Nevertheless, we can explore the frequency response of this system.
If we let D(t) be a sinusoidal input, 4 sin wt, of amplitude 4 and angular
frequency w, the Laplace transform D(s) is given by

A [ | Aw

) |
D(s):j[ASlnwt]:Tj s;jw_s+jw:|:s2_|_w2

(20)

from Euler’s equation, where j = 4/—1. Substituting Eq. (20) for D(s)
in Eq. (19), setting DG(s) equal to zero, and applying the method of
partial fractions to Eq. (19), we obtain the time-domain solution for
AG(1)

AG(t) = ———122 ;4‘“K 4

o exp(—Kyf) + @;’T%ﬁ sin (wt + 5 cx), @1)
where o = sin"Yw/(K,2 + w?)!/?).
In time, the first term of Eq. (21) goes to zero. Thus, the amplitude of
the steady-state oscillation of AG(%) is given by

| AG(t)] = Aw|(K2 + )12, (22)

Earlier we noted that K, of the closed-loop system was greater than
the corresponding constant in the open-loop system K. Substitution
of K; for K, in Eq. (22) significantly increases the amplitude of the
oscillations in AG(%). For example, if welet o = 4 =1, K; = 0.5, and
K, = 8§, the oscillations in the model with the actual growth rate loop
open are 7.22 times greater than in the corresponding closed-loop model.
Clearly, then, the closed-loop model exhibits far lower sensitivity to
disturbances than does the open-loop model.

Before turning to the second linear bioenergetics model, we note
the effect of closing the desired growth rate feedback loop, which we
earlier broke to eliminate the implicit character of the model’s functions.
We may close this loop and still compute a transfer function for the
model if we treat the disturbance input as the “reference input” of the
model. While this is biologically meaningless, this approach will enable
us to discover what happens to the order and stability of the system when
this loop is closed. The transfer function AG(s)/D(s) is given by

AG(s) 52
D(s) s+ S(KAE + KRE + KRP— KAP) — KDG(KAE + KRE)

§2

:s2—|—K2s—K4’

(23)
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where K; = KDG(KAE -+ KRE). This equation has two eigenvalues,
rather than one. The eigenvalues are located at

r = (—K; — (K? + 4K,)')2 and 7, = (—K, + (K? + 4K,)'%)2. (24)

Thus, one effect of closing the desired growth rate loop is to increase
the order of the system to two, by putting the two integrators in the
model in series, or “in cascade,” instead of in parallel. Earlier we noted
that the system without the desired growth rate loop could be either
stable or unstable, depending upon the value of K, . The intact model,
however, is exponentially unstable regardless of whether K, is positive
or negative: since K, is greater than zero, the second eigenvalue is
always positive. It should be noted that this instability is desirable,
because we want our “linear” isopod to grow exponentially with time
as a juvenile. When the isopod reaches sexual maturity, we simply
break this feedback loop, and thereafter the isopod will grow arith-
metically.

VI. Another Improbable Linear Bioenergetics Model

Obviously the bioenergetics model we have just considered is physio-
logically too simple, notwithstanding its linearity. Yet, for many
ecological studies of higher level systems, a nonlinear version of this
simple model—such as might be obtained by adding feedback control
to a modification of Piitter’s equation—may be an adequate model of
individual growth performance, especially if the time scale is measured
in terms of months, years, or other long periods relative to the time
constants of physiological processes. If, on the other hand, one is
interested in ecological events for which days or even hours are important,
certainly greater physiological detail must be introduced into the model.
The price paid for more detail is, of course, a certain risk of losing
generality. Nevertheless, apart from its linearity, the model developed
below will hopefully have general aspects, although it is specifically
meant for an isopod. I have, in fact, drawn upon work done on other
organisms wherever the information necessary was not yet available
for Armadillidium vulgare.

We consider first the process of energy accumulation. In the simple
model, no account was taken of the dynamics of the digestive system of
an animal. The model responded instantly to an increase in food
availability, whereas in reality the time necessary to digest consumed
food may cause a significant time lag in the response of the system to
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changes in food supply. Moreover, the direct impact an animal makes
upon its food supply could not be assessed, because there was no measure
of ingestion; only assimilation was modeled.

Although considerable efforts have been devoted to the measurement
of ingestion and assimilation rates of terrestrial isopods (Bakker, 1956;
Dunger, 1958a, b, 1960; Gere, 1956, 1962, 1963; Hartenstein, 1964;
Hubbell et al., 1965; Paris and Sikora, 1967; Wieser, 1965, 1966),
no attempt has been made to model the dynamic behavior of the digestive
system of isopods as a whole. The model developed here is based in
part upon the work of Ivlev (1961) and Holling (1966a), and upon studies
on Armadillidium (Hubbell and Paris, in preparation).

Holling has found that in a variety of invertebrates the amount
of food ingested after starvation rises at an exponentially decreasing
rate until the gut capacity is reached; by using radioactively labeled
food we have confirmed that this is also true for Armadillidium. This
result suggests that ingestion rate is proportional to the unfilled volume
of the gut. If S4 is the current contents of the gut, SC is the gut capacity,
and dC/dt is ingestion rate, then

dCldt = KC - (SC — SA) = KC - SE, 25)

where KC is the proportionality factor and SE is the remaining unfilled
capacity of the gut. In the nonlinear model, KC is a function of food
availability and physical factor disturbances and SC, which is the
reference input for this control system, is a function of the body size
of the animal P. According to this model, then, the desired condition
of the digestive system is for the gut to be full at all times.

Assimilation rate dA/dt and defecation rate dD/dt are assumed here
to be proportional to the amount of food actually in the gut S4.

dAjdt — KA - SA, (26)
and
dD/dt = KD - SA. @7

We have direct evidence of this proportionality for defecation rate,
from pulse feeding experiments involving radioactive and nonradioactive
food presented sequentially to the isopods (Hubbell and Paris, in prepara-
tion). The exponential rate at which isopods lose radionuclide has two
main components: a fast gut component, and a slower body component
attributable to assimilated radionuclide (Hubbell ez al., 1965). There is
some curvilinearity to the gut component on a semilogarithmic plot,
indicating the existence of several isotopic compartments in the gut.
Nevertheless, the gut component of the radionuclide loss rate curve



4. ECOLOGICAL BIOENERGETICS 299

can be approximated reasonably well by a single-compartment model
for our purposes; and if greater accuracy is ever required, we can always
model the gut as a series of first-order systems in cascade, instead of a
single first-order system.

The proportionality assumption for assimilation rate is based upon
the fact that the metabolic cost related to assimilation, including the
specific dynamic action (SDA) component of respiration rate and
associated metabolic costs of digestion, falls exponentially with time in
a starving isopod, with the same time constant as that for the disap-
pearance of food from the gut (Fig. 8). This indicates that SDA is
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Fic. 8. Superimposed curves of the decrease in respiration rate (@ —@®) and the
loss of radionuclide from the gut (O— — —0O), in a starving isopod at a temperature of 30 C.

roughly proportional to SA4. Since SDA is generally regarded as the
metabolic cost of digesting and assimilating food (cf. Kleiber, 1961) and
is approximately proportional to assimilation, we can assume here
that there is a similar approximately proportional relationship between
dA|dt and SA. The processes of assimilation and defecation result in
calories being removed from the current cut contents. Thus, S4,
the amount of food in the gut, is computed as ingested calories minus
assimilated and defecated calories:

SA=C—A4—D. (28)
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To compensate for growth performance errors, control must be
exerted over this system. In the simple model this was accomplished
in a direct fashion, by adding to assimilation rate the amplified and
integrated growth rate error. Clearly, however, an animal cannot do
this in such a direct manner. What happens, in fact, is that an animal
increases its tendency to feed, regardless of whether or not food is
available. When animals are starved, they not only eat more rapidly,
but also eat more totally to satiation than their unstarved counterparts.
Figure 9 illustrates this phenomenon in Armadillidium, which depicts the
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Fic. 9. Average weight-specific ingestion and assimilation rates of 25 isopods for
an eight-day period. Numbers indicate day of measurement. Solid-line group was starved
for five days before the first measurement. Dotted-line group was not starved.

changes that occurred in average daily ingestion and assimilation rates
for 8 days, in one group of 25 animals that had been starved for 5 days,
and in another group that had not been starved. These results suggest
that gut capacity can be treated as a variable which is a function of
the growth error compensator as well as a function of body size. This is
in contrast to the approach used by Holling (1965, 1966a), in which gut
capacity imposes a fixed physical limitation on the amount of food
that an animal can eat. I shall consider it here, not as the physical
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capacity of the gut, but as the optimal amount of food that an animal
should ingest for its size and nutritional condition. Hence,

SC(s) = E(s) + KSC - P(s), (29)

where KSC 1s a constant.

The assembled linear version of the digestive system component
of the bioenergetics model is illustrated with a block diagram shown in
Fig. 10a. To compute a transfer function for it, we solve for SA(s)

Efs}
P{s)
SCl(s)
+
- Safls).
(o) ):J‘
SE(s)

Cls) +/\- Dis} | 1 | Dis) |
Gy T} o

Als) LA
LI

Els)

(b) scis) K¢

SA(s)

s+ KC+KA+KD

P{s)

Fic. 10. (a) Linear version of the digestive system component of the bioenergetics
model. (b) Open-loop transfer function of model in part (a).

in terms of SC(s), noting that SA(s) is the controlled variable and SC(s)
the reference input. Then, dividing both sides of the equation by SC(s),
we obtain

SA(s) KC KC

H) = 35c6) " F(RCTKATKD) S+ K’

(30)

where K, = KC + KA + KD. Evidently the gut is a first-order system
(Fig. 10b) with a time constant of 1/K;. With a unit step input in
SC(t), SA(t) rises at an exponentially decreasing rate to a plateau
value of KC/K, ; clearly, the smaller K4 and KD are relative to KC,
the closer SA(2) gets to SC(2) in the steady state.
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We turn now to the process of energy dissipation. In the simple
linear model, respiration rate was assumed to be directly and negatively
affected by the growth rate error compensator RE. This representation
may be closer to the truth in homeotherms than it is in invertebrate
poikilotherms. For Armadillidium in particular, the fall in respiration
rate that accompanies starvation appears to be a passive rather than an
active process (Hubbell, in preparation). The decrease is exponential, and
as a first-order approximation appears to have two major additive
components (Fig. 8). The fast component has been attributed to specific
dynamic action and other costs of digestion, and the second, slow
component, to a gradual reduction in the amount of respiring tissue (P).
(The curve in Fig. 8 does not result from a decrease in muscular activity
because Armadillidium, like some insects, spends little time searching
for food in the absence of olfactory stimuli, even when starving.) The
ability, passive or otherwise, of A. vulgare to reduce its respiration rate
when starving is of special adaptive value in California grassland, where
dry atmospheric conditions may prévent the isopods from surfacing to
feed for periods of up to two weeks during the summer and fall drought
(Paris, 1963). Laboratory experiments have shown that A. vulgare can
survive up to 45 days without food.

Little is known about the effect of muscular activity on respiration rate
in Armadillidium because many variables which determine the activity
state of the isopod have not yet been examined quantitatively. Physical
factors known to influence activity include temperature, vapor pressure
deficit, soil moisture, light intensity, and wind speed. Physiological
variables include the nutritional condition of the isopod (when olfactory
stimuli are present—the usual state of affairs in soil in the field), feeding,
and reproductive condition. I have made simultaneous recordings of
respiration rate and activity (Hubbell, in progress), and although this
work is not nearly complete, some general conclusions can be drawn.
From an energetics standpoint, 4. vulgare has essentially two important
activity states. Individuals either sit motionless, often hours at a time,
making only an occasional preening movement, or else they walk
slowly at a temperature-dependent rate (White, 1968; Hubbell,
unpublished results). A third temporally important activity, eating,
has a rate of energy expenditure close to the resting state, and can be
treated as resting. A maximal metabolic scope of about two was obtained
for metabolic rates (averaged over hourly periods) between times of
low and unusually high activity. The isopod is nocturnal, with a peak in
activity usually just before midnight (Paris, 1963; Hubbell, unpublished
results). Finally, when isopods are starved in the presence of a food
stimulus they cannot reach, total daily activity increases up to about
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five days, and then begins to decrease as the animals weaken. The
functional form of this relationship, however, has not yet been well
defined. Until more information is available about activity, we shall
model its effect upon respiration rate as a simple additive term propor-
tional to integrated growth rate error E. This signal will be continuously
“on” in the linear model because of the linearity assumption; in the
nonlinear model, on the other hand, it will only be “‘on’’ for positive values
of £ and when physical factors are appropriate for activity. In other
words, we are assuming that the isopod will exhibit locomotory activity
in proportion to its current nutritional state, modified by the current
state of the “weather.”

The linear model of energy-dissipating processes in a poikilotherm
emerging from this discussion is as follows: If R(s) is respiration rate,

R(s) = KRA - SA(s) + KRE - E(s) + KRP - P(s), 31

where KRA, KRE, and KRP are proportionality factors, and SA(s),
E(s), and P(s) are as before. The first term is the contribution of specific
dynamic action, while the second and third terms are the activity and
body size components, respectively. In the nonlinear model the body
size component becomes an exponential function of P. Omitted from
this discussion are the important nonlinear effects of molting and
reproduction on respiration rate; however, discussion of these effects, as
mentioned earlier, will appear elsewhere.

Before considering the assembled model, we examine briefly the
concept of the “nutritional state’” of an animal. Obviously, since we
are dealing only with calories, our use of the term is less inclusive
than that usually meant by nutritional physiologists. Thus, our model
of nutrition will not explain changes in an animal’s growth performance
due to protein or micronutrient deficiencies. Nevertheless, the effects
of such deficiencies can eventually be included in our model if desired,
and without drawing our attention away from the problem of energy
regulation in animals. This can be accomplished by interpreting non-
caloric limitations on growth performance as the result of measurable
‘““degenerative’”” changes (i.e., changes away from optimal values) in the
parameters of the bioenergetics control system.

Recognizing, however, that currently we can attempt only to explain
the effects of caloric deficiencies on growth, we still face a major problem
with the concept of nutritional state as modeled thus far. In the simple
linear system the variable E (defined as the caloric nutritional condition
of an animal) is simply the growth rate error signal integrated over the
life of the individual. According to this definition, an animal has a
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complete memory of its nutritional history over its entire lifetime.
If this were true, no animal could be permanently stunted by starvation.
From the point of view of the model, if an animal grew at a suboptimal
rate indefinitely, it could conceivably build up an enormous integrated
growth rate error which, when added to the body size component,
would produce an impossibly large gut capacity. It would also produce
an activity component of respiration rate that was unrealistically large.
Clearly, animals do not have an indefinite memory of prior nutritional
history; in reality, they “forget” past food deprivation, and in general,
the farther back in time the deprivation is, the more it is forgotten.

We have evidence of this “memory loss” in growth rate experiments
which we have conducted on Armadillidium (Hubbell and Paris, in
preparation). Cohorts of newborn isopods were maintained either on a
continuous food regime or on different pulse feeding regimes (in which
they were fed one day for every one, two, four, six, or eight days starved).
At the end of about 50 days, all cohorts were put onto a continuous
food regime to test for ‘““memory’’ of long-term nutritional history.
During the 50 days of exposure to pulsed food availability, the isopods
grew at greater exponential rates than would be expected simply from
the percentage time exposed to food (see Fig. 11). This result indicates
that on a short-term basis, isopods ‘‘remember”’ their nutritional history
and attempt to compensate for it. When the isopods were shifted to
continuous food, the initial weight-specific growth rates in all but
the ninth-day cohort were greater than the average weight-specific
rates in the continuously fed cohort, but only for the first four or five
days. However, the initial growth rates of the cohorts fed every fifth,
seventh, and ninth days were no greater than those of the cohorts fed
every other day or every third day. This suggests that after about three
to five days of starvation, further starvation cannot significantly increase
the i1sopod’s compensatory efforts. Of course, if the animal is starved
a very long time, system degeneration takes place, reducing even its
limited abilities to compensate, as in the case of our ninth-day cohort.

In modeling the limited ability of animals to respond to their nutri-
tional history, I have assumed that animals forget at an exponentially
decreasing rate. Accordingly, they will remember immediately past
nutritional events more accurately than events long ago. In the model this
can be accomplished simply by decreasing the integrated growth rate
error E at a rate which is proportional to the size of E. Thus, instead
of KGE|s for the transfer function of E(s)/GE(s), we have

E(s)/GE(s) = KGE|(s + KE), (32)

where KGE is the amplification factor of growth rate error and KE is
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Fi1c. 11. Relationship between the coefficient of exponential growth at 24.5 C and
the fractional amount of time (in days) exposed to food. The dotted line indicates the
growth rate coefficients to be expected if the isopods grew at a rate simply proportional
to the fraction of time exposed to food. The vertical bars indicate 95 percent confidence
limits about the mean growth rate coefficient. (Time unit is one day.)

the gain term in the negative feedback in the forgetting process.
When Eq. (32) is exposed to a unit impulse in GE(t), E(¢) falls from an
initial value of KGE/KE at an exponential rate, with a time constant of
I/KE.

The assembled linear bioenergetics model is illustrated in Fig. 12.
The diagram includes two nonlinear multipliers, shown as circles
containing a multiplication sign, which should be disregarded for the
moment. As in the case of the simple linear model, we wish to determine
the transfer function AG(s)/DG(s); accordingly, we again open the
desired growth rate feedback loop. Simplification of a block diagram
of this complexity is most conveniently carried out in steps. The first
step has already been taken with the determination of the digestive
system transfer function SA(s)/SC(s); substituting Eq. (30) for the gut
component in Fig. 12 gives the somewhat simplified diagram of Fig. 13a.
Note that the output from H(s), the amount of food in the gut, is an
input at two points in the remainder of the model: the specific dynamic
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Fic. 12. Second linear version of bioenergetics model.

action component of respiration rate as well as the assimilation rate

of the “linear” isopod.
The next simplification we can make is to find the transfer function

AG()/E(s).
AG(s) = A(s) — R(s) (33)

= (K4 — KRA) - Hy(s) - SC(s) — (KRP/s) - AG(s) — KRE - E(s). (34)
Since SC(s) = E(s) + (KSCJs) - AG(s), we have

AG(s) S[HL(s) - (KA — KRA) — KRE]
H{) = 5y ~ s T KRP — H() (KA — KR4)-Ks¢® )

as shown in Fig. 13b.
The final simplification removes the two remaining feedback loops
in the model. From Eq. (32)

Hy(s) - KGE

ACGE) = =&z

- GE(s), (36)

which gives the open-loop transfer function in Fig. 13c

AG(s) KGE .
DG(s) s+ KE + KGE - Hy(s) @37
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Fic. 13. (a—c) Sequential steps in the simplification of the second linear bioenergetics
model (see text).

To obtain AG(s)/{DG(s) as a rational algebraic fraction of the form of
Eq. (11), we substitute Hy(s) into Eq. (35) and H,(s) into Eq. (37) and
obtain
AG(s) as® + bs
DG(Gs) S+ es?4-ds +e’

(38)

where @ = —KRE - KGE, b = KGE - [KC - (KA — KRA) — KRE -
(KC + KA + KD)], ¢ = KC + KA + KD + KE + KRP — KRE -
KGE,d = (KE + KRP — KRE - KGE) - (KC + KA + KD) + KC-
(KGE — KSC) - (KA — KRA) + KRP - KE, and e = KE - [KRP -
(KC + KA + KD) — KC - KSC - (KA — KRA)].
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This linear bioenergetics model is a third-order system, so it can
have either three real eigenvalues or one real and two complex eigen-
values; in the latter case it is oscillatory. Unlike the simple linear model,
closing the loop of P(s) onto DG(s) does not increase the order of this
system, but it does change the position of the system’s eigenvalues as
well as its phase and gain. Thus, if we again assume the existence of a
direct and additive disturbance D(s) on growth rate in order to compute
a closed-loop transfer function for the model, we have

AG(s) = A(s) — R(s) + D(s), (39)
which can be rewritten

AG(s) S 4 fs* +gs
D(s) ~— S+t s+’

where f= KC + KA+ KD + KE, g = KE(KC + KA + KD),
h=d — KDGa, and j = ¢ — KDGb).

The caloric state of our “linear” isopod at any instant in time can be
completely characterized by just three state variables. In our case these
are net production (P), the amount of food in the gut (SA4), and the
nutritional condition of the animal (E). All other variables in the model
are intermediate variables that are eliminated in the algebra of computing
a transfer function for the model. The order of a system (in our case
three) determines the mimimum number of state variables necessary
to completely determine the system’s behavior. These state variables
form a state vector which, when specified at some arbitrary time ¢,,
together with the inputs that arrive during the interval between #; and
some later time t,, uniquely determines the values of the vector at
time ¢, , as well as at any time between ¢; and ¢, . Thus, once the initial
values of P, SA, and E are known, along with the values of the inputs
through time, the caloric state of the isopod can be predicted analytically
at any later time.

As in the case of the simple linear model, we are interested in the
stability of the system as a function of the parameter values in Egs. (38)
and (40). Because there are 10 parameters in the model, a very thorough
parameter space study of all its parameters would be an exceedingly
great task. In such complex cases, however, one is usually not interested
in “‘global” characteristics because of the many constraints upon values
that the parameters can take in the real system. For our bioenergetics
model of whole animals, broad constraints are imposed by the laws of
thermodynamics, and narrow constraints by the laws of lumped, lower-
level, physiological systems. One function of the empirical half of

(40)
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systems analysis i1s to determine what these constraints are, as well as
their variability in natural systems.

For purposes of illustration, I shall describe here the response of
the model’s eigenvalues to changes in just one parameter KGE. This
parameter determines the loop amplification of growth rate error.
A more extensive study of parameter constraints and spaces will be
published elsewhere (Hubbell, in preparation). I have chosen KGE for
illustration for two reasons. First, recall from the simple linear model
that the control abilities of a system are strongly affected by the loop
gain of the system. Second, unlike most of the other parameters in the
model, the value of KGE can be estimated only indirectly by empirical
means; consequently, a parameter space study is essential as a corrobo-
rative check. A 3-dimensional graph showing the movement of the
system’s three eigenvalues as the value of KGE is increased from zero
to about thirty is shown in Fig. 14; I used what I consider to be a
reasonable set of parameters for an isopod living at a constant 20 C
temperature. It should be noted that these linear system parameters
are based upon, but modified from, parameters measured on a nonlinear

-05 0 05
! RE

Fic. 14. Parameter space study of KGE, the growth rate error amplification factor,
showing the response of the system’s eigenvalues (see text).
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system—the isopod; therefore, they should be regarded as relatively
crude approximations to the real parameters of the nonlinear system.
Moreover, the optimization of the parameter estimates has not yet
been undertaken, so that some changes can be expected in future

publications (Hubbell, in progress). Tentative values for the parameters
other than KGE are

KC = 2.0/hr (ingestion rate factor)

KA = 0.05/hr (assimilation rate factor)

KD = 0.085/hr (defecation rate factor)
KRA = 0.02/hr (specific dynamic action factor)
KRP = 0.002/hr (body size factor in respiration)
KRE = 0.003/hr (activity factor in respiration)

KE = 0.002]/hr (nutritional condition loss rate factor)
KSC = 0.068 (body size factor in gut capacity)

KDG = 0.00173/hr (desired growth rate factor at 20 C).

The poles of the unforced system with the desired growth rate loop
open are illustrated in Fig. 14. By unforced, we mean that the system has
been exposed to a unit impulse input of desired growth rate. Since the
Laplace transform of a unit impulse is one (Fig. 6), the response of
actual growth rate to a hypothetical impulse in desired growth rate is
identically Eq. (38). Pole 1 in the figure is associated with the state
variable describing the amount of food in the gut (in calories), pole 2
with the nutritional condition of the animal, and pole 3 with the isopod’s
caloric content (net production). In the system with the desired growth
rate loop open, we want the actual growth rate AG(f) to be asymptotically
stable (Chapter 2) in response to the impulse transient in DG(t). The
figure indicates that the system is stable for all positive values of KGE,
because the real parts of all three eigenvalues are negative.

Note that as the amplification of growth rate error increases above
a value of about 20, poles |1 and 2 take on imaginary parts, and the
system becomes unrealistically oscillatory (although the oscillations are
damped). Oscillations are particularly unrealistic for the gut, because
they may cause negative values of caloric gut contents SA. Hence, KGE
must have a value somewhere between 1 and 20. This range is narrowed
considerably more by the fact that the value of KGE chosen must result
in time constants for the disappearance of food from the gut, and for
the memory of prior nutritional history, that are the same as the empiri-
cally determined time constants for these processes. Accordingly, the
amplification factor of GE must be relatively low, somewhere between 1
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and 4.5, because only in this region do poles | and 2 give realistic values
for these time constants.

By comparison with the simple linear model, this model is less
successful at tracking a desired growth rate signal, both because of the
lag introduced by the time to fill the gut and, more importantly, because
our “linear” 1sopod now gradually forgets its nutritional history. Hence,
if the model is exposed to a unit step input in DG(t), AG(t) rises rapidly
toward the desired level of one at first, but quickly slows down, reaching
a maximum below one. Then it slowly decays back to zero at an
exponentially decreasing rate. In other words, the isopod cannot
remember indefinitely the step transient in desired growth rate, resulting
from its limited memory of growth rate error. Note that if the nutritional
condition loss rate factor (KE) is zero, then the system will once more
successfully track a desired growth rate signal indefinitely. Also note
that if KE is zero, the parameter e of Eq. (38) becomes zero, which
reduces the order of the system to two.

In spite of the reduced ability to track a desired growth rate signal,
however, the intact model will still grow exponentially. As in the simple
linear model, closing the desired growth rate loop has the desirable
effect of introducing exponential instability. While in the open-loop
model, parameters ¢, d, and e of Eq. (38) are all positive, in the closed-
loop model parameters 2 and j of Eq. (40) are positive and negative,
respectively, so that one eigenvalue (pole 3) becomes a positive real
number. It should be emphasized, however, that the isopod will not
grow at a rate equal to KDG - P: because the nutritional state is
gradually forgotten, actual growth rate will lag increasingly behind
DG(t). Therefore, the model will grow at the exponential rates measured
on Armadillidium by the optimal environment method (Section IV) only
if we increase the magnitude of the desired growth rate signal by
increasing the value of KDG listed above.

Figure 14 makes it possible to evaluate the relative importance of
the behavior of the three state variables in the dynamics of energy and
growth rate control. Each pole of a linear system is the negative inverse
of the time constant of one of the additive exponential terms in the
time-domain solution. Hence, the more negative a pole is, the smaller
its time constant, and the “faster’’ is that component in the time-domain
solution. An exponential component whose time constant is large
relative to the other time constants in the system, given equal scaling
of all exponential terms by constants, will tend to dominate the dynamics
of the system’s response to inputs. In the bioenergetics model, the time
constants of the body caloric content and the nutritional condition of
the isopod are large relative to that of the gut contents, and have larger
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scale factors as well. Thus, the dynamics of nutritional state and net
production will tend to dominate the tracking behavior of actual growth
rate on desired growth rate, whether DG is generated endogenously in
a natural manner, or exogenously 1n an artificial manner.

Figure 14 also indicates the existence of emergent properties of the
bioenergetics model, properties which are determined as much by the
interaction of the system’s components as by the behavior of these
components “‘in isolation.” Note that the parameter KGE partly deter-
mines the location of all three poles of the system. Thus, KGE amplifies
growth rate error, but in so doing it influences the rate at which the gut
fills and empties, the rate at which the 1sopod forgets its nutritional state,
and to a lesser extent, the rate at which the isopod grows. Similarly, the
other parameters of the system influence the behavior of the systemas a
whole, not simply the behavior of the subcomponent to which they belong.

VII. Toward a More Realistic Nonlinear Bioenergetics Model

Although the linear model developed in the previous section has a
fair amount of physiological detail, at least for ecological purposes,
its linearity severely limits its ultimate heuristic and predictive value.
Given a reasonable value for the state vector at some moment in time,
and a set of parameters reasonable for current body size, the linear
model can probably predict quite accurately the major aspects of the
bioenergetics of an 1sopod for a relatively short period of time—a few
days or perhaps a week or two—provided that the isopod’s environment
1s completely constant. By suitable parameter manipulation, the linear
model might even be made to predict one variable, such as body caloric
content, accurately over the period of exponential growth. This “predic-
tion” would be more coincidental than otherwise, however, because
variables other than P would have unrealistic values. Again a constant
environment is required. Perfectly constant environments are rare;
also they tend to be rather uninteresting.

Environmental variables influence the bioenergetics of animals
nonlinearly, usually with a multiplicative effect. Consider the two
multipliers which we previously ignored in Fig. 12, one of which inter-
rupts the ingestion rate signal, and the other of which interrupts the
signal computing the activity component of respiration rate. Food
availability is one environmental factor which influences multiplicatively
the rate at which an isopod eats. If we scale food availability (F) from
zero to one, and multiply it by SE, we can simulate the effect of varying
food availability on ingestion rate and on the animal’s ability to control
energy and growth rate. Thus, when food is unlimited, F equals one,
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and the animal completely determines the rate at which it consumes
food, according to internally defined needs. On the other hand, when
no food is available, ' equals zero, and the animal eats nothing in spite
of its “inclination” to feed at the rate KC - SE.

Similarly, physical factors alter in a multiplicative fashion an animal’s
tendency to search actively for food. The daily light regime probably
entrains the isopod’s circadian activity, and can be represented by a
variable ranging between zero and one. The action of temperature, on
the other hand, probably cannot be represented by such a variable,
because at high temperatures activity is elevated above what would be
expected from the animal’s “hunger” alone, as the isopod attempts
to escape from unfavorably hot conditions.

Environmental disturbances may act to interrupt signals in the system,
as considered above, but they may act directly on the parameters of
the system as well. My work to date has dealt primarily with one input
variable, temperature, and its effects on the parameters of the biological
rate processes in Armadillidium. In particular, I shall consider adaptive
parameter control by the isopod in the process of temperature acclima-
tion of respiration rate.

Although it 1s well known that the rate of biochemical reactions is
exponentially related to the inverse of absolute temperature and can be
described by the Arrhenius equation (Johnson et al., 1954), no general
mathematical model which adequately describes temperature acclimation
by organisms has been developed. Typically the temperature dependence
of biological rate phenomena is, itself, dependent on the organism’s
history of exposure to temperature. Thus, the response of respiration
rate to temperature is nonlinear, both because of the exponential
Arrhenius relationship and because of the dependence upon prior
temperature conditions. To construct a nonlinear model for this system
would require the explicit modeling of effects on respiration rate of all
possible past temperature regimes, a manifestly impossible task. There-
fore, we have built a model of respiration which is linearized with respect
to temperature, while at the same time attempting to retain the essential
features of the dynamic behavior of the nonlinear system.

According to the Arrhenius equation, the natural logarithm of
respiration rate is proportional to 1/K, a nonlinear relationship to
absolute temperature. In order to obtain a linear relationship between
log respiration rate and temperature, it was assumed that

R =log R = ¢, + ¢;(C), (41)

where ¢, and ¢, are constants. Note that this is still a nonlinear equation
by the definition given in Section V; however, the nonlinearity introduced
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by the constant ¢; is of a very simple sort which can easily be handled
mathematically. Note also that the equation is nonlinear in R. This
“linear” approximation to the Arrhenius equation is only adequate
for relatively small temperature ranges. The temperature range of
interest to the biology of Armadillidium 1s 273-303 K, small enough
so that our assumption of linearity introduces an insignificant error.
This equation, then, can be used to account for the temperature-
proportional responses of respiration rate; it does not, however, account
for temperature acclimation.

Temperature acclimation in the respiration rate of A. wvulgare has
been described by Edney (1964). Apart from the effects of specific
dynamic action on respiration rate, which he apparently did not take
into account, his results have been largely confirmed by me (Hubbell,
in preparation). Acclimation in the standard metabolic rate is most
obvious when an isopod is kept at a constant temperature for some time,
and then suddenly exposed to a step transient to a different constant
temperature. Rather than shifting more or less instantaneously to a
new steady-state level, as Eq. (41) predicts, respiration rate overshoots
the new steady-state level if the new temperature is higher, or under-
shoots the new level if the temperature is lower. This overcompensation
in the acclimation responses of animals is, of course, well known
(Prosser and Brown, 1961; Precht et al., 1955).

Overshooting and undershooting is characteristic of a system which
is responsive to both an input variable and its derivative (or other
higher-order terms). In the present case, the logarithm of respiration
rate 1s sensitive both to temperature and to the rate at which temperature
1s changing. The simplest differential equation which has these properties
1s the first-order equation,

R =+ ok 1 (o), (42)
where ¢;,¢;, and k are constants. This equation, however, predicts
that respiration rate becomes infinite when the animal is exposed to
an instantaneous step change in temperature, an absurdity resulting
from the instantanecous response of respiration rate in Eq. (42) to the
rate of temperature change. Actually, of course, there is a lag in the
response, which means that the logarithm of respiration rate is not
perfectly proportional to the derivative of temperature. This lag has

been included in the model as

d(R’)
dt

LR =t (aﬂ@ (C)). (43)

r dt
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The constant T is the time constant of the exponential decay of log
respiration rate to the new steady-state level. The constant « determines
the type of response exhibited by respiration rate to temperature changes,
as shown in Fig. 15: If o = 1, acclimation does not occur, and respiration
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Fic. 15. Possible responses of a biological rate to a step in temperature. See text
for discussion.

rate responds stepwise to a step change in temperature; if « <1,
acclimation occurs, but respiration rate responds with a lag to a step
change in temperature; if « > I, the most commonly observed type
of acclimation occurs, viz., respiration rate overshoots or under;noots
the new steady-state level. In the latter case the equation describes
a “first-order lead-lag” system.

Respiration rate changes also in response to changes in body size.
As is generally true, in Armadillidium the logarithm of respiration rate
is linearly related to the logarithm of weight (Edney, 1964; Hubbell,
unpublished). This relationship can be accommodated by further
modification of the equation, to make it read

T—d(;:/) + R = ¢; + c,(log P) + ¢4 (“T dfl(t:) + (C))’ (44)
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where ¢, is the proportionality constant for the body size component.
The caloric content of the isopod P changes so slowly that it has no
influence on d(R’)/dt. In A. wulgare the empirical estimates of the
parameters for this equation are: T = 96.4 hr, ¢; = —1.91 log cal,
¢, = 0.234, ¢; = 0.013 log cal/C, and « = 1.68 (Hubbell, in prepara-
tion).

As an illustration of a test of this lead-lag model of respiration rate,
a simulation of the response in the respiration rate of a 50-mg isopod
to stepwise changes in temperature is compared to actual results of
respiration measurements in Fig. 16; the values are scaled for a 50-mg
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Fic. 16. Simulation of response of respiration rate (upper graph) to a hypothetical
square wave temperature input (lower graph). The solid line is the model’s linearized
prediction. The broken line is based on actual results, scaled for a 50-mg isopod, of the
nonlinear step response of standard metabolic rate to temperature. The calculations are
based on the equation 7T d(log R)/dt + log R = ¢; + ¢,P + ¢;[aT d(C)/dt + (C)], where
T 1s the time constant, R is the respiration rate (microliters per hour), ¢, , ¢, , ¢; , « are
constants, and P is body caloric content (log).

animal. The solid line in the upper graph is the output from the model,
and the dotted line presents the performance of the animal. The curve
of temperature inputs is shown in the lower graph. In this simulation,
the caloric content (weight) of the animal was held constant to illustrate



4. ECOLOGICAL BIOENERGETICS 317

more clearly the effects of temperature change on respiration rate.
The model predicts the logarithm of respiration rate as a function of
temperature, but in the graph respiration rate is plotted against temper-
ature, because our interest is in the number of calories dissipated per
unit time by the isopod. Thus, having solved the linear approximation
of the response of log R to temperature and body size, we have returned
to the nonlinear relationship between respiration rate and temperature
by taking the antilogarithm of log R.

With this linear differential equation to model effects of temperature
on respiration rate, it becomes possible to compute respiration rate
given any conceivable history of temperature exposure of the animal.
The equation has built-in lags which, in effect, give the model a
“memory” of acclimation history. Because the model is linear, inputs are
additive so that short-term cycles (e.g., diurnal) can be superimposed
on long-term cycles (e.g., seasonal), and the model will predict the
appropriate acclimation response to the combined effects of these
temperature fluctuations. Even though the values for the parameters in
the model were derived from laboratory experiments with Armadillidium
this model can predict with satisfactory accuracy the fluctuations in
standard metabolic rate (in calories) for an isopod of a specified size
under field conditions, provided that the temperatures which it expe-
riences are known.

Although we have been directly modeling effects of temperature
and body size on respiration rate, it should be clear that it is the respira-
tion rate parameters, such as KRP, KRA, and KRE, which are, in
reality, being directly affected. This fact cannot alter our conclusions
from the model, however, because the parameters must respond to
temperature and body size in a manner similar to respiration rate;
otherwise, they would not produce a signal (respiration rate) with these
response properties.

The dynamic behavior of this first-order lead—lag model can be fully
described by evaluating the frequency response of the system. If an
isopod is exposed to a sinusoidally varying temperature as, for example,
in a diurnal cycle, its respiration rate will also vary sinusoidally with time.
This response is represented graphically in Fig. 17, which is a classical
Bode diagram of the relative amplitude and phase of the input and
output waves of a system, plotted for different frequencies of the input
signal. The upper graph shows the logarithm of the ratio, (amplitude of
the log R sine wave): (amplitude of the temperature sine wave). The
lower graph shows the phase of the log respiration wave relative to
the temperature wave. As the frequency of the input signal becomes
greater, the logarithm of the amplitude ratio (log AR) increases in a
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Fic. 17. Bode diagram illustrating frequency response of respiratory acclimation to
temperature with H(jw) = k - [(jawT + 1}/(jwT + 1)], where T = 96.4 hr, « = 1.6844,
k = 0.01266, and w is in radians per hour. See text for discussion.

sigmoid fashion from a low to a high plateau. This increase reflects
incomplete respiratory acclimation to temperature at higher frequencies,
because respiration rate is overshooting and undershooting with each rise
and fall in temperature. At still higher frequencies (not plotted), the
curve would again fall because respiration rate would no longer be able
to follow the very rapid changes in temperature. When w7 = 0.28 rad,
where w = 0.00291 rad/hr, a complete cycle of temperature occurs
every three months. Thus, for seasonal temperature cycles having a
period of three months or more, the isopod is essentially completely
acclimated at all times. Partial acclimation occurs when the period is
one week (wT = 3.59 rad and w = 0.0374 rad/hr). Finally, for cycles
with a 24-hr period (w7 = 25.3 rad and w = 0.2618 rad/hr), the isopod
shows very little acclimation.

Note that the sine wave of the logarithm of respiration rate is ahead,
in phase, of the temperature sine wave. The lead in phase is a result of
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partial acclimation to temperature: at low intermediate frequencies,
the animal has longer to acclimate as temperature changes than it has
at higher frequencies. This results in a large phase lead. At very low
frequencies (not plotted), respiration follows the temperature curve
exactly (complete acclimation), so that there is no phase lead. At very
high frequencies, respiration has no time to develop a phase lead because
no acclimation takes place before temperatures change.

All of the parameters of the model discussed in Section VI, with
the exception of KSC and KGE, are influenced by temperature; and
all but KGE are also probably exponential functions of body weight.
We are currently investigating the effects of temperature on the para-
meters of the digestive system, and our tentative conclusion is that they
exhibit lead—lag responses to temperature similar to those of the para-
meters of the respiratory system. Growth rates, on the other hand,
do not seem to exhibit overshoot, not is there any apparent tendency
for growth rates to be accelerated by cycling temperatures (Hubbell,
in preparation), as has been found in a number of insects (Cook, 1921;
Parker, 1929; Ludwig, 1928). The frequencies in the temperature cycle
tested so far range from 0.5 to 0.0625 cycles/day. It is possible, however,
that still higher frequencies could have an accelerating effect on growth
rates.

Although we have been considering primarily the nonlinearity of
environmental disturbance inputs, obviously this i1s not the only class
of nonlinearities in the bioenergetics model, because even in a constant
environment the system is nonlinear. As mentioned above, most of the
system’s parameters are log-log functions of body caloric content
(weight). Moreover, desired growth rate i1s a nonlinear process. In
Armadillidium, we have seen that linear models of desired growth rate
suffice, both in the juvenile when the isopod is growing exponentially,
and in the adult, when it is growing arithmetically. The nonlinearity is
introduced by the switch from the juvenile to the adult linear model,
with the opening of the desired growth rate feedback loop. In animals
which do not grow continuously throughout life or have otherwise
different growth patterns, we may expect to find different types of
desired growth rate nonlinearities.

Unfortunately, less is known about the nonlinearities in other compo-
nents of the system. In the case of the digestive system, however, some
educated guesses can be made about what types of nonlinearity to
expect. According to both of the linear models presented earlier, isopods
eat continuously in the presence of food. Continuous feeding, of course,
is not observed in isopods; like all other animals, they have essential
occupations in addition to eating. Clearly, then, animals must have
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built-in mechanisms for terminating currently inappropriate types of
behavior, and initiating others which are more appropriate for the
animal’s present condition. Such mechanisms are often described
abstractly in terms of “‘threshold” switches (Holling, 1966b). Depending
on whether the value of a criterion variable 1s above or below some
threshold value, different types of behavior are exhibited. The effect of
thresholds in a storage-and-flow model is, of course, to produce
discontinuous rates. Some indication of the discontinuous nature of
feeding in Armadillidium 1s evident from the oscillation in average daily
ingestion and assimilation rates of unstarved isopods (Fig. 9), although
a finer time resolution is needed to see the actual discontinuities (Hubbell
and Paris, in preparation). One way that the threshold effect on ingestion
could be easily modeled would be to assume that the animal does not
begin to eat until some fraction of the current gut capacity has been
emptied. In the model, then, SE would have to reach a value, KSE - SC,
where KSE is a constant, before feeding would commence. Such a
model appears to be adequate for a variety of predators (Holling, 1965,
1966b), but whether it isappropriate for isopods remains to be determined.

Another type of nonlinearity found in the digestive system of isopods
is adaptive parameter control. We know for certain that KD, and
probably also KC and KA, are under the partial control of the system.
When Armadillidium is without food, or when food availability is low,
the isopod exhibits a greater assimilation fraction. This results in part
from a slowdown in defecation rate, which means that the food remains
in the gut for a longer period of time. Isopods typically assimilate a
rather small fraction of what they ingest; however, when food is scarce,
they may digest components of the food that are unnecessarily costly to
assimilate otherwise (i.e., when food is abundant) (Hubbell ez al., 1965).

Clearly, much remains to be done on the nonlinear model. A major
problem requiring attention is how animals respond to the spatial
heterogeneity of their environment. Note that the models presented
here have no space dimensions. There are two main courses of action
open. One i1s to model explicitly the spatial attributes of ecological
events by including distance as an independent variable in the model.
The problem with this, of course, is that it would greatly increase the
complexity of the model because we would then have to deal with
partial differential equations in a “‘distributed” system. A less satisfactory,
but possibly more practical approach is to attempt to describe how
spatial properties alter the model’s time-dependent functions, without
explicitly modeling the space dimensions themselves. This was Ivlev’s
(1961) approach in describing how the dispersion of food affects the
ingestion rate of fishes,
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In conclusion, the objective of this chapter has been to underscore
the importance of control in the ecological bioenergetics of animals.
To treat organisms as passive, open-loop, energy-partitioning devices is
to obscure a basic characteristic of living systems: the adaptive control
of energy and growth in the face of a limited and varying potential
energy supply. To illustrate some basic energy-regulating properties of
animals generally, and of the terrestrial isopod, Armadillidium vulgare,
in particular, I have presented two linear bioenergetics models of differing
physiological detail, and aspects of a more realistic nonlinear model
now under development. If the value and necessity of treating organisms
as active, energy-controlling systems becomes more widely recognized,
the objective of this chapter will have been achieved.
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I. Introduction

Predation is often studied from the viewpoint of time spent by the
predator in various activities such as searching for, pursuing, or capturing
prey organisms, etc. (Holling, 1959a, b, 1965, 1966; Ivlev, 1944; Salt,
1961, 1967). While the time that a predator devotes to different aspects
of living is important, time itself is only an indirect measure of the
critical commodity which all predators, indeed, all organisms, must
obtain from their environments. Energy is the essential resource, and
measures of time—while of direct value in some determinations of
population dynamics—actually serve only as indices of the relative rates
of energy acquisition and dissipation of individual predators. It is not
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time per se which determines success or failure of a predator but rather
optimization of the balance which must be struck between rates of
energy acquisition and expenditure. Predators, like businessmen, survive
over the long term not so much because of time spent in various activities
but rather because energy debits and credits are in balance or show a net
surplus.

Individual animals (Brett, 1965a; Glass, 1968a; Ito, 1964; Ivlev, 1939a,
1960, 1961; Smith, 1935a, b), populations (Slobodkin, 1960, 1962;
Englemann, 1961; Richman, 1958), trophic levels (Golley, 1960;
Lindeman, 1942), communities (Odum, 1957; Teal, 1957) and eco-
systems (Patten, 1959) have been investigated from an energetics point
of view. It 1s apparent that the study of energetics at any level of ecological
organization from single individuals to communities or geographic
regions encompassing more than one ecological community can be of
great value (Slobodkin, 1968; Watt, 1968). An understanding of the
energy relationships which exist within a single individual or between
two or more individuals of the same or different species facilitates solution
of practical problems in applied ecology, such as biomass production
(Brocksen et al., 1968; Gerking, 1962; Paloheimo and Dickie, 1966a, b).
Similarly, energetics studies may contribute to ecological theory
(Brocksen et al., 1968; Warren and Davis, 1967; Engelmann, 1966) and
provide a basis for comparison, which is ubiquitously applicable to all
levels of organization from the individual to the ecosystem (Odum, 1968).

Energy, or caloric flux, was, therefore, employed to explore some
aspects of a problem in predation arising from an apparent discrepancy
between predator-prey relationships in nature and corresponding
laboratory systems. The disparity between these two situations can be
summed up as follows. In nature, most predators and their prey coexist
in the same general environment for indefinite periods of time without
the annihilation of the prey and subsequent starvation of the predator.
There must be some explanation for the reasonably long-term survival
of both organisms. That this relative stability does not obtain in the
laboratory for the majority of experimental predator and prey populations
is well known. In the classical case of laboratory populations (Gause,
1934; Gause et al., 1936), it was shown that predators and their prey
would survive only under the special circumstances of providing refuges
for the prey by denying the predators access to some part of the environ-
ment or by introducing additional prey into the environment when there
was a reduction in prey abundance. In a more recent study, Huffaker
(1958) examined two more possible explanations: First, large environ-
mental size allows the dispersal of prey into parts of the habitat unoccu-
pied by predators with the result that prey survive as fugitives; Second,
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prey survive because of partial (not restrictive) refuges which result
from an increase in environmental complexity. There are, therefore,
at least four potentially testable hypotheses and their various combina-
tions, which might serve to explain prey survival and/or predator success.

(1) Prey reproductive rates or immigration of prey from areas
outside of the normal habitat of the predator might be high enough to
prevent extermination of the prey.

(2) Environments might by virtue of sheer size lower the probability
of encounters between predators and prey and thereby allow the
continued existence of the prey.

(3) Refuges may exist within the environment which are accessible
to prey but totally exclude predators.

(4) Refuges in the habitat may provide partial protection for prey
by making access by predators difficult due to some behavioral phenom-
enon (Johannes and Larkin, 1961) or by creating a partial physical
barrier which reduces predator efficiency.

In practice, it is somewhat difficult to separate the effects of these
four possibilities although the first represents a more or less discrete
hypothesis. The fourth hypothesis can be examined in the laboratory
by working in an experimental universe which is small enough for the
predator to see all parts of it from any point and which is designed
so that there are no complete refuges for the prey.

Predator survival is, of course, intimately related to prey survival.
If prey are exploited by a predator at a rate which is in excess of the
maximum sustained yield, then prey abundance will decline to zero,
and this will be followed very shortly by predator extinction. On the
other hand, if prey survival is excessively high (e.g., due to a low
predator attack rate), then the predator will also experience the same fate
although the proximal causes and the effect on the prey are different in
the two cases. In short, predators and prey must coexist in an environ-
ment which does not permit over-exploitation of prey and, at the same
time, allows the predator to acquire food at a level concomitant with its
energy requirements. Therefore, the hypothesis explored by the present
research work is the fourth possibility listed above. This will be examined
by performing a predator energetics analysis, developing a mathe-
matical and computer model of the various means by which a predator
dissipates energy acquired through feeding, and, finally, an analysis of
filmed feeding sessions. The various inputs for the model will be
derived from a study of metabolic requirements of the largemouth
black bass (Micropterus salmoides) and from a description of the environ-
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ment in which the bass is pursuing and capturing a small prey fish
(Lebistes reticulatus).

The analytical approach which was adopted is the experimental
components analysis technique of Holling (1963, 1964, 1965, 1966)
since this method is ideally suited to the solution of problems of this
general type. Accordingly, the processes of energy intake and utilization
can be fragmented, separated into basic and subsidiary components in
the sense of Holling (1963), analyzed individually, and given a mathe-
matical description, and then the entire process reconstructed from
these submodels. As the whole energetic process is rebuilt from
submodels or sub-submodels, and interactions between the various com-
ponents can be included, the end product should then be a reasonably
accurate and realistic systems model of predator energetics which can be
used for descriptive, analytic, and predictive (through computer simula-
tion) purposes. In principle, it should be possible to model from an
energy point of view a bass feeding on a small prey fish given certain
input information such as the temperature, physical description of
plant densities characteristic of the environment, prey density, and
predator weight. Furthermore, it should be possible to determine
which of numerous factors all affecting energy dissipation are most
important in determining the rates of food acquisition and utilization.

With due awareness of the existence of various feedback loops which
exist between components, the general model of energetics adopted here
is similar to those developed by Ivlev (1939b, 1960) and further elabo-
rated by Rashevsky (1959) and Ursin (1967). Basically, the model will
be viewed as a series of additive components

Et:Ew+Er+Ea+Eg) (1)

where E, is total energy requirement (food), E,, is energy wasted due to
incomplete assimilation, E, is energy required for routine metabolism,
E, 1s energy required for active metabolism, and E, is energy required
for growth and reproduction. Some data pertaining to E, (Blackburn,
1968: p. 7) have been collected for the largemouth bass. Blackburn
found digestive efficiency

calories ingested — calories defecated

calories ingested x 100

to be approximately 909%,. This value is somewhat higher than those of
other investigators and was based on a rather small number of observa-
tions. Accordingly, until data in the literature or indications from
further experiments suggest a more realistic alternative, a value of
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859, for assimilation efficiency determined by Brocksen et al., (1968),
Warren and Davis (1967), and Winberg (1956, p. 156) will be assumed to
be correct. Similarly, E, may be derived from the net difference (positive
or negative) between energy intake in the form of food and energy
dissipated according to the formula

Eg = 0.85E; — (Er + Ey). (2)

Therefore, only two components (E, and E,) will be presented here in
detail. Furthermore, E. and E, are assumed to be independent and
additive basic components.

II. Materials and Methods

To determine the parameter values, structure, and relative contribu-
tions of E, and E, to the bioenergetics and possible environmental
limitations dictating survival or local extinction of largemouth bass,
three types of experiments were conducted. First, a physiological study
of routine metabolic requirements was performed by varying the weight,
environmental temperature, and time of food deprivation. The dependent
variable measured was oxygen consumption. Data obtained from this
set of experiments were then analyzed and assembled into a mathematical
description of the E, component. The precise method of modeling
this component is set forth in Section III. Second, an experiment
was conducted to reveal the energetic requirements of largemouth bass
at various swimming speeds. The dependent variable measured was
again oxygen consumption. A detailed mathematical description of
this component (E,) along with its derivation appears also in Section III.
With data from, and a mathematical description of, the above two
experiments, results from the third experiment can be interpreted and
better understanding of predation and its bioenergetic implications
obtained. The third experiment involved determining the amount of
food actually captured by the bass at four levels of environmental
complexity and consists of movie films taken during feeding bouts.
A detailed description of the experimental methods used in all three
of the above investigations appears below under the appropriate
subheadings.

A. EXPERIMENTAL ANIMALS

The prey fish were female guppies (Lebistes reticulatus) varying in
weight from 0.5 to 1.0 g (av = 0.6 g) which were collected by dip net
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at intervals not exceeding five days from the University of California at
Davis sewage-treatment plant. Females of this size range were used
because of their abundance and also to minimize possible variability of
predator attack behavior which might result from using males with
widely varying colors and color patterns. In addition, since the predator’s
gut capacity is approximately 6-8 g, determined both from the feeding
studies of Wells (1968) and direct autopsy data, the predator would
have to eat a number of prey during each feeding session to become
satiated. This provides a measure of the variability in attack velocity
during a filmed feeding session, thereby reducing the amount of film
to be analyzed.

Largemouth black bass, Micropterus salmoides, were obtained from
two sources. The majority came from the State of California, Inland
Fisheries Division fish hatchery at Elk Grove, California, through the
generosity of Dr. Alex Calhoun. These bass were seined from holding
ponds, transported approximately 30 miles to Davis, where they were
held in either 10-ft diameter plastic swimming pools or in 250-gal
holding tanks. The other source of bass was Lake Berryessa in Napa
County, California, from which they were seined and transported to
Davis. The bass were maintained in the laboratory on a diet of guppies,
Gambusia, and young green sunfish and bluegills. No attempt was made
to control either light regime or water temperature between experimental
runs. Before using any fish experimentally, they were moved to different
tanks and acclimated to desired temperatures as outlined below.

B. RouTINE METABOLISM MEASUREMENTS

Before each run, the bass were fed to satiation every day for at least
two weeks (satiation was assumed if excess food was present two hours
after feeding). Since data on six fish could be collected during each
routine metabolism experiment, all six were placed in a 75-gal tank and
fed an unmeasured but excess supply of food during the acclimation
period. It was therefore necessary to assume that each individual received
a maximum ration, and observations indicated this to be valid.

Beamish (1964a) measured oxygen consumption after a temperature
acclimation time of two weeks following a gradual change in temperature
of 4-1 C/day until the desired temperature had been attained. Brett
(1964) included an extra week of acclimation at 5-C intervals above 10 C
in raising the temperature of young sockeye, but this was not considered
necessary for bass, a warm-water fish. Therefore, the acclimation
regimen of Beamish was employed to avoid confounding effects of
the previous thermal histories of the fish (Fry, 1957). Some fish were
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maintained more than eight weeks at the experimental acclimation
temperature.

Following the above acclimation procedure, fish were fed to satiation
(as defined above), weighed individually and placed in respiratory
chambers of one of two sizes, depending on size of the fish. The
chambers were cylindrical, 15 cm in diameter by 15 cm long (approxi-
mately 2.5 liters) for the smaller fish, and 15 cm in diameter by 30 cm
in length (approximately 5 liters) for larger fish. The chambers were
made of §-in. Lucite, painted black to reduce visual stimulation, and
provided with a 7.5-cm diameter hole at one end to allow introduction
of the fish. This hole was sealed by inserting a No. 14 rubber stopper.
Other environmental stimuli (Fry, 1947) and vibrations were minimized
as much as possible by performing the experiments in a concrete block
laboratory isolated from other buildings. Low intensity vibrations were
no doubt present since an air conditioner was in operation during the
summer months and piston type air pumps were operated continuously
to aerate various aquaria and holding tanks. However, even if slight
vibration was present, it was at least continuous.

Data on oxygen consumption were collected by means of a galvanic
cell oxygen analyzer (Precision Scientific Co.) which operates on the
principle of O, diffusion through a thin polyethylene membrane.
Measurement of dissolved oxygen (milligrams of O, per liter) was
accomplished by reading parts per million (ppm) O, directly on a meter
calibrated in 0.2-ppm intervals with the capability of estimating 0.03 ppm
with reasonable accuracy. Dissolved oxygen determinations were made on
water flowing into the respiration chambers from a constant temperature
water bath in which the chambers were immersed. The amount of
dissolved oxygen was then determined in the water flowing out of the
respiration chambers from a 2-in. o.d. Tygon siphon tube. The flow
of water through the chambers was regulated by means of a screw
clamp on the siphon hose and was set at a flow rate such that the change
in dissolved oxygen resulting from extraction by the fish was at least
1 ppm. The error in interpolating the second decimal place was thereby
reduced to approximately 39,. The rate of water flow was measured
by using a stop watch to find the time required to fill a 100-m] graduated
cylinder. Galvanic cell readings were taken either visually at selected
time intervals (approximately 3-hr intervals, night and day, for the
first 24 hr of each run) or were monitored continuously by dc microam-
meter recorders (Esterline-Angus Co.).

The oxygen analyzer was calibrated daily, checked periodically by
the unmodified Winkler titration method, and the probe renewed as
required to maintain a sensitivity of at least 0.5. Sensitivity is determined
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by dividing the meter reading in ppm dissolved oxygen by the actual
dissolved oxygen concentration determined either theoretically for that
temperature and salinity, or directly by Winkler titration

dissolved O, (meter)
dissolved O, (actual) °

sensitivity of probe =

Comparisons between the oxygen analyzer and Winkler titrations were
always within +19%,.

Variation in the temperature of water flowing into the respiration
chambers did not exceed 41 C for any experimental run at any of
the three acclimation temperatures. The three experimental temperatures
were 124+ 1C, 20 £ 1C, and 25 + 1 C. These were maintained by
thermostatically controlled submersible 150-W heaters. The 12-C
experiments were conducted during winter to coincide with prevailing
thermal trends experienced by fish in nature and to minimize seasonal
effects on routine metabolism (Wohlschlag and Juliano, 1959).

C. AcTivE METABOLISM MEASUREMENTS

The apparatus used for determining oxygen consumption at various
swimming speeds was essentially a combination of that used by
Wohlschlag (1957), and Wohlschlag and Juliano (1959), and that
described by Fry (1957) and Fry and Hart (1948b). The chamber was
a circular torus constructed of }-in. clear Lucite with an outside
diameter of 92 cm, an inside diameter of 61 cm, square (15 cm X 15 cm)
in cross section, and containing a total volume of approximately 54 liters.
Water was siphoned out of the torus by means of a Tygon outlet with
flow rate controlled by a pinch clamp. Water removed for dissolved
oxygen measurement was replaced by allowing water to enter the
chamber from the 250-gal constant temperature water bath in which
the torus was immersed. The rotating chamber was suspended by three
wires fastened to one end of a mandrel, the other end of which was
fitted with a series of reducing rubber V-belt pulleys. The chamber
was driven by a 5-hp electric motor, and by varying the combinations of
pulleys on the mandrel and on the motor the velocity of rotation could be
varied between 5 and 70 cm/sec. In addition to pulley selection, a
variable voltage transformer was connected to the electric motor and
virtually any swimming speed within the above limits could be selected
and maintained. It was found, however, that at velocities below 5 cm/sec,
it was difficult to maintain a constant torus speed, apparently due to
slight fluctuation in line voltage.
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A mechanical counter was attached to the torus to count the total
number of chamber revolutions. This number divided by the total
minutes elapsed time equals revolutions per minute (rpm). By multi-
plying rpm times mean circumference (260 cm) and dividing by
60 sec/min, velocity in centimeters per second was determined.

To be sure that each bass maintained its position in the chamber
during the run, pairs of 20-cm stainless steel electrodes were installed
inside the torus at approximately 15-cm intervals around the inside
and outside walls. The inner circle of electrodes was wired together
and 4-6 V (60 cycle ac) were passed between the inner and outer
electrodes each time the outer electrode made contact with a fixed
brush mounted on the side of the water bath. With each contact between
an electrode and the brush, a pulse would result, and since this pulse
would always be detected by the fish at a fixed location with respect
to the water bath, an avoidance of this region was quickly learned.
After a few mild shocks, an inexperienced fish would maintain a position
slightly in front of the electric field until fatigued.

The method of temperature acclimation for active metabolism
measurements was the same as that described for the routine metabolism
experiments. Following acclimation to 20 4 1 C, each bass was fed to
satiation (as defined above), then starved for 24 hr, weighed to the
nearest 0.1 g, introduced into the torus through a 7.5-cm hole, and
allowed 12 hr to become accustomed to the chamber. Each fish was
thereby kept for 36 hr (24 4 12) without feeding. This deprivation
period has been considered adequate by other investigators (Brett, 1964,
1965b), and should be sufficient to assure a postabsorptive state
(Beamish, 1964a). Even though routine metabolism in largemouth black
bass has been observed to require four to five days before approaching
approximately standard metabolic levels (Glass, 1968a), the first 36 hr
accounts for the majority of oxygen uptake due to specific dynamic
action of food (SDA), digestion and assimilation of food, etc.

Following the 12-hr habituation period, the hole used for introduction
of the fish was sealed by inserting a No. 14 rubber stopper, the ppm
dissolved oxygen in the torus was measured, the revolution counter was
reset to zero, and the torus was set in motion at a low velocity. After the
first few fish had been run, it was possible to estimate the approximate
time required, at a particular velocity and weight of fish, for extraction
of about 1 ppm of dissolved oxygen. This was done to minimize the
error in reading the oxygen meter, as mentioned above and to avoid
respiratory dependence which might result from low dissolved oxygen
concentrations. The torus was then stopped, and a dissolved oxygen
reading was taken along with a determination of probe sensitivity. The
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torus was then flushed by circulating water from the constant tempera-
ture water bath through it for at least an hour. The torus was then sealed,
ppm dissolved oxygen determined, and rotation initiated again at, gene-
rally, a velocity higher than that of the previous run. This process
was repeated at several velocities so that a full day was often required
to complete work on one fish. After each bass had been run in the
torus, it was placed in a separate holding tank and a new fish was
introduced into the chamber and held for 12 hr for testing the next day.

All active metabolism experiments were performed at 20 4 1 C.
A total of 48 bass was used, some of which were tested individually;
others were run in groups of two or three. The weight of test fish ranged

from 21.5 to 294.0 g.

D. FiLMiNG EXPERIMENTS

Feeding sessions were filmed in July, August, and September of 1967.
Sixteen-millimeter movies, using a Bolex Rex 16H camera equipped
with a 16-mm (moderately wide-angle) lens and electric drive motor
were taken with Eastman Kodak tri-X film at an f setting of 4.0.
Rolls of film 100 ft in length were used throughout the filming experi-
ments since this amount of film represents 4000 frames, and with a
time of 1 sec between frames, 100 ft lasts approximately 1 hr. A filming
speed of 1 fps was chosen as a compromise between accuracy in recording
movements of the bass and time required for frame-by-frame analysis.
A time lapse of 1 sec was obtained by using a timer and solenoid (Sample
Engineering Co., MC-5 movie control) which could be set for intervals
ranging from 1 fps to fph.

The films were taken from overhead through a 2-ft square hole in
the celling of a 9 x 12-ft filming room illuminated by eight 150-W
bulbs. The light bulbs were located at ceiling height and were positioned
so that there was no reflection from the surface of the filming tank onto
the film. The camera was located 4.15 m above the filming tank, the
distance at which, with the wide angle lens, the entire frame of film
was occupied by the tank, thereby giving optimal resolution.

The filming tank consisted of two parts, a holding or maintenance area
divided into three sections to keep the fish separate during nonfeeding
times. This separation guaranteed several objectives. First, each predator
was 1solated from the others, and aggressive behavior which normally
exists between largemouth bass in confinement was eliminated. Also,
maintaining each bass in the tank in which filming takes place ensures
acclimation to the proper temperature, eliminates excessive handling
by the experimenter, and allows time for habituation to the filming
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tank and filming room. Therefore, the fish is not disturbed when the
sliding doors are raised to allow its entry into the filming arena, and
film as well as film analysis time is not wasted while habituation to new
surroundings occurs. In addition, little fecal material accumulates on
the bottom of the filming tank, lessening the possibility of confusion
with a prey fish during analysis of the film record.

The second part of the filming tank is used for filming of feeding
bouts. This arena is 4 X 6 ft, made of 3-in. exterior plywood which
has been fiberglassed at each seam and corner to prevent leakage; all
surfaces were coated with fiberglass resin and painted with white exterior
house paint to enhance contrast between the fish and the background.
The white background was necessary to accurately identify prey fish,
which appear quite small when the film is projected on a screen or viewed
in the film analyzer. The bottom of the filming arena was covered with
a 4 x 6-ft x 18-in. piece of white Lucite in which %-in. holes were
drilled every 2in. on 2-in. centers. Any predetermined pattern or
density of 2-in. wood dowels could then be inserted into these holes and
a range of environmental complexity or cover density could be easily
established (see Fig. 1). By changing the density of dowels (4 X 6 in.
in length), it was then possible to alter experimentally the density of
partial refuge for the prey fish and, thereby, force the predator to pursue
and capture prey in an environment which is more or less complex.

Initial analysis of the movie film was performed on a Vanguard
motion analyzer and consisted of locating the head of the bass in each
frame of film. This was accomplished by aligning cross hairs on the
head of the bass, recording the X- and Y-coordinate values on data
sheets and later punching these coordinate values on punch cards for
computer processing. Each set of coordinate values represents the
position of the predator and, by knowing that the time between frames
was | sec, the velocity of the bass from frame to frame could be readily
calculated. Accelerations and times spent at various swimming speeds
were computed, and by knowing the energy requirements of different
swimming speeds from the active metabolism experiments, it was
possible to calculate energy utilization for each feeding bout. The
information obtained from each feeding session consisted of the weight
of the bass, prey density, water temperature, time of food deprivation,
number of successful and unsuccessful pursuits, cover densities, and
number and weight of prey eaten.

Films were made of three individual bass at a temperature ranging
from 21 to 27 C with a minimum of two films at each of four cover
densities. This is a very small sample size but in the absence of automatic
film-reading equipment the long times required for film reading would
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Fic. 1. Density and arrangement of cover in the filming area of the filming tank.
Each dot represents the location of a % X 6-in. wood dowel inserted into the tank bottom
and extended to the height of the water level. Cover type 1 has no pegs anywhere in
the tank. Cover type 3 is approximately double the peg density of type 2, and cover
type 4 is approximately twice as dense as type 3 (not to scale).
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have been prohibitive. The four densities of wooden doweling (see Fig. 1)
were:

(1) no pegs inserted in the tank bottom, a completely open and
unobstructed feeding area,

(2) 84.5 pegs/m?,
(3) 185 pegs/m?,
(4) 370 pegs/m?2.

Water depth in the filming tank was maintained at only 6 in. to avoid,
as much as possible, the effect of three-dimensional movement of the
predator by permitting only searching and pursuit which approximated
a plane. This makes the use of only one camera, filming from overhead
(instead of two cameras at right angles) a reasonably accurate method of
recording swimming distances and velocities, and correspondingly
reduces the time required for film analysis.

Each bass was maintained in the holding area of the filming tank for
at least two weeks before feeding sessions were filmed to allow time
for habituation to the tank and to become accustomed to feeding in the
filming arena, Before introducing fish into the filming tank, they were
kept in another similar room in an identical tank. This was done to
reduce the time required to become sufficiently used to surroundings
in the filming room so that film and filming time would not be wasted
on an animal which would not perform “properly.” When a fish was
placed in the filming tank, it was given an identification number,
weighed and allowed one to two days to recover from handling and
weighing. Each fish was kept in the filming tank for approximately
four to six weeks during which time it was filmed 15-20 times. This
resulted in more films taken per fish than will be analyzed here. The
reason for this is that initial taking of movie films is less time consuming
than retrieving the data from the film record. Therefore, additional
films were taken in case more ‘“within fish” replication was required, but
these were not analyzed due to the excessive time required.

III. Results and Discussion

A. ROUTINE METABOLISM

Figure 2 shows graphical representations of some of the pooled data
as this was used to develop a computer model of the routine metabolism
(E,) component of Eq. 1. Table I gives a summary of routine metabolism
data,



TABLE I

SuMMARY OF RoUTINE METABOLISM DaTa, FOR LARGEMOUTH BLack Bass
( Micropterus salmoides) DEPRIVED OF FOOD FOR 24 HR

Temper- Number Number
ature Weight group Av. weight + 95% Av. mg Oy/hr + 95%  Av. mg O,/hr + 959% of of
(C) (g) con. int.* con. int.* con. int.® observations fish
12 10.1-20.0 13.4 + 1.701 2,08 + 1.76 164.1 + 148.5 6 3
20.1-40.0 253 £ 1.44 4.64 + 2.79 196.1 £ 123.3 12 4
40.1-80.0 67.5 + 3.58 4.68 + 1.22 71.5 4+ 21.5 22 6
80.1-160.0 100.2 £+ 1.68 7.27 + 2.49 72.6 £ 25.0 15 3
160.0-320.0 227.1 + 1.45 17.78 £+ 7.63 78.5 4+ 33.8 7 2
20 2.5-5.0 4.0 + 0.00 1.22 + 0.24 305.1 4+ 60.8 14 1
5.1-10.0 8.9 + 0.00 2.30 + 0.32 258.3 + 36.4 14 1
10.1-20.0 14.7 4+ 1.26 2.58 +0.28 182.0 & 23.1 34 3
20.1-40.0 27.1 + 1.43 3.74 £+ 0.40 138.6 + 13.2 82 7
40.1-80.0 469 + 1.14 6.35 4+ 0.66 134.2 4+ 12.7 58 5
25 0.0-2.4 20 £+ 0.14 0.72 + 0.14 362.8 + 66.8 24 17
2.4-5.0 3.0 £ 0.07 0.81 + 0.07 262.0 + 22.7 142 69
5.0-10.0 6.9 + 0.75 1.99 4+ 0.22 299.3 + 34.4 25 11
10.1-20.0 15.0 + 0.43 3.48 1+ 0.32 233.9 4+ 21.8 67 11
20.1-40.0 28.3 + 0.89 5.53 + 0.64 194.4 + 20.1 102 14
40.0-80.0 58.3 4+ 2.08 8.93 £+ 1.09 156.0 4+ 19.8 92 11
TOTAL 716 168

¢ con. int. = confidence interval.
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Confidence intervals and/or standard errors of means are given to
demonstrate some of the statistical characteristics of the data. The
confidence interval is calculated on the basis of small sample size
(n < 30). This was done to avoid overinterpreting the data and to
minimize the importance of considering »# the number of individuals
tested or the number of observations (regardless of the number of
individuals). All statistical computations were made on the basis of
formulae in Bennett and Franklin (1966). With # as the number of fish,
Student’s ¢ was calculated to determine any significant differences
between mean values of mg O,/hr in Table I for each comparable
weight group at each temperature. The formula used was

t =

20.2
0,109

with n, + n, — 2 degrees of freedom. No significant differences (¢ ;)
between weight groups were found.

In Fig. 2 it may be readily seen that oxygen consumption for all
weights and temperatures declines with increasing time of food depriva-
tion. This is an important independent variable which has been over-
looked by many investigators for two main reasons. First, it is difficult,
if not impossible, with our present knowledge of physiological processes
and existing techniques of studying respiratory metabolism to determine
the separate effects of food assimilation, specific dynamic action of
food (SDA), and lipogenesis during times of high blood glucose
immediately after feeding. As a result, most investigators have simply
determined routine metabolism at some fixed time of food deprivation
(usually 24-36 hr). However, the effect of food deprivation time has
been studied in trout and white suckers (Beamish, 1964b), a limpet
(Berg et al., 1958), lungfish (Smith, 1935a, b), largemouth black bass
(Glass, 1968a), and a few other poikilotherms. The second reason
why starvation time has been neglected seems to be that, apart from
being just one more aspect of oxygen consumption for physiologists to
examine, the need for data of this particular type is greatest if a model
of a dynamic process such as the energetics of predation is to be
developed.

Elsewhere (Glass, 1968a) the form of the function describing the
decay in oxygen consumption with increasing time of food deprivation
has been established using data from largemouth black bass, data on
white suckers and trout (Beamish, 1964b), and data on five breeds of
domestic animals (Brody, 1945). This relationship was best described by

Y; = a + b exp(—cX;), 3)
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Fic. 2. Oxygen consumption (milligrams per hour) as a function of time of food
deprivation at three experimental temperatures and three levels of weight. (a) tem-
perature = 25 C, weight = 59.1. (b) temperature = 20 C, weight = 27.1. (c) tem-
perature = 12 C, weight = 100.3. The solid line is the line of best fit through the data
and was determined by an iterative least-squares calculation of best parameter values
for the function Y = a + be’X. The dashed line represents the prediction of the model
[Egs. (11), (12), or (13)] for the stated weight and temperature. Best parameter values
for each weight and temperature are given in the accompanying tabulation.
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where Y is oxygen consumption (mg O,/hr), X is time of food depriva-
tion in days (7D), and a, b, and ¢ are considered constants for any
weight and temperature.

In Fig. 2 the values for these three constants which give the best fit
of the equation to the data appear [based upon minimum sum of squares,
>(Y; — Y,)?]- An inspection of the values for the constants reveals
that they are actually not constants, but vary in a systematic way. It is
this variation which will be exploited in development of the computer
model and, as will be shown, the variation can be explained in terms
of the weight of the experimental animal and its acclimation temperature.
Inspection of Fig. 2 shows that oxygen consumption varies with time of
food deprivation as a family of curves whose intercepts, asymptotes,
and rate constants all vary as functions of at least weight and temperature.

The simplest and most thoroughly studied parameter in Eq. (3) is a.
This obviously corresponds to and approaches Y, ;. or standard
metabolism, which is known to vary with the body weight of the organism
(Zeuthen, 1953; Kleiber, 1947, 1961) and also with temperature
(Winberg, 1956, 1961; Beamish and Mookherjii, 1963; Fry, 1957).

The most widely accepted mathematical description of the effect of
weight is

Y, = aX/ 4)

where Y, is oxygen consumption (mg O,/hr), X; is weight (W), and
« and B are constants. Figure 3 shows plots of oxygen consumption as a
function of body weight at each of the three experimental temperatures.
An inspection of these figures reveals two items of interest. First,
the slope 8 is in the range reported by other investigators (Job, 1955;
Zeuthen, 1953; Winberg, 1956; and many others). Second, « varies
with temperature. A plot of o appears in Fig. 4 and is graphed as a
straight line in the absence of enough data to demonstrate clearly any
other functional relationship, although an exponential function could
probably be rationalized if the origin were considered a valid intercept.
Since at 0 C there would be very little oxygen consumption, the line
should pass almost through the origin. For this reason the intercept
in Fig. 4, even though it was derived from the best least-squares fit
to the data, will not be incorporated into the model. The slope was
found by least squares to be 0.021 and will be included as

a = 0.0217, (5)

where T is temperature in degrees centigrade. By taking the average
value for the slope in Fig. 3 to be 0.77 [close to the two-thirds propor-
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tionality from the so-called surface area-to-volume proportionality, which
is probably slightly low (Fry, 1957)], Eq. (4) can be refined by substi-
tuting Eq. (5) into it as

Y, = o8 = 0.021T Wo-m, 6)
By then substituting Eq. (6) back into Eq. (3), the result is

Y, =a+ be* TP = 0.0217 W77 4 pe—e 7D @)
which expresses oxygen consumption in milligrams O, per hour in terms
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of temperature, weight of the fish, and duration of food deprivation.
This kind of data is available from some respiratory metabolism studies,
and the biological bases of oxygen consumption become more evident
when a step-by-step derivation can be shown.

It is more difficult to establish a logical biological basis for the
parameter b in Eq. (7), but this can be accomplished by the following
reasoning: b represents the difference between Y.  at zero time of
food deprivation and Y, . This difference, of course, is due to food
in the gut (i.e,, SDA, active transport, if any, for assimilation of some
food materials, and perhaps gut meotility) and/or other processing of
this food. The more food in the gut, the larger will be the difference
between Y, and Y ;. . By analyzing a large quantity of feeding data
collected on M. salmoides by Wells (1968), which reflects the influence of
feeding behavior as well as the morphological relationship between
body weight and gut capacity, each body weight could be assigned a
gut capacity. A comparison between feeding data and direct autopsy
data showed a consistent tendency for feeding data to underestimate
the maximum gut capacity of the fish. Nevertheless, if this under-
estimation 1s consistent for all weight groups, a plot of maximum gut
capacity (G .4) as a function of the animal’s weight should yield the
correct shape of the functional relationship between these two variables,
and the true parameter values will only differ from the derived parameter
values by a constant (C). Therefore, since

Ymax — Ymin € b o¢ Gax = f(weight),
then
b=f(W)+C,
assuming a consistent difference between feeding and autopsy data.
Figure 5 shows the functional relationship between & and log,, W which

proved to be the transformation producing a linear relationship. By
linear regression the line of best fit was found to be

b = 8.25 log,, W — 7.31. (8)

By substituting Eq. (8) into Eq. (7), the computer model can be
developed one step further

Y, = 0.021T W7 4 (8.25 logy, W — 7.31) e=¢ T, o)

The rate constant ¢ is the only remaining parameter to be explained.
This parameter will be influenced primarily by three variables—the
amount of food in the gut at any instant during digestion, the type of
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food eaten (i.e., protein, carbohydrate, or fat), and temperature. Perhaps
G ax Will also have an effect since this will determine the absolute
quantity of the gut contents. An increase in gut contents might slow
the rate at which the gut is emptied, but no data which might
describe this relationship were collected. The type of food being ingested
was not varied due to the effect that this might have on other parts of
the experimental program. Also, different food types would have added
one more dimension to the experimental design, and time and facilities
prevented this. The relationship between ¢ and temperature could be
derived from existing data but would be confounded as a result of at
least the two above-mentioned variables. Therefore, ¢ was simply set
in the computer model by three Fortran logical IF statements, depending
upon the experimental temperature, as

IF (T.EQ.12.)) ¢ = —1.97
IF (T.EQ20.) ¢ = —1.10 (10)
IF (T.EQ.25.) ¢ = —0.90

It may be readily seen from (10) that Ac/AdT — 0 as temperature
increases. This is not unexpected since intuitively the rate at which
the gut empties should approach a finite maximum. One implication of
this is that the error introduced into the model as a result of errors
in the value selected for ¢ will decrease at higher temperatures. This
observation negates to some extent errors which might arise in inter-
preting the filming experiments since some of these were conducted at
temperatures slightly in excess of 25 C.

The model developed in this section will be implemented later in
analyzing the film records. It consists of three equations, one for each
temperature at which routine metabolism experiments were conducted.
These three equations are

Y, =0.021T W*77 + (8.25 log;q W — 7.31) 197 TP (11)
Y; = 0.0217 W77 4 (8.25 logy, W — 7.31) ¢~1-10 TP (12)
Y, = 0.021T W7 + (8.25log,y W — 7.31) ¢ 0-90 TP (13)

which differ only in the rate constant ¢ which is set in the computer

program by (10).
B. SENSITIVITY OF THE MODEL

Table II consists of the matrix which results from perturbations in
each of the constants or variables in Eq. (12). For a given percent change
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TABLE II
ResuLTs ofF THE SENSITIVITY TEST OF THE CoMPUTER MODEL®

o
Devi/:tion a B b a ¢ T w TD

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 6.03 17.15 8.30 —4.33 —2.13 6.03 5.81 —2.13

20 12.05 39.17  16.61 —8.66 —4.14 12,05 11.33 —4.14

30 18.08 67.46 2491 —12.99 —6.04 18.08 16.59 —6.04

40 24.11 103.80 33.22 —17.32 —7.85 2411 21.62 —7.85

50 30.13 15048 41.52  —21.65 —9.55  30.13 2646 —9.55

60 36.16 21043 49.82 —2598 —11.17 36.16 3113 —11.17

70 42,19 28745 58.13 —30.32 —12.70 42,19 3564 —12.70

80 48.21  386.37 66.43 —34.65 —14.14 4821 40.00 —14.14

90 54.24 51344 7474 —3898 —15.51 5424 4424 —15.51

100 60.27 676.67 83.04 —43.31 —16.81 60.27 48.36 —16.81

@ The results were taken from Eq. (12) at 20 C for an arbitrarily selected weight of 50 g
and TD of 0.5. Each variable or constant was varied individually and the resulting percent
change in routine oxygen consumption appears in the appropriate column.

(0-1009%,) in each variable or constant taken individually, the resulting
percent change in the value of routine metabolism can be found in the
appropriate row and column. It should be noted that if the variable
values were different from the particular ones that were selected, the
relative sensitivity of each variable or constant might be expected to
change. In addition, the absolute change in Y would be somewhat
different if other variate values, for example, W = 10.0, TD =5,
T = 12, were initially chosen. Obviously, many tables similar to Table II
could be generated, each based upon different values of T, W, and TD,
to demonstrate how the sensitivity of Eq. (12) changed as a result of
altering the input variables. This was not done since several pages of
related tables would yield information of minimal utility for present
purposes. The equation for the computer model,

Y = (a« T W8) + [(b log,e W — a) exp(c TD)), (14)

indicates which column of Table II is representing each of the constants
or variables, and is analogous to (12).

There are several points revealed by Table II. First, the most
dramatically influenced column is that headed by 8 (column 3). This



348 NORMAN R. GLASS

parameter enters the computer model as the fractional power to which
the weight of the animal [see Eq. (6)] is raised to give routine oxygen
consumption. The constant B is probably one of the most frequently
measured parameters in studies of respiratory metabolism in fish
(see Winberg, 1956). However, it is probably not actually a constant,
as can be seen from Fig. 3. Very likely, B is influenced by interaction
between time of food deprivation, weight, and probably temperature
as well (Job, 1955). Various values for 8 have been reported in the
literature. Fry (1957) has discussed them, and it would be redundant
to repeat that discussion here. It is sufficient to say that most values
reported for B approximate the well-known surface area-to-volume
relationship.

Since f is the most critical parameter, it follows that a great proportion
of experimental effort should be allocated to its determination. The
sensitivity of the model to perturbation in § was not known at the
beginning of the experimental work reported here, but this “constant”
was determined on the basis of 716 observations of 168 animals and
this should be more than adequate statistically. With this number of
degrees of freedom, the variance (assuming o/y/n = 109, of the mean
value for ) would have to exceed 0.69 (o = 168 - 0.0041 = 0.69)
before additional sampling would be called for. To produce a variance
of this magnitude would obviously require fluctuations in the data such
that more than 33 9, of the experimental observations would yield a value
for B of —0.19 <{ B < 1.47. This is clearly not true since values of §
in these ranges would indicate wildly different values and variances in
oxygen consumption than are evident in Table I. It 1s therefore safe to
conclude that more than enough samples were taken. It should be noted,
however, that while accuracy in B has probably been attained, the
criterion of realism in describing processes influenced by and influencing
B has not been achieved. For purposes of showing how f affects metabolic
processes, it should properly reflect interactions between at least weight,
temperature, and time of food deprivation. That 1t does not arises from
the magnitude of the experimental program necessary to incorporate
these interacting variables, so a reasonably accurate mean value was
accepted as tolerable for present purposes.

The parameter which causes the second greatest fluctuation in the
model is b, a linear multiplier of log;, /. That this is true emphasizes
the need for studies of feeding behavior in order to provide realism and
accuracy as well as completeness in any model purporting to describe
metabolic processes in fish. It is, of course, the behavioral aspects of
fish feeding which dictate how closely the amount of food in the gut
approximates maximum gut capacity, morphological limitations and
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capabilities of the gut notwithstanding. Therefore, it is evident that
significant improvements in the accuracy of » must await quantitative
investigations of feeding behavior.

That « and T constitute the third most sensitive components (as well
as being identical) should not come as a surprise. They are multipliers
of each other, and in addition exert an influence on the calculated value
of routine metabolism which is even less than the induced change in
their initial values. It is important to realize that if 7 were to be incor-
porated into the model as a functional part of the rate constant ¢, the
effects on Eq. (12) caused by small changes in T would be expected
to increase substantially.

The actual weight of an experimental animal is apparently less critical
to the performance of the computer model than was anticipated.
Column 8 of Table II reveals a slightly diminishing, but nearly constant,
change 1n the output from the model with increasing percent deviations
in W. It should be pointed out that with ¥, as in the explanation of T,
the expansion of certain model components (such as ¢) to include the
effect of body weight might well result in an increased sensitivity to
perturbations in W. However, that the model is somewhat resistant
to variability in both W and T is an advantage since in a later section
Egs. (11),(12), and (13) will be employed to determine theoretical values
for oxygen consumption during filming experiments. Although this
apparent damping effect becomes important to the film analysis since fish
weights were not taken every day and environmental temperatures were
variable, the reasons for the lack of sensitivity to ¥/ and T are not known.

The low sensitivity of the model to 4 can be explained by the manner
in which it exerts its effects. Since it is simply a linear addend in the
functional relationship shown in Eq. (8), it might be expected to be of
small importance.

Deviations in ¢ and T'D are equal in their alteration of the output
from the model because they are multipliers of each other. Resistance of
the model to changes in 7D are low, but this results largely from the
level of the variate values initially chosen. It is obvious from the relation-
ship between oxygen consumption and 7D (see Fig. 2) that at low
(less than one day) values of T'D this variable becomes very important
in determining oxygen uptake. Conversely, after a long period of food
deprivation the importance of 7D to routine metabolism is quite
minimal. The same argument applies to ¢. However, ¢ is seen from
Table II to be one of the least important parameters for another reason.
Changes induced in all the constants and variables was directional,
as can be seen from the following set of Fortran statements which
show the method of creating deviations in c.
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A=10
polr = 1,10
C=CxA
Calculate the value of ¥ by Eq. (12).
c Calculate and write the percent change in Y resulting
from the deviation in ¢.
A=4a-+0.1

| Continue

Since the shape of the curve generated by the computer model changes
from the form seen in Fig. 2 to a straight line as ¢ — 0, it follows that
if ¢ were made more positive instead of more negative in (14), it would
be more critical to model sensitivity than Table II indicates. Therefore,
resistance of the computer model to changes in ¢ depends upon at
least two factors, T'D and the direction of the imposed deviation. The
lower the value of T'D, the more the model output is altered by deviation
in ¢, particularly if that change results in a more positive value of c.

C. AcTIvE METABOLISM

The results of active metabolism experiments in summary form
appear in Table III. The raw data were pooled in two different ways.
First, using standard cgs notation, work per milligram of O, consumed
as a function of velocity, and efficiency (defined as centimeters
traveled X 10* per milligram of O, consumed) were calculated and
plotted (see Fig. 6). This figure reveals two experimental problems
that arise in determining oxygen consumption for different velocity
levels. One is that at higher velocities (above 30-35 cm/sec) it becomes
difficult for the bass to maintain high swimming speeds, long enough
to ensure adequate reduction in dissolved oxygen concentration (refer
to Section II). This increases error resulting from limitations of the
experimental apparatus, thereby decreasing confidence in data points
at high velocities. In addition, provision for the oxygen debt incurred
at high swimming velocities has not been included in the data points.
This is especially important where total swimming time is relatively
short. The combination of these two factors therefore increases the
uncertainty of the form of the function which should be chosen to
describe work or efficiency of energy utilization at different velocities of
swimming. Consequently, the following simple empirical relationships
were used in Fig. 6:
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TABLE III
SUMMARY OF ACTIVE METABOLISM Data BROKEN DOWN BY WEIGHT®

mg O,/cm Number

Weight  Velocity traveled of obser-

(g) (cm/sec) o vVn mg O,/hr o Vn (x10%) o Vn  vations
30.50 7.35 0.62 6.98 0.35 2.67 0.36 2
34.14 15.76 0.95 10.45 0.99 1.91 0.23 10
39.07 26.29 1.08 12.26 0.95 1.37 0.14 6
33.99 34.66 0.84 16.20 5.97 1.53 0.43 7
35.50 44.60 2.08 29.23 6.66 2.22 0.82 3
49.13 8.44 1.39 12.38 0.71 4.46 1.15 3
46.87 13.78 0.72 10.67 1.06 2.01 0.16 13
50.49 25.93 0.78 16.62 2.13 1.56 0.17 11
45.99 34.99 1.22 14.83 3.75 1.44 0.27 7
45.90 51.41 4.86 24,94 5.68 1.38 0.36 4
69.55 6.90 1.03 11.38 0.51 4.65 0.48 2
69.40 14.81 1.21 10.81 1.24 2.05 0.22 5
70.64 23.50 0.76 16.61 1.70 2.00 0.25 8
68.32 34.88 0.65 23.28 6.48 1.84 0.52 5
64.80 45.93 0.41 40.07 9.94 2.43 0.62 2
93.73 6.93 1.53 20.99 7.60 3.71 0.94 3
88.33 14.12 0.79 17.30 1.87 3.39 0.30 6
88.44 26.38 1.18 22.89 3.23 2.43 0.38 8
87.75 36.07 3.76 33.47 21.19 2.44 1.37 2
94.60 45.21 3.38 31.52 3.84 1.93 0.09 2

¢ Each o/v'n column corresponds to the variable column immediately to the left.

For 20.0- to 60.0-g fish,

and for 60.1- to 100.0-g fish,

work = 0.077 + 0.244X}-™

work = 3.45 — 0.0145X,

work

work

—0.486 - 1.823X)-24
5.05 — 0.0526X;

For 20.0- to 60.0-g fish,

efficiency = 0.0935 + 0.326.X7-%%*

efficiency = 1.22 — 0.0147X;,

for

0
for X

for

0
for X

for

for

(15a)

(15¢)
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and for 60.1- to 100.0-g fish,

efficiency = 0.0811 4 0.1078x%-31 for 0 <X <284
(15d)
efficiency = 0.62 — 0.0065X, for X > 28.5,

where constants were determined either by linear regression or by an
iterative least-squares technique (Marquardt, 1963; Glass, 1967, Conway
et al., 1970).

The second method of pooling data was by weight and velocity (see
Fig. 7). This relationship is, of course, subject to the same qualifications
as Fig. 6. The value of routine metabolism was calculated from Eq. (12),
using as input, T = 20.0, W = average weight, and TD = 1.5 days
(see Section II). An equation of the form Y = a + bX° was fitted to
the active metabolism data, where X represents swimming velocity and
a, b, and ¢ are fitted constants.

Figure 8 is the result of pooling the data of Spoor (1946) for several
intervals of activity. Many investigators of respiratory metabolism in
fish have regarded Spoor’s graph (his Fig. 4) as evidence for a linear
relationship between oxygen consumption and activity. Figure § shows
that this presumption is probably invalid and, in the case of Spoor’s
data, results in an underestimate of standard metabolism by about 509%,.
Two lines of reasoning render the assumption of linearity improbable.
First, the residual sum of squares is approximately twice as high for
the straight line of best fit as it is for the curve. Second—and probably
most convincing physiologically—increasing swimming velocity has a
greater than linear effect upon oxygen consumption (see Fig. 7). Further-
more, the exponent of the curve in Fig. 8 has a value of about 1.5.
This is not entirely unexpected since it is approximately the reciprocal
of the well-known surface area to volume relationship. It would seem
reasonable to hypothesize that use of muscle mass (oc volume) facilitates
swimming or level of activity, and that water resistance (oc surface)
hinders swimming or level of activity. Logically, then, if the surface
area to volume relationship is physiologically sound, the idea of swim-
ming velocity (or activity) raised to the 3/2 power being approximately
proportional to oxygen consumption should also be true.

Complete description of active metabolism by a mathematical model
was not possible since data for a wide range of temperatures and weights
of fish were not collected. However, a partial model based upon the
data that were collected was constructed since the weight and tempera-
ture ranges involved in the filming experiments were not too different
from those of the active metabolism experiments. The model was
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developed using Eq. (12) in place of the fitted constant a (the Y-
intercept) in Fig. 7 since at zero velocity oxygen consumption should
approach routine metabolic levels (Y ;,). Substituting RM as the
output from Eq. (12), the equation for active metabolism becomes

Y = RM + bVe (16)

where Y is oxygen consumption in milligrams per hour, V' is velocity in
centimeters per second, and b and ¢ are fitted constants (see Fig. 7).

D. FiLMeD FEEDING SESSIONS

Analysis of movie films of feeding sessions was accomplished by
means of a computer program which computed velocity, acceleration,
location of the predator in the filming tank, and both routine and active
metabolic expenditure through time during each feeding session. The
number of attempts by the predator to capture prey, the number,
time, and location of prey captures as well as the predator’s velocity
and acceleration during attempts and captures were monitored also.
Some of the output from this program appears in summary form in
Fig. 9 and Table IV. It is obvious that the complexity of analyzing
film records is not great but does require a prodigious amount of
bookkeeping. Once the scheme of analysis has been developed, however,
memory capabilities of a moderately sized digital computer such as
the IBM 7044 are adequate.

Both high and low cover densities (cover type) or environmental
complexity fail to optimize long-term energy input and expenditure,
although for quite different reasons. At low cover densities the predator
has the capability of annihilating its food source which, of course,
ultimately leads to local extinction of both species. At the low cover
density, therefore, maximal energy input to the bass may be realized
but this will result only in short-term predator success, and the evolution
of an animal which crops lower trophic levels in any but a sustained
yield fashion is very unlikely. At high cover densities, the predator
is subject to a double disadvantage. First, an apparently behavioral
deterrent to initiating attempts to capture food is operating (see Fig. 9)
in combination with both a high velocity required to capture food and a
lowered maneuverability due to a more complex environment (Table I'V).
Second, column 5 in Table IV indicates a relatively low amount of
work per unit energy expended at high cover densities, and column 6
shows a rapid decline in the distance traveled per unit energy input.
Therefore, even though the probability that an attempt will result in a
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Fi6. 9. Some summary information derived from analysis of filmed feeding sessions.
Graph (a) shows the probability that an attempt will result in a successful capture at
each cover density. Graph (b) shows how the rate of capture of prey fish by the predator
declines with increasing cover density and represents the product of probability of
capture and the attempt rate. Graph (c) gives the rate at which the predator attempts
to capture prey at each level of cover density. Graph (d) shows the calories per day
expended (solid line) by the predator and the calories per day acquired (dashed lines)
by the predator at each cover density for 6 hr/day spent feeding and 12 hr/day spent
feeding.

capture increases slightly at high cover densities as opposed to the
probability of capture at intermediate cover densities, the number of
attempts initiated declines and the energy expenditure per attack
increases rapidly. Stated simply, the rate of capture or food intake



TABLE IV

SuMmMARY oF Data DERIVED FROM FiiM RECORDS OF FEEDING SESSIONsS?

Physiologically
Average Average Work/mg O, Cm Cal/hr Cal/hr useful cal/hr
velocity velocity Level of at capture traveled/mg O, Probability expended  captured captured
Cover at attempt at capture  signifi-  (g-cm/mg O,) at capture of successful during during during
type (cm/sec) (cm/sec) cance X 10— x 10— capture feeding feeding feeding
1(23) 57.01 23.68 0.001 2.67 0.642 0.0795 179 1845 864
2 (12) 51.35 23.12 0.01 2.62 0.630 0.0596 159 1448 677
3(7) 57.01 50.12 0.1 2.72 0.480 0.0510 153 1043 487
4 (8) 42.29 69.59 0.01 2.44 0.194 0.0541 131 495 231

2 Each column is derived from analysis of approximately 100,000 frames of movie film. Level of significance is from Student’s #-test
for the difference between mean velocity at attempt and mean velocity at capture. Numerals in parentheses are degrees of freedom.
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must be substantially higher than observed, or more than 12 hr/day
must be devoted to feeding at the experimentally observed rates before
the effects of high cover density (such as decreased efficiency of energy
utilization) can be overcome.

In the case of environmental complexity and its effects on predator
or prey success (or both), the criterion for continued existence is
optimization rather than maximization. To maximize the energy input,
a predator would be most successful if it could feed in a simple environ-
ment for an unlimited time. This would permit a maximum energy
input, but would also result in extermination of prey. Optimization of
energy acquisition and utilization requires that the predator, through
behavioral or physiological means, be adapted to an environment
requiring slightly higher energy expenditure to acquire food and,
at the same time, one which provides an energy dividend in the form of
increased efficiency of energy utilization. In the present context an
environmental complexity approximately intermediate between cover
types 2 and 3 appears to be optimal in this respect. It would be interesting
to know if this level of environmental complexity is also compatible
with other aspects of prey survival, but this would be difhicult to deter-
mine in the laboratory using the present predator-prey system. One
tentative conclusion drawn from the filming experiments could be tested.
If a cover density intermediate between cover types 2 and 3 is optimal for
largemouth black bass from an energetics point of view, then assuming
Eq. (2) to be valid, growth of bass in the 20-50 g weight range under
these conditions could be determined and checked for correspondence
with growth curves in the literature. No denial of complicating factors
such as prey density or schooling of predators is implied, but such a
growth experiment could provisionally confirm or deny the validity of the
metabolic model presented here. A simulation model designed to test
the hypothesis that the energy acquisition and dissipation rates discussed
here will result in growth rates comparable to published growth rates
has been developed by the author and is currently being refined.

Figure 9 shows the daily theoretical energy budget for a 50-g bass
at 25 C. By multiplying the rate of attempts at each cover density
by the probability of successful capture at that cover density, it is possible
to determine the theoretical number of prey captured per hour. By
multiplying the rate of prey capture by the average prey weight (0.6 g),
the grams of food ingested per hour were determined. Assuming 859,
assimilation efficiency and 750 cal/g wet weight, the calories assimilated
per hour spent feeding were calculated. Using the concept of “primary
heat,” Ivlev (1939b) found that 459, of assimilated calories were
unavailable to the organism for physiological purposes, and therefore
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approximately 559, of assimilated food was “physiologically useful.”
Caloric intake was calculated by

caloric intake g of food captured
hr - hr

x 750 cal/g x 0.85 x 0.55.

To apply this hourly rate of caloric intake to a 24-hr day would
introduce error for a number of reasons. For example, prey accessibility,
abundance, and density are probably not uniform over an entire day.
In the immediate vicinity of a predator, bass engage in activities other
than feeding for a variable proportion of any given day, etc. Since the
number of hours per day spent feeding at the experimentally determined
hourly rates is not known, 12 and 6 hr/day were assumed. Figure 9,
graph (d), shows the results of these two assumptions. It is important
to note that the hours spent in feeding were selected arbitrarily and
that regardless of time spent feeding, increases in cover density result
in a more than linear decrease in energy captured.

The effects of cover or environmental complexity on an aquatic
predator—prey system are several. From the preceding paragraphs,
it is possible to conclude tentatively that cover dampens (stabilizes)
predator—prey interaction by affecting the predator’s energy cost per
capture (see Table IV, column 5), reduces the rate at which prey are
attacked and captured, and that these combined effects decrease the
energy available for growth. This conclusion implies that not only are
predator and prey survival influenced by cover density but that the
rate of predator biomass production is related to cover density as well.
For this reason, from the viewpoint of trophic ecology, it appears
reasonable that cover will influence the sustained yield of predator
biomass to other predators (including man). Hence, from the standpoint
of aresource manager attempting to maximize both stability and produc-
tion of a predator—prey system or an ecologist investigating the predation
process, a study of the effects of cover and predator energetics deserves
central consideration.

E. SUMMARY

A computer model of the routine and active respiratory metabolism
of the largemouth black bass (Micropterus salmoides) was developed
using data from laboratory experiments. Sensitivity of a model of
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routine metabolism to various perturbations in variate and parameter
values was tested. The slope of the line relating log oxygen consumption
to log weight was tentatively determined to be the most critical parameter
in the model. The two components of respiratory metabolism in fish
that were under study (routine and active metabolism) were combined
into a more complete model used to describe some aspects of largemouth
black bass energetics. The energetics model was then used to explore
some implications and consequences of environmental complexity on
the predation process. To do this, approximately 100,000 frames of
movie film taken of feeding sessions were analyzed individually. By
incorporating the energetics model into the computer analysis of film
records, it was possible to discuss the energetic consequences of preda-
tion by largemouth black bass in environments with different cover
densities. It was tentatively concluded that both prey survival and
predator success would occur at levels of cover density intermediate
between a completely unobstructed (no refuges for prey) environment
and one in which cover density was high (370 units/m?). The optimality
of intermediate cover densities was found to be based upon energetic
considerations. Although efficiency of energy utilization by the predator
was found to be high in completely unobstructed environments, it is
well known that simple laboratory environments result in prey extinction.
Therefore, lack of cover was considered to be suboptimal for long-term
predator survival. At high cover densities 1t was found that a reduction
in energy utilization efficiency occurred. It was concluded that for
long-term predator survival a balance between energy acquisition and
energy dissipation could be achieved at intermediate levels of environ-
mental complexity (cover density). One characteristic of an optimal
environment for largemouth black bass was therefore deemed to be an
intermediate or moderate cover density.
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THE ECOSYSTEM: SIMULATION

Webster’s Unabridged does not inspire confidence in simulation as a prospective new tool
of science. It’s definitions are mainly pejorative: “act of assuming an appearance which is
feigned, or not true; pretense or profession meant to deceive ... a counterfeit ... a fraud.”
John McLeod reacted unbelievingly with an article, “‘Simulation is wha-a-at?”’ (1968. “Simula-
tion, the Dynamic Modeling of Ideas and Systems with Computers,” p. 3. McGraw-Hiil,
New York). It is, of course, in modern usage, the dynamic modeling of ideas and systems
with computers, and this section brings together a group of papers describing various
aspects and philosophies of ecological simulation, with ecosystems the center of attention.

Chapter 6 provides a transition from Part Il by starting with a general population model
at the single-species level. Drs. Lassiter and Hayne believe that behavior of big systems can
be mimicked by combining detailed submodels, and further, that mathematical parameters
of the latter should be restricted to those which correspond to known or postulated bio-
logical processes. As Hubbell does, in Chapter 4, they recognize that feedback control may
not be directly related to specific recognizable structures or physiological functions, but
that regulation may come out of a dynamic interplay of processes when systems are complex
enough. And ecosystems, they say, have the requisite complexity and dynamism.

Their model emphasizes the identity of the individual organism as mediator of all trans-
actions in coupled ecosystems. The focus is on energy, particularly details of consumer
energy budgets and their mechanisms of regulation. The equations are presented in finite
difference form for digital computer implementation, neatly simplified by using a time step
of unit length. The final result is a Fortran program and description of a number of simulation
trials, providing a basis for discussion of population control in relation to the well-known
Hairston, Smith and Slobodkin (1960. Am. Natur. 94, 421) generalizations.

Chapter 7 considers a number of broadly encountered problems in ecosystem simulation.
The framework is the cryptozoan subcommunity of the forest floor, a complex system
embracing hundreds of populations and trophic interactions. Dr. O’Neill addresses the
problems of simulating temporal fluctuations, quantifying energy and material flows, and
compromising mathematical perfection to data imperfections.

Noting that constant coefficient models are inadequate to represent seasonal dynamics,
a practical method of determining time-varying coefficients is described and applied to
a millipede energetics example. Population simulation is illustrated with Collembola.
Parameter estimation in complex food web models is approached through a conditional
probability method related to Bayesian statistics. The method is applied to centipede and
spider multiple-prey microcosms to determine dietary compositions. Interaction of radio-
tracer methodology and mathematical modeling in unraveling food webs is discussed. As
an illustrative example, steps in the preparation of a digital computer model of radiocesium
kinetics on the forest floor are described, with point-by-point discussion of difficulties as
they arise. Finally, simulation runs are presented, illustrating the value of models, even
inadequate ones, in concept formation and research planning.

Chapter 8, by Bledsoe and Van Dyne, poses the interesting question whether or not some
of the newer methods of systems ecology might not be used in connection with some of

365
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the older data and observations of traditional synecology. The notion is to seek new insights
from past literature, and to preserve and extend the usefulness of semiquantitative and even
qualitative data.

Two descriptive studies are recast in terms of simulation models, both on old-field
succession, one in Oklahoma and the other in North Carolina. The methods and problems
of making such conversions are systematically described, and example outputs from the
models provided and discussed. Comments about appropriate uses of different kinds of
hardware, both analog and digital, at different stages of model development are offered, and
manpower requirements for such studies are also outlined. As to uses of such models, the
authors suggest both sensitivity and perturbation analysis, stating that successional effects
of fire, draught, erosion, pesticides, etc. can be given at least preliminary evaluation.While
this paper may not bring the original idea to its ultimate utility, it does demonstrate clearly
that qualitative information is not necessarily incompatible with modeling.

Chapter 9 is an analog computer study of three energy models of the plant-moose-wolf
food chain on Isle Royale. Details of the programming are given, following the steps outlined
in Chapter 1. All non-feeding flows are represented as constant fractional transfers from the
donor compartments, and feeding flows only are varied in the three models, being linear,
nonlinear “uncontrolled,” and nonlinear “controlled,” respectively.

Behavioral characteristics of the models are compared in terms of free and forced
responses, steady states, and recovery from steady-state displacements. The uncontrolled
nonlinear system was generally unstable. The controlled nonlinear model gave results
similar to the linear one, with some improvement in realism based on considerable im-
provement of the biological rationale. Since little is gained operationally, however, Rykiel
and Kuenzel suggest that linear models may be the more appropriate for studying general
dynamic characteristics of ecological systems, particularly if the latter are in near-steady
states where linear theory is known to apply.

Chapter 10 is a simulation study of Lindeman’s classical investigations of Cedar Bog Lake.
Probably no work of recent times has had the impact of this single effort, and a retrospective
look at it through the developing eyes of systems ecology is thus quite instructive.
Dr.Williams tries faithfully to preserve Lindeman’s ideas in developing a hieararchy of models
from the general to the specific. The data requirements of the models, however, quickly
expose numerous gaps in the original information.

Four models are developed and explored. The first, a linear three-compartment cascade,
failed to reproduce any of the significant behavior of the Cedar Bog Lake ecosystem when
examined by an analog computer. The model was then expanded into a ten-compartment
linear system with branching. Simulations of this and subsequent systems were performed
with a digital computer, using a program that employs Euler integration. The model con-
formed generally to Lindeman’s flow and standing crop data, but produced some unrealistic
resufts due to dominance of the ooze compartment. The third model, a nonlinear ‘“‘un-
controlled” version of the ten-compartment system, proved sluggish and unstable. Sub-
sequent adjustments stabilized it and improved its responsiveness. The resultant “‘controlled”
nonlinear system was then modified variously in efforts to produce a realistic simulation.
One result was negating Lindeman’s general hypothesis of increasing assimilation efficiency
with increasing trophic level. However, Dr. Williams is quick to point out that this and other
deficiencies revealed by the modeling study in no way detract from the original work,
a milestone for its time. The value of modeling as an aid to structured thinking is thus
underscored by its power to expose weaknesses in one of the best early examples of struc-
tured thought in ecological literature.
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I. Introduction

This attempt to set up a rational model of an ecosystem has had two
objectives. First, we wanted to examine the feasibility of such a task
and identify the information needed; here we are encouraged by our
results. Our second objective was to explore the results of changing
parameters (within the model’s limited ability). Here we have just begun.

There were two major questions when we started. First, can any
finite model be realistic enough to be useful when any real ecosystem
involves such great complexity and scope? Second, will we simply
know enough within the near future to build a useful model ? Clearly,
much depends here on the point of view; although we disclaim any
definitive answer to either question, we remain optimistic on both
counts.

A. PoiNT oF VIEW

Models are abstractions of real-world phenomena. They are used to
frame concepts and organize knowledge to the end that the right ques-
tions may be asked. Some models are mathematical; these do not differ
in any basic way from non-mathematical models. They are expressed in
formal notation, tend to be more explicit, and proceed in natural
sequence from the conceptual to the quantitative form.

In ecology, many of the modern conceptual models are inherently
complex and difficult. Mathematical modeling may prove to be useful
in several ways. First, it provides a means of systematic organization
for what is known. The discipline of setting down a logical whole often
forces attention to some relationship that hitherto has been ignored.
If a model can be adequately quantified, then a test of the validity of
general ideas may be possible. Systems analysis provides the basic ideas
that may make possible the attack upon so complex an entity as an
ecosystem. This is that the complex whole can be studied by modeling
its separate parts and then combining these subsystems into the whole.
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The nature of correspondences observed between the real system and
the model is of fundamental concern to the ecologist. In the develop-
ment of a mathematical model, when the biological rationale is discussed
for a particular mathematical statement, in effect an isomorphism is
being described (Hall and Fagan, 1956). The rationale amounts to a
discussion of properties of the real system in relation to the mathematical
expressions chosen. The fewer the constraints placed upon the model
by the mathematics, the closer the situation is to an isomorphism, and
the more realistic the results may be expected to be. It has been pointed
out, however, that in practice, every model is a homomorphism (see
Chapter 1). Simulation is the use of mathematical models to quantita-
tively reproduce some aspect of the real world. This model is used
in simulation. The results, however, apply only very generally to the
real world, for lack of many items of specific information required
before simulation can be more specific.

As a guiding principle in developing the present model, we have,
insofar as practical, admitted only algebraic components analogous to
known or specifically postulated biological phenomena. To admit a
mathematical function without any biological analog can often provide
better curve fitting, but it explains nothing. On the other hand, if we
construct a model analogous to the known or intelligently-postulated
details of a system and find little correspondence to long-term system
behavior, then we learn a significant fact: our hypothesis is too limited.
We then must look elsewhere, and one way is to postulate a biological
mechanism that may influence system behavior, introduce it as part of
the simulated system, and try it. If it improves the results, then it may
be worth studying in the real world. Such feedback between model
simulation and the direction of field and laboratory research is the
promise mathematical modeling can make in the advancement of
ecological understanding. Such an approach is sound, however, only to
the extent that the system model is built of components analogous to
the real system as we comprehend it.

Differential equations have been most used in the development of
ecological models, and computers have been employed (Garfinkel,
1962, 1967; Garfinkel and Sack, 1964; Patten, 1965; Wangersky and
Cunningham, 1957; King and Paulik, 1967) as solutions have become
more intractable. Solutions become more intractable as greater reality
and resultant complexity are introduced. Thus, computer simulation,
often meaning the solution of a set of simultaneous differential equations,
has been employed of necessity in lieu of analytical solutions.

In the present work a recurrence or difference equation has been used
as the basic population model. This approach is well suited to capabilities
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of the digital computer, and when used with short computing intervals,
it allows the statement of any action to reflect the influence of many
other factors, all of which may be varying simultaneously from interval
to interval. The characteristics of the method have been discussed in
detail by Watt (1966, 1968). All results are conveniently available at
the end of each computational interval. Because of the large number of
biological parameters in any modestly realistic, multispecies model,
and the very large number of computations, solution by computer is
the only feasible approach.

B. TuE EcoLocicAL SYSTEM

A definition of system that will be acceptable to ecologists may be
similar to that used by Khailov (1967): A system is a collection of
interacting objects together with their interactions. This definition
omits the important concept of holism (Spanner, 1964; Watt, 1966).
Spanner uses this idea alone in his definition of systems as ‘“‘complex
wholes.” This means, too, that a system must be defined to include a
meaningful set of objects.

In living systems as well as in others there are feedback control
mechanisms, related to recognizable structures or physiological functions.
But there is yet another type of regulation which von Bertalanffy (1956)
has pointed out, namely those which result from a ‘““dynamic interplay
of processes.” This type of regulation is possible only in systems which
are sufficiently complex and dynamic to include great numbers of
interactions. Conceptually, an ecosystem has the requisite complexity
and dynamism, and therefore we should look for this type of regu-
lation.

Khailov (1967) points out that systems are comprised of subsystems
that are hierarchically subordinated. Subsystems may function sub-
optimally if that is the cost of whole-system optimization. An example
of such “suboptimization” in ecology is found in the fact that populations
of a community are restrained by competition for resources. Presumably
the community system is optimized in the sense that there 1s maximum
utilization of energy.

A system may be open or closed depending upon whether there is an
exchange with outside systems. In constructing models of particular
communities the simplification introduced by assuming a closed system,
that is, no between-community interactions, makes this an attractive
and practical approximation. There is, however, some exterior exchange
of matter or energy for every ecosystem, hence, all ecosystems are
open systems (Spanner, 1964; von Bertalanfly, 1956; Botnariuc, 1966).
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The statement of King and Paulik (1967) that ecosystems are ‘“‘highly
organized closed structures” presumably referred to the idea expressed
by Slobodkin (1964) that the biotic community is characterized by a
particular set of ecological interactions, i.e., that the biological processes
occurring within the ecosystem are the significant ones.

The mathematical model in this chapter attempts to specify, and
thereby provide a means for quantifying, some generally held ecological
concepts about the dynamics of natural communities. The mutual
interactions of the biotic populations, as influenced by abiotic factors,
have guided the construction of the model. The biotic community
is the main subsystem of interest, but it cannot be considered separately
from the abiotic influences. The model contains some parameters which
have been measured for some populations, and other parameters which
have never been measured because, to our knowledge, they have not
been proposed in a model.

Ecosystem processes are best understood if the identity of the
individual organism is maintained. Energy budgets and changes in
body energy stores must be calculated for the individual. The unit of
predator-imposed mortality is the individual predator. Population
interactions take place between individuals, although ordinarily the
interactions of individuals within populations are distinguished from
those between populations. On the other hand, some of the important
measures of population dynamics are best understood as populational
rather than individual phenomena; an individual lives or dies, but a death
rate or a statement of probability of death is a population parameter.
Further, it is often convenient to treat population biomass as an entity,
growing or furnishing food to some other population.

Energy flow in biotic communities has come traditionally to be
considered a process of trophic level transfer. But energy transfer and
biomass changes result when individual consumers eat individual prey.
To account the transfer one must identify the species, but need not
explicitly name the trophic level. Thus the vexing problem of overlapping
and indeterminate trophic levels does not arise in this model. Energy is
transferred between individuals; the population flux is a matter of
summation.

The absolute upper bound of energy transfer is set by availability.
But when food is abundant, the operational upper bound is set by the
energy needs of the individual organism. This point, widely appreciated
by ecologists, has not generally been introduced into mathematical
models. The present model considers the effect of satiation, as well as
those of malnutrition and starvation, in computing individual energy

budgets.
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I1. General Population Model

The form of the model will be stated in this section, then the parts will
be examined in greater detail. Much of the paper is discussion of
individual factors, biotic and abiotic.

A. Tue EquaTtioN oF PopuLAaTION DyYNAMICS

The familiar recurrence or difference relationship was used to represent
population change. Thus, the population at time ¢ is determined by (1)
the population at time ¢ — 1, and (2) the population rate of change
during the interval ( — 1, t). With time of unit value, certain familiar
equations may be used without explicit statement of the variable 4z.
The basic equation describes changes in a single population in response
to all the biotic and abiotic factors allowed to interact. Thus, the basic
building block is the sum total of interactions by the individuals of one
species with the ecosystem, including members of the same or different
species. The model of a community is built up from a set of these
submodels, one for each species.

The form of the population model follows the Malthusian equation of
change in population size proportional to size of the population

] dN,/dt = r;N;, (N
with
rg =5/ a;,
where
l
b/ = b, (H ‘Pih)
h=1
and
di’ = Z Sik >
k=1
so that
14 m
dN;/dt = gbi (H ‘Pih) — Z Silcg N;. ()
\h=1 k=1
N; is number of individuals of the 7th species; b; is physiologically

maximum instantaneous rate of population increase, or birth rate for
animals; b;" is adjusted or “ecological” instantaneous rate of population
increase; @g, is the hth modifying factor, out of I such factors, for the
rate of increase b; for the 7th species (always 0 < @5, << 1); 4’ is the
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instantaneous rate of total mortality for the ith species, or death rate;
and 3, is the instantaneous rate of the kth mortality factor, out of m such
factors, for the ith species. Any influence on population change is
limited to an effect on the birth or death rates. Thus, the population rate
of change is the difference, the rate of increase minus the rate of decrease,
with the direction of change denoted by the sign of the difference.

Both rates of increase and decrease are modified through biotic and
abiotic influences, as discussed later. The rate of increase starts with
some maximum value b; and is modified toward zero by various influences
including crowding, energy deficit, and deviations of abiotic factors
from optimum values. The rate of mortality starts at zero and is modified
upward without limit through addition of instantaneous rates of
mortality 8;;, from different causes. These include a value, constant for
each species, that may represent here such unspecified mortality as
that from disease or fighting. This mode of expressing the influence of
environmental factors allows action of limiting factors, any one of which
may, of itself, suppress increase or generate high mortality.

The working model is the integrated difference of Eq. (2), or

Niwy = Nig-p ;exp [bi (}i[l ‘Pz‘h) - gl Sik]g) (3

where none of the [ birth-modifying factors or m death rates is made
an explicit mathematical function of V. As will be pointed out, if any
of the modifying factors or death rates is a function of V it is not always
easy to use an integrated difference form.

In using this model, several approximations have been introduced in
concession to both practicality and realism in simulation. A closed
system is assumed, with two major exceptions. Unlimited energy is
allowed as available to producers, and movement into the population
is assumed to balance movement outward except for the case where
action of mortality in one interval may reduce the population number
to less than unity. Here the next interval is arbitrarily started with a
single individual, simulating, in a sense, a continuous low-level exchange
with surrounding populations. From interval to interval, the population
number of each species is calculated, with species biomass following
as the product of number and average weight. The average weight is
accounted separately using a constant basic body weight of non-fat
components and a fat weight varying by interval in response to the
energy balance of the animal (for plants, a constant fat weight is used).
Newly created individuals, animal or plant, are immediately accounted
as of average size, with the energy expenditure of reproduction taken to
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include any extra costs of growing the new tissue. The increase from
reproduction (including growth of plants) is calculated each interval
from the number of individuals and the modified rate of increase with
no consideration of any distribution of individuals by age or sex.
Seasonal patterns are imposed on both increase and mortality through
effects of a seasonally fluctuating abiotic factor that simulates the
combined effects of climatic factors. For the convenience of being able
to divide a year into equal parts of several different magnitudes, a 360
computing-interval span is used, with 12 equal months (Fig. 1).

105

Abiotic factor intensity
<)
o

Summer Winter
Time

Fic. 1. Scaled and translated sine wave utilized as abiotic factor representing annual
climatic changes.

This form provides for population change as a function of factors
operative within the system. Regardless of what happens in the environ-
ment, only those influences that in some way affect the birth or death
rates are allowed for here. Such influences are of two kinds, biotic and
abiotic.

B. CompPUuTER ROUTINE FOR PorurLaTiON DYNAMICS

The Fortran IV computer program, ECOSYS, 1s presented in
Appendix D together with a flow diagram of the subroutine sequence.
The subroutine which is the counterpart of the species population model
is AcTION. When this routine is to be entered, the factors which reduce
birth rate or which add mortality rates have all been computed. These
are used in computations analogous to Eq. (2). In Appendix A the
symbols used in the computer program are matched with text symbols
and defined, and in Appendix B the items required as input are listed,
along with a typical set of values.
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III. Biotic Factors

Biotic factors are considered here as crowding or competition effects,
or as energy relationships; this distinction is only for purposes of
discussion.

A. CrROwDING AND COMPETITION

The notion of crowding implies some resource in short supply.
Often this is space, but the supply of energy is also finite. Other items
are in limited supply; all may be grouped as resources for which there
may be competition. Crowding and competition imply existence of
some density-dependent factor.

The best known expression for a density-dependent modification of
growth is the following statement of the logistic relationship

dNjdt = rN(1 — NK-Y), )

where K is maximum possible population size. Andrewartha and
Birch (1954) have interpreted this model biologically. Each individual
organism, of which there are N, requires 1/K of the available ecological
space. When N = K individuals all the ecological space is used up,
there is a zero rate of change, and a steady state results. The density-
dependent factor is (1 — NK™1); this becomes more restrictive of
growth rate at higher population densities. The integrated form, as given
for example by Andrewartha and Birch (1954), is

N = K[l + exp(a — rt)] 1, (5)

where a = In(KN~! — 1) when # =0 and all other symbols are as
previously defined.

A difference form is readily obtainable as well. Rewriting the differen-
tial form as

AN[N(l — NK-Y)]1 = 7 dt 6)
and integrating over the interval (¢ — 1, ¢), we obtain
N, = Ny exp(r) K{K — N;_4[1 — exp(r)[}~*. @)

This expression contains only 7 in the exponent and involves a density-
dependent factor. This form would allow the influence of current
environmental factors through changes in the upper asympote K, or in
the maximum rate of increase 7, or in both, but this manipulation is
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more complex in concept and less easily handled in the difference form
than in Eq. (3) which has the basic form

N, = N, exp(t) — d), (8)

where exponents b" and d’ are modified birth and death rates.

The simplicity of Eq. (3) makes it especially useful for computer
simulation. The modifying factors for birth rate [¢;; of Eq. (3)] and
the mortality rates [3,, of Eq. (3)] may be changed as desired and readily
inserted into the model. In comparison, while the difference form of
the logistic [Eq. (7)] can be handled well enough with the single
generalized factor 7, it becomes difficult when generalized to [ factors
(only part of which are density-dependent) modifying birth rate and to
m death rates (where also only some are density-dependent). But ease
of use is not sufficient justification if Eq. (3) departs too far from reality.
For density-dependent factors, the form of Eq. (3) may not strictly be
applicable because the integration has not taken into account that
adjusted birth and death rates b’ and d’ are functions of N. This question
requires examination.

Cook (1965) has noted that if the logistic equation applies on a
per generation basis, with the interval (¢ — 1, ) representing one genera-
tion, and if “adult numbers in any generation are determined by the
number of adults in the previous generation,” the difference form may be
written

N; = N, exp[r(1 — N,_,K)]. 9)

A generation is too long an interval to be of use in simulation here,
but the form of the equation is ideal. For a given value of 7, the popula-
tion size increases faster by this form because it is always one time
interval behind in applying the density-dependent modifying factor
whereas the difference form of the logistic adjusts continuously to the
current population level. But the shorter the interval the closer the
approximation. Further, it seems unlikely that populations instanta-
neously and with perfect precision adjust birth rates to accommodate to
population size. When the lag period is actually known it can be used
instead of a single interval.

The logistic form was not used here directly because of the need to
separate the effect of density-independent and density-dependent factors.
This model uses a logistic-like form as one of several modifiers of birth
rate and uses a different method to treat mortality as a function of
population size.

Most users of the logistic have held to a basic interpretation that the
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rate of increase 7 is modified by the density-dependent factor (1 -— NK1),
with population growth rate going to zero as N approaches K. Now,
r is ordinarily accepted as made up of two rates, b and d, so that the
logistic may be written

dN|dt = (b — d) N(1 — NK-1)
— bN(1 — NK-1) — dN(1 — NK-Y). (10)

The latter form suggests that both birth and death rates are affected
identically by the density-dependent factor. This implication may be
questioned; it is not readily to be understood on a biological basis.
One expects rather to find two types of response, a reduction of birth
rate and an increase of death rate. In the literature on density-depen-
dence, use of the logistic has been more general and directed toward
describing the result that a larger population increases more slowly.

This model incorporates a direct density-dependent mechanism in
the form

N, = N, exp[t'(1 — N, ,K-") — d'], (1)

where b’ and 4’ are as defined in Eq. (2). The density-dependent factor
is stated explicitly here, but functions as one of a series of ¢ values
[Eq. (2)], reducing the population birth rate in proportion to the fraction
of the space taken up. In the computer program the operation of the
density-dependent restraint on birth rate is optional for each species.
Mortality rates are not made directly a function of population size,
but indirectly so by increasing mortality when food is limited (discussed
later).

Consider competition for all resources together. For a model in the
present level of detail, it is immaterial what behavior causes competition
for what resources. It is required, however, that at any time the total
amount of resource can be specified and that the amount of resource
needed by an individual be known. These values need not remain
constant for longer than the basic computational interval. This view of
“known” leaves open the possibility of further detailed modeling, for if
the functional form of the requirement for a resource be found, it can be
incorporated.

Let space, however, be used as the example of a resource for which
there is competition. This may be root space for plants or territory for
animals. If there are # species of organisms in a biological community
and an individual of the jth species takes up an amount of space ay;
which an individual of the ith species cannot simultaneously utilize,
we may construct a matrix 4,y, of these requirements. This matrix,
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consisting of #? elements, is similar in appearance to the predation
matrix discussed later, in that the effect of each species on every other
is represented and may be addressed by its row—column index. Let row
i represent the competitor species and column j represent the species
being crowded, for which the competition effect is being calculated.

Thus far the elements have either negative or zero values. For
example, in a very small community of three species, the competition
matrix may be represented as

ap 413 Gy

A= |ay ay ay|. (12)

a3 433 Qg3

In this matrix, a; for ¢ = j is the amount of space required by an
individual of a species for which contemporaries of the same species
are in competition. This would be equal to unity as used in the logistic,
but space might also be specified as units of space or volume uniquely
occupied by an individual. Now, a; for 7 3 j is analogous to the
“coefficient of competition’” of Gause (1934). In general a;; does not
necessarily equal a;; and, except where each is near zero, we may
expect equality only rarely. Values near zero may be expected often
for space, especially with animals, because territoriality i1s so often
intraspecific.

As an example, consider the competition matrix for a community in
which there are two competing plant species and three animal species
that compete for space only intraspecifically. The competition matrix
would appear as fcllows, where the plant species are indexed 1 and 2,
and the animals are 3, 4, and 5

a;,; a;; 0 0 0
a, a, 0 0 O
A—10 0 a3 0 O (13)
0O 0 0 a, O
0 0 0 0 a4

There 1s some amount of space available to each species, the same
amount for each if we merely consider physical area. But there are
more interesting meanings for available space. Say that the amount of
available space could be different for each species. Then we could
represent the community space as a vector for the # species

K = [K,K,,..., K,], (14)



6. A FINITE DIFFERENCE MODEL OF ECOSYSTEMS 379

where K is the community space vector. For one species j, the modifying
factor for the effect upon birth rate of crowding by all # species is

n

Z a;V;

i=1

(K,. + Z ai,-Ni) K'Y for

<K, (5
0 otherwise.

The sign change in the numerator reflects the negative a;; values.

The presence of a species may be beneficial to another, and may even
be required for survival, referring to space, not food, and carrying the
discussion beyond the present program. This would be the inverse view
of competition with the a;; values, the “coefficients of competition,”
carrying positive signs in contrast to the negative signs thus far associated
with all nonzero values. Volterra (1928) proposed an analogous formula-
tion with what he called “the true coefficients of increase.” His general
statement of population rate of change for species j, in the presence of #
species, becomes

dN;ldt = (’f - ipijNi) N; (16)
=1

where Volterra’s p;; “are any constant whatever” and the rest of the
symbols match those defined here. Volterra’s form does not, however,
discriminate the effect on birth and death rates.

This generalization of the competition matrix [Eq. (13)] to accept
positive coefficients to indicate symbiosis would allow for all possibilities
of interaction between two species with respect to a resource. These
might then be for the 7/th and jth species any element of the set of
relationships

{(+, "‘)» (+, 0)! (+’ ““)’ (0» +): (0’ 0)’ (0! _“)» (~, +)! (—’0)! (‘! —)}

This representation resembles that of Odum (1959, p. 226) but differs
in that predation is excluded here.

If symbiosis were to be included in the model, Eq. (15) would have
to be modified. The amount of the resource available to species j would,
in effect, be increased due to the symbiotic species. One adjustment could
be that in K" (next page), only positive values for a;; be added to K,
the measure of space present otherwise, changing Eq. (15) to

wor = (K + %, auV) K7, (17)



380 RAY R. LASSITER AND DON W. HAYNE

where

K/ = K;+ Y ayN; forall a; > 0.

Note that K; is not necessarily zero, but represents space available
otherwise.

Ecological succession may be viewed as a long term result of symbiotic
relationships. In the succession of an old field to a forest, there are many
unidirectional changes (Daubenmire, 1947). The dry, sunny habitat is
converted to a moist, shady condition, with species change both cause
and effect of the shift in local climate. It is not inconceivable that succes-
sion may one day be modeled, and a competition matrix like Eq. (17)
might be useful to represent some phases of the process. But the present
model is far from such a capability.

B. ExNERGY DyNaMics

Analysis of how the biota uses available energy is basic to contem-
porary ecology. The ideas of Lindeman (1942) have stimulated much
research on the energetics of species and communities, with some general
work. But the trend has been toward studies of mass results, assuming a
steady state, without much concern with mechanisms. For simulation,
at least the resuits of mechanisms must be described, whether under-
stood or not in detail.

In this model, energy influences a population only by changing rates
of increase and death. But consideration of how this may happen
quickly expands the inquiry to include questions of the sources, use, and
storage of acquired energy, the kinds of energy expenditures, the
natural controls exercised over rates of energy capture, consumption,
utilization and storage, and the mortality imposed upon the prey
species through food acquisition by the predator. Figure 2 presents a
simplified view of this physioecological system.

Fig. 2. Schematic representation of the
control system for energy intake, storage,
and expenditure. Solid lines indicate phy-
sical or chemical transfer; broken lines
indicate physiological influence.

Satiation
level

Energy Fat
expense stores
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We will consider energy relationships in the sequence indicated below;
this also presents the postulates upon which the conceptual model is built.

(1) Energy requirements of producers are assumed to be met in
excess by the sun. Energy requirements of consumers are met by
ingested food, with a constant fraction of stored fat mobilized in each
interval, and in starvation by catabolism of body proteins. Excess energy
1s stored as fat.

(2) The effect of an altered energy supply comes about through
modified rates of increase and death. For producers, no energy fluctua-
tion is postulated. For consumers, when energy (food or stored fat)
1s abundant, then population changes are controlled by other factors.
When energy is scarce birth rate may be depressed and death rate
increased. For the population these changes commence before the
average individual reaches energy deficiency.

(3) The energy expenditure budget of the individual consumer
organism is quantified here with a basic component related to body size,
plus a set of expenditures proportional to the deviations of abiotic
factors from optimum levels, plus the costs of reproduction and growth,
plus the costs of activity (for food gathering and escape from
predators).

(4) Control of food intake, and thus of rates of predation, is by
satiation, brought about through the glucostatic and lipostatic mecha-
nisms.

(5) Predation has the dual aspect of food gathering by the predator,
and mortality for the prey. Rate of prey capture by the individual
predator is controlled by the numbers and vulnerability of the prey
species, and under appropriate conditions by development of satiation.
The prey mortality rate is the summation of instantaneous rates of
mortality to all the predators on the species.

Presenting the problem this way will sometimes introduce a mathe-
matical formulation ahead of its biological justification. We hope that
the occasional awkward transition may be tolerated in the interest of
maintaining continuity of biological thought.

C. ENERGY INTAKE

Producer organisms receive energy from the sun, and store it as new
tissue. While the energy supply is considered unlimited, the rate of
growth and storage of energy in tissue is made subject to modification
by abiotic factors, by the grazing (predatory) action of consumers, and
by the density-dependent limitations imposed by space. As a result,
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the plants store energy in a varying tissue biomass that has a constant
proportional composition of digestible carbohydrate, fat, protein, and
bulk residue.

For consumer organisms, the energy content of ingested food becomes
available through digestion, then the energy is used, with any excess
stored in tissues. If there is a deficit of energy, there will be a drain on
tissue stores. In the model it is assumed that all food ingested during
an interval is disposed of physiologically during the same interval,
that is, either digested or excreted, and if digested, either used or stored.
Therefore, itis reasonable that an interval correspond to a feeding cycle.
It would require a more elaborate accounting system to provide for
lags in use of energy, or to describe better the case of the continuously
feeding organism.

Assume that digestion is proportional to time within the computational
interval, and set d; as the instantaneous rate of digestion for unit time.
A constant proportion of food ingested will be digested. Then with f,
representing the amount of food taken in by an individual during the
interval, we may state the amount digested as

Sl — exp(—dy)],

with the amount excreted being

fiexp(—dy).

The energy content of food depends upon amount ingested and
proportions of carbohydrate, fat, and protein. The diet composition
is calculated from the known body composition of the species eaten,
and from the amounts eaten of each. Where plants are eaten, the propor-
tions of dietary elements remain constant for any one species. Where
animals are eaten, the proportion of fat in the prey changes with its
energy status, with consequent changes of fat content in the diet of
the predator. A running account of all fat stores is maintained and the
fat content of each predator’s ration of food is determined for each
computing interval.

For each time interval, let a set of three partial digestion rates be
calculated as a product of the overall rate d; and the proportional
composition in the diet of the three nutritional elements. These partial
rates will be dy; , dy, , dy; with the second subscript designating, in order,
carbohydrate, fat, and protein, respectively, and with

dl - dn + d12 + d13' (18)
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The amount of each of the three elements available to the animal in
digested form will be the corresponding fraction of the total digested;
with carbohydrate, for example,

dlldl_lfl[l — exp(—dy)]-

For convenience we may identify the average amount of undigested food
during the interval as

f=d7ffl — exp(—dy)]. (19)

Further, our primary interest being in the energy contributed by digested
food, let ¢, , ¢, , and ¢, represent the respective unit caloric equivalents
of digested carbohydrate, fat, and protein. Then the separate sources of
energy from digested food become

from carbohydrate = ¢,d,, f
from fat = qudy, f

from protein = qad15 f.

It seems to be accepted that animals preferentially catabolize carbo-
hydrate over fat, and fat over protein (Guyton, 1966). This hierarchy
utilizes carbohydrates when available, catabolizes some fat if not enough
carbohydrate is available, and by the complementary mechanism,
anabolizes the carbohydrate into fat when the energy available from
carbohydrate exceeds the amount expended. Further, there is the energy
from fat mobilized from storage.

The model assumes that a fixed proportion of the body fat store is
mobilized in a unit time. Bates et al. (1955), studying various strains of
mice, found that an amount of fat proportional to the amount present
was mobilized daily. This occurred under experimental conditions where
need remained constant, while recording a weight gain up to 709,
due to increased size of fat depots. Apparently this mobilized fat is
available as raw material to the lipolytic process which itself proceeds
at a rate dictated by energy expenditure.

Using the idea of a constant proportion d, of the initial fat store
F,_,, being mobilized during the interval, the total amount of energy
in fat available from ingested food and body stores becomes

‘I2(d12f + dyF, ),
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and the total amount of energy available E; may be written as

E, = (qdn + g2dss + 93d13)f + qudoFy s (20)

assuming that all fat ingested 1n an interval will be available in the same
interval.

The energy balance of an animal is reflected in changes in the body
stores of fat. As the model is developed here,

F, — Fo (I —dy) + (B, — E,) g3 for E, > E:w 1)

Foo(l — dy) for E,<E,,
where F, is fat store at the end of the interval; F,_, is fat store at the
beginning of the interval; d, is the proportion of fat store mobilized
during the interval; £ is available energy, as in Eq. (20); E,, 1s required
energy; and ¢, is energy equivalent per unit of fat. Fat stores are reduced
unless the available energy exceeds the demand by enough to repay into
storage the amount of fat mobilized. Any excess over this requirement
increases the fat stores.

Starvation is defined here as the state when the demand for energy
exceeds the total amount available; the deficit can be met only by
destruction of protein. In the model, mortality is increased when starva-
iton occurs. There is also a state of less severe undernutrition where
the animal must draw upon its fat stores to exist; this lies between the
starvation level, where demand exceeds supply, and the level where
supply exceeds demand by just enough to maintain the body stores.
In the model, this intermediate state is accompanied by a reduction
of birth rate.

This model of energy intake, use, and storage uses approximations
that will require more exact treatment in more sophisticated application.
While the destruction of body protein is assumed with starvation, there
is no allowance for a corresponding reduction in body protein weight.
There is no explicit allowance for an energy cost of storing fat beyond
the energy content of the tissue, though the energy needs for growing
new animals are included under the energy expenditures for reproduc-
tion.

There is no specific model here for protein metabolism. There seems
to be neither need, nor adequate information, to warrant its construction.
Proteins may play a role in food intake; amino acid imbalance and
excessively high proportions of protein in the diet are cited in situations
where proteins affect food intake (Krauss and Mayer, 1963). These
authors found that protein in the diet may affect food intake indepen-
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dently of the homeostatic satiety mechanism, to prevent the excessive
intake of protein.

The energy equivalents used in this work (g, , ¢, , g;) are those given
by Hawk et al. (1954) as 4.1 kcal/g for carbohydrates and proteins, and
9.3 kcal/g for fat. Other values for particular species may be obtained in
Golley (1961), Slobodkin and Richman (1961), Watt and Merrill (1963),
and Cummins {1967), among other sources. In computation, the energy
derived from protein is combined with that from carbohydrate.

D. Errects oF ENERGY DEFICIT

When the food supply is inadequate, an animal has increasing difliculty
in maintaining physiological integrity. In the model, food shortage
affects the birth rate or the death rate; any other impairment is an
intermediate step toward one of these two results that in turn affect
population size.

The reduction of birth rate is assumed to start when the individual
commences to draw upon body reserves for energy, and increased
mortality to commence at the point of further deprivation where starva-
tion begins. But the population effect cannot be reasoned directly
from the status of the average individual. When the average energy
balance is at some threshold value, the population rates of birth and
death will already have been affected, and perhaps to some important
degree, because about half of the individuals will be experiencing greater
than average deprivation. To calculate properly an effective rate for
the population would require information not available, that is, knowl-
edge of both distribution of energy status throughout the population,
as well as the functional relationship between energy deficit and biological
result. Not knowing this, we use an approximation, based upon the
observation that the closer the population approaches the stressed
condition (from the unstressed) the more individuals will be under stress.
A constant value L. between zero and unity, subtracted from the ratio
of energy supply to energy needs will have the effect of calculating the
average individual to be in somewhat greater stress than it is, a correction
in the right direction to make an allowance for that part of the population
in worse condition than the average.

That the birth rate is lower and the survival of young less when food
is scarce has been reported often. Lack (1954) has summarized some of
the information for birds and mammals; Slobodkin (1964) described
the effect of starvation upon reproduction in Daphnia. But no general
statement has been found relating birth rate to available energy; some
such statement is required in a model.
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We shall hypothesize that the birth rate of an individual begins to
decrease when the energy in the food ration is no longer adequate to
meet the energy demands, and that the birth rate becomes zero when
none of the energy demands are met in the food. The effect is introduced
into the model as one of the modifying factors ¢ for birth rate, with the
inclusion of the constant L, inserted to reduce the population birth
rate below the maximum as a result of undernutrition, at a time before
the average individual is undernourished

@ — Ly for L,<e¢,/ <1 +1L,
@, = 40 for L, = ¢, (22)
1 otherwise,

where L, is a constant, 0 <{ L, << 1 (in the model, L = 0.10) and

@ = (@1dn + 201 + 43d13)fE;1-

Increase in mortality rate due to starvation reflects a more severe
deprivation than reduction of birth rate. In the model increased mortality
begins with starvation, at the point where the needs are not met by
the energy taken in as food plus that mobilized from body fat. Here
destruction of protein begins; an organism can tolerate some loss of
protein but the probability of death increases as proteolysis continues.
The severity of the stress is in some fashion inversely related to the
proportion of the energy demand met by available energy. Designating
this proportion as I, then

I = [(q1dyy + gadia + gadia) [+ qedaF 4] B (23)
The inverse relationship may be represented as
ddejdl — MI, (24)

where &, is instantaneous rate of mortality due to starvation and M 1s a
constant. Integrating, we obtain

8 = MInl -+ C, (25)

and since 8§, = 0 when I = 1, C = 0. In practice, the value of I, no
matter how small, must exceed zero; and here, though not below,
8;=0forl > 1.

There is still the need to start increasing the population death rate
while the average individual is not yet starving by subtracting a constant,
L, from the ratio I. This constant L, serves a populational function
similar to L, which reduces birth rate, though the two constants are not
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necessarily equal; in fact, in the model, L; has the value 0.25. The model
for mortality due to starvation becomes

Min(I —Ly) for Ly <I<1+L,
&g = (MIn I for Ly =1 (26)
0 elsewhere.

The form of this model results in a time lag from the development
of a food shortage in one interval to its effect on the population in the
next interval. This lag offers a means for describing naturally occurring
lags (Wangersky and Cunningham, 1957; Slobodkin, 1964); it could be
increased if biological information warranted.

E. THE ENERGY EXPENSE BUDGET

Energy expenditures for an interval are calculated here as the sum of
the separate items of the energy budget for an individual. The items
accounted are cost of body maintenance as a function of body size,
the energy drain imposed by action of abiotic factors, the costs of
reproduction (and growth of young), and the energy demands of activity.
No doubt other categories of energy expenditure exist, but it is likely
that this model accounts for the major energy losses.

Studies 1n ecological energetics have usually been based on mass
energy exchange over long intervals of time, with the budget of the
individual set aside in favor of the large goals. McNab (1963), in contrast,
has constructed an energy budget model for a wild mouse. In simplest
form his model is a function of time, environmental temperature, and
rate of metabolism; the term for metabolism includes several environ-
mental factors. Porter and Gates (1969) have considered thermodynamic
equilibrium in several species.

The possibility of interactions among energy-demanding activities
presents questions that cannot be resolved without detailed biological
study. There may be differential responses to changes in one factor at
different levels of another, and with study algebraic functions may be
found to describe these interactions. On the other hand, we anticipate
that in magnitude the interaction expenditures are probably less impor-
tant than direct effects. Thus for the initial model a simple algebraic
summation is accepted for the components of energy expense after each
is computed; this does not mean that any component is necessarily a
linear function,

The commonly accepted relationship between energy use and weight
of an animal is used here for energy needed for body maintenance

Ey = up Wik, (27
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where E,, is the energy expended which may be accounted for by body
size for species R, and wu;;, and v, are constants, characteristic of the
relationship for species k. Metabolism under standard basal conditions
specifies the maintenance requirement for energy, to which other needs
must be added. In the model the exponent v is given the generally used
value of 4 (Englemann, 1966, for example) even though there is biological
evidence against the universal value (Prosser and Brown, 1961).

Departure of an abiotic factor from the optimum environmental value
may require energy expenditure from an organism. Such abiotic factors
include temperature, light, day length, precipitation, and humidity;
in the model two abiotic factors are provided. It i1s assumed that the
basal energy requirements E,, have been determined for species k in
the optimum zone for each abiotic factor, i.e., where energy expenditure
due to the particular factor i1s at a minimum. Any departure from the
optimum zone increases the energy need; here it 1s assumed that the
energy consumption increases by the same amount per unit deviation
regardless of direction. Hence the model

f
By = ) thye Do s (28)

=1

where
zero for Oy < F o < Oy
Akac = (')k'-lfl - ‘% for g; < Olcacl
‘g':v - Okmz for % > ()kmz .

E,, is total energy demand due to f abiotic factors acting on species k;
&, 1s the current level of abiotic factor x; Oy, , and O, are bounds of
the optimum zone for abiotic factor x with respect to energy expenditure
by spec1es k (subscript 1 indicates lower bound, subscrlpt 2 upper bound);
and u,,, is a proportionality constant, the increase in energy requirement
(kilocalories) per unit deviation of factor x from the optimum zone for
species k.

Population increase demands large quantities of energy. Here this
reproductive function includes the cost of growing the new individual of
average size as well as the usual charges for gamete production, courtship,
and care of the young. The cost of growth must include the work of
elaborating the new tissues as well as the energy content of those tissues.
We have provided for both costs by calculating the energy expenditures
to be 1.5 times the energy content of the tissues produced. This factor
falls within the range of values given by Needham (1964) for a number
of species. We assume that energy is expended in proportion to the
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number of new individuals produced per unit time, or, on the per-
individual basis, proportional to the current value of the modified rate
of birth 4’. Thus, the amount of energy expended in reproduction is

By = by’ O, (29)

where E,, is energy required for birth and growth of young by an
individual of species k, ugy, is energy cost per new individual as a ratio
to average energy content (value used here is 1.5), 4, is modified birth
rate for species &, and (, is average energy content of an individual of
species k.

The final category of the energy budget model for animals is that of
activity. Activity may be directed in many ways; the two considered
here are food gathering and escape from predators.

Regarding food gathering, we may observe that (1) the more available
the food, the less effort required to obtain it, and (2) the more food
needed, the more effort required to obtain it. Thus, an expression
proportional to need and inversely proportional to availability is
suggested. The measure of food requirement is satiation level, to be
given in Eq. (40). The measure of availability 1s the potential food ration,
to be given in Eq. (50). Combining the two expressions as suggested

Ey = u4lcSIcR;1a always Ey < 2Ky, (30)

where E,;, is energy expended for food gathering in the interval by an
individual of species k, E;; i1s energy expenditure accountable to body
size, or basal rate [Eq. (27)], S} 1s amount of food required to produce
satiation for an individual of species k in this interval, R, is maximum
amount of food that an individual of species k could gather during
this interval, or potential food ration, and #,, is energy needed to gather
the amount of food required to just reach the satiation level for species k,
under conditions where exactly this amount can be captured during the
interval. Note that the fraction S, R;' has a value of 1 when the food
for satiation just equals that which can be captured during the period.
Values for the fraction greater than unity will result here when food
is relatively scarce, implying that under such conditions the expenditure
of energy can be greater than for a full day of hunting (but with a limit
here of twice basal metabolism). The implicit concept of hunting
efficiency is unsupported; factual information on predator behavior and
physiology is needed. Two reported values for the energy spent in food
gathering probably set reasonable bounds for most species; Pearson
(1954) showed that something less than one-third of the energy budget
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is spent in food gathering by the hummingbird, while Lucas (1963)
reported that a steer spends about 59, of its daily budget in grazing.

To develop a model for energy expended in escaping from predators,
let us use the assumption that a prey species spends energy in an amount
proportional to the energy that all predators spend in capturing that
prey species. It will be shown later that the number of prey taken by an
individual predator of species 7 from #n prey populations is

with the amount taken by this predator from the kth prey population
being
cik:Nk ’

where N; is mean number of individuals of prey population j present
during the interval, and ¢;; is adjusted predation rate of predator :
upon prey j. The proportion of the total amount of food taken by
predator 7 that comes from the kth prey population is

-1

Cika (2 Cz‘sz)
i=1

Now, in order to find the amount of energy spent by an individual of
the 7th predator species in hunting food from the kth prey population,
we may multiply the above fraction by the amount of energy the predator
of species 7 used in capturing all its food and obtain

n -1
EyicikNy (Z Cu‘Na‘) .
=1
This expression describes the amount of energy expended by an
individual predator of species 7 in capturing prey of species &. Considering
that there are N; such individuals of this predator species, and that we
must account for the energy spent per individual of the N, in the prey
species, then multiplication by the fraction N;N, ! is required. Further,
such quantities must be summed over a total of y predator species.
Thus, the submodel to represent energy spent in escaping all predators
by an individual of prey species k& becomes
Fl n 1
Ey = usk]vlc]vlzl 2 [NiEchik (z Ci;‘Nj) }: (€29
i1

=1

where ug, 1s a proportionality constant characteristic of prey species &.
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The energy budget model may be written out in full for an individual
of species k&, as

Ey = Ey + Ey + Ey + Eyy + E;, (32)

Davis and Golley (1963) have pointed out that for mammals the energy
cost of normal activity is about twice the resting metabolism, or in these
terms, E, = 2E,,, .

F. RecuraTIiON OF Foop CONSUMPTION

The control of energy balance through limitation of food consumption
has attracted relatively little attention among ecologists considering the
apparent importance of this phenomenon in governing the flow of
energy through populations. A notable contribution is the experimental
and analytical work reported by Holling (1965, 1966). Physiological
investigations of the regulation of food intake have been made by several,
notably by Mayer and his co-workers. The mechanisms have been
studied most for mammals, but research by Rozin and Mayer (1961,
1964) on the goldfish and Dethier and Bodenstein (1958) on the blowfly
indicate that the regulatory mechanisms for these widely divergent kinds
of animals may be simpler versions of the mammalian mechanisms.

Food intake appears to be regulated by two mechanisms, termed
glucostatic (sensing on blood glucose) and lipostatic (sensing on blood
lipid) as well as the more obvious upper limit of intake set by the physical
capacity for ingesting, or the ‘“‘biometric limit.” In discussing the regula-
tion of food intake, Mayer (1964) emphasizes the development of a
satiation level which is adjusted by the glucostatic mechanism according
to the recent exchange of energy. This is termed a ‘‘short term”’ regula-
tion in contrast to the lipostatic component of regulation, called “long
term.” In addition, there is biometric regulation, which refers to the
physical (and other) limits on the ability of the animal to ingest food
at one time; this clearly sets an upper level below which the average
rate of energy expenditure must surely lie. Ivlev (1961) has identified
this limit as the maximum ration and Holling (1965, 1966) as the
maximum amount of food the gut can hold.

We now require a mathematical model to describe satiation level as
a function of the variables mentioned above, viz., the biometric maximum
food intake, the glucostatic mechanism, and the lipostatic mechanism.

The glucostatic mechanism is said by Mayer (1964) to function in
short-term regulation by adjusting satiation level commensurate with
the difference between recent energy intake and output. The satiety
center, in the ventromedial area of the hypothalamus, contains gluco-
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receptive cells that control the nearby feeding center. As the animal
feeds there is an increase in glucose concentration at the satiety center,
and its resulting activity inhibits further feeding. As blood glucose is
metabolized, activity is decreased in the satiety center, releasing the
inhibition on the feeding center. But in order for a satiation level to
operate in large animals the satiety center must be activated much
sooner than would be possible through increased blood glucose from
digested food. This has been observed to occur and has been explained
in at least two ways. Mayer and Thomas (1967) quoted observations
showing that blood glucose is elevated at the onset of feeding by release
of endogenous hepatic stores. Maller et al. (1967) suggested another
possibility, metering of the intake via direct pathways to the brain from
the oropharyngeal region. They were able to show that this was indeed
the case not only for glucose, but also for several other compounds.
Further, Mayer and Thomas (1967) point out that other receptors
located in the stomach and perhaps elsewhere are complementary in
the operation of the whole mechanism.

In such small animals as the blowfly the mechanism may be much
simpler. Because of the small size a direct influence of the carbohydrate
level in the body fluid could be exerted on a satiety center with time lags
sufficiently small that oversupply could be prevented. This appears to
be the case (Dethier and Bodenstein, 1958). Goldfish have been shown
to regulate caloric intake to balance energy output, perhaps by a similar
mechanism (Rozin and Mayer, 1961, 1964); the mechanism has not
been elucidated for other poikilotherms. It does not appear, however,
that the glucostatic mechanism can be the only one operative in all
mammals, especially with predators for they often ingest only minimal
amounts of carbohydrate.

Suppose that only the glucostatic component and the biometric
maximum accounted for the satiation level. The effective satiation level
can never surpass the biometric maximum. We postulate that satiation
level may increase in response to an energy expenditure in proportion
to the difference between the biometric maximum and the most recent
satiation level. Thus satiation level could increase more, if it had recently
been low, than it could if it had been high. Some type of memory,
possibly physiological, is implied here. The model then, is

8SJoE = k(B — S), (33)

where S is satiation level, E is energy expense, k is a proportionality
constant, and B is biometric maximum food intake. After integration
we have

S = B — C exp(—kE), (34)
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where C is a constant of integration. As an initial condition to evaluate C,
let S = 0 when E = 0; thus B = C, and we can rewrite as

S = B[l — exp(—kE)]. (35)

The satiation level is set here by the total energy expenditure. It seems
somewhat more reasonable to set satiation according to that amount of
energy used above basal metabolism. Further, the constant & in the
above expression for satiation level is a function of animal size and
carries the units cal™! . Both difficulties are correcied by standardizing
the statement of energy expenditure above basal in terms of the basal
value [which has already been calculated as E; in Eq. (27)]. Rewriting,
the basic expression used is

S = B{l — exp[—k(E — Ey) E"]}, (36)

where k; is the modified rate constant, now a unitless number. The
standardized statement of energy expenditure above the basal metabolic
expense may range in value from some high multiple, where the satiation
level approaches the upper (biometric) limit, down to zero, where the
satiation level is also zero. This last case implies that if no energy is
expended beyond that required for maintenance, then no feeding will
occur.

Figure 3 shows satiation level graphed against energy expenditure.
For some values of energy expenditure, the amount of food the animal
can ingest before satiation will exceed its energy expenditure, and fat
will be stored (provided, of course, that availability of food is such
that it will be possible for an animal to ingest a ration sufficient to
satiate). These values of energy expenditure consistent with fat storage
all lie below some critical point, while above this point it is not possible
for the animal to pay for the expenditure by intake.

L Biometric limit N /
_______ /

Satiation level

Line of equal intake
and expenditure

Energy intake

E Energy expense

Fic. 3. Simple model relating energy intake to energy expense. The model assumes
that all energy expenditures except basic bodily processes generate drive for energy intake.
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The lipostatic mechanism is hypothesized by Mayer (1964) to function
through some type of metering of blood lipids. The amount of fat
mobilized in a given interval of time, and thus blood lipid level at any
time, are proportional to the size of the fat depot (Bates et al., 1955;
Mayer, 1964). There is a “privileged body weight,” i.e., an adult animal
is said by Mayer to tend toward some body weight typical of the
individual and this tendency involves adding or losing weight due only
to changes in the size of the fat depot. The farther the animal’s weight
moves from this privileged weight in one interval of time, the more
likely is an accommodating change in food intake during the next
interval. Thus, if an animal has depleted his supply of stored fat some-
what, he will soon eat a larger than usual amount of food to replenish
his supply; if on the other hand he has accumulated an excess, he will
soon reduce intake to utilize some of the excess fat. Perhaps this is
called long-term regulation because fat stores do not usually change
much from the day-to-day energy fluctuations, and because the size of
the fat depot exerts a continuing influence on the effective asymptote
for satiation level.

It is interesting to speculate upon a possible mechanism for lipostatic
control of satiety. Mayer and Thomas (1967) point out that the mecha-
nism probably operates through some type of interference in the
functioning of the glucostatic mechanism instead of as a completely
independent process. Fats are converted to glucose to some extent in
the gluconeogenetic process. If there are fats available there may also be
glucose. Now if this gluconeogenetic glucose is in proportion to the
amount of fat present, then the stored fat F can give rise to a background
amount of glucose exerting an effect on satiation level, and this could
occur independently of blood glucose levels which originated from
ingested carbohydrates.

Whatever the mechanism, the effect of the lipostatic component upon
satiation level is a function of fat depot. We expect the satiation level to
remain high while fat stores are low, given that energy expense is such
that the glucostatic component requires a large satiation level. But with
larger fat stores the lipostatic component tends to subdue satiation level
so that the privileged body weight is not exceeded. One simple model to
approximate this component, given that energy expense is maximum,
might be

8S/eF = —KF, 37)

where F is the size of the fat depot. After integration this becomes

S = —KF?2 + C, (38)
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where C is the integration constant. When fat stores approach zero with
energy expense high (as is assumed here) then satiation level is B;
this supplies the initial condition: when F = 0, B = C. Substituting
gives

S = B — k,F?, (39)

where k, = K/2, a proportionality constant (associated units are gm~).
This is the equation used for the lipostatic component of food intake
regulation.

Since Eq. (39) sets the level of satiation when energy expense 1s high,
it is in effect a modified biometric maximum level of food intake. Satia-
tion 1s bounded by the value set by fat stores regardless of energy
expense, in the interpretation of the model. This, and not the value of B,
is the real limiting value for the glucostatic model. Combining the
lipostatic with the glucostatic model, we may use the maximal satiation
level as set by the lipostatic model, as the asymptotic value for the
glucostatic model. The final model for food intake regulation becomes

S = [B — kF*){1 — exp[—hk(E — Ey) Ey']}. (40)

Under experimental conditions, with a rigidly controlled activity
regime in a controlled temperature environment, a long-term regulation
to a privileged body weight is observed. The model adequately mimics
this observation. With a constant energy expense, the right-hand factor
of Eq. (40) is a constant. Thus, satiation level may be computed as

S = C(B — kyF?). (41)

If F could reach such high levels that k,F2 = B, then .S would equal zero.
But in practice this may seldom happen. When fat storage is high,
part of the energy expense is paid for by food intake and part by
mobilized fat. Thus, there is a continual drain on fat stores during
periods of low satiation level resulting from a large fat depot.

Holling (1965, 1966) developed a model for hunger identical to that
developed here for the glucostatic mechanism. Holling’s experiment,
designed to elucidate the effect of hunger in his predation model, was
to starve his animals (mantids) for varying lengths of time after satiating
them. The times varied from % hr to 72 hr. Hunger was measured as
the amount of food required to satiate after the planned period of
deprivation. He postulated that hunger really was a measure of the
amount of food left in the gut. From this he wrote, in the terminology
used here,

dH|dt = dy(B — H), 42)
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where H is hunger, ¢ is length of time of food deprivation, d, is a constant,
the rate of food disappearance from the gut (digestion rate), and B 1s
maximum amount of food the gut can hold, or biometric maximum
for the corresponding time interval. Integrated, this resulted in

H = B[l — exp(—d,t)]. (43)

His experiments were conducted under controlled temperature and
relative humidity with standard mantids. Assuming that activity was
closely controlled, then energy utilization is a function of time; thus

E = ¢,
and we can rewrite Holling’s equation as
H = B[l — exp(—kE)], (44)

where & = d,c™, and we have a form identical to that used for satiation
level in the glucostatic model. No effect of energy storage is included
in this model, although, as Holling recognized, there was evidence in
his data that some type of energy storage existed. In testing his model
against his data, departures were found which Holling recognized as
biologically meaningful. He said,

The most likely cause is a nutritional deficit acquired after long periods of food
deprivation, a deficit that cannot be made up at one sustained feeding but shows
its effects on subsequent feedings as well. Since long deprivation times tended to
be followed by shorter ones, therefore the hunger measured at these shorter intervals
tended to be higher than the actual deprivation time would warrant (Holling, 1966,

p. 18).

This is a statement of much the same concept as Mayer’s “privileged
body weight.” The “nutritional deficit” was created by utilization of
the mantid’s energy stores (which surely existed to permit survival for
a 72-hr fast). With the deficit, just as Holling pointed out, the mantids
tended to eat more until there had been a return to privileged body
weight. Tt is likely that Eq. (40) here would better describe Holling’s
results.

G. PREDATION

Predation always has a dual meaning, for while it serves one species in
food gathering, it imposes mortality on the other. The mortality rate on
the prey describes the process, but is a property of the interaction of
two species. It is true that any predator may capture and consume
members of a number of prey species, and any species may be preyed
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upon by several predators. Nevertheless the essential act is pairwise,
one predator with one prey, in a process vital to both.

Consumption of plants by animals is predation, in terms presented
here, not to be distinguished from the eating of one animal by another
(except by the numerical content and context). In fact, the identification
of discrete trophic levels, while convenient, is not necessary.

For complete generality let us say that any species may prey upon
any species, including members of its own species. Then we may form
a matrix P of predation rates. These are instantaneous rates of mortality
that characterize, pairwise, all the predator—prey interactions. They
state the mortality rate imposed on a prey population by a unit density
of predators, and are thus implicitly specific for some time unit and
for some area (for statement of densities). A predation rate may have
any positive value including zero; the matrix may include very large
and very small or zero rates at the same time. Any element p;; of the
matrix may be identified by its row—column index, where the row ¢
pertains to the predator species and the column j to the prey.

For an example, consider the matrix representation of a simple,
five-species food web with classical trophic structure, in the form

O 0 O 0 O
o 0 0 0 o
P =] py Ps 0 0 0 (45)
P Pz O 0 0
0 0 P53 Psa O

In this matrix, with the row indicating the eater and the column the
eaten, species 1 and 2 are autotrophic and are eaten by species 3 and 4,
but eat no species (rows 1 and 2 all zeros). Species 3 and 4 eat species |
and 2 and are eaten only by the carnivorous species 5, which is eaten
by none of the species. There is a discrete trophic structure here,
with three levels, 4, , 4, , and A, , as indicated by the predation matrix.

As a second illustration, we construct a predation matrix for a food
web in which there are five species: (1) a completely autotrophic plant,
(2) a carnivorous plant, (3) a small omnivore that is cannibalistic,
(4) an herbivore, and (5) a top carnivore. Taking the species in the
order mentioned, the predation matrix could be

o 0 o0 o0

0 0 0 py

P = Pa1 P32 Paz Paa
Pa Pz O 0

0 0 Ps3 Psa

(46)

SO OO O
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Here though trophic structure may be unclear, it is still simple to show
the feeding relationships in a predation matrix.

Predation rates used here are instantaneous rates of mortality; for these,
two properties are used (Ricker, 1958). First, the instantaneous rate of
total mortality, when several different kinds of mortality are acting
independently, is the sum of the separate instantaneous rates; this
property has been used previously in this chapter when summing
death rates. The second property is especially useful when several
mortality rates apply at the same time with a rate of increase during
an interval. The “yield”” to any one kind of mortality (in present context,
to a predator) may be calculated as the product of the particular instan-
taneous rate and the mean population level during the interval. The
mean population during the interval is calculated, in present context,

following Ricker (1958, p. 32), as
N, = N, [exp (b - gl aik) - 1](1;' — é aik)hl, (47)

where NN, is mean population number during the interval ; N; is population
number at the beginning of theinterval; b;" is adjusted birth rate for pop-
ulation 7; and Y, 8 is the sum of 7 mortality rates acting on popula-
tion 7, taken at this point to include predation.

The predation rate p;; is specific to the time interval and also to the
unit area on the basis of which population densities are stated. Thus,
the predation rate reflects home ranges, activity patterns, and behavior
of both predator and prey. Further, predation rates provide an opera-
tional measure for the relative vulnerability of prey species to a predator,
cr for any “‘preference” exercised by predators among prey items.

To illustrate the use of predation rates, consider an elementary
example. Suppose that in a unit area there are N; individuals of prey
species j, preyed upon by an individual (or, unit density of) predator of
species 7, with the resulting predation rate being p,; . If this predation
is the only kind of mortality experienced by the prey, and with no
reproduction, then during the unit time interval the probability of
death for any individual of the prey population will be

I — exp(—py),
and the number of prey captured by the predator, on average, will be
N1 — exp(—pu)]-

Next, if there are two individual predators the effective predation rate
is the sum of the rates for the separate predators, or 2p,; , and with V;
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individual predators, the prey is exposed to an instantaneous rate of
mortality, or effective predation rate, of N;p,;. Here with the same
assumption as above, the total number of prey captured becomes

N[ — exp(—N,; p;)].

Under these conditions each of the N; predators takes an equal share
(on the average, N; ') of the total prey captured. The amount of food
ingested by an individual predator is the average weight of the prey,
multiplied by the number captured. The potential ration R, is the
amount of food an individual predator of species ¢ would consume,
feeding for the interval at the maximum predation rate p,; ; under these
conditions it would be

R, = W[l — exp(—N,p,)] Ni', (48)

where R; is the potential ration an individual predator of species { can
capture in the interval under given conditions of prey abundance and
weight; W, is biomass (total) for prey species j at the beginning of the
interval; N, is the number of individuals of predator species ¢; and p;; is
the predation rate on prey species j, exposed to a unit density of predator
species i. Other factors equal, R; will decrease with increasing N,,
illustrating competition among independent mortalities. This is the
so-called “law of diminishing returns” as encountered by sportsmen
who are predators on game and fish populations.

Thus far this description of predation is greatly oversimplified, even
in terms of our model. Other kinds of mortality, including other
predators, compete for any one prey population, and during some
intervals the prey populations increase through birth and some of
the prey increase may be taken by predators. Further, any predator’s
food ration is made up of a number of components, one for each prey
species that it exploits. Finally, satiation may stop a predator before
he has consumed the potential ration.

Continue to consider the potential ration for an individual predator
of species i. The whole ration is the sum of its separate components in
the form

R =Y R, (49)

where R;; is the component of the whole ration R; for an individual
predator of species 7 due to prey species j; these components are summed
over all n prey species. Each component of the complete ration for
any predator is calculated separately, species by species, for all prey.
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Use is made here of the property of instantaneous rates, illustrated
earlier, for calculating yield to one predator when there are several
kinds of mortality and possibly increase during the interval. The form
for a single component of the ration is

Ry = puW, [CXP( Z Nips — ]gl Sjk) — 1]

=1

X (b,-' — i Nips; — i Sjk)*l’ (50)
is1

k=1

where b;’ is the adjusted birth rate for prey speC1es J; XY Nipyjis thesum
of effective predation rates on prey species j for all y predator species;
DI 8,1 18 the sum of all m other instantaneous rates of mortality on prey
species j, excluding any effect of predation which here is included in the
previous term; and Rj;, W;, N;, and p;; are defined immediately above.

The total food that mlght be ingested by a predator in all components
of its potential ration R, may exceed the satiation level S; that has
already been set according to the biometric limit, the recent history of
energy balance and the fat store. If this be true, the predator must
cease to feed when satiated (or reduce the rate of feeding just to accom-
phsh satiation within the interval), thus feeding at predation rate ¢;; that
is less than the definitive rate p;; . At the same time, other predators
may or may not operate with reduced predation rates. The new predation
rates must reduce the ration to the satiation level, in the form

Sy =3 S,
j=1
where
Y m
Si = cu;W; [exp (b,’ — Y Ny — 3, Sjk) — 1]
=1 k=1
y m -1
X (b,-’ - Z Ny — Z Sa'k) ) (51)
i=1 k=1
where elements are as previously defined, except that Z” Nic;1s thesum

of adJusted effective predation rates on prey species j “For all y predator
species (including any such rates where adjustment was not necessary
because S; > R;). The method is discussed later for changing each
definitive predation rate p;; to the corresponding adjusted rate c;
needed to establish the above equality.
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If, on the other hand, the sum of all components of the ration is less
than or just equal to the satiation level for the predator (R; < S;) then
the potential ration may be used without adjusting the predation rates;
adjustment is required only with S;R;' < 1.

Calculation of a set of adjusted rates, or ¢;; values, is accomplished
for any one predator species by reducing all its definitive rates in some
constant proportion. This adjustment implies that when near satiation
an animal exercises the same relative degree of selection as when hunting
at full capacity. This seems to us a reasonable approximation in light
of limited knowledge on the point, though Holling (1965) reported
that certain sizes of prey were favored when his mantids were near
satiation. Murdoch (1969) has discussed “switching’’; the model makes
no provision for this phenomenon.

The calculation of adjusted rates is carried out by an iterative process,
calculating trial ¢;; values from the definitive p;; values in the ratio of
satiation to potential ration (S;R;!), substituting these as new p;; values,
recalculating a new R;, and then repeating the process until the potential
ration is suitably close to the satiation value.

To illustrate calculation of ¢;; values, consider the first example given
for a predation matrix. Suppose that we have calculated, for the three
species of animals eating other organisms, both the satiation levels
S,;, 8, and Sy, and also the potential ration values R;, R, and Ry .
Then, as a first approximation, each c¢;; element is the product of
PSR!

0 0 0 0 0
0 0 0 0 0
C* = PslssRs—l PszS:st—l 0 0 0f, (52)
PSR puSR* 0 0 0
0 0 P53SsR psaSsR5T 0

where C* is a C matrix conditional upon calculation (from its elements)
of the food ration values that match the satiation levels. Where any of
the S;R; ! values exceeds unity, a value of 1.0 is used in the adjustment
process. Calculation of a single C* matrix cannot be expected to give
final c;; values. It will be a first approximation. The second C* matrix
will be closer and with repetition the differences (R; — .S;) will all
become less than a predetermined small value e.

The effective predation on each prey species may at this time be
calculated as the sum of effective rates for each predator, as calculated
above for the c;; values in the expression for satiation ration. This sum
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will enter into the basic expression for population change of the prey
[Eq. (2)] as one of the 8, values for mortality rate, as

Y
Bjk = Z Nicij , (53)

i=1

where & here denotes mortality due to predation.

To summarize briefly, this section concerns control of energy and
food intake. The iterative computation of all elements of a predation
matrix provides predation rates for the interval to be simulated. These
rates are such that the predator’s energy needs will be satisfied whenever
prey levels are high enough that a full ration may be captured. There is
a lag caused by basing energy need on the activity of the previous interval.
This is realistic, but the amount of lag, one interval of time, is special
to this model. If this period of lag proves too restrictive, it can be changed.

H. SussysteEM oF CoMPUTER ROUTINES FOR BroTic FACTORs

The computer subsystem of routines which correspond to the mathe-
matical models of this section is made up of four subroutines and one
function subprogram. The four subroutines are, in the order that they
are called in the main program: PRDAT, CALOR, FATLE, and SPACE. The
function is saTIA. Note that with one exception computations for the
entire biological community proceed for the values of a particular
routine with one entry into the program. The exception is SATIA which
is called once for each species.

PRDAT is a routine which iteratively finds a set of predation rates which
satisfy satiation levels as computed in SATIA. SATIA is called with PRDAT.
Following establishment of the matrix of predation rates, the energy
expense part of the energy budget for the current interval is computed
in cALOR. The predation rates for the current interval are required
in order to construct the energy budget, because activity is largely a
function of these rates. Based on the factors of food intake as determined
by predation rates computed in PRDAT, the population sizes, the energy
expense as computed in CALOR, and the residual fat depot, subroutine
FATLE computes the energy expended from food and from residual fat
stores. The size of the fat depot at the end of the interval is also calculated.
Depending upon the energy balance, birth rates may be reduced.
Subroutine spacE handles the computations for competition and the
logistic-like density-dependent adjustment of rates of increase.

Note the sequence of operation of the routines. SATIA computes
satiation levels for the current interval based on the expenditure of
energy and the fat depot at the end of the previous interval. The other
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programs are sequenced in the order in which values are required.
In this case we use the sequencing to take care of the time lag in satiation
level by allowing computations to be based on the previous interval.
These satiation values supply initial conditions so that the other values
for the current interval may be computed.

IV. Abiotic Factors

A. ABioric FACTORS oF THE MODEL

Abiotic, or physical, factors influence populations. This section
concerns their direct effects upon birth and death rates. We have
already discussed the less direct effects resulting from increased energy
demands; if the total energy needed exceeds the caloric intake in food,
the birth rate is reduced, and if the demand exceeds energy in food
plus mobilized fat, starvation begins and the death rate is increased.

Although the mathematical model puts no limit on the number of
abiotic factors, the present computer model contains only two. One of
these is programmed to vary as a sine curve with a period of 360 intervals,
simulating seasonal changes in climate throughout a year (Fig. 1).
This cyclic factor is used for two reasons. First, it is a composite factor
representing all influences that operate in a seasonal manner; it has
been so-used here. Second, it allows the future inclusion of more
specific seasonal effects where the sinusoidal factor may serve as an
argument in describing natural processes that fluctuate with the earth’s
orbit and axial inclination. The second abiotic factor is not really used
here; it is maintained at the value set, and represents some constant
environmental influence. Neither factor is specifically identified as,
for example, water, light, or minerals, the factors said by Clements (1949)
to be important in terrestrial systems. Much could be done in simulation
of abiotic factors for particular ecosystems; as a start the mathematical
descriptions for a number of factors are considered in the volume

edited by Van Wijk (1963).

B. PoruLATION EFFECTS OF ABIOTIC FACTORS

The effect of an abiotic factor upon population birth and death
rates is made a function of deviation from the optimum range for the
organism. This mode of action in the model derives from the ecological
concepts of tolerance (Shelford, 1913) and of niche (Hutchinson, 1957).
With respect to any one factor, an organism may exist within a range
of values, or the tolerance range. Within this tolerance there is a shorter
range, or perhaps only a point, where conditions are optimum.
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Changes in birth or death rates are as yet unknown and probably
complex mathematical functions of the deviation from optimum.
Within a population, we may expect individual variation in precise
physical definition of optimum and tolerance, and perhaps also in
functional response to change. We know too little to approximate
populational response more than roughly, except possibly in the
specialized area of toxicology (Finney, 1952).

The model assumes a linear response to changes in an abiotic factor
between the optimum zone and the limits of tolerance. As deviation
from the optimum increases, both the birth rate modifying factor and
the survival rate decrease from unity toward zero. The optimum range
and the slopes of the linear responses are specified, thus implicitly
defining the zone of tolerance.

The model provides the options for a different optimum range for
each species, with different constants for response to deviation from
the optimum (and for birth and death rates, different values for deviations
above or below the optimum). Further, different sets of values and
responses may be set for increase of energy expenditure (as already
discussed), reduction of birth rate, and increase of death rate. Thus,
any species may be given a unique set of optimum ranges and responses.

Reduction of birth rateby an abiotic factor is brought about through use
of the modifying value ¢ which takes values only in the interval (0, 1).
At the optimum, the modifier has a value of unity and hence no effect.
In nature, the modifier decreases, probably monotonically, as the abiotic
factor departs from the optimum. Here we assume the decrease to be
linear to a zero value; all population increase is cut off outside the zone
of tolerance (Fig. 4). The model permits different rates of change
above or below the optimum. The model is thus

for Oy < Fp < O
iw1(Oiy — F o) for Oy > Fy 2 Oy — (1Bim)
Oiwz - fac) for Oiacz < fx < Oiwz - (l/ﬂzxz)
elsewhere,

(54)

1
_J1=B
P T — B
0
where ¢, is the modifying value for birth rate of the ith species, for abiotic
factor x, always 0 < ¢, << 1; By and B;,, are slopes of decrease in the
modifying value as abiotic factor x deviates from the optimum range
(subscript 1 indicates deviation to lower values, and subscript 2 deviation
to higher values, with a negative sign associated) for species 7; O,,, and
O, are bounds of the optimum zone for the abiotic factor with respect

to birth rate of species 7 (subscript 1 indicates lower bound, and
subscript 2 upper bound); and & is current value for abiotic factor x.
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} .

Toleronce! Optimum Tolerance
Qix} QOix 2

Z

x

Fic. 4. Function relating current value of abiotic factor &, to proportional modifica-
tion of birth rate ¢.

This model may be too simple to approximate nature in any real
situation more than roughly, but it allows the specification of a seasonal
pattern of reproduction with intervening periods of no increase, and
the separate description of characteristics for each species.

Mortality rate increases as the abiotic factor deviates from the
optimum. Complete survival to action of the particular factor is assumed
in the optimum range (under the hypothetical condition of no other
mortality), with survival decreasing toward zero as the factor departs
from optimum. The corresponding instantaneous rate of mortality is the
natural logarithm of this rate of survival, providing survival exceeds
zero by some quantity no matter how small. This small quantity is here
arbitrarily made exp(—4).

0 for O < F, < Ojpy
5. . _lnc[] - ’\iml(oixl - ‘g:oc)] fOI' Oiacl > 9700 > Oiwl - (l//\le (55)
T —In [ — Aigy(Oiae — F )] for O < Fp < Oszy — (1/As)
4.0 elsewhere,

where 3,, 1s the instantaneous rate of mortality due to abiotic factor x, for
species 7; A,y and A,,, are slopes of decrease in survival rates as abiotic
factor x deviates from the optimum range (subscript | indicates deviation
to lower values, and subscript 2 deviation to higher values, with a
negative sign associated) for species 7; O,,; and O,,, are bounds of the
optimum zone for the abiotic factor x with respect to mortality of
species 7 (subscript | indicates lower bound, and subscript 2 upper
bound) and %, is current value for abiotic factor x.

This model provides for virtually complete extinction of a species
when an abiotic factor is outside the range of tolerance. This provides
the capability of imposing as heavy a mortality as may be required;
if the species is to remain in the community it must have tolerance
ranges that include the values for all the abiotic factors.
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C. CoMPUTER ROUTINES FOR ABIOTIC FACTORS

The effects of abiotic factors are included in the two subroutines
ABIMOD and ABMORT. Both routines require the operation of a function
subprogram WEATHR that so scales a sine wave that its amplitude is
the specified range (100 units, fluctuating 5-105), its period 360 intervals,
commencing with the specified argument (0.65 rad), illustrated in Fig. 1.
ABIMOD is a computation of modifying factor for birth rate, Eq. (54),
for each species in the community, and ABMORT is a similar computation
of mortality rate by Eq. (55).

V. Results and Discussion

A. SimuLATION TRIALS

The computer program for the mathematical model is listed in
Appendix D. An example of the output is in Appendix C, and a listing
of input data required, with a sample set of data, is in Appendix B.
A glossary of symbols used appears in Appendix A.

The community simulated in the program had six species (two each
of plants, herbivores, and predators). In selecting input values, we kept
in mind two plants of small biomass, possibly perennials, two small
herbivores like mice, and two predators of small body size like weasels
or owls. Many values needed to implement the model were not available.
These were approximated, often with little information. Surprisingly
few trial sets of input data were required to find values that gave
reasonable results. The first set tried was instructive in that hetero-
trophs became extinct in a few years due to starvation and repression of
reproduction; predation rates were not high enough to transport
sufficient energy through the food chains.

Four simulations are reported, each for a 30-yr span (Figs. 5, 7-9).
Input data were similar for each, the runs consisting of a “standard”
set of values and three variations. The standard data are those listed
in Appendix B. Space limits, and thus upper limits on population growth,
were imposed on the two producers, but not on heterotrophs. Maximum
rates of increase were highest for the plants, less for herbivores, and
still less for predators. Optimum climatic conditions were defined
somewhat differently for each species (see Appendix B). The simulation
based upon these standard data is shown in Fig. S5; setting an upper
asymptote on herbivore growth produced Fig. 7; effectively removing
predators yielded Fig. 8; and increasing the rates of herbivore increase
to equal those assigned to plants resulted in Fig. 9.
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Each species (e.g. Fig. 5) clearly responded to the annual cycle of
simulated climate, with a period of growth and a period of decline.
This pattern reflects ranges set in the input for the climatic factor
optimum. The heterotrophic species had two optimal periods each year,
resulting in two peaks of increase, as shown diagrammatically in Fig. 6.

Fic. 6. Typical pattern of population size during
year of no overall change, for organism with two
periods of high rate of increase.

Population density

Time

In Fig. 5 the climatic factor (Fig. 1) passed through the optimum
range as it increased in spring and again as it decreased in fall. The two
predators were almost eliminated (Fig. 8) by assigning them a zero
increase rate (and starting them at zero level). Whenever any species
count drops below unity, the program starts the next computing cycle
with a single individual. Thus, predators were maintained at a very
low level, and with minimal effect on the herbivores.

B. CHARACTERISTICS OF THE MODEL

The oscillations produced with the standard set of input data (Fig. 5)
mimic generally the fluctuations of natural populations. Were these
real observations, we might postulate long-term cycles for the hetero-
trophs, with nadirs occurring about 11 years apart on a somewhat
irregular schedule. Like natural fluctuations, these would seem to be
only generally predictable. Here, of course, the model is entirely
deterministic, each fluctuation being absolutely predictable and any
time sequence reproducible merely by starting the computer over with
the same data. The oscillations result from species interactions; left to
itself with an adequate energy supply, each would follow a smooth
curve reflecting the seasonal effect. Thus, it is interactions that are
responsible for observed irregularities.

Still referring to Fig. 5, the plant populations fluctuated in regular
annual cycles, following the climatic pattern, until some herbivore
population grew sufficiently that its plant consumption reduced the
plants to a low level during the nongrowing season. When this happened,
the plants usually returned almost to their normal summer maxima,
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and thus they oscillated over a wider range when under herbivore
pressure. When herbivores were reduced, however, either by lack of
food, or by predator action, or both, the plants returned to their regular
annual cycles. In the illustrated simulation both herbivore species
were made selectively predatory upon the two plants, and consequently
both plants and herbivores were permitted to oscillate with different
time relationships.

Herbivore effects on the plant populations may be regulated by
imposing upper limits on growth of each herbivore species. If these
limits are beneath the point where herbivores constitute important
mortality factors, then the producers fluctuate under climatic influence
only. The data that produced Fig. 7 were so adjusted; other asymptotic
herbivore limits would produce different results. Note that the variable
period of oscillation caused by selective predation on plants disappears
in Fig. 7.

In Fig. 5 herbivore populations oscillated under control of the available
food level at some times, in response to predator pressure at other
times, and under the combined influence of both these factors at still
other times. When the predator effect was removed (Fig. 8) the herbivores
oscillated somewhat as they do with predators present, but more often
they reached levels high enough to reduce plant populations. When
present (Fig. 5) the predators only occasionally reached levels high
enough to reduce the herbivores; their effect in these trials seemed to be
to lengthen the period between low values.

When there is an upper asymptote limiting herbivore growth,
fluctuations may all but disappear, as seemed to be the case in Fig. 7,
or else, where the upper limit for herbivores is set at a higher point,
they may fluctuate under control of periodic predator increase. When
herbivores were given higher birth rates, equal to those assigned to the
producers, oscillations of the lower two trophic levels became more
frequent and more violent, while the predators were almost eliminated
(Fig. 9).

Predator species fluctuated here according to food availability. This
response is clearly to a threshold level, above which predators may
obtain food to reproduce and below which they starve. When herbivores
are above the threshold, predators increase until the herbivores fall
below threshold, either due to increasing numbers of predators, or
starvation. At this point, the predator populations crash and remain
low until herbivores again exceed the threshold level which allows
predators to grow. Thus, in this model predators are entirely controlled
by their prey levels.

The predators of the community simulated in Fig. 8 are kept at low
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levels by the timing of fluctuations in their food supply. Here the
herbivore populations, given high birth rates, oscillated rapidly and
frequently dropped below the threshold that controls the predators.
Thus, the predators never increased long enough to attain control of
the herbivores.

The seasonal cycle built into this model clearly exerts an important
influence on the oscillations. The most important population reductions
occurred during nongrowing seasons. Starvation 1s most important then,
though it may occur at any season. The ecology of the Temperate Zone
is reflected in choice of optimum seasons and the adjustment to climatic
fluctuation built into the model; therefore temperate or perhaps arctic
conditions are simulated.

The effects of changing numerous biological parameters of the model is
not yet explored. Results of changing one value suggest that interesting
questions may be raised. In the standard set of data, the proportion of
the fat store mobilized each day is set at 0.10 for species 4 (one of the
herbivores). Reduction of this fraction to 0.018 resulted in virtual
extinction of this species, but could be counterbalanced by raising its
birth rate by half. Apparently, in this model a low rate of fat mobilization
results in frequent undernourishment and reduced birth rate, even
when an animal has a large fat store. Another compensating adjustment
might have been to adjust control of the satiation level as exercised by
the fat store.

Having a model that will simulate a hypothetical set of species, we
now require a set of measurements to characterize real population
histories. For example, it is clear that relatively minor changes, like
altering the fat mobilization constant or the initial number of a species,
will produce marked changes in biomass and numbers of all the species
in a short time (10 yr). We now require useful measures to quantify
such changes, an analysis of time series, not only by the usual mathe-
matical techniques but also with parameters of more immediate biological
meaning. There is need to program a running summary, perhaps over
quarter years or full years, to record the energy consumed by each
heterotroph, the organic production of each species, and the cumulated
rates of mortality and increase.

There are certain obvious deficiences in the model. Most important
is the absence of any age-class effect. The hypothesis of increased
mortality in populations that exceed habitat carrying capacity should
be incorporated. Some values now inserted into the program as constants
should probably be made species-specific. Perhaps digestion rates should
be variable among species. In earlier sections, comments were made at
several points where increased sophistication might be introduced.
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C. DiscussION OF THE MODEL

It is apparent from this investigation that sufficient biological informa-
tion to simulate a real community accurately is not available at the
present time. Many specific data demands of this model cannot be met,
and some of the variables have never been measured in natural popula-
tions. It is by no means clear that further development of this kind of
model into a more sophisticated mathematical form is justified before
we know more.

At the same time, we feel the model to be heuristically useful, in that
it has required us to set down specific information and identify areas of
greatest deficiency. The results appear realistic, and potentially able to
give answers about effects of changing various parameters. Further,
the work suggests certain general questions.

This model emphasizes contingency as determining population change.
Population dynamics may be described as a set of potentials for action,
with final action contingent upon the set of factors instantaneously
influencing the population. What happens next is contingent on the
present status. That this principle governs the model only means,
of course, that we built it on this view of natural events. This seems a
valid view for it places less emphasis upon supposed overall governing
processes which can, after all, have effects only through influences
exerted at the present moment. Any natural programming of future
events must be through the setting up now of processes that will approach
the future set of predisposing conditions step by step as time passes.
As population growth follows some curve, this means that at each
instant the population changes in response to the set of influences to
which it is immediately exposed. One important influence is the popula-
tion level itself; knowing nothing more we can expect it to be the same
in the next instant. Other important influences are population charac-
teristics like sex and age distribution (not included in our model),
reproductive status, other characteristics of physiological well being,
as well as the pressures of other biotic and abiotic factors. Of no real
importance is the position the population should take at some future
date on some mathematical curve of expected growth. Such a curve
may have great descriptive and predicted usefulness; used with caution
it can enhance understanding. But what the population does at the mo-
ment must be determined only by the set of influences at that moment.

In computer simulations of the model, whenever the same set of
initial conditions, rates and characteristics, are provided the same
output follows. But if a single effective condition is changed, the resulting
series of population fluctuations differs to some degree. Even with the



6. A FINITE DIFFERENCE MODEL OF ECOSYSTEMS 415

vastly oversimplified description of nature illustrated in Fig. 5, it seems
quite unlikely that exactly the same sequence of events will happen
twice in a simulation. How much less likely is the enormously more
complex natural system to return exactly to the same set of conditions,
to predispose it to generate exactly the same set of responses. Any
degree of predictability seems remarkable under these circumstances.

The population fluctuations in Fig. 5, sometimes of several orders of
magnitude, seem too violent to be ‘“‘natural,” and those in Fig. 9 are
even more so. Yet, in making such a judgment, we lack good standards
for there is little real knowledge of the actual scale of local fluctuations
for most natural populations year after year. Most series of records are
for economic forms (game or pests) over large areas; local information is
especially scanty.

D. FacTtors oF PopuLaTION CONTROL

The factors which control populations are the most important and
most interesting features of population study. In the natural world,
no populations increase without limit and few decrease without limit.
It has long been held that prey species are controlled in some manner
by predators (and parasites). It has recently been suggested (Murdoch,
1969) that a logical requirement for control by predation is the phenom-
enon of “‘switching,” or an increased efficiency of predation upon the
more common species. Holling (1959, 1965) has pointed out the impor-
tance of satiation in limiting predation effectiveness. Other influences
stabilizing numbers below some asymptotic upper limit are density-
dependent factors acting within populations. One density-dependent
mechanism, not modeled here, is the postulated increase in vulnerability
to predation as numbers exceed the carrying capacity of the habitat.
This may be another aspect of “switching,” mentioned above. Finally,
there is much speculation currently about the possibility that inter-
relationships among many species in a community impart stability
not to be found in communities of few species. Our model is restricted
to few species, and so this last factor is not included.

The effect of the predator—prey relationship in the model is clearly
control of the predator populations by prey density; control in the
reverse direction is less clear. When prey availability is above a certain
threshold level the predators may increase. Otherwise they decrease
under mortality pressure of several kinds, to which starvation is added
when prey become low enough. What has been called a threshold is
actually a zone of rapid change with decreasing numbers of prey,
the predator passing from adequate food through undernutrition to
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starvation. This comes about because an individual predator cannot
capture enough food to meet his energy requirements unless the prey
population is at a certain level [Eq. (50)]. When the prey animals exceed
this level, they can support the well-being of any number of predators,
but below this level they can fully support none.

As a control factor for prey populations, this threshold of predator
well-being 1s density-dependent. When the prey reaches a certain
density, the predators increase and so does prey mortality due to
predation. Of itself, this may not be able to reduce an increasing prey
population, but this density-dependent factor may be combined in
effect with others, like a decreasing food supply of the prey, or perhaps a
graded series of similar releases of other predators, to control the prey
numbers.

Satiation of the predator tends, however, to reduce the effectiveness
of any prey control. When the prey population exceeds that level which
the predator needs for capture of a satiation ration, then the effective
predation rate is reduced [Egs. (51) and (52)] more and more as the
prey increases (and with predator numbers constant). The food intake
per predator remains constant beyond a given point of prey density

(Fig. 10). This phenomenon has been discussed by Holling (1959, 1965)

Sl —

Fic. 10. Food intake as a function of
% total prey density (biomass). Below a cri-
k3 tical density, satiety (S) is not reached,
2 above this level food intake is constant
& regardless of prey density.

Prey density

for several conditions. If it is allowed that predators will increase when
food i1s abundant, then in the long run satiation would seem only to slow,
rather than prevent, the ultimate overtaking and reduction of the prey
in coordination with other factors. Further, at the point where prey no
longer satisfy food needs of the predators, the mortality rate experienced
by the prey increases disproportionately as each predator now hunts
with full effectiveness.

Switching is supposed to increase the effectiveness of predation as a
population control when a prey species becomes abundant (Murdoch,
1969). But under these conditions, in the view taken here, the effective
predation rates are set at the reduced levels needed to just achieve
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satiety; changes in the definitive rates may have relatively little effect.
Switching can only increase the portion of the ration, already predomi-
nant, that is drawn from the abundant prey species, by substituting it
for some of the food otherwise to be drawn from the rare forms.
The total amount of food will not increase. This would seem less
important in controlling the abundant form than in sparing rare species
(the buffer species concept).

An asymptotic upper limit of population growth can provide stability
of numbers when adjusted to the correct level. To both achieve stability
and retain a community of species, such upper limits must be set high
enough that the species transmits enough energy to sustain those
organisms that feed upon it, yet low enough that the species cannot
generate important predatory pressure on its prey. A stable community
can be achieved by postulating enough of such limits; the interesting
question seems to be whether realistic stability can be achieved without
them.

Hairston et al. (1960) concluded that producers are resource limited,
herbivores predator limited, and predators food limited. Regarding
producers, this model agrees; a space limit was built in although energy
was assumed to be unlimited. Regarding predators, agreement is also
complete because predators are here provided with a capacity to increase
unless food is limiting. Regarding herbivores, however, we observe
that in this model their control comes about both by predator action
and by limitation of their food supply. Even when predators are effec-
tively removed from the model, the herbivores are eventually limited
by food.

We raise the question of whether herbivores may not be limited,
at least in part, by food supply. The remarks of Hairston et al. are based
upon very general observation of nature; even so, they clearly take
precedence over the results of this model where any resemblence to
nature arises only from logical factors we have built in. But it may be
instructive to examine the instances where food supply controlled the
herbivores, either in Fig. 8 when predators are almost absent, or in
Fig. 5 where they are relatively ineffective. When the herbivores reach
high levels, their effect on producers is principally to reduce the winter
minima; the effect on the summer maxima is much less frequent and
pronounced. Thus, the herbivores in the model exert considerable
influence on the producers, but fail to limit them in the strict sense of
appearance during the growing season. Hairston et al. argued that
because herbivores do not reduce their food supply, they are not food
limited. We suggest that if herbivores are not limited in some other
way they will be food limited. If the growth rate of producers is suffi-
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ciently high, plants may then approach the limit of some resource each
growing season even though at some other time of the year they may be
reduced by herbivores. Thus, a law of minimum food resource operating
in time may limit herbivores, even though the producers may not be
limited during the growing season.

VI. Conclusions

Construction of an ecosystem model with emphasis on energy
exchange, even one as simple as six species and two abiotic factors,
has forced attention to a number of neglected phases of population
dynamics and suggested questions that must be carried to nature for
an answer.

There are important deficiencies in the biological knowledge required
to construct such a model on more than very general terms.

The principal weakness of this study is in methods for describing
and comparing results when simulating an ecological system.

This work emphasizes that contingency governs population changes;
that 1s, a population will change in the next unit of time contingent
upon its status and relationships with the rest of the ecosystem at the
present time.

Predator numbers may be controlled by prey density through a
threshold effect that constitutes a density-dependent factor in population
regulation of the prey.

It seems possible that herbivore numbers are controlled, at least
in part, by food availability during some limited season, or in some
limited form, and without apparent reduction in general level of the
food supply during the growing season.
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Computer
program
Text variable
symbol Definition name Subroutine
A Competition matrix; elements are coeffi- TERTRY MAIN
cients of competition for a fixed resource T READM
T SPACE
a An element of the competition matrix;
also, constant in logistic
B Biometric maximum biomass of food intake BMETM MAIN
BM READM
B PRDAT
B SATIA
B CALOR
b Physiologically maximal birth rate BIRTH MAIN
(instantaneous rate of increase) B READM
B PRDAT
BIR ACTION
b’ Birth rate adjusted for modifying factors G MAIN
G READM
G CALOR
Y ACTION
B Proportionality constant relating birth rate ASLOP MAIN
modification to deviation of abiotic ASL READM
factor from optimum B ABIMOD
C Predation matrix with elements (predation
rates by individual predators) reduced
from maximal by satiety
4 An element in the predation matrix C,
reduced from maximal level by satiety
d Death rate in logistic equation
d’ Instantaneous rate of total mortality, sum B ACTION
of separate rates
d, Digestion rate (instantaneous rate) DIGES MAIN
DG READM
DiGES FATLE
dy Partial digestion rate—carbohydrate
dyy Partial digestion rate—fat
dis Partial digestion rate—protein
d, Proportion of stored fat mobilized daily FFAMA MAIN
FM READM
FFAMA FATLE
4 Deviation of abiotic factor from range

optimum for species with regard to

energy need
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Appendix A (cont.)

Computer
program
Text variable
symbol Definition name Subroutine
& Instantaneous rate of death by one of the D MAIN
factors: predation, starvation, abiotic c PRDAT
factors, or unspecified factors [¢] CALOR
c ABMORT
c ACTION
D RECORD
E An amount of energy ENERG MAIN
ENG READM
ENERG PRDAT
ENERG CALOR
ENERG FATLE
s CALOR
E RECORD
ETOT RECORD
E, Energy available without use of body protein  DIFF MAIN
DIFF FATLE
AVCAL RECORD
exp The exponential function €%, where x is DEXP (throughout)
the argument, as exp(x)
F Current value of an abiotic factor FL MAIN
FACTR MAIN
F WEATHR
FL CALOR
F ABIMOD
F ABMORT
FACLEV RECORD
F Fat store FAT MAIN
FAT READM
FAT TOTSI
FAT PRDAT
FAT SATIA
FAT CALOR
FAT FATLE
FAT RECORD
f Average amount of food ingested during RATIO MAIN
interval RATIO PRDAT
FOOD FATLE
RATN RECORD
f Average amount of indigested food during FBAR FATLE

interval




6. A FINITE DIFFERENCE MODEL OF ECOSYSTEMS 421

Appendix A (cont.)

Computer
program
Text variable
symbol Definition name Subroutine
[ Modifying factor for birth rate in population RSTRC MAIN
R PRDAT
R FATLE
R SPACE
R ABIMOD
R ACTION
R RECORD
g Instantaneous rate of change of population X MAIN
size; 8" — d’ X ACTION
CHG RECORD
K Population maximum biomass; upper A MAIN
asymptote of logistic A READM
A SPACE
ky Rate constant relating standardized energy skl SATIA
expenditure to satiation level sl READM
ky Proportionality constant relating fat stores SK2 SATIA
to satiation level s2 READM
L A constant subtracted from the ratio of
energy supply to energy need, for adjusting
average value to the population effect
A Proportionality constant relating survival SLOPE MAIN
rate to deviation of an abiotic factor from SL READM
optimum s ABMORT
N Number of individuals in the population S MAIN
READM
SP PRDAT
S CALOR
FATLE
S SPACE
SP ACTION
S RECORD
(o] Optimum value for abiotic factor; bound OPT MAIN
of optimum zone POINT MAIN
ALEVE MAIN
o READM
PT READM
ALV READM
o CALOR
A ABIMOD
P ABMORT
P Predation matrix; elements are the potential PRED MAIN
predation P READM
P PRDAT

P CALOR
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Appendix A (cont.)

Computer
program
Text variable
symbol Definition name Subroutine
? Elements of predation matrix, potential
predation rate; also Volterra’s coefficients
of competition
Q Current average energy content of an EIND CALOR
individual
q A caloric equivalent of an element of diet, CAL FATLE
kilocalories per gram
R Potential ration; biomass a consumer can RATION MAIN
take at a given prey density RATION PRDAT
RATIO CALOR
r Instantaneous rate of population change in
the logistic equation
S Satiation requirement; biomass a consumer SATIA (throughout;
requires with given fat stores and recent function sub-
energy expenditure program name)
u Constant relating some specific energy E MAIN
expense to some factor or activity E READM
E CALOR
v Constant; exponent in the body—energy
relationship
w Biomass of an individual organism SIZE MAIN
Sz READM
SIZE TOTSI
Sz PRDAT
Sz CALOR
¥4 RECORD

Appendix B. Input Formats

Input data required by computer program. Values given are those
used for the simulation in Fig. 7. All cards except numbers 1 and 62-67
with 10-column fields, right-hand justified, input order is card number
(not order given below). Card number and species designation not

punched in cards.
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Card number (Instruction cards)

I Print Instructions (0, 1) to print Date Border
interval each of 16 lines (cols 20-28) (cols 29-52)
(cols 1-3) (cols 4-19) 18 Dec 69 K sk ok ok Kk K K KOk,
15 rrrr1rrrrrrrririnal
2 N NF Js JF SE Fl F2 DG
Number Number Beginning Ending Argument Constant Constant Rate
of of interval interval for sine to set to set constant
species abiotic number for number for function range for range for for
factors printing printing for season abiotic abiotic digestion
factor 1 factor 2
6 2 1 10801 .65 4- 00 .10 + 03 55 + 02 —.30 + 01
Species cards for Species: 1, 2 producers; 3, 4 herbivores; 5, 6 predators
(Initial condition cards)
Card
number Species | Species 2 Species 3 Species 4 Species 5 Species 6
3 s = species number of individuals
4101 + 09 1475 + 08 325 4 06 3683 + 06 3214 + 02 5212 + 02
4 sz = beginning weight of individuals of each species
105 + 01 107 + 02 1403 + 02 .1403 + 02 1260 -+ 03 (1285 + 03
9 FAT = beginning grams of fat per individual
S5 =01 7+ 00 403 + 01 430 + 01 2599 + 02 .2848 +- 02
13 ENG = initial value for energy (kilocalories per individual) expendeu during previous interval
0.0 0.0 .6986 + 01 7180 + 01 2009 + 02 2111 + 02
16 ¢ = initial value for modified birth rate
2389 — 01 3532 — 01 .1830 — 01 12593 — 01 6192 — 02 .7403 — 02
19 EBM = initial value for energy expended in maintenance of body
0.0 0.0 4 + 01 .3456 + 01 1124 + 02 A137 + 02
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Appendix B (cont.)

(Variable cards)

Card
number Species 1 Species 2 Species 3 Species 4 Species 5 Species 6
5 siz = nonfat weight of individuals (grams)
.01 4 01 .10 4 02 .10 + 02 .10 + 02 .10 + 03 .10 4 03
6 B = maximum birth rate
.75 — 01 .70 — 01 .20 — 01 .20 — 01 .90 — 02 .80 — 02
7 A = amount of space available to each species; asymptote for population number
(.10 — 01 if logistic is not operating)
.80 4 09 .80 + 08 .10 + 01 .10 4 01 .10 + 01 .10 + 01
8 cHO = carbohydrate, body content per individual (grams)
.35 + 00 .40 + 01 .10 + 01 .10 + 01 .10 + 02 .10 + 02
10 BM = biometric maximum food intake per individual (grams)
0.0 0.0 .104 + 02 .105 + 02 .24 4 02 25 + 02
11 sl = rate constant for influence of energy expenditure on satiation level (note negative sign)
0.0 0.0 —.10 + 01 —.10 4- 01 —.75 + 00 —.70 + 00
12 s2 = proportionality constant for influence of body fat store on satiation level
0.0 0.0 .20 + 00 .30 + 00 .15 — 01 125 — 01
14 STV = rate constant for starvation
0.0 0.0 .60 — 02 .55 — 02 .55 — 02 .60 — 02
15 FM = turnover rate for mobilization of fat stores
0.0 0.0 .20 + 00 .10 + 00 .20 + 00 .50 — 01
17 PR = protein per individual (grams)
.70 — 01 .80 + 00 .15 + 01 .18 4 01 .16 4 02 15 402
18 DTH = basic mortality rate-—cause unspecified (note negative sign)

—.20 — 02 —.30 — 02 —.18 — 02 —.20 — 02 —.85 — 03 —.80 — 03

(44
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Appendix B (cont.)

(Variable cards)

Card
number Species 1 Species 2 Species 3 Species 4 Species 5 Species 6
P(1]) = predation matrix 6 X 6; I(row) = predator, J(col) = prey; instantaneous rate of mortality of
prey with unit density of predator (note negative sign)
20 0.0 0.0 0.0 0.0 0.0 0.0 Sp 1)
21 0.0 0.0 0.0 0.0 0.0 0.0 (Sp 2)
22 —.90 — 07 —.90 — 08 0.0 0.0 0.0 0.0 (Sp 3)
23 —.90 — 08 —.90 — 07 0.0 0.0 0.0 0.0 (Sp 4)
24 0.0 0.0 —.55 — 05 —.525 - 05 0.0 0.0 (Sp 5)
25 0.0 0.0 —.60 — 05 —.525 - 05 0.0 0.0 (Sp 6)
T(1J) = competition matrix 6 X 6; I(row) = competitor, J(col) = species being suppressed;
competition coefficients: relative amount of space I needs in terms of what J needs (note negative sign)
26 —.10 + 01 —.50 — 01 0.0 0.0 0.0 0.0 Sp 1)
27 —.60 4+ 00 —.10 4+ 01 0.0 0.0 0.0 0.0 (Sp 2)
28 0.0 0.0 0.0 0.0 0.0 0.0 (Sp 3)
29 0.0 0.0 0.0 0.0 0.0 0.0 (Sp 4)
30 0.0 0.0 0.0 0.0 0.0 0.0 (Sp 5)
31 0.0 0.0 0.0 0.0 0.0 0.0 (Sp 6)
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(Variable cards)
Card
number Species 1 Species 2 Species 3 Species 4 Species 5 Species 6
E(IJK) = energy coefficient matrix: energy expenditure for different reasons; 1(row) = species; j(successive pairs of
cols) = reason for energy expenditure as named; K(lst or 2nd col of 2nd pair) Ist = abiotic factor 1,
2nd = abiotic factor 2, insert zeros in 2nd col for other pairs (10 eight-column fields)
Escaping
Body mass Abiotic factors Reproduction Capturing food predators
62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sp 1)
63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (Sp 2)
64 .70 +00 0.0 .10 + 00 .75 — 01 .15+ 01 0.0 30+01 0.0 .80+ 00 0.0 (Sp 3)
65 .60 + 00 0.0 .90 — 01 .65 — 01 .15 4+ 01 0.0 .267 +- 01 0.0 .80 + 00 0.0 (Sp 4)
66 45400 0.0 365 +00  .364 + 00 .15+ 01 00 454+ 01 0.0 0.0 0.0 (Sp 5)
67 45 +00 0.0 365 + 00  .364 4 00 A5+ 01 00 .60 +01 0.0 0.0 0.0 (Sp 6)
(Variable cards)
Card
number Species 1 Species 2 Species 3 Species 4 Species 5 Species 6
o(1JK) = abiotic factors—optimum range outside of which energy is expended; I(row) = species;
J(cols 1, 2 vs 3, 4) factor 1 or 2; K(1st or 2nd col), Ist = lower bound, 2nd = upper bound
32 75 + 02 15 4+ 02 .50 + 02 .50 + 02 Sp 1)
33 75 + 02 5 + 02 .50 + 02 .50 + 02 (Sp 2)
34 75 + 02 75 + 02 .50 + 02 .50 + 02 (Sp 3)
35 75 + 02 75 + 02 .50 + 02 .50 + 02 (Sp 4)
36 75 + 02 75 + 02 .50 + 02 .50 + 02 (Sp 5)
37 75 + 02 75 + 02 50 + 02 .50 + 02 (Sp 6)

9ty
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Appendix B (cont.)

(Variable cards)

Card
number Species 1 Species 2 Species 3 Species 4 Species § Species 6
SL(IJK) = abiotic factors—slope—increase in proportion dying of factor per unit deviation from the optimum
range stated in PT(1JK) below; I{row) = species; J{cols 1, 2 vs 3, 4) = factor | or 2; K(Ist or 2nd col)
Ist = slope below optimum range, 2nd = slope above optimum range (note negative for 2nd value)
44 .80 — 04 0.0 .10 — 03 —.10 — 03 Sp 1)
45 50 — 04 0.0 .10 — 03 —.10 — 03 (Sp 2)
46 .25 — 04 —.10 — 03 .10 — 03 —.10 — 03 (Sp 3)
47 .20 — 04 —.15 - 03 .10 — 03 —.10 — 03 (Sp 4)
48 55 — 04 —.12 — 03 .10 — 03 —.10 — 03 (Sp 5)
49 .60 — 04 —.12 — 03 .10 — 03 —.10 — 03 (Sp 6)
(Variable cards)
Card
number Species 1 Species 2 Species 3 Species 4 Species § Species 6
PT(IJK) = abiotic factors—optimum range outside of which death rate is increased; I(row) = species,
J(cols 1, 2 vs 3, 4) factor 1 or 2; K(Ist or 2nd col) Ist = lower bound, 2nd = upper bound
38 25 402 .106 + 03 25 + 02 .75 + 02 Sp 1)
39 35402 .106 4+ 03 25 + 02 75 402 (Sp 2)
40 .35 4 02 .98 + 02 .25 + 02 75 402 (Sp 3)
41 40 + 02 .101 + 03 25 + 02 .75 + 02 (Sp 4)
42 .20 4 02 .10 4 03 25 + 02 75 + 02 (Sp 5)
43 .25 + 02 .10 03 25 + 02 75 4 02 (Sp 6)
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Appendix B (cont.)

8y

(Variable cards)

Card
number Species 1 Species 2 Species 3 Species 4 Species 5 Species 6
ASL(IJK) = abiotic factors—slope—constant reducing birth rate modifier per unit deviation of factor from
optimum range stated in ALV(IJK) below; 1(row) = species; J(cols 1, 2 vs 3, 4) = factor 1 or 2;
K(Ist or 2nd col) Ist = slope below optimum range, 2nd = slope above optimum range (note
negative for 2nd value)
50 .1667 — 01 0.0 .40 — 01 —.40 — 01 Sp 1
51 .20 — 01 0.0 .40 — 01 —.40 — 01 (Sp 2)
52 45 — 01 —.75 — 01 .40 — 01 —.40 — 01 (Sp 3)
53 .47 — 01 —.70 — 01 .40 — 01 —.40 — 01 (Sp 4
54 .80 — 01 —.50 — 01 .40 — 01 —.40 — 01 (Sp 5)
55 .57 — 01 —.35 - 01 .40 — 01 —.40 — 01 (Sp 6)
ALV(IJK) = abiotic factors—optimum range outside of which birth rate is reduced; 1(row) = species;
J(cols 1, 2 vs 3, 4) = factor 1 or 2; K(Ist or 2nd col) Ist = lower bound, 2nd = upper bound
56 .105 + 03 .106 4 03 .25 + 02 .75 + 02 Sp 1)
57 90 4 02 .106 + 03 .25 402 .75 + 02 (Sp 2)
58 75 402 .85 4 02 .25 + 02 .75 + 02 (Sp 3)
59 78 + 02 85 4+ 02 25 + 02 .75 4+ 02 (Sp 4)
60 .60 4 02 .80 + 02 .25 + 02 75 + 02 (Sp 5)

61 .65 1 02 .85 + 02 25 + 02 75 + 02 (Sp 6)
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Appendix C. Sample Output

ECDSYS MDDEL 2 UPDATED DEC 69

ECDSYSTEM INFDRMATIDN FDR INTERVAL NUMBER 541

ko EEEEEEFREEEEEEEREREKE
INFD FDR SPECIES 1 2 3 o 5 6
%
SATIATN LVL (GM) 0.0 0.0 0.4362D 01 0.4943D 01 0.8895D 01 0.9006D 01
RATION (GM) 0.0 0.0 0.4362D 01 0.4943D 01 0.8895D 01 0.9006D 01
KCAL EXPENDED
BODY MASS 0.0 0.0 0.1594D 07 0.55850 D6 0.1303D 05 0.2484D 05
ABIDT FACTRS 0.0 0.0 0.2129D 07 0.7507D 06 0.2295D 05 0.4303D 05
REPRODUCTION 0.0 0.0 0.0 0.0 0.0 0.0
FEEDING 0.0 0.0 0.2702D 06 0.1278D 06 0.1001D 04 0.2366D 04
ESCAP ING 0.0 0.0 0.2097D 04 0.5962D 03 0.0 0.0
KCAL/INDIVIDUAL 0.0 0.0 0.9098D 01 0.1034D 02 0.3249D 02 0.3291D 02
TDT AVAIL KCAL 0.0 0.0 0.1803D 02 0.1646D 02 0.83590 02 0.9588D 02
AVAIL KCAL FODD 0.0 0.0 0.8949D 01 0,10170 02 0.3090D 02 0,3133D 02

GMS STDRED FAT 0.50000 01 0.7000D0 01 0.4876D 01 0.3750D 01 0.2830D 02 0.3152D 02

BIRTH PRPDRTIDN-
ALITY CDNSTANTS

WEATHER 0.0 0.0 0.0 0.0 0.0 0.0
DTHER ABIDT 0.10000 01 0.10000 01 0.1000D O1 0.1000D 01 0.10000 01 0.10000 O1
SPACE 0.1476D 00 0.15250 00 0.1000D 01 0.10000 01 0.1000D 01 0.10000 01
FOOD LACK 0.10000 01 0.1000D0 O1 ©.8836D 00 0.8834D 00 0.8510D 00 0.8520D 00
INSTANTANEDUS
DEATH RATES BY
STARVATIDN 0.0 0.0 0.0 0.0 0.0 0.0
WEATHER -0.2075D-04 -0.5131D-03 -0.2565D-03 ~0.3052D-03 0.0 ~0.1556D-04
DTHER ABIDT 0.0 0.0 0.0 0.0 0.0 0.0
SP 1 PREDN 0.0 0.0 0.0 0.0 0.0 0.0
SP 2 PREDN 0.0 0.0 0.0 0.0 0.0 0.0
SP 3 PREDN -0.9092D~03 ~0.6566D-03 0.0 0.0 0.0 0.0
SP & PREDN -0.31890-03 -0.25510-03 0.0 0.0 0.0 0.0
SP 5 PREDN 0.0 0.0 =0.1214D-02 ~0.11590-02 0.0 0.0
SP 6 PREDN 0.0 ~0.2348D~02 -0.2054D-02 0.0 0.0

0.0
OTHER CAUSES —~0.20000-02 -0.30000-02 -0.1800D-02 -0.20000-02 -0.85000-03 -0.80000-03
POPN RATE DF CHG -0.3249D-02 -0444250-02 -0.5618D-02 -0.5518D~02 -0.8500D-03 -0.8156D-03

NUMBER OF INDIV 0.1584D 08 0.5693D 07 0.4367D 06 0.1382D 06 0.1137D 04 0.21320 04
BIDMASS (GM) 0.1664D 10 0.6091D 09 0464990 07 0.1901D0 07 0.1459D 06 0.2805D 06

EEEERK EXEEEREEERE i

WEATHER MEASUREMENT: 0.2474D 02 OTHER ABIOTIC FACTOR: 0.55000 02
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Appendix D. The Computer Program

l PRDAT }-—o[ CALOR‘!—" FATLE
[ N
| [ome | |

Input l l TOTSH

[ READM J——[ WEATHR
%‘—-{ RECORD —[fio_r\l—]‘—* ABMORT

C %% ECOSYS: A PROGRAM TO SIMULATE AN ECOSYSTEM WITH SPECIFIABLE
c INTERRELATIONS AMONG THE MEMBER ORGANISMSs AND WITH SPECIFIABLE
c PHYSIOLOGICAL CHARACTERISTICS FOR AVERAGE INDIVIDUALS OF EACH
c
c
c

MEMBER SPECIES, WITH REGARD TO RESPONSES TO BIOTIC AND ABIOTIC
FACTORS.

COMMON CK,DATRUN{9)sIPAGE+STARS(3)

INTEGER CK(1l6)

DOUBLE PRECISION S{6)+sSIZE(6)+PRED(6+6)+D(6410),RATIO(6)sSUMP(6),
1PSUM{6) 4BMETM (6),SKE{6),SKF(6),FAT(6)ENERG (6)sCHO(6)sSTARV (6}
2FFAMA(6) yRSTRC (694 ) 40PT(64242)3FL(2)4G(6)4POINT(64242),PRTN(6),
3SLOPE(649292) sASLOP (64242)4ALEVE (