PROGRAMA DE PALEOZOOLOGIA

2006

Coordinador: Dr. Gustavo Juan Scillato

- Paleontología: definiciones, alcances y objetivos. Paleontología sistemática y disciplinas especiales.
 Registro paleontológico. Factibilidad y condiciones de fosilización. Tafonomía: Procesos más frecuentes. Icnofósiles: clasificaciones. Problemáticos y seudofósiles. Yacimientos excepcionales.
- 2. Origen de la vida. Antecedentes históricos. Transición de sistemas no vivientes a vivientes. Compuestos químicos principales y condiciones ambientales. Evidencias geopaleontológicas de la vida en el Precámbrico. La búsqueda de evidencias exobiológicas. Desarrollo del Oxígeno libre y evolución atmosférica. La radiación del Cámbrico.
- 3. Extinciones: Antecedentes. Tipos de extinciones. Extinciones en masa. Ciclicidad. Causas: explicaciones geológicas, biológicas y astrofísicas. El significado biológico de las extinciones. Recuperaciones.
- Reino Protista. Sistemática. Grupos extinguidos. Características particulares de Foraminiferida. Adaptaciones a la vida planctónica y bentónica. Grupos de importancia estratigráfica. Representantes sudamericanos.
- 5. Phylum Porifera: distribución estratigráfica y paleoecológica. Representantes sudamericanos. Phylum Archaeocyatha: Morfología, distribución, sistemática y paleoecología. Representantes sudamericanos.
- 6. Phylum Cnidaria: Características diagnósticas del phylum. Morfología general y sistemática. Características de las Clases Protomedusae, Hydrozoa, Scyphozoa, Anthozoa, y de los principales órdenes. Grupos de importancia estratigráfica y paleoecológica. Representantes sudamericanos.
- 7. Phylum Bryozoa: Características diagnósticas del phylum. Morfología general y sistemática. Clases Phylactolaemata, Gymnolaemata y Stenolaemata. Características, distribución estratígráfica, ecología y paleoecología de los órdenes. Importancia del registro en Argentina.
- 8. Phylum Brachiopoda: Morfología, niveles de organización y sistemática. Clases Lingulata, Craniata, Strophomenata y Rhynchonellata. Características de los principales órdenes y subórdenes. Grupos de importancia estratigráfica. Ecología y paleoecología. Homeomorfía. Importancia del registro en Argentina.
- Phylum Mollusca: Características diagnósticas del phylum. Clases Monoplacophora, Polyplacophora y Scaphopoda. Morfología, distribución estratigráfica y modo de vida. Clases extinguidas: Hyolitha y Rostroconchia. Morfología, paleoecología y afinidades. Representantes sudamericanos.
- 10. Clase Gastropoda: Características generales y orientación. Sistemática, morfología funcional, ecología y paleoecología. Grupos de importancia estratigráfica. Importancia del registro en Argentina.
- 11. Clase Bivalvia: Características generales de las Clases Paleotaxodonta, Pteriomorphia y Heteroconchia. Morfología funcional de la conchilla, ecología y paleoecología. Grupos de importancia estratigráfica. Las radiaciones adaptativas y sus causas. Paleobiogeografía. Importancia del registro paleontológico argentino.

- 12. Clase Cephalopoda: Características generales. Sistemática. Subclases Nautiloidea, Endoceratoidea, Actinoceratoidea y Bactritoidea: morfología, clasificación e importancia estratigráfica. Incertae Sedis: Tentaculoidea; morfología, relaciones sistemáticas.
- 13. Subclases Ammonoidea y Coleoidea: Morfología, sistemática. Importancia como indicadores estratigráficos y paleoecológicos. Representantes sudamericanos.
- 14. Filogenia de Mollusca. Origen de los moluscos. Evidencia en el Precámbrico-Cámbrico. Teoría de Runnegar y Pojeta. Teoría de Yochelson. Relaciones entre Bivalvia y Rostroconchia. Evolución de Cephalopoda. Relaciones entre Nautiloidea, Bactritoidea, Ammonoidea y Coleoidea. Evolución sutural. La evolución de los Cephalopoda en relación con el sistema de flotación.
- 15. Arthropoda: Generalidades. Grupos extinguidos. Importancia del registro fósil en yacimientos excepcionales del Paleozoico inferior para comprender la evolución del grupo. Clase Ostracoda: Características generales y orientación. Dimorfismo sexual. Importancia estratigráfica y paleoambiental. Representantes sudamericanos.
- Subphylum Trilobita: Características generales y sistemática. Particularidades de los órdenes. Morfología funcional y paleoecología. Distribución estratigráfica. Importancia del registro en Argentina.
- 17. Phylum Echinodermata: Características diagnósticas del phylum. Sistemática: Clases Cystoidea, Blastoidea, Crinoidea, Edrioasteroidea, Asteroidea, Ophiuroidea, Echinoidea, Holothuroidea. Morfología, ecología, paleoecología y distribución estratigráfica. Importancia del registro en Argentina.
- 18. Phylum Hemichordata, Clase Graptolithina: Morfología y sistemática. Características de los Ordenes Dendroidea y Graptoloidea. Tendencias evolutivas y afinidades. Importancia paleoecológica y estratigráfica. Importancia del registro en Argentina.
- 19.Phyllum Chordata. Teorías sobre su origen. Subphyllum Vertebrata. Diversos criterios clasificatorios clásicos. Los vertebrados fósiles sin mandíbulas. Macrosistemática, biocrones, tendencias evolutivas y relaciones con las formas vivientes. Placodermi. Morfología, sistemática, tipos adaptativos, paleoambientes. Origen de las mandíbulas. Posibles vinculaciones con los holocéfalos.
- Clase Chondrichtyes. Morfología, clasificación, biocrones. Los representantes extinguidos y su evolución hasta los tiempos modernos.
- 21. Los peces óseos. Morfología. Principales grupos : Actinopterigii, Dipnoi, Crossopterigii. Biocrones. Teorías alternativas respecto al origen de los Amphibia.
- 22. Amphibia. Morfología, clasificación, biocrones, tipos adaptativos, paleoambientes. Los tetrápodos basales. Batrachomorpha y Reptiliomorpha. Evolución de los Lissamphibia sudamericanos.
- 23. Los Amniota como grupo monofilético. Los "Reptilia" como grupo parafilético. Sauropsida y Synapsida. Origen y fundamentos de la macrosistemática de los Sauropsida. Anapsida:

- 24. Diapsida. Lepidosauriomorpha: Morfología, clasificación y tendencias evolutivas. Origen y evolución de los grupos modernos. Lepidosaurios sudamericanos.
- 25. Diapsida. Archosauriomorpha: Morfología, clasificación, biocrones y origen. Arcosaurios basales: Morfología, clasificación, biocrones, distribución geográfica, tipos adaptativos, paleoambientes y representantes sudamericanos. Crocodylomorpha y grupos afines: Morfología, clasificación, biocrones, distribución geográfica y tipos adaptativos. Evolución de las familias sudamericanas.
- 26. Dinosauria. Saurischia y Ornithischia: Morfología, clasificación, biocrones, origen, tipos adaptativos, principales tendencias evolutivas, representantes sudamericanos. Pterosauria: Morfología, clasificación, biocrones; diferenciación entre taxones jurásicos y cretácicos; representantes sudamericanos. La gran extinción de fines del Mesozoico.
- 27. Adaptación de los Sauropsida a la vida marina durante el Mesozoico. Ichthyosauria y Sauropterygia: Morfología, clasificación, biocrones, distribución geográfica, principales tendencias evolutivas y representantes sudamericanos.
- 28. Aves: Morfología, clasificación y biocrón. Teorías sobre su origen. El origen del vuelo. Las Aves cretácicas: Enantiornithes. Tipos adaptativos de los Gruiformes. Representantes sudamericanos.
- 29. El advenimiento de los taxones con caracteres mamalianos. Los conceptos de Synapsida str. ("Subclase Synapsida") y s. lato (el "clado Synapsida"). Sinapomorfías. Morfología, clasificación, tipos adaptativos y biocrones. Los terápsidos avanzados y su vinculación con los Mammalia.
- 30. Mammalia. Dificultades para su delimitación. Sinapomorfías. Teorías sobre su origen. Morfología, clasificación, sinapomorfías y biocrón. Importancia de la dentición en los mamíferos. Estructura y evolución morfofuncional. El origen del molar tribosfénico. Los Australosphenida y los Boreosphenida: Discusión y teorías.
- 31. Mamíferos mesozoicos. Principales representantes: Multituberculados, docodontes, triconodontes, simmetrodontes y eupantoterios. Morfología, sistemática y biocrones. Tipos adaptativos. Primeros registros de Metatheria y Eutheria. Mamíferos mesozoicos sudamericanos.
- 32. Mamíferos sudamericanos. Distintas teorías sobre su origen geográfico y filogenético. Marsupiales. Generalidades, clasificación, biocrones y distribución geográfica. Relaciones de los marsupiales sudamericanos con los norteamericanos y australianos. Marsupiales eurasiáticos y africanos. Representantes sudamericanos: Tipos adaptativos.
- 33. Xenarthra. Sinapomorfías. Caracteres reptilianos: Discusión. Hipótesis sobre el origen filogenético y geográfico. Clasificación, biocrones y tipos adaptativos. Importancia del registro fósil en Argentina.
- 34. Los ungulados nativos sudamericanos: su clasificación, biocrones y teorías sobre su origen. Litopterna, Pyrotheria, Xenungulata, Astrapotheria, Notoungulata y Notopterna. Diversificación, principales tipos adaptativos, convergencias y consideraciones sobre su extinción. Cetacea y Sirenia. Caracteres generales, origen y distri bución. Representantes argentinos.

- Rodentia Hystricognathi y Primates Platyrrhini. Primeros registros. Caracteres generales y macrosistemática. Su historia en América del Sur. Problemática específica acerca del origen filogenético y geográfico: Teorías.
- 36. Gran Intercambio Biótico Americano (GABI). Carnivora, Proboscidea, Perissodactyla, Artiodactyla, Rodentia (Myomorpha y Sciuromorpha), Lagomorpha Insectivora y Primates (Hominidae). Ingreso a América del Sur: sus implicaciones paleobiogeográficas y paleoecológicas. La gran extinción de fines del Pleistoceno: Teorías.

BIBLIOGRAFIA

AGER, D., 1963. Principles of Paleoecology. Mc Graw Hill Book Co. New York.

ARMSTRONG, H. A. y BRASIER, M. 2005. *Microfossils*. Second edition. Blackwell Publishing. Oxford.

- ARRATIA, G. and CIONE, A. L., 1996. The fossil fish record of Southern South America. Pages 9-72 in G. Arratia, ed. Contributions of Southern South America to Vertebrate Paleontology. Münchener Geowissenschaftliche Abhandlungen 30, Munchen.
- BEERBOWER, J.R., 1968. Search for the Past. Prentice Hall Inc.
- BENTON, M.J., 1968. The Phylogeny and Classification of the Tetrapods. Vol. 1: Amphibians, Reptiles and Birds. Systematic Association Special Volume N 35a. Clarendon Press, Oxford.
- BENTON, M.J., 1993. The Fossil Record 2. Chapman y Hall.
- *BENTON, M. J., 2005. Vertebrate Palaeontology. Blackwell Publishing. Third Edition. Malden (USA), Oxford (UK), Carlton (Australia).
- BIGNOT, S. 1988. Los microfósiles. Los diferentes grupos. Aplicaciones paleobiológicas y geológicas. Editorial Paraninfo. Madrid.
- *BOARDMAN. R.S., CHEETHAM, A.H. y ROWELL, A.J., 1987. Fossil Invertebrates. 713 pp. Blackwell Scientific Publications.
- BOLTOVSKOY, E. 1965. Los Foraminíferos Recientes. Eudeba. Buenos Aires.
- BONAPARTE, J.F., 1978. El Mesozoico de América del Sur y sus tetrápodos. Opera Lilloana 26. Tucumán.
- BONAPARTE, J.F., 1985. Los dinosaurios de la Patagonia argentina. Asoc. Herp. Argentina. Serie de Divulgación, 3 Buenos Aires.
- BONAPARTE, J.F., 1986. Simposio Evolución de los Vertebrados. Mesozoicos. Actas IV Congr. Arg. Paleont. y Bioestr., 2. Mendoza.

- BOUREAU, E., 1976. Au précambrien: naissance du mond vivant. La Recherche, 68 (7).
- *BRIGGS, D.E.G. y CROWTHER, P.R. (eds.), 1990. *Palaeobiology: A synthesis*. Blackwell Science Publ. Ltd., Oxford, U.K.
- CAMACHO, H.H., 1966. Invertebrados Fósiles. Eudeba. Buenos Aires.
- *CARROLL, R., 1988. Vertebrate Paleontology and Evolution. Freeman Co. New York.
- CECCA, F. 2002. Palaeobiogeography of Marine Fossil Invertebrates. Concepts and Methods. Taylor & Francis. 273 pp. London.
- CIONE, A. L., E. P. TONNI, and L. SOIBELZON. 2003. The Broken Zig-Zag: Late Cenozoic large mammal and turtle extinction in South America. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" 5.
- *CLARKSON, E.N.K., 1979. *Invertebrate Paleontology and Evolution*. George Allen y Unwin: 1-323. Londres. (Traducido al español como "Paleontología de Invertebrados y su Evolución" por Edit. Paraninfo 1986).
- CLOUD, P., 1976, Beginnings of biospheric evolution and their biogeochemical consequences. *Paleobiology*, 2 (4): 351-387
- CONWAY-MORRIS, S. y WHITTINGTON, H., 1979. The Animals of the Burgess Shale. *Scientific American*, 241 (1): 110-120. New York.
- DENTON, E.J., 1974. On buoyancy and the lives of modern and fossil cephalopods. *Proc. Roy. Soc. London*. B 185: 273-299.
- GLAESSNER, M.F., 1961. Pre-cambrian Animals. Scientific American 204 (3): 72-78.
- HALLAM, A. (Ed.), 1977. Patterns of Evolution as illustred by the Fossil Record. Elsevier Sci. Publ. Co., Amsterdan.
- HALLAM, A. y WIGNALL, P.B. 1997. *Mass Extinctions and Their Aftermath*. Oxford University Press. 320 pp. Oxford.
- HECHT, P., GOODY, C. y HECHT, M. (Eds.), 1977. Major patterns in Vertebrate Evolution. Nato Advances Study Institut Serres. Serie A.: Life Sciences.
- HOUSE, M.R. (Ed.), 1979. The Origin of Major Invertebrate Groups. Academic Press, London.
- IMBRIE, J. v NEWELL, N.D., 1964. Approaches to Palaeoecology. Willey & Sons, New York.
- JONES, O.A. y ENDEAN, R. (Eds.), 1973. *Biology and Geology of Coral Reefs*. Vol. I. Geology 1: 1-410; vol. IV, Geology 2: 1-337. Academic Press. New York.
- KAUFFMAN, E.G. y HAZEL, J.E. (Eds.), 1977. Concepts and Methods of Bioestratigraphy. Dowden, Hutchinson & Ross, Inc. Pennsylvania.
- KEAST, A., ERK, F.C. y GLASS, B. (Eds.), 1972. Evolution, Mammals and Southern Continents. State University of New York. Albany.
- KUHNN-SCHNYDER, E. y RIEBER, H., 1986. *Handbook of Paleozoology*. The J. Hopkins Univ. Press., Baltimore.

- LIPPS, J. H., (Eds.) 1993. Fossil Prokaryotes and Protists. Blackwell Scientific Publications. Cambridge.
- LONG, J. A. 1995. The rise of fishes. The Johns Hopkins University Press, Baltimore.
- McALESTER, A.L., 1973. La historia de la vida. Omega. Barcelona.
- McKERROW, W.S., 1978. The Ecology of Fossils. Duckworth Co. Ltd. Londres.
- MOLINA, E. (Editor), 2002. *Micropaleontologia*. Prensas Universitarias de Zaragoza. Textos docentes. Zaragoza.
- MONES, A., 1979. Los dientes de los vertebrados. Universidad de la República, División Publicaciones y Ediciones. Uruguay.
- MOORE, R. y otros (Eds.), 1953-2006, *Treatise on Invertebrate Paleontology*. Geological Society of America and University of Kansas Press. (47 volúmenes publicados).
- MOORE, R., LALICKER, C. y FISCHER, A., 1952. Invertebrate fossils. McGraw Hill Book Co.
- MORET, L., 1966. Paléontologie animale. Masson Ed. Paris.
- NEWELL, N.D., 1967. Revolutions in the History of the Life. Geol. Soc. Am. Spec. Pap., 89: 63-91.
- OLSON, P.C., 1971. Vertebrate Paleozoology. Willey Interscience. New York.
- PAULA COUTO, C., 1979. *Tratado de Paleomastozoología*. Academia Brasileira de Ciências. Rio de Janeiro.
- PIVETEAU, J., 1952-1954. Traité de Paléontologie. I-VIII. Masson Paris.
- *PROTHERO, D.R. y SCHOCH, R.M., 1994. Short courses in paleontology, N° 7. Major features of vertebrate evolution. The Univ. of Tennessee, Knoxville, 270 pp.
- RAUP, D.M. y SEPKOSKI, J.J., 1982. Mass Extinction in the Marine Fossil Record. Science, 215 (4539): 1501-1503.
- RAUP, D.M. y STANLEY, S.M., 1978. *Principles of Paleontology*. Freeman and Co., 2da. Edic., San Francisco. (Hay una traducción al castellano)
- REIG, O., 1981. Teoría del Origen y Desarrollo de la Fauna de Mamíferos de América del Sur. Mus. Mun. Cs. Nat. Mar del Plata. Monographie Naturae: 1-182.
- ROGER, J., 1974. Paléontologie Génerale. Masson et Cie. Edit. Collection Sciences de la Terre 1.
- ROMER, A.S., 1959. The Vertebrate History. Chicago Univ. Press (4th. ed.).
- ROMER, A.S., 1962. The Vertebrate Body. Philadelphia (3d. ed).
- *ROMER, A.S., 1966. Vertebrate Paleontology. The Univ. of Chicago Press.
- ROMER, A.S., 1967. Major steps in Vertebrate Evolution. Science, 158(3809).

- ROSS, R. y ALLMAN, W., 1990. Causes of Evolution. A Paleontological Perserspective. The University of Chicago Press, 479 pp.
- RUNNEGAR, B. y POJETA, J., 1974. Molluscan phylogeny: The Paleontological viewpoint. *Science*, 186 (4161): 311-317.
- SCHAFER, W., 1972. Ecology and Paleoecology of Marine Environments. Univ. Chicago Press.
- SCHROCK, R.R.y TWENHOFFEL, W.H., 1953. Principles of Invertebrate Paleontology. McGraw Hill Book.
- STANLEY, S.M., 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). *Mem. Geol. Soc. Amer.*, 125: 1-296.
- STEHLI, P.G. y WEBB, S.D. (Eds.), 1985. The Great American Biotic Interchange. Plenum Press. New York.
- STODDART, D.R., 1969. Ecology and morphology of Recent coral reefs. Biol. Rev., 44 (4): 433-498.
- VICKERS-RICH, P., MONAGHAN, J., BAIRD, R. y RICH, T., 1990. Vertebrate Paleontology of Australasia. *Monash Univ. Publ. Committee*, 1437 pp.
- WELLER, J.M., 1969. The course of Evolution. McGraw Hill Book.

PALEOZOOLOGIA

DISEÑO Y PLANIFICACION

1. Contenido global del curso

El curso de Paleozoología implica el estudio global de los organismos animales que han vivido durante el transcurso del tiempo geológico; se basa en la información que proporcionan los fósiles. Comprende dos partes: I. Invertebrados y II. Vertebrados.

Es una asignatura obligatoria para los alumnos de la Orientación Zoología. Son imprescindibles conocimientos básicos de anatomía y sistemática de invertebrados y vertebrados actuales, así como conceptos esenciales de geología.

2. Metas y objetivos generales

Se espera que el alumno alcance un buen conocimiento de los principales taxones extinguidos y su relación con los vivientes. Se destacan los aspectos tafonómicos, bioestratigráficos, paleoecológicos y paleobiogeográficos.

3. Contenidos de la materia

Se ha procurado abarcar todos los aspectos básicos de la Paleozoología.

4. Contenidos a desarrollar

Los temas detallados en el punto 3 se desarrollan en clases teóricas, teórico-prácticas y prácticas.

5. Metodologia

Consiste en la exposición de los temas teóricos por parte de los profesores. En la parte práctica, se examinan materiales paleontológicos (originales o calcos), bajo la supervisión de los docentes auxiliares, con el fin de constatar los caracteres morfológicos e intentar la ubicación sistemática. Se organizan clases en las salas del Museo de La Plata, con el fin de que los alumnos observen directamente ejemplares excepcionales.

6. Evaluacion

Consta de 4 exámenes parciales (2 durante el SEMESTRE I y 2 durante el SEMESTRE II) y el examen final.

7. Bibliografia a utilizar

Se especifica a continuacion del listado de temas del programa correspondiente. La bibliografia esencial esta indicada mediante un *.

8. Duracion de la materia

Paleozoologia es una materia anual (2 semestres). Se dedica un semestre a los invertebrados fósiles y el otro a los vertebrados fósiles. Además, se incluyen en ambos semestres algunas unidades temáticas sobre aspectos generales de la paleontología.

Responsables de las actividades

Invertebrados:

Parte teórica:

Dra. Nora Sabattini

Dr. Alberto Riccardi

Dra. Susana Damborenea

Dr. Miguel Manceñido

Dra. Sara Ballent

Parte práctica:

Dr. Franco Tortello

Dr. Miguel Griffin

Lic. Karina Pinilla

Vertebrados:

Teórico-prácticos:

Dr. Gustavo J. Scillato (Profesor a Cargo de PALEOZOOLOGÍA).

Dra. Zulma B. de Gasparini

Dra. María G. Vucetich

Dra. Marta Fernández

Dr. Javier Gelfo

Lic. Guillermo López

Lic. Mariano Bond

9. Autoevaluacion

Implica consultas permanentes entre los responsables de las distintas unidades temáticas acerca del desarrollo del curso. Asimismo, se intercambian opiniones con los alumnos sobre el desenvolvimiento del curso.

PALEOZOOLOGIA

PRESENTACION COMPENDIADA DEL DISEÑO Y PLANIFICACION

1. Sintesis de metas y objetivos

Alcanzar un conocimiento satisfactorio de los principales taxones extinguidos, así como sobre aspectos tafonómicos, evolutivos, bioestratigráficos, paleoecológicos y paleobiogeográficos.

2. Sintesis de los contenidos

SEMESTRES I y II : Vertebrados e Invertebrados fósiles, respectivamente.

3. Requerimientos

Asistencia a las clases de acuerdo con los reglamentos vigentes. Aprobación de los cuatro exámenes parciales y del examen final.

4. Metodologia

Clases teóricas, teórico-prácticas y prácticas.

- 5. Evaluación: ver punto 3.
- 6. Duracion

Anual (dos semestres).

7. Porcentaje de tiempo distribuido en actividades

Un SEMESTRE para Invertebrados. Dos exámenes parciales.

Un SEMESTRE para Vertebrados. Dos exámenes parciales.

8. Bibliografia esencial

Indicada en el programa correspondiente mediante un *.

10 μ

9. Bibliografia opcional

Incluida en el programa correspondiente sin indicacion (*) inicial.

10. Equipo docente

Invertebrados:

Clases teóricas:

Dra. Nora Sabattini

Dr. Alberto Riccardi

Dra. Susana Damborenea

Dr. Miguel Manceñido

Dra. Sara Ballent

Clases prácticas:

Dr. Franco Tortello

Dr. Miguel Griffin

Lic. Karina Pinilla

Vertebrados:

Teórico-prácticos:

Dr. Gustavo Scillato (Profesor a Cargo de PALEOZOOLOGÍA).

Dra. Zulma B. de Gasparini

Dra. María G. Vucetich

Dr. Alberto L. Cione

Dra. Marta Fernández

Dr. Javier Gelfo

Lic. Guillermo López

Lic. Mariano Bond

10. Otra informacion

Para cursar Paleozoologia son necesarios conocimientos básicos de anatomía y sistemática de invertebrados y vertebrados actuales, así como conceptos esenciales de Geologia.